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Abstract of the Dissertation
A New Construction of Anti-self-dual 4-Manifolds

by

Dan Moraru

Doctor of Philosophy

in

Mathematics

Stony Brook University

2004

This dissertation describes a new construction of anti-self-dual metrics
on four-manifolds. These metrics are characterized by the property that

their twistor spaces project as affine line bundles over surfaces.

To any affine bundle with the appropriate sheaf of local translations we
associate a solution of a second order partial differential equations sys-
tem D3V = 0 on a 5-dimensional manifold Y. The solution V and its
differential completely determine an anti-self-dual conformal structure
on an open set in {V = 0}. This generalizes a previous construction of

hyperkihler metrics introduced by Lindstrém and Rocek.

We show how our construction applies in the specific case of confor-

mal structures for which the twistor space Z has dim \H%«K z| > 2,
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projecting thus over CIPy with twistor lines mapping onto plane con-

i ics. We give the precise form of the differential equations D3V = 0 on

the space of conics and we construct defining functions V' for standard

examples of metrics in this family.

v




B

Inviitorilor Cornelia si Ioan Opris




Contents

Acknowledgements

1 Introductory Remarks

2 General Construction

2.1 Classical Construction

3 Examples

........................

3.1 Generalized Legendre Transform Revisited . . . .. .. ... . .

3.2 Space of Plane Conics

Bibliography

........................

vi

vii

10
10
I3
17

39
39
46

63




Acknowledgements

This thesis would not have been possible without the support, advice and patience

of all the ones who guided me in my quest,

The first on this list is my advisor, Claude LeBrun, who has led me through

many interesting areas of geometry, patiently waiting for me to choose the ones
»  that most interested me. He has taught me mathematics and above all, how to do

mathematics. I have learned a lot under his guidance, and I have also enjoyed it.

The teachings and encouragement of Sorin Popescu have also contributed greatly,
and were much appreciated. We had many interesting conversations regarding this
thesis, and other mathematical and non-mathematical subjects.

I am grateful to Martin Ro¢ek for useful discussions concerning his work on
hyperkihler metrics,

A special “thank you” is due to my former mathematics professors in Romania,
especially Petre Simion, who started me on this trip almost 20 years ago.

I would also like to thank my friends for their support throughout these years,
in Stony Brook, Ionut, Ioana, Rares, Olga, Rodrigo, and at home in Romania or
around the world Méria, Adi, Nicu, Donatela and Toni.

[ thank you my relatives, for being always close to me at least in heart if not in

person,




]
&

Chapter 1

Introductory Remarks

The present work provides an explicit construction of a family of anti-self-dual
conformal structures on four manifolds. In this introductory chapter we collect the
basic definitions and results on anti-self-dual manifolds and their twistor spaces and

we sketch the structure of this paper.

1.0.1

The choice of a conformal class of metrics on an oriented 4-dimensional mani-
fold induces a splitting of the bundle of 2-forms into self-dual and anti-self-dual

2-forms;

A2 = At @A~

In consequence the curvature operator R splits into

=0

Wi+
R =

=30

Wo + 5




£

where W, and W_ are the self-dual and respectively anti-self-dual components of

the Weyl curvature. By definition, a metric is anti-self-dual if W, vanishes.

Twistor theory founded by Penrose [20] relates the study of anti-self-dual met-
rics to 3-dimensional complex geometry. The natural settings for this theory involve

conformal classes of complex-riemannian four-manifolds.

Definition 1.0.1. Let X be a complex manifold. A complex-riemannian metric g on

X is a holomorphic section of ©*T*X which is non-degenerate at any point.

In local complex coordinates a complex-riemannian metric can be written as

g= Z giidztdz?

with g;; holomorphic functions, det(g;;) # 0.

Such metrics arise naturally as analytic continuations of real-analytic pseudo-
riemannian metrics and conversely, real metrics are obtained by restricting to the
fixed-point set of an anti-holomorphic involution (complex conjugation) ¢ : X —s
X satisfying a*g = §.

Two complex-riemannian metrics g and § are conformally equivalent if there
exits a non-vanishing holomorphic function f such that h = f - g.

In contrast to the real case, for an arbitrary chosen complex manifold the ex-
istence of a complex-riemannian metric is not automatic. This fact switches our

interest to locally defined conformal equivalence classes of metrics.

Definition 1.0.2. A holomorphic conformal structure on X is a holomorphic line
subbundle & of O*T*X such that any non-vanishing local section in & is a local

complex-riemannian metric. Such a section is called a local representative metric




of the conformal structure.

A holomorphic tangent vector v is null with respect to the conformal structure
® if g(v, v) = 0 for any local metric g in . All null vectors in 7, X are forming the
null cone at x ¢ X. By projectivization of the null cone at every point we obtain
a holomorphic bundle H £, of nonsingular quadrics in P(7X) which determines
uniquely the confonnz{rlsesfructure,

We will assume in the following that dimcX = 4. In this case 2, is a quadric
in P(7,X) = IP%, s0 we obtain two families of null 2-planes in 7, X, namely the a-
planes and the 3-planes. The distinction between the two can be made by the choice
of an orientation on X, which in complex-riemannian settings amounts precisely to
an orthogonal direct sum decomposition of two forms into self-dual and anti-self-
dual. An «-plane will be a null plane whose second exterior power is self~-dual
(similarly for a f-plane).

The distinction can be expressed also in relation to the locally defined Spin

bundles ST = ©4 and S~ = 0*". We will henceforth assume that X admits a spin

structure. In terms of the formula
TX =St®$S~

a null vector is given by a simple product v44" = w474, An a-plane will be a

plane of the form w4 ® S~ with w? € §*\{0} fixed, while a B-plane is of the form

St @ 74’ with 74" € §7\{0} fixed [20].




1.0.2

A maximal totally geodesic isotropic surface in X whose tangent space at any point
is an c-plane is called an a-surface.

The family of a-planes associated to a conformal structure is integrable if for
any z € X and for any o-plane in T, X there exists an a-surface with the given
tangent space at . In terms of curvature, the family of a-planes is integrable if and
only if_ the oriented conformal structure is anti-self-dual [20, 2].

Under these conditions, one defines Z - the twistor space of X - as the space of
a-surfaces. Let F = (S, ) denote the projective spin bundle. It can be proved [2]

that Z is a 3-dimensional complex manifold such that 1 in the double fibration

f

Z X (1.1

is a holomorphic map of maximal rank. Here u naturally associates to a projective
class [w4] € P(S;),, the a-surface through z with tangent space w? ® S™.

For any fixed point » € X, the set of a-surfaces through z will form a complex
twistor line L, & P; with normal bundle Ny z = Op, (1) & Op, (1).

We also point out the existence on Z of a naturally defined line bundle O z(—1)
of autoparallel tangent spinors, obtained as the direct image through 4 of the uni-
versal bundle on F = IP(S,). Following [17], one obtains this way a fourth root

of the canonical bundle of Z. The notation derives from the fact that Oz (1) re-

stricts with degree —1 on the twistor lines. Even though the twistor space can be




——

constructed without assuming that X is spin, the existence [2] of the O z(—1) line

bundle requires and is in fact equivalent to this condition.

1.0.3

One important aspect of this construction is that it is reversible [20]. Suppose
that we start with Z a complex 3-manifold containing a rational curve [, = [Py
with normal bundle N;, = Op, (1) & O, (1). We have that H*(L, Nz) = 0 and
HY(L, N1) & C4, so, following Kodaira’s work [12], L belongs to a locally com-

plete family F = H L, of lines in Z parametrized by a complex 4-dimensional
zeX
manifold X with tangent space T, X canonically isomorphic to H°(L,, Nr,.). Note

that H'(L, End(N.}) = 0, so the normal bundle Ny, is infinitesimally rigid [13]
and thus we can assume that the normal bundle of any of the deformed lines 7, is
still isomorphic to Op, (1) & Op, (1).

Let Kz denote the canonical bundle of Z. The adjunction formula gives us that
the restriction of Kz to the line L is Kz, 2 Op, (—4) so there exists at least locally
(on a neighborhood of L) a fourth root line bundle K ;'/* whose restriction to L is
Op,(1). Let S; = H(Ly, K5'/*) and S = H(L,, Ny, ® KY*). The Kiinneth

isomorphism
HO(Ly, Np) & HY( Ly, K3YY @ HO(L,, Ny, @ KYY

determines the conformal structure on X. The null vectors at z are given by those
sections in H®(L,, N, ) that vanish somewhere on L,. The twistor space core-
sponding to this conformal structure on X will be in general a neighborhood of the

line L in Z.




