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Abstract of the Dissertation

Kahler Geometry of Moduli Spaces and
Universal Teichmiiller Space

by
Lee-Peng Teo
Doctor of Philosophy
in
Mathematics
State University of New York
at Stony Brook

2002

In the first part, we define Liouville action functional for compact
Riemann surfaces uniformized by Kleinian groups. We discuss in
detail the case where a pair of Riemann surfaces X and Y of genus
g is uniformized by a quasi-Fuchsian group. The Liouville action
functional is a real valued functional on the space of conformal
metrics of X U'Y with a single critical point given by the hyper-
bolic metric. The critical value defines a real analytic function on
the deformation space of the quasi-Fuchsian groups. We prove that

the first variation of this function gives the difference between the
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projective connections corresponding to the Fuchsian and quasi-
Fuchsian uniformizations. The second variation of this function
gives the Weil-Petersson symplectic form of the deformation space.
In other words, the critical value of the Liouville action is a Kéhler
potential for the Weil-Petersson metric on the deformation space.
We also establish a relation between the Einstein-Hilbert action
for 3-dimensional gravity theory and the Liouville action, and ver-
ify the holography principle. This in turn helps to generalize our

results to a large class of Kleinian groups.

In the second part, we consider natural ways to define Hermitian
metrics on the universal Teichmiiller curve and the universal To-
ichmiiller space. We prove that the second variation of the spher-
ical areas of a family of domains defines the Kirillov metric on
the universal Teichmiiller curve. We show that averaging Kirillov
metric along the fibers gives the Weil-Petersson metric on the uni-
versal Teichmiiller space. To get metrics on the finite dimensional

Teichmiiller spaces, we regularize the aVeraging procedure and ob-

tain the Weil-Petersson metric as the result. This indicates the

universal nature of the Weil-Petersson metric.

In the last part, we study variations of Laplace operators on fami-

lies of Riemann surfaces of finite type.
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Chapter 1

Introduction

Riemann was one of the greatest mathematician of the 19th century. Among
other things, he laid the foundation for complex function theory. The Riemann
mapping theorem states that every simply connected domain that is not the
whole plane is conformally equivalent to the unit disc. Although Riemann
did not give a rigorous proof, his idea of using physical electrostatic theory
to signify the underlying concept is very illuminating. Riemann also defined
the general notion of Riemann surface and proved that every compact Rie-
mann surface is a Riemann surface of an algebraic equation f(z,y) = 0. But
the question whether a Riemann surface can be covered by a planar domain
remained unsolved until the beginning of 20th century, when Poincaré and
Koebe succeeded in proving that every Riemann surface can be uniformized
by a Fuchsian group. Since then, the study of Riemann surfaces became closely
connected to the study of Fuchsian groups, or more general Kleinian groups.
Recently the advent of string theory resurrected Riemann’s spirit. Physical

theories are used to predict mathematical results. In a lot of cases, physical

intuitions also serve as guides to the proofs of the statements. However, in




order not to fall into the deficiency of lack of mathematical rigor, we content
ourselves with using physics as motivation. This brings us to the first part,
where we study questions from Liouville theory.

Liouville theory, originated from Polyakov’s approach to non-critical bosonic
string theory, plays an important role in the complex geometry of the moduli
spaces of Riemann surfaces. It was proved by P. Zograf and 1. Takhtajan
[Z187b, ZT87c| that the critical value of the Liouville action functional is a
Kihler potential of the Weil-Petersson metric on the Teichmiller spacé.

Specifically, Let X be a Riemann surface of genus g > 1, and let {U,}eca

| be its open cover with charts U, local coordinates z, : U, — C, and transition
functions fug : Uy N Us — C. A (holomorphic) projective connection on X is
a collection P = {pg}aca, where p, are holomorphic functions on U, which

on every U, N Up satisfy

P8 = Da © fap (F15)" + S(fap),

where prime indicates derivative. Here S(f) is the Schwarzian derivative,

" 3 iy 2
s =" -3(5)

The space P(X) of projective connections on X is an affine space modeled on
the vector space of holomorphic quadratic differentials on X.

The Schwarzian derivative satisfies the following properties.

SD1 8(fog)=8(f)og(g)?+S{g)

SD2 &S(y) =0 for all v € PSL(2,C).




It follows from these properties that every planar covering of a compact Rie-
mann surface X — a holomorphic covering 7 : £ —> X by a domain 2 C ¢,
with group of deck transformations a subgroup of PSL(2, C), defines a projec-
tive connection Py = {8, (7™} }aca. The Fuchsian uniformization X o~ I'\U
is the covering np : U — X by the upper half-plane U where the group of
deck transformations is a Fuchsian group I', and it defines Fuchsian projec-
tive connection Pr. The Schottky uniformization X = I'\Q is the covering
75 : £ = X by a connected domain {1 C ¢ where the group of deck transfor-
mations I is a Schottky group — finitely-generated, strictly loxodromic, free
Kleinian group. It defines Schottky projective connection Pg.

Let T, be the Teichmiiller space of marked Riemann surfaces of genus g > 1
(with a given marked Riemann surface as the origin), defined as the space
of marked normalized Fuchsian groups, and let &, be the Schottky space,
defined as the space of marked normalized Schottky groups‘ with ¢ free gen-
erators. These spaces are complex manifolds of dimension 3g — 3 carrying
Weil-Petersson Kihler metrics, and the natural projection map £, — &, is a
complex-analytic covering. Denote by wwp the symplectic form of the Weil-
Petersson metric on spaces T, and &y, and by d = & + 8 — the de Rham
differential and its decomposition. The affine spaces P(X) for varying Rie-
mann surfaces X glue together to an affine bundle B, — T, modeled over
holomorphic cotangent bundle of ¥,. The Fuchsian projective connection Pp
is a canonical section of the affine bundle 5, - %, !, the Schottky projec-

tive connection is a canonical section of the affine bundle B, — &, and their

1Py i actually a canonical section over the affine bundle B, — M, where 90, is the
moduli space of Riemann surfaces of genus g.




difference Pr — Py is a (1, 0)-form on &,. This 1-form has the following proper-
ties [ZT87c|. First, it is J-exact — there exists a smooth function S : &, —» R

such that

1
Pp— Py =295, (1.0.1)

Second, it is a J-antiderivative, and hence a d-antiderivative by (1.0.1), of the

Weil-Petersson symplectic form on &,

B(PF - Ps) = ““’i(.UWP. (102)

It immediately follows from (1.0.1) and (1.0.2) that the function —S is a Kihler

potential for the Weil-Petersson metric on &,, and hence on T,
808 = i wyp. (1.0.3)

Arguments using quantum Liouville theory (see, e.g., [Tak92] and refer-
encesltherein) confirm formula (1.0.1) with the function S given by the clas-
sical Liouville action, as was already proved in [ZT87c|]. However, to define
the Liouville action functional on a Riemann surface X is a non-trivial prob-
lem interesting in its own right (and for rigorous applications to quantum
Liouville theory). Let CM(X) be the space (actually a cone) of smooth con-
formal metrics on a Riemann surface X. Every ds? € CM(X) is a collection

{e¢°‘|dza|2}a A where functions ¢, € C°(U,, R} satisfy

$o © fap +log|fogl° =¢s on U,NUs. (1.0.4)




According to the uniformization theorem, X has a unique conformal metric of
constant negative curvature —1, called hyperbolic, or Poincaré metric. Gaus-
sian curvature —1 condition is equivalent to the following nonlinear PDE for

funetions ¢, on U,,
Py
072q 0%,

= %e%. (1.0.5)

In string theory this PDE is called the Liouville equation. The problem is
to define the Liouville action functional on Riemann surface X — a smooth
functional S : CM(X) — R such that its Euler-Lagrange equation is the
Liouville equation. At first glance it looks like an easy task. Set U = U,, z =
%o and ¢ = g, so that ds? = e?|dz[* in U. Elementary calculus of variations

shows that the Euler-Lagrange equation for the functional

%ff (Ig:]? + €?) dz A dz,
u

where ¢, = 0¢/0z, is indeed the Liouville equation on U. Therefore it seems

that the functional % | f ¥ W, where w is a 2-form on X such that

-  {|04a
Floa =% = | 6z,

does the job. However, due to the transformation law (1.0.4) the first terms

2
+ e%) dzg A dZ,, (1.0.6)

in local 2-forms w, do not glue properly on U, N Us and a 2-form w on X
satisfying (1.0.6) does not exist!

Though the Liouville action functional can not be defined in terms of a
Riemann surface X only, it can be defined in terms of planar coverings of X.

Namely, let I" be a Kleinian group with region of discontinuity  such that




MO ~ X, U 11 X, — a disjoint union of compact Riemann surfaces of
genera > 1 including the Riemann surface X. The covering {2 — X; 4---UX,
introduces a global “étale” coordinate, and for large variety of Kleinian groups
(Class A defined in Chapter 6) it is possible, using methods in [AT97], to define
a Liouville action functional S : CM(X; LI+ U X,) — R such that its critical
value is a well-defined function on the deformation space ®(I"). In the simplest
case when X is a punctured Riemann sphere such global coordinate exists
already on X, and Liouville action functional is just % ff, w, appropriately
regularized at punctures [ZT87b]. When X is compact, one possibility is to
use the “minimal” planar cover of X given by the Schottky uniformization
X ~ T\, as in [ZT87c]. Namely, identify CAM(X) with the affine space of

smooth real-valued functions ¢ on {2 satisfying
poy+log|ly|*=¢ forall yel, - (1.0.7)

and consider the 2-form w[¢] = (|¢,|% + e%)dz A dz on Q. The 2-form w[4] can
not be pushed forward on X, so that the integral £ f[, w depends on the choice
of a fundamental domain F' for a marked Schottky group I'. However, one can
add boundary terms to this integral to ensure the independence of the choice of

a fundamental domain and to guarantee that its Fuler-Lagrange equation is the

Liouville equation on I'\2. The result is the following functional introduced




in [ZT8&7c|

Sll =1 / / (16 + ) dz A dz (1.0.8)

. g . —_—
4 .l ,.},H ,YH -
+ 5 / (¢5 — —log|v, 2) hdy - 22z
g
+ 47?2310% |e(ve) .

k=1

Here F is the fundamental domain of the marked Schottky group I' with
free generators i, . .., g, bounded by 2g nonintersecting closed Jordan curves
Ch,...,Cy, Cl,. .., Cy such that Cf = —(Cy), k=1,...,9, and c(y) = ¢ for
v = (2}). Classical action S : &, — R that enters (1.0.1) is the critical value
of this functional.

In [McMO00] McMullen considered the quasi-Fuchsian projective connection
Pgr on a Riemann surface X which is given by Bers’ simultanéous uniformiza-
tion of X and a fixed Riemann surface Y of the same genus and opposite

orientation. Similar to formula (1.0.2), he proved
d(PF - PQF) = —’inp, (1.0.9)

so that the 1-form Pgp — Pgp on X, is a d-antiderivative of the Weil-Petersson
symplectic form, bounded in Teichmiiller and Weil-Petersson metrics due to
Kraus-Nehari inequality.

Our first result is the analog of the formula (1.0.1) for the quasi-Fuchsian
case, giving the 1-form Py — Pgp the same treatment as to the 1-form Pp— Fs.

Namely, let I be a finitely generated, purely loxodromic quasi-Fuchsian group




with region of discontinuity €2, so that I'\£2 is the disjoint union of two compact
Riemann surfaces of the same genus g > 1 and opposite orientations. Denote
by ©(T") the deformation space of I', and by wwp — the symplectic form of
the Weil-Petersson metric on D(T'). To every point IV € 2(T) with region of
discontinuity §¥ there corresponds a pair X,Y of compact Riemann surfaces
with opposite orientations simultaneously uniformized by IV, that is, X LY =~
T\¥. We will continue to denote by Pp and Pyp projective connections on
X LY given by Fuchsian uniformizations of X and ¥ and Bers’ simultancous
uniformization of X and Y respectively. Similarly to (1.0.1), we prove in

Theorem 4.2.1 that there exists a smooth function S : (") — R such that
1

The function S is Liouville classical action for the quasi-Fuchsian group
I' —- the critical value of the Liouville action functional S on CM(X UY).
Its cohstruction uses double homology and cohomology complexes naturally
associated with the T-action on £2. Namely, the homology double complex K, .
is defined as a tensor product over the integral group ring ZI' of the standard
singular chain complex of (1 and the canonical bar-resolution complex for I,
and cohomology double complex C** is bar-de Rham complex on Q. The
cohomology construction starts with the 2-form wig)] € C%0, where ¢ satisfies

(1.0.7), and introduces 8(¢] € C* and u € C-* by

O-1[@) = (qﬁ — %log]fy’[z) (%dz’ — %dﬁ) :

e rSm i e cowea—




1 ,},H W -
gt =~ g log il (7—2 0171 87 — :Y;% om i dz

2
1 ", N
—log |4 2 gy — dz ).
+2 0g|r}/‘2071| (’}’i 2 ")’i “

Define © € C%2 to be a group 2-cocycle satisfying d© = u. The resulting
cochain U[g] = w[¢] — 0]¢] — © is a cocycle of degree 2 in the total complex
Tot C. The corresponding homology construction starts with fundamental do-
main F € Kyp for I' in Q and introduces chains L € Ky and V' € Ko such
that & = F+L—V is a cycle of degree 2 in the total homology complex Tot K.

The Liouville action functional is given by the evaluation map,

161 = 5 (V1)) o

where { , ) is the natural pairing between CP¢ and Ky 4-
In case when I' is a Fuchsian group, the Liouville action functional on

X =~ I'\U, similar to (1.0.8), can be written explicitly as follows

=4 [[ o+ 33 ([ ot [ 0219

k=1

_|_
DO .
Mm

(O (04(0)) = Oy 00 ((0)) + Oy, 54(0)))

ES
Il
—_

!
VIR
(-

675._1...7,:_3_1,7;1 (bg(O)),

B
1l

1




where

2
ef)‘la’)'z (Z) = / Uy yys + 47”;5’)(1 ) (2 log 2 + log |C(72) P)n
r

p € R\ T'(00) and

1 if p < y2(00) < 4y,

Enm = {1 ifp>pco) > ’Yflp=

0 otherwise.
\

Here aj and b, are edges of the fundamental domain /' for I in U {see Sec-
tion 2.2.1) with initial points ax(0) and b,(0), ax and S are corresponding
generators of ' and v, = oxfecy, '8, '. The action functional does not de-
pend on the choice of the fundamental domain F' for I', nor on the choice of
p € R\ I'(co). The Liouville action for quasi-Fuchsian group I is defined by a.
similar construction where both components of {2 are used (see Section 2.3.3).

