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Abstract of the Dissertation
On the Embedding of ¢ - Complete Manifolds

by
Ionut Chiose
Doctor of Philosophy
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Mathematics
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2004

We characterize intrinsically two classes of manifolds that can be
properly embedded into spaces of the form PN \ P¥~9. The first
theorem is a compactification theorem for pseudoconcave mani-

folds that can be realized as X \ (X NPN~9) where X C P is a

projective variety. The second theorem is an embedding theorem

for holomorphically convex manifolds into P! x C¥.
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occur naturally in algebraic geometry. For instance from a compact analytic
space with isolated singularities remove the singular locus; one is left with a

1-concave manifold.

To put our results in perspective, we will mention a few known related

results. The first one is the famous Kodaira embedding Theorem:

Theorem 1. Let X be a compact comples manifold. Then X is projective
(i.e., X can be embedded into PN ) if and only if there exists a Hermitian line

bundle (L, h) on X with positive curvature.

4

The second famous result is the embedding Theorem for Stein manifolds:

Theorem 2. A complez manifold X can be properly embedded into an affine

space CV if and only if it is Stein.

One of the possible characterizations of Stein manifolds is : X is Stein if
and only if there exists a C* exhaustion function ¢ : X — R which is strictly
plurisubharmonic (i.e., {08y > 0).

It is natural to ask for an interpolation between the two theorems. One
possible approach is given by the solution to the following:

Problem: Characterize the manifolds that can be properly embedded into
P¥ x CVN. .

This problem was solved in Takayama’s paper [Tal:

Theorem 3. Let X be a connected complex manifold. Then X can be properly

embedded into PV x CV if and only if X is holomorphically convex and there

exists a Hermitian line bundle (L, h) on X with positive curvature.



A similar Theorem appears in [EtKaWa)

Another approach is given by the following:

Problem: Characterize (intrinsically) the proper submanifolds of PN\
PN-q,
and this is the approach we take up in this thesis. This question appears for
instance in the paper of Harvey and Lawson [HaLa]. Note that for ¢ =1 the
class of proper submanifolds of PN \PY~! = C¥ is the class of Stein manifolds,
while for ¢ = N + 1 we get the class of projective manifolds.

In the class of manifolds that can be embedded into a space of the form
PN \ P¥~9 an important subclass is formed by those manifolds that can be
comfiactiﬁed in PY. Two impértant compactification results relevant to our

discussion are:

Theorem 4. (Demailly [De2])) Let X be a complex connected manifold of

dimension n. Then X is isomorphic to an affine algebraic variety if and only
if
(o) there exists a C*° strictly plurisubharmonic exhaustion function ¢ on X
(b) Vol(X) = fx(iaa_go)" < 00

(¢) the Ricci curvature of the metric § = i00(e¥) can be estimated from
below by Ricci(8) > —id8y where ¥ € CY(X,R), ¥ < Ap+ B where

A, B are positive constants
(d) the cohomology groups of even degree H?(X,R) are of finite dimension

Theorem 5. (Nadel [Na]) Let X be a connected complex manifold of dimen-

sionm > 3. Then X is biholomorphic to a quasiprojective variety which can




be compactified to an analytic space by adding finitely many points if and only

if:

(a) there exists a continuous proper map ¢ . X — [0,00) such that —¢

is strictly plurisubharmonic outside a compact subset (i.e., X is hyper

1-concave).

(b} there exists a line bundle I on X such that

CA(X,L) = é H(X, LF)

k=0
separates points and forms local coordinates on X.

(¢} X can be covered by Zariski open subsets U which are uniformized by

Stein manifolds.
We can now state our first result:
Theorem 6. Let X be a connected complex manifold of dimension n and let
g > 2. Suppose that:

(i) there exists o map 7 : X — pa-t

(i) there exists a C* exhaustion function ¢ : X — R such that

w = 100p + 7*i0(Ope-1(1)) > 0 (*)

(iii) there erist u € C*°(X, R) and ko € N such that kow + Ricci{w) 2 —190u

(iv) X is (n — q -+ 1)-concave




(v) dim H®(X,R) < 0o forqg<p < RTH

Then there exist a projective variety X C PV and L ~ PN~ g linear subspace
of codimension g in PN such that X is isomorphic to. X \(XNL). Moreover, all
the conditions except (iv) are necessary conditions, while (iv) is a “generically”

necessary condition.

Our Theorem can be thought of as an interpolation between Demailly’s
Theorem and Nadel’s Theorem. Indeed, in our Theorem appear conditions
from both of the above mentioned Theorems. For ¢ = n condition (v) is
empty and we obtain a particular case of Nadel’s Theorem 5. For ¢ = n + 1
we obtain the class of compact projective manifolds.

Our second result is a refined version of Takayama’s Theorem 3:

Theorem 7. Let X be a connected complex manifold of dimension n. Then

X is biholomorphic to o proper submanifold of P! x CV if and only if:

(i) X is holomorphically convex; we let f : X — Y be the Remmert reduction
of X

(ii) there exists a map 7 : X — P

(iii) there exists a C* plurisubharmonic function v : Y — R such that
w = 100p + 1*i0(Op1 (1)) > 0 (%)

where ¢ = o f.

Note that the Segre embedding P! x PY «— PM M = 2(N +1) — 1 restricts

to P! x CV to give a proper embedding into PM \ PM~2, Therefore in Theorem




7 we characterize a special class of holomorphically convex manifolds which
can be embedded into PV \ PV-2,

We now sketch the proofs of the two Theorems 6 and 7. There are several
main ingrediendts in the proof of the pseudoconcave case. The first one is
Demailly’s Theorem 9; it allows us to construct sufficiently many sections
in high powers of a positive line bundle. We will be able to ’embed’ any
compact subset of X. The second cone is Andreotti’s theory of pseudoconcave
spaces. It provides us with a Siegel-type Theorem, with a compactification
Theorem for pseudoconcave spaces and some other results about the structure
of our embedding. The third ingredient is a Theorem of Dingoyan which
says that if an open subset of a projective manifold is both ’pseudoconcave’
and ’locally pseudoconvex’, then its complement consists of a finite number
of hypersurfaces. In our case the "pseudoconcavity’ condition is given in the
hypothesis, while the "local pseudoconvexity’ condition is a consequence of ().
The finite dimensionality of the singular cohomology groups will permit us to
embed the ’infinity’ of X, via an elementary but important Proposition due to
Demailly. Finally we use Mok’s method to show that the embedding has the
desired form. It consists essentially of showing that a certain Stein manifold
is holomorphically convex with respect to the algebra of 'algebraic’ functions
on that manifold.

For the pseudoconvex case we use a technical lemma to show that the only
compact subvarieties of X are either points or rational curves isomorphic to P!
through the projection . Then we consider thé Remmert reduction of X. The
problem is that in general a singular analytic Stein space cannot be embedded

into an affine space. But a relatively compact subset of a Stein space can




always be embedded, and we use this to show that X can be embedded into
the desired space. Along the way we use an approximation theorem and some

category arguments,




Chapter 2

The Pseudoconcave Case

In this chapter we prove the following:
Theorem 8. Let X be a connecled complex manifold of dimension 1. Suppose

that:

(i) there evists e map w: X — P!