1.0.4

In order to recover the differential geometry of X from the holomorphic structure
of Z one has to study the double fibration (1.1). This way one obtains the Penrose
correspondence between holomorphic objects on 2 and conformal properties of X.

First thing to observe is that a biholomorphism of Z corresponds to a conformal
isometry of X, so any holomorphic vector field on Z relates to a conformal Killing
field on X.

A more subtle but extremely important occurrence of the Penrose correspon-
dence is the relation between the cohomology of Oz(m) = Kgm/ 1 and solutions
of conformally invariant differential equations on X (see [7]). Let ST and §7 de-

note the m-th symmetric powers of the spin bundles. Let
D : T(ST) — T(ST '@ S..)
be the Dirac operator and
Dy : T(ST) — (ST @ S.)

be the Penrose twistor operator. These can be defined by composing the Rieman-

nian connection of a metric in the conformal class

ViT(ST) — D(ST @ T*X) = [(ST ® S_ ®84)




with the projections in the decomposition:

ST®S_®8, =B7"'eS.)o (ST es)
In local coordinates

il
Dyy5,..5, = Vg 5

and
Dthn,..B, = Vite,..om)
Form =10
1
Dy =V*V + ER

will denote the conformal Laplacian acting on scalars. Then one has:

Theorem 1.0.3. /7] For any m > 0,

HY(Z,0z(m)) = KerD,,

and

HY(Z,0z(—m —2)) = KerD,,

1.0.5

Sections 2.1 and 2.2 of our paper include descriptions of two constructions that

provided the motivation for our work. We describe the classical construction of

anti-self-dual metrics admitting an S1-symmetry, with the twistor space given as




the total space of a ¢; = 0 line bundle over a complex surface. We also review the
generalized Legendre transform construction of hyperkéhler metrics for which the
standard holomorphic projection £ — CIP; factorizes through the line bundle (O(4)
over CIPy.

Section 2.3 contains a general method of producing anti-self-dual complex con-
formal structures on certain hypersurfaces in the space Y of deformations of ratio-
nal curves embedded with normal bundle O(4} in a complex surface S. Any affine
line bundle & — & with the appropriate sheaf of local translations determines a
solutions of a second order differential equations system 3V = 0 on Y. Any so-
lution V' defines a complex conformal structure on an open set in (V' == 0} with the
twistor space given by the total space of £. The resulting metrics are characterized
by the fact that they admit Killing spinors of valence (3,1), i.e. non-zero sections

¥ € T'(S. @ S_) satisfying the equation:
A B
VEA BC)‘D) =0

In Section 3.1 we prove that our construction is indeed an extension of the gen-
eralized Legendre transform.

In Section 3.2 we show how our method applies to the case where the twistor
space projects over CIPy with twistor lines mapping onto plane conics. The result-

ing conformal structures live on hypersurfaces in the space of nondegenerate plane

conics Y = {4 = (a;)ocsj<2 : A = A*,det A = 1}. We show that any solution

i
[
i
!
i
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V(A) of the differential system

8 2
AV:(Tmce (Aa—A—)) V-V=0

8 \?2
I:le(A-a—A) V=0

8 0 _ (1} 0
defines such a metric. Here 64~ \2" " aay ),
efines such a metric. Here 54 denotes the operator A (2(1 + diz) 30@';:')@

We also construct the defining functions V' (A) for the standard metrics on 94 and

CP,.




Chapter 2 i

General Construction |

In this chapter we will describe a method of constructing anti-self-dual conformal

structures admitting Killing spinors, i.e. non-zero sections ¢ € ['(ST ® S_) satis-

fying the equation:

A, B
ng wBl)...Bm) =0

We start by reviewing the case m = 1 and then the hyperkéhler case.

2.1 Classical Construction

Our entire work will be guided by the construction of anti-self-dual conformal

stractures from a 3-dimensional Einstein-Weyl geometry. We will just summa-
rize here the basic ideas. For more details and specific applications one can see !_

[9, 19, 11, 16].

One starts with a complex 3-manifold Y endowed with a conformal structure

[~] and a torsion-free affine connection D satisfying the compatibility condition:

Dh=-2v@h




for some 1-form v and the curvature constraint on R;; - the Ricci tensor of ID:

Rig) = My

for some function A. The minitwistor space of (Y, [h], D) is the complex surface
S of totally geodesic null hypersurfaces in Y. For any point y € Y, the surfaces
passing through y define a rational curve ' C 8 of self-intersection 2,

As.in the anti-self-dual 4-dimensional case, this construction is reversible [9].
Starting with any complex surface S containing a self-intersection 2 rational curve
(', we get an Einstein-Weyl structure on the space of deformations of C'in S,

The next ingredient in the construction is a holomorphic line bundle £ on § with
vanishing Chern class. The total space Z of the line bundle £ can play the role of
the twistor space of an anti-self-dual conformal structure. To see this, we need to
produceha family of lines in 2 with normal bundle O(1) & O(1). -

The vanishing of ¢;(£) makes the restriction of £ to rational curves in § trivial.
The normal bundle in Z of any holomorphic section C = o(C), ¢ € HC, € o)

will be determined by an extension on C:
0— &g — O'*Na,lz ~+ Neys — 0

where we implicitly use that the normal bundle of Cin& | can be identified through
a* with &|¢ .

The extension class will associate to any curve C' a value in

Hl(oa Né’ ® 8'0) = Hl(]Pl: O(_2)) =C




&

defining thus a function V on Y. As long as V' # 0, the normal bundle of Cis
Ng =2 O(1) @ O(1), so indeed the total space of & is a twistor space with the
twistor lines given by holomorphic sections C.

Another way of recovering the function V' is through the Penrose correspon-
dence by regarding £ as an element of H(S,©). This approach is particularly

useful in proving that V' is not an arbitrary function. It has to satisfy the equation
dx(d+v)V =0 (2.1)

where * denotes the Hodge operator on Y. This will allow us to think of F' =
#(d + v)V as the curvature of a circle bundle X = Y and write 7*F' = df, with §
a connection 1-form.
The anti-self-dual conformal structure we are looking for will live on X and
will be éiven by
g=m(V - h)+V1.9°

An important example is obtained by starting with the complex euclidean 3-
space and its coresponding minitwistor space S = TP;. Equation (2.1) becomes

AV = 0, so one can use the harmonic function

where r; are distance functions from & + 1 fixed points in C°. The resulting confor-
mal classes will contain the gravitational multi-instantons metrics of Gibbons and

Hawking [6].

12




2.2 Generalized Legendre Transform

Another construction that plays an important role in our work is the generalized
Legendre transform introduced by Lindstrém and Ro&ek in [18].

Its main purpose is describing hyperkihler (anti-self-dual, Ricci flat) metrics
with twistor space admitting a holomorphic projection onto line bundles over Py.

This method was successfully used in [10} and [4] to obtain information on
the Dy, ALF hyperkihler metrics proved to exist by Kronheimer [14, 15] and to
construct explicit formulas for 13, ALF hyperkihler metrics.

We will briefly record here the main features of this construction.

First we will recall that the hyperkihler condition on the metric has important
repercussions at twistor space level. Given a 4-dimensional riemannian manifold
(X,g) with W, = 0and r = 0, the S* and A" bundles are flat, so there exists a
holomorphic projection p : 2 — [Py with fibers diffeomorphic to X. Any ¢ € P,
determines a parallel complex structure /(¢) on X 2 p~1({), so the metric g is
Kihler with respect to each of them.

The hyperkihler condition also implies the existence of a holomorphic section
w of A*T(2), a twisted two-form along the fibers of p whose restriction defines
the holomorphic symplectic structure on each fiber. Determining w is always an
important step in recovering the metric g from the twistor space.

The generalized Legendre transform deals with the case where the holomorphic
projection p : Z — [Py factors through an even degree line bundle over Py, We are

mainly interested in the case of degree 4.

13




The antipodal map on Py induces a complex conjugation on the space of holo-
morphic sections of O(4). Starting with an affine cover {U, U} of P; with local
coordinates {¢,C} related by ¢ = ¢~ on U N T, a "real” section (invariant to the

complex conjugation) is given by a pair {n, 7} consisting of
n(¢) = 2+ v +w® — 5¢* + #(*

a polynomial of degree 4 with w € R and 7({) = ¢~5(¢).
We will use () as a coordinate on X, holomorphic with respect to 1({). A
second holomorphic coordinate {y,x} will be defined such that the holomorphic

two-form w is given by
w(¢) = dn Ady = {*dij A di

This implies that the relation between x and % amounts to defining a function

f(n,¢) and a contour C in P, such that

X X f
X e = jf 2ac+ ¢ Ld
foat= § g+ f eac
From f one defines G such that G /8y = f/¢% and then the function of coeffi-

cients of 5(¢):
F(z,0,1,5,72) = — jf ) 4 2.2)
c

(:2

14




Notice that F trivially satisfies the system of differential equations

Fow = Fip ——Fz'ﬁ:Fvw
Foz = —Fup Fuz = Fop

FzEZ_Fvi:Fww

where the subscripts denote partial derivatives.

