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Abstract of the Dissertation

Quantum Cohomology and
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isolated fixed points ii
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2005

In this dissertation we stu(iy the quantum cohomology ring of sym- |
plectic manifolds with semi-free circle actions and isolated fixed |
points by means of the Seidel elements. We also provide a gluing
procedure for Hamiltonian S'-manifolds that allow us to classify .

these symplectic manifolds in dimension 6.
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Chapter 1

Introduction

Let (M, w) be a 2n dimensional compact, connected, symplectic manifold, and
let {X\} = \: St — Symp(M,w) be a symplectic circle action on M, that is,
if X is the vector field generating the action, then Lxw = dixw = 0. Recall
that the action is semi-free if it is free on M\M ' This is equivalent to say
that the only non-zero weights at every fixed point are 1. A circle action
is said to be Hamiltonian if there is a C® function H : M — R such that
txw = —dH. Such a function is called a Hamiltonian for the action. This
function is not unique, but it is up to a constant.

In thig dissertation we study symplectic manifolds with symplectic circle
actions whose fixed points are isolated. We study their quantum cohomology
and in dimension six we classify them up to equivariant symplectormorphism.

Tolman and Weitsman proved in [TWO00] that if the action is semi-free
and admits only isolated fixed points, then the action must be Hamiltonian
provided that there is at least one fixed point. There is a great deal of in-
formation concerning the topology of manifolds carrying such actions. The

first result in this direction is due to Hattori [Hat92]. He proves that there is




an isomorphism from the cohomology ring H *(M;Z) to the cohomology ring
of a product of n copies of 5%, Moreover, this isomorphism preserves Chern
classes. In [TW00] Tolman and Weitsman generalize Hattori’s result to equiv-
arjant cohomology. The the first result of this dissertation is to provide an
extension to quantum cohomology. In §2.2.1 we prove that M is an almost
Fano manifold, therefore we can use polynomial coefficients A = Qlay -« -, nl

for the quantum cohomology ring. Then we have the following theorem.

Theorem 1.0.1 Let (M,w) be a 2n-dimensional compact connected symplec-
tic manifold. Assume M admits a semi-free circle action with o finite non-
empty set of fized points. Then there s an isomorphism of (small) quantum

cohomology

QH*(M; A) = QH*((S*)"; A).
Note that we can compute directly the quantum cohomology of §%x. . x 52
to get the following result.

Corollary 1.0.2 The (small) quantum cohomology of M s given by

QQ[mlw--:xnaQI:--':qn]
< Xy R Ty — G >

QH*(M;A) = QH*((S*)™ A)

where deg(x;) = 2 and degg; = 4.

Moreover, all other products are given by

xil*“'*x’-’:k=x’ilu'.'v‘rik

for iy < -+- < iy. Here the product on the lefl is the quantum product, while
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the term on the right is the usual cup product.

Chapter 2 is dedicated to the proof of Theorem 1.0.1. To prove Theo-
rem 1.0.1 we will construct a set of generators {z;} of the cohomology ring
H*(M;Z). Then we prove in Lemma, 2.3.1 that the quantum products of these
generators satisfy the expected relations given in Corollary 1.0.2.

The proof of Theorem 1.0.1 strongly relies on the techniques and results
developed by McDuff and Tolman on the Seidel automorphism of the quantum
cohomology of symplectic manifolds with circle actions [MT04]. We apply their
results in our particular case and specialize them to understand exactly how
the Seidel automorphism acts on the generators {z;}. We will see in Corollary
2.2.13 that this action do not have higher order terms, that is the automor-
phism acts by single homogeneous terms in quantum cohomology. Thus the
Seidel automorphism is essentially a permutation of the elements in the basis.
We then use this and the associativity of the quantum product to compute the
quantum products of the basis {z;}. The construction of this basis is based on

the tools that Tolman and Weitsman developed to prove the following theorem.

Theorem 1.0.3 ([TWQO0]) Let (M,w) be a compact, connected symplectic
manifold with a semi-free, Hamaltonian circle action with isolated fized poinis.
Let y be the canonical generator of H*(BS1,Z). Then, there is an isomorphism
of rings Hi (MY} ~ H3, (((S%)™)) which takes the equivariant Chern classes of

M to those of (P1)". Therefore the equivariant cohomology ring is given by

Hg'l(M) = Z[wla . -amnay]/(miy - :C?)




Here m; € HZ (M) and the equivariant Chern series is given by e(M) =

S ci( M)t where

ci(M) = [ (1 + t(22; — ).

Although Tolman and Weitsman use equivariant cohomology for getting
an invariant base for H*(M;Z), the results of McDuff-Tolman require a more
geometric description of the basis. Therefore the crucial element in most of
the results of this paper is having geometric representatives of the cycles dual
to the cohomology basis. These geometric representatives are defined by the
Morse complex of the Hamiltonian function.

In Chapter 3 we will study the symplectomorphism type of Hamiltonian
semi-free *S'-manifolds. To minimize our notations, we will normalize the
Hamiltonian H by requiring the minimum of H to be 0. This mai«:es H unique.
We will denote by HSymp,, the class of manifolds (M, H,w) with semi-free
Hamiltonian circle actions with normalized Hamiltonians.

In Chapter 3 we will provide a mechanism that allows to classify manifolds
(M, H,w) up to isomorphism, i.e. equivariant symplectomorphism. The idea
is to investigate how to reconstruct M from its local data £(M) and what type
of information determines the local data. £{M) can be thought as an atlas for
Hamiltonian S'-actions. It will be (roughly speaking) given by neighborhoods
of the critical levels of H called critical germs and open submanifolds where
the action is free called free slices. We also include in £{M) gluing maps on
the overlaps of the germs and free slices. This information will be enough

to reconstruct M, as proved in Theorem 3.1.5. We show that up to certain




equivalence relations, £(M) determines the manifold M up to isomorphism.
This works for all Hamiltonian S*-actions.

We will then describe the local data in terms of more intrinsic invariants.
In order to accomplish that, one has to make certain concessions. First, to
describe the germs we restrict to the case when all critical levels have (co)index
at most 2. In this case, because the reduced spaces M, are all smooth, we
can apply the well-known Guillemin-Sternberg cobordisim theorem [GS89] (c.f.
Theorem 3.2.1) to describe the germs in terms of the fixed point data, as we

now define.

Definition 1.0.4 The fized point data of M at a critical value A of {co)index
2 consists of the triple (M, Fa,wy) as well as the bundle Py — M) at A,
Here F'y, is the fized point set at X as a submanifold of My and w is the reduced
sympﬂecti; structure.

The fized point data of M is the collection of oll above tuples for all
X of (co)index 2, and the mazimum and minimum submanifolds ( Frnax, Wmax)

(Froin, wain) with their respective normal bundles in M.

Note that this fixed point data contains more information than that used
by Li in [Li03] (cf. Remark 3.3.3). In general, the fixed point data do not
determine the isomorphism type of the free slices. However, as we will see in
Lemma 3.2.7 this isomorphism type will be unique if the reduced spaces My,
and the path reduced forms w, on M, for regular values ¢t have the rigidity

property, defined as follows.

Definition 1.0.5 Let B o symplectic manifold. A tuple (B, {wy}ier), where

{witier is o family of symplectic forms on B, is said to be rigid if




(i) Ewery deformation between any two cohomologous forms can be homo-

toped with fized endpoints into an isotopy. (See more details in §3.2)
(i) Symp{B,w,) N Diffo(B) is path connected for allt € I.

The gluing maps we consider are defined so that néar the critical levels
we can identily, along regular levels, the free slices and the germs. This con-
struction is motivated by the work of [Li05] but it differs in the fact that we
glue along an open submanifold instead of just one level. In this situation, the
gluing does not depend on the choices. Using these methods we can prove the

following result.

Theorem 1.0.6 (Weak classification Theorem) Let (M, H,w) € HSymp,,
and let C(M) be its set of critical values. Suppose that each non-extremal
A € C(M) has (co)indez 2 and that all the reduced spaces My are rigid. Then
(M, H,w) is determined by its fized point data up to equivariant symplecto-

morphism.

In order to illustrate the method in other situations, we will discuss explicit
examples where even less information classifies the manifold. We restrict our-
selves to the case dim M = 6 since we have two important advantages, all the
non-extremal critical levels are simple and the reduced spaces are four dimen-
sional, Therefore we can use established results on the unicity of the symplectic
structures and on the topology of the group of symplectomorphisms. In this
case, it is sometimes possible to describe the isomorphism class of M with less

information, as the following theorem shows.




Theorem 1.0.7 Let M € HSympg. Suppose that all the reduced spaces M,
are rigid and that the fized point sets (17)\,@')\) are either surfaces or isolated
fized points. Then, the isomorphism class of M is uniquely determined by the

critical values C(M) and the tuples (M, Fi,wy).

The most remarkable application of Theorem 1.0.7 is the following. Let
Y = 52 x ... x 8% be the n-fold product of spheres and let o be the canonical
area form on S?. Provide Y™ with the product symplectic form Mo x---x A0
that takes the value A; > 0 on each of the spheres of ¥Y™. Let the circle act
diagonally on Y™ in the standard semi-free Hamiltonian faghion, ¥™ is the
only known example of a 2n-dimensional symplectic manifold that admits a
semi-free circle action with isclated fixed points. Thus, it is natural to ask
if this is the only manifold up to equivariant symplectomorphisms that has
this proﬁerty. In the case n = 2 the methods of Karshon [Kar99] answer this
question positively. In the present paper we establish the result for n = 3, we

have the following corollary of Theorem 1.0.7.

Corollary 1.0.8 Let M be a 6-dimensional symplectic manifold with a semi-
free circle action that has isolated fized points. Then, M is equivariantly sym-

plectomarphic to Y® with the canonical product form for some X;.

Here the A; are in fact the critical levels of the {only) three fixed points of
index 2. As we will see, our techniques will apply for n = 2 as well, providing
an alternative proof without using Karshon’s results.

Theorems 1.0.3 and 1.0.1 work in all dimensions. However the techniques

used to prove 1.0.7 do not work in higher dimensions. This is because our




rigidity arguments strongly rely on results in four dimensional symplectic ge-
ometry, which do not have higher dimensional versions. We finally note that
the proof of Theorem 1.0.8 does not use Wall’s theorem, in contrast to previous
methods.

As a last remark, we point out that it seems possible to remove the sermi-
free assumption from Theorems 1.0.6 and Corollary 1.0.8. In this case one has
to deal with generalizations of our tools to the orbifold category. Fortunately

the work of L. Godinbo [God01, God04] gives some hope in this direction.




Chapter 2

Quantum Cohomology and circle actions with

isolated fixed points

This chapter is organized as follows. All the Morse theoretical constructions
are in §2.1.1. In section 2.1.2 we use equivariant cohomology to provide an
invariant basis for cohomology. Then we establish the relation With the Morse
cycles. In §2.2.1 we define the quantum cohomology ring and we get results
that help to reduce the quantum product formulas. In §2.2.3 we define the
Seidel automorphism in quantum cohomology. In §2.2.4 we relate the Seidel
automorphism with invariant chains, then we compute explicitly the Seidel

element. Finally in §2.3 we provide the proof of Theorem 1.0.1.

2.1 Morse Theory and Equivariant Cohomol-

ogy

In this section we establish some of the tools we need to prove Theorem 1.0.1.

We start in §2.1.1 with basic definitions of Morse theory. For more details the
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reader can consult [AB95, Sch99].

Following the approach of [MT04], in §2.1.2 we will construct invariant
Morse cycles to be able to calculate the Seidel element of M. This will be
done in Section 2.2.4. We introduce equivarianp cohomology to identify a

basis in cohomology and describe the relation with Morse cycles. At the end,

we provide several results that will be necessary in §2.2.

2.1.1 Morse Theory

Let (M,w) be a symplectic 2n-dimensional manifold with a ST action generated
by a Hamiltonian function H. Thus txw = —dH and X = Jgrad(H), where
the gradient is taken with respect to the metric g Hz,y) = wlx,Jy) for an
w-compatible S invariant almost complex structure J. With respect to this
metric, H is a (perfect) Morse function [Kar99] and the zeroes of X are exactly
the critical points of H. For each fixed point p € M Sl, denote by a(p) the
index of p and let m{p) be the sum of weights at p. Since the action is semi-
free m(p) = n4(p) — n—(p) where n(p) is the number of positive weights and
n_(p) the number/of negative ones. Then a(p) =: 2n._(p) —n m(p).

