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Abstract of the Dissertation

The Bauer-Furuta Invarjant And A
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by
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2004

Applying Bauer and Furuta’s method to the 1-parameter Seiberg—
Witten equation, a cohomotopy refinement of the Ruberman in-
variant can be defined. Using the refined Ruberman invariant, and
the nontriviality of the Bauer-Furuta invariant, we will prove, there
exist examples of 4-manifolds such that the set of unit-volume Rie-
mannian metrics with scalar curvature bounded below by a fixed

negative number is disconnected.
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Chapter 1

Introduction

Assume X s a closed smooth oriented 4-manifold. Let T'x be a Spin structure,
and ¢ a Riemannian metric on X. In [26], Witten defined the Seiberg- Witten

equation for the Spin® connection A and section ¢ of the positive spinor bundle,

D'A(b = O)

FL o= o(e)+in,

where Dy : (W) — I'(W™) is the Dirac operator, Fj is the self-dual part
of the curvature Fy4, 7 is a real self-dual 2-form, and o(¢) is the trace-free

endomorphism of W defined by

2
o) = s@g — 0y,

which will be identified as an imaginary-valued self-dual 2-form. The solution
space of the Seiberg—-Witten equation is equivariant under the action of the

gauge group Map(X, S"). The Seiberg—Witten moduli space M(I'; g, n) is the

quotient space of the solution space by the gauge group action. Usually it




is defined with suitable Soblev completions, but a standard argument shows "
the moduli space defined is not affected by the Soblev completions we choose.
More importantly, M(I'; g,7) is compact. If we chog)se a generic 77 and assume [
bi(X) > 1, then it is either empty or a smooth compact orientable manifold
with dimension i

i(r) — L2 = () 30(0) |

where x(X) is the Fuler number and 7(X) is the signature. The orientation of p

M({T'x; g,m) can be determined by a homology orientation of X, i.e. an orien-

tation of the space H'(X; R)d H+(X;R). When M(T'x; g,n) is O-dimensional,
the Seiberg-Witten invariant SW(X,'x) is the algebraic count of the points

» 0 M(I'x;9,m). When M(I'x; g,7) has a positive even dimension, SW (X, T'x)
is defined as the evaluation of the d(T'x)/2-th power of the first Chern class of
the Sl-bundle

e

—

M(Tx;9,1m) — M{Tx;9,7)

on the moduli space, where M (T'x; g,m) is the quotient of the solution space of
the Seiberg-Witten equation by the pointed gauge group Mapy(X, S1). If the
moduli space is empty or it has an odd dimension, we just define SW(X,T'x) =
0. With the assumption b;(X) > 1, the Seiberg—Witten invariant does not
depend on the metric ¢ or the self-dual 2-form 7. (See [15], [17] or [22] for
more details).

‘The Seiberg-Witten equation and the Seiberg-Witten invariant are widely
used in the study of 4-manifolds’ topology and geometry. One application is i
in the study of the scalar curvature of 4-manifolds. A direct argument using

the Weitzenbéck formula shows that no 4-manifold with &, > 1 and nontrivial :




kit

Seiberg-Witten invariant { for example Kéhler manifold [4] or symplectic man-

ifold [25] ) has a positive scalar curvature metric. A more delicate discussion

- will give an L*-estimate for the scalar curvature, which was shown to be exact
¥

in some interesting cases and used to study the Ye}mabe invariant by LeBrun
in [10] and [12]. It can also be used to study other geometric invariants and
to obtain an obstruction to the existence of the Einstein metrics [11].

The Seiberg-Witten equation is also used to study PSC(X), the space of

positive scalar curvature metrics for the 4-manifold X. Ruberman proved

Theorem 1 [20] There exist 4-manifolds of the form
X = aCP#CP

such that PSC(X) is disconnected.

In [20] he studied the Seiberg—Witten equations for a path of metric g, t €
[0,1]. Then with a path of generic perturbations 7, the I-parameter moduli
space, which is the union of the moduli spaces for each metric g, is a compact
oriented smooth manifold with the virtual dimension

,_ (Tx) — (2x(X) + 37(X))

= 1.
d ) +

It will be closed if we assume the Seiberg-Witten moduli spaces for (9, m1),
t =0 and 1, are empty. This I-parameter moduli space gives some geometric
information about the path of metrics we choose. Similar to the discussion for

the Seiberg-Witten equation with a fixed metric, it gives an obstruction for

the path of metrics to stay in PSC(X).




In [20] Ruberman only considered the case that the virtual dimension of
the 1-parameter moduli space d' = 0. He defined the Ruberman invariant to
be the algebraic count of the points in a generic la-parameter moduli space.
Similar to the Seiberg-Witten invariant, Rubern}an invariant can measure
the non-emptiness of the l-parameter moduli space, but the definition has
the restriction d’ = 0. The natural question is how we can define a similar
invariant with more generality.

A possible answer is given in this work. We will define a cohomotopy refined
Ruberman invariant. It is the S*-equivariant stable cohomotopy class of a 1-
parameter family of Seiberg-Witten maps. We shall use the finite dimensional
approzimation by Bauer and Furuta, which was first used in Furuta’s proof
of his 10/8-theorem for Spin manifolds [5] and later generalized by Bauer
and Furyta to non-Spin manifolds to deline the cohomotopy refinement of
Seiberg-Witten invariant [3], the Bauer-Furuta invariant. In the case the
virtual dimension d' = 0, the cohomotopy refined Ruberman invariant can be
reduced to the Ruberman invariant by a natural homomorphism. When d’ > 0,
the cohomotopy refined Ruberman invariant is also nontrivially well defined.
We will see that sometimes the cohomotopy refined Ruberman invariant is a
nonzero torsion ciass, which means that the cohomotopy refined Ruberman
invariant has more generality than an integer invariant. This explains why we
do not just make an analog of the definition of the Seiberg-Witten invariant
in the general case to define our generalized Ruberman invariant, though this

approach would also give a possible answer to our question.

As an application of the cohomotopy refined Ruberman invariant, we will




consider the space of Riemannian metrics on the manifold

X = T"4aCP*4bTE"
¥
and define a subset of metrics similar to PSC(X ) From the work of Schoen
and Yau [24], PSC(X) is empty. ( There are even no zcro scalar curvature
metrics on X. ) But as the Yamabe invariant of X is 0, for each & > 0, there
are unit-volume metrics with scalar curvature bounded below by —e. So, if we

denote the space of Riemannian metrics by Met(X) and define the subset
Met (X)) {g € Met(X)|s, > —e,vol,(X) = 1},

then M etE(T4#aC]P’2#b@2) is not empty. We will prove the following main

result.

Theorem 2 For any € > 0, there exist 4-manifolds of the form
X = T*4LaCP*4bTP

such that Met.(X) is disconnected.

Theorem 2 is an analog of Theorem 1. In Ruberman’s proof [20] of Theo-
rem 1, there are three basic observations: the nontriviality of Seiberg—-Witten
invariant, the property of wall-crossing, and the gluing technique which gives
a product formula for the 1-parameter moduli space. To prove Theorem 2, we
need also to consider these three, but with the integer invariant replaced by its

cohomotopy refined one. Thus we will consider the nontriviality of the Bauer—




Furuta invariant, the description of wall-crossing by a stable cohomotopy class,
and the gluing technique which gives a product formula for the cohomotopy
refined Ruberman invariant. 'The second of the thre;a is quite obvious from the
definition, while the other two deserve more careful discussions. Because the
4-manifold we consider has positive b1, the Bauer—Furuta invariant is not as
well understood as in the case b, = 0. Although in general we cannot establish
the nontriviality of the Bauer—Furuta invariant when b; > 0, we can for some

manifolds of the form X = T"#X’, which is enough for proving Theorem 2.

Theorem 3 The Bauer-Furuta invariant of X = T4# X' is non-trivial when
X' =T" or X" is an almost complez 4-manifold such that b;(X') = 0, by (X") =
3 (mod 4) and the Seiberg-Witten invariant for the almost complex structure

on X' 1s odd.

For the third observation, we can use the gluing technique in [1] to prove
a l-parameter version of Bauer’s product forinula, which at the same time
generalizes the one Ruberman proved in [20]. This product formula is the key
to complete the proof of Theorem 2.

Besides its usage in the proof of Theorem 2, Theorem 3 can be applied to
calculate the Yamabe invariant of some manifolds of the form X = 7T4#X’ and
so to give an alternative proof for the non-existence of positive scalar curvature
metrics on those manifolds.

It needs to be pointed out that our cohomotopy refined Ruberman invari-
ant, related to a self-diffeomorphism f of the 4-manifold, has not been defined

in full generality. We have only discussed the case that f generates an infinite

orbit for I'x, which is relative to our application. Defining a nontrivial coho-




motopy refined Ruberman invariant related to other f and finding applications
for it are fields which still need to be explored.

In Chapter 2, we will introduce the Ba,uer—Furut,a invariant and two most
important properties of it from [1] and [3]. From Chapter 3 to 5, we will
study the nontriviality of the Bauer—Furuta invariant for some 4-manifolds
with b; > 0. In Chapter 6, we will see the application of the nontriviality
results we have proved. In Chapter 7, we will introduce the construction of
Ruberman invariant and in Chapter 8 and 9, we will define a cohomotopy
refined Ruberman invariant using Bauer and Furuta’s construction. In Chap-
ter 10 and 11 we state and prove the product formula for the cohomotopy

refined Ruberman invariant. Finally in Chapter 12, we will finish the proof of

Theorem 2.




Chapter 2

The Bauer—Furuta invariant

If not explicitly mentioned to the contrary, the 4-manifolds we will consider
are closed smooth oriented and homology oriented (i.e. with a homology ori-
% entation).

For simplicity, we will first assume b, = 0. Let T'x be a Spin® structure
on the 4-manifold X. Let ﬂ(f‘;g,n) be the §'-bundle on M(T;g,7) which
is the quotient of the solution space of the Seiberg-Witten equation by the
pointed gauge group. Fix a smooth Spin® connection Ay and a Riemannian
metric on X, then M (I'; g,m) can be identified with the preimage sw=1(0) for

the following Seiberg—Witten map,

swi T(WH) @i0(X) — D(W™) & iQ0(X)/R & i+ (X),
(¢,0) = (Dagd + ad, d*a,d*a + Ff — o{¢) — in).

Fix &k > 3. We will use the above notation to denote the induced map from

the Lj_,-completion of T'(IW+) @ iQ'(X) to the L2_,-completion of

D(W ) @i (X)/R @ iQT(X).