Equation (1.0.10) is quasi-Fuchsian reciprocity. McMullen’s quasi-Fuchsian
reciprocity, as well as the equation HPr — Pgr) = 0, immediately follow from
it. The classical action S : D(I') = R is symmetric with respect to Riemann
surfaces X and Y,

S(X,Y)=8(Y, X), (1.0.12)

where X is the mirror image of X, and this property manifests the global quasi-
Fuchsian reciprocity. Equation (1.0.9) now follows from (1.0.10) and (1.0.1).
Its direct proof along the lines of [ZT87b, ZT87¢] is given in Theorem 4.3.4.
As an immediate corollary of (1.0.9) and (1.0.10), we obtain that function —8

is a Kéhler potential of the Weil-Petersson metric on D(T').

10




Our second result is a precise relation between two and three-dimensional
constructions which proves the holography principle for the quasi-Fuchsian
case. Let U8 = {Z = (x,y,t) € B[t > 0} be a hyperbolic 3-space. The
quasi-Fuchsian group I acts discontinuously on U U and the quotient M ~
[\ (P US) is a hyperbolic 3-manifold with boundary I\ ~ XY, According
to the holography principle (see, e.g., [MMO2] for mathematically oriented ex-
position), the regularized hyperbolic volume of M — on-shell Finstein-Hilbert
action with cosmological term, is related to the Liouville action functional 5 [¢].

In case when I' is a classical Schottky group, i.e., when it has a fundamen-
tal domain bounded by Fuclidean circles, bolography principle was established
by K. Krasnov in [Kra00]. Namely, let M ~ D\(® U ) be the correspond-
ing hyperbolic 3-manifold (realized using the Ford fundamental region) with
boundary X ~ I'\Q2 — a compact Riemann surface of genus g > 1. For every
ds* = e?|dz|* € CM(X) consider the family H, of surfaces siven by the equa-
tion f(Z) = te??}? = ¢ > 0 where z =z + 1y, and let M, = M n H,. Denote
by Vi[¢] the hyperbolic volume of M., by A [#] — the area of the boundary
of M, in the metric on H, induced by the hyperbolic metric on 13, and by
A[¢] — the area of X in the metric ds*. In [Kra00] K. Krasnov obtained the

following formula

liny (Ve[qﬁ] - %As[é] + (29 - 2)'”10%6) = —% (Slg] - Algl).  (1.0.13)

It relates three-dimensional data — the regularized volume of M, to the two-
dimensional data — the Liouville action functional S{¢], thus establishing the

holography principle. Note that the metric ds? on the boundary of M appears

11




entirely through regularization by means of hypersurfaces H,, which are not

I-invariant. As a result, arguments in [Kra00] work only for classical Schottky
groups.

We extend homological algebra methods in [AT97] to the three-dimensional
case when I' is a quasi-Fuchsian group. Namely, we construct T-invariant cut-
off function f using a partition of unity for I, and prove in Theorem 5.2.3 that

on-shell regularized Einstein-Hilbert action functional

elg] = ~tlim (V) = 54001+ 2r(2 — 2 loge )

is well-defined and satisfies the quasi-Fuchsian holography principle

E[p] = S[¢| — // e?d*z — 8(2g — 2) log 2.
T\Q

Our third result is the generalization of main results for quasi-Fuchsian
groupé — Theorems 4.2.1, 4.3.4 and 5.2.3, to Kleinian groups. Namely, we
introduce a notion of a Kleinian group of Class A for which this generalization
holds. Schottky, Fuchsian, quasi-Fuchsian groups, and their free combinations
are of Class A, and Class A is stable under quasiconformal deformations. We
extend three-dimensional homological methods developed in Chapter 5 to the
case of Kleinian group I" of Class A acting on U® U . In Theorem 6.2.6 we
establish holography principle for Kleinian groups: we prove that the on-shell
regularized Einstein-Hilbert action for the 3-manifold M ~ T\ (1P UQ) is well-
defined and is related to the Liouville action functional for T", defined by the

evaluation map (1.0.11). When I' is a Schottky group, we get the functional

12




(1.0.8) introduced in [ZT87c]. Denote by D(I') the deformation space of the

Kleinian group I'. To every point [V € (") with the region of discontinuity ¥
there corresponds a disjoint union Xy U---U X, ~ "\ of compact Riemann
surfaces simultaneously uniformized by the Kleinian group I, Using the same
notation, we denote by Pp projective connection on X (J---11X,, given by the
Fuchsian uniformization of these Riemann surfaces and by Pyx — projective
connection given by their simultaneous uniformization by a Kleinian group
(P = Py for the quasi-Fuchsian case). Let S : D(I') — R be the classical

Liouville action. Theorem 6.3.1 states that
1

which is the ultimate generalization of (1.0.1). Similarly, Theorem 6.3.3 is the
statement

(9(PF — PK) == —’E:UJWP,

which implies that —S is a Kihler potential of the Weil-Petersson metric on
D(T). As another immediate corollary of Theorem 6.3.1 we get McMullen’s
Kleinian reciprocity — Theorem 6.4.1.

After studying the Weil-Petersson geometry of deformation spaces of com-
pact Riemann surfaces using motivation from Liouville theory, we consider
Weil-Petersson geometry on family of domains bounded by Jordan curves.
This brings us to the second part, where we consider a natural way to define
a metric on the universal Teichmiiller curve, the universal Teichmiiller space
and finite dimensional Teichmiiller spaces.

Let 7'(1) be the universal Teichmiiller space and 7 (1) its universal curve.

13




In [Vel], Velling introduced a metric on T(1) by using spherical areas. More

precisely, consider the Bers embedding of T(1) into the space

Al < oo ),

where A is the unit disc. For every Q € Aq(A), Velling considered the solution

Ax(A) = {q’) holomorphic on A : sup |¢{z)(1 —
2€A

to the equation

S(f*9) =@,

where S(f) is the Schwarzian derivative of the function f. This defines a
family of domains ; = f*?(A). Velling considered the spherical area of the

domain Q;, Ag(f*?(A)) and proved that

L As(OA))],y 20

This gives a candidate for a metric on the tangent space at the origin of T(1).
Velling gave a formula for this metric in terms of some integrals. Our first
result (Theorem 8.2.1) is obtained by simplifying Velling’s approach to the

equation S(f*?) = tQ and compute the metric explicitly. The result is

| Q115 = —5As(FUA))| g = %an
where Q= Z(n?’ — n)agz™ 2.
n=2

As is observed by Velling, this metric is invariant under rotation, but is not
invariant under the whole group of isometries of the disc, PSU(, 1). Hence

it does not define a homogenuous metric on 7'(1). We generalize Velling’s

14




approach and prove that the same method can be used to define a natural

homogenuous metric on 7(1).

Denote by Diff; (S!) the group of orientation preserving diffeomorphisms
of the unit circle S*. Let M8b(S*) = PSU(1, 1) be the subgroup of Mobius
transformations and S' the subgroup of rotations. It was known from dif-
ferent approaches (see, e.g., [KY87]) that all homogenuous Kihler metrics on

Diff, (8*)/S1 are of the form

o0
o 7= (an® -+ bn)|c.|?,
n=—1
where
%,
Y = chezm)@, Cp =0Cp

is the corresponding vector field on the unit circle. Among this family of

metrics, special roles are played by the Kirillov metric

o P="nled|? (1.0.14)
n=1
and the metric
(o 0]
™
v =2 3 = m)eal?.
n=1

The latter defines the unique homogenuous Kihler metric on Diff . (S)/ M&h(Sh).

It was proved by Nag and Verjoysky in [NV90] that the homogenuous space |
Diff..(S*)/ M6b(S*) embeds holomorphically into 7(1) and the unique ho-
mogenuous Kéhler metric on Diff  (S*)/ M&b(S*) is the pull back of the natu-

ral Weil-Petersson metric on 7°(1). We can naturally extend this embedding to
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an embedding of Diff  (S')/S* into 7(1) and generalize the Kirillov metric to
7(1). Using this embedding, we extend naturally Kirillov’s ([Kir87]) identifi-
cation of Diff (S')/S* with the space of smooth contours of conformal radius
1 to the identification of 7(1) with the space of quasi-circles of conformal ra-
dius 1. Associated to a quasi-circle C of conformal radius 1, there is a unique
holomorphic function f : A — Q, such that f{0) = 0 and f'(0) = 1, where
{1 is the interior of the quasi-circle C containing the origin. By the definition
of a quasi-circle, f can be extended to a quasiconformal map on €. In other

words, we can identify 7(1) with the space

D= {f: A — C a univalent function : F(0)=0, f'(0)=1,

[ has a quasiconformal extension to @}

Using Velling’s approach, given a one-parameter family of holomorphic func-
tions ff 1 A = C € D, which defines a tangent vector v corresponding to
£ f*|;=o at the origin, we define a metric by

I 1 &2

o= o - As(FHA))] oy

The proof for Theorem 8.2.1 implies that this metric coincides with the Kirilloy
metric (1.0.14),

In order to get a homogenuous metric on 7'(1), we use Velling’s suggestion.
We average the Kirillov metric on the fiber of 7/(1) over 7(1) (which is the unit
disc), or equivalently, we push forward the Kirillov metric from 7(1) to 7'(1)

. More precisely, the group PSU(1, 1) acts transitively on the fiber of 77(1)
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over 7'(1). We identify the tangent space at the origin of T'(1) with Ay (A). If

we choose a different base point w € A, we translate it to the origin by some
Yot € PSU(1,1). A tangent vector ) € A, (A) at the point w, is identified
with the tangent vector @, = @ o 7, (7),)* € A (A) at the origin. We define

Velling metric to be

Adzdy

I QI f Qo I e

which is the average of || Q ||% over the unit disc. Our second result is Theorem

9.1.3 and Theorem 9.1.4. We write

z) = Z(n3 —n)a¥ "2,

n=2

We prove that whenever the vector field corresponding to ¢) belongs to the
Sobolev class H %, the average of the norm square of the Fourier coeflicients

ey|? of @ is given by

Adxdy, A =
[P = s g -
This immediately imply that the Velling metric is twice the Weil-Petersson
metric on the subspace of the tangent space of T'(1) which corresponds to H 3
vector fields.
However, the averaging procedure-becomes divergent when restricted to
tangent spaces of finite dimensional Teichmiiller spaces. In this case, there

is an infinite Fuchsian group acting on the disc and we are summing over
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infinitely many identical values. Instead of averaging over the disc, vaguely
gpeaking, we should only average over a fundamental domain of the Fuchsian
group. In case I is a cofinite Fuchsian group, we apply Velling’s regularization

formula to define the Velling metric on T(I'), the Teichmiiller space of I',

_ Arean(TNA) [fn, 1§ Qu s dAn
1QIy=lim ;
v rf—1- ffA , dAH ?

where A, = {z: |z| < r}, dAy is the area form corresponding to the hyperbolic
metric and Areay(T\A) is the hyperbolic area of the quotient Riemann surface

I\A. Here Q € Ax(A,I"), where

A(AT) = {Q € Ax(D) : Qor(¥)? = Q,Vy e T'}

is identified with the tangent space of T(I') at the origin. Our result is Theorem
9.2.2 and Theorem 9.2.3, which are the regularized versions of Theorem 9.1.3

and Theorem 9.1.4. We prove that
Areap(T\A) [f,, a7 ["dAn

8
lim = - -
e ffAr, dAH 3(33 _J) H Q HWP

where || - ||%p is the Weil-Petersson norm on A (A, T'). If follows immediately
that the Velling metric on T(1") is twice the Weil-Petersson metric.
In Chapter 10, we consider applying Euclidean areas instead of spherical

areas to define a metric on 7(1}. We define a metric by

1 &

| v *= %@AE(I‘%A))LZO,

18




where Ap({2) is the Euclidean area of the domain €2, and v is the tangent vector
corresponding to the one-parameter flow f*. We prove in Theorem 10.1.1 that

this metric is given by

o0

Lo liP=> (n+ Dlenl”

n=1

In particular, we do not get a Kahler metric on 7(1). However, after aver-
aging and regularization, we still get the Weil-Petersson metric on T'(1) and
the Teichmiiller spaces of cofinite Fuchsian groups, which are immediate conse-
quences of Theorem 9.1.3 and Theorem 9.2.2. In other words, Weil-Petersson
metric is 'universal’ in Teichmtiller theory.

Finally, motivated by quantum Liouville theory, we consider variations of
the Laplace operators on families of Riemann surfaces in part 3. More pre-
cisely, let Tig, .. vy be the Teichmiiller space of Riemann surfaces of type
(g; 1, -+, ). BEach point in F(gu, ..., represents a normalized Fuchsian
group I The Selberg zeta function for the Riemann surface X = I'\U is

defined for Re s > 1 by the absolutely convergent product

Z(s) = H H(l — latm)logAlw)y,

{7} m=0

where 7, runs over the set of conjugacy classes of primitive hyperbolic ele-
ments of I, and 0 < A(y) < 1 the multiplier of . The function Z(s) has a
meromorphic continuation to the whole s—plane. The first variation of Z(s),

considered as defining a function on the Teichmiiller space T(gu,,... 1) depend-
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ing on a parameter s is given by

dlog Z(3)|r(z) = % Z (S)\(’y)"""]' +(1- S))\(*y)s)_ : ¥ (z)

— 2°
¥ hyp # fyz)

On the other hand, let A; be the Laplace operator on Il-differentials and
consider the Green’s function Ggl)(z,z’),l < 0, which is the kernel of the
operator (A; -+ (s — 20)(s — 1)) *{{ < 0,Res > 1) on the Riemann surface

X =I'\U We prove the following formula by direct computation

Py ((op 0 (G470 - @), @)

SIS @ a- ) 1 a2

where P, is the projection operator from the space of quadratic differentials
to the subspace of holomorphic quadratic differentials. This gives us a holo-

morphic formula for the left hand side. An immediate consequence is
PZ ((_BPQ—IaI(G{lI—fI) _ Q(ll—q)))\D) (Z) = alog Z(q)h—.(z)

This formula is usually proved by using Selberg transform.