In order to understand the (co)homology of M in terms of Sl-invariant
cycles, we will consider the stable and unstable manifolds with respect to the

gradient flow —grad(H). More precisely, let p, ¢ be critical points of H. Define

the stable and unstable manifolds by

We(q) = {v: R — M| lim_~(f) =d},

WH(p) = {y: R — M| lim +(t)=p}

10




Here 7y(t) satisfies the negative gradient flow equation
¥ (8) = —gradH(y(t)).
These spaces are manifolds of dimension
dimW*(q) = 2n — ag) and dimW"(p) = a(p),
and the evaluation map v+ ¥(0) induces smooth embeddings into M
B, W q) — M and E,: W¥(p) — M.

When these manifolds intersect transversally for all fixed points p, g, the
gradient flow is said to be Morse-Smale [AB95, Sch99]. Under this circum-
stance we say that the pair (H, gs) is Morse regulor. ‘.

In [Sch99] Schwarz proved that there is a way of partially compactifying
the stable and unstable manifolds and that there are natural extensions of the
evaluation maps so that these compactifications with their evaluation maps
E, : We(p) — M and E, : Wu(g) — M, define pseudocycles. The com-
pactification of W*(p) is made by adding broken trajectories through fixed
points of index a(p) — 1. When the action is semi-free and admits isolated
fixed points, all the fixed points have even index, therefore W*(p) is already
compact in the sense of Schwarz. Thus W?*(p) is itself a pseudocycle. The
same is true for W¥(g). It is well known that pseudocycles define classes

in homology (see [MS04]). We will denote by [W*(q)] € Hagy(M;Z) and
[W*(p)] € Hu—agp(M;7Z) the homology classes defined by these manifolds. To

11




get Sl-invariant cycles representing these classes, we need to consider a special
type of almost complex structures, as we explain below.

Assume (M, w) admits a Hamiltonian S'-action with isolated fixed points.
Bach fixed point p € M has a neighborhood U{p) that is diffeomorphic to
a neighborhood of zero in a 2n—dimensiéna1 Hermitian vector space E(p} =

Ey®- - O E,, in such a way that the moment map H is given by

H{vy,...,v,) = Zfrrmﬂ'ujlz
i

and 8* acts on F; just by multiplication by €?™i, Here the numbers m, € 7Z
are exactly the weights of the action. Under the identification above, the
almost-complex structure J is the standard complex structure on the Hermi-
tian vector space £(p). Observe that E(p) can be written as E* & E~ where
E* ig the sum of the F; where m; > 0 or m; < 0 respectively. We can call
the spaces B+ the positive and negative normal bundles to the point p.

If we start with any compatible almost complex structure Jp near the
fixed points, we can extend .J to an Sl-invariant w-compatible almost complex
structure Jas on M whose restriction to the open sets U(p) is Jp. Denote by
Jiw (M) the set of all J that are equal to Jys near the fixed points.

The following lemma shows that it is possible to acquire regularity with

generic almost-complex structures.

Lemma 2.1.1 ([MTO04]) Suppose that H generates a semi free S'-action on
(M,w). Then for a generic choice of J € Fiw(M) the pair (H,g;) is Morse

regular,

12




For the rest of this paper, we will only consider Morse regular pairs (H, gs)
as in the previous lemma. We finally remark that when M is equipped with a
regular pair and if there is a (broken) gradient trajectory from a fixed point p

to a fixed point g, then a(p) — a(q) > 0.

2.1.2 Equivariant Cohomology

We can start with a quick review of equivariant cohomology. Let ES! be a
contractible space where S! acts frecly, and denote BS' = ES'/S'. Then
[*(BSY; Z) is the polynomial ring Z[y) where y ¢ H*(BS'; Z).

Let S' act on a manifold M. The equivariant cohomology of M, denoted by

(M) is defined by H*(M xg ES*;Z). Note that H*(BS; %) is naturally
~isomorphic to Hi (pt), if pt € M is a point. Under this construction, we have
two natu;al maps, the projection p : M xg1 ES? — BS' and the inclusion {as
fiber) i : M —+ M x g1 ES*. The pullback p* : H*(BS", Z) — H& (M) makes

= (M) a H*(BS'; Z) module, while the restriction i* : Hg, (M) — H*(M) is
the “reduction” of invariant data to ordinary data. An immediate consequence
is that *(y) = 0.

Let 5 : M5 —+ M be the natural inclusion. In [Kar99] Kirwan proved
that if the action is Hamiltonian, the induced map 5* : gl(M ) — H (M 31)
is injective. The proof of this theorem is based on the following result, where
we weaken the statement to match our needs. For a fixed point p € M st
we denote by al, 1= (jp)*(a) where (jp)* : Hi: (M) — Hi(p) and jp is the

obvious inclusion.
Theorem 2.1.2 ([?]) Let the circle act on o symplectic manifold M in o

13




Hamiltonian way. Assume the action is semi-free and that there are only
isolated fized points. Letp € M be a fized point of index 2k. Then there exists a
unique class a, € HEE(M) such that ay|, = (—1)*y*, and ay|y = 0 for all other
fized points ' of index less than or equal to 2k. Moreover, if we consider all

fized points, the classes a, form a basis for Hi (M) as o H*(BS*;7Z) module.

As a remark on the previous theorem, note that the term (—1)*y* is the
equivariant Euler class of the negative normal bundle at p.

As stated in §1, there is an isomorphism H,(M;Z) & H,(S? x --- x 8%, Z)
if M satisfies the hypothesis of Theorem 2.1.2. Since H is perfect there are

exactly dim(Hy,(M)) = (}) criticel points of index 2k. Tn [Hat92, TWOO],

the above isomorphism is proved by counting fixed points. We will not discuss
the proof here.

Denote the points of index 2 by p1,...,pn . I the light of Theorem 2.1.2

for each fixed point we get classes ay, ..., a, € Hz (M) such that

a’j'?j =Y
(2.1)

ajlp =0 for all other fixed points p of index 0 or 1.
These clagses satisfy the following Proposition.

Proposition 2.1.3 ([TWO00, Prop 4.4]) Let I be a subset of {1,...,n} with

k elements. There exists a unique fized point pr of index 2k such that

Gilp; =~y fandonlyif jel

and aglp, = O otherwise.

14 ;'-i!.;




Proposition 2.1.3 identifies the fixed points in M with subsets [ of § =
{1,...,n}. Observe that the cohomology class a; := [ [,.; a; € HZ (M) is the
same as the class a,, mentioned in Theorem 2.1.2. Moreover this class is such
that

arly, = (=1)*y* if and only if 7 C J (2.2)
and it is zero otherwise.

Remark 2.1.4 The class ag, associated to the unique point of index zero,
takes the value 1 ¢ H3, (pt) when restricted to any fized point. Therefore it is

the identity element in the ring Hj (M). Denote yao by y.

If we apply the same results to the Hamiltonian function —H, we obtain
unique qlasses by € Hg’f“% (M) associated to each p; of index 2k such that
bilp, = (—1)"*y™* and is zero when restricted to all other fixed points of
index greater or equal to 2k. These classes also form a basis of H%, (M). The

next proposition establishes the relation with the former basis.

Proposition 2.1.56 Let I = {i1,...,ix} and let I° = {igy1,...,0n} be ifs

complement. Then the classes by satisfy the following relation
br = Onk + YOn—p-1 + - + "7, (2.3)

where o; is the i-th symmetric function in the variables ag, ., ..., &

n

Proof: By Proposition 2.1.3 the class a; + y is such that

(a; +y)|p, = y if ¢ ¢ J and zero otherwise.

15




Thege are exactly the relations that characterize the class by;-, then
briye = a; + .

Now, it follows that that

by = Hb{,;c} = H (CL,; + y).

igl il
This proves the result. O

Consider a point p; of index 2k and associate the class a; € Hai(M) as
before. When we restrict a; to M we obtain a class a;|y € H**{M;Z). By
taking the Poincaré dual of a;|, we get a homology class pf € Hon_a(M; 7).
Similarly\ using the class by we get a homology class p; € Hop(M;Z). Here is

an immediate corollary of Proposition 2.1.5.
Corollary 2.1.6 The class py is the same as the class 7t

Proof: This is clear from Equation (2.3), because the variable ¢ is mapped

to zero under restriction to usual cohomology. Now use that o,y = ae. U

The last part of this section establishes the relation of the pT classes with
the stable and unstable manifolds of §2.1.1. This is suromarized in the fol-
lowing proposition. Remember that we are working with an almost-complex

structure J in Finy(M). This result would fail without this hypothesis.

Proposition 2.1.7 Let py be a fized point of index 2k. Then the classes py

and p} are exactly the same as the classes [W*(pr)] and [W*(pr)] respectively.

16
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Proof:

Recall that ES' can be taken to be the infinite dimensional sphere 5.
Consider a finite dimensional approximation MY = M xg SVt of M x g
ES! = M xg 8% for N € N big enough . These are finite dimensional smooth
compact manifolds. Since W*(p;) is S'-invariant, there is a natural extension
Ws(pr) = Wo(py) xg SPH1 of W(py) to M. Let XV be the Poincaré
dual of W¥#(p;) in M™.

Tor all N, there is a natural inclusion (as fibre) in : M <> MY, Since the
inclusions are natural, the restriction X¥|y := (ix)"(XV) € H*(M) is the
same as the Poincaré dual of [W*(pr)] in M.

Observe that the natural inclusions
MN o MV < ---lij{.}nMN = M x g ES!
induce a sequence
e XNHR L NHL N

given by the restrictions. Thus, by considering the directed limit, there is an

element

X = 1'1[1\;1)(” € HY(M xg ES") = Ht (M)

that restricts to XV for all N. Naturally, if i : M — M xg ES! is the
inclusion, then X | := #*(X) = PD((W*(p;)]). We claim that X satisfies the
same properties as the class a7, that is, X|p, = {—1)*y* and X[, = 0 for all

other fixed points p such that a(p) < 2k. Therefore, by Theorem 2.1.2 we

17




must have X = a;. Then PD{X|p) == PD(or|p) and the result will follow
immediately.

Take a neighborhood U(py) around p; as in §2.1.1. Thus, U(pr) is isomor-

phic to an open neighborhood V' of zero in E*@& £, Tt is clear that if U(p 1) is

1 small enough, W*(p;)NU (pr) is diffeomorphic to £NV. Therefore, the normal i

4 bundle of W*(p;) can locally be identified with £~. Finally, by carrying this lo- i
calization to XV and considering the limit, we have X|,, = e(E ) = (—1)*",

where e(£™) is the equivariant Euler class of £7.

To finish the proof, observe that if p is any other fixed point with index !
less than or equal to 2k, there is no gradient line from p to p;. This is because |
the gradient flow is Morse-Smale. Hence, by using the localization again we

obtain that X|, = 0. This proves the proposition. |

Corollary 2.1.8 By the definition of the classes ay and by, we have
W¥(pr)] = p; = PD(bi|m) and [W*(pr)] = pj = PD(ar|a).

therefore the product [W*(pr)] N [W*(py)] is given by

W (pr)] N [W*(ps)] = PD(brlm) N PD{asiar) = PD{brasim)-

Corollary 2.1.9 By Corollary 2.1.6 and Proposition 2.1.7 we have the “du-
ality” relation [W*(p;)] = [W*(pre)|.
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Remark 2.1.10 Let z; = a;|yy = PD(p}) € HZ(M;Z).. The theory of this
section proves that the elements m; generate the algebra H*(M;Z). Therefore
a Z-basis for H*(M;7) consists of the elements x; = x;, ...z, for sets I =
{iy < do+-- < ix}. Moreover, by Theorem 1.0.3 the first Chern class of M is
given by ¢ (M) = 2(z1 + -+ ++ @,,), thus the Chern numbers of the spherical

classes py, are ci(p;) =2 forallk=1,...,n.