(2.3)

The generalized Legendre transform produces a formula for the Kiihler potential

K = K(z,%,u,%) in terms of F'. It is obtained by imposing the constraint 7, = 0

and then performing a Legendre transform with respect to v and ¥:

K(z,2,u,2) = F(z,v,w,0,2) —vu— 04, u=F,, 4= F;

(2.4)

For future use, we will write here the expression of the metric in the nonholo-

morphic coordinates z, Z, v, 7 modulo the restriction to the hypersurface F,, = 0,

Let F denote the matrix of partial derivatives:

Fv'u Fvw Fm“)
F = Fww Fww Fw-ﬁ

Fﬁ‘u Ffﬁm Fﬁ’
and G its inverse:
Gv’v va G'm_)
Fl=Q= CQwe e wd
Gr'uv G’Ew GE'E

15




Differentiating the constraints in (2.4) gives

(@ (v v 2) 72 (5 £ n)
(@ (v v 2)P--5i (5 5 n)
(5 v 5= (0o
@ v e)) 7= (0 0)

Using these relations we get the following formulas for the components of the

metric in terms of second derivatives of F"

v -
r K’ 0 e G'U'U
“ S
Ov Y
K'u.z k'a_z — Z ] FgaGa
ac{v,w,7}
Kz;y: = Fzz - Z anGabez
a,bE{v,w,0}

Following [4] the expression of the metric can be simplified to:

ds® = % (d2dz + (adz + Bdu)(Gdz + Pda)) (2.5)
where
Z Fo@G® g =Y (2.6)
ac{v,wa}

We want to emphasize here that the main components in this construction are the
function f (or equivalently G) and the contour (' in (2.2) which define the transition

from x to %. By carefully choosing these elements one obtains important examples

16




of hyperkihler metrics of type Dy.

2.3 Affine Line Bundles as Twistor Spaces

In trying to extend these constructions we will look for anti-self-dual metrics with

twistor spaces that project as affine line bundle over surfaces.

2.3.1

Let A denote the group of affine transformations of C, 2 — az + b, a # 0. It

projects onto the group of rotations C*, with kernel the group of translations C:
0->C—-»ALC 1 (2.7)

Given a complex manifold &, let As denote the sheaf of germs of A-valued
holomorphic function on S. A holomorphic affine line bundle £ over & is a fiber
bundle with fiber C and transition functions given by local sections of As.

Let such an affine line bundle £ be given by transition functions 2; = a4;2; + by
with respect to a certain cover (U;), of §. Using the surjective map p in (2.7),
we can naturally associate to £ an isomorphism class of line bundles [£] = p(€)
represented by the transition functions {a;}.

On the other hand, if we choose a fixed line bundle £ € [£], we can obtain any

affine line bundle £ with p(&) = [£] in the following way. Let

0-L5MSO0—-0 (2.8)

17




T

be an extension of the trivial line bundle through £ and define £ = 7~'(1). We
can choose local trivializations on M such that in coordinates ¢(z) = (z,0) and
m(z,w) = w. With respect to these local frames, the transition functions of M are

of the form

where a;; define £, while b;; are arbitrary. The restriction of the linear transfor-
mations g;; to £ = 7~ 1(1) are just the affine transition functions z; — Gij 25 + by
Notice that under this description, £ acts upon £ through local translations.

The space of equivalence classes of extensions (2.8) can be identified with

HY(S, L). Recall that two extensions

0 L M O 0

are equivalent if there exists an isomorphism M — M’ making the above diagram
commultative,

Thus, fixing a line bundle £, the space of affine bundles with translation sheaf
isomorphic to £, equipped with a fixed isomorphism to £, is given by H(S, £).
The element 0 € H*(S, £) coresponds to the trivial extension in (2.8) and this gen-

erates an improper affine bundle £ equivalent to £ with the trivial affine structure.

18




£,

2.3.2

We will restrict from now on to the case of a complex surface S. We choose a fixed
line bundle £ on & such that H(8, £) # 0and £ € H'(S, £) — {0} a proper affine
bundle with the sheaf of local translations equal to £.

Let also ' C & be a rational curve of self-intersection n. ¢ belongs to a
family of curves parametrized by a (n + 1)-dimensional manifold 'Y such that T,Y
is canonically isomorphic to H°(C,, Ng,). We are mainly interested in a local
construction and the Op, (n) line bundle is infinitesimally rigid, so we can assume
that Ne, = Op, (n) for every curve in the family.

By restricting to a neighborhood of C'in & we can also assume the existence of
a line bundle Og(1) = KS_"+r2 on & whose restriction to C' has degree 1. We will
write Og(k) = @*Os(1).

Using this we can define on 'Y the equivalent of Spin bundles on a 4-manifold,
that is an SL(2,C) bundle S with fiber S, = H°(C,, O(1)). We will also use the
alternative notation S = @4, This bundle comes naturally equipped with a skew-
symmetric, complex bilinear forme = € 4, given on each fiber S, = H %(C,, 01)
by

e(l,1) = (s + 1", 1"s 4 1"4) = 101 — 1y°

The form £4p provides a natural isomorphism between S = @4 and its dual S* =
O 4 and will be used repeatedly in raising and lowering indices.

The holomorphic tangent bundle on Y can then be written as the n-th symmetric
power of S:

Y = Sym"S

19




We notice here the existence of a nondegenerate symmetric bilinear form ¢ on F‘

T'Y that will play a role in our construction. In ”spinorial” notations: i

Qmv) =n*"" yap p {

2.3.3

We want to investigate the possibility of presenting the total space of the affine line h
bundle £ as the desired twistor space with twistor lines given by sections @, of the

restrictions &g, ,y € Y.

There are two conditions on & to be satisfied, these sections need to exist and “i
to have normal bundle O(1) @& O(1). We will address first the second restriction. i
Notice that the normal bundle of a presumptive section 5?, in& |0y can be identified i
with £L|g,, so the isomorphism class of the normal bundle of 5y in the total space

Z of £ will be determined by an extension on C,:
0— L'.loy — N5y|3 — NC‘,y|8 —0 (29)

To get at least the right degree, we need to impose the condition deg(£|s,) = 2-n,
so we will naturally choose £ = Og(2 — n).

This makes the existence of sections in £ |e, no longer automatic for n > 4, In
this case, by fixing a consistent isomorphism K¢, = Os(—2)|¢, forany y € Y,
we have

HYC,, L) = HY(C,, Ko, ® Os(4 — n)) = €™

so by restricting £ to C,, for any y € Y we get a function V : Y — Cr3

20




well defined up to a multiplicative constant. Notice that the zero set of V' does not

depend on the above chosen isomorphism.

The affine bundle €|, needs to be improper (isomorphic to £L|c, ) for a section
5y to exist and this condition defines precisely the 4-dimensional subvariety {V =
0} € Y. For any z with V(z) = 0 we have £]¢, = £ = Op, (2 —n), so there exists

exactly one section C,; of £|¢,, namely the zero section.

2.3.4

In addition to the equation V'(z) = 0 that insures the existence of the cross section
53, of €|, we need to make sure that the normal bundle to C, given by the ex-
tension (2.9) is the desired O(1) ¢ O(1). We will concentrate on the special case
n = 4 which interests us the most and we will express the necessary and sufficient
conditions in terms of the defining function V : Y — C.

In this case the isomorphism class of the normal bundle N is determined by

the extension class of
0— ﬁlcm i Naw - Ngm — 0 (210)
as an element in

HI(C_T, Ném ®£) :HD(Om,Nom RLY® KC)*
=H%(Cy, No, ® 05(2) ® Os(~2))°
:HO(OmiNOm)*

—T*Y

21




Following [19] we will prove:

Lemma 2.3.1. At any point x € Y with V(z) = O the extension class of (2.10) is
determined by the restriction of £ to the first formal neighborhood of C,, and with

respect to the above identity it is given by dV, € TXY.