The content of this dissertation is the following. Chapters 2-6 are devoted
to part 1. In Chapter 2 we give a construction of the Liouville action functional
following the method in [AT97], which we review briefly in 2.1. In Section 2.2
we define and establish the main properties of the Liouville action functional
in the model case when T is a Fuchsian group, and in Section 2.3 we consider

technically more involved quasi-Fuchsian case. In Chapter 3 we recall all
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necessary basic facts from the deformation theory. In Chapter 4 we prove our

first main result — Theorems 4.2.1 and 4.3.4. In Chapter 5 we prove the second
main result — Theorem 5.2.3 on quasi-Fuchsian holography. In Chapter 6 we
generalize these results for Kleinian groups of Class A: we define Liouville
action functional and prove Theorems 6.2.6, 6.3.1 and 6.3.3.

Part 2 goes from Chapter 7 to Chapter 10. In Chapter 7, we review differ-
ent models for the universal Teichmiiller space, the universal Teichmiiller curve
and study their relations to the homogenuous spaces of Diff, (S*). In Chap-
ter 8, we review Velling’s approach and define a metric on the universal Te-
ichmiller curve. We prove that it coincides with the Kirillov metric. In Chap-
ter 9, we do the averaging and regularization on the Kirillov metric and prove
that it gives the Weil-Petersson metric. In Chapter 10, we consider the Eu-
clidean analog of Velling’s approach.

Part 3 consists of Chapter 11. We pro-ve a holomorphic formula for the

variation of Laplace operators on families of Riemann surfaces.

21
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Chapter 2

Liouville Action Functional

Let T' be a normalized, marked, purely loxodromic quasi-Fuchsian group of
genus g > 1 with region of discontinuity €, so that ['\Q ~ X U}, where X
and Y are compact Riemann surfaces of genus g > 1 with opposite orientations.
Here we define Liouville action functional Si- for the group I' as a functional
on the space of smooth conformal metrics on X LY with the property that its
Euler-Tagrange equation is the Liouville equation on X LI Y. Its definition is

based on the homological algebra methods developed in [AT97).

2.1 Homology and cohomology set-up

Let I' be a group acting properly on a smooth manifold M. To this data one
canonically associates double homology and cohomology complexes (see, e.g.,

[AT97] and references therein).
Let S, = S.(M) be the standard singular chain complex of M with the

differential &. The group action on M induces a left I'-action on S, by trans-

lating the chains and S, becomes a complex of left I'-modules. Since the action




of T' on M is proper, S. is a complex of free left ZI'-modules, where ZI' is an

integral group ring of the group I'. The complex S, is endowed with a right
Z-module structure in the standard fashion: ¢y = v '(c).

Let B, = B,(Z[") be the canonical “bar” resolution complex for I' with
differential 8. Each B,(ZI) is a free left I-module on generators [yif ... |y,

with the differential 8" : B, — B, 1 given by

3
=

"l |l =nlvel -l + 7 (=1l veveal - 1wl

+ (=1l ], n> 1,

I =~ll-1], n=1,

el

where [y1]. .. |ya] is zero if some 7; equals to the unit element id in I'. Here
Bo(ZI) is a ZD-module on one generator | | and it can be identified with ZI
under the isomorphism that sends [ ] to 1; by definition, 8[| = 0.

The double homology complex K, . is defined as S.®zrB,, where the tensor
product over ZI uses the right I-module structure on S,. The associated total
complex Tot K is equipped with the total differential & = 8" 4 (—1)P8" on Ky g,
and the complex S, is identified with S, ®zr By by the isomorphism ¢ c®/].

Corresponding double complex in cohomology is defined as follows. Denote
by A* = An(M) the complexified de Rham complex on M. Each A™ is a left
I-module with the pull-back action of T, i.e., v = (v)*w for @ € A® and
+ € I. Define the double complex CP¢ = Homg(B,, A?) with differentials d, the

usual de Rham differential, and 6 = (8")*, the group coboundary. Specifically,
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for w € (P4,

q
o~ . _ 1Yk
(5w)'r1,'--rrq+1 =YL Weyg e vt +§ :( 1) Wyt v eVt 1o Vg b1
k=1

+ (=1 @y gy

We write the total differential on CP¥ ag D = d + (—1)¥4.
There is a natural pairing between C*? and K, , which assigns to the pair

(w,c® [v1]...|vl) the evaluation of the p-form w,, .. ,, over the p-cycle ¢,

(@ c® bl = [ @

By definition,
(8w, c) = (w, "c),

so that using Stokes’ theorem we get
(Dw,c} = (w, Jc).

This pairing defines a non-degenerate pairing between corresponding coho-
mology and homology groups H*(Tot C) and H,(Tot K), which we continue to
denote by {, ). In particular, if @ is a cocycle in (Tot C)™ and C' is a cycle in
(Tot K),, then the pairing (&, C} depends only on cohomology classes [®] and
[C] and not on their representatives.

It is this property that will allow us to define Liouville action funetional by
constructing corresponding cocycle ¥ and cycle £. Specifically, we consider

the following two cases.
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1. T is purely hyperbolic Fuchsian group of genus g > 1and M = U — the
upper half-plane of the complex plane C. In this case, since U is acyclic,

we have [AT97]
H.(X,Z) 2 H(T, %) = I,(Tot K},

where the three homologies are: the singular homology of X ~ MU, a
compact Riemann surface of genus g > 1, the group homology of I', and
the homology of the complex Tot K with respect to the total differential
8. Similarly, for M = L. — the lower half-plane of the complex plane C,
we have

H,(X,7) = H(I',Z) = H,(Tot K},

where X o~ I'\LL is the mirror image of X —a complex-conjugate of the

Riemann surface X.

2. I" is purely loxodromic quasi-Fuchsian group of genus ¢ > 1 with region
of discontinuity © consisting of two simply-connected components 2, and

), separated by a quasi-circle C. The same isomorphisms hold, where

X ~ D\ and X is replaced by ¥ =~ ['\{%,.

2.2 The Fuchsian case W]

Let T be a marked, normalized, purely hyperbolic Fuchsian group of genus
g > 1, let X ~ T'\U be corresponding marked compact Riemann surface of e

genus g, and let X ~ T\ be its mirror image. In this case it is possible to A
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define Liouville action functionals on Riemann surfaces X and X separately.
The definition will be based on the following specialization of the general

construction in Section 2.1.

2.2.1 Homology computation

Here is a representation of the fundamental class [X] of the Riemann surface
X in Hy(X,Z) as a cycle X of total degree 2 in the homology complex Tot K
[AT9T].

Recall that the marking of I' is given by a system of 2¢ standard generators

o, ..., 0 B, .-, By satisfying the single relation
Vi -y, = id,

where v, = [ag, fx] = owfrog B, . The marked group I' is normalized, if
the attracting and repelling fixed points of v are, respectively, 0 and oo,
and the attracting fixed point of B is 1. Every marked Fuchsian group I' is
conjugated in PSL(2,R) to a normalized marked Fuchsian group. For a given
marking there is a standard choice of the fundamental domain FcCcUforDas
a closed non-Euclidean polygon with 4g edges labeled by o, a},, b, by satislying
aplal) = ar, Pe(by) = bk, k=1,2,...,9 (see Fig. 1). The orientation of the

edges is chosen such that
9
IF = Z(ak + b;c — a’k - bk,).
k=1

Set 8'% = ak(l) — G.k(O), 8’[)]{; = bk(l) — bk(O), 50 that ak(O) = bkfl(O). The




relations between the vertices of F' and the generators of I' are the following:
0 ((0)) = by(1), B (06(0)) = au(L), 7(84(0)) = beon(0), where bo0) =
be(0).

According to the isomorphism S, ~ K., the fundamental domain ' is
identified with F @ [] € Kyo. We have 8"F = 0 and, as it follows from the

previous formula,

g
OF =" (B (bx) — by — o (aw) +a) = "L,

k=1

where L € Ky, is given by

L=> (bs®[Bs] — 0x ® o). (2.2.1)
k=1

There exists V & Kpg such that 8"V = &'L. A straightforward computation

gives the following explicit expression

V= Z (O.'.k ® [aklﬁk - bk( ) ® [ﬁklak] + bk(O) @ {’Y}:l\akﬂk]) (2.2.2)

bg 1 x -'?’J;ilhk—l] :
k=1

Using 8F =0, F = 8"L, 'V = &L, and 'V = 0, we obtain that the
element ¥ = F' + I — V of total degree 2 is a cycle in Tot K, that is 92 = 0.
The cycle & € (TotK), represents the fundamental class [X]. Tt is proved in
[AT97] that corresponding homology class [%] in H,(Tot K) does not depend

on the choice of the fundamental domain F' for the group I'.
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Figure 2.1: Conventions for the fundamental domain I

2.2.2 Cohomology computation

Corresponding construction in cohomology is the following. Start with the
space CM(X) of all conformal metrics on X =~ I'\U. Every ds* € CM(X)

can be reprosented as ds® = e?|dz|?, where ¢ € C°(U, R) satisfies
poy+log|y*=¢ forallyel. (2.2.3)

In what follows we will always identify CM(X) with the affine subspace of
C*(U,R) defined by (2.2.3).

The “bulk” 2-form w for the Liouville action is given by
w[g] = (|.|* + €?) dz A dz, (2.2.4)

where ¢ € CM(X). Considering it as an element in C%9 and using (2.2.3) we

get
Sw(g] = dblg],




where 0[¢] € CM' is given expliciily by

1 1 o
O,-1(¢] = (fb — 5 log |’Y'|2) (%dz - %dz) - (2.2.5)

Next, set

u = 66[¢] € CH2.

From the definition of @ and §% = 0 it follows that the 1-form w is closed. An

explicit calculation gives

1 12 ’Yg ! 7—3 s
Uy =7 g log 1] " oM T dz - j}’—Tg oy 7y dZ (2.2.6)
1 " N
+ Slog [ppomf? | Ldz — ryzjgdz :
2 T T

and shows that u does not depend on ¢ € CM(X).

Remark 2.2.1. The explicit formulas above are valid in the general case, when
domain Q € is invariant under the action of a Kleinian group I'. Namely,
define the 2-form w by formula. (2.2.4), where ¢ satisfies (2.2.3) in £. Then
solution @ to the equation dw[¢) = dO[¢] is given by the formula (2.2.5) and
u = 60[¢] — by (2.2.6).

There exists a cochain © € C°? satisfying
d©® = u and 60 = 0.

Indeed, since the l-form w is closed and U is simply-connected, © can be

defined as a particular antiderivative of u satisfying 6@ = 0. This can be done
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as follows. Consider the hyperbolic (Poincaré) metric on U

, z=z+iy el

2
6¢h!’p(z)\d312 — \d;J

This metric is PSL(2, R)-invariant and its push-forward to X is a hyperbolic

metric on X . Explicit compuiation yields
wnyp] = 2% dz A dZ,

50 that dw[dpgp] = 0. Thus the 1-form B]¢hnyy) on U is closed and, therefore, is

exact,

9[%1;19] = dl,

for some L € C%'. Set

0 =dl. S @2

It is now immediate that 6@ = 0 and 60{¢] = v = de for all ¢ € CM(X).
Thus ¥[¢] = wi¢] — fl¢] - O isa 9-cocyele in the cohomology complex Tot o

that is, DU[¢] = 0.
Remark 2.2.2. For every v € PSL(2,R) define the 1-form 6. [Ppyp] by the same

formula (2.2.5),

i

1 12 i e
Ot [Pnyp) = — | 2108y + 5 log |Y'| ?dz — =dz ). (2.2.8)
Since for every v € PSL(2, R)

1
(6log y)y1 = log(y 07) —logy = 3 log 7"
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the 1-form u = §0[¢)] is still given by (2.2.6) and is a AY{U)-valued group 2-
cocycle for PSL(2,R}, that is, (01)q 1, = O for all vy, ve, 73 € PSL(2, R).
Also 0-form © given by (2.2.7) satisfies d© = w and is a A°(U)-valued group
2-cocycle for PSL(2, R).

2.2.3 The action functional

The evaluation map {¥[¢], ¥} does not depend on the choice of the fundamen-
tal domain F for I' [AT97]. It also does not depend on a particular choice of

antiderivative {, since by the Stokes’ theorem
(0,V) = (81, V) = (1,8"V) = (1,0'L) = (0[dnyl, L). (2.2.9)

This justifies the following definition.

Definition 2.2.3. The Liouville action functional S[-; X]: CM(X) — R is

defined by the evaluation map

S[¢7X]: (‘I’[qb]’E): ¢ECM(X)

]
2

For brevity, set S[¢] = S[¢; X]|. The following lemma shows that the

difference of any two values of the functional S is given by the bulk term only.

Lemma 2.2.4. For all ¢ € CM(X) and 0 € C°(X,R),
Slg + o] - S[g] = f/ (loo|* + (7 + K o — 1) e?) d?z,
G

where d*z = dz A dy is the Lebesgue measure and K = —2e~%¢,; is the Gaus-
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sian curvature of the metric e®|dz|*.

Proof. We have

w[p + o] — w[P] = w[p; o] + da,

where

wig; o] = (jo.f? + (7 + Ko —1)e*) dz N dz,
and

0 = o (¢pzdZ — ¢,dz)
Since
5 v

60,1 =0 (?dz — jdz) = 0[¢ + o] — 0[¢],

the assertion of the lemma follows from the Stokes’ theorem. ]

Corollary 2.2.5. The Euler-Lagrange equation for the functional S is the
Liowville equation, the critical point of S — the hyperbolic metric Ohyp, 18
non-degenerate, and the classical action — the criticel value of S, is twice the

hyperbolic area of X, that is, 47 (29 — 2).