Proposition 2.1.7 also provides some information about the existence of

gradient lines. More precisely we have the next proposition.

Proposition 2.1.11 Let [ = {iy,...,i} C 8. Take ipy1 ¢ I and consider
I'=TU {igg1}. Let Ap:= 3, p; € Hy(M). Then,

ra,) There is a gradient line from pp to p;. Moreover, the homology closs

of the sphere generated by rotating the gradient line by the S* action is
P c'_ie+1'
b) There is a broken gradient line from ps to pr. The class Are is then

represented by rotating this broken line and then ¢1(Ar) = n+m{p;).

Proof:

To prove there is a gradient line from pp to pr we need to show that the
intersection W*(pp) N W#(pr) is non-empty. By definition of the intersec-
tion product in terms of pseudocycles [MS04] it is enough to prove that the
intersection product of the classes [W*(py)] and [W*(ps)] is non-zero.

Consider the equivariant cohomology classes by and a;. By Proposition
2.1.5 we get

brpay = apear + yd
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where d € Hi, (M). Since I'® U I == {ir41}5,
Qpre@q = Qg )=

. Once again by Proposition 2.1.5

Cligy1}e |M = bik+1 |M7

thus

bpa,[|M = bikH}M.

Now, using Corollary 2.1.8 we get

W(pr)] N [W*(pr)] = PD(brazls) = PO, lar) = by, # 0. (24)

Therefore, there is a gradient line, thus a whole gradient sphere A, just by ro-
tating the gradient line. Note that there can be more than one gradient, sphere
from pp to pr. We claim that all these gradient spheres must be homologous.

1t is not hard to see from the construction of A that

w(A) = Lw = H(pp) - H(p[).

Therefore if A’ is another gradient sphere joining py and p;, w(A) = w(A').
Also observe that if o' is any S'-invariant form sufficiently close to w then
w(A) = w'(A). Now since the symplectic condition is an open condition we
can perturb w to obtain a new symplectic form ' close to w. By averaging with

respect to the group action, we can assume the form «’ to be S Linvariant. This
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proves that the classes A’ and A have the same symplectic area, that is w'(A) =
w'(A"), for an open set of symplectic forms ', Since M is simply connected
and there is no torsion A must be homologous to A’. Finally by Equation (2.4)
this sphere must be in class p;, . Finally, recall that by Remark 2.1.10 the
Chern number of the class p;_,, is given by ¢, (Pipys) = m(pr) — m{py) = 2.

To prave the second part, we can do the same process for each point in

I¢ = {igy1,. . -, in}. Then getting a sequence of gradient lines

i Tn—k
Ps —1> pS—{‘in_l} R pIU{ih+1} — Pr.

It is clear now that the chain of gradient spheres obtained by rotating this
broken gradient line must be in class Ay = Ay, + -+ + A;,. Note that we
could also use a gluing argument as in [Sch93] to prove that there is an honest

gradient line from ps to p;. Thus

T

ar(Ar) = ) aldy) = mipr) —m(ps) = n+m(pr).
l=k+1

Corollary 2.1.12 Assume z,y are any fized points in M such that there is a
gradient line joining them. Then, the Chern class of the J-holomorphic sphere

that is obtained by rotating the gradient line by the action has Chern number

m(z) — m{y)|.

Proof: The proof is based on the same computations of Proposition 2.1.11.
Recall that m(z) = n— a(z) where a(z) is the Morse index of z. Since there is

a gradient line joining  and y we can assume that they do not have the same
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index, otherwise it contradicts the fact that the gradient flow is Morse-Smale.
Without lost of generality assume m(z) < m(y), and that = pr,y = ps.
Following the notation of the previous proposition, let Aje and Ay be the
classes of the spheres obtained by rotating the gradient lines that join ps with
pr and ps with py respectively. Thus, if A is the class of the sphere obtained
by rotating the gradient line that joins pr with py, then A + Ap = Aje.
Finally, the Chern numbers satisfy ¢i(A4) + e1(Are) = c1(Aje), which in turn
by Proposition 2.1.11 gives ¢1(4) = n +m(ps) — n— m(pr) = m(x) —m(y).
O

2.2 Quantum Cohomology and the Seidel Au-

tomorphism

2.2.1 Small Quantum Cohomology

In the literature, there are several definitions of quantum cohomology. In this
section we make precise the definition of the quantum cohomology we are
using, assuming the definition of genus zero Gromov-Witten invariants. We
will follow entirely the approach of [MS04, Chapter 11].

Let A, be the usual Novikov ring of (M,w). We recall that A, is the
completion of the group ring of Hy(M) = H,(M;7Z)/Torsion. It consists of

all (possibly infinite) formal sums of the form

A= Z )\AEA

AcHa (M)
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where A4 € R and the sum satisfies the finiteness condition

#{A c Hy(M)|As # 0,w(A) <c} <00

k _' for every real number c. By definition, deg(e?) = 2¢;(A), where ¢1 is the first ?‘

Chern class of M. 1
The (small) quantum cohomology of M with coeflicients in A, is M
defined by il
QH*(M) = H"(M)®z A,

As before H*(M) denotes the ring H*(M; Z) modulo torsion. We now proceed lr |

to define the quantum product on QI (M), We want the quantum product

to be a linear homomorphism of A -modules ' 1l

QH*(M) @n, QH*(M) —> QH*(M) : (a,b) > a b, ‘,

Since QH*(M) is generated by the elements of H*(M) as a A,-module, it is
enough to describe the multiplication for elements in I *(M). Let eg,eq,...,6n [

be a basis for H*(M) (as a Z-module). Assume each element is homogeneous v

and eg = 1, the identity for the usual product. Define the integer matrix ’

Gij = /ﬂdei el ej. !;i:

Here e; — ¢; is the usual cup product in cohomology. Let ¢* be the inverse I




matrix. The quantum product of a,b € H*(M), is defined by

a*b:= Z Z GWYa(a, b, er)ge; @ e”. (2.5)
BeHy(M) kij
The coeflicients GWAB/{ 5 are the usual Gromov-Witten invariants of J-holomorphic
curves in class B. The terms in the sum are nonzero only if deg(e;) +deg(e;) =
dim M and deg(a) + deg(b) + deg(er) = dim M + 2¢1{B). Thus, it is enough

1o consider classes B such that
deg(a) + deg(b) — dim M < 2¢,(B) < deg(a) - deg(h).

In the problem at hand, a basis for H*(M) is given by the elements x as

in 2.1.10, Then the integrals

QIJﬂf T~ TJ
M

all vanish unless the sets 7 and J are complementary. This is because if I,
Jc{1,...,n}, zr — x5 = zs if and only if J® = J. Here zs is the positive
generator of H**(M;Z).

We cla,im. that to compute the quantum product, we only need to consider
in Equation (2.5) classes B such that ¢;(B) > 0. Mere precisely, we have the

proposition,

Proposition 2.2.1 Assume (M,w) is o symplectic manifold with a semi-free
Sl.action with only isolated fized points. Let B € Hyo(M), and let a,b,c €
H*(M). If ci(B) < 0, then the Gromov-Witten invariant GWAB"f,s(a, b,c) s
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zero. Moreover, if ci(B) = 0 and some Cu‘rV\!l‘B{3 # 0, then B = 0. Therefore,

the expression for the quantum product (2.5) can be written as

axb=a~-— b+ Z aB®eB.
BeHz(M),e1(B)>0

where the classes ag have degree deg(ap) = dega -+ degh — 21 (B).

Remark 2.2.2 Note that since ¢i(B) is cven, the classes ap appear in the

sum above by “jumps” of four in the degree.

The rest of this section is dedicated to the proof of Proposition 2.2.1.

To compute the Gromov-Witten invariants GW%’I 4(a, b, ¢} one usually con-
structs a regularization (virtual cycle) —J\_/[g,S(M ,J,B) of the moduli space
Mos(M,J,B). Then one computes the intersection number of the evalua-

tion map

ev: Mya(M,J,B) — M?

with a cycle ey X o3 X g representing the class PD(a) x PD(b) x PD(c). This
procedure can be modified in the following way. First, let c: 7 — M®bea
pseudocycle that represents the product PD(a) x PD{b) x PD{c}, then define

the cut-down moduli space by

Mos(M, J, B; Z) = ev™(a(Z)).

Here ev : Mos(M, J, B) — M? is the evaluation map and «(Z) is the closure

in M3 of the pseudocycle Z [MS04]. Finally, construct a regularization of the
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cut-down moduli space. McDuff and Tolman use this approach to calculate
the Gromov-Witten invariants. The next result is proved in [MT04], it shows
exactly how to compute the invariants GW%’{ 5 using this procedure. Remernber
that an S* action on M can be extended to an action on J-holomorphic curves
just by post-composition. Also, a pseudocycle o Z —> M 3 is said to be S

invariant, if a(Z) is.

Proposition 2.2.3 Let (M,w) be a symplectic manifold. Then, the Gromou-
Witten invariant GW“B{ 4(a,b,¢) is a sum of contributions, one from each con-
nected component of the moduli space mo,s.(M J,B; 7).

Assume now that M is equipped with an S action {N}, end that &2 Z ——
M? and J are St-invariant. Then, a connected component of Mos(M, J, By 7)
makes no contribution to ngs(a, b,c) unless it contains on Stoinvariant

element.

Proposition 2.2.3 shows that to compute the Gromov-Witten invariants in
the presence of a circle action, one has to compute the invariant elements in
the moduli spaces. The following lemma is a modification of McDuft-Tolman
[MT04, Lemma 3.5]. It describes what the non-constant invariant elements
in the moduli space Mox{M, J, B) are. We include a proof so that Corollary

2.2.5 is a natural result.

Lemma 2.2.4 Let (M,w) be a symplectic manifold with a Hamiltonian S*-
action. Let J be an invariant elmost complex structure compatible with w,
and let g7 be the S -invariant metric associated to J. Suppose [u, 20, . . -, %)
is o class in the moduli space Mog(M, J, B) represented by o J -holomorphic

sphere u 1 PL — M, and k marked points z; € Pt Assume [u, 21, ... 2] 18
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fimed by the action X = {X\e}. Then, if im(u) does nol le entircly in M s
there are at most two marked points, i.e. k < 2 and there are two integers p, g,
p # 0,q > 0, a parametrization v : R X 8! M and apathy: R — M
joining two fized points x,y € M5 so that the marked points are in v {z, y}
and such that

~'(8) = g grad(H) and u(s, t) = ,\%57(3). (2.6)

Moreover, if we fix vy, the parametrization 15 unique provided

e= lim ~(s) andy= lim ~{s).

8—r—

Finally, if the action is semi-free, then q s 1.

Proof: | If the image of u is in M $* then the map is constant. Assume that
u: P —» M is a non-constant and not multiply covered J-holomorphic sphere
in M. Since the equivalence class [u, z1, ..., 2| is fixed under the action, for
cach 6 € S the map (v/,7),...,24) = (Aaow,do(21), -, Ao(2)) must be a
reparametrization of (u, z1,. .., 2). Thus, there is a ¢g € PSL(2, C) such that
Agot = uody, and 2; = ¢y(z;). Therefore o(u(2)) = u(z) for all @ € 51, then
uw(z) € M ' for all 5. Since the map u is not multiply covered, ¢, is unique.
Then, it is easy to see that the assignment S* — PSL(2,C) : 0 ¢ is a
homomorphism. Using the fact that the only circle subgroups of PSL(2,C)
are rotations about a fixed axis, we can see that there are exactly two points
in P! that are mapped by u into M 5! We can choose coordinates on P! so
that the Totation axis is the line joining the points [0 : 1] and [1 : 0]. As we

saw before, the image of any marked point is fixed by the action, then we have
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that all the marked points are contained in the set {[0: 1],[1 : 0}. It follows
that k < 2. In the case Im{u) N M5 = {z,y}, we may choose u([0: 1}) = z
and w([1 : 0]) = . Identify P*\{[0 : 1],[1 : 0]} with the cylinder R X St with
standard coordinates (s,t) and complex structure jo defined by Jo(8s) = O,
(s,t) € R x SL. If k = 2 we identify the marked points [0 : 1], [1: 0] with the
ends of the cylinder. Thus we find that for these coordinates there is a g % 0

such that
do(s,t) = (s, + g0}, and (he o u)(s,1) = u(s,t+ qd).