It 7 denotes the ideal sheaf of holomorphic functions on § vanishing on C;, we have
the exact sequence

0—I/T? — Os/T% > Op, — 0

with Z/Z? = N¢,_ the conormal bundle and Og/T? = (’)(013 the sheaf of holomor-
phic functions on the first formal neighborhood of C, in 8. After tensoring with

Os(—2) we get the long exact sequence:

0 — HYC, N5 (-2) 5 HY G, 09(-2)) 5 HY(Ch 00,(-2))

dv — EIC‘n(;l) — Elo, =0

Here ¢ is an isomorphism onto the kernel of 7 that maps dV to £| o as long as

V(z)=0.

Proof of 2.3.1. Let (U;)ier be a covering of S, ((;, w;) coordinates on U; such
that our curve C; is defined by w; = 0 and let the transition functions of £ on
U; N Uj be z; = ay; - z; + by;. We can assume that b;;((;,0) = 0 as we have that
Ele, = Os(—2)|¢,. The restriction of £ to the first formal neighborhood of €, will

then be given by %(Cj, 0).
J

: , 9 - :
At the same time, computing modulo % and then restricting to the zero section
i
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C,, we have that

Bay; Bb,;

6zj 0z Bwj 8’tUj ' 3’11);.;
g  Oby 5
=a4(¢;,0) - 50 a—,wj(CJ)U) Fw,
so the transition matrix of Ny on U; N U; N C,, will be
Db
a5 ((,0)
Ay (G, 0) = B,
0 Bu; (¢, 0)
. . . . Obi;
and so indeed the extension class of (2.10) is also given by %(Cj, 0). |
J

2.3.5

Over P, any vector bundle splits as a sum of line bundles, so the normal bundle

defined by (2.10) will have the form

Naw = O]Ebl (a’) ® OP1 (b)

with -2 < a,b < 4 and a + b = 2. The only possibilities are: Op, (1) © Op, (1),
Op, & Op,(2), Op,(—1) ® Op,(3) and the trivial extension Op, (—2) & Op, (4). We
will investigate them case by case.

The trivial extension coresponds to dV,, = 0, while in all the other cases the
isomorphism class of Ng_is determined by the projective point [dV;] € PT}Y.

If N5 = O(1) & O(1), then the map N5 — N, in (2.10) is given by a pair
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of sections f, g € H%(C,, Os(3)|c,) with disjoint sets of roots.

The extension class of (2.10) can be identified in this case with the lincar map

H%(C;, N¢g,) — C given by the integral

7
— f = 2.11
" Af_g @.11)

along a path -y that separates the roots of f and g.

The case Ng, & O(-1) @ O(3) follows the same pattern, but this time with
f € HY(Cy, Os(5)|g,) and g € H(C,, Os(1)|c,), while in the Ng 20 0(2)
case we have f € H(C,, Os(4)|c,) and g € HO(Cy, Os(2)]c,).

The distinction becomes much clearer when expressed in terms of the bilinear

symmetric form

Qm ) = PP apep

Invariantly, ¢ is the unique quadratic form vanishing on sections 77 € H Oy, Ney)
admitting a triple zero.

In the Ny = O(-1) ® O(3) case the kernel of (2.11)is {g-¢q : ¢ €
H(Cy, Os(3)|c,)} for some g € HO(C,, Ds(1)|e,) and its orthogonal comple-
ment with respect to @) is just the line generated by g* € H°(C,, Os(4)|c,). This

implies that the set of extension classes for which Ny 2 O(—1) @ O(3) is a com-
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pletely determined rational normal curve A, in PT*Y,
If we write in coordinates dV (1) = Vagopn™®P“P, we have that [dV,] € A, if

and only if there exists a nonzero gA € S, such that Vi popg? = 0. Thus

V€A, o rank Voooo Vooor Voot Vo 1

Vooor Voorr Vorrn Vi

& eV popVerer = 0

Following a similar approach one can also verify that Ng = O OQ2)if
and only if [dV;] € %, — A,, where T, denotes the secant variety of A,. In this
case kerdV, = {f-c+g-q:c € C,q € HC,,05(2)|c,)} for some fixed
f & HY O, Os(4)|c,} and g € HO(Cy, Os(2)]c,).

Its orthogonal complement with respect to () is given by the span{gt, g5) N f+
for some decomposition g = g1g, with g; € H°(C,, Os(1)|c,). This implies that
indeed, as f and g vary, [dV,] covers the secant variety 3.

Writing as before in coordinates:

Voooo  Vooor  Vooia
[dVal € Zo & Voo Voorr Vou| =0
Voou Voin Vi

This analysis gives us the following

Proposition 2.3.2. The normal bundle of C,, in Z is:
O-2)pOM4) ifdV, =0
O(=1) B O3) if dV,, # 0 and [dV,] € A,
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ODOQ2)ifdV, # 0and [dV;] € Z, — A,
O(1) ® O(1) otherwise.

2.3.6

This result on the normal bundle N &, lets us conclude that the four-dimensional

manifold

X={zeY:V()=0,dV, #0, [dV,] € T,}

comes equipped with a natural anti-self-dual conformal structure [g]. In order to
completely describe this structure, we need to specify the null cone in each tangent
space.

Following our previous discussion, for each € X we have a pair of sections

frge H VO(C’m, Os(3)|c,) with no common roots such that
TEX = kerde - {f ' ll +g ' lz : l],lz = HO(OMOS(:[”G&)}

A tangent vector n = f - I; + g - I3 will be null with respect to [g], if [; and [, vanish
at the same point on C,,.

The conformal structure is in fact completely determined by dV'. The differen-
tial defines a map dV# : Sym3S — S* whose kernel consists of 2 € Sym*S such
that# -l € kerdV forany! € S.

Writing in coordinates, if dV () = Vagopn? 2P, then

ker dv# = {h N VABGDhBGD = 0}
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and we can see that it has dimension two as long as
AE
e"*VapeoVerar # 0

This condition is satisfied under our hypothesis because it means precisely {dV,] &
A

The null cone of [g] will then be given by

kerdV#.S={n=~h-1:heckerdV¥ (eS8}

2.3.7

We will give a better description of the conformal class [g] by showing that it is the
restriction to X of a conformal structure defined on the 5 dimensional manifold Y.

We will construct in fact a family of symmetric bilinear forms ® on'Y such that
they vanish on the null cone of [g] in T'X = ker dV. These forms will differ from
each other by multiples of dV,

We will then show that as long as [dV,]| & £,, a generic bilinear form @ in
this family is nondegenerate on 7Y, defining thus an actual conformal structure
on a neighborhood of y € Y. So for any point z € X we will obtain a family of
conformal structures on a neighborhood of z in Y which equal [g] when restricted

to X.




Let R € Sym?(Sym?S*) denote the image of dV' € Sym?!S* through
SymiS* —  AY(SymiSH) S Sym?(Sym?S*)

D CG.DH
Vapep — ePEVuponVerer — 2%CcPPViponVeran

We define then the symmetric bilinear form & € Sym?(Sym4S*) on Y as
B anon”™ O = ~Rapopy R + 8,50 Ropy ™ + Riap'Y fopy™

This formula is not unique. It can be modified by any term of the form

EFGH _

Lagep = = (VapepW"™ M - WapepVEFeH)

[

with W & Sym?s,

Continuing to write our formulas in spinorial indices can become cumbersome
at this moment, so we will temporarily change the notations as follows. A tangent
vector 77 to Y is a homogeneous polynomial of degree 4 in two variables n =
Mo st4ne 8%+ ms e sHE Ly - st 4o - 21 IE AV () = 3 Vimy we will denote

by o the determinant;
Vi Vo Vs

o=1Va Vs V4
Vs Vi W
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iiva V3 V)
and by 4y, ..., 6 the minors in

Vo Vs Vi W5
51LV1 V2,5QZV1 V3,§3=V1V4
Va V3 Vo Vy Va Vs
Vo Vi Vo Vi Vs V.
5 |2 3,(55= > 4,66: 3 Vi
Vi Vy Vs Vs Vi Vs

In these coordinates V' belongs to the rational normal curve A if and only if
d; = 0,V4, while ¢ = 0 characterizes the points for which dV lies on the secant
#  variety Y.

