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Abstract of the Dissertation
Normal Subgroups of the Symplectomorphism Group
by !

Mark Harry Barsamian
Doctor of Philosophy
in
- Mathematics
State University of New York at Stony Brook
2002

This thesis considers the group of symplectomorphisms of 2n-dimensional Euclidean
space, a subgroup of the group of volume-preserving diffeomorphisms. Symplectomor-
phisms in this group can be generated by time-dependent Hamiltonian functions and,
in the thesis, sub-collections of Hamiltonian functions are investigated as sources of
normal subgroups of symplectomorphisms. An extension of the Hofer norm is intro-
duced, and is used to show that some of these subgroups are proper subgroups. As the
main result, this extended Hofer norm is used to show that another, rather unusual
subgroup is also a proper subgroup. The result is interesting because a similarly-
constructed subgroup of the group of volume-preserving diffeormorphisms has been
shown to not be a proper subgroup in the cases where n is greater than or equal to
2. So the result distinguishes the structure of the group of gymplectomorphisms from

that of the group of volume-preserving diffeomorphisms.
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Chapter 1

Hamiltonian Symplectomorphisms

and subgroups of Symp (RQ”, wo)

1.1 Introduction and Notation

In this paper, we discuss the symplectomorphisms of R*", denoted Symp (R*™), This
set is the subset of the set diffeomorphisms, Dif f (R*), consisting of those that
preserve the standard symplectic form, wy = 3 5, dz; A dys. That is, ¢ € Dif f (R**)
such that ¢*wy = wg. Since w? is a volume form, any such ¢ will be an element of the
set of volume-preserving diffeomorphisms, Dif fo (R*"), as well. With the operation
of composition, each of the three sets we have mentioned is a group, and we have
the sequence of subgroups, Symp (B2, wy) < Dif foa (R*) < Diff (R%"). These

are topological groups, with the compact-open topology. We begin by considering

symplectomorphisms generated by functions.




Hamiltonian Hamiltonian Hamiltonian Hamiltonian
Junctions with |- vector fields with ﬂ). isotopies with |Lydsymplectomorphisms
COmMpact SUpport compact support compact support with compact support

Figure 1.1: generation of symplectomorphisms from Hamiltonion functions
L)

1.2 Hamiltonian Symplectomorphisms of Compact
Support

Let C be the vector space of all compactly supported smooth maps H : R** x [0,1] —
R. Cis called the set of compactly supported (time dependent) Hamiltonian functions.
Such a function generates a Hamiltonian Symplectomorphism via the sequence shown

in Fig. 1.1 and whose maps and spaces are explained below.

map a. For a Hamiltonian function H, we define the associated Hamiltonian vector
field, X, by the equation ¢ (X) wy = d(Hy). That Xf is well-defined depends on
the non-degeneracy of wy. Note that if H is time-dependent, then X7 will be, as
well, Such an X will automatically be a symplectic vector field (meaning simply
that ¢ (X{{ ) wy is closed). X¥ is sometimes called the symplectic gradient vector field

of H,, denoted X = sgrad (H,).

map b: We will distinguish between the statement H is compactly-supported and
H, is compactly supported at each t € [0,1], which is a weaker statement, and to
which we will return later in this chapter. Since H is compactly supported, X will
be, also, Therefore, there exists a unique family of diffeomorphisms, h; for £ € [0, 1],

with velocity vector field Ay, that solves the first-order initial value problem

hoz?fd
ibt = X{IOht.
2
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This family is a smooth path in the compact-open topology on Dif f (R2™),
and is called the Hamiltonian isotopy associated to the function H. We say that
the function H generates the isotopy h;. For each t € [0,1], it turns out that
he @ Symp (R*™) [2], so h; is also called a Symplectic isotopy. Yet another name

for hy is the symplectic gradient flow of H.

map c: When h,; is evaluated at time ¢ = 1, the result is a symplectomorphism, hy,
which is often denoted 2 as a reminder that it was obtained from H in the manner
descri.bed above. We say that 97 is the Homiltonian symplectomorphism generated
by H, or associated to H. We could write ¢ for the set of all symplectomorphisms
generated by compactly supported Hamiltonian functions. A more common symbol
for 4“ is Ham® (R?™); it is a subset of Symp® (R*").

An element of Hem®(R?") is understood to be the endpoint, the time
t = 1 value, of a Hamiltonian isotopy, such as h;. As mentioned above, at the
intermediate times, 0 < t < 1, h; takes values in Symp® (R*™). But closer ingpection
shows that simply by re-scaling the time variable and the height, any intermediate
value, say hy, with 0 < A < 1, can be re-cast as the endpoint of an isotopy of its own.
That is, if H; generates isotopy h; with endpoint Ay, then the function ¢ — AHy
generates the isotopy ¢ +— hy;, which has time = 1 value hy. So any compactly
supported Hamiltonian isotopy is actually a path in Hame (R*), starting at the
identity. Hence, Ham®(R*) is path-connected. Note that although we have seen
that any compactly supported Hamiltonian function generates a path in Ham® (R3),
it is not immediately clear that the converse is true, that any path in Ham® (R*™)
can be realized as the isotopy of some compactly supported Hamiltonian, But this is
in fact the case. [2]

That Hame (R**) is a normal subgroup of Symp® (R*") follows from the

following observations: Suppose that f and g are any two elements of Ham® (R},




generated by Hamiltonian functions ' € C and G € C. Then the symplectomor-
phisms f~! and go f are generated by the functions —F; o f; and G+ Fy 0 g !, both
of which also have compact support. This shows that Ham® (R*) is a subgroup.
Next, note that for any ¢ € Symp (R**), the symplectomorphism ¢~*o f o ¢ is gener-
ated hy the function F} o ¢, whose support is compact. This shows that the subgroup
is normal.

Summarizing this section, we have Ham® (R¥™)<Symp$ (R®*)<Symp (R**).

1.3 Hamiltonian Symplectomorphisms of Arbitrary

Support

Beginning as we did above, we could omit the restriction of compact support and
consider the vector space of all smooth maps F : R*" x [0,1] —+ R. (Smooth in the
compact-open C* topology.) But if a function F : R?® x [0, 1] — R has non-compact

support, then a solution to the initial value problem

ho = id
he = XF o by

might not exist for the whole time interval ¢ € {0, 1]. Example 1 in section
1.4 gives a such a function. Only if a solution to the initial value problem does exist
for the whole time interval do we call the function a Hamiltonian function. We denote
by H the set of Hamiltonian functions of arbitrary support. It is worth noting that,
while the set C is a vector space, the set 7 is not. Example 2 in section 1.4 gives an
example of two functions, G, H € H, such that G+ H ¢ H.

For the Hamiltonian functions of arbitrary support, then, we have the

same generation of vector fields, isotopies, and symplectomorphisms as in the com-

pact case. We will have a diagram similar to the one shown in Fig. 1.1, depicting the




generation of Hamiltonian symplectomorphisms from functions, but with the qualifi-
cation compact support omitted in each box.

We denote by 1% the set of associated Hamiltonian symplectomorphisms,
but will also use the more common symbol, Ham (R*). I shown to be a normal
subgroup of Symyp (R*) in exactly the same way that Ham®(R?") was shown to be,
above. But in fact it is straightforward to show that Ham (R*") = Symp (R*"*). So
all symplectomorphisms of R?® are Hamiltonian symplectomorphisms, The proof of
this claim is postponed to section 1.4, It is a fairly simple, well-known proof that uses
what .is sometimes referred to as the Alezander trick. We include only to introduce
notation and the idea of the trick, in preparation for more sophisticated uses of it. in

chapters 2 and 4.

1.4 Normal subgroups of Symp (R%)

Much about the structure of Symp (R?*") is unknown. Here Wé will explore one aspect:
the existence of non-trivial normal subgroups. It might be expected, since Symp (R?*)
is a topological group, that we would be most interested in its closed normal sub-
groups. But, because the compact-open topology gives no control over behavior at
infinity, the closure of Ham® (R*) in Symp (R*") is actually all of Symp (R*"). So,
we will be interested in the algebraic structure of Symp(R*®) as a discrete group.
In the case of a compact symplectic manifold (M, w) without boundary, we
know from Banyaga [1] that Ham (M, w) is simple, that is, has no non-trivial normal
subgroups. Less is known for non-compact spaces such as (Rzn,a;g). We have already
seen that the subgroup Ham® (B%", wy) is normal, and clearly non-trivial. Again from
Banyaga, we know that a simple subgroup is found within Ham® (R**): the kernel of

the Calabi homomorphism. Aside from Ham® (R*") and its simple subgroup, however,

it is not clear where one might look for non-trivial normal subgroups of Symp (R**).




One idea suggests itself when we look again at Ham® (R®*). That sub-
group could be thought of as being obtained from the larger group Symp (R*) by
imposing a restriction on the set of allowed Hamiltonian functions, in this case the
restriction being that, they be compactly supported. What other restrictions, milder
than requiring compact support, might we place on the set of Hamiltonian functions
and obtain, as a result, a non-trivial normal subgroup of Symp (R**} that contains
Hame (R*)?

One milder restriction immediately comes to mind: instead of requiring
that the function be compactly supported, we could require only that it be compactly :
supported at each time ¢ € [0,1]. We must be careful how we pose our restriction,
though. The set C' was defined as the vector space of all compactly supported smooth
maps H : R?" x [0,1] — R. Any such function generates a symplectomorphism.

If we merely defined a new set of functions as the set of smooth maps
F R x [0,1] -» R that are compactly supported at each time ¢ € [0, 1], then our
set would be too large: it would contain functions that don’t generate symplectomor-
phisms, These would not be called Hamiltonian functions, and are of no interest to us.
In example 3 in section 1.4 of this chapter, a smooth function F': R % [0,1] = R is
presented that has compact support at each time ¢ € [0,1] and yet does not generate
a gymplectomorphism.

So, we want to only consider functions that are in H and that have com-

pact support at each time. Let us denote by H¢ the subset
{H € H : support (H) is compact at each ¢ € [0,1]},

and denote by 3¢ the associated set of symplectomorphisms generated by these
functions. One can quickly prove that 1% is a normal subgroup of Symp (R**) by
the same method that was used to show that Ham® (R*") is a normal subgroup.
We consider two symplectomorphisms, f and g, that are generated by Hamiltonian

functions F, G € H¢, and any ¢ € Symp (R?). Then the symplectomorphisms f ™,

6




go f,and ¢! o fo ¢ are generated by the functions —Fio fi, Gy +F,og;t, and Fio¢
each of whose support is compact at each time. This shows that "¢ is a normal
subgroup,

Because of the inclusions ¢ C He C H, we will have the following se-
quence of normal subgroups of symplectomorphisms: Haom® (B = P& ayto ap?t =
Ham (B*™) = Symp (R*")

For now, we postpone the question of which of these subgroups is proper.

Other fairly obvious sub-classes of H that we should consider are those
that are decaying at each time, bounded at each time, or uniformly bounded. These

we will denote by Hp, Hg, and Hys:

Hp = {H e vt e (0,1, lim sup {|H: (@)« lal] > B} = 0}
Hp = {HE H vt e [0,1], sup {|H;(z}]} < oo}

m6R2n

Hyp = {H € H: sup {sup | Hy (m)\} < oo}
1¢[0,1] LzeR?®
We denote by ¥7?, ", and yMUB the associated sets of symplectomorphisms gen-
erated by these functions, One shows that these sets are in fact normal subgroups of
Symp (R?") in the same way that we showed that Ham® (R*) and y™c are normal
subgroups. Note that because we have the sequence of inclusions of sets of functions,

C C He C Hp C Hp C H, we will have this sequence of corresponding normal

subgroups:
Ham® (R™) = ¢© ap™o ap™> ap™s qp = Ham (R*") = Symp (R*) .

We turn now to the question of which of these inclusions are proper. The
requirement that the generating Hamiltonians have compact support at each time
t € [0,1] secms a fairly strong restriction, and one might expect that the resulting
normal subgroup, "¢, would be a proper subgroup of Symp (B**). It is rather sur-

prising, then, that the subgroup is in fact the entire group Symp (R**). In chapter 2,

7




we will prove the following theorem:

Theorem A: Each f in Symp (R*") can be generated by a Hamiltonian
function H; with the property that support (H;) is compact for each
t €[0,1) and Hj is zero.

With that, our infriguing sequence of subgroups collapses to something far less inter-

esting;
Ham® (Rzn) - TPGIQ w?{c — ,’][)‘HD — 'l,b%B — Qp?f = Ham (RQ'“) = Symp (R?n) .%

The sequence contains no new non-trivial normal subgroups of Symp (R**).

We have not considered the other sequence of inclusions of sets of func-
tions, C' C Hyp < H. As with the other sets of symplectomorphisms, we can
show that ¥*v2 is a normal subgroup of Symp (R**), so that we have the sequence

Hame (R*) <98 9 Symp (R?"). Clearly Ham® (R*") is a proper subgroup of 1*vs,

but is ™2 a proper subgroup of Symyp (R?*)? The answer to this question turns out
to be yes, but its proof uses notation and mathematical tools developed in Chapter
3. In that chapter, we will introduce the eztended Hofer infinity norm, E; The

chapter ends with the following corollary, which is what we need to prove that yHon

is a proper subgroup of Symp (R*"):

Corollary to the energy-capacity inequality: If a subset Q@ C Symp (IR?")
has the property that ;5"; (1) is finite for all 4 € 2, then Q is a proper

subset of Symp (R?"), for © will contain no rotations.

The set of symplectomorphisms for which B (¢) is finite are precisely those that can

8
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In Chapter 4, this corollary will be used in the proof that another normal
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subgroup of Symp (R} is in fact a proper normal subgroup. The description of that

subgroup, which is quite a bit more complicated than those we have seen, is as follows.

Let U = {J;2, fi (B* (R)) C R*" be any disjoint union of symplectic balls

of radius R < 1. (By symplectic ball of radius R , we mean the im-

age, f (B™ (R)), of a symplectic embedding, f : B* (R) — R**, where
B (R) is the closed ball of radius £.) Denote by Sympy (R*) the set of
symplectomorphisms of R*" that can be generated by Hamiltonian func- |
tions with support contained in U. Then Sympy (R*) is a subgroup of il
Symp (R*™), but it is not a normal subgroup: conjugation of an element
of Sympy (R?") with a translation can produce an element of Symp (R*")
that is not supported in UU. Define Gy < Symp (R*) to be the mini-
mal normal subgroup of Symp (R®*) containing Sympy (R**). That is,
Gy contains Sympy (R*"), is closed under conjugation by elements of

Symp (R*), and is closed under composition.
The theorem that we will prove is,
Theorem B (Chapter 4): Gy is a proper subgroup of Symp (IR?),

In the proof of that theorem, we will show that if ¢ € Gy, then E‘;(m) ig finite.