Therefore, the isotropy group at any point in im(u) is given by Zg. The sign
of ¢ is uniquely determined by the choices we made.
Define y(s) = u(s,0). Then we got u(s,t) = Aygy(s). Since u is J-

homomorphic and J is invariant
1
(M) (Y(s) + EJX('Y(S))) = B+ JOu =0,

With respect to the metric gz, the gradient flow of H is given by gradd =
—JX, thus ¥ (s) = 2grad(I)(7(s}). Now use that any sphere is a |p|-fold
cover of a simple one. We absorb any negative sign into p rather than q.

Tf the action is semi-free, the isotropy groups are trivial, thus we must have

g1 = 1. 0

To exemplify the choice of signs in the previous lemma, take M = P! with
the standard semi-free circle action that rotates M with speed one. Cleatly

the Hamiltonian is the hight function and the only fixed points are S := [0
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1], N :=[1: 0]. Assume the holomorphic map u : P! — IP! is simple and has
two marked points, which as before are just identified with S, N. If we want
to parametrize this map, we have to choose a gradient line that joins N and
S. Say we have chosen the gradient line that goes from the north pole N to
the south pole S in this order (downwards). If we identify P'\{S, N}, with
the cylinder R x S', in the standard coordinates (s, t) the action must rotate
negatively. That is we have that ¢ must be —1 and p = 1.

Although the unicity of the parametrization is not needed for the proof of
the following result it is good to have a canonical choice of the parametrization.

The next corollary will be needed in the proof of Proposition 2.2.1.

Corollary 2.2.5 Assume the same hypothesis as in Lemma 2.2.4, and thot
the action is semi-free. Letu be an S*-invariant sphere, and let A € Hao(M) be
its homéiogy class in M. Then, with the parametrization provided by Faquation
(2.6), the first Chern number c1(A) is given by cr(A) = |p(m{y) —m(z))| with

p an integer. Therefore ci(A) is non-negative.

Proof: If u is constant ¢y(4) = 0. If u is not constant it must have a
parametrization as the one given in Lemma 2.2.4. That is, for some fixed
points z,y in M, and a gradient line y joining them, u can be parametrized as
the Equation (2.6). Assume without lost of generality that m(z) < m(y), then
we may choose the path v from z to y. Then ¢ = —1, and p is positive {note
that we have chosen the negative gradient to be Morse-Smale). This proves
that u is a p-cover of the simple gradient sphere B obtained by rotating the
gradient line + joining z,y. By Corollary 2.1.12 ¢1{B) = m(y) — m(z). And

thgn c1(A) = p(m(y) — m(x)). O
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Remark 2.2.6 Let u be an S'-invariant holomorphic sphere, let A € Hy(M)
be its homology class. Lemma 2.2.4 and Corollary 2.2.5 imply that if c; (A =0
then A must be zero. This is because if A joins two fized points z,y € M, they
must have the same index, which is not possible because the flow is assumed

to be Morse-Smale.

Note that our original goal was to understand the invariant stable maps in
Mos(M, J, B; Z). By Lemma 2.2.4, the non-constant components of the stable
maps may carry at most two special points. Then the S'-invariant elements in
Moa(M, J, B; Z) may have a ghost component that carries the third marked
point.

Proof of Proposition 2.2.1: By Proposition 2.2.3 & contributing component
of Mo,ggM, J, B; Z) for the invariant GWAB{E(a,b, ¢) exists only if the moduli
space has a S'-invariant stable map u. We can assume that for a representative
{u;} of u there is at least one non-trivial component . Since u is invariant,
we can choose the representative {u;} so that the component u, is invariant
(up to reparametrization) under the circle action. This is clear if for instance
the representative {u;} does not have any autormorphisms that interchange
its components. In the case such automorphisms exist, we can always choose
a representative such that it has a component that is fixed by the action.
To exemplify this, assume for simplicity that u has three components u; :
Y, ~ Pl —» M,i =1,2,3, where uz is constant and carries a marked point
(so that the map is stable), and ui,us map Y1, 8g into the same image in
M. Therefore, there is an automorphism of this stable map that permute the

domains ¥y, Dg. Let 0 € S, Since )y fixes u, then, by the mere definition of
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stable map ( Definition 5.1.4 in [MS04]), we have that Ag o w1 = ug,q) © P,
where 109 is an element in PSL(2,C) and fp is an bijection on the set {1,2}.
Note that fy does not need to depend continuously on @, but in any case we
may change the representative of u so that for all 4, fp is the identity. Thus,
the component u; is invariant (up to reparametrization) with respect to the
circle action.

Therefore, following the same idea as in the proof of Corollary 2.2.5 we
have that ¢1(B,) > 0 if B, € Hy(M) is the class that u, represents. Then
c1{B) > 0 and the first claim follows. Note that the second part is a direct
consequence of Remark 2.2.6, because any S'-invariant J-holomorphic map
with zero Chern class must be constant.

Finally , the product @ * b can be written as

a— b+ Z ZGW%a(a,b,mI)ﬂ:p@eB.
c{B)>0 [

Now take

ag = 2 Gng(a, b, T )Tre.
I

This proves the proposition. Note that deg(ap) = dega + degb — 2¢:(B).

2.2.2  Almost Fano Manifolds

Assume the hypotheses of Proposition 2.2.1. The relevant spheres (the ones
that count for the GW invariants) all have positive first Chern class. Moreover,

let B € Hy(M) be a class such that some invariant GWY 3 # 0, then ¢;(B) >
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0. Then, by Proposition 2.1.11 and Lemma 2.2.4, B can be written as a

combination
B = Z dip;.
i
where the coefficients d; are non-negative integers. Therefore, if we define

A; = p; and g; = e, we may now consider the polynomial ring

A=Q[Ql:"':§i’n]

as coefficients for the quantum cohomology. Then, if B is as before,

This will be really useful in §2.3. For the rest of this paper, we will assume A
to be the quantum coefficient ring.

We finish this section with a discussion about the behavior of J-holomorphic
curves in M. In the literature an almost complex manifold (N, J) is said to be
Fano if the first Chern class ¢;(T'N, J) takes positive values on the effective

cone K(N,.J), namely
KF(N,J) == {A € Hy(N)|3 a J-holomorphic curve in class A}
In symplectic geometry sometimes it is useful to consider the definition

KN, w) = {A € Hy(N)FAy, ..., An € Ho(N) 1 A=Y Ay, GW 5 # 0}
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for the effective cone on a symplectic manifold (N,w, J) with a compatible
almost complex structure J. Tts clear that K°(N,w) C K(N,J). Then,
we can say that (N,w,J) is almost Fano if the first Chern class er{TN, J)
takes positive values on the effective cone K *T{N,w). We have the following

corollary.

Corollary 2.2.7 Let (M,w) be a symplectic manifold with a semi-free §t-

action with isolated fized points. Then (M, w, J) is almost Fano.

2.2.3 The Seidel Automorphism

In this paragraph we introduce the theory behind the definition of the Seidel
element. _‘The results concerning the present problem are discussed next. We
will follow closely the book [MS04]. The proofs of the results exposed in this
section are mostly contained in Chapters 8,9 and 11.

Let M be a symplectic manifold with a Hamiltonian circle action. We
associate to M the locally trivial bundle M, over P* with fibre M defined by

the clutching function (action) A : §* — Ham(M,w):
M,\ = Sg K g1 M

We denote the fibres at [0 : 1] and [1 : 0] by Mg and M, respectively. Note
that the isomorphism type of M , only depends on the homotopy class of A.

Since ) is Hamiltonian, we can construct a symplectic form ) on M, % In
fact the bundle 7 : M y, — P is a Hamiltonian fibration with fibre M, thus

admitting sections ((MS04, Chapter 8]). We choose an {-compatible almost
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complex structure T on M. », Such that J is the product Jy x J under trivial-
izations. We can define for each fixed point z € M 5' g J pseudoholomorphic
section o, = {[# : 21;2]|[20 : 21] € 5%}

M, , has a canonical cohomology class, the first Chern class of the vertical
tangent bundle or vertical class Cyert = cl(Tﬂ?}fert) cH 2(]\7 s\ 7). Iz is a fixed
point for the circle action, we have that Cvert(02) = m(z). This follows from
the fact that the normal bundle of the section &, is a sum of line bundles
L; — PL, one for each weight m; of & and with Chern class ¢1(L;) = my (see
[MT04, Lemma 2.2]). Note that if B is a spherical class in M and if M is
embedded in M) as a fibre, then c;,ert(z'*(B)) = ¢;(B), where the latter is the
usual Chern class of B. Then, for a given fixed point z and its assoclated
section oy, the class o, + 1,(B) has vertical Chern number m{z) 1 c1(B).

Take A € Ha(My,Z) a section class, that is m{A) = []P’l] Let as,ay €
H*(M). Given two fixed marked points w == (wy, wy), w; € P' we may think
of the Poincaré dual to the class a; as represented by a cycle Z; in the fibre
M, M. , over w;. With this information it is possible to construct the
Gromov-Witten invariant ngz’w(al,ag). This invariant counts the number
of J-holomorphic sections of M y in class A that pass through the cycles Z;.
This invariant is zero unless 2n + 20vert(E) = deg(ay) + deg(as). Now we have

the following definition.

Definition 2.2.8 Let (M,w) be as before. Leto : P! — M, be a section, and

suppose that o has vertical class ¢ = cvers(0). The Seidel automorphism

U\ o) QH (M;A) — QH**(M;A)
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is defined by

YA o)) = D ZGW&?Z.(A),Q(G@E)QMGJ ® et (2.7)
AcHa(M) ki

where i+ M —> My is an embedding (as fibre).

In this definition we are considering a basis {e;} for H"(M ) as in Equation
(2.5). Tt is easy to see that the Seidel automorphism as defined above shifts
the degree by —2¢. We just need to analyze when the coefficients in Equation
(2.7) are nonzero. In the particular case of o = g, for z a fixed point, T(A, 0,)
shifts degree by —2m(z). Note that this shift might be positive or negative.
From the previous definition, one can see that an important ingredient for

the stud_’y of the Seidel element is the moduli space
Moa(M, J,0 +i:(A) Z, 2).

This moduli space, as before, is the cut-off moduli space of J-holomorphic
sections in the class o + 4,(A) that pass through cycles Z,Z'. We will say
more about these spaces in the next section.

¥ 1 e QH*(M) denotes the identity in the quantum cohomology ring, the
homogeneous class ¥(), o)(1) € QH*(M) is called the Seidel Element of the
action with respect to the section o. We will use the same notation for the
Seidel automorphism and the Seidel element. Thus, the Seidel automorphism
is now given just by quantum multiplication by the element ¥(), o) [MS04].
That is,

TN 0)(a) =¥\ o) *a.
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Note that the Seidel element has degree deg(¥ (A, o)) = 2cvart(0).

9.2.4 Seidel Automorphism and Isolated Fixed Points

Consider now the present problem. That is, agsume that the action ig semi-free
and it has isolated fixed points. Let Oumex be the section defined by the fixed
point pg. In this particular case the automorphism (X, omayx) increases the
degree by —2mfps) = 2n. Let pr € M be a fixed point. Recall that we can
associate to pr classes in homology p7 and pT, and if we consider all the fixed
points, then the classes p} form a basis for H,(M).

The next theorem, due to McDuff and Tolman IMT04, Theorem 1.15,
Proposition 3.4], gives the first step towards a description of the Seidel au-
tomorphism. Although they have proved this result in great generality (the
fixed poiﬁts are allowed to be in submanifolds rather than being isolated) and
they use qguantum homology rather than cohomology, it is not hard to adapt

their result to our present notation.