Proof. As it follows from Lemma 2.2.4,

¢+ tol f (K +1)oe?
so that the Euler-Lagrange equation is the Liouville equation K = —1. Since
A2 S[Ppyp + _
S[¢1§3+ oA~ f/ (2lo.f + o?ePrvr) dPz > 0 if o #0,
=0
F
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the critical point ¢p,, is non-degenerate. Using (2.2.9) we get

Slétan] = 5 (W) 2 = 5 (lbmel, ) _2[/

(]

Remark 2.2.6. Let A[¢] = —4e ?8,8; be the Laplace operator of the metric
ds? = e?|dz|* acting on functions on X, and let det A[¢] be its zeta-function
regularized determinant (see, e.g., [OPS88] for details). Denote by A[g] the

area of X with respect to the metric ds? and set

det A[d] |

I[¢] = log Ad)

The Polyakov’s “conformal anomaly” formula [Pol&1] reads

Tl + o] — T[g] = —1—:21; ff (ol + Ko e¥) iz

where 0 € C®(X,R) (see [OPS88] for rigorous proof). Comparing it with

Lemma 2.2.4 we get
Z[¢ + o] + —S[cﬁ +o] = Z[¢| + —S[é}

where S[¢] = S[g] — Alg)].

Lemma 2.2.4, Corollary 2.2.5 (without the assertion on classical action} and
Remark 2.2.6 remain valid if © is replaced by © + ¢, where ¢ is an arbitrary

group 2-cocycle with values in C. The choice (2.2.7), or rather its analog for
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the quasi-Fuchsian case, will be important in Chapter 4, where we consider

classical action for families of Riemann surfaces. For this purpose, we present
an explicit formula for © as a particular antiderivative of the 1-form w.
Let p € U be an arbitrary point on the closure of U in C (nothing will

depend on the choice of p). Set

L(2) = / 0, [dngy] for all v € T (2.2.10)
P

where the path of integration P connects points p and z and, possibly except
p, lies entirely in U. If p € Ry, = RU {oc}, it is assumed that P is smooth
and is not tangent to Ry, at p. Such paths are called admissible. A 1-form ¢
on U is called integrable along admissible path P with the endpoint » © Roo,
if the limit of fp °, as p’ — p along P, exists. Similarly, a path P is called
[-closed if its endpoints are p and p for some y € I', and P \ {p,vp} C U
A I'-closed path P with endpoints p and vp, p € Ry, is called admissible if it
is not tangent to Ry, at p and there exists p’ € P such that the translate by
7 of the part of P between the points p’ and p belongs to P. A 1-form ¥ is
integrable along I'-closed admissible path P, if the limit of fp g I Y, asp — p
along P, exists.

Let

LY

W = (Pk_1 & [ak|ﬁk] - P, ® [ﬁk|ak] + P, ® [’}/k_llafkﬁkD (2.2,11)

o

-1

=

[

F® [7;1""}’131”)’;;1} € Kyz,

=

=1

where P is any admissible path from p to 5,(0), £ = 1,...,g, and P, = B,
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Since Py(1) = b4x(0) = ax41(0), we have

OW =V - U,
where
g
U= Z P @ [og|B] — p @ [Bilaw] +p@ [ owbk]) (2.2.12)
=1
g—1
p® ’Yk,+1|’fk ] € Ky
k=1

We have the following statement.

Lemma 2.2.7. Let ¥ € CY! be a closed 1-form on U and p € U. In case
p € Ry suppose that 89 is integrable along any admissible path with endpoints

in ' p and 9 is integrable along any I'-closed admissible path with endpoinis

in - p. Then

(9,L) = (68, W)

g oflp B 'p TaP VoL VgP
+) / 9y, — / Oy, + / Do 5, — / Oy |
k=1 P D p p

where paths of integration are admissible if p € Ry,

Proof. Since 9, is closed and U is simply-connected, we can define a function

lyonU by




where p € U. We have, using Stokes’ theorem and d(81) = é(dl) = 7,

(9,L) = (dI, L) = (L,0'Ly = {L,d"V) = (8L, V)
— (81, 0W) + (8L, Uy = {d(60), W) + (8L, U)
= (69, W) + (8, U).

Since
-1

Y P
)= [ O

P
we get the statement of the lemma if p e U In case p € Ry, replace p by
p € U. Conditions of the lemma guarantee the convergence of integrals as

7' — p along corresponding paths. d

Remark 2.2.8. Expression {31, U/}, which appears in the statement of the lemma,
does not depend on the choice of a particular antiderivative of the closed 1-form
9. The same statement holds if we only assume that 1-form 80 is integrable
along admissible paths with endpoints in I'-p, and 1-form ¢ has an antideriva-
tive | (not necessarily vanishing at p) such that the limit of (60)y, (p), as

o’ — p along admissible paths, exists.

Lemma 2.2.9. We have

671,72(3) :] Uryy,y2 + 10Dy 1 (2.2.13)
p

where p € R\ ['(co) and integration goes along admissible paths. The integra-
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tion constants n € CV% are given by
(D) = 40Py (2log2 + log le{72) "), (2.2.14)

and
1 ifp < mlo0) <y,

e@nm = -1 ifp>yaloc) > P

L 0 otherwise.
Here for v = {2%) we set c(y) = c.

Proof. Since
-1

2z Y P
9'71,72(3) = f Uy T / 972[%pr
P

p

it is sufficient to verify that

| 4log2 + 2log|e(y2)? i p <yt (00) <mip
1 P

omi J, 0.7 [Shaw] = ) —4log2 — 2logle(w)* if p > 75 (00) > P,

| 0 otherwise.

From (2.2.8) it follows that 01 [Pnyp) 18 & closed 1-form on U, integrable along
admissible paths with p € R\ {y7*(00)}. Denote by 95/521 its restriction on the
liney =¢ >0, z= % +iy. When z # 451 (00), we obviously have

1im 0%, =0,

=0 T2

uniformly in = on compact subsets of R\ {v3*{o0)}.

37




If vy l(oo) does not lie between points p and yip on R, we can approximate
the path of integration by the interval on the line y = &, which tends to 0 as
g — 0. If v;'(co) lies between points p and yip, we have to go around the
point ;' {00) via a small half-circle, so that

vy .
/ 9,},2—1 [Phyp) = lim 9')5"1 [Drymls
Jp

r—0 a,

where C., is the upper-half of the circle of radius r with center at v, *{oc), ori-
ented clockwise if p < 7, *{00) < 71 p, and counter-clockwise if p > v, Yoo) >

v p. Evaluating the limit using elementary formula

.
/ logsin t dt = — log 2,

0
and Cauchy theorem, we get the formula. 4

Corollary 2.2.10. The Liouville action functional has the following ezplicit

representation

S[4] = = (wlgl, F) — 0[8), L) + (w, W) + (n, V).

Do e

Remark 2.2.11. Since (0,V) = (u, W) + (n,V), it immediately follows from
(2.2.9) that the Liouville action functional does not depend on the choice
of the point p € R\ I'(co} (actually it is suflicient to assume that p #
y1(00), (7172)(00) for all y1,72 € I' such that V5, + 0). This can also be
proved by direct computation using Remark 2.2.2. Namely, let p’ € Ry be

another choice, p = o~ 'p € Ry, for some o € PSL(2,R). Setting z=p in the
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cquation (68}, = 0 and using (6)om,y, = 0, where 71,72 € ', we get

—1

/ Uyi,pe = _(577(?7))0,71,72: (2-2.15)
¥4

where all paths of integration are admissible. Using

n(p)cm e W(Uﬁlp)'n ;T n(p)cr,’}'zv

we get from (2.2.15) that

Z k4
/ Unyypa T 1 (Plyyys = / U,y T @ ) + (70 )1 v50
P o

where (7,), = 7(p)s,y is constant group 1-cochain. The statement now follows

from

<6nff! V) = (77,,,3"V) = (7]0, 8’L> = (d??m L)' = 0‘.
Another consequence of Lemmas 2.2.7 and 2.2.9 is the following.

Corollary 2.2.12. Set

" 7
st = edz — Lodz € C.
vy !

Then
(52, L) = 4mi(e, V) = dmi x(X),

where x(X) = 2—2g 4s the Buler characteristic of Riemann surface X ~ T\U.

Proof. Since d3¢ = 0, the first equation immediately follows from the proofs of
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Lemmas 2.2.7 and 2.2.9. To prove the second equation, observe that
s = 83, where g = ~¢,dz+ ¢sdZ and dsg = 2¢,,dz A dZ.
Therefore
(s, Ly = {63¢1, L) = (56,0"L) = (30, 0'F) = {dsa, F).

The Gaussian curvature of the metric ds? = e?|dz|? is K = —2e ?¢,z, so by

Gausgs-Bonnet we get

{dse, F') = 2// Gzdz NdZ = 24 // Ke?d?z = amix(X).

U

(W

Using this corollary, we can “absorb” the integration constants 7 by shifting
9[¢] € C1' by a multiple of the closed 1-form s¢. Indeed, 1-form 6[¢)] satisfies
the equation dw[¢] = d[$| and is defined up to addition of a closed 1-form.

Set
0,1] = 6[4] — (2log2 -+ log () "), (2.2.16)

and define % = 86[¢]. Explicitly,

i

-1 1 = U, 1 -1 — 10 ' ()l 72 oy 142 — 2 omyidz] (2.2.17)
M it T | (7271”2 ,},é

2 H ~
+1og 102 ( gy —?/_idz),

le(y)l? \ " M
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where u is given by (2.2.6). As it follows from Lemma 2.2.7 and Corollary
2.2.12,

S(é| = = ((wld], Fy — (Blg], L) -+ (&, w)). (2.2.18)

v
2

Liouville action functional for the mirror image X is defined similarly.
Namely, for every chain ¢ in the upper half-plane U denote by € its mirror
image in the lower half-plane L chain ¢ has an opposite orientation to c. Set
S — F+L -V, so that 8% = 0. For ¢ € CM(X), considered as 2 smooth
real-valued function on L satisfying (2.2.3), define w[g] € C*°, 6{] € CY' and
® € CU2 by the same formulas (2.2.4), (2.2.5) and (2.2.7). Lemma 2.2.9 has
an obvious analog for the lower half-plane L, the analog of formula (2.2.13)

for z e L is

z
@’Yl:’}‘ﬁ(z) = f Uy oy n(p)wﬂza (2-2-19)
P

where the negative sign comes from the opposite orientation.

Remark 2.2.13. Similarly to (2.2.15) we get

-1

a p
f Uyt yye = (577(29))0,’}’1,'}‘23 (2.2.20)
P

where the path of integration, except the endpoints, lies in L. From (2.2.15)

and (2.2.20) we obtain

Luﬁl,ﬁz = _2(577(10))0,11,72) (2.2.21)

where the path of integration C is a loop that starts at p, goes to o~ 'p inside

U, continues inside L. and ends at p. Note that formula (2.2.21) can also be
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verified directly using Stokes’ theorem. Indeed, the 1-form w.,, ,, is closed and
regular everywhere except at points v (co) and v:y,(00). Integrating over
small circles around these points if they lie inside C and using (2.2.14), we get

the result.

Set U[p] = w[d] — O[¢] — O, so that DV¥[¢] = 0. The Liouville action

functional for X is defined by
5 X] = ~S(¥14),5).
Using an analog of Lemma 2.2.7 in the lower half-plane I and
V)=, V),
we obtain
S5 K] = —2 ((wlo), F) = (0161 T) + (. ) — (n,11).

Finally, we have the following definition.

Definition 2.2.14. The Liouville action functional Sy : CM(X UX) — R for

the Fuchsian group I* acting on U UL is defined by

Seld] =516 X] + Sl5 X) = L(Wgl, 5 ~ )

:% (wlg), F — Fy — (8¢, L — L) + (u, W — W) +2(n, V),

where ¢ € CM(X L1 X).
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'The functional Sp satisfies an obvious analog of Lemma 2.2.4. Its Euler-

Lagrange equation is the Liouville equation, so that its single non-degenerate
critical point is the hyperbolic metric on UUL. Corresponding classical action
is 87(2g — 2) — twice the hyperbolic area of X U X. Similarly to (2.2.18) we

have

SF[¢] = ((w[qf’]: £ F) - (é[¢]7L - E) + (71: W - W)) . (2‘2'22)

SRR

Remark 2.2.15. In the definition of Sy it is not necessary to choose a funda-
mental domain for [' in L. to be the mirror image of the fundamental domain
in U since the corresponding homology class [¥: — 2] does not depend on the

choice of the fundamental domain of T in U U L.

2.3 The quasi-Fuchsian case

Let I' be a marked, normalized, purely loxodromic quasi-Fuchsian group of
genus g > 1. Its region of discontinuity €2 has two invariant components €2, and
{1, separated by a quasi-circle C. By definition, there exists a quasiconformal

homeomorphism J; of € with the following properties.

QF1 The mapping J; is holomorphic on U and J,(U) = 4, J; (L) = Qy, and
Ji(Reo) = C.

QF2 The mapping J; fixes 0,1 and oo.

QF3 The group I' = J; ' oT" 0 J; is Fuchsian.
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Due to the normalization, any two maps satisfying QF1-QF3 agree on U,
s0 that the group I" is independent of the choice of the map Ji. Setting
X = T\U, we get \NUUL ~ X UX and T\Q ~ X 1Y, where X and Y are
marked compact Riemann surfaces of genus g > 1 with opposite orientations.
Conversely, according to Bers’ simultaneous uniformization theorem [Ber60],
for any pair of marked compact Riemann surfaces X and Y of genus g > 1 with
opposite orientations, there exists a unique, up to a conjugation in PSI.(2,C),
quasi-Fuchsian group I such that T\QQ ~ X UY".