(i) there exists a C*° exhaustion function ¢ : X — R such that

w := 100 + 1i0(Op (1)) > 0 (%)

(iii) there exist p € C=(X,R) and ko € N such that kow + Ricci(w) 2 —i00

() X is (n — 1)-concave

n+ 2

o~
1

Y e IF20(Y Y « oy FOor 2 < p <




This is Theorem 6 in case ¢ = 2. The proof of the g;aneral case for an

arbitrary ¢ > 2 follows similarly with only minor changes.

2.1 Preliminaries

In this section we recall some definitions and theorems needed for proving

Theorem 8.

a) We will repeatedly make use of the following Theorem of Demailly [Del]

Theorem 9. Let (E,h) be a Hermitian holomorphic line bundle with semi-
positive curvature (i.e., i©O(E,h) > 0) on a complete Kiihler manifold (X, w)
of dimension n. Suppose ¢ : X — [—00,0] is a function which is of class C*°
outside a discrete subset S of X and near each point p € 3, o(2) — A, In|z}?
where A, is a positive constant and z = (21, ..., 2) are local coordinates cen-
tered at p. Assume that iO(E, e ?h) = iO(E, h) +i08¢p > 0 on X \ S and let
A: X — [0,1] be a continuous function such that i©(E, h) + 180 > Aw on
X\ S. Then for every ¢ form v of type (n, 1) with values in E on X such
that v = 0 and
‘/X §|v|26“"qu, < 00

there exists a C® form u of type (n, 0) with values in E on X such that du =7

i S




If F is a line bundle on X a complex manifold then we say that
o0
A(X, E) = ) H(X, E)
k=0

separates the points of X f Vo # y € X, 3k € N,ds € HO(X, E*) st.
s(z) = 0 # s(y) and that it gives local coordinates on X if Vo € X, 3k €
N,3sg, 81, . ., 8 € HY(X, E¥) s.t. so(z) # 0 and

d(%)/\.../\d(i—:)(m)%o.

. The following Lemma is a simple application of the above Theorem 9

Lemma 10. Let (X,w) be a complete Kahler manifold of dimension n and
(E, h) a positive Hermaitian line bundle on X. Assume that there exists ko € N
such that E* ® K% is semipositive. Then A(X, E) separates the points of X

and gives local coordinates on X.

Proof. let x € X and z = (21, ., zq) be local coordinates centered at x on
U = {|] < 2} and assume Ely trivial and let e be a nonzero section of Ely.
Let V = {|z| < 1} and 7 € C&°(X,R),0 < 5 < 1,supp7n C Unly = 1. Set
g = (n+ 1)yl |z|? defined to be 0 on X\ U. Let P € C*(X,R) such that
kow + Ricci(w) + i88¢ > 0. Set F = E* @ Kx' where k is chosen so that
Loy 4 Riceilw) 4 188w + 109y > w on X \ {z}. Set




and

d 0

k
= —_ _— .../\dn ‘
€p = Ne o AL A Bz, ®Rdz A z :

as sections in F @ Kx ~ E* and v; = Oe;. Denote by I’ the induced metric
on F; then iO(F, ¢ #*¥h') > w on X \ {z} and there is a continuous function
A on X such that iO(F,e#~¥h') > dw and Ay > 0 (for instance A = 1).
Now apply Theorem 9; we have 51),- = 80e; = 0,v5ly = 0 and v;lx\wv = 0, |
therefore /X —§|v,-|2e_"_¢de < co. Then there is a C®-form u; of type (n,0) h'f_

with values in F' such that du; = v; and fo

. _
/ |u;2e~#YdV,, < / Zluj|Pe* Y dVL.
x x A
Locally around z,u; can be written as

0
e — AL N .. Adz = fie"
f;€ o A B Qdu A...ANdz, = fie §

where f; is a holomorphic function on V' (since duj = v; = 0 on V). Condition

f luj|*e~*dV,, < oo implies
X

-—lij-l—?—|dz A Adzl? <
s J2ED Zn|® < 00

and this condition implies that f;(0) = 0 and 3f;(0) = 0. Now set 5; = | |

e e e 2 oo Tk TE fa alaan vewr Fhat g. o glve local



developed by Andreotti.

Definition 11. A manifold X of dimensionn s said to be g-complete, 1 <
¢ < n if X has a C* ezhaustion function ¢ : X — [0, 00) such that i00p(x)
has at least n — q + 1 positive eigenvalues Yz € X. A manifold X is said te
be p-concave, 1 5 p < n, if X has a C* ezhaustion (i.e., proper) function
¥ : X — [a,b) such that i00¢(x) has at leastn —p +1 negative eigenvalues,

Vo € X \ K where K is some compact subset of X.

Theorem 12. (Andreotti'[An], Andreotti and Tomassini [AnTo]) Let X be
a connected p-concave manifold, p < n — L. Then the field of meromorphic
:}unctions K(X) has tr.degcK(X) < n. IfF is a line bundle on X, then
dim HY(X,F) < oo. If X is embedded as a locally closed subset in some
projective space PV, then X s included into an algebraic variety Z in PV,

which is irreducible and of the same dimension n. There is a unique maximal

analytic subset of Z of pure codimension 1 with support in Z \ X.

¢) For the proof of the fact that the birational embedding in Theorem 6 is

quasi-projective we will use the following result of Dingoyan [Di].

Definition 13. Let V be a projective variety and U an open subset of V. Then
U is said to be locally pseudoconvex in V if there exists a covering W of

V by open Stein sets such that for every W € W, the connected components




Theorem 14. (Dingoyan [Di]) Let V be a projective manifold and X an open
pseudoconcave, locally pseudoconvex subset of V. Then the topological bound-

ary of X consists of a finite union of hypersurfaces.

For the proof of Theorem 14 one uses the fact that X is locally pseudocon-
vex in V to construct a section s of an ample line bundle on V such that X 1s
the domain of existence for s, and then the pseudoconcavity condition on X
implies that s is algebraic on V, therefore the boundary of X consists of the
polar set of s.

‘d) In order to prove that the birational embedding in Theorem 6 can be
“rééolved” in a finite number of steps, we will use the following Proposition of

Demailly [De2]

Proposition 15. Let X be a complez manifold of dimension n a.mi let Y be

o subvariety of dimension p in X and d =n - p = codimyxY. Then
HYX,X\Y;C)=0if ¢ < 2d

and

H¥(X,X\Y;C) ol

where J is the number of irreducible components of dimension p inY.




On PV fix homogeneous conditions [2z0 21 1 .- zy] and assume that

. = 0} Let m : PN\

PN-1 = {Z() = 2 = ... = Zg— PN — Pq'd be the
q

projection away from PN given by

({201 2n)) = 20 .t Zg—1]-

On PV \ PY~¢ consider the exhaustion function ¢ : PY \PN-? - R,

) ) . lZoi2+-..+|Z ]2
st o = ()

‘Since

i@(olpq—l(l)) = iagln(lzoﬁ 4.+ \Zq_ﬂz)

is the curvature of Ope-1(1) on Pe-!, we have

;08 + " i0(Ope-1(1)) = i©(Opn (1)) [prypy-a > 0

e any manifold X that can be properly embedded into PN\ PN-¢

Therefor
1 and an exhaustion function

comes equipped with a projection 7 : X — P

¢ : X — [0,00) such that

i0d¢ + 7*10(0p1(1)) > 0 () \ |
e




it gl

T T o A SR R T P R

s

e

If X denotes the compactification of X, then Opn(1)}x is ample on X, and

since the dualizing sheaf wy is coherent, it follows that there exists ko € N
such that Opn (ko)|x ® wi is globally generated. Restricting to X, we obtain.
that E* ® K% is globally generated, in particular it is semi-positive (i.e., there
exists a Hermitian metric such that its curvature is semi-positive definite).
F‘or a given projective variety X of dimension n in PV, its intersection with
a general linear subspace of of PV of dimension N — ¢ has dimension n - q.
Therefore if X NPY=7 is of pure dimension n — g, then by Ohsawa’s Theorem

[Oh] it follows that X is (n — g + 1)-concave.