Therefore, Gy <175, and hence, Gy must be a proper subgroup of Symp (R*).

9
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Note that it is not clear whether Gy is a proper subgroup of ¥/*v? and,
if it is, how it compares to Ham? (R**), which is also a proper normal subgroup of
B, It is clear that Gy and Ham®(R*") have non-trivial elements in common:
symplectomorphisms supported in a single one of,the symplectic balls of the union
U are compactly supported, so they are in both Gy and Ham®(R®"). And, Gy
contains elements of non-compact support that cannot be in Ham® (R**). But it is
also possible that Ham® (R**) could contain elements that are not in Gy,

Previous examples of normal subgroups of Symp (R*") in this chapter
arose through fairly natural restrictions on the set of generating Hamiltonian func-
tions, whereas this last example, Gy, seems rather random. Buf remember that
Symp (R®™) is a subgroup of the group Dif f, (R**) of volume-preserving diffeomor-
phisms of R?®, Qur subgroup Gy of Symyp (R*") becomes more interesting, when
we compare it to a similarly-constructed subgroup of Dif f,, (R%*). That is, for the
set U, described above, let Dif fyo (U) C Dif fyor (R*) be the collection of volume-
preserving diffeomorphisms of R*® that are supported in UU. Note that Dif fuu (U) is
a non-normal subgroup of Dif fue (R%). As above, define Gpyfy, vy < Dif foar (R?*)
to be the minimal normal subgroup of Dif fyu (R*™) containing Dif fye (U). Me-
Duff [5] showed that for n > 2, Gpisy, 0 = Dif foa (R?™), 80 Gpips,n 18 not a
proper subgroup. So Theorem B distinguishes the structure of Symp (R*"} from that
of Dif fu (R2").

1.5 Examples and Proofs

1.5.1 A non-Hamiltonian smooth function F: R* x [0,1] - R

Our example is a time independent function, F : R*> — R with these properties:

e F is supported in the set R x (0, 3)




A F(x,y)

Figure 1.2: A non-Hamiltonian smooth function

F has height 1 on the set R x {1}

F has height 2 on the set R x {2}

The height of F' decreases monotonically as |y — 2| increases.

e The maximum gradient occurs at points of the form (z,1). At those points, the

partial in the y direction is a%(zi’l o Z(1+42%).

Figure 1.2 shows a cross section of the graph of F.

Associated to the function F' is the time-independent vector field X =
sgrad (F), Consider the solutions f; to the initial value problem
f() = ’Ld
fr=X0o f.
Let p be a point of the form p = (a,1), and let (z, (t),yp (t)) = fi (p) be the coordi-

nates of the point as it moves under the influence of f;. Note that p will move on the

set R x {1}, because that is a level set of the function F', so y, (¢) will be constant,

11
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with value 1, The initial value problem sgimplifies to a the one-variable problem

z, (0) =a

dep(t) _ 8F(z,y)
dt By

gy~ 3 (L F (@ ().

This has solution x, (§) = tan (% + arctan (a)). If*p is the point (0, 1), then z, () =
tan (%5), which is defined for ¢t € [0,1), but not for ¢ = 1. So f; is not defined
on the interval ¢t € [0,1], and F' does not generate a symplectomorphism; it is not
Hamiltonian. Notice that in fact, f; is not defined on any time interval t € [0, 5],
where 0 < b < 1. To see this, let p be the point (tan (2 (1-1)),1), and consider its
evolution, of as it moves under the influence of f;. At time ¢, its z coordinate will be

z, (t) = tan (3 (1 4+t — b)), which is defined for ¢ € [0,d), but not for ¢ = b.

1.5.2 Two Hamiltonian functions whose sum is not Hamilto-
- nian

We will construct two Hamiltonian functions, ' and H, whose sum is the function
F from the previous example. Let {x;}5, be a partition of unity on R subordinate
to the cover {U;}io,, where U; = (i — 1,4 -+ 1), and define ¢; (z,y) = x; (z) - F (z,9).
Because ¢; is compactly supported, time-independent, and smooth, it is Hamiltonian.
Notice that if 4 # 7, then the support of ¢o; and ¢, are disjoint. So let G (z,y) =
S o ®2- Then G is Hamiltonian, Similarly, let H {z,y) = 3.2 #2411, Then H

is Hamiltonian, as well, but the sum of G and H is F', which is not Hamiltonian.

1.5.3 A smooth function G : R*" x [0,1] — R, with compact

support at each time ¢ € [0, 1], that is not Hamiltonian,

In this example, let x; (z) be a moving cutoff function whose height, at each time,

is identically 1 on the interval z € [tan (¢) — 1, tan (¢) + 1] and which is supported in

12




the interval z € (tan (¢} — 2,tan (¢) + 2). Define G : R** x [0,1] — R by

x: (z) « Fy (z,y) fort e [0,1)
Gy (33'9 y) =
0 fort =1,
L]
where F' is the function from example 1. Then G is smooth in the compact-open

C* topology. Associated to the funétion G is the time-dependent vector field X& =
sgrad (Gy).
For times ¢ € [0, 1), consider the solution g; of the initial value problem
go = td
g = Xf O g
Let p be the point (0, 1), and consider the evolution of the point p under the influence
of g;. Notice that the moving cutoff function, x; (z), defined above, is centered on
the point z (t) = tan (). But this is exactly the z coordinate with which the same
point p = {0,1) moved in example 1, when under the influence of f;. Because of
the way we have constructed the time-dependent function G, at each time ¢ € [0,1),
in a neighborhood of the point (z,7) = (tan (%), 1), it will have exactly the same
shape as the function F'. So, the point p will move in exactly the same way under the \
influence of g; as it would under the influence of f;. That is to say, its x coordinate i
will go to infinity, as time ¢ approaches 1. So, there is no way that g, can extend to
an isotopy defined on the entire time interval [0, 1], and hence, G is not Hamiltonian. a?

It is worth articulating what's “wrong” with the function G, because in

Chapter 2, we will construct a function H that, like G, has support that is compact
at each time ¢ € [0, 1] and moves to infinity, in space, as time ¢ approaches 1. Unlike 5}
@, however, the function H, will be Hamiltonian. What bad behavior of G will we ‘
avoid when constructing H?

Think again of the point p = (0, 1), discussed above. It starts moving, at

time ¢t = 0, because it sits at a place where the gradient of & is non-zero. One could

b 13
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think of the function (¢ as a wave; the point p, a surfer. Note, however, that p moves
not “down”, which would be in the direction of the negative gradient, but rather,
along the level set - the direction of the symplectic gradient. Since such a “symplectic
surfer” never moves down, off the wave: the surfey will keep moving as long as the
wave stays up. Only if the wave falls (or levels off) does the surfer stop moving. Since
the wave - our function (& -stays up and moves to infinity, in space, the surfer goes
with it. We could call such a function gnerly. Fun as it may be for the surfer, it is of
no interest to us, because it is not Hamiltonian; it does not give rise to a map that
sends each point of B2 to some well-defined destination in R?.

In Chapter 2, we will be careful to build a function X that could be
thought of as a succession of waves, rising in rings from the level sea, radiating out-
ward, then falling. Successive waves will rise from spots farther and farther out from
a particular spot, and they will move to infinity. But, every point - every symplectic
surfer - will at some time be picked up, moved around, and lgt down by some wave,
and will not get picked up by any subsequent rising wave. Since every point gets
moved from its initial location to a well-defined final destination sometime in the

interval ¢ € [0, 1), the result, at time £ = 1, is a well-defined symplectomorphism.

1.5.4 Proof that Ham (R™) = Symyp (R™)

Let f be an arbitrary element of Symp (R*™). With no loss of generality, we may
assume that f (0) = 0.

We start by comstructing a symplectic isotopy from a linear map to f,
using the Alezander trick. Let m. : R* — R*® be the multiplication by the scalar
c. Then for each ¢ € (0, 1], the map m L o f omy is an element of Symp (R*). Note

that when this symplectomorphism acts on an element z € R*®, the result is just the
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difference quotient

m%ofomt(x): f(zic) :f(tm);f(())‘

Because [ is differentiable, the # — 0 limit exists in R2":
L]

. i S0 =7 0
g © T 0 fome @) =iy T

= L(U:f)o (ﬁ'f) *
Here, Lgp, is the linear operator obtained by left multiplication by the matrix (df )o €
Sp(2n}, and is called the linearization of f at zero.
If we define a path f; in Symp (R**) as
M1 0 T_.f(0) ofom ifte (0,1]

)Bt = ’
L(df)o ift=0

then B, is a continuous path in the compact-open topology on Symyp (R**), with S,
being the linear map Ly , and f1 = f. The map 5, is the isotopy we promised; it is
the metiwd of constructing §; that is referred to as the Alexander trick.

Now we construct an isotopy from the identity to L, . Because Sp (2n)
is path connected, there is a path o : [0,1] = Sp(2n) with oo = [ and oy = (df ),
Let « : [0,1] — Symp (R**) be the map defined by oy = Ls,. Then « is an isotopy
with ap = 7d and oy = Lgp, -

Concatenating these two paths in time and smoothing, we obtain a sym;
plectic isotopy, v = a* 3, from the identity map to f. From the symplectic isotopy 7,
we obtain the velocity vector field, 4, which will be a time-dependent symplectic vec-
tor field, T'his defines a family of closed 1-forms, ¢ (;) wy. Since H* (R**,R) = 0, there
is a smooth function, F : 2" x [0, 1] — R such that at each ¢ € [0, 1], ¢ (4;) two = d (F2).
We see that F' generates f, so f € Ham (R?"). Also note that since Ham (R*} is
contained in the path-component of the identity in Symp (R*"), which is in turn con-
tained in the connected component of the identity, Symp, (R*"), we conclude that

Ham (R**) = Symp, (R?") = Symp (B**).
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Chapter 2

A surprising fact about Symp (R*?)

2.1 Introduction and Theorem A

In Chapter 1, we denoted by H the collection of time-dependent Harniltonian func-

tions on R*" with arbitrary support; we denoted by H¢ the subset

{H € H : support (H)is compact at each ¢ € [0,1]};

and we denoted by 9¥*¢ the associated set of symplectomorphisms generated by these

functions. We saw that the set was in fact a normal subgroup, %< < Symp (R**), but
the question of whether or not this subgroup was proper remained to be answered.
In this chapter, we prove that the subgroup is not proper: it is the entire group. The
proof exploits the sometimes-overlooked fact that the compact-open topologies used
on Symp (R?*) and H allow some unusual paths to qualify as smooth.

More specifically, in Symp (R?"), it is relatively easy for a continuous map
g :[0,1) — Symp (R**) to be extendable to the entire time interval £ € [0,1}. All
that is necessary is that for each z € R*®, there is some time ¢, < 1 such that for
all times ¢ > t;, g; (z) = gy, (z). That is, the point = gets moved around during the
time interval 0 € ¢ < t,, and then stays put for the remainder of the time interval,

ty <t < 1. If that is the case, then %11’[11 g; exists, and ¢, can be defined as this limit.
_>
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So, g; may be defined on the entire time interval [0, 1],even though it may get quite
wild as ¢ — 1.

Analogously, in the compact-open C° topology on the function space,
| for a continuous function H : R*® x [0,1) — R tg be extendable to the entire time
| interval £ € [0, 1], one need only insure that the support of the function go to infinity
{in space), as t — 1. If that is the case, %1311 H, is the zero function, and ff; can be
!_ defined to be this limit, thus extending H to the entire interval. So, as with g;, H;
may be defined on the entire time interval [0, 1] even though it may get quite wild as
t — 1.When we exploit this fact in the proof, we will also be interested in insuring
that the resulting function H is a Hamiltonian function, i.e. that it does generate
a well-defined symplectomorphism. But this turns out to be possible in the cases of
interest here. The key, as was discussed at the end of example 1.4.3, will be to make
sure that the function H is constructed so that each point of R, as it moves with
the symplectic gradient flow of H, eventually, at some time before £ = 1, leaves the

support set of H for good.

Theorem A: Bach f in Symp (R**) can be generated by a Hamiltonian function H

with the property that support (H) is compact for each ¢ € [0, 1] and H, is zero.

Proof of Theorem A:
We will prove in Lemma A1 that there is a sequence of Hamiltonian func-

tions Gy, & = 1,2, - with these properties:

1. Vk,support {(Gy,) is compact for all ¢ € [0, 1].

2. Vk,Gk,’Q = Gk,l =0.

3. There is a sequence of radii, Ry, k = 1,2,---, with Ry koo, oo, such that for

all ¢ € [0,1], Gpe |B™ (R, £ (0)) = 0.
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4. G, generates a Hamiltonian isotopy gx: with these properties

(8) g |B*™ (Rg, f(0)) = id for all t € [0,1].

(b) Let mp = g0 gp—1 00 ga0g1. Then m |]32]rl (k) = [|B* (k).

Notice that property (4a) follows immediately from property (3). Also, because of
property (3), the sequence Gy, converges in the compact-open topology to the zero
function, as k approaches infinity. And, because of property (2), the functions can be
concatenated in time to produce a smooth function., So we define a new function, H,
fort € [0, 1] by concatenating and re-scaling height and time in the following way. We
define the sequence of dyadic times, to =0, {1 = %, t = f}, s g = (1 — (%)k) R
Then the k* interval, tp_y < t < g, has length (%)k Define the function H :

R % {0, 1] — R piecewise in time by the formula

25y okt ) Tor by <L Y,
Ht =

0 fort =1,

Then H is continuous in the compact-open topology, and for each ¢ € [0,1], the
support of H; is compact.

Let us now check that because of property (4), H will generate a well-
defined symplectic isotopy, which we will call h;, defined on the time interval ¢ €
[0,1]. That is, we check that H is Hamiltonian, Certainly, for any number b, where
0 < b < 1. H generates an isotopy that is well-defined on the time interval ¢ € [0,0].
So, the isotopy is well-defined for ¢ € [0,1). Call this isotopy h;. We show now that
in fact h; extends to the entire time interval.