Remark 2.3.1. It is customary (see, e.g., [Ahl87]} to define quasi-Fuchsian
groups by requiring that the map Jy is holomorphic in the lower half-plane
L. We will sece in Chapter 4 that the above definition is somewhat more

convenient.

Let u be the Beltrami coefficient for the quasiconformal map J,

that is, J; = f* — the unique, normalized solution of the Beltrami equation
on € with Beltrami coefficient g. Obviously, 4 = 0 on U. Define another

Beltrami coefficient f by

wz ifzel,

p(z) ifz €l




Since /i is symmetric, normalized solution f# of the Beltrami equation

f2(2) = p(2)f1(2)

is a quasiconformal homeomorphism of C which preserves U and L. The
quasiconformal map J, = Jy o(f#) ! is then conformal on the lower half-plane
I and has properties similar to QF1-QF3. In particular, J;' 0T o J, = I =
AP oT o (f4! is a Fuchsian group and I\ ~ ¥. Thus for a given T' the
restriction of the map J; to I does not depend on the choice of J; (and hence
of Ji). These properties can be summarized by the following commutative

diagram
UURL, UL 2% 0 ucua,

I L
UUR,UL —— UUR, UL

where maps Ji, J5 and f# intertwine corresponding pairs of groups T, I and I

2.3.1 Homology construction

'The map J; induces a chain map between double complexes K, . = S, ®zr B.
for the pairs UUL,T and Q,T, by pushing forward chains S{UUL) > e
Ji(c) € S.() and group elements T' 3 v > Joyo Ji' € I We will
continue to denote this chain map by J;. Obviously, the chain map J; induces
an isomorphism between homology groups of corresponding total complexes
Tot K.

Let 3 = F4+ L —V be total cycle of degree 2 representing the fundamental

class of X in the total homology complex for the pair U, f‘, constructed in the
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previous section, and let X' = F' 4 L' — V' be the corresponding cycle for X.
The total eycle 3(I") of degree 2 representing fundamental class of X UY in
the total complex for the pair ©,T" can be realized as a push-forward of the

total cycle E(f‘) =X - by Ji,

() = A(E() = L (Z) - Ji{Z).

We will denote push-forwards by .J; of the chains F, L,V in U by Fy, L, V4,
and push-forwards of the corresponding chains F', L/, V' in . — by Iy, Lo, Vs,
where indices 1 and 2 refer, respectively, to domains €; and €.

The definition of chains W; is more subtle. Namely, the quasi-circle C is not
generally smooth or even rectifiable, so that an arbitrary path from an interior
point of £2; to p € C inside §2; is not rectifiable either. Thus if we define W, as
a push-forward by J; of W constructed using arbitrary admissible paths in U,
the paths in Wi in general will no longer be rectifiable. The same applies to the
push—férward by J; of the corresponding chain in .. However, the definition of
(u, W1) uses integration of the 1-form ., ,, along the paths in Wy, and these
paths should be rectifiable in order that {(ux, W1} is well-defined. The invariant
construction of such paths in £2; is based on the following elegant observation
communicated to us by M. Lyubich.

Since the quasi-Fuchsian group I' is normalized, it follows from QF2 that
the Fuchsian group [= JT Lol o J, is also normalized and o, € I" is a dilation
&1z = Az with the axis tR>o and 0 < A< 1L Corresponding loxodromic
element oy = Jy od) o Jfl € I' is also a dilation a2 = Az, where 0 <

|A| < 1. Choose % € iR»g and denote by I= [%9, 0] interval on iRsq with
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endpoints % and 0 — the attracting fixed point of & . Set z = Ji(Z) and
I = Ji{I). The path I connects points zg € Q; and 0 = J1(0) € C inside O,
is smooth everywhere except the endpoint 0, and is rectifiable. Indeed, set
Iy = [%, M) C iRy and cover the interval I by subintervals I, defined by
Iy = dl(fn), n =0,1,...,00. Corresponding paths I, = er(fn) cover the
path I, and due to the property I,+1 = au(l), which follows from QF3, we

have

I=]of ).
n=0

Thus

) =S W) = 1 < o

where {(P) denotes the Euclidean length of a smooth path P.
The same construction works for every p € C \ {co} which is a fixed point

of an element in ", and we define I'-contracting paths in £, at p as follows.

Definition 2.3.2. A path P connecting points z € {3y and p € C\ {oco} inside

€ is called D-contracting in £ at p, if the following conditions are satisfied.

C1 Paths P is smooth except at the point p.
C2 The point p is a fixed point for I'.

C3 There exists p' € P and an arc P, on the path P such that the iterates
v"(Py), n € N, where v € ' has p as the attracting fixed point, entirely

cover the part of P from the point p’ to the point p.

As in Section 2.2, we define I'-closed paths and I'-closed contracting paths
in 2, at p. Definition of I-contracting paths in £, is analogous. Finally, we

define T-contracting paths in §2 as follows.
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Definition 2.3.3. A path P is called I'-contracting in £, if P = P, U Py,
where PLNPy =p e C,and P\ {p} C Q and P\ {p} C Oy are I"-contracting

paths at p in the sense of the previous definition.
I'-contracting paths are rectifiable.

Lemma 2.3.4, Let ' and IV be two marked normalized quasi-Fuchsion groups
with regions of discontinuity Q and &, and let f be normalized quasiconformal
homeomorphism of C which intertwines I' and T and is smooth in . Then
the push-forward by [ of a U-contracting path in Q is o I'-contracting path in
Q.

Proof. Obvious: if p is the attracting fixed point for v € T", then p’ = f(p} is

the attracting fixed point for v = foyo f~t €T". [

Now define a chain W for the Fuchsian group r by first connecting points
Pi(1),..., Py(1) to some point Z € ¢R.o by smooth paths inside U and then
conneéting this point to 0 by I. The chain W’ in L is defined similarly. Setting
Wy = J1 (W) and Wy = J1 (W'}, we see that the chain Wy — W, in  consists
of I'-contracting paths in £ at 0. Finally, we define chain U/} = U, as push-

forward by J; of the corresponding chain U = U’ with p = 0.

2.3.2 Cohomology construction

Let CM(X 1Y) be the space of all conformal metrics ds*> = e®|dz|*> on X LI
Y, which we will always identify with the affine space of smooth real-valued
functions ¢ on Q satisfying (2.2.3). For ¢ € CM(X 1Y) we define cochains

w[@], @[¢], u,n and © in the total cohomology complex Tot C for the pair Q, T’
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by the same formulas (2.2.4), (2.2.5), (2.2.6), (2.2.14) and (2.2.13), (2.2.19)
as in the Fuchsian case, where p = 0 € C, integration goes over I'-contracting
paths at 0, and ¥ & I' are replaced by v = J, 070 J;* € I'. The ordering of
points on C used in the definition (2.2.14) of the constants of integration 7, 4,

is defined by the orientation of C.

Remark 2.3.5. Since 1-form u is closed and regular in €25 U €2y, it follows from
Stokes’ theorem that in the definition (2.2.13) and (2.2.19) of the cochain © €

C%2 we can use any rectifiable path from z to 0 inside €4 and {2, respectively.

As opposed to the Fuchsian case, we can no longer guarantee that the
cochain w[@] — 8[¢] — O is a 2-cocycle in the total cohomology complex Tot C.

Indeed, we have, using éu = 0,

fPl Uyyyya T (677)')'1,72,'73 = (dl)'n,'m,')fa if z €,

((5@)71,72,’)/3 (z) = (2'3'1)

IP-;: u’)’zﬂs - (5??)']’1)72)73 = (d2)71573373 if FAS 927

where paths of integration P, and P are I'-closed contracting paths connect-
ing points 0 and 4 '(0) inside )y and y respectively. Since the analog of
Lemma 2.2.9 does not hold in the quasi-Fuchsian case, we can not conclude
that d; = dy = 0. However, di,dy € C® are z-independent group 3-cocycles
and

(dl - dz)’hﬁ?:’)‘a = /C;u"f?fm + 2(5?7)71)721737 (2'3'2)

where C = P, P, is a loop that starts at 0, goes to 75 ' (0) inside 24, continues
inside €2, and ends at 0. In the Fuchsian case we have the equation (2.2.21),

which can be derived using the Stokes’ theorem (see Remark 2.2.13). The
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same derivation repeats verbatim for the quasi-Ifuchsian case, and we get

Lu72:73 = _2(677)71572:’)’37

so that d; = dy. Since H3(I',C) = 0, there exists a constant 2-cochain x such
that 6k = —d; = —ds. Then © + & is a group 2-cocycle, that is, §(0 + k) = 0.

As the result, we obtain that
(] = wlg] — 018 — € — r € (Tot C)?

is a 2-cocycle in total cohomology complex Tot C for the pair §2, I', that is,
D¢ = 0.

Remark 2.3.6. The map J; induces a cochain map between double cohomology
complexes Tot C for the pairs UUL, I' and 3, T, by pulling back cochains and

group elements,
(Jl ) w)’?la'");j'q = wa')'l’"'s'}'q e CP’Q(U U L)?

where w € CP9(Q) and ¥ = J{' oo Ji. This cochain map induces an
isomorphism of the cohomology groups of corresponding total complexes Tot C.
The map J; also induces a natural isomorphism between the affine spaces

CM(X UY) and CM(X U X),

Ji-¢=gpo i +log|(J):]* € CM{X UX),
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where ¢ € CM(X UY). However,

(S~ 8).]" dz Adz # J7 (|6.]° dz A dz),

and cochains w]¢], #[¢], u and O for the pair £, T are not pull-backs of cochains

for the pair UUL, T corresponding to J; - ¢ € CM(X U X).

2.3.3 The Liouville action functional

Discussion in the previous section justifies the following definition.

Definition 2.3.7. The Liouville action functional Sp: CM(X UY) —+ R for

the quasi-IFuchsian group I" is defined by

Sel] =5 (W[4], 5(T)) = S(W[g], 50— )

(wlel, £1 — F3) — (0[¢], L — L) + (O + 5, V1 = Va)),

B =

b e

where ¢ € CM(X UY).

Remark 2.3.8. Since U[¢] is a total 2-cocycle, the Liouville action functional
St does not depend on the choice of fundamental domain for I' in £, i.e on the
choice of fundamental domains Fy and F; for T in ©; and §2,. In particular, if
Y1 and ¥ are push-forwards by the map J; of the total cycle ¥ and its mirror

image ¥, then (x, Vi — V) = 0 and we have

Seld] = -

%((W[ﬁb],ﬂ — Iy) — (0[], L1 — La) + {u, W1 — Wa) + 2(n, V1)) .

(2.3.3)

51




In general, the constant group 2-cocycle & drops out from the definition for
any choice of fundamental domains 7 and F; which is associated with the same
marking of I', i.e., when the same choice of standard generators oy, . . ., ag, by,
..y B, is used both in ; and in §25. Indeed, in this case V) and V; have the
same By (ZI")-structure and {x, Vi — V2) = 0. Moreover, since 1-form w is closed
and regular in ©; U £, we can use arbitrary rectifiable paths with endpoint 0

inside €7 and {2, in the definition of chains W and W respectively.

Remark 2.3.9. We can also define chains Wy and Wy by using I'-contracting
paths at any I-fixed point p € C \ {oo}. As in Remark 2.2.11 it is casy to
show that

(0, Vi — Va) = {u, Wi — Wa) + 2(n, Vi)

does not depend on the choice of a fixed point p.

As in the Fuchsian case, the Euler-Lagrange equation for the functional Sp
is the Liouville equation and the hyperbolic metric e®ts|dz|?* on € is its single

non-degenerate critical point. It is explicitly given by

St T (B

L DL i zeqy, i=1,2. 92.3.4
(m7 iy * (234

Remark 2.3.10. Corresponding classical action Sr[¢p,,| is no longer twice the
hyperbolic area of X LY, as it was in the Fuchsian case, but rather non-
trivially depends on I'. This is due to the fact that in the quasi-Fuchsian
case the (1, 1)-form w[@ny,] on Q is not a (1, 1)-tensor for I, as it was in the

Fuchsian case.
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Similarly to (2.2.22) we have

Sl‘[¢] = % ((w[(f)]a Fl - FQ) - (é[qﬁ]: Ll - Lz) -+ (EL, W1 - Wg)) s (235)

where Fy and F are fundamental domains for the marked group I' in {21 and

Q5 respectively.
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Chapter 3

Deformation Theory

3.1 The deformation space

Here we collect the basic facts from deformation theory of Kleinian groups
(see, e.g., [Ah187, Ber70, Ber71, Kra72b]). Let I' be a non-elementary, finitely
generated purely loxodromic Kleinian group, let {2 be its region of discontinu-
ity, and let A = €\ € be its limit set. The deformation space ©(T) is defined
as follows. Let A 11T be the space of Beltrami differentials for [I' — the

Banach space of u € L>(C) satisfying

uir@) T ) foran y e

and

pblA s 0.

Denote by B~11(L') the open unit ball in A~bH(T) with respect to || + || norm,

| 1 [Joo= sup [1(2)] < 1.
zeC
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For each Beltrami coefficient p € B~5HT) there exists a unique homeomor-

phism f#: C — C satisfying the Beltrami equation
¥ = uft
and fixing the points 0,1 and oo. Set I'# = f# oo (f#) ! and define
D) =B™NL)/ ~,

where p ~ v if and only if f# = f“ on A, which is equivalent to the condition
floyo(f*y L= froyo(f*)!, forall vy cT.

Similarly, if A is a union of invariant components of I, the deformation
space D(I', A) is defined using Beltrami coefficients supported on A.

By Ahlfors finiteness theorem {2 has finitely many non-equivalent com-
ponents {1,...,82,. Let I'; be the stabilizer subgroup of the component ;,
Iy = {v € I |y(§%) = ©;} and let X; ~ T';\{}; be the corresponding compact

Riemann surface of genus g; > 1, ¢ = 1,...,n. The decomposition
MO =T\ U UT\D,
establishes the isomorphism [Kra72b|
D) = DIy, ) X - x DLy, ).