2.3 Andreotti’s theory on pseudoconcave

spaces

Let X be a manifold as in Theorem 6 with ¢ = 2. In this section we use An-
dreotti’s results on pseudoconcave manifolds to construct a birational embed-
ding of X. Then in Section 2.4 we show that the embedding is quasi-projective.
Next in 2.5 we prove that the birational embedding can be resolved in a fi-
nite number of steps. Finally we use Mok’s method [Mo] to show that the
embedding that we get has the form X \ (X NPN-2).

In order to use Lemma 10, we have to show that X carries a complete

Kahler metric:

Lemma 16. Let X be a manifold as above above. We can assume that ¢ > 1.




Let f(t)zt-—-%lnt andn = fop. Set

& = 109y + 7 i0(On(1)).

Then & is a complete Kahler metric on X.

Proof, Clearly & is closed. We have i08n = ' 0 BBy + [ 0 P iP I dp and
1 1
ey ] — = ) = —
F{t) =1 55 f(t) Yol Hence
G={1- L P + —}—'Ir*z'B(O (1)) + —1—-—2'8 A D

2¢

~ - ~ 1 . = 1. =
so i is positive and w > —QEEchp Adyp = Eza(ln ) A 8(In ). Therefore
|8(In @)|Z < 2 and since Ing is an exhaustion function, it follows that W is

complete. 1

Now X has a complete Kahler metric, E = n*Op(1) is positive and B ®
K% is semi-positive, therefore we can use Lemma 10 to show that A(X, E)

separates the points of X and gives local coordinates on X.

Let sg, 51 be a basis of H o(Pt, Op: (1)) and denote by the same symbols so
and s, their pull-back to X. They are sections in E with Z(so,81) = {z €

X|so(z) = s1(z) = 0} = 0. They play a role analogue to the constant function

1 for Stein manifolds.

Since X is connected, the ring A(X, F) is an integral domain. We consider

the field

QX,E) = {%\E\k c Nst. st€H(X, EM),t # 0} c K(X)

16




The transcendence degree tr.degcQ(X,E) = n since A(X, E) gives local
coordinates on X, and tr.degcC(X) < n since X is (n— 1)-concave. Therefore
Q(X, E) C K(X) is a finite extension.
Lemma 17. Q(X, E) is algebraically closed in the field IC(X) of all meromor-

phic functions on X.

Proof. Let f € K(X) such that
amfm+am_1fm’1 +...+af+a=0

where a; € Q(X,E). Set a; = E- where o, 8; € H(X, E*) and we can as-
sume that ky, = . .. = ko. Set B = o Bmfm_y .- 5o an and multiply the above
equation by R. We get A4 Ay Y™ 4+ Ao = 0 where v = fomBm—1---Bo
and An_i, - -, Ao € A(X, E). v is a section in K(X)® EFm+1) which is integral

over A(X, E). Since X is smooth (in particular it is normal), it follows that ¥

is a holomorphic section in E*(™*1). Therefore f = 5 ¥ 5 € Q(X,E).
..Bo

Emim—1+--

From Lemma 17 and the fact that Q(X, E) C K(X) is finite it follows that
Q(X,E) = K(X). Let sk sk 8g,...,8n € HU(X, EF) (where sp and s; are as
above) such that s§(z) # 0 and

d(%)/\.../\ (—%) () #0

for some x € X. Then

K
3 8
tr.degC(g%,.. : :) =n

0 80

17




k
51 5n
C(sg’“'*sk) c K(X)

0

is a finite extension. Therefore there is a g € K(X) = Q(X, E) such that

k
K(X)=C (%, ey -z%) (g) so by taking k sufficiently large we can assume
0 0
that
S’f ~3Nk
0 0
where s§, s¥,s,..., sn, is a basis of H(X, E¥).

Let ¥ : X — [a,b) be a C* function that gives the (n — 1)-concavity of
X and let K C X be a compact subset of X such that 051 has 2 negative
eigenvalues on X \ K. Let ¢ € (supg ¥, b) and X, = {z € X|¢(z) < ¢} which
is relatively compact in X. Then there exists £ € N such that 7, = [as:ﬂ.c :sh

.t 85,] 1 X — PM is an embedding of X.. Note that 7 is well-defined on
X since Z(sg,81) = 0. We can assume that (2.1) is true for k.

Since 74(X,) is pseudoconcave and locally closed in PM¢, there exists a
projective compactification Z, of 7,(X,) of the same dimension n ([An]). Ob-
viously 7(X) C Z.

Let v, : Z; — Zj be the normalization of Z;. Since vy is finite, it follows
that v;Opn, (1) is ample on Z}. Denote by 74 : X — Z¢ the lifting of 7 :
X — Z..

Put

Ay = {z € X|rankdry(z) < n}

which is an analytic subset of X. Since 7{|x, is an embedding, it follows that

18




A, C X\ X.. Since i09% has 2 negative eigenvalues on X\X., it follows from

the following Lemma 18 that dim Ay < n — 2.

Lemma 18. Let X be a g-concave manifold with ezhaustion function ¥ and

assume that — is strongly q-convez on {¢ >c}, g <n— 1. Let A be a proper

analytic subset of {1 > c}. Then dim A < g —1

Proof. First, we can assume that A is irreducible. Second, we remark that

inf 41 is attained on A because 1 is an exhaustion function. Let 2o € A, ¥(20) =

inf 410. Choose local coordinates (21, - . - z,) around xo and suppose that dimA >
g. Since —1 is g-convex, there exists a linear space in C*, call it L, such that
3851/)(:1:0“ L is strictly negative and dimL =n — g+ 1. Set Ay = AN L. Then
codim(ANL) = n—dim{(ANL) < codimA+codimL = n—dimA+n—n+g¢—1
so dim(AN L) > dimA — ¢+ 1 > 1. Therefore |4, has a minimum at an

interior point of A;, and this is a contradiction. 1§
Lemma 19. 77 is injective on X \ Ay.

Proof. Let ¢,y € X \ Ap,z # y. If so(x) =0 and so(y) # O then clearly
2 (x) # e (y). If so(a:) £ 0, 80(y) # 0, then let t € HO(X, E') such that #(z) =
0,t(y) # 0. Let g = & € K(X); then g is defined at z and y and g(z) # g(y).
Condition (1) 1mplles that there exist two homogeneous polynomials P and @

of the same degree such that

_ P(s'g,...,st)
Q(sk, ... 5n)

Then
5 Plao. o)
Q(Zo, ceen ZN,,)

19




el

is a rational function on Zi and set § = v;g the pull-back of § to Zz. Then

(1£)*g = g and since g is defined at z and y and 7 is an isomorphism around
z and y, it follows that § is defined at 7¢/(x) and 73 (y) and g(7y (z)) = g(z) #

9(y) = §(7¢ (y)), hence 7/(x) # ¥ (y). W
Lemma 20. T,';(Ak) = 72(X) N Sing(Z}).