The components of £ & Sym?(Sym?S*) are

Roooo = 281, Rovor = 82, Ror11 = 5, Rury = 265

Roo11 == 83 — 4, Royo1 = 234

and this makes our previous choice of a family of quadratic forms equivalent to

S(n,m) =811 -+ 616403 + 83m5 -+ Sadem? + 622
+ 0182m17 + S384mpans + S405mans + S58a1ams
+ (85 — 26085)mms + (62 — 26406)nams (2.12)
+84(83 — Sa)mama + (03 + 65 — 26285)m7s

+ (62(03 — 64) — 8165)mma 4 (85 (63 — 64) — G206 )21




with the ambiguity given by
Tw(mn) = Vin: > Wi

Claim 1. Any quadratic form in the family & + I'yy vanishes on the null cone of

| [a].

We will verify this through a direct computation. Let i be a vector in the null
cone of [g]. We can write 5 = h - [ with % in the kernel of du# and if we expand

h==hy- 8+ hg- 5%+ hg - st2 + hy - £° this condition implies

ki = &hy+&hstdshy = 0
ky = —&ihy +d4hg+ ke = 0O
ks = dghy +684he —dghy = 0
ky = dshy+6shy +shs = 0O

On the other hand one can verity, using the relation §155 — 8285 + 9384 = 0, that the

following identity holds for any n = h -1 € Sym3S - §:

ds + 0.
&(n,m) =k ((h152 + hab1)l} + by 2 —; 45152)

03 4 04

—ky ((h151 ~ habp)1% + (h1by — hads — hy Maly + B3

03 + 04

—F3 (h4f54l§ + (hybs — hods — hg Yalo + (hyfs — h254)l§>

b3+
+ky (m 3;’ 451l2+(h354+h455)£§)

and so & and the whole family & -+ 'y vanish on ker du# - S &

30




b

' Claim 2. Given any point y € Y such that [dV,] & X, (or equivalently o # 0), the ;
! i
i set of nondegenerate quadratic forms coresponding to :
ﬁ [
I

|

Tis

{We Sym’LS; : & + ol'w is nondegenerate on 7Y, }

18 open, non-empty. | }l

'!i\}

i

Again a direct computation gives: l

det(® + ol'yw) = 20° (S Wi Ws + S5 WaWs + 8 W1 W + 8, Wa Wy + 6 W Wi I

i

— SsWiWiy + (85 — 84) WaWy — 5, Wa W H

!

— 863 — 6sW3 — W + 65 Wa — (03 + 60)Wa + 8 Wy — 64) i

Thus & + oT'w is nondegenerate as long as o # 0 and W avoids an algebraically i‘

/|

closed subset in Sym*S;. ' & E'

The defining function V' plays a central role throughout the entire construction. In H

the following we will see that V' is not an arbitrary function on Y} it has to satisfy |{

a certain second order partial differential equations system. I

This type of information on V' can be obtained through studying the double 1

i

|

1
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fibration:

/N

where 7' = {(s,y) € § x Y|s € C,}. The fibration F % Y in (2.13) is just

(2.13)

the projectivization of the dual bundle S* = @,4. We want to understand the rela-
tion between the space of classes of equivalence of affine line bundles with a fixed
sheaf of local translations on S and families of sections in bundles over Y. More
precisely we want to express the elements of H'(S, Ogs(—2)) as solutions of dif-
ferential equations on sections in tensorial powers of S. This is possible due to the
relatively simple topology of the fibers of 4 and v.

The first goal is to pull-back the cohomology H*(S, Os(—2)) from S to F.
We will denote by 1~ 10s(—2)) the topological pull-back of Og( ;2), the sheaf of
germs of sections in the bundle p*Og(—2) that are locally constant along the fibres
of u.

As long as we assume that the fibres of 4 in (2.13) are connected and simply

connected and p is surjective of maximal rank, a result of Buchdahl [3] guaraniees

that the canonical morphism

HY(S,05(~2)) — H'(F,u ' 0s(-2))

is an isomorphism.
The next step is to understand the interpretation of H(F, p*Og(~2)) down

on Y. To do this we need to write a resolution of 4 ~1Og(—2) on F, such that we
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are able to compute the direct images through v of all the sheaves involved.

We define the sheaf of germs of relative holomorphic 1-forms 0, as the quotient
u*Qé%Q}aQL—rO

and the relative k-forms as

B ___ akpl
QF = AFQL

Locally they are just k-forms along the fibers of p, parametrized by the variables
transverse to the fibers. We also define the sheaf of y*(Og(—2)-valued relative k-

forms as

04(—2) = O @ ' Os(—2)

The exterior differentiation naturally restricts to a differentiation along the fibers
operator d, : QF - Q&1 This operator annihilates the transition functions of
1" Os{—2), so we obtain also an extension d, : 5 (—2) — Q+1(-2).

Using again the fact that 4 is of maximal rank, we obtain the needed resolution

of 4~ 10s(—2), the relative de Rham exact sequence on JF:

0 5 0s(~2) B O(-2) B Ql(—2) B a2(-2) B 03(—2) & a4(-2) = 0
= 17 O0s(=2) 5 Qu(-2) 5 Q(=2) B Qu(-2) 5 0(-2) = A (-2) —
The hypercohomology spectral sequence associated to this resohation

B = HY(F, Q(=2)) = H™"(F, 17 Os(-2)) (2.14)

will compute the desired cohomology group.

On the other hand, the fibers of v are rational curves, so all the direct images
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Rev, (QF (—2)) vanish for s > 2 and are coherent sheaves, even locally free for
s = 0,1. If' Y is sufficiently topologically simple - in our local problems Y can be
assumed Stein - then the Leray spectral sequence assures us that the only non-zero

entries in (2.14) are
HY(F, Q0 (-2)) = H(Y, v (2%(~2)))

and

HY(F, Qn(-2)) = HY(Y, Rlu*(ﬂﬁ(—Q)))

In order to compute these we need to express 027 (—2) in terms of pull-backs of

bundles from S and 'Y commonly denoted
Ou.58(k) =v'04 5@ p*Os(k)

We notice first that

2, = Ql/u'0}

fits into

0—)N*-—>1/*Q%{—>Q}L—>O

where A™* is the conormal bundle of F in & x Y. The left part of this sequence is

just the tautological embedding

0— O(—4) — Oanep)
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SO we get

Q= Owpoy(1)

By taking exterior powers

@ = A (Oupey(1)) = 0(2) © Oapeny(2)

We have then:
v (0 (—2)) =0 R'v,((-2)) =0
v, (§2,(—2)) =0 Ry (24(-2)) =0
e(Q25(—2)) =0 & O(ancpy Rlv*(Qﬁ(—Z)) =0

In the end, the E}"? term in the spectral sequence (2.14) is

q
0 0 0
H(Y,0)| 0 0
0 0 | H(Y,O® Oupcn))
?

10

H'(S,05(—2)) 2 ker Dy : H(Y,0) — H(Y,0 ® Oapon))

for a second order differential operator 5. This gives us the equation DV = 0
satisfied by the function V' previously defined. The precise form of Dy depends on

the particular geometry of the 5-manifold Y,
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2.3.9

The purpose of this subsection is to understand the nature of anti-setf-dual con-
formal structures with twistor space projecting as affine bundles over surfaces. As
before, let & be a complex surface, C' C S a rational curve of self-intersection 4,
L = Os(—2) aline bundle on S with £ = Kg and Z %, S the total space of an
affine bundle £ € H(S, £).

The exact sequence:
0—p'0s(-2) = TZ - p'TS -0

gives

Kz 2 p"Ks @ p'Os(2) = p*Os(—4)

s0 we cah write as expected
p*Os(1) = K3 = 05(1)

The embedding of the vertical bundle O z(—2) into the tangent bundle of Z will
give us a non-vanishing section ¥ of TZ ® Oz(2). We need to understand the
implications this has on the ASD conformal structure.

We will recall first [17] the description of the holomorphic tangent bundle on the
twistor space in terms of bundles of solutions to conformally invariant differential
equations. For a € Z an a-sutface, the fiber of O z(—1) at « consists of autoparallel
spinors along o

wAVAAfu)B =0
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One also defines the rank 3 Jacobi-spinor bundle & — Z with fiber at v given

by the equation:

waVAA ZB) — (2.15)

where w4 is an autoparallel spinor along «. With this notations the holomorphic

tangent bundle to £ is given by
TZ >~ ¢® 0z(1)

A tangent vector v € T, 2 defines a Jacobi vector field J24' along « (as long as
we choose a foliation through null geodesics) and this produces a Jacobi-spinor
through 74" — JA%w,. This clearly depends on the autoparallel spinor w4 and
ends up defining the aforementioned isomorphism.