Let | = (D4, d*,d") and ¢ = (a¢, 0, Fif. — o(¢) —in). Then sw =1+cisa
decomposition of sw as the sum of a linear Fredholm operator and a compact
operator between two Hilbert spaces. The compactlgess of the Seiberg-Witten
moduli space implies the boundedness of the preimage sw='(0). In fact a
similar argument can prove the stronger boundedness property of sw, i.e. the
preimage of any bounded set is bounded [3]. Then a stable cohomotopy class
in 7, ,(S?) can be defined for sw. For a suitable finite dimenstonal approxi-
mation ¢ for ¢, the map [+¢' induces maps between finite dimensional spheres.
Changing the approximation ¢ or the dimensions of the spheres will only result
a homotopic difference by suspensions, which means the stable cohomotopy
class is well defined ( see {3] or [23] ).

To be precise, Bauer and Furuta introduced an equivalent way to define

the stable cohomotopy class. They proved:

Lemma 4 (8] Let f =1+c: H — H be a bounded map between two Hilbert
spaces and ! is linear Fredholm and c¢ is compact. Then there is a finite di-
mensional subspace V C H, so that the following holds:

1. Together with the tmage Im{ of the linear Fredholm map I, the subspace
V' spans the Hilbert space H = Im{+ V.

2. Forany W DV with W = ULV, W = I"Y(W) and V' = [71(V), the
restriction flwe : W' — HY of f to the one point compactification of W'
misses the unit sphere S(W+) in the orthogonal complement of W.

3. Let py : HY\S(W2) — W be o naturally defined homotopy equiv-

alence. The maps pw fly and idyeapy flv+ are homotopy equivalent as




pointed maps

Wttt AV — Ut AV = W,

Indeed, if H is separable, then the subspacesV satisflying these three conditions

are cofinal in the direct system of finite dimensional subspaces in H.

In particular, the restrictions f|;-1¢y+ with V satisfying the conditions in

lemma 4 define an element in the colimit of pointed homotopy groups

#) = D [flyd € Jim 7 (), TSV

iR

T [ (V)*, V4] = it (59)

In the case of the Seiberg-Witten map, the above invariant [sw] € x5, ,(8°)
can be further refined because the Seiberg-Witten map is $* -equivariant with
respect to the trivial action of S' on forms and multiplication action on sections
of spinors. The S'-equivariant stable homotopy class for the Seiberg—Witten
map will contain more precise information. Technically, all the key steps are
still correct with the group action involved. So we can make the following

definition.

Definition 5 /3] Ifb;(X) = 0, the S'-equivariant map sw represents a stable

St.cohomotopy class
A ve LTI b
[sw] = J%I}I[Swh—l(V)Jr]Sl € 1i}1&1%1[[{ VY Ve = mgi (pt; C),

where H = Li_,(D(W~) @ iQ°(X)/R @ iQ*(X)) with natural S'-action, V

is any S*-subspace of H, satisfying all the conditions in Lemma 4 equiv-

10




ariantly and d is the Atiyeh-Singer index for the Spin® structure Ux. The
St-equivariant stable cohomotopy class [sw] will be called the Bauer-Furuta

invariant and denoted by BF(X,T'x).

¥

The Bauer-Furuta invariant can also be defined in the case b (X) > 0.

The Seiberg-Witten map can first be defined at the level

sw: A— C,

(A: ¢1 a‘) — (A) DA‘;b + Cl.(}ﬁ, d*aﬂ Prharm, dta + F;{F - O'(Qb) - 377)7

A = (Ao+ikerd) x L, (T(W*) @ i (X)),

C = (Ao+ikerd) x LI ,(T(W™) @ iQ0(X)/R & iH(X;R) @427 (X)).

.

The map sw is equivariant under the action of G = L2(Map(X, S')) which
acts naturally on connections, trivially on forms and by multiplication on the
sections of spinors. Let Gy C G be the pointed gauge group. Then the Seiberg—
Witten map _

sw=35w/Gy: A z.;f/goﬁ C =5/go

is §1 = G/Gy equivariant, and A and C are Hilbert bundles over the torus
Pic’(X) = (Ao + iker d)/Gy. The Seiberg-Witten map can be decomposed as
the sum of fiber-preserving S'-maps [ - ¢, where ! is linear Fredholm and c
is compact. As before, it satisfies the strong boundedness condition. Take a
trivialization of the Hilbert bundle C = Pic®(X) x H and denote the projection

to the fiber by pr . From the parametrized version of Lemma, 4 ( Lemma 2.5

11




of [3] ), we can see the Seiberg-Witten map defines a stable cohomotopy class

represented by
¥
pro swlgys : TV =N V) = BRNS(VH ~ v

where V' is any finite dimensional subspace of H satisfying the conditions
similar to those listed in Lemma 4. Thus V' = {71(V) is a finite dimensional
subbundle of C over Pic®(X), the one-point compactification of which can
be identified with its Thom space TV’. The stable cohomotopy class defined
does not depend on the choice of I, but it depends on the K-group element,
indl = I"Y(V) =V = ind D - R* on Pic®(X). Also we need to consider the

Sl-equivariance of the Seiberg-Witten map, so we have:

Definition 6 /3] The S'-equivariant Seiberg-Witten map sw represents an

S* -equivariant stable cohomotopy class
— —
[sw] = ‘}igflI[sz;—l(vﬁ]sl € ‘;151{ [TV, V¥]g: = met (Pic®(X);ind D),

where ind D is the virtual index bundle for the Dirac operators parametrized
on Pic®(X), H = L} (T(W~) @ iQ(X)/R @ iH'(X) & i (X)) with the
natural S"-action and V' is any finite dimensional S -subspace which satisfies
Lemma 2.5 of [8]. We will call [sw] the Bauer—Furuta invariant and denote it
by BF(X,Tx). |

Detailed discussions are contained in (1) and [3]. Here only two properties
will be mentioned. The first indicates the relation between the Bauer—Furuta,

invariant and the Seiberg-Witten invariant.

12




Proposition 7 [3/ Let X be a closed 4-manifold with by.(X) > bi(X)+1. The
choice of a homology orientation (i.e. an orientation of H'(X;R)@H*(X;R))
then determines a homomaorphism t : WgT(PiCO(X )% ind D) — Z, which maps

the Bauer—Furuta invariant to the Seiberg-Wilten invariant,

The second concerns the Bauer-Furuta invariant for manifolds of the form

X17# X5. Bauer proved the following elegant product formula.

Theofem 8 [1] For the connected sum X = X #X5 of {-manifolds, with
Spin® structure I'x = I'x, #I'x, induced by U'x, and U'x, on X1 and X5 respec-
tively, then

BF(X,I'x) = BF(Xy,Tx,) A BF(X3,T'x,).

Equivalently, if we have chosen S'-maps u; € BF(X,T'x,) and u, €
P
BF(X,,T'x,), then p1y X uup with S acting diagonally is in the class BF (X, T'x).

13




Chapter 3

The nontriviality of the Bauer—-Furuta

invariant when b; > 0

The nontriviality of the Bauer-Furuta invariant implies the existence of so-
lutions of Seiberg-Witten equations. So it is of great interest to us. When
by = 0, the Baver-Furuta invariant can be identified with a non-equivariant
stable cohomotopy class. In the more general case by > by + 1, Proposition
7 gives a possible way to determine the nontriviality of the Bauer Furuta in-
variant as long as the corresponding Seiberg-Witten invariant is not zero. So
two questions can be asked.

1, If by < b +1, can wé still get the nontriviality of the Bauer—Furuta
invariant from that of the Seiberg-Witten invariant?

2. If by > 0 and the Seiberg~Witten invariant is zero, can we still get a
nontrivial Bauer-Furuta invariant?

We will give positive answers to these two questions for some 4-manifolds.

Denote the Spin® structure on X by I'x. Let V be any finite dimensional

S'-subspace satisfying the conditions in Definition 6 and TV’ the Thom space

14




for the bundle V' = [~}(V'). We will denote by {, }5: the equivariant stable
homotopy group of $'-maps. Then there is an exact sequence of equivariant

stable cohomotopy groups [3] i

)

{STVS Ve — {(TV, TV, (VF, 0} o

— {TV’, V-i-}sl ey {TV’Sl, V+}Sl,

in which V"5 is the $™-fixed subset. The Bauer—Furuta invariant BF(X,T'x) g
is in 7w (Pic®(X);ind D) = {TV',V*}g1. We will assume bi(X) > 0. The

restriction of the Seiberg-Witten map from the S*-fixed subset TVS" to the

S'-fixed subset V5" is the following map:
(Ao +ikerd)/Go x L, (iQ1(X)) — IZ_,(iQ°(X)/R @i H' (X;R) & i (X)),

(A, a) = (d*a, Pragema, dTa — in),

which is not onto when b, (X) > 0. So res([BF(X,I'x)]} will be zero in
{TV'S' V*}g. Thus BF(X,T'x) is an element of

%"gt(chﬂ(X); ind D) = ker({TV', V*t}g: 75 {vasl, Vtien.

Clearly BF(X,T'x) is nontrivial iff it is not zero in 725 (Pic®(X);ind ). We

have an analog of Proposition 7.

Theorem 9 Assume that X is a Spin f-manifold with by > 1, b (X) —
b+ (X) < 2 and 7(X) = 0. Let T'x be a Spin structure on X. Then there

15 i




is a homomorphism

t: 7o (Pic®(X);ind D) — Z,

¥

such that the image of the Bauer—Furuta ﬁnvariant’BF(X ,I'x) is the Setberg-
Witten invariant SW(X,T'x).