Proof. Let x € A; and suppose that 7f/(x) € Reg(Zy). Pick local coor-
dinates (wy,...,w,) on Z¢ centered at 77(z) and (21,...,2s) local coordi-
nates on X centered at a: Then on a neighborhood of z, Ay is given by
%et (?E%;—T—’Q) — 0 which is an analytic subset of dimension n—1. This
contradicts dim Af;_ll:z-—z Conversely, let = € X such that 7¥/(z) € Sing(Z});
if z € X \ A, then 72(U) is a germ of a manifold at /() for a sufficiently

small neighborhood U of z, and since Z is normal, it follows that 7' is a local

isomorphism around 77(z), therefore /() € Reg(Zy). Contradiction. 1§

Since 7i{X,) is (n—1)-concave, it follows that there exists a unique maximal
analytic subset Hj of pure dimension n — 1 in Z; with support in Zx \ m(Xe)
([AnTo]). Put HY = vy (He).

Lemma 21. Let s € HY(X, E®); then there ezists a meromorphic section &

of v:Opn (1) on ZY with polar set in HY such that 3o 7¢|x\a, = 5lx\A -

Proof. .—‘% € K(X) so there exist two homogeneous polynomials P and @ of

the same degree such that

s P(sk,... sn,)
sk Q(sk, ..., sw,)

20




Set

~ ok l‘P(’zO!"'?sz)
S=V, | 2y
Q(20, -+ > 2Ny)
where [z : ... : 2n,] are homogeneous coordinates on PY%. Then So 7¢|x, =

3| x, is holomorphic so the polar set of §in ZY does not intersect 7, (X.). Since
Z? is normal, the polar set of 3 is of pure dimension n— 1 and therefore it has

to be included in HE. 1§
Lemma 22. 77(Ag) = 74(X) N H.

Proof. Let z = 7¢(z) € Hy. if x € X \ Ay, then (t¢)~1(HY) has'a component
of dimension n — 1 included in X \ X.. This is a contradiction, so & € Ay, 1.6,
7 (X)N HY C 7¢(Ax). Conversely, suppose & € Ap and 77 (z) ¢ H. Let U be
a neighborhood of z such that 7;(U) n HY = 0. Let my,22 € U, 31 # %o and
s € HO(X, E*) such that s(x1) # s(z2). Then § the corresponding section on
Z¢ is well-defined at 74(z;) and 7¢(z2) and 3(1 (1)) # 5(rf{22)) s0 T (1) #
¢(x3). Therefore 7|y is injective. Since Zj is normal, 7%y is open. Therefore
¢|y : U — 7 (U) is a homeomorphism and 7 (U) is an open neighborhood of
72(z). Then, since Zy is normal, 7 (U) is also normal, and 7¢|y : U — ¢ (U)
is the normalization of 7¢(U) so 7¥|v is an analytic isomorphism. Therefore

¢ (x) € Reg(Zy), contradiction with Lemma 20. 1

2.4 Quasi-projectivity of the embedding

So far we have a morphism 77 : X — Zf which is an embedding outside
an analytic subset Ay of codimension 2 2. In this section we will show that

(X \ Ag) is an Zariski open set in Zg.
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Let zo € P! such that so(ap) = 0 and Xo = X \ 77 (zo). Let

|s0* + |31|2)

= I
‘Po_ @+ n( |So|2

which is an exhaustion function on X,. Moreover, 188 = w|x, > 0, therefore
Xo is a Stein manifold.

Let m : X — Pl m, = [sf : s¥] and ¢ € C°(X,R),

(Jsof? + |31I2)’°) (22)

=p+In
o=y (|30|2’°+|31|2""

“Then ¢y is an exhaustion function and 08¢, + 7®(Op (1)) = 9dp +
km*i0(Op (1)) > 0.

By Hironaka's theorem on the resolution of singularities, there exists a
projective manifold Z; and a proper morphism A : Zyx —» ZY such that
AL L(Sing(ZYYUHy Uy, ' (Z(20, 21))) s a hypersurface H}, having normal cross-

ings and
Mtz Ze \ Hie — 2§ \ (Sing(Z{) U HY U v (Z(20, 1))

is an isomorphism, where [z : ... : zn,] are homogeneous coordinates on P,
Set T : X \ Ax = Zx,Te = (Mlzm,) " ©7¢. Then we have the following

diagram:
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X TAk LI (2.3)

,rb'

X —i -z

~F

The following lemma is well-known, but we give its proof since a similar

method will be used in Lemma 24:

Lemma 23. Let X be a Stein manifold and f : X — Y a holomorphic map
to a complex manifold Y. Let U C Y be a connected open Stein subset of Y.
Then f~Y(U) C X is Stein.

Proof. Let ¢ be an exhaustion strictly plurisubharmonic function on X and
¥ an exhaustion strictly plurisubharmonic function on I7. Set p= | -yyy +
Yo fig1wy on f~1(U). Then p is clearly strictly plurisubharmonic and an

exhaustion function on U, therefore f~1(U) is a Stein manifold. 8
' Lemma 24, ?R(X \ Ak) = —Zk \T‘I-k

Proof. First we are going to show that Z, \ Tx(X \ Ar) is a hypersurface. In
order to use Theorem 14, we have to show that 74(X \ Az) is locally pseu-
doconvex in Zy, i.e., that any z € Z, has a Stein neighborhood U, such
that U, N7u(X \ Ay) is Stein. Let 2 € Zy. I w(M(2)) ¢ Z(z0,21), as-
sume vg(A(2)) € Z(z) and let U, be a small ball centered at z such that
ve(Ae(U:)) N Z(2) = B. Then U, \ Hy is Stein, therefore Me(U, \ Hy) is

Stein (because )i is an isomorphism on Z \ Hy), therefore from Lemma
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23 (72) "1 (\w(U. \ Hy)) is Stein in Xo and is included in Xo \ Ag. Hence
Tr(X \ Ax) N U, is Stein.

If ve(Ae(2)) € Z(20,2), then let U, be a small ball centered at 2 such that
(vk © Ak )*Opn (1}]y, is trivial. Let 5 and 3% be the pull-backs of 2 and z to

Z, and Hy = Z(3k, %) € Hj, and Hy, the rest of the components of Hi. O

U, the two sections 3% and 3% give two holomorphic functions ho and hqy such

that Z(ho,h1) = U, N Hy. Since Hy has normal crossings, we can assume
that Hyx N U, = {wywy...w; =0} and Hoyx MU, = {wiy1.. . Wiyp = 0} where
(wy, . ..,w,) are local coordinates on U, centered at z. Since Z (ho,lu) = Z(h)
{;vhere h = wy...w, from Hilbert’s Nullstellensatz it follows that there exist
m € N and go, g; holomorphic functions on U, such that goho + g1h1 = R™. In

particular there exists a constant C such that [h|?™ < C(|ho|* + [R1[?). Let

o= 1n w
K |h|2m

on U, \ Hy; which is a function bounded from below. Let

1
Wit - - . Wigpl

on U, \ Hy and 8 = Denote by g,n and @ the pull-back of E,7

1—|w®
and 9 to T 1(U;) C X \ Ax. Let @i be the function given in (2.2) and on
7 1(U,) consider the function v = @& + s+ 71 + 6. Then it follows that
100k + u) = wl;;l(gz) > 0 and therefore <y is strictly plurisubharmonic on

7. !(U,). Tt is easy to check that -y is an exhaustion function on 7o U),

therefore 7 (U,) is Stein so U, N 7%(X \ Ag) is Stein. From Theorem 14 it
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follows that Z; \ 7i(X \ Ag) = H, is a hypersnrface which is included in Hy.
If Hy # FL then one component of Hy, intersects 7x(X \ Az), so we obtain
a subvariety in X of dimension n — 1 which is properly included in {¢ > c},

which is a contradiction. Therefore Z; \ 74(X \ Ax) = Hy. 1

2.5 Holomorphically convex spaces and the al-
gebra of algebraic functions

In this section we show first that the birational embedding can be resolved
in a finite number of steps, and then that the embedding that we get can be
adjusted to have the desired form.