Remark 3.1.1. When [ is a purely hyperbolic Fuchsian group of genus ¢ >
1, D, U) = Z(I') — the Teichmiiller space of I'. Every conformal bijec-
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tion M\U — X establishes isomorphism between T(I') and T(X), the Te-
ichmiiller space of marked Riemann surface X. Similarly, D(I', L) = T(T), the
mirror image of T(I') — the complex manifold which is complex conjugate to
Z(I"). Correspondingly, I'\Il. — X establishes isomorphism T(I') ~ T(X), so
that

D(T) ~ T(X) x T(X).

The deformation space D(L") is “twice larger” than the Teichmiiller space T(I')
because its definition uses all Beltrami coefficients y for I', and not only thosc

satisfying the reflection property u(2) = u(z), used in the definition of T(T').

The deformation space D (1") has a natural structure of a complex manifold,
explicitly described as follows (see, e.g., [Ahl87]). Let H~1H(T) be the Hilbert

space of Beltrami differentials for I' with the following scalar product

(p1, ) :f/ Mlﬂzf?:f/ f1(2) a2 (2)p(2) dzz; (3.1.1)

m\Q o
where 1, s € H5HT) and p = e is the density of the hyperbolic metric on
I'\Q. Denote by 2~11(I") the finite-dimensional subspace of harmonic Beltrami
differentials with respect to the hyperbolic metric. It consists of 4 € H (1)

satisfying
8, (pp) = 0.

The complex vector space 2 b1(T') is identified with the holomorphic tan-
gent space to D(I') at the origin, Choose a basis p1, ..., pg for Q7HHI), let
W= E1py + -+ + &qpig, and let f* be the normalized solution of the Beltrami

equation. Then the correspondence (gy,...,64) = [¥ = ff o o (f4)7 de-
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fines complex coordinates in a neighborhood of the origin in D(IM), called Bers

coordinates. The holomorphic cotangent space to D(I') at the origin can be
naturally identified with the vector space Q%%(I") of holomorphic quadratic

differentials — holomorphic functions ¢ on Q satisfying
q(v2)y (2)? = ¢(2) for all y € I.

The pairing between holomorphic cotangent and tangent spaces to D(T) at

the origin is given by
q(u) —//qu:ffq(Z)u(Z) d’z.
AN O

There is a natural isomorphism ®* between the deformation spaces D(I)

and D(I"), which maps I € D(I') to (I*)* € D(I'*), where, in accordance

with f¥ = f)\ o f¥
. o V_Jl"’fzf’ll o Luy—1
A_(l—VﬁE) 7

‘The isomorphism ®# allows us to identify the holomorphic tangent space to

D(I') at I'* with the complex vector space Q~V1(I'*), and holomorphic cotan-
gent space to D(I") at I'"* with the complex vector space Q%°(T"#). It also allows
us to introduce the Bers coordinates in the neighborhood of I'** in D(T), and
to show directly that these coordinates transform complex-analytically. For
the de Rham differential d on D(T") we denote by d = 8+ 0 the decomposition
into (1,0) and (0,1) components. |

The differential of isomorphism ®* : D(I'} ~ D(I'*) at v = u is given by
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the linear map D# : Q54 (T) — Q- bYD#H),

t, _ ph v 4 i1
vy Dby = P2 1-*[M|2fT—E)O(f’) },

where P”, | is orthogonal projection from H~LL(T#) to Q1N (I#). The map
D# allows to extend a tangent vector v at the origin of D(T') to a local vector

field 8/0¢, on the coordinate neighborhood of the origin,

0
Oy |y

= Dy € QM (D),

The scalar product (3.1.1) in Q7 11(I*) defines a Hermitian metric on the
deformation space D(I'). This metric is called the Weil-Petersson metric and

it is Kdhler . We denote its symplectic form by wwp,
N a 0
P\ B, Bz,

3.2 Variational formulas

= % (D*u, D*v),  p,v € Q75T

TA

Here we collect necessary variational formulas. Let  and m be integers. A

tensor of type (I,m) for I' is a C™-function w on § satisfying

w(2)y' (2)!9'(2)" = w(z) for all v € T.
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Let w® be a smooth family of tensors of type (I, m) for I'*#, where € Q~5HI)

and ¢ € C is sufficiently small. Set
(79" (@) = o o FHE ),

which is a tensor of type (I,m) for I' — a pull-back of the tensor w® by f.
The Lie derivatives of the family w® along the vector fields 8/0z, and 9/0%,

arc defined in the standard way,

o 0
Lyw = - _ (fe)*(wf) and Lpw = g B (FEY* (w).

When w is a function on D(I') — a tensor of type (0,0}, Lie derivatives

reduce to directional derivatives
Lyw = 0w(p) and Lyw = 8w(f)

— the evaluation of 1-forms dw and Jw on tangent vectors u and .
For the Lie derivatives of vector fields v = D%v we get [Wol86] that

L,v =0 and Lgv is orthogonal to Q~%!(I). In other words,

[a a]_[a 8]—0
B, Oe,| | 0eu’ 08,

at the point I' in ®(I).
For every I'* € D(T'), the density p* of the hyperbolic metric on {* is a
(1,1)-tensor for . Lie derivatives of the smooth family of (1,1)-tensors p

parameterized by ©(T) are given by the following lemma of Ahlfors.
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Lemma 3.2.1. For every u € Q~11(T)

Proof. Let £2y,...,Q, be the maximal set of non-equivalent components of
and let I';, ..., T, be the corresponding stabilizer groups,

MQ=T\Q U U\ =2 X U U X,

For every (2; denote by J; : U — €); the corresponding covering map and by
I'; — the Fuchsian model of group I';, characterized by the condition f‘i\U ~
Ci\&4 =~ X; (see, e.g., [Kra72b]).

Let 1 € QV!(T'). For every component §; the quasiconformal map f&

gives rise to the following commutative diagram

Fefy

U — U
Lri lJ;u (3.2.1)

ep
0, L5 o

1

where F¢% is the normalized quasiconformal homeomorphism of U with Bel-
trami differential f; = Jfu for the Fuchsian group ;. Let p be the density of
the hyperbolic metric on U; it satisfies p = J}p, where p is the density of the
hyperbolic metric on €;. Therefore, Beltrami differential f; is harmonic with
respect to the hyperbolic metric on U. It follows from the commutativity of

the diagram that

PRy = () o f9) = (T 0 a7 )" p = (I ) (F¥)*p.
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Now the agsertion of the lemma reduces to

5| =0,
which is the classical result of Ahlfors [Ahl61}. O
Set
-2

then

_ __f/ —Zz_); % _)1) P, (3.2.2)
We have

fr=p

and also

As it follows from Ahlfors lemma

%,

85 =0

(o 0 fH1f27) = 0.

Using p = e®»» and the fact that f** depends holomorphically on &, we get

0 .
| @lor) =i 29

g=0
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Differentiation with respect to z and z yields

gg _ (@), 0 Fo20) = = fus, (3.2.4)
and
5—8 » (i), 0 F2F) =~ ((drap)afs + fuz) (3.2.5) j,

For v € T set v** = f* oy o (f#)} € . We have

(v*#) o ffF = fF oy o,

and I
log |(¥%#) o fsu|2 +log |fzs,u|2 — log | fo* o2+ log |’)’I|2- :
il
1
Therefore I‘i
o 3 g ¢ ; ' !
5ot (og|(y*) o f*P) = fooy = [ (3.2.6) |1
g=(

and, differentiating with respect to z,

0

(o o r82t) = froor 7 = fo (327) |
e=0

O oy \ ()

Denote by l‘

hzz 1 hzz 2 hzzz; 3
5= (K)[E(h—z) T he 2

the Schwarzian derivative of the function A.




Lemma 3.2.2. Set

Then for ally e T

oy — f :M (l)l i
fz ,Y fz (7,)2 + ’Y, H ()

and is well-defined on the limit set A. Also we have

ft

fazov Y — fuz :%fﬁa (ii)
. . 1. . .oyl 2¢
Jaz oy — fu zi(fzo'}/+fz)%“cz+d, for all v €T. (iii)
Proof. To prove formula (i), consider the equation
fo'y:f'y+'y’f, ‘ (3.2.8)

which follows from y*# o f&# = f** o «y. Differentiating with respect to z gives
(i). Since f is a homeomorphism of € and ¥/4" is a quadratic polynomial in
z, formula (i) shows that f, oy — f, is well-defined on A.

The formula (ii) immediately follows from f; = x and

!
u0f$=ﬂ,763

To derive formula (iii}, twice differentiating (3.2.8) with respect to z to

obtain

ooy =4 +9"f ++f,




Vfor 077 = fud) = A" 44" 42— from

Since

mo_. ﬁ('?fl)z
2 47

as it follows from S(-y) = 0, we can eliminate " f from the two formulas above

and obtain
. ) 1 . ] ,Yn' ,.},n 3 ,},H,'},f
/
Jeeoy Y — fur = 5(f207+fz)? + —7—’ - E({_}/,)Q
Using 2c = —"/(v")3/2, we see that the last two terms in this equations are
equal to —2¢/(cz + d), which proves the lemma. O

Finally, we present the following formulas by Ahlfors [Ahl61]. Let F# be
the quasiconformal homeomorphism of U with Beltrami differential i for the

Fuchsian group I'. If /i is harmonic on U with respect to the hyperbolic metric,

then

— 8 (2) = 2.
9|, Fees (2) =0, (3.2.9)
0 . 1 =

5"8—' - Fzzﬂz(z) = _ipru'(z)‘ (3'2'10)




Chapter 4

- Variation of the Classical Action

4.1 Classical action

Let [ be a marked, normalized, purely loxodromic quasi-Fuchsian group of
genus g > 1 with region of discontinuity € = Q; Uy, let X LY ~ T\Q be

corresponding marked Riemann surfaces with opposite orientations and let

D(T) = DT, Q) x DL, )

be the deformation space of I'. Spaces D(I', ;) and (T, Q2) are isomorphic to ‘
the Teichmiiller spaces T(X) and ¥(Y') — they are their quasi-Fuchsian models

which use Bers’ simultaneous uniformization of varying Riemann surface in
T(X) and fixing Y and, respectively, fixing X and varying Riemann surface

in T(Y). Therefore,

D) =~ T(X) x T(Y). (4.1.1)
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Denote by PB(I") — D(I') corresponding affine bundle of projective connec-

tions, modeled over the holomorphic cotangent bundle of D(I"). We have

L) = BX) x PY). (41.2)

For every ['* € D(T) denote by Sru = Sta[@ny] the classical Liouville
action. It follows from the results in Section 2.3.3 that Spu gives rise to a
well-defined real-valued function S on ®(T). Indeed, if T# = froT o (f¥) ! =
FroTo{f*)~" for y4 ~ v, then corresponding total cycles f#(X(I')) and f¥(2(I))
represent the same class in the total homology complex TotK for the pair

Qe T, so that

( [Bryp] , () = (T [Bugsl , £ (E(L))-

Moreover, real-analytic dependence of solutions of Beltrami equation on pa-
rameters ensures that classical action § is a real-analytic function on D(I').

To every I € D(T") with the region of discontinuity £’ there corresponds a
pair of marked Riemann surfaces X’ and ¥’ simultaneously uniformized by I",
XUy~ DN\, Set S(X',Y') = Sp and denote by Sy and Sx restrictions
of the function S : (') — R onto T(X) and T(Y) respectively. Let ¢ be the
complex conjugation and let I' = +(T') be the quasi-Fuchsian group complex
conjugated to I'. The correspondence p +—+ toprot establishes complex-analytic
anti-isomorphism

D) ~ () = T(Y) x T(X).
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The classical Liouville action has the symmetry property
S(X,Y") =S, X"). {(4.1.3)
For every ¢ € CM(I'\Q2) set

131[‘?ﬁ] = 2¢zz — ¢§

It follows from the Liouville equation that ¢ = 9]¢y, € Q*°(), ie., is a

holomorphic quadratic differential for I'. It follows from (2.3.4) that

o) — 28 (J7Y) (2) if 2 € O, )

28 (J51) (2) if 2 € Q.

Define a (1, 0)-form 1 on the deformation space ®(I") by dssigning to every
I' € D(I') corresponding 9[¢},,] € Q*°(I") — a vector in the holomorphic
cotangent space to D(I') at IV

~ For every I € ®(I') let Pr and Pgr be Fuchsian and quasi-Fuchsian
projective commections on X' U Y’ ~ IM\(¥, defined by the coverings s :
UUL — X'UY" and wgp : £ U = X' UY" respectively. We will continue
to denote corresponding sections of the affine bundle PB(T') — D(I") by Pr and

Py respectively. The difference Pr — Pgp is a (1,0)-form on D(I').

Lemma 4.1.1. On the deformation space D(I),

ﬁZQ(PF—PQF).

67




Proof. Consider the following commutative diagram

UuL 25 0 uQ,

lﬂ'p l’erF

Xuy —=» Xuv,

where the covering map J is equal to the map J; on component U and to the
map J5 on component L. As explained in the Introduction, Py = S(r,") and

Por = S(nmgy), and it follows from the property SD1 and commutativity of

the diagram that

(8 (mr') = 8 (mqr)) o mar (mgu)” = 8 (77).

4.2 First variation

Here we compute the (1, 0)-form 83 on D(T').

Theorem 4.2.1. On the deformation space D(I),

Proof. It is sufficient to prove that for every u € Q~bY(I)

1,8 = 9(u) = / f 9. (4.2.1)

o
Indeed, using the isomorphism ®” : D(I') — D(T¥), it is casy to see that
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variation formula (4.2.1) is valid at every point I € D(T') if it is valid at the
origin. The actual computation of L,S is quite similar to that in [ZT87c] for
the case of Schottky groups, with the clarifying role of homological algebra.