Theorem 2.2.9 (McDuff-Tolman) Let (M,w) be a symplectic manifold with
o semi-free circle action with isolated fixed points. Assume s associated
Hamiltonian function H is such that [, Hw" = 0. Let A; € Hy(M) be as

considered in 2.1.11. Then, the Seidel automorphism can be expressed as

T, 7 (PD(57)) = PR @ 4 Y ap@etetE.
w(B)>0

where ag € H*(M). Ifap # 0 then deg PD(pf) —degap = 2(B). Moreover,
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if we write the sum above in terms of the basis {PD(p1)} we get

WO\, O (PD(p7)) = PD@F) @ €+ Y > Cpr PDpJ) @ .
w(B)>0JCS

The rational coefficients Cp y can be nonzero only if |I| — |J| = c1{B) and

the moduli space mg,z(ﬁ;\, J o7+ B;Wu(pr), W¥(ps)) has an S1-invariant

clement. oy denotes the section defined by the fized point p;.

We know by Corollary 2.1.6 that p; = pj.. By definition PD(p}) = x,

therefore we have the following straightforward corollary.

Corollary 2.2.10 Let (M,w) be a symplectic manifold with o semi-free circle
action with isolated fized points. Assume its associated Hamiltonian function
H is such that f,, Hw™ = 0. Let {x1} be the basis for the cohomology Ting
as considered in Remark 2.1.10, and let Ap € Ha(M) as consz’dcred in 2.1.1.1.

The Seidel automorphism can be expressed as

T\, O (212) = 27 @ €47 + Z > Cgyas® etretB o (2.8)
w(B)>0JCS

The rational coefficients Cg g can be nonzero only if |I| — |J | = &1(B) and

the moduli space 7\70,2(%, J, o1 + B;We{pr), W(ps)) has an Sl_invariant

element.

Thus, the key to understand the Yeidel automorphism is first to know what

the S'-invariant elements in moduli spaces

_MHO,2UT4{)\1 ja or+ B; Z: Zl)
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are. Here Z and 7' are closed S'-invariant cycles in M. These elements are
called invariant chains in section class 0, +i.(A) from x € Z toy € 7' with
root z [MT04]. We will explain what is the meaning of this. Recall that M is
embedded in M, 5 as the fibres My, Mo.

Given z,y,2 € M° ' an invariant principal chain in section class o, -+ ix(A)

from = € Z to y € Z" with root z consists of the following.

a) Two sequences of fixed points {z = =,..., 2 = zh{z =9y, ¥ =
y}, where we think of the sequence {z;} as embedded in My and the

sequence {4} in Meo.
b) The points z; and %, are joined by the section o,.

¢) Foreachl <i <k and each 1 < § < g, the points z;, it and y;,Y;41 are
joined by invariant J-holomorphic spheres in classes i,(A;) and 4.(Aj})

respectively. Here the classes Aj, A7 are in M.
d) It A =3, Al A" =5, A then A= A + A,

An invariant chain in section class o, 4 i.(A) from z € Z to y € Z' with
root z is & chain as above with additional ghost components at each of which
a tree of invariant spheres is attached. In this case, A is the sum of classes
represented by the principal spheres and the bubbles. As a final remark of this
definition, note that since A’ is invariant, then ¢;(A’) > 0 and ¢ (A"} = 0if
and only if A’ = 0. The same applies for A”.

An immediate lemma is the following.
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Lemma 2.2.11 Assume the hypotheses of Corollary 2.2.10, and suppose o,+

A is an invariant chain in the moduli space

Moo(My, J, o1+ By We(pr), WH(ps)).

Let A = A+ A" be the decomposition of A as described above. Then, the first

Chern classes ci{A), c1{A") can be estimated by
er(A") > |m(z) — m(2)| and cr(A") Z Im(y) —m(2)].

Therefore

ci(A) = |m(z) — m{z)| + Im(y) —m(z)l, and (2.9)
Cl(B) = CI(AH)‘

Moreover if the coefficient Cp j # 0, then ci(B) > 0.

Proof: If A; is an invariant sphere joining @; to @41, Corollary 2.2.4 shows
that for some integer p, ci(As) = |pi(m(zs) — m(zip1))| = [mlzs) — m(ziv)l
. Ther ¢ (4) = 2F . [m(z) — m(zip1)| = [m(z) — m(z)|. The inequality for
c1{A") > 0 follows similarly.

Now, by assumption the invariant chain o, + ix(A) is in class o7 + i(B),

thus o, + i4(A) = o1 +4.(B) and then
ci(B) +m(pr) = c1(A) + m(z).

Since z € W*(py), m{z) > m(pr). Using c1(A) = er(4A") + c1{A") and that
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cr{A") > m(z) — m{z), we get
e1(B) > e (A") +m(z) — m(z) — mpr) +m(z) 2 c(A”) > 0.

To prove the last claim, we want to see that if Cp,s #£ 0, then ¢;(B) > 0.
By contradiction assume that Opy # 0 and that c¢1(B) = 0. By Corollary
9910 there must be an invariant chain o, + 4,(A) is in class o7 + i.(B) and
then ¢1(B) = |I| - |J| = 0. By Equation (2.9) we have that, c1(A") = 0. Since
A" ig a gradient sphere, A” = 0. As explained before, A" joins z,y, it follows
that y = z and then m(y) = m(2).

Now, from the equality o, + 4,(A) = o7 -+ 1.(B) we get m(z) + e1(A") —
m{p;) = 0. Finally, since y € W*(ps), m(z) = m{y) = m(ps) = m{pr) and
then

0 = c1(A) + m(z) — m(pr) > c1(A).

Then A’ = 0, and thus A = 0. If A = 0, this implies that z =y = 2.

Then, m(z) = m(y) = m(p;) which is a contradiction to the fact that that
z € Wh{pr).

]

With Lerma 2.2.11 we can simplify the expression (2.8) to get the following

corollary.

Corollary 2.2.12 Assume the same hypotheses of Corollary 2.2.10. Then the

Seidel element is given by

U\ o) (@) = r @M+ Y. > Cpyey@ettt. (210)
w(B)>0,c1(B)>0JCS
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Again Cp ;= 0 unless |I|—|J] = c1(B) and the moduli space ﬂo,g(M,\, J, ot

B:Wu(pr), We(ps)) has an S'-invariant element.

Note that the only difference to Equation (2.8) is that we are considering
only classes B with positive Chern number.

Tf there are any higher order terms, that is, terms that correspond to pos-
itive first Chern classes ¢;(B) > 0, they contribute to the sum (2.10) as an
element of degree 2(|J] + ¢1(Are + B)). Heuristically an invariant chain A+ o
makes a contribution only if c;(A) is big enough so that the inequalities (2.9)
are satisfied. We will see in our next result that with our present hypothe-
ses there are no such contributions. Thus there are not higher order terms.
This result fails if for instance we allow the action to have fixed points along
submanifolds, as we will see in the example described in §2.2.5. Observe that
we can ﬁormalize our Hamiltonian function H (by adding a constant) so that

f y Hw™ = 0 without altering any of our previous results.

Theorem 2.2.13 Let (M, w) be a symplectic manifold with a semi-free circle
action with isolated fized points. Assume its associated Hamiltonian function
H s such that [,, Hu™ = 0. Then, the Seidel automorphism W{\ omax) acts
on the basis {x1} by

(N, Opmax) (1) = Tpe @ € (2.11)

Proof: Consider I°instead of I. By Corollary 2.2.12 the Seidel automorphism

can be computed

U(N, Omax)(ZTre) = 21 @ efre 4 Z Cp it ® eAreth
e1(B)>0,JCS8
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As in Proposition 2.2.1, the Chern number cy(B) is a multiple of two.
Thus the terms in the sum appear with “jumps” of four in the degree. By

Corollary 2.2.12, Cp 7 is nonzero only if there is a Slinvariant element in the

moduli space ﬂo,g(%, J o7+ B;Wu(pr), W*(ps)). We want to see that the

coeflicients Cp y are all zero.

By contradiction assume there is an invariant chain o, -+ A in this moduli
space. Therefore A goes from a fixed point & € Wu{ps) to a fixed point

y € W4(ps). This chain satisfies
o, +A=0r+B. (2.12)

Since the gradient flow is Morse-Smale and there is a gradient line from
pr to z, . m(z) = m(pr) = n - 2|I|. Analogously m(y) > mips) = n—2[J],
Since ¢ (B) = || — |J| > 0 and we know c1(A) -+ m{z) = m(p;) + c1{B) from

Equation (2.12), we get
en(A) = 2K ~ |1 = |7, (213)

where K C 8 is such that pg = 2.

Finally, from Lemma 2.2.11 we have

C1 (A)

v

m(z) —m(2)| + |m{y) — m(2)!

v

—2m(z) + m(y) + m(z)

> A|K| - 2)1] - 2}J].

42




Therefore, by Equation (2.13)
2K| — || — 7] = er(A) 2 22 K| = | = |J]).

This is only possible if ¢;(A) = 0, i.e 2|K| — |J| = |I|. Then, A must be zero
and 7 = y = ». Therefore B = o, — o7 and hence ¢1(B) = m(z) — m(pr) =
21| — |K|). Since ¢1(A4) = 0, Equation (2.13) implies \7] - |K| = |K| - |J].

Thus 0 < ¢i(B) = 2(]K| — |J|). By hypothesis px = 2=y € Wu(p,;). Then

we have | K| < |J|. Thus ¢;(B) < 0, which is a contradiction. This proves the

theorem.
C
Corollary 2.2.14 The Seidel element ¥(X, omax) 18 given by
T(\, Omax) = Ts
and the quantum product of zs with the element zy is giwen by
$5*$I=$IG®GAI. (2.14)

Proof: The first part is obvious since
T, Omax) = (A, Tmax) * 1= V(A Omax) ¥ Zo = T3 & e,
For the second part, observe that

Tre @ €M = W(\, Oyax) * Tr = T§ * TJ.
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The next paragraph is dedicated to discuss an example where the sym-
plectic manifold has a semi-free circle action but the Seidel automorphism has
higher order terms when evaluated on a particular class. In this example the
fixed points are along submanifolds. This illustrates that we cannot have a

result similar to Theorem 2.2.13 if we weaken one of our hypothesis.

2.2.5 Example

This example is taken from [MT04, Example 5.6]. Let M = P2 he the one
point blow up of P? with the symplectic form w,, so that on the exceptional
divisor B, 0 < w,(E) = p < 1 and if L = [P'] is the standard line, we have

wy(L) = 1. We can identify M with the space
{(z1,2) € C| p < | + 12l < 1}

where the boundaries are collapsed along the Hopf fibres. One of the collapsed
boundaries is identified With the exceptional divisor. The other with L.

A basis for H,.(M) is given by the class of a point pt, the exceptional divisor
E, the fibre class F = L — E and the fundamental class [M]. Note that the
intersection products are given by E-E = -1, E.F'=1, F- F' = 0. Denote by
b and f the Poincaré duals of E, F respectively. Then b-b= —1and f- f=0
It is not hard to see that the positive generator of H4(M) is b — f = PD(pt).
Tet us denote this class by just bf, so that a basis for the cohomology ring is

{1,b, f,bf}. Observe that M with the usual complex structure is Fano .
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The non-vanishing Gromov-Witten invariants are given by

GWAE{3(01,CQ, c3) = 1 where ¢; = b or f.

Let us consider the usual Novikov ring A,, as the quantum coeflicients. Then

the quantum products are given by:

bfxbf = (b+f)®e” bfxf = 1®er
bf xb = f&el bxb = w-bf+b®eE+11®eF
bxf = bf-beel Faf = b@e

In [MT04] it is proved that the circle action on M which is given by:
e ity eTmY,  for 0<t <1

a: (z,22)

is Hamiltonian. The maximum set of this action is exactly the points lying on
the exceptional divisor £ and the minimum set is the line [.. After taking an

appropriate reference section o, the Seidel element ¥{a, o) is given by
U(x,0) =b.
Thus, evaluating the Seidel map on the class f we have
(e, 0)(f) = U(a,0)x f=bx f=bf — b el

Therefore the Seidel automorphism does have higher order terms when evalu-




ated on the class f.

2.3 Proof of Theorem 1.0.1

Now we are ready for proving the main theorem. Recall that the quantum
coefficient ring is A = Qg1 ..., ). We also denote the usual cup product

a ~ b by ab for all a,b € H*(M).