Proof. If b, (X) > b1(X) + 1, then it is correct by Proposition 7. So we can
assume 0 < b;+1—b,. < 3. The virtual dimension d{T"x) of the Seiberg—Witten

moduli space for the Spin structure will satisfy
—2<d(Tx) =b(X) - b (X)—-1<1,

If d(l“x) # 0, the Seiberg—Witten invariant is always zero. Then we can
just choose t to be the zero homomorphism. So we need only to define the
homomorphism ¢ when d(I'y) = 0. By the exact sequence, all the elements in

ﬁbs‘i (Pic%;ind D} can be lifted to the relative homotopy group
{(TV, TV, (V07 )}
There is a homomorphism

L {((TV, TV, (VE, ) g o T

constructed in {3] for proving Proposition 7. When d(I'x) = b (X) — by (X) —
1 = 0, the homomorphism ¢ maps each S'-equivariant relative stable cohomo-

topy class to the algebraic count of the Sl-orbits in a generic preimage. We

16




ki3

only need to show that this homomorphism ¢ descends to ﬁbs*i (Pic®(X); ind D),

L.e. different liftings of the Bauer-Furuta invariant BF{X,I"'x) have the same
image under ¢. From [3), the lifting of BF'(X,I'x) given by a generic pertur-
bation of the Seiberg-Witﬁen equation is mapped to SW(X,T'x) by ¢. Then
the induced homomorphism ¢ on 74 (Pic®(X);ind D) will map BF(X,I'y) to
SW({X,Tx). (In the proof of Proposition 7 in [3], this is trivial because the as-
sumption by (X) —b;(X) —1 > 0 implies the uniqueness of the lifting, Though
it is not necessary for the proof, the discussion below also shows the uniqueness
of the lifting when I'x is a Spin structure, 7(X) =0 and b — by < 2. )

Let f; and f; be two maps representing two liftings of the same element
in {TV',V*}s. Then we can choose a suitable V so that there is a S1-
homotopy A : TV’ x I — V't from f| to f;. The homotopy h satisfies the
property. that for t = 0 or 1, h(TV’Sl,t) = (*, and for £t € T and zy =
@t € TV’ ( the base point of TV’ at infinity ), h(zo,t) = @*‘. It can be
Sl equivariantly perturbed so that | st 18 smooth outside the preimage of
the base point A*((*). For example we can assume 0 is a regular value for
bl pyist, then (Alpy.s1)~1(0) is disconnected unions of oriented compact smooth
manifolds with dimension by (X) + 1 — by (X ) < 3. Denote a small tubular
neighborhood of (h|4y.s1)7H(0) by U’. Let V be the direct sum of V® and
VC, the real and complex maximal subspaces of V' ( with trivial S'-action and
scalar multiplication action respectively ). The bundle V' is also a complex
bundle on V5", The virtual bundle on V5" defined by V' — VT is the lifting of
the index bundle ind D from Pic®(X) to V', The first chern class ¢;(ind D)
is 0 because 'y is a Spin structure. The same is true for the first chern class of

the bundle V' on V" and its restriction to U/, Because I’ can be contracted to

17




ot

an oriented manifold with dimension at most 3, the restriction of the complex
bundle V' on V*" to U' is trivial. So by the Atiyah--Singer index theorem and
the fact 7(X) = 0 there is a neighborhood U” of (h|ﬂ,v,31)‘1(0) in V’ which is
S-diffeomorphic to U’ x CV, where N is the complex dimension of V. Define
the Stmap b/ : U/ x CN =V =VR @ VC = VS a CV, W(z,a) = (h(z),a)
for z € U" and @ ¢ CV. Therefore A’ is also an S'-equivariant map from U”

to V. Now choose an Sl-equivariant partition of 1 = o + 8 on 7'V such that

- the support of 3 contains a neighboorhood of (Al,.,,¢1)"'(0) and is contained

in U”. Then ah + Ak is a S'-homotopy between f; and f, such that
1
(ah+ BHYHO)NTV? = (hlgy,a) 7 (0)

is isolated from other componnents of (ah+ gh')~1(0). Therefore after further
perturba;tion, f11(0) and £;7(0) can be connected by a cobordism with free
Sl-action. The homomorphism ¢ defined by Bauer and Furuta is in fact an
S'-cobordism invariant. So it does not depend on the choice of the lifting. (

In fact we can change A’ such that

1 (z,a) = (W), —)

lal®

for & € U’ and @ € CN. Then (ah -+ BR)"1(0)NTV'S' is empty and ah -1 S
can be deformed to a homotopy from fi to f in (TV', TV'), (V+, ¢+) g1
Thus we have proved the uniqueness of the lifting. ) m

The following corollary gives a positive answer for the first question, with

X =14

18
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Corollary 10 The Bauer—Furuta invariant for T* with any Spin structure is

nontrivial,

Proof. Let I'zs be a Spin structure on 74, Then SW(T* T} = 1 (mod 2)
by Ruberman and Strle’ work [21]. The torus T satisfies all the conditions in
theorem 9. Since the image t(BF (T, ') % 0, BF{1",'r«) is nontrivial. =

To answer the second question, we will consider the manifold X = T4#X",
where X' is an almost complex manifold with b, (X*) = 0 and b..(X") = 3 (mod
4), and the Seiberg—Witten invariant for the almost complex structure is odd,
Then from [3] and Corollary 10, each component in the connected sum has a
nontrivial Bauer-Furuta invariant. The product formula in [1] ( i.e. Theorem
8 ) implies the Bauer-Furuta invariant of X maybe nontrivial. We can also
take X' with b;(X’) > 0, for example X’ = T%. Here we will list only the
results, v:rhich is restatement of Theorem 3, and we postpone the proofs to the

next two chapters.
Theorem 11 BF(T*#T*,T) #£ 0 for any Spin structure on TA4T.

Theorem 12 LetI'x: be a Spin® structure induced by a almost complez struc-
ture on 4-manifold X', Assume b (X') = 0, b,(X") = 3 (mod 4), and
SW{(X'",Tx) is odd, Let I'za be a Spin structure on T*. Then

BF(T'#X' TopaitTyr) 0.

By [4], X' can be any complex surface with & (X’) = 0 and b, (X' ) = 3 (mod

4). Another special case is,

19




B
b

Corollary 13 Let X' be a homotopy K3, then BF(T*#X",T") £ 0 for any
Spin structure T' on T4 X

¥

Proof. By Theorem 12 and [16]. =
For the connected sums in Theorem 11 and Theorem 12, it is a fundamental
fact from [17] or [22] that their Seiberg-Witten invariants vanish. So those two

theorems answered the second question.

Remark 14 Bauer also generalized Proposition 7 to the case by —b—1<0
[2]. His method involved a modification of the definition of the Baver-Furuta

nvariant.




2

Chapter 4

The ¢-invariant and the nontriviality of the

Bauer—Furuta invariant

No matter whether X' = T or satisfies the conditions of Theorem 12, the
corresponding Seiberg-Witten moduli spaces for X in those two theorems are
1-dimensional. The homomorphism £ in theorem 9 is not usefql for detecting
the nontriviality of the Bauer-Furuta invariant, But it is known by [1] that the
Bauer—Furuta invariant of K3#K3, a simply connected analog, is a nontrivial
torsion class in Zy. In [6], this Zy torsion class has been described explicitly
as the d-invariant. The §-invariant is convenient in the sense that though it is
defined for S'-maps between spheres, it can be generalized to $*-maps from a
Thom space to a sphere. In other words, we want to define the §-invariant as

a homomorphism
§ : T (Pic (T X" indD) — Zy

which will play the role of ¢. This turns out to be not quite accurate because

unlike the case of K3#K3 the first homology group of X = T*#X' hag an
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effect. We will define the homomorphism as

T (Pic®(X);ind D) — Zo @ Hs, (mcﬂ(xg; Z)="Tp S TH,
so that restricted to the subgroup which is mappeid to 0 in the factor of Z%,
it coincides with 4.

We first assume X is any Spin manifold and Ty is a Spin structure, with
7(X) =0, b4(X) > 1, and b, — b, = 2. By the proof of Theorem 9, we need
only to define the homomorphism for the relative stable S'-cohomotopy group
{(TV!,TV'), (V+,0%)} g1 with V and V" defined in definition 6. Take any
class in it with a representative f : (TV/,TV'S") — (V* *+). Then it can
be generically perturbed so that f~(0) is an oriented smooth 2-dimensional
submanifold in V/\V"5" with a free $'-action. The quotient F7+(0}/5" can be
seen as the zero set of the section f of the bundle £ = (VAVS )% g1 V induced
by f. Assume the homology class of f~(0)/S* in (V/\V’5')/5" is zero. Then
there is an immersion 4, : D — (V\V’S')/S! from a compact orientable
surface D with boundary to (V/\V*3')/$" so that the image of the boundary
0D is f=1(0)/S". Let v(D) be the normal bundle of D). The restriction of
v(D) to D has a canonical isomorphism v(D) ® R = v(6D) and the normal
bundle v{f~1(0)/5") is isomorphic to the restriction of & to 8D. So we get an
isomorphism ay : v(D)lspp ® R — E|ap. The triple [v(D) S R, £|p, ay] gives
an element in the relative KO-group KO(D, AD). Define

(4, D) = (wal[v(D) @ R, €lo, ]}, [D, D] ) € 2,
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where <,> denotes the obvious pairing.

Lemma 15 §(f, D) depends only on the homotopy class of f.
¥

Proof. First §(f, D) is not changed by suspensions, i.e.
5(,D) = 8(f Aid, D),

where the right side is defined for £ Aid : TV’ A Vit = VA Vit. The sphere
Vi" = (C™ @ R™)* has the natural S'-action. The normal bundle V(D) in
(TV! ATV AVEFS')) /ST can be naturally identified as the direct sum
of the normal bundle v(D) in (I'V\TV'S')/S' | the trivial real bundle R™
and the bundle D' xg €™ where D' is the preimage of D in TV\TV*"
Le. D'/S* = D. The corresponding &€ for 1’ has a similar decomposition. So
agnid = of @ td. Then wy's for the two triples are the same and §(f, D) =
§(f A id, D).

Let f) and f> be two maps in the same homotopy class in
{(TV', TV, (V*,01) ).

Assume they are perturbed generically so that 0 is a regular value for both
f1 and fo. We can enlarge V by suspension so that there is an S1-homotopy
he (TV,TVS Y x I — (V*,0%) between f; and f,. We can also assume 0 is
a regular value for h. Then h='(0}/S* € (TV\TV'S')/S" x I is & cobordism
between f'(0)/S! and f;7'(0)/S%. Its projection to Pic?(X) gives a homol-
0gy equivalence between the projections of f;71(0)/S™ and f; (0)/S*, Because
(TV\TV*S")/S" is a bundle over Pic®(X) with simply connected fibers, that
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the homology class of f~1(0)/8 is 0 is equivalent to that the homology class of |
its projection to Pic®(X) is 0. Therefore if one of 5(Dy, f1) and 6(Dg, fo) is de- ||
fined then so is the other. The union D;UA™(0)U.D; gives an oriented surface |

with corners Dy and 8D;. Deform Dy and D; to be immersed submanifolds §

in the thickening (TV/\TV"")/S! x [~1,0] and (TVATV'$")/8! x [1,2] of
(IVATV™SY) /S % 0 and (TV\TV'S")/S" x 0 respectively, then we will make
N = D; Uh™1(0)/5' U D, smooth. Compare §; and &,

5(f1, D1) = 82, D) = (wa(o(V), [N]) = {wa((€ X [~1,2]) |, [¥]),

Here on h='(0)/S™ we have a canonical bundle isomorphism inducing «s, and
oy, fort =0and 1,
an : v(N) = (ExT)|n.

Denote the maximal real and complex subspaces of V' by V¥ and VC as in
the proof of Theorem 9. Similarly, denote the maximal real and complex ;
subbundles of V' by V™ and V'*. Let a be the first chern class of the complex L
line bundle (V'\V*5") xgs C. Then |

<w2((€ x (=1, 2D, [N]> = dimg VC<a, [N}> (mod 2).