Let T be the Fuchsian group corresponding to I' and let = F-+ L —V be
the corresponding total cycle of degree 2 representing the fundamental class
of X in the total complex Tot K for the pair U,I'. As in Section 2.3.1, set
() = Ji(® — 51). The corresponding total cycle for the pair Q% I =
f#oT o (f#)~! can be chosen as X(I'*#) = f*#(5(I')). According to Remark
2.3.8,

Sron = 5 (T[], ()

Moreover, as it follows from Lemma 2.3.4, we can choose I'*#-contracting at
0 paths of integration in the definition of @ or, equivalently, paths in the
definition of Wi* — W5*, to be the push-forwards by f* of the corresponding
I'-contracting at 0 paths. Denoting w® = w [qﬁi‘;p] g =0 [gbzijp], and using

(2.3.5} we have

Spen = ((we“,Ff"‘ — My — (éeu, LSF — LEFY + (e Wek — W;“)) .

i
2
Changing variables and formally differentiating under the integral sign in the
term (%%, Wi* — W3"), we obtain

LMS - _Q‘ Sl"s,u.

€ e=0
= % ((Lyw, Py — Fz) — (L6, L) — Lo} + (L, Wi — Wa)) .
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We will justify this formula at the end of the proof. Here we observe that
though w®*, g¢# and 4" are not tensors for I'#. they are differential forms on
Qf# g0 that their Lie derivatives are given by the same formulas as in Section
3.2.

Using formulas (3.2.3)-(3.2.5), we get

L,uw == ((Qf’hyp)z fzz + (¢hyp)z ((Qﬁ-‘f-yp)z fz + fzi)) dz A dz

= Yudz Adzi — dE,

where

§=12 (‘?Shyp)z flzdg - thyp dJEZ' (4-2-2)

Since Ju is a (1, 1)-tensor for T, §(Judz A dz) = 0, so that §L,w = —ddé. We

have
(d€, F1 — Fp) = {§,0'(F1 — Fp)) = (£, 0"(Ln — Ln)) = (¢, Ly — Lo,
Set x = 6& + Lﬂé. The 1-form y on §2 is closed,
dy = 8(d€) + L, df = §(—L,w) + L,dw = 0,

and satisfies

§x = 6(L,0 + 86) = 1,60 = L.
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Using (3.2.3), (3.2.6), (3.2.7) and part (ii) of Lemama, 3.2.2, we get

. R~
L6y =— fz? Az + Phyp (

2

AT ; T
~logly ' fedz+ (frov— 1) 2
~ (logle(n)* +21og2) d (froy — /i) — =

LAt ) A 1 . .
== fz%dz +‘fz O'Y:% dz —d (ilog |’}/l|2 (fz oY= fz))

- . !r .
frrory = fu) dzt L fs a2
i

?F

~

i

+ fol dz
f}/

41 (— (fz oy — fz) % dz — log|v'|? (fzz oy v — JEzz) dz

>

g (fr oy J2) = (og ) + 210620 (0~ )

. " o
_ ) (’Ldz 7
/Y

!

c(y) \ v

Using

561 = 27 F dz— d(fo —f)+1o | ’|2d(fo )
YR ,Y.v z hyp 297 z g1 PAR i I

we get

X1 =d G log |[7'[ (fz oy + fz) — (logle(7)]* +210g2) (fz oy — fz))
= (for+ 1) %dzﬂ%fz dz — =5

Using parts (ii) and (iil) of Lemma 3.2.2 and




we finally obtain

Xy =d (% log |[7']* (fz o+ fr+ 2%%)

_ (10g |c(fy)|2 + 24 2log2) (fz Cy - fz))

= dly-1.
We have

(dg, Fy — Fy) + (L0, L1 — La) = (x, In — L) = {dl, Ly — Ly}
= (I, (L — L)) = {,0"(Vi = Va))

= (51, Vl - VQ).
Using L, = ddl we get
(Lt Wy — Wa) = (51,8 (Wh = Wa)) = (8L, V2 = Va)

g0 that
L,8 = %(qm dz Adz, Py — Fy),

as asserted.

Finally, we justify the differentiation under the integral sign. Set

b =19+ 10,
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b = % log [7/[* = (log|e(7) | + 2+ 21og 2) (fs 0y — f2),

1 , .
Z,(yl—)l = glog |,Yr|2 (fz oY+ fz) ’
Next, we use part (1) of Lemma 3.2.2. According to it, the function ng,o) is
“continuous on € \ {y(c0)}. Since

1 : : ) :
OF ) et = (log VaomP(fzom — fa) — log [V P(fy 0 vayn — fy o ’n)) ,

we also conclude that (61(V),, .,, and hence the function (81), ,, are contin-
uous on € \ {m(00), (1172)(c0)}. Now let W™ &€ Wy and W™ € W, be a
sequence of 1-chains in §; and €, obtained from W) and W; by “cutting”
[-contracting at 0 paths at points pl, € 1 and p! € Qq, where p!,, p — 0 as

n — oo. Clearly,

S = lim S,
n—oo
where
i 5 - n "
Sp = 9 (<w,F1 — By = (6,1 — Ly) + (i, W — W )>) '

Our previous arguments show that

Ly = (9nde Adz, Ty — ) — (61)(eh), U2) -+ ((61) (), U
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Since function 41 is continuous at p = 0 and U = Uy, we get

lim LS, = % (O, Iy — Fy).

n—oo

Moreover, the convergence is uniform in some neighborhood of I' in D(I'),

since f¢* is holomorphic at € = 0. Thus
L,S = lim L,S,,
=00

which completes the proof. |

For fixed Riemann surface Y denote by Pr and Pgp sections of P(X) —
T(X) corresponding to the Fuchsian uniformization of X’ € T(X) and to the

simultancous uniformization of X’ ¢ T(X) and Y respectively.

Corollary 4.2.2. On the Teichmiiller space T(X),
1
Pr— PQF = 58;9}’

Remark 4.2.3. Conversely, Theorem 4.2.1 follows from the Corollary 4.2.2 and

the symmetry property (4.1.3).

Remark 4.2.4. In the Fuchsian case the maps J; and J; are identities and

similar computation shows that @ = 0, in accordance with S = 87(2g — 2)

being a constant function on T(X) x T(X).
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4.3 Second variation

Here we compute d = 8¢9, First, we have the following statement.

Lemma 4.3.1. The quasi-Fuchsian projective connection Pop is a holomor-

phic section of the affine bundle P(L) — D(L).

Proof. Consider the following commutative diagram

o I Qe

l"QF - lwg}

XUy -y xewyen

where p € Q~HHT'). We have
8 () ™) o o8 (BE0Y? 4 8 () = 8 (5) o mgh (mgh)” 18 (m3h).

Since f* and, obviously F*#, are holomorphic at ¢ = 0, we get

9
de

s((ngw) ") = o0.

e=0

Using Corollary 4.2.2, Lemma 4.3 and the result [ZT87c]
OPp = —iwwp,

which follows from (1.0.2) since Ps is a holomorphic section of B, — &, we

immediately get
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Corollary 4.3.2, For fited Y

855’1/ = —QE(PF — PQF) = —Qd(PF — PQF) = Q‘in‘p,

so that —Sy is a Kéhler potential for the Weil-Petersson metric on T(X).

Remark 4.3.3. The equation d(Pp—Pgr) = —iwy p was first proved in [McMO0O]
and was used for the proof that moduli spaces are Kéhler hyperbolic (note that
symplectic form ww p used there is twice the one we are using here, and there is
a missing factor 1/2 in the computation in [McMO00]). Specifically, the Kraus-
Nehari inequality asserts that Fp— Fgp is a bounded antiderivative of — twyp
with respect to Teichmiiller and Weil-Petersson metrics [McMO00]. In this re-
gard, it is interesting to estimate the Kéahler potential Sy on T(X). From the
basic inequality of the distortion theorem (see, e.g., [Dur83])

h'(z}) 2z 4

W) G= 2P| S T 2P

where h is a univalent function in the unit disk, we immediately get

| (gﬁhyp)z |2 < 46¢h?ﬂ’ :

so that the bulk term in Sy is bounded on ¥(X) by 207{2¢ — 2). It can also
be shown that other terms in Sy have at most “linear growth” on T(X), in

accordance with the boundness of 35y

The following result follows from the Corollary 4.3.2 and the symmetry

property (4.1.3). For completeness, we give its proof in the form that verbatim
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generalizes to Kleinian groups.

Theorem 4.3.4. The following formula holds on (T},
d'l9 = 588 = —2 wwp,

so that —8 is a Kahler potential of the Weil-Petersson metric on D).

Proof. Let p,v € Q75 First, using Cartan formula, we get

do (%, a—ij) =Ly(d(¥)) — Lo (9(n)) — 0 ({5%’ 3%])

=L,(L,8) — L(L,S) =0,

which just manifests that 8 = 0. On the other hand,

9 (%, ai;) =L,(9(@)) — Lo (9 () — 0 ([3—2; %D

- o

\Q

== f/(L,ﬂ?)u,

&

since ¢ is a (1, 0)-form.
The computation of L,9 repeats verbatim the one given in [ZT87c). Namely,
consider the commutative diagram (3.2.1) with ¢ = 1,2, and, for brevity, omit

the index . Since (J®) Lof* = F*?oJ~!, the property 8D1 of the Schwarzian
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derivative (applicable when at least one of the functions is holomorphic) yields

SV o 7 (f) + S(H) = S 0 SN H ST, (431)

We obtain
a S(Jev)—l Ofsu (fsu)z — a S(Faﬁ) o J-—I(J—I)Q
¢y | .o # 02, |, ?
] .
= | FZ oMY
Bulemy ™ 7
= 20,

where in the last line we have used Ahlfors formula (3.2.10). Finally,

g 9 o I
dd (a, 8—5:”) = // HYp = —inwp (8—6”7 ég;“) .
| YY) '

4.4 Quasi-Fuchsian reciprocity

The existence of the function S on the deformation space D(I") satisfying
the statement of Theorem 4.2.1 is a global form of quasi-Fuchsian reciprocity.
Quasi-Fuchsian reciprocity of McMullen [MecMO0] follows from it as immediate
-corollary.

Let p,v € Q7V1(D) be such that pu vanishes outside ; and v — outside
{23, so that Lie derivatives L, and L, stand for the variation of X for fixed ¥

and variation of Y for fixed X respectively.
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Theorem 4.4.1. (McMullen’s quasi-Fuchsian reciprocity)

f/X(Lz/S(Jll)) M:!//Y(L”S(Jz”l))_ ”

Proof. Immediately follows from Theorem 4.2.1, since

TubuS =2 [ fX (LoS(I™) i,
L,L,S=2 / /Y (L, S(J5") v,

and [L,, L,] = 0. L

In [McMOO], quasi-Fuchsian reciprocity was used to prove that d(Pp —
Pgr) = —iwwp. For completeness, we give here another proof of this re-
sult using earlier approach in [ZT87b], which admits generalization to other

deformation spaces.

Proposition 4.4.2. On the deformation space D(T),
89 = 0.

Proof. Using the same identity (4.3.1) which follows from the commutative
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diagram (3.2.1), we have

8 EVy—1 PEL EVNZ2 a EL —1 —1\2 6 £V
asy 6208(‘] ) Of (fz ) - 85,} 0 S(F )OJ (Jz ) 85;, 0 S(f )
0 a
— FEV J— —1y2 eV
38,, - 2z (Jz ) 85;} s 2223

where we replaced p by v and omit index ¢ = 1, 2. Differentiating (3.2.2) three

times with respect to z we get

0

85"’ e=0

ZZZ

— —S//K(z,w)y(w)dzm

O
(4.4.1)

where

K(z,w) = Z M

— 4°
24 To — o)
It is well-known that for harmonic v the integral in (4.4.1) is understood in the

principal value sense {as lims_,o of integral over C\ {|w — z| < §}). Therefore,

using Ahlfors formula (3.2.9) we obtain
2
= %Ff K(z,w)v(w)d*w
T\

and

89(p,v) = Ly (v) — Lyd(u)

ff”’ z—//_w) = 0,

T\Q I\Q
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since kernel K (z,w) is obviously symmetric in z and w, K{z,w) = K (w, z).

O
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Chapter 5

Holography

Let I' be a marked, normalized, purely loxodromic quasi-Fuchsian group of
genus g > 1. The group T' C PSL(2,C) acts on the closure U° = 1? U C of
the hyperbolic 3-space U* = {Z = (z,y,t) € R®|# > 0}. The action is discon-
tinuous on U UQ and M = I'\(T® U Q) is a hyperbolic 3-manifold, compact
in the relative topology of ﬁa, with the boundary X LI'Y ~ I\, According
to the holography principle, the on-shell gravity theory on M , given by the
Einstein-Hilbert action functional with the cosmological term, is equivalent to
the “off-shell” gravity theory on its boundary X 11V, given by the Liouville
action functional. Here we give a precise mathematical formulation of this

principle.

5.1 Homology and cohomology set-up

We start by generalizing homological algebra methods in Chapter 2 to the

three-dimensional case.
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5.1.1 Homology computation

Denote by S, = S.(UP UQ) the standard singular chain complex of U° US2, and
let R be a fundamental region of I" in U U2 such that RN is the fundamental
domain F = F| — F; for the group I" in 2 (see Chapter 2). To have a better
picture, consider first the case when I' is a Fuchsian group. Then R is a
region in U° bounded by the hemispheres which intersect € along the circles
that are orthogonal to R and bound the fundamental domain F' (see Section
2.2.1). The fundamental region R is a three-dimensional CW-complex with a
single 3-cell given by the interior of £. The 2-cells — the faces Dy, Dj,, B, and
E. k=1,...,g, are given by the parts of the boundary of R bounded by the
intersections of the hemispheres and the arcs ay, —ag, a, — aj,, by — by and b, — b,
respectively (see Fig. 1). The 1-cells — the edges, are given by the 1-cells of
F,—Fy and by €}, e}, i, fi and dy, k= 1,..., g, defined as follows. The edges
ef, are intersections of the faces Fj_; and Dy, joining the vertices d;(0) to a;(0),

the edges e}, are intersections of the faces Dy and E}, joining the vertices @ (1)

to ax(1); f§ = e}, are intersections of Iy, and Dy joining by (0) to b,(0), f

are intersections of D}, and Ej, joining bx(1) to bx(1), and dj are intersections
of B} and D), joining @}, (1) to af(1). Finally, the 0-cells — the vertices, are
given by the vertices of F'. This property means that the edges of R do not
intersect in U®. When I' is a quasi-Fuchsian group, the fundamental region R
is a topological polyhedron homeomorphic to the geodesic polyhedron for the
corresponding Fuchsian group I

As in the two-dimensional case, we construct the 3-chain representing M

in the total complex Tot K of the double homology complex K, . = S. ®zr B.
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as follows. First, identify R with R ® [] € K30. We have 6"R = 0 and

9
a’R:—F+Z(Dk"D§c—Ek+EL)
k=1

=—F+0"5,
where S € Kq1 is given by
9
S=> (Ex®[Bi] - Dr & [ou]) -
k=1
Secondly,

&S = ((bs—be) ® [Bs] — (on — &) ® [oue])

f((fk 17) ® 1] — (e —e:c)@[ak])

where I = Ly — Ly and I € Ky is given by

g

E= Z (&) @ [ow|Be] — f1 ® [Belew] + fo ® [y | B))
=S Rl Al
k=1

Therefore @ F =V = Vi — V, and the 3-chain R — 5 + E ¢ {Tot K} satisfies

BR-S+E)=—F—-L+V=-%,
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as asserted.