Examining the value of h; at one of the dyadic times, we find that because
of property (4b) hy, = g = gx © gk—1© ++ © g1. That is, hy, agrees with f on the set
B2 (k). Now consider the in-between times, tx_1 < ¢ < t;. Because of property (4a),
progress of the isotopy k. during this time interval will not affect points in the ball

B (Ry, £(0)). So every point in R*™ gets moved around by A; during the interval
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t € [0,1), but each point eventually lands in one of the balls B*" (R, f (0)). where
it remains for the rest of the time interval. For all time beyond #;, all the activity
caused by the isotopy h; occurs outside of the ball B*" (Ry, f (0)). Inside that ball,
all points are in the same configuration that they would be in if they had been moved
by the symplectomorphism f. Since Ry — oo. we see that as time ¢ — 1. the
isotopy h; converges in the compact-open topology to f. So in fact, I; generates an
isotopy that is well defined for ¢ € [0, 1], and the ¢ime = 1 value of that isotopy is the

symplectomorphism f.

End of proof of Theorem A

2.2 Lemma Al

Lemma Al: For any f € Symp (R*), there is a sequence of Hamiltonian functions

Gty 6= 1,2, - with these properties:
1. Vk,support (G,) is compact for all ¢ & [0,1].
2. \V’k, Gk,g = Gk,l =0,

3, There is a sequence of radii, Ry, & = 1,2, -, with R Arroo, oo, such that for

all t € [0, 1], Gk,t |an (Rk, f (0)) =1.
4. G+ generates a Hamiltonian isotopy gy with these properties

(8) grs|B™ (B, f(0)) =1id for all ¢t € [0,1].

(b) Let mp = gro ge_10 -+ 0 g2 0 gr. Then my |[B* (k) = f|B** (k).

Proof of Lemma A1

step ¢: Establish the sequence of radii, Ry, £ = 1,2, .




Let B, = sup{r: B> (r, f(0)) C f (B (k))}. Notice that Ry < Rgi1
and that Ry — oo as k — 0.
step @ Introduce £y, fi, Si, N1, x1, G gt and go.

Since f € Symp (R?"), there is a Hamﬂ’tonian function £} that generates
f. Without loss of generality, we may assume that Fy = 0 = F}. Let f;, be the
corresponding isotopy, so that f = f;. We consider the evolution of the balls B (1)
and B? (2), as they move under the influence of isotopy f;. In particular, we define
the sets Sy = (p_q fi (B* (1)) and Ny = Uy fi (B* (2)). We will thinllc of Sy as the
swath of R?* that the ball B** (1) moves through, under the influence of the isotopy
f+, and we will think of N, as a larger neighborhood. Using these, we define a smooth
cutoff function, x1, to be identically one on Sy and to be zero outside N;. We then
produce a new Hamiltonian function, G1; = Fi - x1, call the corresponding isotopy
g1, and call its téme = 1 value g,.

Notice that since G agrees with F; everywhere in the set 51, the evolution
of the ball B#* (1), under the influence of g1 4, will be the samé as its evolution would
have been under the influence of fi. So gy |B*™ (1) = f|B*{1). Also, since G, is

supported in N at all times, we conclude that

,

f on B* (1)
= j non — trivial  on Ny

1d outside N;

\
step it Introduce Sy, Na, X2, Gag, g2ty and gy

We have produced a Hamiltonian symplectomorphism, g ,that agrees with
f on a ball of radius 1. Now, we will produce an isotopy that will enlarge the region
of agreement with f. It will be important that this new isotopy have no effect in the
region where g; agrees with f, but that the new one corrects some of the disagreement

between the two in outer regions. To see that disagreement more clearly, we observe
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the following behavior of the product f o g *:

’

id on f (B* (1))

1
fo91 =< non —trivial on N,
2

f outside Nj.

\

We can say a priori that there exists a Hamiltonian function, which we will call Fy,,
that generates fog;*. But in fact, we want to require more of #3; than that it simply
generate the desired symplectomorphism. We would like in addition to be able to say
that fdr all t € [0,1], Fy, is identically zero on some ball of known radius.

In Lemma A2, we will show that there is in fact a Hamiltonian function
Fy, that generates f o g7'* and such that for all £ € [0,1], Fy, is identically zero on
the ball B* (Ry, f (0)). We call the corresponding Hamiltonian isotopy fo,, and call
its corresponding time = 1 value fs.

There is a problem with F3;, however, in that its support is not compact.
So our next step is to produce a cutoff version of F,, which we will call Gg;. We
will do this in a manner completely analogous to the way that we produced the
Hamiltonian G by multiplying F} by a cutoff function. More specifically, we define

the sets S and Ny as

52 = Ui:o fae (M) = U::o fas (U;U fe(B* (2)))
M= Uy foe (U # (57 90)

So S5 is the swath of of R?® that the set N; moves through, under the influence of
the isotopy fa, and Nj is a larger neighborhood. Using these, we define a smooth
cutoff function, xs, to be identically one on S; and to be zero outside N,. We then
produce a new Hamiltonian function, Gy, = Fa; + X, call the corresponding isotopy
gy, and call its time = 1 value, gy.

Notice that since G agrees with Iy; everywhere in the set Sy, the evolu-

tion of the set Ny, under the influence of g4, will be the same as its evolution would
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have been under the influence of fo;. So g2 [Ny = f2|NV1 = fogr!|N:. Considering
the behavior of the composition, gy o g1, we find
2oa[B™(2) = glgi (B (2)om |B™ (2)
—— —

contained inN;

(note that g, [N1 = (f o g7) |V))
= (fog") g (B*(2) 0. |B* (2)
= fogilog|B™(2)
= f|B™(2).

As for the discrepancy between g, 0 g1 and f, we observe that

’

id on f(B*(2))

folgo 6)"" =< non — trivial on Ny

f outside Ny,

\
step iv: (inductive step)

Let symplectomorphisms, g1, go,*++ , gx be given, and let 7 = gy o gy—1 ©
+++0 gy o g,. Further suppose that a set of Hamiltonian functions Fi;, Fog, -, Fiy
has been defined, with corresponding isotopies fi,t, fog, oo, o, and time = 1 values
fi, f2,+++, fu. Suppose that the collection of sets S1, Sa,-+ -, S, and Ny, Ng, -+, Ny,
called swaths and neighborhoods, has been defined in the following way. First, for j =

1.+, k, recursively define the operation sweep; : subsets of R?" - subsets of R*" as

Ui=o /1 (4) ifj=1

Uio fi (sweep;_1 (A)) if2<j <k

sweep; (A) =

Then the 7% swath and j*¥neighborhood, S; and Ny, are defined by the formulas

S; = sweep; (BE” (3))

N; = sweep; (B* (j + 1)) .

22
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Further, suppose that the product 7 has the property

(

f on B (k)

Tk = § non — trivial on Ny

¥

id outside V.

“

We will define Fi i1, fiti,e, forts SWatheq1, Serts Moty Xety Gratty Gty 804 g1

Note that because of the behavior observed above for 7, we know that

7

id on f (B (k))

-1 _ .
fom, =4 non —trivial on N

f outside Ng.

\

Using Lemma A2, we produce a Hamiltonian function, Fpyi1: that generates f o
e ' and that has the additional important property that for all ¢ € [0,1], Fit14 is
identically zero on the ball B2 (Ry, f (0)). The function Fjy,, will not have compact
support, so we will produce a cutoff function that will allow us to retain the important
properties of Fiy1 in a Hamiltonian that does have compact support,

To do that, we denote by fri14 the corresponding Hamiltonian isotopy,
and denote by fri1, the time = 1 value of that isotopy. That is, fir1 = fet1,1 =
fo wgl. Now that we have fi,1, we can define the map sweepi.1 : subsets of R —

subsets of R%", as well as the (k+ 1)* swath and (k + 1)** neighborhood Sy, and

Niy1, as
sweepirr = Uig fot1 (sweepy (4))
Sppr = sweepga (B (k+1))
Npy1 = sweepgr (B (k+2)).

We define the cutoff function, yx,1, to be identically one on Sy1q and to be
zero outside Ny,1. Finally, we define the Hamiltonian function Grii,p = Fr1e* Xat1-

The corresponding isotopy will be called ggt14, and its time = 1 value will be called

k1.




Notice that since Gy, agrees with F . ; everywhere in the set S, the
evolution of the set Ny, under the influence of gy-11,¢, will be the same as its evolution
would have been under the influence of fiy1¢ SO gryt |[Np = foqr [Ng = [ o 7rk_1 | Ng .

Considering the behavior of the composition, mg11 5 Ge+1 2 §x © **+ 0 g2 0 g1, we find

Tt B (k+1) = gryioggo---ogaog
= Gt1 © Wp—1| BT (K + 1)
— gk+1|z|‘.'k,1 (BQn (k + 1)) O k-1 |BQH (k + 1)

-
contained in/y

(note thatgy1 [Ny = (f o, ") |Nk)
= (fom )| me—s (B (k -+ 1)) 0wy [B* (kK + 1)
= (fom? ome1)| B (k+1)
= FfIB™(k+1).

By induction, we can produce the promised sequence of Hamiltonian functions and

isotopies.

End of proof of Lemma Al.

2.3 Lemma A2

Lemma A2; If ¢ € Symp (R*") and there is some point p and radius R > 0 such that
¥ |B* (R, p) = id, then there is a Hamiltonian function F; that generates 1» and which
has the additional properties that Fy = 0 = Fy and for all ¢ € [0,1], #} |B** (R, p) = 0.

Proof of Lemma A2:

We will use the Alexander trick at the point p. For ¢ € {0, 1], consider the
symplectomorphism -y; defined by y; = 7, 0m 1 © 7, 01 07, 0 My 0Ty, Where 7, is the
translation that sends the origin to point p, afnd m; is multiplication by {. When we

apply 4 to a point z, the result is a difference quotient plus a translation:  (z) =
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p+ 2 +t(”jfp D-p (This expressions has been simplified by the fact that ¢ (p) = p.) At
time ¢ = 1, the expression simplifies to % (z). In the limit, as % approaches zero, the

expression converges to:

limy (2) = p+ Ly, (2 —p)
= p+(z—-p)
= T

(Here, we have used the fact that because ¢ |[B** (R, P) = id, the differential of 1) at
p will be the identity matrix. So, L(dqp)p = id.) Because of this convergence, we know
that as t — 0, ¥; converges in the compact open topology to the identity map. So we
can extend the time domain of ;:

id for t =10

T =

Tpom%O'r_powoq"pomto'r_p for 0 <t < 1.

Then -y, is a symplectic isotopy, starting at the identity, and énding at ¥.

Moreover, we can see that for all ¢ € [0,1], ¢4 |B*™(R,p) = id. To see
this, let z be any point in B* (R, p) and let ¢ € (0,1]. Then 7, 0m, o 7_p (z) will also
be in B¥ (R,p). (This sentence is the reason that we needed to introduce B> (R, p).
We needed a star-shaped neighborhood of the point p.) Since ¢ |[B*" (R, p) = id, we

see that the expression for ¢ (z) simplifies to

%) = Homior,0honomor, ()
= oMy 0T_p 0T, 0My 0Ty ()
= z.
There exists a Hamiltonian function F that generates the symplectic isotopy ;. Since,
for each time ¢, y; restricted to B*" (R, p) is the identity map, at each time ¢, we know

that F; will be constant on that region, We may impose the normalization requirement

that at each time, F} be in fact identically zero on that region. Furthermore, we can
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re-scale the speed of the isotopy -; so that at times ¢ = 0 and ¢ = 1, it has zero speed.

This will cause Fy to be constant (in space) at those two times. This, with the fact

that at each time, Fy must be identically zero on B** (R, p), tells us that Fy = 0 = F.

End of proof of Lemma A2
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Chapter 3

Extending Hofer’s Infinity Norm

3.1 Introduction and Definitions

The group Ham® (B?*) of Hamiltonian symplectomorphisms of compact support was
introduced in Chapter 1. There, it was shown how elements of this group are gener-
ated by the family, C, of compactly supported Hamiltonian functions.

Hofer [4, 3] has introduced two norms for C that can be used to give a
norm for Ham® (R**) Ham (R?™). One of these, which we will call the infinity norm,

FEy, will prove particularly useful in this paper, and we introduce it here.

Define the map || ||, : C — {0,00) by

21, = s { e 1 (2,00}~ i (27 (011

te[0,1] | xcR2n

Then || |, is a norm on C.

Define a map Ey, : Ham® (R*) — [0, 00) by

Few (%) =inf {|H||, : H € C and H generates v}
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Then it is easy to verify for that for any 6,4 € Ham® (R*) and any ¢ € Symp (R**),

Eo (W) =09 =1id (non - degeneracy)
Eeo (09) € By (8) + Foo (%) (triangle inequality)
Eo () = Bo (1) = By (@) (inversior and conjugation invariance).

It is useful to extend this norm to symplectomorphisms of arbitrary sup-
port. In Chapter 1, we denoted by H the set of Hamiltonian functions. These are
smooth functions H : B* x [0,1] — R (smooth in the compact-open C* topology)
that generate symplectomorphisms by the maps described in chapter 1.

We define the map || o i H — [0, 00] by

[ = sup {sup {H (2,1)} - inf {H (s, t)}}

tc0,1] Lackne

Then || || is what we might call an eztended norm on H. By this we mean that it
retains the properties of a norm, except that it can be infinite-valued.

As discussed in Chapter 1, the set of symplectomorphisms generated by
H, which we denoted ™ or Ham (R?™), was actually the entire group Symp (R*"*).

So we can define a map Eo, : Symp (R2) — [0,00] by
E;(w) = iﬂf{m : H € H and H generates v,b}

Then it is easy to verify that E., is an extended norm on Symp (R?"), invariant under
inversion and conjugation.

Notice that E; extends Ky, in two ways. First, E:; allows Tunctions of
arbitrary support in the infimum. Secondly, the domain of E:; includes symplec-
tomorphisms of arbitrary support. When restricted to symplectomorphisms ¢ of
compact support, we will have the inequality E‘;(qﬁ) < By (¢) = finite, because
every function allowed in the infimum on the right side is also allowed in the infimum

on the left side. (One immediately wonders whether in fact Froo (¢) = Eoo (¢), but
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we will not address this question.) When applied to symplectomorphisms of non-
compact support, however, E;; can give either a real number or infinity as a result.