Let N’ be the 3-manifold so that N'/S' = N, Because I'x is a Spin

structure, similar to the argument for proving Theorem 9, the restriction of the
tangent bundle T'(V*){n» can be S'-equivariantly identified with N' x (U @R"M),
where U is a fiber of V/. The quotient N’ x¢ U is a bundle on N with
<w2(N’ X1 U), [N]) = dimg UC<a, [N]> (mod 2). The quotient T(N')/S" is i
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a bundle isomorphic to TN @ R on N which satisfies ws = 0. So

(walo@), 1) = (uno(V)/8"), V1)
= (s x5 U,[V]) = {wa(T(N') /8", [N]) |
= dimg U‘C<a, [N]> (mod 2). "

By the Atiyah-Singer index theorem and the condition 7(X) = 0, dimg U — !
dime V€ is zero. So

5(f1, D1) = 6(f2, Ds) = 0.

@ So we can use J([f]) to denote §(f, D). Define the homomorphism

Pr : 7% (Pic®(X);ind D) — H,(Pic®(X); Z) = 71,

Pr : [f] —- the homology class of f~1(0).

Then ¢ is defined on ker Pr. It is easy to see that & satisfies the rule for a

homomorphism. Thus kerd is a subgroup of ker Pr and the quotient group

ﬁgﬁ (Pic®(X);1nd D)/ ker § is an extension of w

ﬁ;ﬁ (Pic®(X);ind D)/ ker Pr ¢ Z" f'??E_

by ker Pr /ker 6 C Z,. So 'ﬁbS"{ (Pic®(X);ind D)/ ker § is a subgroup of Zy ® 7%,

and the composition
Tat (Pic®(X);ind D) — 724 (Pic®(X); ind D)/ ker § < Zy @ 72"
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is what we desire. ki

Proposition 18 If a Spin manifold X satisfies 7(X) =0, ,(X) = b, (X} +2 -

and b (X) > 1, then we have a homomorphism
fg"'{ (P?,'c(J (X);ind D) — Znp @ AL

whose restriction to ker Pr coincides with §. ;

In fact the condition 7(X) = 0 is not needed as long as the virtual dimen-

sion of the Seiberg—Witten moduli space is 1. So we have similarly, '

Proposition 17 If a Spin manifold X satisfies by (X) > b:(X) + 1, and the

Setberg-Witten moduli space for the Spin structure has dimension 1, then we 1

i have a homomorphism |
7o (Pic®(X); ind D) ~— Zy & 7

whose restriction to ker Pr coincides with §. i];‘
|

5

If X is not Spin, the first chern class ¢; (ind D) may not vanish and Atiyah— )
Singer index may not be even in general. Then § may not be well defined if
we change the representing map. But consider the case X = THEX', where

X' is an almost complex 4-manifold with b;(X') = 0, b, = 3 (mod 4). Let EJ

I'ra be a Spin structure on 74, and I'xs be induced from the almost complex
structure. Then the Atiyah-Singer index is even from the index formula, "

c1(ind D) vanishes because b;(X") = 0, and the virtual dimension of the moduli fﬁﬂi

space for I'x = I'pa# Ty ig 1. This implies that & is well-defined. 1
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Proposition 18 Let X = T*#X’, where X' is an almost complex 4-manifold
with by = 0, by =3 (mod 4). Let T'x = D'pa#lx:. Then we have a homomor-
phism

¥

Tt (Pic®(X);ind D) — Zy @ Z
which restriction to ker Pr coincides with §.

In [6], it is shown J maps the Bauer-Furuta invariant of a homotopy
K3#K3 with the Spin structure to 1 € Zy. Here we see the homomorphism
constructed above has a similar property. When there is no confusion, we will
simply denote the homomorphisms constructed above by 6.

The next theorem will be proved in Chapter 5.

Theorem 19 Let X = T'#X', where X' = T or an almost compler manifold
with by = 0 and by = 3 (mod 4). Let Ty be o Spin structure on T, 'y be
the Spin® structure on X’ from the almost complez structure which has an odd
Seiberg-Witten invariant. Then the Bauer—Furuta invariant for (X, Tra#Dx/)

will be mapped to a nontrivial torsion element by 6.

"Theorem 11 and 12 follow immediately from Theorem 19,




Chapter 5

The proof of Theorem 19

To use the product formula in [1] (i.e. Theorem 8 ) to prove Theorem 19, we
need to find a good representing map for the Bauer-Furuta invariant of the
“manifold X’ oceuring in the connected sum.

If X' =74 we can use the special geometric properties of 7% to prove the

lemma below.

Lemma 20 Let Ty« be a Spin structure on T4, The Bauer-Puruta invariant

can be represented by

pr H — HoR?,
ho= (L(R),Q(R)),
where W' is a C? bundle over Pic®(T") with ¢; =0 and ¢, = +1, and H is o
trivial quarternionic line bundle. The complez bundle homomorphism L is an

isomorphism ezcept at one fiber, where it is 0. We can choose g chart around

the fiber of ' where I vanishes sueh that locally I, can be represented as

L:R'@H — H, La, h) = c(a)h,
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where T corresponds to the fiber direction and R* corresponds to the zero
section, and ¢ : R* — M is a linear isomorphism. The restriction of the

quadratic map Q to that special fiber is nondegenergte,

Proof. Choose the standard flat metric on 74, For any Spin structure [rpa,
there is a unique product Spin® connection A, which will be our base con-
nection. Denote the decomposition of the unperturbed Seiberg—Witten map
ie. 7 =20) by sw=1[+e¢, in which { is linear Fredholm bundle map and ¢
contains all the quadratic terms. The Fredholm linear operator I can be de-
composed as the direct sum of Dirac operators D4 parametrized by Pic®(T4)
and an injective map d* © prygm @ dT which maps Li (19T R)) onto
Li_o(iQ(T*/R; R) @ tHY (T R) @4 HY (T4 R)L). Using the Weitzenbock for-
mula, it is easy to see that D, are all isomorphisms except at Ag when both
kernel and cokernel are the spaces of flat spinors, with complex dimension 2,
Denote the Dirac operators parametrized by Pic®(X) by

D:TT =TI~

7

where

I'" = (Ag+ kerd) x L2_(D(W™1)) /Gy

and

['™ = (Ao +kerd) x L2 (T(W™))/Gq

are bundles over Pic®(T*). We can find a complex 2-dimensional trivial sub-
bundle F of I'" containing ker D% at Ag. Then the preimage D~1(H) will

be a complex 2-dimensional subbundle H, such that H' — H gives the index
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bundle of D. From [21], we know ¢, (') = 0 and co(H') = +1. We can choose

the complements of H' and H, so that D can be presented as a matrix

L 0
0 D

in which 7 is the restriction of D to H' and D’ is an isomorphism. For any
¢ € ker Dy, 0(¢) is a flat (therefore harmonic) self-dual 2-form. Let Q : B —
H*(T*R) = R® be a fiberwise quadratic map which extends o(-) on ker D Ao

By the Weitzenbock formula, the moduli space for the unperturbed Seiberg--
Witten equation is the O-section of the bundle A. So the Seiberg—~Witten equa-
tion defines the same equivariant stable cohomotopy class as its restriction to
the pair

(B,0B) — (H, H\{0}),

where H is the fiber of C, and B is any bounded disk bundle around the zero
section in A, The disk bundle B can be defined by

llz1]] < 71, {[22]| < 1o, for any @ = @y + @, with 2, € I, and z, € H',

Assume ry << r, and 7| is very small. Consider the linear homotopy with

tel

L+{(1—8)-c+t Q).

Then for any z € 9B, the quadratic terms are dominated by either the linear
terms or the nondegenerate quadratic term o(-) on ker D,,. So the homotopy

above stays inside the space of the maps from (B,88) to (I, H\{0}). Taking
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¢t =1 gives a representing map for BF(T*,T'p4), which is the direct sum of an [“
isomorphism and p = (L, Q) : H' — H®R®. So p represents BF (T4, ')
for a suitable homology orientation. ,

We only need to find L that is of the required form around the fiber over
Ag. We can modify our definition of the Seiberg-Witten map and use the
harmonic connections Ag -+ ¢H*(T*; R) instead of Ag 1 kerd, with G replaced
by its harmonic subgroup. We still get the same Seiberg-Witten map. Then

ker Dy, and ker Iy naturally deline quarternionic line bundles around A,.

For any A € Ag -+ iH'(T%;R), and h € ker Day, Dah = ah € ker % . We

define the subbundles H and H' such that they extend the bundle ker Dy, and
ker D, respectively. Then L will satisfy the required property around A,. m
We can also add a constant C' € R? to g without changing its cohomotopy
class. Then the preimage 1~1(0) will be a circle contained in the fiber where
L vanishes. Also we can see from the proof, () can be chosen sﬁch that in the
local chart described in the lemma, @ is constant in the direction of R?,
Proof. ( The proof of Theorem 19 when X’ = T4, ) Now we can consider the
Bauer-Furuta invariant of T4#T*. Assume the Spin structure I' is induced
by Spin structures Ty and I'; on each component. If f; and fo are maps
representing the corresponding Bauer—Furuta invariants given by lemma 20,
then fy % f; represents BF(T*#1*,I"). The preimage (f1 x f2)~1(0) is a 2-torus

in one fiber, so its projection to Pic’(T) is a point. We have 8({[fi] A [f2]) €

Zy. The quotient {f; x fy)~'(0)/S* bounds a surface in the quotient of the

punctured fiber. Using the local chart around that fiber, we can see f1 X fe
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factors as
R“@H@R‘*@HLH@H@H@HiE}@RS@H@RS,

in which

F(ay, b, ag, hy) = (c1(a1)ha, by, ca(as)hg, hg))

and

G(Cl (al)hl, hl, Cg(&g)hz, hz)) = (cl(al)hl, Q] (hl) + O, Cg(ag)hz, Qg(hg) + O)

"The map F' maps a neighborhood of 0 @ H @ 0 ¢ H to a cone neighborhood
of it and restriction of F to 0 Hep 0@ H is identity. From the definition of
d, it is only relevant to an S'-equivariant neighborhood of the 3-dimensional
Sl-manifold (f; < f)™(0) € 0®H® 0 & H bounds. So §([f1] ATfa]) = ().
From [6], we know §([G)) =1 € Z,. =

If X’ is the manifold in Theorem 12, then we can also find a good map to

represent BF(X',1'x:}) in W?{(Pz’co(T“); ind D) ® Z.

Lemma 21 If X’ satisfies by = 0, by = 3 (mod 4), the Seiberg—Witten moduli
space for the Spin® structure I'x: is 0-dimensional, and SW(X',Tx:) is odd,
then in ﬁbS'E(Pz'co(T‘l); ind D) ® Zy, BF(X',T'x:) can be represented by the one

point compactification of the composition
(C2n+2 _— C2 o Rtin S R4n+3

in which the second is the direct sum of a nondegenerate quadratic map Q from
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C? to R® and the identity map on R, the first is identity map by forgetting
the S'-action on €. (We can also add a constant term C to Q so that the

preimage of 0 € R* will be a circle.)