We have that Tr : X\ Ax — Z3\ Hy is an isomorphism, in particular X\ Ay
is of finite topological type.

We first remark that there are some topological restrictions on ¢g-complete

manifolds:

Lemma 25. Let X be a q-complete manifold of dimension n. Then
H{(X,C)=0,Vr>n+gq

Proof. Since X is g-complete it follows that HP"(X) = 0,V¥r > ¢. A straight-
forward application of the Hodge spectral sequence implies that H"(X,C) =
0, Vr>g+n 1

25




Condition (x) implies that X is a 2-complete manifold; this implies that
H™(X;C) = H"3(X; C)=...=H™X;C)=0.

Together with condition (v) we get that dim H?(X;C) < oo, for 2 < p < n.
Let (Yj)jes be the irreducible components of Ay of codimension 2 in X.

We have the exact sequence of the pair (X, X \ Ag):

HYX \ A; C) — HY(X, X \ 4;C) — HY(X;C)

, From Proposition 15 we have that H*(X, X\ Ax; C) ~ C’. Since dim H*(X, C)

< 00 and dim H*(X \ A¢; C) < o0, it follows that |J| < oo, i.e., A, has finitely
many irreducible components of dimension n—2. Pick z; € Y; and then we can
find &’ sufficiently large such that E¥ “resolves” the points x;, i.e., x; ¢ Ap.
Therefore all the irreducible components of Ay have dimension <n-—3 Itis
clear now that we can repeat the above procedure to get that for k sufficiently
large the “bad” set A; = §.

Our whole discussion can be summarized in the following

Proposition 26. Let X be a manifold as in Theorem 8. Then there exists
ak € N such that 7¢ : X — Z! is an embedding and (X)) =Zy\ (Hy U
Sing(Z¢) U vy (Z(20, 2)).

In order to complete the proof of Theorem 8, we have to show that the
complement of 7y (X) can be realized as the intersection between Zy and a
linear subspace of codimension 2. We will use Mok’s method [Mo] (see also

[De2]); first we will show that a certain Stein manifold is holomorphically
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convex with respect to the algebraic functions, and then we show that the
Stein manifold is actually affine.

On Xy = X \ 7 Y (zo) = {z € X|so(x) # 0} consider the algebra

Ho = {f € H%(Xo,0x,)| 3 € N,3s € H(X, E')st.f = s%} c HY(Xo, Ox,)
0

It obviously separates the points of Xy and gives local coordinates on X and
we are going to prove that Xg is holomorphically convex with respect to Ho,
i.e., for any compact K C Xo, Ky, = {z € Xol|f (=) < supklfl,Vf € Ho} is
also compact.

On X, we have the strictly plurisubharmonic exhaustion function

2 2
‘,00=(,O|X0+ln (M) .

Set
. nE 1
wo = 100 ((pg -3 In cpo)

which is a complete Kéhler metric on X, (proof as in Lemma 16) and

1 1 =
W ( 2(,00) w|x, + 2('0(2}7'8‘400 A Bpo

80

1\" 1
wy 2 (1 - ﬁ) Wxo 2 57W" Xo:

Let u be the function that appears in Theorem 6 in condition (444). Denote

by dV,,, = wf the volume form of wq.
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Lemma 27. Let f € H*Xo, Ox,) such that

|[f2e~# 0 dV,, < oo
Xo

Jor somel € N. Then f € Hy.

Proof. We are going to show that sif (which is a section in E' on Xj) can
be extended to a holomorphic section in E' over X. Let z € 7 *(z0) and
(21,...,2n) local coordinate_s centered at x on U a small neighborhood of z.

Let gy = 2—2 on U N Xy. Then

Lrlar.

(pﬂIU\Z(go) = (PlU\Z(go) +In ( |90|2

The function g is bounded on U, so we can assume that

/ If|2e~%0dV,, < oo,
U\Z(ga)

Then the integrability condition for f implies

/ |FPlgo|®|dz1 A ... Adzp)? < 00
U\Z(yo

This implies that fg} can be extended to U and therefore s f can be extended

l
toXsofm%Qif-EHo. |
0

Lemma 28. X is holomorphically convez with respect to Ho.

Proof. Let K be a compact subset of Xy and ¢y = supgipe. We are going
to show that Ky, C {0 < co}. Let z € X, wo(z) > ¢ and € > 0 such that
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e

©o(T) > cp+3e. We want to construct f € H, such that |f(x)| > supg]f]. Let

(21, ..., 2p) be local coordinates centered at z on I = {l2] <2} C {wo > co+
2} and let V = {|2| < 1} and n € C(X,R),0 < 5 < 1, suppn C U, nly =1
and y = nyln |z|? defined to be 0 on X \ U/, On X, consider the trivial line
bundle € with the metric e¢=# ¥0—c0-2) 414 the dual of the canonical line
bundle K% with the metric induced by w|x,- Denote by h; the Hermitian

metric induced on C ® K%, ~ K ; then
1O(K X, l) = 08| x, + lw|x, + Ricci(w)|x, > 0

for { sufficiently large. For ! large enough we have 1O(K%,, e hy) = 00y +
1O(K%,, M) 2 w]x, s0 we can find a continuous function ) : Xo — (0, 1] which
does not depend on I such that 1O(KX,,e"h) > dwy. Let v = O, Then

dv =0 and v|y =0 so
L (2 r—sml{po—co—2e)
< |u|fe T H o dV,, < oo
Xa A

1
and moreover the above integral is bounded from above by f X|'u|2e“""“d‘l/;,0
Xo
since wp — ¢g ~ 26 > 0 on U. Note that the above integral does not depend
on I. From Theorem 9 it follows that there exists u; a C* function such that

Ouy = v = Jn and

g [Ze=1-—tm-co-2e) g7 [ SfofPer#dV,

Xo Xo

Set fi = —w;. Then f [w[’e~7dV,, < oo implies w(z) = 0 so fi(z) = 1. On
U
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{@o < co -+ €} we have o — ¢p — 2 < —€ s0

1
f || dV,, g/ —{v[Pe™ " FdV,,.
{wo<cote} ' Xq A

Now u; is holomorphic on {pg < ¢+ 2¢} because Ouy=0n=00n{po <co+
2¢}. An application of the Canchy’s inequalities shows that [|u]{pe<eco} — 0
when [ - co. Now it is clear that for { Iarge\enough the function fi =n—w
has the property |fi(z)| > supg|fi|. Moreover the functions f; satisfy the L?
condition [ |fi|2e™*~*°dV,,, < co and from Lemma 27 it follows that f; € Ho.