A non-vanishing global section ¥ of T2 ® 0z(2) = ¢ ® O 2(3) will define a
non-zero section ¢ € I'(S} @ S_) such that 74" = A" 4B, o is a Jacobi-

spinor, so

! f
wAVA(A 'th )BGDwaOwD =0

for any autoparallel w. Thus
Wawpwowp VAA GBIBED _ g
s0 9 satisfies the Killing equation:
Vi Ypap) =0 (2.16)

Reciprocally, any non-trivial solution of (2.16) determines an z(2)-valued
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vector field on the twistor space Z. The projection along its flow exhibits Z lo-
cally as an affine line bundle over the factor space S with the twistor lines mapping

over rational curves with normal bundle ©(4) in S.
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Chapter 3

Examples

3.1 Generalized Legendre Transform Revisited

*We will show in this section how the generalized Legendre transform fits in our

settings and then prove that our approach gives the correct conformal class.

The role of the complex surface S will be played by the total space’of the O(4)
bundle over Py, so the 5-dimensional manifolds Y is just the linear space of sections
n € HO(Py, O4)) = C5n = ny +myC -+ 13C? + nu® + ns¢t. By n we will denote
either the coordinate in the fiber of O(4), a section in H O(Py, O(4)) or a tangent
vector to Y == C5, the difference being clear from the context.

To keep consistency with the notations in [10] we choose a cohomology class

in H'(S, Og(~2)) with Cech representative f(n, ¢)/¢* on ¢ # 0, 00 and define

o _ 1 00
VH_FW_Qm'é ¢? a6

We obtain a holomorphic function on 'Y, solution of the system of second order
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Vig = Vos

Vos = Vay Vag = Vi (3.1)

Vis = Vg = Vi

The subscripts denote partial derivatives: Vi=0V/dn, Via = O*V /0B and so
on. We will-also continue using the notations introduced in (2.3.7.

By restricting the quadratic form & (2.12) to the 4-dimensional manifold X =
{V = F, = 0} we can obtain a formula for the complex conformal class g in terms
of the 7, 2, 74, 75 coordinates only. The elimination of 73 is done by imposing in

2.12) the linear dependence dV = 0. A straightforward computation gives:

Ve = (~ViVad -+ (Vid + Vis)?) o + (V26164 — (Vi — Vada) Vads) 173
+ (—ViVadady + (Va6 — Vada)Vady + 2(Vady + Vi04) Vady) mums

+ (— V3 V5485 - (Vadg — Vibs)Vads + 2(Vadg + Veds) Vada) nams

+ (Vi6as — (Vads — Vada)Vibs) mf + (—VaVié2 + (Vade -+ Vida)?)

( ~VaVids + Vii6s — Vi04)8s + (2Vady — Vads) (Vady + 1[/154)) 7174

+ ((—VaVads + Vidss — Vi264)65 + (2Vaby — Vada) (Veda -+ Vads)) mans
+ (2VaViby + Vi (8a — 64) — Va(Vada + Vads)) Samamy
+ (—VaVeo3 + V83 - ViVad2 + ViVeo? + (V2 + ViV4)42

+ 2VaV5d104 — 2'{/325265 + 2‘/1{/35456) Mns



l

. gt
Using repeatedly the relations g'w! |
|

l.

Vil Vidy <Vaby Vb — Vads ~Vidy b

Vads -+ Vidy =V,ds Vads — Viéy =136

trivially derived from the matricial equality

1 il

iVo W5 b —ds Oy V
1

Va V3 V) = —05 O3+ 44 &y

Vo Vi Vs 0y dp 4y

we can simplify the above formula to:

Vi'g = — 81(damn + dumz)? — b6 (Batpa + F5ms)*

+ (2V3Vidy + V2(63 — 8,) — Va(Vida + Vads)) -

(Samama + Somma + d57275)
+ (~VaVsbs + V202 — ViVao2 + ViVid2 + (85 — 6, + 2VaVy)82

+ 2Va V50164 - 2Vi26565 + 2V1Vab4de ) mms
For the last stubborn coefficients !

(3.2) ,
VéO' :6156 - 62 :

41 (.




give:

2VaVybs + Vi (85 — 84) — Va(Vady + Vads) =
2VoVibs + Vi (85 — 84) — V(83 + 64) + Vao =

while

V105 + Vady = Va(ds + 64) Vads + Vda = Vi(ds + ds)

helps simplify the m 7 coefficient:

— VaVs8h + Vi85 — ViVabi + Vi Vid =
V262 + ViVsd] — VaVi(ds + 64) + 05 (Vi V5 + Vi) =
— 6264 — 2VaVibsby -+ 0305 1 8a85(85 — b4 + 2VaVy) =

(8205 — 8304) (03 — 84 + 2VaV4) = 018(03 — 64 + 2V4 V)

We also notice that

2Va V6104 — 2V38505 + 2V  Vabubs =
2 (2610486 + V{0104 + V£ 6166 — (Vaby + Vada)(Vals + Vb)) =

4515455 - 21/2‘/4(5156 + éﬁ)
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so we end up with the relatively simple expression:

V2g = — 8, (Fam + 64m2)* — 86(0ana + 8575)°
+ (8106 + 63) (641274 + S + S57ms) (3.3)

+ (4616486 + (8105 + 63) (63 — 64)) o

The antipodal map on CIP; induces on Y a natural complex conjugation with a

real slice given by:
YR:{WEYan:ﬁ5:z, ?72:——77'}4:1), nqzweR}

By restricting to Y, V becomes a real valued real analytic function and the

minors d; satisfy

Ve Vo| & Ve Vo -
Jdg, 69 = 4

E".1: = U, U2 = = —Us
Vi Va Vo —Vs
V; _Vﬁ Vv Vm

dy = ER, by = ceR
Vv Vf Vw —‘/ﬁ

The restriction of (3.3) to Xgr = X N Y gives then the following formula for the

anti-self-dual conformal class in terms of the coordinates z, z, v,

1 — —_
g=‘?ﬂ&@w+&MV+&@ﬁ+%@V

+ (8151 + 67) (8adzdD + SydudZ + S4dvd?) (3.4)

- (4518154 + (5151 -+ 52)(53 — 54)) dZdZ)
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We will show next that the hyperkihler metric obtained through the Legendre

transform (2.4) belongs to this conformal class.

The partial derivatives matrix IF and its inverse G can be expressed in terms of

dV = dF,, using the PDE system (2.3) satisfied by [:

(Fvv Fvw Fvﬁ V,;: % _'V'w
]F: va Fww F’wf} - Vv V’w VE (35)

G=1aw gmw g [=F"'=21 5 514 s (3.6)

—04 3o 91

\ G'E"v G'E‘w G‘Uﬁ

— 2 Vi
( Gre Gw eLc [ 5‘“1 52 _ 54
The coefficients «, 2 in the formula for the hyperkihler metric (2.5) become:
1 )
= ;(Vzﬁz — Vb1 — Fiuby), 8= ;4
Also, using again (2.3), we can write:
du = dF, = Fydz + V,dv + Vydw — V,,dp — Vedz

S0

adz + Bdu =

Q=

((Vada ~ Vib1)dz + 6,(Vidv + Viydaw — V,di — Vidz))
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The linear dependence dV = 0 eliminates dw to give:

aww+ﬂmm@=&@m+m@m+ﬁm+&@@ (3.7)

hence the metric becomes:

1
g8

ds® =

PN

dzdZ + (adz + Bdu) - (adz + ,ﬁdu))

1
0'541/;3

(o*Videdz + (818adz + 8udv 1 5245 + yigd).

(Babadz + Sy -+ ba3rdv + 5y5,07)

h 0'641/1,_2,

(a2vjdzdz + 8y8a(818, + 62)ddz
+ 846, ((520}2 -+ §4dv)2 + 5451(52d§ + (54d5)2
-+ 8y (5151 -+ é‘g) (52dzdﬁ + Sgd’udz -+ 5403’()0517))

But squaring (3.2) gives

J2V£ =(51(§1 - 542)2
=(6:5) + 82)% - 46,5,62

= — 820(8181 + 67) — 64 (4618184 + (5,8, + 3)(85 — d4))

and thus we indeed verified that the hyperkihler metric ds? belongs to the conformal

family [g] defined by (3.4).
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3.2 Space of Plane Conics

We will illustrate in detail how the general construction described in Section 2.3
works when the twistor space projects as an affine line bundle over the ptrojective
plane. More precisely, let S be the complement of a finite set in CP; and let Y be
the space of nondegenerate plane conics sitting in S. We can identify 'Y as an open

set in

SL(3,C)/SO(3, C) = {A = (aij)ogi’jgg . A= At, det A = 1}

Indeed, any conic is defined by a unique symmetric matrix A of determinant [
through the equation z- A- 2* = 0, where z = [2¢ ; 2 : 29] denote the homogeneous
coordinates on CIP;. An element g € SL(3, C) acts naturally on symmetric matrices
A — g+ A ¢" and the stabilizer of the identity is SO(3, C).