L)

Proof. From [1] or [3], BF(X',T'x/) = SW(X',T'x.)[s], where [x] is the gen-
erator of the equivariant stable homotopy group. If and only if the coefficient
n is odd, then the class n[«| can be nonequivariantly represented by the Hopf
map. So the map constructed in Lemma 21 represents n[x] With an odd n,
and in Tyt (Pic®(T*);ind D) ® Zs it belongs to the same clags as BF(X' T'x).
|
Proof. { Completion of the proof of Theorem 19) If we choose generic maps f!
#  and fj representing BF(T*, ') and BF(X',T'x:) such that £/7'(0) is a finite
set of S'-orbits for each ¢ = 1 and 2. Then the projection of {(f1 x 5710} to
Pic® (T4)ﬁ'is a finite set of points. By the product formula in [1], i.e. Theorem

8, and the definition of §, the image

SBF(T X', Tra#Tx)) = S([f] x £2))

is a torsion class in Z2. To calculate §( BF(T"# X', Trua#['x/)), we may assume
fi and f} are maps constructed in Lemma 20 and Lemma 21 respectively, So
we can repeat the same steps as in the case X' = T to reduce the calculation of
S(BE(T*#+X", Ira#T'x/)) to the calculation of 6([f; X f]), where f, : C? — R3
is defined by fi(q) = Q(g) + C, where @ is nondegenerate quadratic and ¢ is

non-zero constant, and fp : C*+ . R34 a5 in Lemma 21,

f2 C (2 D C?n W_d+ 2 @ R4n fl_@ifl R4n+3.
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So fi X fy is 8‘1~equivaria,ntly the product of identity map from C2" to R4"
and fi x fi. We know from [6], 8([f; x fil) = 1 € Zy. Let D be a surface in
(C€\{0})/8", which boundary is (f; x f1)71(0). Lef D be the 3-dimensional
S*-manifold in C*\{0} with quoticnt D/S" = D. Then the normal bundle of
D in C*@C? is $'-isomorphic to the direct sum of the normal bundle of D in
€ and the product bundle D x C2* with natural S'-action on both factors. So
the normal bundle of D in ((C*@&C2*)\{0})/5" is isomorphic to the direct sum
of the normal bundle of D in (C*\{0})/S! and D xg C2", Restricted to the
boundary of D, the isomorphism & x s, identifies the normal bundle of D in
(CN\{0})/S" with & =D x g1 R® and D x 5 C2" with D x g1 R1™, So the relative
KO-group element defined for fi X fo in Chapter 4 is a sum of the relative
K O-group element for f; x f; and an even multiple of the relative KO-~group
element [Dx g1 C, Dx g1 IR? which w, is 0. So S(fAixfo]) =8([Aixf]) =1€ 7,
We have finished the proof of Theorem 19. m

Here we present a direct proof of the nontriviality of 6([f; x f3]}. In fact it
also follows from the fact that [fi] A [f3] is nonequivariantly the square of the

Hopf map so it is not trivial stable class, and 4§ is bijective from lemma 12 of

[6].
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Chapter 6

The application on calculating the Yamabe

invariant

By Theorem 11 and 12, we can give an alternative proof that the 4-manifolds
X = T4 X" which satisfy the conditions in Theorem 11 or 12 have no positive

scalar curvature metrics.

Corollary 22 Let X' = T*, or a 4-manifold satisfying by = 0, b.. = 3 (mod
4), and with an almost complex structure Jor which the Seiberg—Witten invari-
ant is odd. Let N be any 4-manifold with by = 0. Then there are no positive

scalar curvature melrics on T'#X'#N.

Proof. The Bauer Furuta invariant for T4 X" is not trivial from Theorem 11
and 12. Neither for T4# X4t N from corollary 9 of [13]. So there are irreducible
solutions for the Seiberg—Witten equation with a small generic perturbation. A
standard argument with the Weitzenbéck formula proves there are no positive

scalar curvature metrics on those 4-manifolds. m
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Similar to [13], we can calculate the Yamabe invariant of those 4-manifolds

X =T*X'#N. Recall the Yamabe invariant for a manifold X is defined as

¥

Y(X) = sup slig'f)" Vollt—min / Sqtlitg,
¥

where the supremum is for all the conformal classes v = [go] = {ugo | u €

C*(X), u> 0}

Theorem 238 [et X' = T* or a minimal complex surface satisfying by = 0,
by =3 (mod 4). Let N be any 4~manifold with by. = 0 whose Yamabe tnvariant

Y(N) is non-negative. Then

Y(T*#X'HN) = —1/82m22( X1).

Proof. By Corollary 22, there is no positive scalar curvature on THEX' 4N,

S0
def

L(T'X"#N) 2 inf f sadpg = Y (THX4N)?,

We need only to prove I,(T"#X'#N) = 32x2c2(X").

First we can use the method in [10] and [{13] to give the estimate f skdu, >
32m%c2(X’) for all metrics g. For simplicity, assume X" is the minimal complex
surface with b = 0 and by = 3 (mod 4). The case X’ = T* can be proved
similarly using Theorem 11. From corollary 8 in [13], Theorem 12, and [4], The
Bauer—Furuta invariants of T4#X'#N is not trivial. The Spin® structures for
which the Bauer-Furuta invariant is not zero depend on b_(N). Ifb_(N) =0,
for example N = kS' x S%, we need only the Spin® structure such that its

restrictions on 7% and N are the standard Spin structures and its restriction on
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X' is given by the complex structure. For any metrics g, the Seiberg~Witten
equation with small generic perturbation will have solution. So we have [10]
s l'!l

/sgd,ug > 32r%(X).

If 6_(N) > 0, then I'y, the restriction of the Spin® structure to N satisfies

cf(I'v) = —b_(N). So we have 2-() ways to choose 'y to get a nontrivial

Bauer-Furuta invariant on T4 X4 N , L.e. I'y can be chosen from
ter eyt ey,

o Where {e1, es,...,ex} is the basis so that the intersection form of N is given by

k(—1). We have the estimate

/_sgd,ug > 32nic)?

where ¢ - ¢; = ¢; is decomposition of the first chern class of the Spin®

structure, according to the polarization by the metric. We have

Il

ot = (¢ (Tm)+f (X') +cf ()
= (el (X) +¢f (Tw))?

> AX') + 2 (X)ef ().

Similar to [10] or {13], we can choose a T'y so that ¢l (X)ef (Ty) > 0. So we

still have [ s du, > 327263 (X).




By [18]
L{T"HX'#NY < L(T") + L(N) + I,(X") = L(N) + (X",
By the assumption Y (N) > 0, so I(N} =0 From= [12] or [11],
L(X") = 32723 (X7).

S0 L(T*H#X'4#N) = 32%c(X') and Y (TA#X'#N) = —/32023(X").
There are some other applications of Theorem 11 and 12. For example, we
may calculate the invariant 7, ag [13], or get the nonexistence of the Finstein
- metrics on T4#X#N, provided with some condition on N,
Before the end of this chapter, we would like to mention, that a similar
construction may be possible for manifolds #3_ X, and #24 ,X; in which at

least one of X; is 7 and the others satisfies the conditions for X’ in Theorem

19. So we can conjecture

Conjecture 24 Let X = #3_ X, or X = #1 1 X;, in which at least one of X;
is T* and the others satisfies the conditions for X' in Theorem 19, then the

Bauer—Furuta invariant of X is not trivial.
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Chapter 7

The Ruberman invariant

In this chapter, we will introduce the work of Ruberman on the l-parameter
Seiberg-Witten equation and his invariant defined for a self-diffeomorphism of
4-manifold,

Let X be a 4-manifold, satisfying b, (X) > 2. Let I'x be a Spin® structure
on X, Déﬁne

1 {(9,7) € Met(X) x QX(2)| %57 = ).

Then for each h € II, the Seiberg-Witten equation defines a moduli space
M(X,T;h). Similarly for a path b : T — II, we can define the I-parameter

Seiberg-Witten moduli space to be the union
M(X, T h) = Uyt M(X, T Bt).

The virtual dimension of the 1-parameter Seiberg-Witten moduli space satis-

fies
dim M(X,1'; h) = dim M(X, T, hy) + 1
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for any t € I. If for each ¢, the virtual dimension dim M(X, T k) = —1, we
can choose a generic smooth path %, such that M (X, he) =0, for £ = 0 and
1, and M(X, T; k) is transversely cut by the Seiberg-Witten equation (which
will be called the I-parameter Seiberg-Witten equation in the case we have the
parameter ¢) for the path A and contains only finite points. Ruberman defined
SW(X,T;h) to be the algebraic count of the points in M(X,I'; k). Then by
[19] SW(X,T; 1) only depends on ho and hy € I1. So SW(X,T"; ) can also be
denoted by SW(X,T'; hg, hi). It is easy to see:

Lemma 25 /20] Suppose bi. > 2, and gq, g1 are generic Riemannian, metrics
wn the same component of PSC(X). Let h; = (g, m) €, i =0, 1, be generic.
Then SW(X,T; ho, hy) = 0 i, 1 =0 and 1, are sufficiently smail,

Let f: X — X bea diffeomorphism which keeps the homology orientation.
Denote the orbit of I'y in the set of all Spin® structures by the action of o,
n € Z, by O(f,I'x).

Definition 26 [20] Suppose the Seiberg- Witten moduli space for the Spin®
structure 'y has virtual dimension —1. For an arbitrary generic point hy € I,
define

SWulf, X,Tx)= > SW(X,I"; ho, f*hy).

F'Go(fir'x)
The right side is in fact a finite sum and it does not depend on Ay [20]. We
will call SWo,(f, X, Tx) the Ruberman invariant. If we drop the condition

that f keeps the homology ortentation, Wy (f, X, T'x) is still well defined in
Zs.
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One of the main results Ruberman proved in [20] is the nontriviality of this

invariant for the diffeornorphism he constructed.

First consider N = CH”Z#@Pz#@F‘J. Let .S, Ewand Es be the embedded
2-spheres with self square 1, =1, —1in each copy of CPP* or TF-. Let ¥y = 84+
Ei - By be spheres with squares —1 in the indicated classes. For 5] = Y, let p¥
be the diffeomorphism of N which induces the reflection p)’(z) = 2 + 2(z- 3%
on Hy(N). Let the diffeomorphism p = p*+ o p™~ There is & Spin® structure
I'y on N with ¢ Tn)=54¢; + ez where s, ¢; and ey are the Poincars duals
of S, Fy and £,

Then take any almost complex manifold X with nontrivial Seiberg-Witten
invariant for the almost complex structure. Assume b1(X) > 1. Consider the
manifold Z = X#N with Spin® structure I'y #1'y, which restricts to [ x and
I'yon X and N respectively. Consider the diffeomorphism f == td#p on Z,

Ruberman proved,
Theorem 27 20] SW o (f, 2, Px#Dy) = SW(X,I'x).