"

Xo
We can replace E by F* and then besides the properties (i) — (v) we also
have: Let sq,51,...,5n be a basis of HY(X,F). Set 7 = [so : ... : sn) :

X — Z C PN; then 7 : X — Z" is an embedding such that Z* \ 7/(X) =
v Z (2, 2)) U H” U Sing(Z¥) (cf. (2.3)).
Set Z¥ = Z¥\ v"Y(Z(z)). Any function f € Hy can be written f =

S w

where s € H°(X, E!). From Lemma 21 it follows that s can be extended to

~

a meromorphic section § in v*Opn (I) with polar set in H”. Then F= si‘ is a
0
meromorphic function on Z¥ which extends f and the polar set of f is included

in HYN Zj.
As an easy application of Lemma 28 we get that Sing(Z*) C v~ Z(z, 21))U
H".




ample for some large I and then Z“\ 7/(X) = Z(z, ®t, 2 ®t). But in general
H' does not have to be a Q-Cartier divisor.

Actually one can prove the following

Lemma 29. If H' 0 (2% \ v™Y(Z(2,21))) is locally complete intersection in

Z*\v Y Z(%, 1)) then the conclusion of Theorem 8 is true.

Proof. Indeed, let « € H' V(2 \ v~1Z(%, 21)) and let s, € HYZY,v*Opn (1))
and U, a Zariski open neighborhood of x such that H' N (Z¥\v71Z(z, 1)) N
Uz = Z(s:) NU,. Let W be the union of the irreducible components of
Z(8,) which are not contained in H’. Let t, € H(Z", v*Opn (m)) such that

8

t . .
talw = 0, tz(x) # 0. Then for s sufficiently large Sﬁ is a holomorphic section
in v*Opn (sm—1) on Z*\ H'. Since H'N (2" \ v 1Z(20,21)) is quasi-compact,
it follows that we can find £ € N such that T 1s a proper embedding into

Y\ Z(2,21). 1

We will construct subvarieties Y; in Z*, j = T,n such that Y; is of pure
dimension j and Y; N H' is a hypersurface in Y; forall j =1,n PutY, = 2%
Suppose Y; has been constructed. Then pick a section s; in v*Opn(l) for
some large ! which vanishes on H’ but does not vanish identically on any of
the irreducible components of ¥;. Then Y;_; is the union of the irreducible
components of ¥; N Z(s;) which are not contained in H’.

We can complete now the proof of Theorem 8. We prove by induction
on j that there exist k; € N such that the restriction of X = Z, \
uk_jl(Z(zo,zl)) to X NYj; is a proper embedding in Z, \Vk“jl(Z(zg,zl)). For
J = n we get the proof of Theorem 8, If j = 1 then dimY; = 1 and let

Z1,...,Tm be the intersection points of ¥; and H’ which are not contained in
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v~ Z (20, 21)). Suppose x; € Z§ = Z¥\ v~ (Z(2)); then from Lemima 28 and
the maximum principle it follows that there exists a holomorphic function f
in Hy whose restriction to Y7 has a pole at x,. Similarly for the other points we
get some functions f,... f,, whose restrictions to Y; have poles at za,...,Zn
respectively. These functions induce some sections in some power k; of F and
then clearly the restriction of o X = ZE\ N Z(z0, ) 0 YIN X s a
proper embedding.

Suppose k; has been constructed such that 7, : X — Z¢, \ v, Y Z (20, 21))

" when restricted to Y; N X is a proper embedding. We have a map ¢; :

Z;, \Vk_jl(Z(zo,zl)) — 2" \v"Y(Z(%, %)) such that ¢;'(H') = H} N (Z; \
Uk_jl(Z(Z(), z1)). SetY; = 7%, (Y;NX) and Y= W\VQI(Z(ZQ, z1)).
By the induction hypothesis we have that Y; is a proper subvariety of Y.
Since Y41 N ¢;'(Z(s;)) is the disjoint union (Y41 N Hy,) UY;, where s; is
the section that appears in the cﬁnstruction of Y;_y, it follows that ?j+1 N H,'cj
is locally complete intersection in Y;,,. Let x € Y ;43 N H, fc,-- Then there
exists a section ¢ in vf Opn(l) such that {(z) # 0 and ¢ = 0 on the irre-
ducible components of dx;.’l(Z (s;)) which do not intersect ¥ 41 N Hy . Like in
Lemma 29 we can find kj41 such that 77 |v;,,nx is a proper embedding in
ZE \Vigy, (Z (20, 21))-

This completes the proof of Theorem 8.

For the proof of Theorem 6 (i.e., the general case ¢ > 2}, there is only
one significant change one has to make: instead of two sections 50 and 81, one

considers g sections s, s1, . . . , 8,1 Which form a basis of H°(P?~1, Opq-1(1)).
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Chapter 3

The Pseudoconvex Case

In this chapter we prove the following

Theorem 30. Let X be a connected complex manifold of dimension n. Then

X is biholomorphic to a proper submanifold of P* x CV if and only if:

(i) X is holomorphically convez; we let f : X — Y be the Remmert reduction
of X

(i) there exists @ map 7 : X — P!

(ii) there ezists a C*° plurisubharmonic function 1 : Y — R such that
w = 108y + 70(Op (1)) > 0 (%)
where ¢ = o f.

3.1 Preliminaries

In this section we collect some known results needed for the proof of Theorem

30.




We will use the theory of Stein analytic spaces. For the results mentioned
here we refer the reader to the books of Gunning and Rossi [GuRo] and Grauert

and Remmert [GrRe].
Definition 31. Let (X, Ox) be an analytic space. X is holomorphically
convex if for all compact subsets K of X,

K ={z e X||f() < sup |1, ¥f € Ox}

s also compact.

Definition 32. Let (X, Ox) be an analytic space. X is a Stein space if:
(a) X has a‘countable topology
(b} X is holomorphically convex
(c) forz € X, there are f1, ..., fo € Ox such that rank,(f1, ..., fa) = dimtz X
(d) forz £y € X, there is f € Ox such that f(zx) # f(y).

Theorem 33. (Remmert reduction) For every holomorphically convex com-
plex space X there exists a Stein space Y and a proper holomorphic surjection
f: X—-Y such that the sheaf homomorphism Oy — f.Ox is an isomorphism.
The space Y and the map f are uniquely determined up to an isomorphism

and all the fibers of f are connected.

In general a Stein analytic space can not be properly embedded into an

affine space CV, the main obstruction being the dimension of the tangent space

34




at singular points. However, there is always a holomorphic homeomorphism
of a Stein space onto a subvariety of some CV.

Given a compact subset of a Stein analytic space, it is contained in an
Oka-Weil domain and therefore it can be embedded into an affine space {an
Oka-Weil domain in an analytic space is a relatively compact open subset
which is biholomorphic to a closed subvariety of the unit ball in an affine

space).

3.2 The necessity of the conditions

In this section we show that conditions (7), (i) and (i%¢) in Theorem 30 are
necessary conditions.

Let X be a proper submanifold of P! x C¥, It is obviously holomorphically
convex. Denote by p; and p, the projections on P! and CV. Denote by 7 the
restriction of p; to X. Let Z = py(X) which is an analytic subspace of C¥ by
the Proper Mapping Theorem. Let f : X — Y be the Remmert reduction of
X. There exists a holomorphic map h: Y — Z such that ho f = ps. Define
¥ = Ao h where ) is the C* function X : CN — R, A(z) = |2|2. Then clearly A
is plurisubharmonic and if ¢ = 1 o f then i30p = i89(A o ho f) = id3(\ o py)
s0 i00¢ + 1*i0(Op1(1)) > 0. We only have to prove that ¢ is C* on Y,
i.e., locally on Y, % is the restriction of a C*® function. Obviously A is a C™

function. Our assertion will follow from the following

Lemma 34. Let h : Y — Z be a holomorphic map between analytic spaces

and let A be a C* function on Z. Then o =XAoh isC® onY.
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Proof. It is a local problem, so we can assume that both ¥ and Z are biholo-
morphic to analytic subsets of the unit balls BN(O, 1) and By(0,1) in some
affine spaces C¥ and CM. We can assume that A is the restriction of a C*
function ). Consider the embedding ¥ — Y x Z given by y — (y, h(y)).
Then Y X Z is biholomorphic to an analytic subset of By(0, 1) x By (0, 1). .01‘1
Bn(0,1) x Bp(0, 1) consider the C* function X given by A(y, z) = X'(2). Then
obviously 1 is the restriction of Py through the above embedding ¥ — Y x Z.