Of course, F, is not defined on these symplectomorphisms.

¥

3.2 An Energy-Capacity Inequality

The question of whether or not ]/j]’; ig finite will be important in this paper. We
will show that certain subgroups of Symp(R*™) contain only symplectomorphisms
for which E; is finite, and this fact will distinguish those subgroups from the larger
group. That the finiteness of E‘; does distinguish a subgroup from the larger group

will follow from an inequality that we present in this section.

Define the Gromov width, wg, for subsets of R?* by
wg (A) = sup {71?|B*" (r) embeds symplectically in A}

Observe that wg (A) € [0,00]. For symplectomorphisms ¢ € Symp (R*), we will
consider the Gromov width of compact sets A that can be moved off themselves, or
displaced by 4. That is, % (A) N A = ¢. We will prove the following energy-capacity
ineguality, so called because the norm of a symplectomorphism is sometimes referred

to as its energy.

Claim (energy-capacity inequality): For any ¢ € Symp (R2"), the following holds.
sup {wg (A) such thatA C R?" compact and 1 (A) N A = ¢} < Foo ()

Proof of the energy-capacity inequality:
The claim is automatically true if B (#) = oo, so assume that B (1) is
finite, and let A be any compact set displaced by #. Let & > 0 be any positive number.

We will show that wg (4) < B (1) + €. Since ¢ was arbitrary, this will prove the
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claim, Our method will be to produce a compactly supported symplectomorphism
0 such that wg (A) < B () < Eoo () + €. The inequality will be obtained by the

following string of inequalities, whose terminology and justifications will be given in

the steps that follow: ’
we (A) < cpz (4) (Hofer — Zehnder capacity, step 1)
< elA) (displacement energy, step i)
< Fg(6) (standard Hofer norm, step 1ii)
= B (B (step iv)
< Fol{)+e  (stepv).

step t- A Hamiltonian function H is called admissible if its associated Hamiltonian iso-
topy has no non-constant periodic orbits. That is, for all z € R*™, if hy, (z) = hy, (2)
for some 0 < ¢, < 3 < 1, then in fact hy(z) = = for all ¢t € [0,1]. For a
set A ¢ R, define H,4(A,wy) to be the set of admissible Hamiltonian functions
on R whose support is contained in A. The Hofer-Zehnder capacity of A is de-
fined as cpz (A) = sup {||H||,, : H € Haa (A, wo)}. From [3], we have the inequality
wy (A) € cpz (A).

step 1i: We have seen the Hofer infinity norm, E, on Ham® (R*). We will de-

note by Ex a more common norm, also introduced by Hofer [3]:

1
Eg(¢) = inf{/ (max {H (x,%)} — min {H (:c,t)}) dt : H € Cand 9 = ¢>}
=0 $€R2n meRZH
We define the displacement energy, e (A), of a compact set A C R*™ by
e (A) = inf {EH (&) : € € Ham’ (Rzn,wg) and £ displaces A} .

From [3], we have the inequality cgz (4) < e (A)

step #i4: In this step, we will introduce the symplectomorphism 6 € Ham® (R**)

and prove the third inequality.
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The Hamiltonian symplectomorphism 2 might not be compactly sup-
ported, but we are assuming that its infinity norm, E;(w), is finite. So, there is
some Hamiltonian function H that generates ¢/ such that

T = Sup {feliggn H(t,z)~ inf H Eﬁ,m)} < B (4) + e,
where £ > (0 was chosen at the beginning of the proof. Denote by h; the Hamiltonian
isotopy generated by H. We can multiply H by a moving cutoff function, where
the cutoff function is identically 1 on the moving image of the set A, as the set
A evolves under the influence of the isotopy h;, and is identically zero outside a
compact set. The resulting function we call F'; the compactly supported Hamiltonian

symplectomorphism that it genecrates, #. Notice that because 1 displaces A, & also

displaces A, This means that

e(Ay=inf {Ey (£): £ € Ham’ (R, wp) and ¢ displaces A} < Eg (9),

because # is a particular symplectomorphism that displaces A. This proves the third

inequality.

step iv: The following inequality follows immediately from the definitions of the two

norms:

Eg(#) = inf ftlzo (max {H (z,t)} — min {H(m,t)}) dt: H ¢ C and 9 = 9}

reR2n pcR2n

< inf< max {max {H (z,t)} — mﬂ%n {H (m,t)}} cH e Cand o = 9}
zeR

te[0,1] | zeR2®
= E.(8).

But Polterovich showed in [6] that the two norms are in fact equal.

step v: Because @ is generated by a Hamiltonian function, F, that is a cut-off version
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of the function that generates 14, we have the fifth inequality:

Ew(®) = inf{||@|,:G € Cand y% =0}

< |||, because F is a particular function that generates ¢

max § max F (¢, z) — min F' (¢, z) }’

tc[0,1] | weR?n zclkzn
< sup ¢ sup H(t,z)— inf H(i, :1:)} F was obtained by cutting off H
te[0,1] LzcRin zeR2n
= [,
< E; (¥) +e.

End of proof of the energy-capacity inequality

3.3 Using the e-c inequality to detect proper subsets
of Symp (R*")

The enérgy~capacity inequality tells us that there must be elements of Symgp (R*")
whose infinity norms are not finite. For example, let ¢ € Symp (R**) be the counter-
clockwise rotation in the z; x zo plane, about the origin, through an angle of Z
Then for every M > 0, the ball B* (M, (2M,0,--,0)) is displaced by . Since
wa (B* (M, (2M,0,--+,0))) = 7 M?, we see that

sup {we (A) such thatA C R*™, compact andy (4) N A= ¢} = oo
By the energy-capacity inequality, E;(w) must be infinite as well, Thus, we can

state the following

Corollary of the energy-capacity inequality: If some subset Q C Symp (R®") has the
property that E, (1) is finite for all ¢ € €, then Q is a proper subset of Symp (R%"),

for €2 will contain no rotations.




For example, in chapter 1, we discussed the normal subgroup ¥*¥® in Symp (R**)

consisting of symplectomorphisms that can be generated by Hamiltonian functions

that are uniformly-bounded. We see that for any such 1, E. (+) will be finite. So

yva g a proper subgroup of Symp (R*"), ,
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Chapter 4

A new non-trivial normal subgroup

of Symp (]R%Qn)

4.1 Introduction, Theorem B, and Proposition B

In Section 1.4 of Chapter 1, the groups Ham®{(R*") and wﬁyﬁ were found to be
proper normal subgroups of Symp (R?"). Each was obtained from the larger group
by imposing restrictions on the set of generating Hamiltonian functions. In this
chapter, we will describe a rather more complicated normal subgroup of Symyp (R**)
and prove that it is also a proper subgroup.

The description of the group and statement of the theorem follow; the
motivation for our considering the group in the first place will be in a remark follow-

ing the staterment of the theorem.

Theorem B:

Let U = 2, fi (B*™ (R)) C R* be any digjoint union of symplectic balls of radius
R < L (By symplectic ball of radius R?, we mean the image, f (B> (R)), of a sym-
plectic embedding, f : B® (R) — R®®, where B*" (R) is the closed ball of radius
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R.} Denote by Sympy (IR?") the set of symplectomorphisms of ’R?" that can be gen-
erated by Hamiltonian functions with support contained in /. Then Sympy (R**)
is a subgroup of Symp (R*), but it is not a normal subgroup: conjugation of an
element of Sympy (R*) with a translation can preduce an clement of Symp (R*")
that is not supported in U. Define Gy <4 Symp (R*™) to be the minimal normal sub-
group of Symp (R**) containing Sympy (R**). That is, Gy contains Sympy (R*), is

closed under conjugation by elements of Symp (R**), and is closed under composition.
Claim (Theorem B): Gy is a proper subgroup of Symp (R**)

Comment: Why is this surprising? Let Dif f,o (U) C Dif fuu (R*) be the collec-
tion of volume-preserving diffeomorphisms of R™ that are supported in /. Note that
Dif fuor (U) is a non-normal subgroup of Dif f,q (R*). As above, define Gpisy,,, ) <
Dif fuo (R™) to be the minimal normal subgroup of Dif fy, (R™) containing Dif f,q (U).
McDuff [5] showed that for n 2 3, Gpigp,. @y = Dif fua (R*). So the present claim

distinguishes the structure of Symp (R**) from that of Dif f,, (B%*)

A flow chart illustrating the structure of the proof of Theorem B is shown in Fig-

ure 4.1.

Proof of Theorem B:

If g € Gy, then g = giga---gs, where g; = hj ot o b, with h; €
Symp (R*) and v; € Sympy (R*). Note that ¢, is supported in U, which is a dis-
joint union of symplectic balls. In Section 3.1, we introduced the conjugation-invariant
extended Hofer infinity norm, E; for elements of Symp (R2"). In Proposition B, be-
low, we will prove that for any element 1; € Sympy (R*), this norm is bounded:

E:(d)j) < 32, By conjugation invariance, E;(gj) < 32, and by the triangle in-
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Detail 5:
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Lemma B2: Given aradius #, =0 and £
symplectic balls of radius R <1 that do not
intersect B> (r, ), there is a larger radius
v, > r, and a Hamiltonian symplectomorphism
supported in the annulus 7, < ||x|| < 1, that will

turn the & symplectic balls into round balls
and move them to integer lattice positions

N

Lemma BS: If
Ve Symp}-?i"(R,.v) (Rln ) s Wher{?
0 <R <%, andif fubeis the set
{y : Zj:;l (y: - x,-)z < (é"- +%)2}

then E;Mbe (w) <8

-

Lemma Bl Any disjoint union of
symplectic balls of radius R < can
be parsed into two sets, red and
green, such that there isa
symplectomorphism, move

red ? 1.1’1211.
will turn the red balls into round
balls and move them to integer
lattice positions, and a

symplectomerphism, move,,,,, that

will do likewise to the green balls.

A 4

Lemma B3:

A Hamiltonian
symplectomaorphism that
shuffles a collection of
round balls of radius
R <1 located at integer
lattice positions in a way
that they all end up at
lattice positions with
Xx,, = 0.

4

Lemma B4 If
w e Symp, (RZ” ), where

Vis a disjoint union of
round balls of radius
R < £, centered at integer

lattice positions x, such
that x;,, =0, then

E;(l,y)sm.

—

Propostion B: If w € Symp,, (]Rz"), where U/ is a disjoint

union of symplectic balls of radius R <4, then E: (r,u) <32.

Chapter 3: Definitions, an energy-
capacity inequality, and a corollary

Proof of Theorem B: 1f U is a disjoint union of symplectic balls of radius R <1,
Symp{,. (Rz” ) is the set of symplectomorphisms of R*" generated by Hamiltonians
with support contained in U, and G, is the minimal normal subgroup of
Symp (Rz”) containing Symp,, (Rz”) ,then G, # Symp (Rz”) :

Figure 4.1: Structure of the Proof of Theorem B
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equality, o (g) < 32k. So we see that for any g € Gy, the norm o (g) will be
finite.
But in Section 3.3, we proved the following corollary.
;
Corollary of the energy-capacity inequality: If a subset Q@ C Symp (R*)
has the property that E; () is finite for all 9 € §2, then Q is a proper

subset of Symp (R*), for  will contain no rotations.

With that corollary, we see that Gy is a proper subgroup of Symp (R*").
End of proof of Theorem B

Proposition B: If 4 € Symp (U), where U = |Jio, fi (B*” (R)) is a disjoint union
of symplectic balls, then By (1) € 32

Proof of Proposition B:

First, recall that a symplectic ballis the image, f (B*" (R)), of a symplectic
embedding. We write round ball to denote B?™ (R, z) or B* (R).

If we were to parse the disjoint union into two sets of symplectic balls,
say red ones and green ones, then we could write ¢ as a composition of symplecto-
morphisms supported in these two sets, ¥ = %, o ¢b,. Then by the triangle inequality,
Boo (1) € Foo (W )+ Fos (1h,). We will parse the union, and we will do it in a particular

way, by using the result of Lemma B1, which we state here and prove in Section 4.2.1.

Lemma B1: Any disjoint union of symplectic balls [ Ji2, fi (B*" (R)) can

be parsed into two sets, red and green, such that there are Hamiltonian
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symplectomorphisms of R*, move,e; and movegpeen,with the following
properties: The symplectomorphism move,qq will turn the red symplectic
balls info round balls and move them to integer lattice positions; movegreen
will turn the green symplectic balls into round balls and move them to

integer lattice positions.

The significance of a lattice of round balls is that they can be shuffled into
a new arrangement where they are each located at lattice positions whose xy, coor-
dinate is zero. In fact, the shuffling can be accomplished with a symplectomorphism
that we will construct in Lemma BS. We will state that lemma here and prove it in

Section 4,2.3.

Lemma B3: Given a lattice of round balls, meaning a union | J;2, B* (R, z;),
where 0 < R < % and each z; € R?" has integer coordinates, we claim that
there is a Hamiltonian symplectomorphism, which we ﬁill call shuf fle,
that rearranges the balls so that they are again centered at integer lattice

points, but now only at points such that z; s, = 0.

With the symplectomorphisms ., ¥,, move,, move,, and shuf fle, we

can define two new symplectomorphisms, ¢, and ¢, in the following way:

¢r = shuf fle o move, o ¢, o move; ! o shuf fle™!
¢g = shuf fle o movey o ¢y 0 moveg‘l o shuf fle™!
Notice that both ¢, and ¢, are supported in disjoint unions of round balls centered af

integer lattice positions such that zg, = 0. So, we may apply the following Lemma,

proven in Section 4.2.4 to give an estimate on the extended norm of each of them.
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Lemma B4: 1f ¢ € Sympy (R?"), where V = | J;2, B*™ (R, ;) is a disjoint

union of round balls with 0 < R < £, centered at integer lattice positions

x; such that z;9, = 0, then its extended Hofer infinity norm is bounded:

Eo () < 16 .

With this result, we can make the estimates F, (¢,) < 16 and Ey (¢,) < 16. By
conjugation invariance of the extended norm E,,, we know that Foy () = Eos ()

and Tl (1hg) = Tiog (¢5). Therefore, Fog (1) < Boo (1) + Foo (1) < 82.