We can take X to be a hypersurface in CIP® with a high degree, Then by
[14] and [7] Z = X #N =2 mCP*#nCP has a positive scalar curvature metric.

By Lemma 25, we get the disconnectedness of PSC(2).
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Chapter 8

The S'-equivariant stable cohomotopy class of

the 1-parameter Seiberg—-Witten map

Now we will use Bauer—Furuta’s method [3] to give a cohomotopy refinement
of Ruberman work. |

Let I'x be a fixed Spinc structure on X. For each smooth path A, with
hy = (gs,m:), t € I, in 11, we can define 5 1 A, — C; and the Seiberg-Witten
map swy : A, — C,. We choose the same Sobley completions for all the ¢ € 1.
Then UerA; and Ui C, are Hilbert bundles over Pic®(X) x I. We denote
Ar = Uer Ay, Cr = Upe Gy, Ay = User Ay, and &; = UsesCe. Define

%I:AI—)C[

to be the map whose restrictions to each let is sw, : u»zlvt — @; Denote its

quotient by the pointed gauge group Gy by

SWy .A_I — CI.
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It is easy to see sw; is a bundle map which is equivariant under the action of
G/Gy = S,

‘The next lemma is proved below, ’

Lemma 28 If swi'(0) = swi(0) = @, then sw; defines a stable homotopy
class in myt "' (Pic®(X); ind D).

Denote the fibers of Ay and C; by [’ and H. Then sw; can be decomposed
as swr = {+c, where [ i3 a linear Fredholm bundle map and ¢ is compact bundle
map. We can trivialize the Hilbert bundie ¢; = H (Pic®(X} x I). Denote
the projection to the fiber by prer : Cf - H. By lemma 2.5 of [3], there
exists a finite dimensional S'-subspace V' C H such that the following holds:

1. for each y € Pic®(X ) x I, the subspace V/, together with the image of
prgel, : H; — H, spans the Hilbert space H , where [, is the restriction of [
at y. Let Fi(V) =V x (Pic®(X) x I) C Cy and (V) = (pry o‘l)“l(V). Then
(V) is a bundle on Pic%(X) x I and A = Ey(V) = F1(V) is the virtual index
bundle ind {.

2. For any S'-linear subspace W = W'+ V C H with W" C V7L, the
restricted map uf, : (pry o swi)| fowy : TFo(W) — H* misses the unit sphere
S1{W) centered at 0,

3. For any S'-subspace W there is a canonical St-equivariant homotopy
equivalence pyy : HH\S1 (W) — W+. Then the maps pw o u, and id A (py o
147) are S'-homotopic as pointed maps.

These properties set up the machine to produce an S'-equivariant stable
cohomotopy class associated to swy. But they are not complete. The extra,

property for ¢t = 0 and 1 gives the following refinement,
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Lemma 29 There exist o finite dimensional St-subspace V. C H and con-

stants v and v, 0 < o' <, such that the following hold:

1. For every y € Pic®(X) x I, the subspace V, together with the image of
pra o ly, spans the Hilbert space H.

2. For any finite dimensional S*-subspace W = W' -V with W' ¢ Vv
the one point compactification of the restricted map pfy = (pry o sw;)|f.§0(W) :
THR(W) — H' misses the radius v sphere S (W) centered at 0.

J. There is o canonical S'-homotopy equivalence py, : H NS (W) —
W, The maps pw o iy and id A (py, o pi) are St-homotopic as pointed
maps.

4. Fort =0 and 1, the image of pry o sw;, misses the radius v disk centered
at 0. The homotopy constructed in & restricted to t = 0 and 1 also have images

massing 0.

Proof. ( The proof of Lemma 28.) Assume Lemma 29. Then the 1-parameter

Seiberg~-Witten map sw; defines an S'-equivariant map
(TE(V), TE(Vimos)) — (VF,VH\{0}) = (V,67).

The index bundle parametrized on Pic®(X) x I is induced by indl on Pic®(X).
So we can trivialize Fy(V') in the direction of I as (V) =V’ x I. Hence the

l-parameter Seiberg-~Witten map sw; defines a Sl-equivariant map
(TV X LTV % {0,1}) = (TV' A 8%, ) — (V,0%),

in which z; is the base point at infinity. Its stable cohomotopy class is a class
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WgJ{ml(Pz'cﬂ(X); ind D),

which is independent of the choice of V m '

Proof. ( The proof of Lemma 29.) By lemma 2.5 of 3], the first property can
be satisfied.

It is also easy to prove the first statement in property 4. For example,
restricted to £ = 0, priy o swy : Ay — H can be decomposed as Iy + ¢
with [y linear Iredholm and ¢y compact. Assume there are a sequence of
points 2, € Ay such that lim,_, pry o swe(z,) = 0, then by the boundedness
condition, x, is a bounded sequence. Denote the orthogonal decomposition
Tn = &y, + @, with @ € kerly and 2/, € (kerly)". Passing to a subsequence
of z,,, we can assume the projection of z,, to Pic®(X) is convergent, co{zn) is

convergent and x;, is convergent. Then zih converges because

lo(ay) = (lo + co)(mn) — co(wa) = pry o swolw,) — co{n)

is convergent. Let z = limz, then prg o swo(z) = 0. This is a contradiction
with the assumption.

Assume for ¢ = 0 and 1 the images of pry o sw; will miss the radius R
disk around the origin. The maps pw i can be defined as r' pw(r"lj where
pw @ HP\S (W) - W+ is a homotopy equivariance. The map py can be
the one constructed in [3]. But in fact we have more freedom on choosing it.
For example, let v = av; + v, € H\S{(W), v, € S (W), a>0and v, € W,
pw(v) = 00 if @ > 1 and py(v) = vy /(1 — a)if @ < 1. It is easy to see there

is a constant C' > 4, which is independent of W, so that for any v € H with
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[vl] > C then ||spw (v) + (1 — s)v|| > 3 for all s € I. So for any v satisfying

[l > Cr', |Ispwe(v) + (1 — s)vl| > 3r' for all s & 1.

Take r = R/C and ' = /2 then property 2 and,property 3 can be satisfied
following a similar argument in the proofs of lemma 2.3 and lemma 2.5 in [3],
So we ounly need to prove that the second statement in property 4 can be
satisfied by choosing a suitable V.

Let D' be a disk bundle in .4; containing the preimage (priosw;) ™ (Br(0))
and assume V is large enough so that the distance between c(D') and V is
less than '/4. Similar to the proofs of lemma 2.3 and lemma 2.5 in (3], the

homotopy is constructed first on D’ x [0, 3], i.e. h: I’ x [0,8] = HA\S. (W),
he =14 (L~ sYidy + 5 pry)oc, for 0 < s < 1,

he =1+4pryoco((2— s)idg + (s — Dprawy), for 1 < s < 2,

and

hs =pryvol+((3 — s)pry + (8 —=2)pym)o I+ e) O PrEg(vy,

for 2 € s < 3. Extend A to the complement of D' N W’ in W', which will
be mapped to H*\B, (W) Then (pp o H )|f,;0(W) is the homotopy between
pwip © i and id A (pvi o uih), By the contraction py,, H\B. (W) will
be mapped to WH\{0}. So we need only to track the homotopy before the

extension for the preimage of zero restricted to ¢ = 0 and t=1.

Restricted to t = 0 and ¢ = 1, we will see & defined on D' x [0, 8] misses




B, in H. For v € D' and s € [0,1],

Ihs()l) = lswi(w)]) - disi(V; (D) > R—r'fa > .
For s € (2, 3],

1) = [[(3 = 8)pry + (s = 2)pvyr) o (1 + €) 0 praygy) (V)]
> (B s)id+ (s = 2pvyr) o (1 +¢) 0 priyn ()|

—(3 — 8)dist(V, c(D").

Because ({+c)oprp,vy(v) has norm greater than R > Cr', and dist(V,e(D')) <
r'/4 so |{hs{(v)]| > 3r' —r' /A =p. For s € [1,2], set v = vy + vy, vy € Fp(V)
and vy € Fo(V*). If [[{(vg)[| > 7 then ||hy(v)]) > {i{va)]| > 7. Otherwise

1Bs(o)Il 2 [i(v) + clon + (2 = s)v3)|| — dist(V, ¢(D"))
Z I+ e)on+ (2 = s)vall = [|i((s — 1)us)|] — /4

> R—r—r'fd>r

S0 the homotopy restricted to ¢ = 0 and 1 will miss the radius r disk in HT,
and so it has image in HH\B.(W*), w
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Chapter 9

An cohomotopy refined Ruberman invariant

Let f be a diffeomorphism on the 4-manifold X. Assume the orbit O(f,Tx) of
the Spin® structures I x is infinite. Choose a Riemannian metric gon X, and
a path of metrics ¢, for ¢ ¢ I, connecting ¢ and J*9,1e. gy =g and g1 = f*g.
Then we have a path of metrics g for t € R defined by 9. = f*g,_, for
ten,n + 1], n € Z. Denote by sug : Ar — Cg the l-parameier unperturbed
Seiberg-Witten map (le.;p=0,teR ) for Tx and the path g tER. (If

the perturbations 7, = 0, then g, can also be seen as the path (g;,0) in II. )
Lemma 30 The preimages sw; ' (0) are empty whent >> 0 ort << 0.

See [20] for the proof.

By Lemma 28 and Lemma 30, we can define a homotopy class [swg] €
Trg.-’f_l(P'iCD(X); ind D), by restricting ¢ & [to, t1], where £; << 0 and t1 >> 0.
‘The homotopy class [swr] will not depend on the choice of ¢y and ¢,. It is
also independent of the metric g and the path g, between g and f*g. The
proof is very similar to the one given in [20]. If ¢’ is another metric and g; is

a path between ¢’ and f*¢’, then there is & 2-parameter family of metrics Gs,s
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connecting g; and g; for ¢, s € I » and we can use f to generate a 2-parameter
family of metrics 9t,s connecting g, and ¢f for s € I, t € R. We can prove
0 will not be mapped to by the 2-parameter Seiberg-Witten map for g, if
t>>0ort<<0. Soit defines an element in Tg oy -I(P’LCD(X) X I;ind D). The
restriction to either side gives the corresponding homotopy element [swy] and
[swy]. This imply the identification between [swy] for different g and Gt

In the case b (X) > b,(X)+2 and the virtual dimension of the I-parameter

moduli space

clx) = 7(X)

U
4= 4

b (X) 4+ by (X) =0,
we may define a homomorphism
t: 7rb+ Y Pic® (X);ind D) — Z

by algebraically counting the S'-orbits in the preimage of 0 for a generic map
in the stable cohomotopy class. Then ¢ will map [swg] to the algebraic count
of the points in the 1-parameter Seiberg-Witten moduli space, This coincides
with the Ruberman invariant, if f preserves the homology orientation.