3.3 The proof of the pseudoconvex case

Let X be a manifold as in Theorem 30. First we will show that any compact
subvariety of X is isomorphic to P! through =, and then we will use the
Remmert reduction theorem to construct a proper embedding into P* x C¥.

Let f: X — Y be the Remmert reduction of X.

In general a Stein analytic space can not be properly embedded into an
affine space C¥, the main obstruction being the dimension of the tangent space
at singular points. However, there is always a holomorphic homeomorphism
of a Stein space onto a subvariety of some CV. Let g: Y ~ C¥ be this map.

We can choose the function ¢ in Theorem 30 , (¢%) to be an exhaustion
function (replace ¥ with 4 ) o g where A is a suitable exhaustion function on
CV), and then condition () implies that ¢ is a 2-convex exhaustion function,
i.e. 100yp(zx) has at least n — 1 strictly positive eigenvalues for any x € X, so
X is a 2-complete manifold.

Let Y € X be a compact irreducible analytic subset of X. Then ¢y is
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constant (since ¢ is plurisubharmonic) and because 189¢(z). has at least 1 — 1
strictly positive eigenvalues, it follows that dim ¥ < 1.
The key result in proving Theorem 7 is the following Lemma, whose proof

can be found in Section 3.4:

Lemma 35. Let C be a curve, C C A" = {z € C"||2| < 1} such that
Sing(C) = {0} and let ¢ € C*°(A™,R) be a plurisubharmonic function such
that p|lc = 0. Then (i00p(0))*! = 0.

Let C' C X be a compact irreducible curve. Then ¢|¢ is constant and from
Lemma 35 above it follows that Sing(C) = #. Indeed, 0 < w" = (i0dp +
T0(O0p1 (1)) = (i08p)" 1 (i08¢ + nn*iO(Op1 (1)) so (105p) L 5 0.

Let €, Ca C X be compact irreducible curves, If €y N C, # @ then again
Lemma, 35 applies to show that C'y == Cy. In particular any connected analytic
subset of X is irreducible. |

Let ¢' C X be a compact irreducible curve and consider |c : C — PL.
Since |c is constant, from () it follows that d(w|¢)(z) # 0 for any z € C,
and therefore n|c : C' — P! is a covering map. Since P! is simply connected,
Tjg : C — P! is an isomorphism.

Consider the map 7 x f : X — P' x Y. Then f is injective. Indeed, the
firbres of f are connected and compact, therefore if f (z) = f(y) and z # y
then z,y € f~!(f(x)) which is a compact irreducible curve in X; but then
w(z) # w(y).

Moreover, condition (*) implies that m x f has maximal rank n everywhere
on X. Indeed, the problem is local on X, so let z € X such that so{z) # 0
where s9, 51 is a basis for H°(P, Op:(1)). On (P'\ {sy = 0}) X ¥ we have the
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C*™ function
: 2
(oo )

and condition (*) implies that {89y’ > 0 where 4/ is the pull back of the above

function y through 7 x f. The following Lemma implies that 7 x f has rank

non X.

Lemma 36. Let h : B,(0,1) — B,{0,1) be a holomorphic map and v a C*

Junction on B,,(0,1) such that +' == o h is strictly plurisubharmonic. Then

v has rank n at 0.

1 Proof. Let b = (hy,..., hy) and suppose rank dh(0) < n. Then there exists Fil |
E " (v1y...,vp) € C*\ {0} such that

6h

bkl | (U)Uk 0, Vi=1,m. - i ”

Now e

43 _ o2 Y 6h¢ aﬁj
100y = A Z (Z 0w OMD; Oz, 32;;) A2 A A2

k=1 \!l,j=1

and therefore

contradiction with the strict plurisubharmonicity of 4. N

Now let Y. = {y € Y|A(9(y)) < c} where A: C¥ — R, A(2) = [2|%. Then
since Y. is relatively compact in Y it can be embedded into some affine space
through g1, ..., g € H(Y,, Oy,). X

Put hy = giof,....,hayr = gyof. Then wx (hy, ..., hp) : X, — P xCM is an
embedding, where X, = {z € X|f(z) € Y.}. The functions k4, ..., har on X, |

38




can be uniformly approximated on compacts by global functions A/, ..., M €
H®(X, Ox). Therefore for any ¢ € R we can find Ry, ... By € HY(X, Ox) such
that 7 x (h{, ..., Aly) : X — P! X CM has rank 1 on X..

By means of category arguments (as in for instance [H3]) we will show
that the number of functions giving the embedding can be kept bounded by
2n + 1 and that there exists a map 7 x (B, ey hongr) : X — P! x Q201 of
rank 7 on X. For this we need the following fact: If X is g, compact subset in
a manifold Z and h: Z -+ W is a holomorphic map between manifolds such

that dimZ < dimW, then h(K) has measure 0 in W,

. Lemma 37. Ifh € H(X, Ox)M*+L M > on is such that m X h has rank n on
& compact subset of X, then one can find (a1, ...,ap) € CM arbitrarily close
to 0 such that m x (b — a1hriy1y oy By — apmhpryr) has rankn on K. In fact

this is true for all a € CM outside a set of measure 0.

Proof. We can assume that K is contained in one coordinate patch with co-
. ] .
ordinates (21, ..., 2,) and set hy = gg,ao = 0 since we can assume that K C

1
{s1 # 0}. The vector @ € CM has to be chosen so that if

- Oh; _ Ohmyt\ . . 0
kzﬂgl\k(azk aj-—-az’c )—O,j—O,M

at some point in K and some A € C* it follows that A = 0. With apryy = 1

and

_ = ahM+1
H= ; )\k'—“——azk
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this condition can be rephrased as: the equations

" . Ohy o
ZAkac-:uaj,g:O,M-l-l

. . . {Oh;
imply A = 0. Since the matrix (———’)

2k / j=0,M+1k=1,n
sufficient to choose a so that (0, ay,...,ap, 1) is not in the image of

C"x K 3 (\2) — (z,\k ) e CM+2,
Je=0 M1

First restrict A to [A| < I,1 = 1,2, ... the range of the above map composed
with

CM+2 5 (wo, ..., wary1) — (wi, ..., wy) € CM

is of measure 0 for M > 2n, hence it is possible to chose a € CM outside a set
of measure 0 such that 7 x (hy — a1hprps, ..., bag — aphary1) has rank n on K.

Lemma 38. The set of all h € HY(X,Ox)™ for which ™ x h does not have
rank n on X is of the first category if M > 2n (i.e., it is contained in the

union of countably many closed sets with no interior point).