Proof of Theorem 1.0.1:

This is an immediate consequence of the next lemma.

Lemma 2.3.1 Let I = {1 <iy < iy < -+ <ip Snf, andlet1 <i < n. Then

Ty ® ok Ty, = Ty and z; % 7; = 1@ e = g; (2.15)

Proof: To prove the first equality we will proceed by induction. Assume we
have only two elements, say x;, z;, with 4 # j. Then, by Proposition 2.2.1 and

Remark 2.2.2 we have
_ B
Tk Ty = By e 1®@e”,

where the coefficient ¢ is a rational number and ¢;(5) > 0.

From Corollary 2.2.14 and the associativity of quantum multiplication we
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(s % ) 15 = (e # 75) @ €7 =

T * (Ti % Tj) = Tlijye @ e ¢ as@el.
By Proposition 2.2.1 the term T e * Z; is of the form

T{i}eT; -+ Z ap ® eF’

e1(B)>0

where again deg(ap) = deg(zge) + deglz;) — 9, (B') < 2n. Since j € {i}*, '

the term x(;-z; is zero. Thus we have

Z op @b @ et = T ® e e s ® eV |
c{B)>0

Then by comparing the degree of the coefficients in the previous equation, 1
the constant ¢ must vanish. "|
For the general case we will use the same argument. Assume the result :;‘
holds tor k different elements. Let I' = {ig41} U L. The quantum product
i, %+ % Ty, 18 by the inductive hypothesis, the same as Ty * Ly, This ]

element can be written in terms of the basis as

B
Tp* Tiy,, = Tr T E apJgry®e !
e1(B)»0,JC8 .

where 2|J| = deg(zy) = deg(zr) —2d < deg(xp) — 4 and the coefficients ap,s

are rational.

47




As before, using quantum associativity and Corollary 2.2.14 we get

(s * T7) % iy, = (Tre % Tipyy) ® et (2.17)

As+B
mg*($1*$¢k+1)=$pc®6‘4ﬂ+ E ap.y TjReE AR
c1(B)>0,JC8

Here the degree satisfies
deg(zso) = 2n — deg(zy) +2d = 2n — deg(zp) +4=2(n—|I| +1). (2.18)

Now, the center term in Equation (2.17) is written as

B A
(Tretiy, + z cprg TR Q€ y@e,
o1 (B)>0,KCS

where we have
deg(zk) < deg(zre) + deg(®iy ,) —4 = 2(n — |I| —1). (2.19)
Since 41 € I°, TreZs,,, = 0. Finally we have the identity

i/
E B K $K®EB+AI =L’Cpc®€Ap + E ap.J :L‘Jc®6AJ+B.
e {(BY>0,KCS e1(B)=0,JCS

By Equations (2.18),(2.19), the coefficients ag, are zero. This proves the first

part of the lemma.

The second part is analogous, just write
Ty k Ty = TiTi T C el =c 1®e?
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then multiplying by zs
(:BS * :ci) * Ty = (:c{,;}c * :c@) & eA‘Z =crg & eB.

Since ;< * T; = Ts, it follows that ¢ =1 and eB = et
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Chapter 3

Gluing Hamiltonian S'-Manifolds

In this chapter we investigate the symplectomorphism type of Hamiltonian

St-manifolds by means of the gluing,

3.1 Ceneral Setting for the Gluing

in this section we will be using the term Hamiltonian Slmanifold referring to
triples (M, H,w), where M is & closed, smooth, connectec 2n-manifold, w a
symplectic form on M and H is a normalized Hamiltonian function on M that
generates a circle action compatible with w on M. Although we will be working
with general, not necessary closed manifolds, we will always think of them as
(isomorphic to) submanifolds of & closed one, say M. Therefore, we sometimes
will not make explicit the presence of the symplectic form. We will use the
notation BISymp,,, referring to the class of Hamiltonian S'-manifolds, closed
or not, up to isomorphism. Here (M, H,w) and (M', H',') are isomorphic if
there exist an equivariant diffeomorphism f : M — M’ such that f*(w') = w.

Note that f is equivariant if and only if I o f=H.
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Let (M, L,w) be a closed Hamiltonian SL.manifold and denote by
C(M) = {0=Xp < -+ < A}

the collection of critical values of L. Thus L(M) = [Xo, As]. The set C(M )

is invariant under isomorphism. We now describe how to get picces of M

by localizing to critical levels using the hamiltonian. This is, for each € > 0

consider the neighborhood L~1(A — &, A + ¢) of the level set L7*(}), and for

AN € C(M) take the open submanifold L™'(X,X). In this paper we arc
interested on knowing what is needed to reconstruct M if one just knows the
isomnorphism type of the pieces LA —¢, A+e) and LA, X'). In general one
would need to specify how to glue these pieces to get back to M. To see what
type of gluing maps are allowed, suppose that (Y, H),(Z, K) are manifolds
isomorphic to the pieces L7\ — &, A - £) and LY\, X') respectively. Note
that one is tempted to glue Y and Z along their overlap, that is we want
to identify H™'(\, A+ ¢€) and K~'(X, A +¢€) through isomorphisms, to obtain
hack a manifold isomorphic to L~*{A—¢, X') such that ¥ and K are symplectic
submanifolds. Therefore one need to consider a maximal set of gluing maps
With-this property. One may think of these data as a symplectic atlas of
compatible Hamiltonian charts for M. We now provide the precise formalism

that allows this to work.
Definition 3.1.1 Let A € R and let g0 > 0.

(i) A cobordism at A is a tuple (¥, H, €) such that 0 < € <go and Y is a
Hamiltonian S'-manifold whose Hamiltonian function H takes Y onto

I, = (A—¢A+e) and X is the only critical value of H. Moreover we
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require that if € < e the restriction (H'(I4), H,¢) is identified with
(Y, H,¢"). Two cobordisms are equivalent, (Y,H,e) ~ (Y',H',¢), if and
only if there is € < min(e,€') such that (Y, H, e") and (Y', H',¢") are

isomorphic. That is, there 1s an isomorphism

f : I‘I_I(Ien) — (H!)—I(IGH).

A eritical germ G(\ ) at A is an equivolence class in HSympy, of

such tuples.

(ir) Stmilarly, consider tuples (Y, H,€) as above where the only critical value
of H is its minimum (mazimum) value A. Thus H (V) = MNA+¢)
(H(Y) = (A—¢,A]). We have a similar equivalence relation between them
as before. An equivalence class m(A,&)(M(X,€)} is called a minimal

(mazimal) germ at X

We will often refer to critical, maximal or minimal germs just as germs.
Note that if § < &, there is a natural restriction map G(\, &) — G(A,8). The
triples (Y, H, ¢) as in Definition 3.1.1 (ii) are neighborhoods of the maximal and

minimal sets. To see this, first note that there is a unigue maximum component

By of the fixed point set [AB84]. Then by using an equivariant version L
of the Darboux Theorem applied to points in Fr.x, there is a triple of the
form (Y, H,€) for ¢ small enough. Moreover, its maximal germ is determined l;
uniquely by the symplectomorphism type of Frax and its normal bundle. A |

|
similar remark applies to the minimum. ;
|
Definition 3.1.2 Let I be an open interval. A free slice is a tuple (Z,K,I,w)
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where K + Z — I is a surjective moment map for a free St-action on the

symplectic manifold (Z,w). We say that two slices (%, K, I,w) ~ (Z,K' I,u')
are equivalent if they are isomorphic. We denote by F(I) an equivalence class

of such slices.

Definition 3.1.3 Let G(),£) be a germ at X and let I'(I) be a class of free
slices for I = (N, A). Let (Y, H,e) € G(\e) and (Z,K,I) € F(I). A gluing
mayp (¢,¢) : (Y,H,¢e) — (Z,K,I) is given by a pair (¢,€) where 0 < e < g

and ¢ is an isomorphism
H ' A —e2) -2 K 10— ¢\,

Two ghuing maps (¢, €), (¢, €) are equivalent if there are ¢ < min(e, ) and
isomorphisms

f:Y —Y g:Z2— 27
such thot the following diagram is commulative.

H1(\— ¢, 3) —2= KT (A — ¢, ) (3.1)

. :

H O = ¢, \) —5 KO — ¢ 0

A gluing class ® : G()\ &) — F(I) is an equivalence class of pairs
(¢,€). This maps are well defined by Diagram (8.1). Analogously one can
define gluing maps for F(I) and the germ G(X &) when I = (A, X'). Note that
this definition also applies if we substitute the germ G(\ ) by o mauzimal or

a minimal one.
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Recall that we are interested in building symplectic manifolds out of germs
and free slices. We now describe the simplest case where we can do that.
Suppose we have G(\, ) and F(A, X) a germ and a class of [ree slices, we want
to see how to obtain a new manifold via a gluing class ® : G(A, g) — F(A, X).
Choose Tepresentatives (Y, H,¢) € G(\ 8), (2, K, I,w) € F(I) and (¢,¢) € ©.
Then, consider the manifold

Y U 24

obtained by gluing Y and Z along the overlap (A, A + ¢), that is
YUZ/ ~ wherez vy &= ¢(x) =y

where

¢ H MNA+e) — K H{\A+e)

is the restricted isomorphism on the interval (A, A + €).

If (¢f,€), (Y, H',¢),(Z',K',T) is another set of choices, there exist 0 <
¢ < min(e, ¢) < € and isomorphisms f, g as in the commutative Diagram (3.1).
Therefore, by restricting the gluing maps and f, g to the open interval (A, A+€”)
one gets that ¢(z) =y if and only if ¢/(f(z)) = g(y). Then (f, g) induces an
isomorphism

Y Utg,e) VA =, Y’ Ugr e z. (32)

Denote by
G(\e) Us F(I)

the isomorphism class produced by this gluing. Note that the Hamiltonian

94




function on this new manifold is the one defined by (H,K): Y UZ — (A —
g, ') after passing to the quotient. Therefore this is a well defined operation
in HSymps,.

Conversely, the neighborhoods (H, K)™'(A — &, A + ¢) © Y Uyq Z are
isomorphic to H~1(A—¢, A-¢) for all €. Similarly (1, K)HOWNY 2 KN N,

Then we have the following lemma.

Lemma 3.1.4 Suppose we have given a germ of cobordism G(\€), a free slice
F(\XN) and a gluing class U : G(X,€) — F(\MN). Then we can associate o

unique isomorphism class
G()€) Up F(\, X) with hamiltonian (H, K )

in HSymp,,,. Moreover, the manifolds (H, K)7YI) and (H, K)™' (A N) rep-
resent the classes G(\ ) and F(X,X).

It is clear that we can apply the same idea to define a gluing of the form
F(N,\) Ug G(\ ). Similarly, when we have maximal and minimal germs

M() ), m(X, ) one can construct manifolds
m(N, ') Up F(N, A) and F(X,\) Us M() ).

It is important to note that order of the gluing does not matter provided € is
small enough.

To reconstruct M, we would like to define this process more generally. We
want to glue more general data, as we now explain. A set of local data L

consists of:
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e 2 collection C = {0 = Ag < +++ < Agqu} of critical levels.

o serms (), &) at g for all ¢ = 1,...,s, minimal and maximal germs

m( Ao, €0), M(Xay1,6411) TESDECtivEly.

o for all j = 0,...,s, equivalence classes of free slices F'(I;) where I; =

(As, Aj1) i8 & maximal open interval of regular values.

o gluing classes &}, ®; from G(X;, &) to F(L) and F{L;..y) respectively for

alli=1,...,s

As an example consider (M,w, H) € HISymp,,,. Its localizations
H7 (X —¢,A +¢), and the free sets HO,N)

for ¢ > 0 and A\, N € C(M) define the germs and free slices. Then the local
data associated to M, denoted by Ly, is the collection of all the isomor-
phism classes of these sets and the gluing classes on the overlaps. Now we

have the following theorem.