End of Proof of Proposition B

“ 4.2 Lemmas B1 through B5

4.2.1  Lemma B

Lemma B1: Any disjoint union of symplectic balls, |2, f; (B** (R)), can be parsed

into two sets, red and green, such that there are Hamiltonian symplectomorphisms of

R*™ | movepeg and movegpeen, with the following properties. The symplectomorphism

moveg.g Will turn the red symplectic balls into round balls and move them to integer

lattice positions; movegreen Will turn the green symplectic balls into round balls and

move them to integer lattice positions.

Proof of Lemma B1:
The lemma will follow immediately from the following claim.

claim: There exists a sequence of radii, 0 = 79 < r; < ry < -+, a sequence of

Hamiltonian symplectomorphisms hq, hg, k3, « » -, a re-numbering of the disjoint union

of symplectic balls, and a sequence of important indices in that numbering & < kg <

1 ks < -+, with the following properties:
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1. The open ball ||z|| < r contains the symplectic balls numbered 1, -« - , ky, which
we will call the 1% batch of balls. For i > 2, the i annulus, 7y < ||z|| < riy1,
contains the symplectic balls numbered k;—1 + 1, -, k;, which we will refer to
as the it® batch. None of the annuli are empty: For each i > 2, the ball B** (ry).
intersects at least one symplectic ball that does not intersect B* (r;_y), and all

of those symplectic balls are completely contained in the annulus r; 1 < {|zf| <

P41
2. The * batch of symplectic balls is red if 4 is odd; green, if 7 i3 even.

3. The symplectomorphism f, is supported in the open ball ||z|| < re. For i = 2,

the symplectomorphism h; is supported in the $* annulus, 7,y < [|z|| < i

4. The symplectomorphism h; turns the ™ batch of symplectic balls into round

balls and moves them to integer lattice positions.

This claim will be proven below. First, however, we show how the lemma
follows immediately from the claim.

Since the odd-numbered k; have disjoint support, their product, [ oo, hei1,
is a well-defined Hamiltonian symplectomorphism, which we call move,. This sym-
plectomorphism moves all the red symplectic balls to integer lattice positions, while
turning them into round balls. Similarly, the even-numbered %; have disjoint support,
so their product [];2, ho; is a well-defined Hamiltonian symplectomorphism, which we
call move, because it moves all the green symplectic balls to integer lattice positions,

while turning them into round balls. This proves the lemma.
Proof of claim:

Denote by shall; the i* symplectic ball, f; (B®* (R)).




Basis step, part a: Choose ry, 71, T2, h1, k1 and the first batch of red balls,

Let 7y = 0. Choose the smallest r; such that B* () intersects at least
one of the symplectic balls from the union. This ba%l B* (r;) may intersect more than
one symplectic ball. Renumber the union and choose an integer &y go that it is the
first balls in the numbering of the union, sbally, - - , sbally,, that intersect B* (ry).

Color these first &; balls red. In section 4.2.2, we will prove the following lemma:

Lemma B2: T UL, f; (B™(R)), with 0 < R < L, is a disjoint union of
symplectic balls, then there exists v, > 0 and a Hamiltonian symplecto-
morphism h, supported in the open ball ||z|| < 7, such that

h (Ule fi (B™ (R))) = ¥, B (R, ), a disjoint union of round balls

centered on integer lattice points ;.

(Actually, the statement of Lemma B2 is more general; we have extracted from the
general statement a simpler one that suffices for our present need.) Applying this
result to our present case, we will use our k; for the k£ in the lemma, and our union,
U™, 7 (B™ (R)), for the union in the lemma, We will define the radius ry to be
the radius ry produced by the lemma, and define the symplectomorphism h; to be
the Hamiltonian symplectomorphism h produced by the lemma. With no loss of
generality, we can choose a larger ro, if necessary, in order to insure that the ball
B (ry) intersects at least one symplectic ball that is not among the first &; red balls
that we picked above.

Note that the re-ordering of the union of symplectic balls, along with the

Ta, T1, T2, R1, k1 that we have chosen, have properties (1) - (4) listed above.

Basis step, part b: Choose 73, hy, kg, and the first batch of green balls.
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In the previous step, we chose o large enough that the ball B (ry) in-
tersects at least one symplectic ball that is not red. (Keep in mind that we are still
regarding the union of symplectic balls in their original state, although some have
been colored red. We have proven the existence of a Hamiltonian symplectomorphism,
h1, that could manipulate these red balls - and possibly alter some other, uncolored,
balls in the process - but we have not used it. Sco fa,f, we have only considered the
operation of A in order to choose an appropriate radius ro.) This ball B* (ry) may
intersect more than one symplectic ball that is not red, not among the £, balls that we
have picked so far and colored red. Renumber the union and choose an integer ky > k¢
so that it is the next balls in the numbering of the union, sbally, 1, -+, sball,, that
intersect B* (r;) and are not red. (In the renumbering, do not alter the numbering
of the first &; balls.)

Note that there are ks — ki symplectic balls in this new set, none of which
intersect B** (ry), and none of which have yet been colored, because in the previous
step, it was those symplectic balls that did intersect B*" (r;) that were numbered
as the first &; balls of the union and colored red. Color green these ky — &7 new
symplectic balls that we have just chosen.

In the above section, Basis step, part a, we stated a simple version of the
claim of Lemma B2. The full-strength version of the claim is applicable to our current

situation, and we state it here.

Lemma B2: 1 ry > 0 and Ui, fi (B (R)), with 0 < R < }, is a disjoint
union of symplectic balls that do not intersect the closed ball B%" (r,), then
there exists r, > 7, and a Hamiltonian symplectomorphism A, supported
in the open annulus 7, < ||z|| < r; such that & (Ule fi (B* (R))) =

f=1 B* (R, ), a digjoint union of round balls centered on integer lat-

tice points w;.
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We will apply this result, using our r| for the r, of the lemma, our integer kg — k; for
the integer k in the lemma, and our union, Ufikl +1 Ji (B¥ (R)), for the union in the
lemma. The symplectomorphism 4 and the outer radius ry produced by the lemma
we will call hy and r3. If needed, we can choose a larger r3, large enough that the
ball B?" (ry) intersects at least one symplectic ball that is not among the first &y balls
that we have picked so far.

Note that the new ordering of the union of symplectic balls, along with
the ro, 71, 72, s, b1, ho, k1, and ko that we have chosen so far, have properties (1) -

(4) listed above.

Inductive step:

Suppose one is given a list of radii, 0 = r¢ < r1 < -+ < 1y a list of
Hamiltonian symplectomorphisms, Ay, -, h; 1; a numbering of the disjoint union
of symplectic balls; and a list of important indices in that numbering, &1, -, kj_;

which have properties (1) - (4) listed above.

Inductive claim: One can choose a new numbering of the union of symplectic balls,
and choose 7441, R, k7, and the next batch of colored balls in a way that the new num-
bering; the new list of radii, 0 = rp < ry < -+ < ry41; the new list of Hamiltonian
symplectomorphisms, hy,- -+ ,h;; and the new list of important indices, k1, , kj;
also have properties (1) - (4). (If 7 is an odd number, the batch of balls that we
choose in this step will be colored red. If j is an even number, we will be coloring

balls green.)

Proof of inductive claim:

The radius r; was chosen large enough that the ball B?" (r;} intersects at
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least one symplectic ball that is not among the first &;_; balls in the ordering of the
union. (As before, keep in mind that we are regarding the union of symplectic balls in
their original state, although some have been colored. We have proven the existence of
Hamiltonian symplectomorphisms, A1, - , h;_1, that can manipulate these balls - and
possibly alter some other, uncolored, balls in the process - but we have not used them.
So far, we have only considered the operation of the h; in order to choose appropriate
radii ;.) This ball B* (r;) may intersect more than one symplectic ball that is not
among the first £;_; balls. Renumber the union and choose an integer k; > k;._; so
that it is the next balls in the numbering of the union, sbally, ,41,++ , sbally;, that
intersect B (r;) and are not already colored red or green,

Note that there are k; — k;_; symplectic balls in this new set, none of
which intersect B?" (r;_,), and none of which are colored, because in the previous
steps, it was those symplectic balls that did intersect B*" (r;_) that were numbered
as the first kj_1 balls of the union and colored either red or green, Color these new
k; — k;_1 symplectic balls that we have just chosen: color them red if j is odd; green,
if 7 is even.

We will apply Lemma B2, using r; for the r, of the lemma, our integer
k; — k;q for the integer k in the lemma, and our union, Ufikj_1+1 [ (B (R)), for
the union in the lemma. The symplectomorphism /4 and the outer radius ry produced
by the lemma we will call h; and r;q. If needed, we can choose a larger 75,1, large
enough that the ball B* (r;4,) intersects at least one symplectic ball that is not
among the first %, balls that we have picked so far. Note that the new numbering;
the new list of radil, 0 = rp < 71 < ++¢ < rj31; the new list of Hamiltonian sym-
plectomorphisms, Ay, , h;; and the new list of important indices, &y, - -, &;; have

properties (1) - (4} listed above. .

End of proof of the inductive claim.
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Conclusion: By induction, we have proved the claim.

Fnd of Proof of Lemma B1 2

4.2.2 Lemma B2

Lemma B2: If r, > 0 and S, fi (B™ (R)), with 0 < R < 1, is a disjoint union
of symplectic balls that do not intersect the closed ball B?*(r,), then there exists
ry > 1, and a Hamiltonian symplectomorphism h, supported in the open annulus
o < lla| < 13, such that & (UL, fi (B2 (R))) = UL, B™ (R, ), a disjoint union
of round balls centered on integer lattice points x;. (In the case that r, = 0, we

mean simply that the & symplectic balls are disjoint, and claim that there exists

some 1, > 0, with A supported in the open ball ||z|| < r4.)
Proof of Lemma B2:

step i: HEstablish neighborhoods.

A symplectic ball is the image, f; (B*™ (R)), of a symplectic embedding,
fi - B™(R) — R* of the closed round ball, B*" (R). By the usual definition of
embedding, we know that there is a smooth map ﬁ Uy — R*®, where U; is some
open set, B*&) < U; ¢ R?", and ﬁ|Uz = f;. From now on, we will use the symbol
fi for both f; and ﬁ We have k of these symplectic balls, which are closed, disjoint,
and which do not intersect B? (r,). (Again, this last condition is omitted if r, = 0.)
Therefore, there is some € > 0 such that B2 (R+¢) ¢ U; for each ¢ = 1,..., %, and
such that the & sets, f; (B* (R + ¢€)), do not intersect each other or B*" (r,). We will
refer to the set f; (B? (R - ¢)) as the i** neighborhood, N;. Note that the composition

o~ —

1 . .
fi o fiis just the inclusion map, ¢ : B (R) — R*", which we will suppress.
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step . Introduce g ;.

In Detail 1, found in section 4.3.1, a symplectic isotopy g¢;: @ [0,1] —
Symp (R is constructed. Tt has two important properties: g;o = id, and
gip (fi (B (R))) = B™ (R, z;), where z; is an integer lattice point. So the isotopy
gi,. transforms the i symplectic ball into a round ball, centered on an integer lattice
point. Also important for us will be the fact that in the process, the i*® ball - in fact
the entire i** neighborhood - stays outside the ball B** {r,). (If r, = 0, this sentence
is omitted.)

It would be convenient if we could transform the entire union,

k .
f=1 S

(B? (R)), of symplectic balls at once by simply acting on the union with the
product of the corresponding k isotopies, gyt © -+ - © gat © 1,4, but this will not work.
The supports of the various g;; are not disjoint, indeed the supports are not even
compact. As a result, their operations would interfere with each other (The opera-
tion of g;;, designed to transform the 1** symplectic ball, would affect the 2™ one
as well, s0 go; would not have its intended affect on the 274 ball, etc.), and their
supports would not be confined to the desired annular region. One way to get the
various g;; to cooperate with one another is to apply moving cutoff functions to the
corresponding Hamiltonian functions, with the cutoff functions identically 1 on the

images of the evolving symplectic balls, and supported inside the (slightly larger)

evolving neighborhoods. This, we will do in the next step.

step i Introduce Gy, Xit-

We let Gy be a Hamiltonian function that generates g;;. For each 1 =
1,...,k, we define a cutoff function y;, as follows. x;: is a non-negative smooth
function on R?™ that is identically 1 on the moving image g;, (fi (B* (R))) of the i

symplectic ball, as it is transformed by the isotopy i, and is identically zero outside
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the moving image g;; (f; (B™ (R -+ £))) of the slightly larger 1*" neighborhood. This
insures that the support of x;; is compact. (Not merely compact at each t € [0,1].)
Moreover, if ¢ # j, the supports of xi: and x,: will be disjoint at each time £,
because of the way that g;; is constructed. Thatsis, in Detail 1, the isotopy g;, is
constructed in a way that insures that the evolving image of the i** neighborhood
remains within the confines of a linear magnification of the original ¢** neighborhood.
But the original neighborhoods are disjoint, so their linear magnifications will also
be disjoint and, therefore, the evolving images of the various neighborhoods will
remain digjoint. Thus, the supports of the various cutoff functions, contained in
those evolving images, will remain disjoint.

Multiplying the #** Hamiltonian function by this " cutoff function, we
obtain a new Hamiltonian function, x;G;;. This function agrees with the function
G on the moving image g;; (f; (B*" (R))) of the i* symplectic ball, as it is trans-
formed by the isotopy g4, but for each t € {0, 1], the support of x;;(Gyy is compact
and if ¢ # j, the supports of x;;Gis and x;,G;, are disjoint, Moreover, because the
support of each x; is not merely compact af each timet € [0, 1], but actually compact,

the same can be said of the functions x; .G} ..

step iv: Introduce Hy, e, and h.

Define the Hamiltonian function H by H; = Zf:l xi:Git, let by be the
symplectic isotopy it generates, and let h = hy be the téme = 1 value of that isotopy.
Notice that for each ¢ = 1,...,%, and for each ¢ € [0,1], this function agrees with
the function G;; on the moving image g;¢ (f; (B*" (R))) of the i symplectic ball, as
it is transformed by the isotopy ¢;;. Therefore, the isotopy A, will transform the ith
symplectic ball in precisely the same way that g;; would. So, the isotopy A; turns the
i*" symplectic ball into a round ball and moves it to an integer lattice position, and

it does this to the whole batch of balls, s = 1,..., k, simultaneously.
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step v: Describe 7y, the outer radius.

We defined the function H as the sum H; = Zle Xi+Git, where the sup-
port of each x;;G;; is compact. Therefore, the support of H is also compact. So we
can choose some number 7y > 7, such that the support of H is contained in the open

ball ||z|| < 7.