We will consider the affine bundles £ over S C CIP; coresponding to the tauto-
logical Op, (—1}). This line bundle restricts to any conic with degree —2, so it plays
the role of £ from the previous sections. Any cohomology class in H!(S, Op, (1))
defines through integration a holomorphic function on Y.

We want to determine the precise form of the system of differential equations
D,V = 0 satisfied by all these functions V. From the general case we know that
D, is a second degree operator with values in the SL(2, C) bundle © & Oapopy =
O @ T*Y and of course we expect it to be SL(3, C) invariant. We will determine

Dy, by constructing a sufficiently large family of solutions.
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3.2.1

Let § = Clp, [1:0:0] with the acyclic covering 74 - {U1, Uy}, where U; =
(71 # 0) and U, = (22 # 0). A cohomology class in HYS, Op,(~1)) will be
determined by a holomorphic function J on Uy N U, homogeneous of degree —1.,
In order to integrate [ along a conic (4 = 0} we need to construct a consistent
isomorphism K4 = Op,(—1)|4. In practice this is done by choosing an Op,(1)-

valued 1-form # satisfying
ONdA = 29dz A dzy — z1dzy A dzy + zadzy A dzy (3.8)

namely
0 - Z1d22 — ngzl _ *200522 -+ szZo _ Zodzl — Zle{l
= .- &£ el —_— T =T —_

Az A A,
Using the fact that dAl4 = 0 we deduce that the restriction of 9 to any conic
is uniquely determined by equation (3.8), so ¢ coherently defines an “integration
along conics” that will associate to any element in H1(S, Op,( —1}) a solution of
DV =0.
We will consider first the “baby case” of integrating fy(z) = % along the
standard conic (2§ + 22 + 22 = 0) coresponding {0 A = Id. This will reduce to

computing a contour integral fg =2 .9 along a path that separates the pair of points
2129

21 = 0 on the conic from the pair z; = 0,

Zg=0

¢ — plane
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In affine coordinates (z, z, 1) on Uy the conic is given by (#+4+1=0)

and can be 2 : 1 parameterized by:

The contour integral would become:

_Z()_e_% 2D __C_iﬁ _ 4 dz1 C2‘1 .
2129 N 2129 220 B 2 C CQ + 1
3.2.2

We will extend this computation to a general conic (A = 0) showing that the solu-

tion of Dyu, = 0 coresponding to the cohomology class fi(z) = 20 is
z

Vi(d) =

oo

up to multiplying with —s4, This solution is of course defined on the space Y of
conics not passing through [1 : 0 : 0], |

In order to parametrize a general conic we will use the fact that any symmetric
matrix can be written as the product of an upper triangular matrix with its transpose.

Thus, given a conic (A = 0), let

a1 Qs ag
N = 0 bl by
0 0 Cy

48




such that

det N =Tand N. Nt = A-1, (3.9)

This will determine 2 2 ; 1 map from CP; onto the conic:
(20,21, 20)" = N - (% — 12, 28, (s -+ ) (3.10)

where [s : ¢] denote homogeneous coordinates on CP,.

With respect to this parametrization we have

2182y — 29dz

f = A

= i(tds — sdt)

80, restricting to the affine chart (¢ = 1):

i) = _‘9_ j{ -ZO(S) z'ds-12m~a—1=ﬁ
21 %9 (S)ch (82 + 1) blcl ago

In all of these computations we repeatedly used condition (3.9). The difference

in sign between the above result and the "baby case” comes from changing the

integration contour to enclose the pair of points (2 = 0), instead of {2, = 0).
Through similar computations we can obtain other solutions of the equation

p
D,V = 0 coresponding to the cohomology classes given by fo(2) = —«fL on

g
Ul M UQZ
e e P
Vo(d) = o= ) (-1t aty b
00 k=0 2k -+ 1

where we denote by B = (b;,) = A~! the inverse matrix of A, so in particular

49

- .




522 = Qoo — agl. We will use:

2mia
Qg
e
Va(A) =—(3af, — by} = (4%1 ao0di1)
Lo agy
s
Also by integrating g,(z) = ;g? along conics we can get another series of
122
solutions
by P
Wo(A) =mi(p + 1) == ) (—1)pHeH aby k!
%00 325 2k+1
L p+1
+7sz Z( Lypteet aby ok,
2k+1
of which we are most interested in
2mq
Wa(A) = —-(4agra03 — agars)
aoo

3.2.3

However, solutions of a more interesting flavor can be obtained by using f(z) =

1
- In this case we end up with an elliptic integral that evaluates a period of
Y 2122 P
the elliptic curve realized as a ramified cover branched at the four points (z; =
0), (22 == 0) on the conic. We will write this as a function of the cross-ratio A of the
given points,

Using parametrization (3.10) and fixing a Mobius transform that takes (2 = 0)
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to (0,1) and (2, = 0) to (A, 00), we can express A in terms of the matrix A

L % + % \/bbl‘lf@ (3.11)
and we can compute
Vi{4) tj{ \/zll—zz 0= éj{ V(T4 1) —C;bls) cer(s? 1 1)
Zm L I(A)
with
1) = ﬁ£ NEE :118)(8 myy -
3.24

Our main goal in performing these computations is to determine the second degree
operator 1)z on the space of conics such that D,V = 0 for any f.

We will verify directly that a plausible candidate is the pair (A, 0) given by

2
A = (Tmce (A . %)) —1 (3.13)
and
9, d
D:a-/l-gz (3.14)
with
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Explicitly

oV
AV E a%, + E a.,:,ak; Bak; -V
”.5'

i<y (RN

and

o*V *V PV

ooV =005 + ag1=—— — + 4 ==+
o 80 T ™ Bagydan; % Bagedans

Vv 1 8V 1 9% oV

+“— 118 2 + —*—8%16%2 + ZGQQBEOQ;— + 2“8&—00
LoV :laoo oV + am__aif/_ -+ lamﬂ_
2 aaooaa.gl 8&008&11 8&008&.12
1 oV 1 v 1 o2V
+Za01 80,0160,01 2 (9(101(90,11 4 867,01 8&12 +
1 PV 1 v 1 *V oV
+Z o2 8&02 8@01 2 8(102 80,11 4 5@0280,]_2 5@71

with all the other entries obtained through cyclical permutations.

These verifications are just a prelude to a proof that (A, [J) are indeed the right

operators.

We will start with V,(A4) = i We have
200

o, 92 1
= _ —_—— = O
e (am Jagn o 6aoo) (Gno) aoo

b2 j 1
ooV = (a " Qaaoo) (“) N

. . . . o
and all the other entries vanish as there are no more terms involving only G
06
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a .
For V5(A) = a—gl— the only possibly non-zero entries are;
a0

6 d 82 82 aol a
AVy = (ﬂoom + oy g + aﬁom + 2a00001 ) (—") — =0

2 2
01 56&000«01 oo ang

and

82 8 8 a o
o (aooaago o Bago Oaor * 36100) (ago)

1 8 8 8 aol
D = —_— =
01‘/2 ( oo 8&00 80.01 + Bagl ) (ago) 0

Similar computations show that V3(A) and Wo(A) are solutions of (A, ().

3.2.5

In order to prove that
1
(Drobog)i/4

is also a solution of (3.13) and (3.14) we will have (o use repeatedly the Picard-

Vi(4) = T

Fuchs equation [5] satisfied by I(A):

2
A(,\—1)%é+(2/\ 1)—+ I—O (3.15)

We will also use MAPLE to get:

1 ago { Goo bp 1 )
OV = ——nr 00 I" - Jy
ooV 4(by1bge) /4 bzz (4511522 Vbiiby 4

= L _ "o _ ,_-1 _
= s (- - @-nr-1) <o
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and so on.

3.2.6
As aresult of these rather lengthy computations we get the following:

Proposition 3.2.1, Let S be the complement of a finite set in CPy and Y the space
of nondegenerate plane conics sitting in S. Then integration along conics gives an
isomorphism

HY(S, Op,(—1)) = KerA N Kerll

where /\ and [] are the second order operators on’'Y

a 2
AN = (Tmce (A - 52)) —1
- (3.16)

P 2
o= (a2)

Proof, Following the discussion in (2.3.8) we need to verify that, at 2-jet level, the
kernel of (A, ) coincides with the space of 2-jets of functions obtained through
integration along conics V(A) = (A = 0, w}. Given the equivariance of the two
operators, it is enough to verify this claim in Ay = Id € Y.