Theorem 3.1.5 Given a set of local data L, there exists a closed Hamiltonian

'

S -manifold My such that its associated set of local data s L. Moreover, this

manifold is unique up to isomorphism, this is we have a one-to-one association

{ Sets of local data } — HSympy,

Proof: m
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Consider representatives

(}/S-I-]J Hs-ﬁ—l) Es+1) = M()\.H-l.: 55-1—1)1 (YO: HO: EU) = m(AO: 60)

(Y, Hiy &) € G(Ni,80),6a1), (20 Kay 1) € FI(LL)

and

(¢F,¢) € DE.

On the disjoint union

Mp=YoUZ UYy--UZgp1 UYepy

define the equivalence relation by

y~p z &= for some §,(y €Y;,2 € Ziya,¢5 (¥) = Z)or (y €Yy 2 € 55,87 (y) = 2)

Define My 1= Mg/~ with hamiltonian H; = [Ho, K1, ... Kopy Hopa]. ,
Note that Hz : Mz — [Ao, Asy1] and then My is a closed symplectic manifold
whose isomorphism class is completely determined by the local data L, since
anot‘her. set of choices would give an isomorphism as in Equation (3.2). Finally,
to see that the association L +— M is one-to-one, we proceed as before, by
considering the localizations of My at the critical levels with the Hamiltonian

Hp. One can see that this recovers L.

3

As a last note, we clarify that for the rest of this paper we will treat

isomorphic manifolds as equal, unless we specify the contrary. |
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3.2 The gluing, the reduced spaces and the
classification theorem

Most of the background material for this section can be found in [MS98| and
[GS89). Let (M, H,w) € HSympa,. Let t € R be a regular value of H. Then
§ acts freely on the level set H~(t). The orbit space M, = H )/ 5 is
called the reduced space of M at the level £. This space is symplectic with the
reduced symplectic form w;. The fibration m a-Yt) — M, is a principal
5! bundle over M. Denote its total space by P, or just by P, whenever there
is no risk of confusion. Denote its Euler class by e(P) € H(M,).

The reduced symplectic form wy on M, satisfies
Ty = tw (3.3)

where H1(t) is the total space of the principal S* bundie .

Let )\ be a critical value of H and let F' C I —1()\) be the fixed point
set in this level. Although the quotient M, = H1())/S* may be singular,
if the Morse index of A is 2 (resp. coindex 2) it can be identified with the
non-gingular space M. (resp. Mate) [GS89] in such a way that we have a

reduction principal S*-bundle
P N T\I}U

Note that if dim M = 6 all the non-extremal critical values have (co)index 2.

If A has (co)index 2 the fixed point set F' is an embedded submanifold of M.
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By considering the Hamiltonian —f1, we can assumne that all the results about
index 2 critical values have similar results for index 4 as well.

The main goal of this article is to provide a method to classify symplectic
manifolds up to some equivalence. We now introduce the precise definitions
of common relations in symplectic geometry that we will use in this paper.
Congsider two symplectic forms we,wr on a manifold X. This forms are said
to be symplectomorphic if there is a diffeomorphism f : X — X such
that f*w;, = wy. A deformation between wo,w; is & (smooth) family {w,} of
symplectic forms that join them. A deformation is an isotopy if the elements
in the family {w,} all lie in the same cohomology class. It is well known
(Moser’s lemma) that two symplectic forms are isotopic if and only if there is
a family of diffeomorphisms {h,} on X such that h*w, = wo and hy = id. The
concepts of isotopy and deformation are in general not equivalent (cf. Example
13.20 in [MS98]), but for some special cases as we will see ink Theorem 3.3.1,
they agree. For the objectives of the present work, manifolds where thig two
propierties agree will be a key ingredient as we will see in Lemma 3.2.7.

When the manifolds are equipped with circle actions, we will make the

natural assumption that all the deformations and maps are S Lequivariant.

391 Germs at critical levels of index 2 and the change
in the fixed point data

We now describe the germ G(A, €) when A is a critical value of index 2 and the
sction is semi-free. We will follow entirely [G989] (see also [MS98]). Let (M, w)

be a symplectic manifold and let S C M be a closed submanifold. For ¢ > 0
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\
small enough, we denote by Blg(M) and 8 : Big(N) — N the e-symplectic
blow up of M along S and the blow-down map as defined by Guillemin and
Sternberg [(3889]. The construction of the manifold Blg(M) depend on several
choices!, but its diffeomorphism type is independent of them. Blg(M) admits
a blow-up symplectic structure denoted by &(e). This form is not independent
of the choices?, but its germ of isotopy classes is. This is, if @'(€) is the form
obtained by making different choices, then for some €9 small enough there exist
s smooth family f. € Diff(M) such that f2(@(e)) = &'(e) for all 0 < ¢ < &o.

With this in mind, assume we have the following data
i) a compact symplectic manifold (M, )
ii) a symplectic submanifold F' C M
iii) a principal $*-bundle 7 : P — M
iv) a connection 1-form a on P
v) an interval [ = (A — ¢, A+ €) for (small) € > 0.

Then it is possible to create a cobordism (Y'(A), H, w) € HSymp,, having

the following properties.
(a) H maps Y()) onto .

(b) For all ¢ >0, H™1(A —¢) is equivariantly diffeomorphic to P.

ITo be precise, an embedding of a ball bundle and a connection on a principal U{n)-
bundle.

2Not even when one blows-up a point. This is because there is a non-compact family of
choices.
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(c) For all £ > 0 the symplectic reduction Y ()} at the level A —1 is symplec-

tomorphic to M with symplectic form @ — tdo.®
(d) X is a critical level of H of index 2.
(e) For all £ > 0 the reduction of Y'(\) at A+ is the blow up Blp(M) of M
along F' with symplectic structure
O(t) -+ B*(tdey). (3.4)
Here (£) is the t-blow up form and 8 : Blp(M) — M is the blow down
map.

(f) The fixed point set at A is F.

Theorem 3.2.1 (Guillemin-Sternberg cobordism theorem) Let (M, K,w) €

HSymp,, and A be an index 2 critical value. Let I = A—gX+e) bea
sufficiently small interval in R. Then, the open submanifold K ~HT) 4s equiv-
ariantly symplectomorphic to the manifold (Y(A), H,w) as described above.
Moreover, the germ G(\, &) € HSymp,,, of M at A only depends on the fized

point data (M, Fy,wy), Py — My at A

Note that the reduced space of M at the level A + ¢ is obtained from
the reduced space at the level A by blowing up. An immediate corollary of

Theorem 3.2.1 is the following.

3da is a 2-form on P, but it descends to B. This is the form that we consider here.
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CPrACP? '
L -1 #*

Figure 3.1: The cobordism around an isolated fixed point p of index 2. Here
we assume that the minimum is also isolated. The base of the figure represents
CP? and the top the blow-up CP?#CP?. If the fixed point is of index 4 this

cobordism is up-side down.
Corollary 3.2.2 If (M, H,w) € HSymp,, s ¢ manifold such thal every non-
extremal A € C(M ) is simple, then all the germs of cobordism are completely

determined by the fized point data, as in Definition 1.0.4.

We now describe the change in the fixed point data. Let v be the normal
bundle of the fixed point submanifold Fy in M. The normal bundle decomposes
as a sum v @ v~ of positive and negative directions. Observe that a small
neigh‘porhood of the zero section of v is S'-isomorphic to a neighborhood
U~ UruU- of Fy in M. Denote by X; the symplectic reduction of U~
at tif ¢ < X or the reduction of Ut at ¢ if ¢ > 0. The diffeotype of the
triple (P;, My, X) depends smoothly on ¢ for t € (A —¢, )] and it is constant.
Denote it by (P, M_, X_) where X_ = F. Similarly, we denote the common
diffectype for t € (A, A +¢€) by (Py, My, X4).

The relation between them is quite subtie as we now see. By Theorem

3.2.1, M, is the blow up of M_ along X_. Let §: M. — M_ be the blow
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down map. O restricts to a diffeomorphism My —~ X, onto M_ - X_, and

when restricted to X 4 it is a fibration
B: Xy — X_ |

whose fibers are all diffeomorphic to CP*~1. Here 2k is the codimension of '
X_ in M_. Denote by L/ the line bundle on M, whose Chern class is dual to L
its codimension 2 submanifold X .. Let I be the circle bundle associated to i

I!. Then we have [GS89, Formula 13.3]
P+ == ﬁ*(P__) ® L (35) |

as circle bundles over M. Since L is trivial on M. — X4, then P~ = P, on

M, T,
Note that the construction of L depends only on the normal bundle of X, i
in M, and hence on the pair (M_,X_) = (M, F,). Then Py is given in
terms of P.,(M_, Fy) . ' i
We now see examples on which the relation between P.. and P, is easy to

depict.

Example 3.2.3 Suppose Fy is an isolated fixed point p € M. The relation i
between the Fuler classes e(Py) and e(F) is clear. If the index of p is 2, let E
be the exceptional divisor in By that is introduced after we blow up By at p i

and let PD(E) € Hy(M) be its Poincaré dual. Then we have |

e(Py) = Be(P) + PD(E). “
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If p has coindex 2, then Bj is obtained by blow down B at an exceptional

divisor E. In this cage

Example 3.2.4 Suppose codim Fj = 4 and that the index of Fy = 2. By
Lemma 5 in McDuff [McD88] all the reduced spaces M, fort € I,1 +# X\ are

all diffeomorphic, to By say. In particular By is diffeomorphic to B1. Moreover
B(Pg) = 6(P1) -+ PD(Fl)

where Iy is embedded in By. I dim M = 6 this case applies when Fi is a

srface.

3.2.2 The isomorphism type of free slices

As before, let (M, H,w) € HSymp,,. Suppose A" < A are two consecutive
critical values of . The interval J = (X, A) is a maximal set of regular values
of H. Thus S* acts freely on the open set H™*(J). Let I = [to, %] C J. Let
(M, w;) be the reduced spaces for ¢ € I. The classic Duistermaat-Heckman
Theorem establishes that the reduced spaces M, are all identified with the
reduced space B = My, for a fixed point to € 1. The diffeomorphism type of
H-(I) is then given by Py, x I. If w, is the reduced symplectic form at the

regular level ?, then they define a path of symplectic structures on B. Their
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cohomology classes satisty

wi] = wo] + & —to)e(P)E € L. (3.6)

Our aim is to understand the isomorphism class of A ~I(I). To accomplish
that, suppose that we have two invariant symplectic forms w and o’ on P x [T
and that there is an equivariant diffeomorphism ¢ : P x I — P x [ such that
¢*(w) = /. By considering the reduction at ¢, ¢ defines a family ¢,: B — B

of maps such that the following diagram

PP (37)
B LA
is commutative. Here we are denoting by ¢: the restriction of ¢ to the level £.
Note that (@,)*(ws) = w;, where the forms w, w) are the symplectic reductions
of w,w'. Moreover ¢, preserves the Kuler class e(P) for all t € [.

It is not hard to see that given any smooth family of maps f,:B— B
such that (F,)*w, = w} and (f,)"e(P) = e(P) lifts to a family of isomorphisms
fy 1 P — P that make Diagram (3.7) commute. Therefore, these maps bundle
together to a diffeomorphism f: P X I —s P x I such that f*(w) =w'. In

fact the isomorphism type of H~1(I) is given by the following lemma.

Lemma 3.2.5 (Proposition 5.8 in [MS98]) The symplectic manifold H(I)

is determined by the bundle P —» B and the family wy up to an equivariant

symplectornorphism.
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For simplicity of notation, assume that I = [0,1]. The discussion above

motivates the following definition.

Definition 3.2.6 Two families {w;her ond {w} a1 of symplectic forms on B
satisfying Equation (3.6) are said to be equivalent if there is a smooth famaly

{w,s} of symplectic forms such that

d
_'“[ws,t] =0 and Wyt = Wty W = (.l)i., (38)

ds

for 0 < t,5 < 1. We denote by oy the equivalence class of the path {wi}eer on
B.

Note that if {w;} ~ {w}}, there is an isotopy w, of forms on P x I that lifts
wes and, such that wy = w,wy = w'. By Moser’s lemma, we have a family of
maps fs : P x I — P x I such that fiw, =w.

In our case there will be only one of these equivalence classes. This is

basically a property of rigid manifolds, as we now see.