End of proof of Lemma B2

4.2.3 Lemma B3

Lemma B3: Given a lattice of round balls, meaning a union | i, B* (R, z;), where
0< R < % and each x; € R?" has integer coordinates, we claim that there is a Hamil-
tonian symplectomorphism, which we will call shuf fle, that rearranges the balls so
that they are again centered at integer lattice points, but now only at points such

that Tiom = 0,

Proof of Lemma B3:

The symplectomorphism shuf fle will be achieved by the composition,
shuffle = hogo f, of three Hamiltonian symplectomorphisms, f, g, and A, whose
incremental effects on the lattice of balls are shown in Figures 4.2, 4.3, and 4.4
These symplectomorphisms effect movement only in the z2,_1 X za, plane, which is the
plane shown. The three symplectomorphisms shown can be generated by three time-
independent Hamiltonian functions, F', G, and H. We construct these Hamiltonian
functions using the wedge and step functions described in Detasl 6, found in section

4.3.6.
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step i: Construction of the function F

Define the 7% column of balls to be the set of balls whose centers have
Loy 1 = k. Define the top half of the 5% column to be the subset whose centers have
Ton 2 0; the bottom half, the subset whose centers have zon, < —1. From Fig. 4.2,
showing the effect of symplectomorphism f, we see that for 7 > 1, the top half of
the 7% and —45* columns must move up j units, while the bottom halves must move
down j — 1 units. (The 0** column does not move.) Observe that the Hamiltonian
function wedge (2, 1 — §) generates a symplectomorphism that moves the j%* column
one urﬁt in the x,, direction. We construct the Hamiltonian function ¥ by applying
cutoff functions to this function, in order to restrict action to the top half or bottom
half of the column, and multiplying it by scalars appropriate to achieve the desired
displacements. (For typesetting reasons, we will write w and s for the functions wedge

and step in the expression for the function F)

o]

F(z)= Z (w (T2n—1 = j) + w (Top—1 + 7)) | Js(wen) (G 1) s(1— Dan)
g=1 moves jth andij th columns top l;;lf up battom ﬂra.lf down

step 1: Construct the function G

Define the k™ row of balls to be the set of balls whose centers have z,,, = k.
From Fig. 4.3, showing the effect of symplectomorphism g, we see that for rows
k > 1, the initial position of the left-most ball in the k™ row has z3, | = —k. The
symplectomorphism ¢ must move that left-most ball to the right, to a final position
With @op_1 = 143+ -4 (2k — 1) = &2, This means that for k > 1, the &*" row must
move to the right an amount k2 + &k = k (k + 1) units. Similarly, the —&" row must

move to the left by the same amount. Accordingly, we construct the Hamiltonian

function G:
G(z) = Z wedge (Tom + kl:wedge (zon — kl k(k+1)
k:l W W

sends —kth row left  sends k*A row right
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step i1i; Construct the function H;

From Fig. 4.4, showing the effect of symplectomorphism h, we see that
it caunses columns 1 through 3 move down 1 unit,,columns 5 through 9 move down
2 units, columns 10 through 16 move down 3 units, etc. (At the same time, the -
corresponding negatively numbered columns move up the same amounts.) Let lefiy
denote the number of the left-most column in the collection of columns that move
down k units, and let right) denote the right-most column in that collection. We will

obtain explicit formulas for le ft;, and righty by first describing them recursively.

4

1 fork =1
leftk = {4

lefty_1+ (2]{7 — 1) for k > 2

7

3 fork=1
m’ghtk =9

righty—y + (2k +1) for k2 2
\

The solutions to these recursive formulas are lefty = k? — 2k + 2 and right, = k°,

for all £ > 1. We will use these values as the lower and upper limits of a sum that

defines the function H:

o0 k2
H(z) = Z k Z wedge (#op—1 — j)J:wedge (Zop—1 + j)J
k=1 J=k?—2k-+2 e N

moves 7t column down moves —j* column up
L

-
the collection of columng that must be moved up or down by the amount k&

End of proof of Lemma B3

4.2.4 Lemma B4

Lemma B{: If ¢ € Sympy (R*"), where V = |J;7, B*™ (R,x;) is a disjoint union

of round balls with 0 < R < %, centered at integer lattice positions x; such that
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Tion = 0, then its extended Hofer infinity norm is bounded: B () € 16

Proof of Lemma BJ:

Recall that the symbol ¢ € Sympy (R%¥) means that ¥ can be generated
by a Hamiltonian function supported in V. Therefore, we can write ¢ as a product
¥ = [Tz, %, where support (3;) C B* (R, ;) and v; can be generated by a Hamil-
tonian function supported in B** (R, ;). Because both the ball B?* (R, ;) and the
time interval [0, 1] are compact, such a function will be uniformly-bounded, so the
norms F, (1) and B, (10;) will be finite. But we can say more than this. We know
that the norms will be finite even if we take the infimum over only those Hamiltonian
functions supported in some particular set U, so long as that set I/ contains the ball
B* (R, z;).

This notion of only taking the infimum over functions supported in a
particular set will be used again, so we introduce notation for it in the case of both

of the infinity norms that we have defined.

EZ () = inf{||H| :H €, support (H) C U,and H generates 1}
E;U (¥) = inf{||’1EI‘q1|—;o : H e H, support (H) C U, and H generates v,b}

—U

With this notation, we will have Eoo  (30;) < EY (4;), with both being finite so long
as U contains B* (R, z;).

In this first use of the notation, our choice for the set U will be a tube

containing the i** ball, pointing in the z,, direction, defined as follows. First, we
1
R+‘2‘

define Rt = 3

= & 4 2. (We just need R* to be a number between R and 1.)
Then we define the i tube as the set

2n—1

tube; = {Bzﬂ_l (R-I—,SUZ') X Rl} = {y e R . Z (yk - CCz',k)z < (R+)2} .

k=1

Since the ** tube will contain the i** ball, in our new notation we can say that
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L8 (4;) is finite. But in fact, in Section 4.2.5, we will prove the following lemma:

Lemma Bb: If 1) is a symplectomorphism generated by a Hamiltonian
function supported in the ball B** (R, ), 0'< R < é, and if tube is the

set {y P (g — ) < (£ + %)2}, then Efebe (1) £ 8.

We apply this lemma to our present situation, using our ¢; for the symplectomorphism
Y in the lemma, and our set fube; for the set tube in the lemma. As a result, we can
say that for each 1 = 1-..00, E®% (3y) < 8. Put another way, Jnax b () < 8.

Recall that in Lemma B3, we shuffled the balls into an arrangement where
the 2n* coordinate of each ball was zero. Because of this shuffling, we know that
the i tube will contain the ** ball and no others. Moreover, if 7 % j then tube;
and tube; are disjoint. (These last two statements are the motivation fér the shuffling
that we did in Lemma B.) In Detail 5, found in Section 4.3.5‘, we prove the following

fact about the extended Hofer infinity norm:

Detail 5: Let 14, 1 € I be a finite or countable collection of Hamiltonian

symplectomorphisms with support (¢;) C U; C R*™, where U; N U; = ¢ if
T,

i # 7. Further, assume that for each i € I, F ‘(1,01-) is finite and that

—U; . o U
max Fe (15} exists. Then Ey, (1) < 2 max Eo  {(t;).
4 ?

Applying this fact to our current situation, we will use the sets tube;, fori =100,
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as the sets U;. The result is

Boo (T[22, %) < 2 max B " () (by Detail 5)
< 2i:ml§?§o Efubei (4, (by definition)
< 2(8) * (by Lemma B5)
= 16.

We have shown that o (¢) < 16.

End of Proof of Lemma B4

4,2.5 Lemma BS

Lemma BS5: If ¢ is a symplectomorphism generated by a Hamiltonian function sup-

ported in the ball B* (R,z), 0 < R < %, and if tube is the set

{0 e < (5 )

then B8 (1) < 8

Proof of Lemma BS:

Let ¢ > 0. We will show that £ (4} < 8 + 2¢. Since ¢ is arbitrary, this
will prove the claim.

Without loss of generality, we may assume that the point x is the origin.
To see why, suppose z is not the origin. Then the symplectomorphism ¢ = 7, ' otpo 7y,
where 7, is the translation that sends the origin to the point z, will be supported in
the ball 7, (B> (R, z)) = B* (R), which is contained in the set 7_, (tube), another

7o (tube)

tube. We could use the present claim to estimate Eoo (¢). Then, by conjugation

invariance, E&¢ (y) = B v (bube) (¢).

With that assumption, the description of our {ube becomes simpler:

tube = {y : Zj:lyf < (% + %)2}
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We will consider translates of the ball B?* (R) along the length of the tube. (That
is, in the zo, direction,) With that in mind, we introduce the following notation:
bally = the original ball = B (R, 0)

¥

ball, = ball translated & units in the xy, direction = B** (R, (0,---,0,k))

colly = {y: 3" R < (B3 andk—1— (B+}) <y <k (FrD)]}.

The set celly, is designed to be large enough to support a Hamiltonian function that
will generate a symplectomorphism that will translate a ball of radius R centered at
(0,-+-0,k — 1) to the position (0,---0,%). That symplectomorphism, called oy, is
described in Detail 4, below. By the construction shown there, o, will have three
important properties:

oy (bally_1) = ball

support (oy) C celly

B¢ (o) < 1.
Also note that if {j — k| > 2 then cell; and cell; do not intersect.

By hypothesis, + can be generated by a Hamiltonian function supported
in bally. By compactness, such a function will be uniformly-bounded. So, 9 has finite
extended Hofer infinity norm, even when we restrict the support of the functions
used in the infimum. That is, B2 () € Ee (1) < B2 () < co. Therefore,
there is an integer ¥V > 1 and a finite sequence ¥ = ¥, ¥4, ..., ¥y = id, with each
W € Ham (B (R?))}, such that doo (95, 4501) < € for ¢ = 0,..,N — 1, even if we
take the infimum over only those Hamiltonian functions supported in bally. That is,
Blbe (97 ;) < B (97 hign) < B (¢ Wuyr) < e, fori=0,.., N 1.

For k=0, ..., N we define the symplectomorphism even; by

o if k=0

even, =

-1 _—1 .
O Ook—1 ** * O201 Y0, Oy + Ogp 1O H 1S ELN,
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Note that the symplectomorphism eveny, is supported in bally,, which is centered at
the point (0,- -+, 2k). Also note that eveny = id because ¥y = id.

For k=0,.-- | N — 1 define the symplectomorphism odd;, by

. -1 %] 11
oddy = Gop 109k * * - O201YR0) Ty * * O Togt1-

Note that oddy is supported in ballag 1, which is centered at the point (0, .-, 0,2k + 1).

Using these terms, we rewrite 1.

N-1 . N-1 1 1
P = 1y = eveny = eveng (II . odd;odd, ) (H | evenjeven; ) eveny
4= J:

In this last step, we have simply inserted a bunch of terms, along with their inverses,
and one final term that equals the identity map. Notice that for any two factors in the
above expression, either the supports of the two factors are disjoint, or the supports
are the same and the two factors are inverses of one another. Either way, we see that

the entire collection of factors commutes. This allows us to réarrange them:

_ N-1 1 N 1
Y= (Hi:O even;odd, ) (szl even; oddj_l) :
Estimating the extended infinity norm, we find
N-1 N
EMbe (3f) = Etube ((Hz’:O even;odd; 1) (]:[j:l efuenj_loddjnl))

uhe N-1 — ube N
< B (Hi:[] even;odd; 1) + & (H )

1=

(4.1)
even}loddj_l) .

Consider the expression on the left in the right side of Equation 4.1, Since even; is
supported in balls; and odd; is supported in bally; .1, we see that even;odd; is supported
in celly; 1. Recall that if |§ — k] 2 2 then cell; and cell, do not intersect. Therefore,
if 4 # 4, then celly;y1 and celly;+1 do not intersect. This allows us to use the trick

described in Detail 5, below to say that

N-1
tube g—1 celly; . -1
EZ | Iizﬂ even;odd; < Zi:{]q?],\:;c_lEm 41 (even;odd; ") . (4.2)

supported inecellp;
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For i = 0, we have

Eeth (evengoddy ') BN (oorepy o7 )

cell —1 cgll -1
< BEZM (TPDUIT/){) )+Eo§ t (o )
(4.3)
= E<M (g)) + B (5y) (conjugation invariance)
£ 1+1=2,
. cell -
Fori=1.--N — 1, we have Eeo " {even;odd; ") =
cUEn;
>
_ cellait1 g -1 -1 ~1 -1
= o ( 090211+ Oa010] 05+ Ogi T O
odd; !
o o ] R —~1 —1
0254102 " ** Ga01W; "0y 0q " " Oy iy )
We will interpret this group of terms as a conjugation.
o
cellagry ¢ ° -1 -1 -1._-1 -1
< Boo M (09 o1thio 0y G109 O] O e Oy ) + (4-4)
. " JW_/\_ -~ ki

+Eggllzi+1 (O-Z_z—ll—l) (tria,ngle inequality)

B (50 ) + B (g9:1)  (conjugation invariance)

H

< 1+1=2
Summarizing, for the expression on the left in the right side of Equation 4.1, we have

the estimate

N-1
pe (T evemsond™) <2 e BStber (eveniodd”) <2(2) = 4. (45)

Next, we estimate the expression on the right in the right side of Equation
4.1. As we did above, we will consider the supports of the factors in the product in
order to be able to exploit the trick of Detail 5. Since even; is supported in balla;
and odd,_ is supported in bally;—;, we see that even;odd;.., is supported in celly;.
As above, we know that if 1 # j, then celly; and celly; do not intersect, and that will
allow us to use the trick from Detail 5.
Eilube HA_r_l even;todd;_; | <2 max Bt (even; ' odd; )

J
supported in cellg;
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For j = 1-+- N, we make the estimate E2 (even}loddj_l) — i

-1
cwenj

it
odd; 1 :‘? B
.

o
_ peellyy o 7 -1 _—1_~1 -1 —1 -1 !
= B (050 outpy 07 05 0 Ogjer s 0110 O ) i

__ pacellz; 11—
= Lo (UszZj—l“'O"lT/)j g1

Ingert group of terms thai comprise the id map.