S0 we have

Theorem 31 Let X be o smooth closed oriented and homology-oriented 4-
manifold with o Spin® structure I'x, and f be a diffeomorphism on X which
has an infinite orbit O(f, I'x). Then we can define o cohomotopy refined
invariant [swg) € wgt"l(Pz'co(X);ind D). If f preserves the homology ori-

entation of X, bi(X) > bi(X) + 2, and the virtual dimension of the I1-
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parameter moduli spa

ce 1s 0, then the image of [swg)]

under the homomorphism

t: W;*{_I(PicU(X );ind DY — Z 4s the Ruberman invariant.

We will call [sug]
it by BFtot(Xa f; PX)

¥
the cohomotopy refined Ruberman invariant, and denote
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Chapter 10

The nontriviality of the refined Ruberman

invariant

From Theorem 28, there arc examples of manifold Z with Spin® structure
I'y and dlffeomorphlsm f on Z such that SWiat(Z, f,U'z) # 0. If Z satisfies
by > b +2, then from Theorem 31, BFww(Z, f,T'z) #0.

To get more examples with nontrivial cohomotopy refined Ruberman in-
variants, we start by considering the manifold N — C]P’g#E@z, with the Spinc

structure and diffeomorphism p defined in Chapter 7. We have

Lemma 32 Under o suitable homology orientation of N, BFu(N, p, I'y) =
[id] € #, (pt; C0).

Proof. As by(N) =1 and b, (N) = 0, the homology orientation of N is an
orientation of H+(N;R). So for each metric g¢ in the path of metrics on N, it

determines a unique harmonic self-dual 2-form w,. Define g function

f(t):[wt/\cl(rw):[thA(s+e1+e2).
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If g; is generated by the diffeomorphism #, by the wall-crossing property proved
by Ruberman in [20], we can choose the homology orientation so that f(t) < 0
when ¢ << 0 and f (t) > 0 when ¢ >> 0. The reason is the following. For any

metric g;, the cohomotopy class of wg 18 in the component H+ of
" ={ae H*N;R)|o? - 1}.

We can identify H* with the hyperbolic plane, then the action of f* on H+ is

& parabolic transformation. The set of & € H* such that

/a/\(s+el +eg) =0
N

is a geodesic passing through the only fixed point, of J* on the boundary of H+.
S0 each orbit generated by f** will cross this geodesic exactly once, ‘Therefore
the family w, will have an odd intersection with it. If f (t) < 0 when ¢ << 0
by choosing a suitable homology orientation, then f (t) > 0 when ¢ >> 0.
The family of forms wy gives a trivialization of line bundle on R with fiber
equal to the space of self-dual harmonic forms i *(N;R). Restricted to the

set of S'-fixed points, the 1-parameter Seiberg-Witten map is the bundle map

Rx L (N;R)) — 12 600w, R)/R @ idmd* @ il (N, R)

(t, a) L (d*a, d+a, - Prim d"‘FAo s f(t))

It can be deformed to a linear diffeomorphism (¢, a) = (d*a,d*q, t) by a homo-

topy which satisfies the boundedness condition. So it is in the stable homotopy
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class of [id]. Using lemma 3.8 of [3] and Atiyah-Singer index theoremn,

¥
BF (N, p,Ty) = [id] € 7o (pt; CO).

Let X be any closed smooth oriented manifold with a given Spin® structure
I'x,thenon Z = X #N, we have the diffeotnorphism wd#p and Spint structure
Uz =Tx#Ty. The homology orientation of Z ig induced by those for X , and
for N which iz determined by Lemma 32. Then we will prove an analog for

Ruberman’s Theorem 27,
Theorem 33 BF,,(Z, id#p, 'z} = BF(X,T'x).

The proof will be postponed to the next chapter.

From Theorem 33, we can see there are more examples in which v&}e can
get a nontrivial cohomotopy refined Ruberman invariant, For example, take
X = X'#X' where X' i3 a algebraic hypersurface in CP? with by = 3 (mod
4). Let I'ys be the Spin® structure induced by the complex structure. Then
SW{(X',I'x:) = £1 by [4]. By the product formula of Bauer in (1] or theorem
9, BF(X,I'x) # 0 for I'y, = Ix+#I"x:. Then BEw(Z,id#p,T'3) + 0 for Z =
X#N and Ty = I'x+#'y. The space of positive scalar curvature metrics on Z,
PSC(Z), is not empty by [14]. So it follows casily from BFy,(Z, id4p, Iz)#0
that PSC(Z) is disconnected. Though Z =~ mCP*4nTP” and the same state-
ment was proved by Ruberman (see Chapter 7 or [20]), it is still worthwhile
to point out that in Ruberman’s work the manifold Z = mCIP’2#n@2 with
disconnected PSC(Z) will have even m. But here we see examples with odd

m.
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Chapter 11

The proof of Theorem 33

To prove Theorem 33, we need to use the gluing technique in [1].

We first assume the manifolds satisfy &; = 0 for simplicity.

Let X be the disjoint union of 7, closed connected Riemannian 4-manifolds
Xi. On each component, there is g long neck N(L); = [-1, L] x 8% which
divides X; as X, = X, UXS, where X are closed submanifolds with common
boundary 0 x 93, The length 27 is a large number. For an even permutation
€ € Ap, let X€ be the manifold obtained from X by interchanging the positive
parts of its components, It has components Xf = X, 1 X;EZ.). The homology
orientation of X, i.e, the orientation of H+(Xx ;R) induces an orientation of
HH(X%R), ie. the homology orientation of X<, Assume fisa diffeomorphism
which acts on the long necks as identity, then it induces g diffeomorphism fe
on X¢ A Spin® structure T' on X also induces g Spin® structure I'¢ on X €,
Assume the orbit of Spin® structures O(f,I" is infinite, then the same is true

for O(f<,T). We want to prove the following product formula,
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Theorem 34 For any even permutalion e,

BEw(X, f,T) = BF (X¢, f,T°).

Let g be a Riemannian metric on X whose restrictions to the long necks
are the standard product metrics dz? + g5 where 9ss 18 the unit sphere metric
on % It induces a metric ¢¢ on X¢, Let g, t € I be a path of metrics from
g to f*g which satisfy the same broperty as g on the long necks, Then g,
t € I will be a path from 9° to f*g¢. Therefore by the actions of S and fe
respectively, they generate the paths of metrics ¢, and g, teER respectively,
which satisfy the same property as g on the long neck.

The Hilbert bundle Ar and Cg can be defined as the union of
A= L2 (DWW ) @i (X))

and

Co=L{ ,((W™) @ i1 (X) @40 (X)/R)

respectively, with & > 3 fixed. The Seiberg—Witten map for each ¢ is
Wi h,a) = (Dpgyat, Bif . — o(4), d*a).

For each ¢, the terms above are defined using the metric g,. The fixed smooth
base connection 4, is assumed to be flat on the long neck.
There is a path y¢ ; [ — SO(n) such that ¥¢(0) = 4d and Y1) = ¢,

which is identified with the permutation matrix (dies)) € SO (n). Choose a
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smooth function - ; [—L, L] x 8% —— [0, 1], which is constant on each spherical
slice, vanishes on [=L,~1] x $° and is identical to 1,0n |1, L] x 88,

For a section e of a bundle F over X , denote hy e; its restriction to the
bundle Ei’Xi- Assume the restrictions of £ to the long necks are identified
with a bundle F. Thep on the long neck, e can be identified as the section
(e, e, woen)T in DL £ Using this Identification, E| x* gives a bundle Fe
over X¢. A Smooth section e of & will induce smooth section e of ¢ such
that restricted to the long neck e¢ can bhe identified ag (¥079) e Applying
this gluing construction to forms ¢ and SpInors ¢, and using the path of metric

g, we get bundle isomorphisms V Ap —- Ag and V : gp— Ck, where Ap

“and C§ denote the corresponding Ay and Cy for Xe. Denote the 1-parameter

Seiberg-Witten map for X by swi, Then we have 3 diagram of bundle maps:

Ar B G

l !

P
in which the vertica] maps are V. This diagram does not commute. As Bauer
did in [1], we need to show it commutes up to homotopy within Fredholm
maps, 1.e. there ig 3 S'-homotopy H, from swr t0 V1o swg o V. guch that
H710) is empty if ¢ > Oort << 0. Asin [1] we cannot assume the homotopy
H, satisfies the strong boundedness condition, but if the long neck is stretched
long enough, it satisfies a weaker one, L.e. there exist constants U > () and
5 >0, such that if (¢,a) ¢ HH0) for any Sy |4l < 29 and lajco < 2U, then

[#]26 < 8 and lajco < U. The homotopy H, and the constants S and U gre
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constructed by Bauer for each fixed metric. Naturally H, can be defined for a

path of metrics instead of a fixed one. We can see from [%] or the arguement

below that S can be chosen independent of g, t € R. But the constant {7

depends on the C%norm of F | thus it depends on g (1e. it depends on ¢ ).

Similarly the minimal length of the long neck to be stretched may also depend
on t. So it seems important that the boundary condition for the homotopy H,
related to ¢ >> 0 and ¢ << Qs independent of the length of the long necks. To

be precise, we will prove there is a constant M > 0 independent of the length

of long neck such that if |f] > M then H1(0) is empty for all s. Therefore

we need only to consider the homotopy restricted to [t] < M. Because the

metrics change in a compact family, U can be chosen for all metrics ¢; with

[t < M and the long necks can be stretched uniformly. By Lemma 30, H,

with |¢] < M gives the homotopy from swr to V1 o swf o V which satisfies

the weaker boundedness condition.

Now we will describe the three step homotopy by Bauer for all g, t €R,

As the preparation for constructing the homotopy, we introduce s cutoff

function pr on X. It vanishes on the middle part N(R — 1)
Outside N(R)

of the long neck.
it is equal to 1. On the remaining part, it is constant on each

sphere {r} x 5% Define the homotopy Pr.s = (1—8)+spg between the constant

map 1 and pg. The function pr and the homotopy PR, Naturally define their

counterparts on X¢,

Step 1. Consider a homotopy u, : A, — €, defined by

ts(d, a) = (DAo+a¢: F,I)+a — prs0(¢), d'a),
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with s € [0, 1].

Lemma 35 There ezists a constant M which 4s independent of L, such that
if s €[0,1] and Jt| > M, u;1(0) = 0.