Lemma 3.2.7 Suppose B is a manifold such that every deformation between
two cohomologous forms can be homotoped to an isotopy. Consider two families
of symplectic forms {wi}, {w:} t € I on B whose cohomology classes satisfy
Equation (3.6) and such that wy = wh. If Symp(B, w0 Diffo(M) is path

connected for allt € T, then {w}} ~ {wi}.

Proof: Since [w;] — [w!] = [wo] —[wh] = 0, we see that w; is cohomologous to w;
for all . We want to see that there is a family of symplectic forms {wss}ogs <1

such that for each fixed ¢ the path ws; is an isotopy from w; to w.
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First, since wo = wh, then for s € [0,1] the cohomology class of the form
sw! + {1 — s)w; is constant respect to s. Then by Moser’s argument, for an
¢ > 0 small enough there is a family w,; satisfying Equation (3.8) but only
for 0 < t < ¢ (Compare with Example 3.20 in [MS98]). We want to see that

under our hypotheses we can take € = 1. To see this, define
D = {T: 3 {ws; bocs<i, ot satisfying Equation (3.8)} C [0,1].

We claim that D is actually [0,1]. We will do this by proving that D is open
and closed. Tet T € D. Since wr is isotopic to wh, we can assume that
wr = wh. Then, by the same argument as when T =0, there is an £ > 0 such
that 7'+ ¢ € D. Thus D is open,

To see that D is closed, take T be such that 0 < T < land T'—e € D for

every € > ( small. The path

Wy Us)=(1-28)T,0<s <
o5 = ‘

Wy w(s)=(2s— 0T,

=1E

(3.9)
<s<l1

r—=

is a deformation between wr and wh. Since B is assumed to be rigid and
lwr] = [w}], @s can be homotoped through deformations with fixed endpoints
to an isotopy. Let 8, such isotopy with fp = wr and 8, = wh. Again, by
Moser’s argument, we can suppose J; can be extended in a small neighborhood
of T'. That is, for an € > 0 there is a family J,7_c of symplectic forms which
is homotopic to fs.

On the other hand, because of the hypothesis on T, we have T'— € € D.
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“.EF i

Thus there is a family w,, that satisfies Equation (3.8), for all ¢ € [0,T — €.

The concatenation of the two isotopies wsr_e, —Fs 17— defined by

(after smoothing) defines a loop at wr_ in the space of symplectic structures
S(a) with fixed cohomology class a = jwr_].

By using the fibration
Symp(B, wy_c) N Diffg(B) ~— Diffg(B) — S(a), 7: [ flwrd),

there is a lift {fs}scpo,2) in Diffg(B) such that fo = id and f7 (vs) = wp... for all
s. Since the fibre Symp(B, wr_.) NDiffo(M) is path connected, we can assume
that f; = id as well.

The map'
hs = fs o (f?—s)_17 0<s< 1

is such that

ho = ha =td, hi(7a—s) = Vs

that is,

h: (ﬁQ—s-,T—-e) = Wy T—¢-

Therefore, the new family

ﬁs,t = hy (ﬁs,t)

satisfies Equation (3.8) for 0 < s < 1,T —e <t < T and agrees with w,,; at
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t = T —¢. After smoothing, we see that w,; can be extended to all £ < T via
Bs,t. Then T € D. This proves that D is closed.

We would like to emphasize where our argument fails if Symp(B,wr—) 1
Diffy(M) is not path connected. In this case, we cannot consider f; to be the
identity and then hg # id. For our boundary conditions, we need the extension
B(],t to agree with w, for ' — e < ¢t <T. We cannot conclude that if kg is not
the identity.

O

Note that by exhaustion of closed intervals I in J = (X, A}, we can assume
that any two paths of forms wy,wj,t € J are equivalent. In the particular case
when A has index 2 by Theorem 3.2.1 one can assume that J = (X, A] and that
B = M. In this case, by Lemma 3.2.7 any two paths of symplectic structures
wy,wh,t € (A, X] that satisfy Equation (3.6) are equivalent as well. Note that
this immediately forces any two gluing maps to be equivalent. Therefore we

have the following.

Proposition 3.2.8 Suppose that A has index 2 and that (M, {wibier) is vigid.
Then, any path of symplectic forms satisfying Equation (3.6) is equivalent to
ws. Therefore the isomorphism class of the free slice H LN, A} ds unique up to
isomorphism. Moreover, there is unique gluing class between germs at A and

free slices on (X', A).

A similar result follows when ) has index 4. Now we are ready to prove

the results in the introduction.
Proof of Theorem 1.0.6: Recall that (M, H,w) € HSymp,, and C{M)

is the set of critical values. We are assuming that each non-extremal critical
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value A € C(M) = {Xg,...,Ast1} has (co)index 2 and that all the reduced
spaces M are rigid. Therefore, by Theorem 3.2.1 and Proposition 3.2.8 the
free slices, germs, and gluing maps are completely determined by the fixed
point data. Hence the local data £(M) will be determined as well. Then by

Theorem 3.1.5 the result will follow. a

Proof of Corollary 1.0.7: Recall that we are assuming that for each A €
C(M) the fixed point submanifolds (F,,wy,) are isolated or surfaces of index
9. Tts minimal germ is determined by {F,,wy,). By taking the reduction at a
level ¢ close enough to Ao one gets the reduced bundle Py, — M,,. Examples
3.2.3, 3.2.4 show that the principal bundle Py — M, is then determined by
the fixed point data at A;. If we do this process at each A we see that bundles
P, are actually determined by the minimal information we are assuming, that
is the manifolds (Fy,w) for all A\ € C(M). This determines the fixed point
data of M. 0

3.3 Six dimensional examples

In this section we will apply our previous analysis to six dimensional exam-
ples. We will classify this manifolds by just knowing the minimal information
required in Theorem 1.0.7. In §3.3.1 we will provide a complete analysis of
the case when all the fixed points are isolated, that is we provide a proof of

Theorem 1.0.8.
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3.3.1 Example A

Assume that (M, w) is a symplectic 6-manifold with a semi-free S'-action. If
all the fixed points are isolated it is not necessary to assume that the action
is Hamiltonian, it would follow from [TW00]. The fixed points are given
as follows. The minimum, three critical points pi, 2, ps of index two, three
q1, G2, g3 of index four and a maximum. We will denote by A, the critical values
H(p;). Without lost of generality we may assume the minimum value of [ is
zero, and that Ay < Az < Az, It is not hard to see [Gon03] that the fixed points
of index 4 are in the level sets H1(\; + A;),§ # 4 and the maximum is the
unique point in H~H(A; 4 Ag + As) (See Figure 3.2). Before going any further
recall that we want to prove that M is isomorphic to Y? = 8% x §2 x §? with
the product symplectic form @w = Ajo X Ago X Ao, Here o is the canonical

area form on S2. We are assuming that the circle acts on Y by

et (g, . 2) s (€27, 2ty Mt ).
Proof of Theorem 1.0.8: We start by noticing that there are essentially
two cases to analyze, when A ++Ag < A3 and when A+ Az > As. The difference
of this two cases is the order in which we reach fixed points. For simplicity,
one can treat the first case since the second one is completely analogous. Our
aim is to prove that the fixed point data of M is equivalent to the one of
Y. Then as before Theorem 3.1.5 will finish the proof. Since the fixed points
are isolated, by Theorem 1.0.7 we only need to show that the reduced spaces
(Y, ;) are rigid, this will prove that the manifold ¥ is unique, then the

theorem will follow.
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M+ A2+ As

|

] Az 4 As
| X1+ Aa
Ay 4 Ag

VA SN
H____/ Al |

. H=0

) <}

Figure 3.2: The fixed points, their critical values and some reduced spaces of
a manifold with isolated fixed points (Example A). Figures a), b}, ¢) and d)
represent the reduced spaces for ¢ in the intervals (0, A, (g, A 4 Ag), (Ar +
A2, M+ As), Ao+ A, A+ A+ )3) respectively. Note that as ¢ — A1 -+ Ag the
exceptional sphere L — Ky — Iy blows down. d) is the manifold obtained after
blowing down the exceptional spheres L — F; — Ej. a) and d) are diffeomorphic
(via Cremona transformation) but the Euler class of the principal bundles
associated to these reduced spaces differ by a sign.

Tt is not hard to see that the only reduced spaces that occur are CP? and
the blow up CP?#kCP? for k = 1,2,3. ( See figure 3.2). Theorem 3.3.1 and

Lemma. 3.3.2 now finish the prool. O

Theorem 3.3.1 (McDuff, [McD98]) Let X be a blow-up of CFP? or a ra-

tional surface. * Then

i) Any deformation of two cohomologous symplectic forms on X may be

homotoped through deformations with fized endpoints to an isotopy.

4This theorem is actually true for more general 4-manifolds, named manifolds of non-
simple SW-type.
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#) Any two cohomologous symplectic forms on X are symplectomorphic.

Lemima 3.3.2 (Abreu-McDuff, et. al.) Let (X,w) be CP? or the blow-up
C P2-C P? with the symplectic forms w, as above. Then the group Symp{X, w;)
is path connected for all t. Similarly if (X, w) denotes any of the blow ups
CP24ECP? for k < 3, then the group Symp™ (X, w) of symplectomorphisms

that induce the identity on H,(X) is path connected.

We shall not discuss the proof of this lemma, since the arguments are far
from the context of the present work and they are contained in several papers.
The reader can consult the original articles [Gro85],]AMO00], [LP04], [Pin] or
the survey [McD04] for all of these cases. The technics involved are pseudo-

holomorphic curves and the inflation procedure.

3.3.2 Example B

This is example is based on Example 1 in [Li03]. Let Z = (CP?, wrs) equipped

with the standard Fubini-Study form wps and with the semi-free circle action

a0 2t 2t 2] o [20 1 € 2,

whose Hamiltonian function is

2012 + |21 |* |
|20]2 + |21)? + |22l + |25]?

1
Hz([zo: 212 291 23]) = 3
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The fixed submani_folds are the subsets
Fii=H; (1) =1lz0:2:0:0] and Fp = HZ'0)=1[0:0:2: 2]

being both of them copies of CP! = 5% with the form wrs = o, The reduced
spaces 7, are all diffeomorphic to the product $ x S 2 (see Figure 3.3.2) where

the two factors A = S? x pt, B = pt x 5% correspond to the spheres
HH(t) 1 {2y = 0}/S" and H™'(t) N {z3 = 0}/8*
respectively. The reduced form is given by
wy = (1 — twpg x t wpg forall t € (1,0).

Assume (M,w) is any other Hamiltonian §! manifold whose minimum
and maximum submanifolds (Mg, w;), (M, w,) are both symplectomorphic to
S% wrs. Suppose that H(Mo) = 0, H(M,) = 1. Moreover, suppose that the
normal bundle at the minimum has Chern number 2. These data is enough to
prove that M is isomorphic to Z. To see this we can use Theorem 1.0.6. Note
that Theorem 3.3.1 applies to S% x 2. The result will follow if the group of
symplectomorphisms Symp(5? x 52, w;) is path connected. This is true ifA, B
have different symplectic areas [McD04]. Thus is rigid, and Theorem 1.0.6

classifies these manifolds.

Remark 3.3.3 We remark that although we can sometimes ignore the reduc-

tion bundles from the fixed point data as in Examples A and B in §3.3.1, we

74




Figure 3.3: CP? ag in Example B. The reduced spaces are all diffeomorphic to
52 % §2. The area of the first sphere A increases as t increases but the area of
B vanishes as t reaches the maximum.

cannot do the same with all the data of Definition 1.0.4. For instance if one
just knows the diffeomorphism type of the fixed submanifolds, and not its nor-
mal bundle in the reduced spaces, we cannot conclude that the isomorphism
type of manifold is determined by these data. Li [Li03] has constructed two
Hamiltonian S*-manifolds with diffeomorphic fixed point data, but different
isomorphism type. In Li's situation to conclude that the manifolds are (dif-
feomorphic), it is necessary to prescribe the twist type of the manifold. This
ig a global invariant of the manifold. Theorem 1.0.6 shows that this twist is
determined if we have rigid reduced spaces and richer fixed point data. For

more information see [Li03, Li05].
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