1 -1~
Tt Ogi 1095 Ogg—1" 010 i

” "y Iyt
—1 -1 -1 -1 -1 il
PYi07 - 095 1025-1 - O1Y; Pi107 Oy ) |i|!:

< Eggugj {(094) + I

We will interpret this group of terms as a conjugation.

cello; el 1 -1 -1 -1 -1 |
+Eoo ¥ ((Ogjr s WYy 0T Oy Ty Ot O1Py0r 05 ) + )
~ Nt s _

v '

Interpret this group of terms as a conjugation.
i,

-,

{la; - — — _
+Egg 4 ( a2j“1 0 ¢j lllnbj—l 2] Lo JZj%—l )
N e e —— —

cellay celly;

oo (025) + Foo ™ (025) + Bt (4p57 45, ) (conjugation inv.)
<l+1l+e=2+4¢.
Summarizing, for the expression on the right in the right side of Equation 4.1, we

have the estimate

N . -
Efgbe (szl even;loddj_l) < 2jI:nla.L_§V Egg“% (evenj 1odd;,-_1) <2@2+¢e)=4+2.
(4.6)

Plugging Equations 4.5 and 4.6 back into Equation 4.1, we have

Ef.,“z‘be () < Eggbe ( :;i—ol efuemOdd;l) + E‘égbe (Hé\;l even{lodde)
<

A4 (44 2¢) = 8 + 2.

End of Proof of Lemma Bb %

4.3 Detalils i

4.3.1 Detail 1: An isotopy that transforms a symplectic ball

step i: Introduce git, Gig, Gips Gier a0d gig. “
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In this section, we describe an isotopy g;: that turns the i symplectic
ball into a round ball centered at an integer lattice point, Fach g;; is obtained by a
time-concatenation of four isotopies, g; = gia * gib * Gic * giq- The operation of these
isotopies is as follows: g;, moves the 3% gymplectic ];)all radially outward from the ori-
gin, while making it more elliptical (in the sense that will be explained below). Then,
gip turns the symplectic ball into a symplectic ellipse, while holding it in place. Next,
g5 turns the symplectic ellipse into a round ball, while holding it in place. Finally, g;4

translates the round ball to the nearest integer lattice position.

step ii: Describe gi,.

Recall notation from step i of the proof of Lemma B2. The i** symplectic
ball is the image, f; (B*® (R)), of the symplectic embedding, f; : B?* (R) — R®". The
set fi (B® (R +¢)) is called the i* neighborhood, with & chosen for the whole set of
k neighborhoods in order that they be disjoint and do not intersect B*® (r,).

In Detail 2, below, the workings of a smooth faﬁily of symplectomor-
phisms s € Symp (R*), for t € [0,1), referred to as a partial linearization with
translation applied to a symplectic ball, are explained. Here, we will apply such a
symplectomorphism to the ** ball and describe its effect at some ¢ € [0, 1).

Yii b (fz (Ball% (R))) = Tp) O mﬁ 0T 0 fiemi_go fi_1 ) (j'z (Baﬂl% (R)))

-t

-

tranotation  Symplectic ball becoming more elliptical; center fixed at origin
In this expression, 7, is the translation that sends the origin to the point z € R*",
and m, is multiplication by the non-zero real number ¢. At time ¢ = 0, this expres-
sion simplifies to p, o (Ball®™ (R)) = f; (Ball*™ (R)), the original symplectic ball. As
discussed in Detasl 1, for times 0 < t < 1, the above expression can be thought of
as a difference quotient and, in the ¢ — 1 limit, it approaches the composition of a
linear map with a translation.

A linear image of a ball is an ellipse; so as ¢ approaches 1, one could say
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that the ball is becoming more elliptical. Furthermore, if f; (0) # 0, the image gets i

translated farther and farther from the origin in the f; (0) direction. In Detasl 8 we

will choose an ending time, 0 < A < 1, for 4,4 (The trick there will be to find an

ending time that will work for the whole set, ¢ = ¥, -+, k, of symplectic balls.) We

use this A to re-scale the time in vy, 4, and call the resulting map, gi,:

Giat = Tf(0) OM_1_ O T_f(0) © fiomi_xo f[]'for tc[0,1}.

1
1-At 1-At
Figures 4.5 and 4.6 show the it* symplectic ball evolving under the influence of g,.
Also shown is the §%* ball evolving under the influence of g;,. ‘The symplectic balls

are the darker shapes, and are described by the formulas

giag (Ji (B (R))) = 7@ om_ 1 oT oo fiompso fito fi (B*(R))

T—At 1A
= TR OM_1_ 0T g0 © fi o max (B™ (R)).
=Xt 1At

Surrounding the original symplectic balls are dotted regions, the i and 5%

neighborhoods, f; (B*™ (R +¢)) and f; (B*® (R +¢)), that were described in Lemma

B2. Note that as the symplectic balls evolve, they will always be confined to regions
(the larger dotted shapes in the figures below) that are simply a linear magnification

of these neighborhoods. That is,

giag (i (BT (R))) = rp@ 0 m_1_OT-f(0)© fiomi s (B*(R))
~ d 1—M -

evolvingithgymplectic ball

= m_1_ 0Tg0) 0 T-f(0) © fi o My (B¥ (R))

= m_1_ o fiomy(B*™(R))

T
C m_1ofi(B™(R))
T
C m_1 o f (Bgn (R-I—E)).
T-xt N .

v
. . . #thneighborhood
linear magnification

What is slightly misleading about these figures is that the two isotopies do

not really work simultaneously in this way. That is because the isotopy g;, would also
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continue moving radially outward, becoming
"more elliptical” while staying within the
confines of the (growing) magnified
neighborhoods. By the end of the isotopy, the
neighborhoods have grown large enough to

will undergo.
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affect the j** symplectic ball, while the isotopy g;, would also affect the i** symplectic
ball, etc. But in Lemma B2, where the results of our present work are actually used,
the individual isotopies ¢;, with ¢ = 1.+ k, will be incorporated into a more refined
isotopy, h, that will affect the i** symplectic ball jn precisely the same way that g,
does, while simultaneously affecting the 7% symplectic ball in precisely the same way

that g;, does, etc.

step #4i; Describe gqp .
At the end of the operation of the isotopy gi,, the i symplectic ball has

been transformed into another symplectic ball,

giag (fi (B™(R))) = 7pom_1 o7_pmofiomiyo fi (fi (B (R)))
Y 1—=A

Sl

= TaO 0L 0T © fiomy_y (B™(R)),

=X
that is more elliptical than the original and is centered at the point

Gia,1 (fi (0)) = TE©) °T L 0T © fiomiox (0) = 25 £ (0),
where A, 0 < A < 1, is the ending time described in Detasl 3. For simplicity of
notation, we introduce the abbreviation 6 for the composition g;,1 o fi. With this
notation, at the end of the operation of the isotopy gi., the ** symplectic ball has
been transformed to the symplectic ball 8; (B?" (R)), centered at the point 8; (0) =
i fi (0)

In Detail 2, the workings of another family of symplectomorphisms, S €
Symp (R*"), for t € [0, 1], referred to as a linearization applied to o symplectic ball,
are explained. Here, we wish apply such a symplectomorphism to the transformed "

symplectic ball, &; (B** (R)). To accomplish that, we will substitute the new symbol

g; for the symbol f in the expression for ;. The result will be the isotopy gu,s:
To,(0) ©T_1_ © T—g,(0) © B;0my_y 0 9;1 if t € [O, 1)
i—x

Givg = Boyt =
To;0) © Litany), © 91-_1 ift =1.
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In this expression, Lg;), is the linear operator obtained by left multipli-
cation by the matrix (df;),. Because @ is a symplectomorphism, (df;), is a symplectic
matrix, and we could describe Ligg,), (Ball® (R)) as a symplectic ellipse. The results
of applying the isotopy gis, to the transformed ¢ gymplectic ball #; (B** (R)) are as
follows. Because gi0 = Bg, 0 = id, at time ¢ = 0 the ball is, of course, unchanged. By

time £ = 1, the ball has been transformed to

gina (0; (Ball®™ (R))) = B0 (0; (Ball®™ (R)))
= Tg0) @ L(dﬁ,-)o C H;I (91 (B’GJF” (R)))
= Tﬂé({]) O{J(dgi)g (Bauzﬂ (R))J

"
symplectic ellipse

S0 the isotopy gise, applied to the i symplectic ball (after that ball has
already been translated and deformed by isotopy g, ) has the effect of turning the
symplectic ball into a symplectic ellipse, while holding it in place. Figure 4.7 shows
the effect of the isotopies gy and g;» on the i and j* symplectic balls: They have
become symplectic ellipses, centered at the spots where the symplectic balls were
sitting at the end of isotopies g;, and gj,. Also shown on the figures are the dot-
ted regions that are the magnification of the original 4** and j* neighborhoods. As
shown in the figures, the images of the i** and j* symplectic balls, as they evolve
under the influence of isotopies g and gy, remain within these regions. This is not
automatic. Rather, it is because, in Detail 3, we will be careful to choose an ending

time A sufficient to make it happen.

step tv: Describe g .

By the end of the operation of g;, * gip, the 1™ symplectic ball has been
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turned into a symplectic ellipse centered at 503 (0)

(gia * giv); (i**symplectic ball) = g1 © gia, (i (B (R)))

= Ginn (s (B™(R)))
T 0 Luang, (B* (),
where 6; (0) = 1= fi (0).

Since (d6;), € Sp (R**), and Sp (R*) is path connected, we know that
there is a path oy, € Sp(2n), ¢ € [0, 1] connecting the identity map to (df;), ' That
is, 030 = 4d and 041 = (d@i)gl. So we can define gics = To;(0) © Loy, © T-0;(0)- At time
¢ = 0, this expression reduces t0 gico = 70,(0) © Loy © T-8:0) = id. Considering the

time t = 1 expression, g1, applied to the it gymplectic ellipse, we find

gie (i symplectic ellipse) = G, ((gia * 9iv), (i symplectic ball))
= Gie1 {Ta,0) © Lany), (B (R)))
= T4;(0) © Layy © T-0:0) (To:00) © Lians), (B> (R)))
= Th0) © Lyagy;t © T-8:(0) © Te,;(o‘) o Lyasy, (B* (R))
= 7o) (B*(R)).

So we see that g, turns the it symplectic ellipse into a round ball while
holding it in place, with its center located at 8; (0) = 55.fi (0). Figure 4.8 shows the
effect of the isotopies g and gj. on the i and j% symplectic balls. They have become
round balls, centered at the spots where the symplectic ellipses were sitting at the
end of isotopies gi; and gjp. Also shown on the figures are the dotted regions that are
the magnification of the original #* and j* neighborhoods. As shown in the figures,
the images of the ¢» and 7% symplectic balls, as they evolve under the influence of
isotopies g;. and gje, remain within these regions. Again, this is not automatic, but
rather because, in Detail 3, we will be careful to choose an ending time A sufficient

to make it happen.

step v: Describe giq.




During this isotopy, the
symplectic ellipses have been
turned into round balls. Their

centers have not moved, and the
transformation has taken place
within the confines of the
magnified neighborhoods.
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Figure 4.8: Effect of the isotopies g;. and gy




At the end of the operation of g, % g * gic, the i symplectic ball has

been turned into a round ball, centered at 6; (0) = %5 /i (0). Define giy to be the

1

translation gg; = 7 , where x; is the integer lagtice point nearest — fi (0).

t(mi—ll—')\fi(o))
S0 gie,0 = 7o = td, while gig,; applied to the it ball is

Gid,1 (?:'thba,ll) = i (Tl_i_}fi(n) (Bl’n (R)))

B CET0) (Tr_"xfi(ﬂ) (B (R)))
= Tg (an (R)) '

| —A

We see that the isotopy gigs moves the #** ball to the nearest integer lat-
tice point. Figure 4.9 shows the effect of the isotopies giz and g;q on the i and j*
balls. As above, during this isotopy, the balls remains confined to the dotted regions

dhown, because of our choice of the ending time, A

FEnd of Detail 1

4.3.2 Detail 2: Linearizations, moving and fixed

Part i: The linearization at zero (The Alezander trick )

Let f € Diff (R2") be any diffeomorphism of R, Let m, : R** — R
be the multiplication by the scalar ¢ and let 7, : B2 — R?" be the translation by b.
Then for each ¢ € (0,1], the map m1 o 7_sq o f o m; is an element of Dif f (R™).
Note that when this diffeomorphismtacts on an element z € R*", the result is just

the difference quotient,

(tz) — f (O
m1 o T_f(o) 0 f o mg (z) = M
:
Because | is differentiable, the ¢ — 0 limit exists in R*":

' — . ftz)—f(0
iy o7 o fom (o) iy 4510

= (df)oo
= L(df)o(m)
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Here, Lgpy, is the lincar operator obtained by left multiplication by the matrix (df),,

and is called the linearization of f at zero. If we define a path ay, in Dif f (R*) as

T _1 OT o) ofom_y ift,E€[0,1)

Qpp =

Ly, if ¢t =1,
then ayy is smooth in the compact-open C'* topology on Dif f (R2™), g = 7_py0 f
and ay, is a linear map. We could say that « is a path from a translation of [ to a lin-
earization of f. Acting on a round ball with these maps, we have ay (Ball™™ (R)) =
f (Ball* {R)) — f(0), a diffeomorphic image of the ball, which we could call a diffeo-
morphic ball, and oy,; (Ball*™ (R)) = Ly, (Ball®® (R)), a linear image of the ball,
i.e. an ellipse. Note that the center of the image, the image of x = 0, remains fixed
at zero:

FO=F(0)=0 ifte01)
s (0) =
L, ) =0  ift=1

When we actually use paths like the one above in this paper, the map f
will be a symplectomorphism. In that case, we will have ay; € Symp (R**) for all
t € [0,1], and we will say symplectic ball, and symplectic ellipse, the latter because
(df), € Sp(2n). For the remainder of this section, we will assume that f is a sym-

plectic map, though the techniques work for any diffeomorphism.