Proof. Tt is sufficient to prove that for every compact set K of X the set My
of all h € H(X,Ox)M for which 7 x h does not have rank n on K is of
the first category. Clearly My is closed. It is sufficient to prdve that Mg
has no interior point. Choose some functions g1, ..., g, € HY(X, Ox) so that

X (91, ..., g-) has rank n on K. Apply Lemma 37 repeatedly to the map (A, 9)
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and conclude that for

Wy=hi+ Y apge,j=1,M
k=1

the map m x A’ has rank n on K for some a;; arbitrarily small. Therefore A’

is not in Mg so h is not an interior point of Myx. &

Now it is clear that m X (B, ..., hony1, go f) : X — PLx C?1+N i 4 proper

embedding.

3.4 A technical lemma

In this section we prove the following

Lemma 39. Let C be a curve, C C A" = {z € C"||z| < 1} such that
Sing(C) = {0} and let ¢ € C®(A™,R) be a plurisubharmonic function such
that plc = 0. Then (i608p(0))"~! = 0.

Proof. The fact that (i09¢(0))"~! = 0 means that i89¢(0) has two zero eigen-

values. Since C is singular at 0, we have three cases:

a) Two of the irreducible components of C at 0 are non-singular and they

intersect transversally. Then we can assume that the two irreducible compo-

nents are given by {2 = ... = 2, = 0} and {21 = 23 = ... = 2, = 0}.
Then obviously T (0) = & (0) = 0 and since ¢ is plurisubharmonic
321351 8212622 ’
& (0) == & (0) = 0 which implies (i89¢(0))*~! = 0
02102, 02207
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b) Two of the irreducible components of C at 0 are non-singular and they
are tangent. Then we can assume that the two irreducible components are
given by {z; = ... = 2, = 0} and {25 = 2%, ..., 2, = 27"C,} where 2 < p, =
oo = Pm < Pmy1 S ... < ppoand (..., ¢, are holomorphic functions of z

such that (2(0)...¢.(0) # 0. Set

1,0(:;1, ces ,zn) = go(zl, .. .,Zn) + (,O(Zl,zi'zcz — Za,.. .,zi’"cn — zn)

Then ¢ is a plurisubharmonic function, ¥(z,0,...,0) =0, ¥(z1, 2G, . . .,

2A4"(s) = 0 and

& ?_7'_,,_37(;
2p0Zq O2; B2

100 (2) = i0dp(z) + i Z 3 dz; A d3

Pyt g=1

where 7(z) = (11(2),...,7(2)) = (21, 4?2 — 22, ..., 4"y = 2,). Notice that

Py B
32182j (O - 63j821 (0) -

o, ar
For p > 2, -553(0) —d,; and 622 (0) = &;; and therefore

52 —
(p a'rp Qﬁ ' _
P.q%l; 1 32»‘,,324 82_7 (0) aZk (O)dzj A dzk =
or, T

(0) p(o) q(O dz: Adz =

m»«;k 1 32:063:; 0z; )dz; k=
Z 32 3- (0)dzp AdZ, =i Z 8 8z (0)dz, A dz, = i00(0).

P pa=1 q
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So 1009 (0) = 2iddp(0) and it is enough to prove that (i0dy(0))*! = 0.

Set

plt, 8) = @2, 29 ~ tzg — 8(z — 202(a), ..., 2 — b2, — 8(2n = 2"¢0)).

Then

#(0,0) = (21, ..., 25), u(1,0) = o(21,0,...,0) =0,

JU'(O# 1) = (P(zla zfzqh e 1'zlngn) - 0 J”'(]- 1) @(zls 2.’1 C2 2y zfnCn - zﬂ)-

Then

1 1-‘-r)‘-zﬁ(s,t)dsaht= Ou L, - (O,t) dt =
o Jo 0sOt ot

u(l, 1) = u(l,O) = (,U,(U, 1) - ”(0’ 0)) = u(1, 1) + M(Oy 0) = "/J(zla ve :zn)

and

au -y e _
%= D, )+ gy ()

j:
Pu = g .y
5ot -jzz: 5;;’5‘2; i (2, — 21%Ge) + Boi0 a2 (Z — 20 Ce)+

2 2
LGP i m 0 o s
5407, Zi(z — 27%() + 95:0%, Zi(Z — 205 ().
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Therefore

1 1 82
w(zla"':zn):'/ Bsgtdetz

k_zlka:)/ / 07 kdsdtﬁ-zj(zk— (jk)/ / 5.5 kdsdt—l— _
i

o _ =Pk i =
%(2 IC’“)/O/OszBEdedt+zJ (2o — 2 Ck/fazkazjdd

>zl — G + 2(3 — B4G) Bt

k=2

Zi (2 - 25 ) Bk + 25(8 — 250G agn

where i, A are C*° functions. Then for { > 2 and 2, = ... = 2, = 0 we

have

d? Ba _ 35
= 3%;/;1 = g Zkak 2 — peZp ™ G — 31 06 ﬁ;k ~ "’(k *.

Set 2y = z; in the above equatlon and then simplify it by 227}, Then let
z1 approach 0. We get Z: PiCe(0)Bu(0) = 0,1 > 2. On the other hand

paurs
& _ .
Bz,-r;‘bzk(o) = B3x(0) + B;(0) for j,k > 2 and

s o az Bz.07 VPG OPG(0) = D (Bix(0) + By (0))psC; (O)padi(0) =
3 Fole=2

Fhk=2
Zp,cj(o Zpkck (0)B5(0 +ijkck Zp,cj(o )Br; (0) =
k= j=2

Since ¢;(0) # 0, the above equality implies that i89v(0) has at least two zero

eigenvalues: one corresponding to (1,0,...,0), the other one to (0, p2(2(0),. . .,
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PmGm(0),9,...,0).

c) One of the irreducible components of C at 0 is singular at 0. Then we
can assume that C'is locally irreducible at 0. Let C* % ¢ be the normalization
of C' and assume that v is given locally by v(t) = (t7,1%2¢,, ..., tP"(,) where
¢2;-..,¢n are holomorphic functions such that (2(0)...¢a(0) # 0. Since C is
singular at 0, we can assume that 2 S <p<ps<...<p, <o0oand
P2 = qm +rwhere0<r<pj

Set 1ha(t) = pov(t) = p(t7, tr2g,, .. ., () = 0. Then

1 &y ", A% » _
— — i —PLEPR~P1 A1 7L
L=

dg; ‘
where (] = p;¢; +t-§1. Notice that ¢}(0) = p;¢;(0) # 0 for j = 1,2. If we

dt
2
let ¢ approach 0 in ¢ = 0 we get 83 ;; (0) =0. We want to show that
21021
¢ o) =0
62'2322 T

Let I'(p} be the class of all C* functions which can be written as a sum of

functions of the form:

Aa‘g O I/(t)tat_ﬁgac—ﬁ

where o, 8 € {0,p,p+1,...},if @ = B then @ = B # pand {4 = 1. Then

clearly
2

Fo -
B2, 22 T o

Py =

where hy,..p, € T'(pg — py).
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If hpy—sps € I'(p2 — sp1), 8 < g, then one can show that

1 Ol
gt gop © Lz (et hp)

By induction we get

8299 £1—qP1 FP2—qp1 9.4
Y Bz e T e =0

where Ry, g € T(p2 — gp1), (3(0) #£ 0 and pp = gp; + 7,0 <7 < p;. In
2
gtg% = ( take t = f then divide the equation by t*"1) then let ¢t — 0. It
2

s
that = (.
follows tha 5207 (0)=0. n
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