The space of 2-jets at the identity on the space of determinant 1 symmetric

matrices is
JAgoY = (I,dag-j,daéjdakg <4,k < l)/(z Giiy Qi Z%‘)

We notice that Kerl] intersects (3" ay;, a5; 3 as;) along (O ai — 23 ai)?
and this is not included in KerA., We obtain that KerA 1 Ker(l N J2Y is 15
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dimensional so our proof would be complete if we exhibit 15 linearly independent

elements in 72 Y given as 2-jets of functions obtained through integration which
are also solutions of (A, [7).
These are:
* 1 — day; + 2(day)? coresponding to functions of type Vi;
® da;; — 2dagdag;, i # § from functions of type V5;
* 2 — day — dag; -+ 2dayda; - 8(day)2, i # 7 from V; - vy
® dai; — 2dagda;; — ddagdag, {i, j, k} = {1,2, 3},4 < j from W, type integrals,
N

3.2.7

A natural question we will answer next is: What are the defining féatures of anti-
self-dual metrics on hypersurfaces in the space of plane conics, corresponding to
solutions of (3.16)?

We notice that the line bundle p*Op, (1) defining the projection Z > CP, of
the twistor space over the projective plane coincides with the square root of the

anticanonical bundle of Z.
P*Op, (1) = 0z(2) = K;/* (3.17)

We deduce that any metric emerging from our construction admits a net of fin-
damental divisors:
> 2 (3.18)

1
dim |~=K
1m 2 =
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Through Penrose correspondence, such divisors are in bijection with self-dual 2-

forms w € D(81) = T'(A") satisfying the Penrose twistor equation Daw = 0 or
equivalently

Vw = dw

Following [21] we deduce that our conformal class contains a 2-sphere of Kihler,
scalar flat metrics.

Conversely, the existence of a 3-dimensional space of fundamental divisors im-
plies the existence of a map Z -2+ CP; as above, with p*Op, (1) = Kgl/ ?_ There
are two mutually exclusive cases to be considered. Either the image of p lies on a
curve in CPq, or, by shrinking Z if necessary, we can assume that the differential

’ D« is of maximal rank on 2,

In the first case, using that X g” %1, &2 Op, (2) we deduce that the image of p can

only be a plane conic, thus p becomes a map £ — I given by the linear system

K ;;1/ *, so the conformal class contains a locally hyperkihler metric.

In the second case, the exact sequence
0—kerp, - TZ — p"TCPy — 0

gives

kerp, = (Kz) ™ @ p*Kp, = p*Op,(—1) = K}/

s0 Z can be seen as an affine bundle over CIP, with translation sheaf Op,(—1) and
thus, excluding the hyperk#hler case, any conformal structure satisfying (3,18) can

be obtained through our construction.
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3.2.8

We remark here that any anti-self-dual metric with positive scalar curvature on §4,
CP,, CP,:CP, and CP, £ CP,#CP, satisfies the condition (3.18), so it can be
obtained from appropriate solutions of (3.16).

Indeed, assuming that the anti-self-dual manifold X is compact, the Euler char-

acteristic of K 51/ ? can be expressed in terms of the signature of X [8]:
XY = 2(5 4 )

Moreover, Hitchin’s vanishing theorem [7] shows that /7 HZ, Kgl/ *) = 0 un-
der the positive scalar curvature assumption, so as long as 7x > —3 the space of
fundamental divisors is at least 4 dimensional.

We will show next how the standard metric on §* and the Fubini-Study metric
on CF, adapt to our construction. In both cases the coresponding solutions 1 of
(3.16) will not be unique, as they depend on the choice of a 3-dimensional subspace
of HO(Z, K713,

For the conformally flat case, the twistor space is £ = CPy with canonical
bundle Ky = Ogp,(—4), so the map CP; -2 CP, will be given by a choice of

three linearly independent quadrics on CPs, say

Z) =TpTy

2 2

i =Ty + 5
2

Zy =xy + a:§
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A vertical section ¥ € T'Z @ 0z(2) = TCIP3(2) can be written as

0

with W, (2} homogeneous polynomials of degree 3 satisfying

330‘1’1 + mllllg =0
oWy + 29Uy =()

IEI‘Ifl + .513‘3\1/3 =0

and so, up to a multiplicative constant we have

‘ 7, . O 9
U = zozorg—0- — T1ToTy o= — Ty m— + T Tg-—
33’:0 8:121 T 81‘3

In order to define a cohomology class representing an affine line bundle we
need to restrict to neighborhoods of a fixed twistor line and of the coresponding
plane conic, We will choose the line L, = (z2 = x5 = 0) projecting over Ay =
(28 = 2129).

Given any plane conic A close to Ay the function V(A) will measure the ob-
struction for A to be the image of a twistor line close to Lg. V(A) will then be given

by a contour integral on A

V(A) = j{t(za,zl,zg)ﬂ

where the function t(20, 21, 22) is the “distance” between the planes x5 = 0 and

#3 = 0 along the fiber p~!([2y, 21, 2]). This distance function is given implicitly
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by the equation

dr

E{ = ‘Ij(m)

which, using the fiber constraints, can be simplified to

dﬂ;[] ] z{‘]?
o = Xon/ &5 — & 29 — —
dt 0 z3

Substituting 7 = z2 we get:

ooz = L [ dr
t(zo, 21, 20) = ——— .
O T 2 VT2 — 1) (T — 22/ %)

* In the case of the Fubini-Study metric on CIPy, the twistor space is known to be

the flag manifold of points on lines in CIP,
2 .

Z ={(z,y) € CPy x CP} : z € y} = {([w:], [t]) € CP, x CP} : Zmi@ﬂ = 0}
i=0

The canonical bundle is the restriction to Z of the line bundle on CPy x CP% of
bidegree (2, —2), thus K;/Q = O(1,1)|z, so the map Z 2, CIPy can be chosen

of the form

1
20 =ZoY
2
2 =y
) =$2’yo

defined on the complement of three points in Z.

A section ¥ € TZ @ K32 can be written as an O(1, 1) valued vector field on
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CPy x CIP§ vanishing on 23 + 19" + 2oy Let

0 0
U= Z\];fﬁ-(m,y)é; + Z:(Imﬂ(a:,y)a—yI

with W;(z,y) = Uz’ € O(2,1) and Bz, y) = $¥ziy? € O(1,2). Notice
i LY
that U is symmetric only in its upper indices, while ® in its lower ones. The

condition that ¥ vanishes on 2y + 219! + 2932 is equivalent to
K, okt L okl g gtk

The condition that ¥ is tangent to the fibers of p imposes further linear restric-

“tions on the coefficients Ul and ®FF . After solving this system of linear equations,

modulo the Euler vector 3 2; -2 — ¢/i-2

B By and up to a multiplicative constant, we

get to the unique

3]
1
v o (g v ) +
T — — Qi +
Loy 1(%1 By?
1y 28:52 Y By
The equations
dmi d ¢
0 = lp%(m;y) v - (I)l(x:y)

dt
determining the vertical distance function ¢(zp, 21, 23) can then be reduced to

drg  ToZs dry scgsclz dry  T1Z9
_— —zl _— 2 —_—
dt X dt o dt )

0
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where z; are constrained by

Under the natural substitution g —

become:

Xo o5 Tg
At et —a =0
Lo To g

Tg Eo

da 1 1
E = Z0Z12y (“E - E)
db 1 1
I (z - a)
dc 1 1
4 = Ra (a - 3)

witha + 6+ ¢ = 0 and abc = 2072129,

Eliminating b and ¢ we end up with

Recall that the Fubini-Study conformal class is given by the family of twistor

lines

Ly ={(z,y) € Z:2€l,mey)

indexed by pairs (m, 1) € CP; x CIP; with m ¢ 1. We will restrict to the neighbor-

hoods of the line Ly = (g = x4, yp = y1) and of its image through p, that is the

double line Ay = (zp = 25).

d
E? = vat — dazgz 29

Notice that the fiber p~ (29, 21, 2,) intersects g =

61
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—2g, b= —zyand c = =22 the equations
x

o at @ = 29 and yy = ¥, at




@ = 2o so the vertical distance function between 2y = x5 and Yo = ¥y 18

“ da
t(20, 21, 22) :/ 7
w Vo —4dazgzzg

A solution of (3.16) will be obtained by integrating ¢(zy, 24, %) on appropriate

contours on plane conics close to Ap.
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