Proof. To prove this lemma, we only need an estimate

/X Fi2.l<C

which is independent of ¢ and L. Here (¢,a) € 171 (0) for any s € 7 and ¢ € R.
The reason is that we can use the actions of f*", ne€Ztomakete , at the
same time change I' to f*"T". If the estimate is true, then for all » such that
,w,jl(()) is not empty, ¢’ J*"T) < C/4n? for some g, t € I. Beeause af, )
is infinite and the metrics g+ change in a compact set, there are only a finite
number of n's satisfying this estimate. Thus the constant M > 0 can be found
such that u'(0) is empty if |¢) > M and s € [0,1]. The change of metric
that corresponds to changing the length of the long neck can be realized by
the action of a diffeomorphism which is isotopic to the identity map. Thus for
each ¢t € R, the subspace of A %(X;R) generated by all the harmonic self-dual
2-forms for the metric g: is independent of I. For a similar reason, the actions
of f* on the cohomology groups are independent of L. If the constant ¢ is
independent of L ( i.e, independent of the length of the long necks ), then M ,
which only depends on J*Candg,tel, is independent of L,

We first look for a C° bound for |#|%2. By the Weitzenbéck formula, at the

maximum points for |¢?|

S.G‘tld)]g + PL,3'¢’|4 <0
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If prs < 1 at a maximum point for |¢[?, then the maximum point is on the

long neck, where the scalar curvature is positive. Then |g§2| has to vanish at

that point and therefore vanish everywhere. If py . = 1 at a maximum point,

we get the estimation
de
g2 < 5% max(—s,, (), 0).

On the complement of the long neck N(L — 1),

[ R <Gl < s
X\N(L—1)

=

Here S is a constant satisfying S > max(—sg,, 0) for all the metrics g, 0 <
t < 1. We can use the action of f to change the Spin® structure and make
t € 1. Then Cy can be chosen independent of the metric for al] ¢ € I and the
Spin® structure. Therefore C is independent of t € R. On the long neck, lé|?

satisfies the partial differentia] inequality,

¥

Algl? + i’;ilz <0

where s' > 0 is the scalar curvature of standard unit 3-sphere. Then [$]% is
bounded above by a function which decays exponentially towards the middle
of the long neck ( for simplicity, we will just say [¢]® exponentially decays
towards the middle of the long neck. ) Because |¢)2 < § and Ff . =
PLso (@), |FL2 | also decays exponentially towards the middle of the long

neck and its integration on N (L) is bounded by €252, where O, is a constant

only dependent of s, Combine the two estimates on the long neck and jtg
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complement, we get

+ L)
[ Ea<o=@+os,
i |

which is independent of ¢ and 7. m

Step 2. For s € [0, 1], define

My (¢) G) - (DA()+p2,3a¢: FL-’-a - PLU(¢)a d’*a‘)

Similar to the Lemma 35, we have

Lemma 36 There exists a constant M > 0 which is independent of L such

that if s € [0,1] and |t] > M,

17k (0) N (g2 < 25} = 1.

Proof. Similar to the proof of the Lemma 35, we need an estimate

L ‘Fjoz-l-al < C

for all (¢,a) € p}1(0) N {|¢|2 < 25} which is independent of ¢ and L. The
estimate on the complement of the long neck N(Z — 1) is the same as in the
proof of Lemma 35. On the long neck N(I, — 1), Ff ..=0 m

Step 3. Denote u, by P. Applying steps 1 and 2 to X ¢, we can define
a homotopy with similar properties, which will be denoted by 1S, s € [0,2].

Denote p§ by P4, The third homotopy is between P and V-1 py . They differ
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only on the short neck [—=1,1] x 5% by a multiplication operator,
VTPV = P4 dlogV,

For s € [0, 1], multiplication of spinors or forms on the long neck with the
matrix valued function 4 o sy ; [-L,I] x 8% — 50(n) defines a map V, on
the long neck. The operator V. 1Py, — p 4 dlog Vi can be extended to the
complement of the long neck to be the same ag P. This family of extended

operators gives the homotopy p,.5 we need between P and V-1pey/

Lemma 37 There is g constant M > () satisfying the following properties.
For any U > 0 there is q Lo > O such that when [ > Lo, s € [0,1] and
t] > M,

Ha2(0) N {Ip[20 < 25, falgo < 20} = g,

Proof. Let (¢,a) € 1171,(0), with s e [0,1], such that 4| < 29 and laj < 2U.
Then on the neck N (L — 1), the form a satisfies V:'a is harmonic. Let
tsp be the sphere direction component of a, then |asp/=1(V;a)gpl. From [1],
(Vi a)s,! decays ¢xponentially towards the middle of neck. So there is a
Lo > 0 such that when I, > Ly, the C%norm of restriction of ay, on the

middle short neck is smaller than 1. The constant Ly only depends on I/. On

the middle short neck N (1), V. la is harmonic, then we know

d(V;ta) = %(V;l)da: ANa+V lda =0,

Therefore

da = ~M(d—cfc-l/;‘ldm Aa),
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drq - —(m(d—"ém—lm A )t

’
Because dzAa = 4z Aagsp, and we can assume the norm of dV, ™! /dz is bounded
by a constant 3 > g which only depends on the definition of Vi, we get a
C®-bound for F e =daon N (1), which is independent of [, and Ly. On
N(L = D\N(1), FJ ta vanishes as in the step 2. and on the complement
of N(L — 1), we can get an estimate similar to that in the proof of Lemma,
35. Combine these together, we get the estimate I [FL%FG] < € which is
independent, of t, Land Ly, m
Proof. ( Proof of Theorem 34 with & = 0. ) We can construct the S'-
honribtopy H, from swg to V-1 o swroV by p, 0 < g < 3, from sw; to
V1PV, and then V9wV, 3<s< 5, from V—1pey ¢ 11 cswh oV, We
can choose a M >> () which satisfies Lemma, 35, 36 and 37 respectively for all

s € [0,5]. Then the restriction Hilj<amr will satisfy the weaker boundedness

condition, i.e, if 7, ig big enough, then there are constants /' > 0 and § > (

such that if (¢,a) € HS,MISM(OL s € [0,5], |41 < 29 and lo] < 2U, then
[#1* < S and la| < U. For the constant As we choose, H, also satisfies the

boundary condition, i.e,
Heliia(0) 0 {16f20 < 25, fa]go < 20} - g,

for all s ¢ [0,5] when 7, >> 0. g, Hol\y<pr defines a S'-equivariant sta-
ble cohomotopy class which is identified to itg restrictions to s = 0 ang 3,
BFw(X, f,Tx) and BEF{(X€, f,Txe) respectively. m

1%

If the manifold X has g positive by, we have a family of base connections
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| Ay +ker d together with a pointed gauge action by Go. But this is not compat-

ible with the trivialization on the long neck. So we can choose a subspace K of
ker d, which is the subspace of the forms vanishing on the Iong necks. At the
same time choose a subgroup ¢ of Gy, which is the subgroup of all elements
that takes value 1 on the long necks. We still have (Ag + K) /¢ ~ Pic®(X)
S0 we can use X and G’ instead of ker d and Gy to define A, and C;. Going
through the steps above, the proof can be completed without any essential

change.

Lemma 38 Assuyme X — X1UXy as disconnected sum with a Spin® structyre
U= T, UTy which is induced by Ui on X5, If f is diffeomorphism of X1,
such that O(f,T1) is infinite, then we have

BFo(X, fUd,T) = BF,(X,, f, D) ABF(X,Ty).

Proof. Take a path of metrics g,, t € R, on X 1, which repeats the part with
0 <t < 1 between 9o and f*go = g1, by the action of powers of f*. Take g
constant path g/ = ¢’ on X,. Then the 1-parameter Seiberg-Witten map is
defined as g product,

Arx A "B 00w o,

in which sw is the Seiberg-Witten map for Xy with Spin® structure Iy, and it is
independent of ¢ and swg is the 1-parameter Seiberg-Witten map on X;. The
1-parameter Seiberg- Witten map on X, followed by the projection to the fiber,
naturally split as the direct sum of the swy on X, and the Seiberg-~Witten

map sw on X, followed by the projection to the fiber. Choose the finite
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dimensional S'-subspace V ag required by the definition which is compatible

with this splitting, then the result follows the definition d'irectly. | |
Proof. (for Theorem 33) Take X, = X = X~ U D%, X, = & — pi N |
Xg =Xy =8"=D'UDL The permutation € is given by exchanging D4 in ¥
Xy with Nt and exchanging the the D%s in X® and X*. The path of metrics i

g¢ 1s chosen such that each one is the standard product metrics along the long !

necks and coincides everywhere except on N+, By the last lemma, ‘"'f#"

BE (Ui Xiyid U p Udd Uid, T'xc U Ty U Tge UT'ga) gy

= BEF(X,Tx) A BF (N, p,Ty) A BF(S,Tg1) A BF(S*, I'g4). ,i{f,

By Lemma, 38 and lemma, 3.8 in [3], the last three terms in the last equality |
are [id]. So the left side is equal to BF(X, T’ x). On the other hand {

BE o (Ui X3}, (id U p U id U 1d)5, (Tx UTy UTge UTg)e) "
= BEuoi((Ui X,)", (pftid) U'id U id U id, (Tn#Tx) UT'se UTgs U Tga) j:
= BEw(N#X, pffid, Ty #T'x) A BF(S, ga)he y
= BEw(NH#X, p#tid, Ty#T'y),

By Theorem 34, BF oy (N#X, pitid, Py#Dx) = BF(X,Tx). m ;
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Chapter 12

The proof of Theorem 2

At the end we will prove Theorem 2. Let X = T4 X' where X' is an algebraic
hypersurface of general type in CP? with the Spin® structure T'y: induced by
the complex structure. Assume the degree d of X’ can be divided by 4, i.e.

3 _
by () — £ 6+ 11d

3 —1=3(mod4).

Let I'z4 be the Spin structure on T*. Then by theorem 12, for Iy = DpuD X,
BF(X,Tx) # 0. By Theorem 33, BF (X 9N, Witp, Tx#1y) = BF(X,Tx).

Fix constant ¢ > 0. Then the set M ete(X#N) is not empty because by
[14] X#N = T*4mCP?#nCP° has nhonnegative Yamabe invariant. So we
can find a metric g with unit volume and scalar curvature §g > —e&. Us-
ing the diffeomorphism id#p, we can construct g path of metrics g, t €
R. If Met (X #N) is connected, then we can choose the path g, inside
Met (X #N). The 1-parameter Seiberg-Witten moduli space is nonempty
because B, (X#N, 1di#tp, T x#I'n) is not zero. (This can be proved apply-

ing the argument at the beginning of the proof of Lemma 29.) Assume for Gtos
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the Seiberg—Witten modul space is not empty. Then we have the estimate for

the scalar curvature s = gt s ’
/ 82 dtg, > 321G (I'x #l'y) = 32m%(cf(Txs) — 1),
where s_ = min(s, 0). Because Gt € Met (X#N),
e? > / 2 ditg, > 3202 (Tx #1'y) = 3202 (c(Txr) — 1),

and then

i
C—%(FX.’) S 52—7;562 + 1.

It is always possible to find general type hypersurface in O3 with degree
d >> 0 such that ¢Z = (4 — d)’d > 14 £2/3272. This means for those
X', the corresponding T4 Xt N o T4#m(C]P’2#n((_fﬂ_5°2 will have disconnected
Met (X4N),
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