Part 41: The linearization applied to a symplectic ball

The path that we constructed above was used to transform a round ball.
At time ¢ = 0, the result was a symplectic ball, and at time ¢ = 1, the image was a
symplectic ellipse, both centered at the origin. However, our need will be to transform
not a round ball, but rather an existing symplectic ball, f (Ball*™ (R)), and to do it
not at the origin, but rather at the spot where the symplectic ball sits, For that

reason, we compose aj, with a translation and with f ~1 to achieve a new path, a
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path which we will call B;:

Tf(O)Om_i_OT—f(O)ofoml-iof_l iftE[O,l)
Bra= b
710) © gy, © 7 , ift=1

Then 8, is a path in Symp (R*"), with 850 = id.
When f;, acts on the symplectic ball f (Ball*® (R)), the result at time
t=0is
Bro (f (Ball™ (R))) = id (f (Ball®™ (R))) = [ (Ball™ (1)),
the original symplectic ball. At time ¢ = 1, the result is
Bra (f (Ball™ (R))) = 750y Lian, 0 ™ (F (Ball™ (R))) = 750y 0 Lapy, (Ball™ (R)),

2 symplectic ellipse, with center located at the same spot where the center of the

original symplectic ball was located.

Part iii: Partiol linearization with translation applied to a symplectic ball

In the construction of f;,, above, we inserted an additional transla-
tion into the expression for aj.. As a result, the images of the symplectic ball,
B (f (Ball*™ (R))), remained fixed at f(0). If, instead, we remove the transla-
tion from the expression that describes ay; for ¢ € [0,1), we create a new path in
Symyp (R?*) that has the effect of moving the center of the image radially outward,

in the f(0) direction. We call this path -y,

Y4 = m_1 ofom_yof

1—-&
= m_1 oTpe O Tfo)of oMo fT
Tot S e’
id

= Tfo0) O _1_OT_f0)° f O TM1—t © f_l,
1—t 1
This expression looks just like the one above for 8y, in the time interval

t € [0,1), except that the final translation is not fixed. Rather, the amount of

translation increases as time t approaches 1.

71

‘it?

!




Consider the effect of the symplectomorphism 7, on the symplectic ball
f(Ball*™ (R)):

Ve (f (Ball™ (R))) = 740 © M1 0T g0 fomy o F7H(f (Ball™ (R)))

1

N o

translation  symplectic ball becoming more elliptical, with center fixed at origin
At time ¢ = 0, this simplifies to v, (Ball®™ (R)) = f (Bell®™ (R)), the original sym-
plectic ball. As ¢ approaches 1, the image of the ball becomes more elliptical and, if
f(0) # 0, the image gets translated farther and farther from the origin in the f (0)
direction, with distance from the origin going to infinity. For that reason, we cannot
extend the definition of y;; from the time interval ¢ € [0,1) to the entire interval
[0,1]. But in our use of this symplectomorphism, we will choose an ending time, r
that is less than 1. The result, then, will be that as ¢ goes from 0 to 7, the image of
the ball will evolve from the original symplectic ball, f (Ball?" (R)), to another sym-
plectic ball, vy, (Ball®™ (R)), that is more elliptical than the original and is translated
radially outward from the origin in the f (0) direction. (Of course, if f (0) does equal
zero, then we could extend the definition of «y;, to the time interval ¢ € [0, 1], but we

don’t need to. For our purposes, v, will be stopped at the ending time, 7 < 1.)
End of Detail 2

4.3.3 Detail 3: The ending time

Given a disjoint union of symplectic balls, | J* | f; (B% (R)), we choose an ending

time, A = 0.

step i. Choose R, for one symplectic ball.
A symplectic ball is the image f (B* (R)), of a symplectic embedding,
[ B¥™(R) — R*, where B (R) is the open ball of radius R. The center of

this symplectic ball is the image of the origin, f(0). Choose an R; such that

72




F(B™(R)) € B (R, f(0)). Note that of course R < R, because the map [ is

volume-preserving.

step #: Choose Ry for one symplectic ball.

In Detail 2, we described the linearization applied to a symplectic ball, a
technique based on the Alexander trick. Using that technique, we can construct a
path in Symp (R*") which we will call B;,, where t € [0,1]. When we apply Sy to

our symplectic ball, the important results are:

’

J(B™ (R)), the original symplectic ball, ift=20

ﬂf,t (f (BQH (R))) - ﬁ T_)"'(O) 0 mﬁ O T_f(0) o} f Oy —t (Bgﬂ (R)) ifo<t< 1

|77 © L), (B*™ (R)) , a symplectic ellipse, if t = 1.

Note that in each case, the result is a symplectic image of B (R), with center lo-
cated at f; (0). Choose radius Ry such that for all ¢ € [0,1], Brs (f (B™(R)) C
B (Ry, f (0)). Also note that Ry < Ra.

step #ii: Choose Ry for one symplectic ball.

Because (df), € Sp (R**), am-i Sp (R} is path connected, we know that
there is a path oy € Sp(2n), t € {0,1] connecting the identity map to (df);". That is,
oo = td and o1 = (df)o'l. Define a map g = T#(0) © Lo, © T-£(0): Then when g¢; applied
to the symplectic ellipse that we obtained at the end of step i, above, the result will

be

{

1) © Liapy, (B () i t=0

gt (ry0y © Laryy, (B (B))) = § 75(0) © Lo, (B (R)) 0 <t <1

| 7#0) (B*™(R)) if t=1.
The t == 0 result is simply the original symplectic ellipse. The 0 < ¢ < 1 result is

another symplectic ellipse, centered at the same location. We could think of these
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cllipses as becoming more spherical as time approaches 1. Finally, the ¢t = 1 result
is a round ball, centered at the same location. Choose radius Ry such that for all
tel0,1], g (Tj‘(g) o Lig), (B*™ (R))) C B™ (Ry, f(0)). Note that Ry < R.
’

step 1w: Choose R, for one symplectic ball.

We will be interested in determining the radius R, necessary to insure that
a ball centered at f (0) has room in its interior for all the activities of the previous
three steps, and is also large enough to contain a copy of B*® (R) that is centered at
an integer lattice point. But since 0 < R < %, we know that a ball of radius 2 centered
at any point will contain some B?" (R, z;), where z; denotes an integer lattice point.
Therefore, let Ry = max {2, R;}.
step v: Choose A for one symplectic ball.

In Detail 2, we described the partial linearization with translation. It was
a path vs4 in Symp (R*), defined by y54 =m 1 o f omy_;o f~! When we applied

it
the symplectomorphism -ys; to the symplectic ball f (Ball*® (R)), the result was

Vid (f (Ball™ (R))) = Ty © mi”l”% oT_goy0 fomigo f (f (BaHQ” (R)))
T o 1= ,

"
translation Symplectic ball becoming more elliptical, with center fixed at origin

As time ¢ approaches 1, the image becomes more elliptical, with center moving radially
outward from f (0).

If we examine again the defining expression for v, we will notice that

the evolving image of the symplectic ball remains within the confines of a simple




magnification of the original neighborhood that was described in Lemma B2

1 (B (R) = myofonuyof (f (Ball ()

i)
= m_1_ofomi(Ball™ (k)

1—% ’

C m_1_ o f(B*(R)) (magnification of original symplectic ball)
Tt

¢ m_1 o f(B™(R+e¢)) (magnification of neighborhood)
I ,

p
original neighborhood

Also note that as it evolves under the influence of the partial linearization with trans-
lation, the image of the symplectic ball has precisely the same shape as it would if
it were evolving under the influence of the linearization with fixed center, the only
difference being the translation. This is easy to see if we examine the expressions for

the two linearizations during the time interval 0 < ¢ < 1.

Brae J(B™(R)) = 70 om_1 o7_spg) 0 fomiy(Ball™ (R))
N’ o 1t ,
translation ~-
evolving shape
v (F (BB (R))) = 7y em1 om0 fomiy (Ball™ (1)
I—t o - .
larger translation same evoiﬁng shape

In step it, above, we found a radius I, such that during the entire evolution
of the linearization with fized center, the evolving image remained within the confines
of a ball of radius Ry with fized center. That is, for all £ € [0, 1], 8 (f (B*™ (R)}) C
B (Ry, £ (0)). Now we see that during the evolution of the partial linearization
with moving center, the evolving image will remain within the confines of a moving
ball of radius Ry,centered at %Q%. That is, for all ¢ € [0,1), vs4 (f (Ball*™ (R})) C
B (Rz, il@%) Since, as time ¢ grows from 0 towards 1, the evolving symplectic ball
is remaining within a moving ball of fixed radius, while the evolving neighborhood it
lies in is growing without bound, we know that there is some A > 0 such that at time
t = A, the neighborhood will be large enough so that the following will be true.

v (f (Ball*™ (R))) < B> (B, 19) « B™ (Ry, £9) © m. o[ (B” (R+<))

original neighborhood
-

N,

~—
magnified neighborhood
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This is illustrated in Fig. 4.10 and Fig. 4.11.

step vi: Choose A for the entire collection of balls, Ule b (B* (R)).
Fori=1---k, let \; be the number chosen by steps (i) through (v) above.

Then let A = max {A, Ag, -+ ) Ak}

Summarize our construction of A.

Given a collection of symplectic balls, UL, fi (B®™ (R)), we have chosen
A in a way that, if each symplectic ball is subjected to a partial linearization with
translation for time ), then by the end of that time, each will have evolved to a state

gimilar to that shown in Fig. 4.10 and Fig. 4.11.

Fnd of Detail 3

4.3.4 Detail 4: A Symplectomorphism that moves a round
ball

Recall the sets described in Lemma Bb.

bally = the original ball = B (R, 0)

ball, = ball translated k units = B™(R,(0,--+,0,k)}, for ke Z

2n—1
celly = {y: Y i< (B4 1) 2and k—1— (2+3) <yon <k+ (2+4)}
Xl e e 2

tube = {y . Zi:l y; < (5 + ;11-) }
Note that for each k € Z, we have cell, C tube, and that if |j — k| > 2, then cell;
and cell), do not intersect. 'The set cell, is designed to be large enough to support a

Hariltonian function Fy that will generate a symplectomorphism that will translate

a ball centered at (0,+--0,k — 1) to the position (0,---0,k). We will describe that

function now.
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For k € Z, define the Hamiltonian function #; by

Fy (€) = bump (&) « - < bump (Ean—2) wedge (Ean—1) widebump (on, — k) ,

where the functions bump, wedge, and widebump are defcribed in Detail 6. Notice
that support (Fy) C cell, and ||Fy||,, < 1. Let ox be the symplectomorphism gener-
ated by Fj. By the construction of Fj, we see that oy will have these three important
properties:

oy, (bally_1) = bally,

support (o) C celly, C tube

Eo (o) < B (0}) < BZM% (0y) < sup |Fi (€)| < L.
EGRZTL

End of Detail 4

4.3.5 Detail 5: A fact about the Hofer infinity norms

Let 9;, ¢ € I be a finite or countable collection of Hamiltonian symplectomorphisms
with support (¢;) C U; € R?*, where U; NU; = ¢ if ¢ # j. Further, assume that
the Hofer norm of each 4; is finite when the infimum in the Hofer norm is taken
over only those Hamiltonian functions supported in U;. (Hofer and Zehnder [3] have
proven the same claim that we will make below, but without this additional condition.
Their proof is more difficult, however. Since the weaker claim - with the additional
assumption - is sufficient for us, and is easy to prove, we will state and prove it here.)
Recall that this norm was introduced at the start of Lemma B4, where it was denoted

by EY and E‘;;U:

EY () = inf{||H|:H € C, support (H) C U,and H generates ¢}
Eyo (W) = inf {m : H € ‘H, H generates 1, and support (H) C U}




Let ¢ = ] [ie; ¢s.

U . e— /-—,Ui
Claim: 1 max Fios'* (1) exists, then B (9) < 2max B~ (10).
S S

¥

Remark: An analogous claim can be made for the norm E: That is, if
max EU: (4fy) exists, then Fy (1) < 2 max EU (4). Note, however, that
this norm is defined only for symplectomorphisms of compact support.
Therefore, the product ¢ = ];.; % will have to be a finite product. We
will use both inequalities in this section, but will prove the result only for

the extended norm, E’;; The proof for the norm F,, is identical.

Proof of claim:

U,:(

Let € > 0. We will show that E;(w) < Qma}xﬁ‘; ;) -+ 2¢. Since € is
i€

arbitrary, this will prove the claim.

By our assumption, for each ¢ € [/, there is a Hamiltonian function Hy,

supported in U;, such that

—J;
oup {oup (i (0)) = of (s (0) | < T )+
te[0,1] \wel; wcli

Note that for such a function, we will have the equality

Tl = sw { sop () - inf (s )
teo,1] Lzern zERn
= sup {sup (Hiy (z)) — inf (H;, (a:))} because H; is supported in Uj.
tefo,1] Lzely wCUy

Define the Hamiltonian function H; = >, H;;. Note that the sum exists, because

the supports of the various H;; are disjoint, and that that H, generates 1. That is,
P =P,




Computing the extended Hofer infinity norm of 1, we find

Fo (9) = E‘(H@-gw@)
~ i (TR + Keneraes T )

< HH || o because I is a particular such function

= sup {sup — inf (H, (a;))} ‘

¥

tefo1] Laerom zcR3n L

i

= 8sup { sup (Yo Hip (8)) — inf (37, Hiy (m))} (definition ofH,)
tef0,1] Laewen ZER™

= Sup {sups sup (H;:(x —inf ¢ inf (H;; (z
an L {mpen}-w{m o o}

(because the supports of the Hamiltonian functions are disjoint.)

< sup {SUP{SUP (Hiq () — Inf (Hig (@ ))}
te[0,1) \ del \zel; i
- inf {;ggi (Hig (2)) = sup (Hiy (m))} } ;
(subtracted something non-positive, added something non-negative.)
= sup {sup {sup (H;:(x)) — inf (Hiy (m))}
tefo,1] Liel Lazel; zell
+inf {535 (Hiy (@)) = inf (Hig(2)) } }
(just reversed the subtraction.)
< sup {2 Sup {sup (Hiyz (2)) — inf (H;, (:r))}}
t<[0,1] iel \zel; zel;
= 2sup< sup {sup (Hip(2)) — inf (Hiy, (37))}
el | tefo,1) L=el; 2€l;
= 2sup {1, }
i€l !
< 2sup {E;Ui (1) + s}
i€l
Pt 1]
= 2sup {Eoo (@bz)} + 2¢.
it
End of proof of claim
End of Detail 5
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Figure 4.12: Four functions of one variable

4.3.6 Detail 6: Four useful functions of one variable.

nid

For 0 < R < }, we define Rt = =2 = £+ {. (We just need R* to be a number

2

between R and £.) Figure 4.12 shows four functions of one variable that are used

throughout this paper.
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