5.1.2 Cohomology computation

The PSL(2, C)-action on U is the following. Represent Z — (z,1) € U? by a

quaternion
) . z —i
L=z-14+y-1+1t-j= ,
t oz
and for every ¢ € C set
) c 0
c=Rec-1+Ime-¢=
0 ¢

Then for v = (4 }%) € PSL{2,C) the action Z + vZ is given hy
Zw (aZ +b)(cZ +d)7".

Explicitly, for 7 = (z,t) € U° setting 2(Z) = 2 and t(Z) = t gives

2(7Z) = ((az + b)(cz + d) + azt?) J,(7), (5.1.2)
HyZ) = £0,(2), (513)
where
1
h\Z) = lcz + d|* + [ct]?

Note that Jf?/z(Z) is the Jacobian of the map Z — «Z, hence it satisfies the

89




transformation property

J’Ylo’)'z (Z) = J’)’l (72Z) J’)‘E(Z)' (514)

From (5.1.2) and (5.1.3) we get the following formulas for the derivatives

P07 _ @), (5,15
azézz) = —(ct)’T3(2), (5.1.6)
8ng) = 20e(cx +d)J7(Z), (5.1.7)
In particular,
az:a.(ZZ) () + O, azg;z) _ow), aza(;'?) :{oa), (5.1.8)

ast — 0and z € C\ {y7'(c0)}, where for 2 € C we continue to use the

two-dimensional notations

The hyperbolic metric on U® is given by

g |dz|? + di?

d v ,

and is PSL(2, C)-invariant. Denote by

1 i o
wgzgdm/\dy/\dtzggdz/\dz/\dt
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t i

I

the corresponding volume form on UP. The form ws is exact on US,

ws = dwy, where 1wy = ME dz A dZ. (5.1.9)

The 2-form wy; € C?P is no longer PSL(2, C)-invariant. A straightforward
computation using (5.1.5)-(5.1.7) gives for v = (¢%) € PSL(2, C), b

(CS’U)Q),Y»-I ='y*’w2 — o

=-§ I (2) (|c|2dz ndz - L2t

dz A di + wdz/\dt).

Since déwq = §dwy = dwy = 0 and U? is simply connected, this implies that

there exists wy € C5! such that dw, = dw,. Explicitly,

('wl),yqzéélog(|ct|2J,Y(Z))( dz — :dez). | (5.1.10) |

Using (5.1.4) and (5.1.8) we get for dwy € C*2

g c 2 — 4=
(dw1)yr150 = = 3 (log Iy (Z) +log Mgﬂ“) (L? o Ny dz 7:? oMM dz)

|e(yam)|? Vs Yo
t IC(%%)F) v oo A
— - log J. Z) +log ———— = dZ dz i
) ( Y (’Yl ) | C(’Yl)|2 ) v .
+ By (2). (5.1.11)

Here B-: 1(Z) = O(tlogt) as t — 0, uniformly on compact subsets of

C\ {757 (00), (12m)~H{o0) }-
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Clearly the 1-form dwy is closed,

d(dwy) = 6(dwy) = §(dwq) = 0.

Since 1P is simply connected, there exists wy € C%% such that w; = dwy.
Moreover, using H3(I',C) = 0 we can always choose the antiderivative wyg

such that dwy = 0. Finally, set & = wy — w; — wy € (Tot C)?, so that

D® = w;. (5.1.12)

5.2 Regularized Einstein-Hilbert action

In two dimensions, the critical value of the Liouville action for a Riemann

surface X ~ I"\U is proportional to the hyperbolic area of the surface (see

Chapter 2). It is expected that in three dimensions the critical value of the .

Einstein-Hilbert action functional with cosmological term is proportional to

the hyperbolic volume of the 3-manifold M ~ I'\ (TP UQ) (plus a term propor-
tional to the induced area of the boundary). However, the hyperbolic metric
diverges at the boundary of T* and for quasi-Fuchsian group T’ (as well as

for general Kleinian groups ') the hyperbolic volume of T\(U® U Q) is infi-

nite. In [Wit98], Witten proposed a regularization of the action functional
by truncating the 3-manifold M by surface f = &, where the cut-off function

f € C°°(U%, Ry} vanishes to the first order on the boundary of T Every

"Note that we are using definition of Kleinian groups as in [Mas88]. In the theory of
hyperbolic 3-manifolds these groups are called Kleinian groups of the second kind.
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choice of the function f defines a metric on T?
2 I 2 | g2
ds?* = t—2(|dz| + dt?),

belonging to the conformal class of the hyperbolic metric. On the boundary

of T it induces the metric

oo P20

ts0 {2

|dz|%.

Clearly for the case of quasi-Fuchsian group I" {or for the general Kleinian
case considered in the next chapter), the cut-off function f should be I'-
automorphic. Existence of such function is gnaranteed by the following result,

which we formulate for the general Kleinian case.

Lemma 5.2.1. Let T be non-elementary purely lozodromic Kleinian group,
normalized so that oo € A, and let A be an invariant union of components
of the 'regz'on of discontinuity Q. For every ¢ € CM(T\A) there ewists I'-

automorphic function f € C®°(UF U A) which is positive on U and satisfies
F(2) =t L O(#%), ast— 0,

uniformly on compact subsels of A.

Proof. Note that ['\A ig isomorphic to at most countable disjoint union of
compact Riemann surfaces. For every ¢ € CM(I'\A) set Flz,t) = ted@)/2,
Clearly f is smooth, positive on U®, and the required agsymptotic behavior is

an identity. However, the function f is not [-automorphic. To rectify this
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situation we use a partition of unity. Namely, as it is proved by I. Kra in
(Kra72a] (the proof generalizes verbatim for our case), there exists a function
1 € C°(U* U A) — partition of unity for I' on U? U A, with the following

properties.
() 0<p<L

(ii) For each Z € U® U A there is a neighborhood U of Z and a finite subset
J of I' such that 5|,y = 0 for each v € T'\ J.

(i) > cpn(vZ) =1forall Z € PP UA.

Set

F(2) =) "n(v2) [ (v2).

vel
By property (ii), for every Z € U® U A this sum contains only finitely many
non-zero terms, so that the function f is well-defined. By properties (i) and
(iii) it is positive on U, To prove the asymptotic behavior, we use elementary

formulas

207) = 224 00 = o)+ 01,
tHy%) = _t + 0@ ast— 0,

|cz + dJ?

where z # v7*(00). Since ¢ is smooth on A and

90




we get for z € A

F12) = (g + O (#0972 1 0#)

e £ P(2)/2 + O(t3),

where the O-term depends on . Using properties (ii) and (iii) we finally

obtain
£(Z) =3 n(v2) (1@ + O("))
yel
— te#(2)/2 + O(t3)7
uniformly on compact subsets of A. Cl

Returning to the case when I' is a normalized purely loxodromic quasi-
Fuchgian group, set A =  and for every ¢ € CM(I\Q) let f be a function
given by the lemma. Fore > 0 let R, = RN {f > ¢} be the truncated
fundamental region. For every chain ¢ in U? let ¢, = e {f > &} be the
corresponding truncated chain. Also let F, = 8 R.N{f = &} be the boundary
of R on the surface f = ¢ and define chains L. and V, on f = & by the same
equations &' F, = 9"L, and 9'L, = 8"V, as chains L and V (see Sections 2.2.1
and 2.3.1). Since the truncation is I-invariant, for every chain ¢ € S,(U®) and

v € I' we have

(ye)e = yee.

In particular, relations between the chains, derived in Section 5.1, hold for

truncated chains as well.
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Let M. be the truncated 3-manifold with the boundary & M,. For ¢ suffi-
ciently small §'M, = X, LY, is diffeomorphic to X LY. Denote by V,[#] the
hyperbolic volume of M,. The hyperbolic metric induces a metric on &' M.

and A.[¢] denotes the area of &M, in the induced metric.

Definition 5.2.2. The regularized on-shell Einstein-Hilbert action functional

is defined by

er16] = —timy (V4] - A406] ~ 2rx(X)oge ),

where x(X) = x(Y) = 2 — 2g is the Euler characteristic of X.
The main result of this chapter is the following.

Theorem 5.2.3. (Quasi-Fuchsian holography) For every ¢ € CM(I'\Q) the

reqularized Finstein-Hilbert action is well-defined and

Er(¢] = Srlg),

where Sp|@| is the modified Liowville action functional without the area term,

Splg] = // e?d’z — 87 (29 — 2) log 2.

r\Q

Proof. 1t is sufficient to verify the formula,
1 1.
Vd] - EAE[qﬁ] = 271x(X)loge — 15&1[@5} +o(1) ase—0, (5.2.1)

which is a counter-part of the formula (1.0.13) for quasi-Fuchsian groups.
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The area form induced by the hyperbolic metric on the surface f(Z) = ¢

is given by
[z Jy d:l?/\d’y
\/1+(ft) +(ft> £
Using
L) =L o) +0@) and 2z)= Lo+ 0
fr 2 ft Y

we have as e — 0

A9 = f/\/ B @2+ 62)(2) + O(1#) LY

tZ

dz A d
:f/ xtz y+§/ b,z dz A dy + o(1)
e F

= [[E52 4 01 B+ o).

Here we introduce

W[P] = w[p] — ePdz A dz = |¢,2dz A dE, (5.2.2)

and hags used that for Z € F;

t = e 2 1 O(eY), (5.2.3)

uniformly for Z = (z,t) where z € F',
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Next, using (5.1.1) and (5.1.12) we hawve,

Vgl = (ws, Re)
= (ws, R — S + )
= (D(ws — wy — wp), R, — Se + By}
= (wy—wy —wg,d (R — S, + E.))

= —(wg, FE) + (wl;La> - (w()? VLJ)

The terms in this formula simplify as € - 0. First of all, it follows from (5.1.9)

that

1 dx A dy
_<w23FE>_§// 12 :
Fe

Secondly, using (5.2.3) and J,(%) = |¥(2)| + O(t*) as t = 0, we have on L.

(wy)y=1 = —ilo (|ce:|2 ey (2)]) l"dz — Edé +o(1)
1jy—1 — 8 g v ,-YJ‘ ?
i 1 12 2 ol 7"
=—=|2loge — ¢ + =log |¥'|* + log |c(v)] —dz — =dz | + o(1).
8 2 g v

Therefore, as £ — 0,

<w1:L£) = _3.(%7 L)(lOgE - log 2) + <9[¢]3L> + 0(1)1

4

oo ==,

where 1-forms s, and ,[4] were introduced in Corollary 2.2.12 and formula
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(2.2.16) respectively. Finally,
(’LU[),V:E) = <’LU0,8’EE> = (dwg,EE) = (éwl,EE> = (5?1)1, E) + 0(1),

where we used that 1-form w; is smooth on U* and continuous on C\ I'(co).
Since it is closed, we can replace the 1-chain £ by the 1-chain W = W; — W,
consisting of [-contracting paths at 0 (see Section 2.3). It follows from (5.1.11)
that dwy = %4 o(1) as t — 0, where the 1-form 4., ,, was introduced in
(2.2.17}, so that

i

—{wp, Vo) = —g(ﬁ,W) + o(1).

Putting everything together, we have as ¢ — 0

Vil) ~ 5 Addg) = — +{oc, L) (log< ~ log2) — ¢ ((@lgl, F) — (), 1)

+{it, W) + o(1).

Using Corollary 2.2.12, trivially modified for the quasi-Fuchsian case, and

(2.3.5) concludes the proof. O

A fundamental domain F' for I' in € is called admissible, if it is the bound-
ary in C of a fundamental region R for I' in U® U ). As an immediate conse-

quence of the theorem we get the following.

Corollary 5.2.4. The Liouville action functional Sr[¢] is independent of the

choice of admissible fundamental domain.

Proaf. Since V[¢], Ac[¢] are intrinsically associated with the quotient man-

ifolds M ~ T\(T® U Q) and X UY ~ '\, the statement follows from the
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definition of the Einstein-Hilbert action and the theorem. O

Although we proved the same result in Chapter 2 uging methods of ho-
mological algebra, the above argument easily generalizes to other Kleinian

groups.

Remark 5.2.5. The truncation of the 3-manifold M by the function f does
depend on the choice of the realization of the fundamental group of M as a
normalized discrete subgroup I' of PSL(2, C). Different realizations of 7y (M)
result in different choices of the function f, since f has to satisfy the asymptotic
behavior in TLemma 5.2.1, where the leading term #e#)/2 is not a well-defined

function on M.

Remark 5.2.6. The cochain wq € C*? was defined as a solution of the equation
dwy = wy satisfying Swy = 0. However, in the computation in Theorem 5.2.3
this condition is not needed — any choice of an antiderivative for w, will suffice.
This is due to the fact that the chain in (Tot K)3 that starts with R € Ky does
not cdﬁtain a term in Kg 3, hence 0'E = V. Thus we can trivially add the term
(6w, R; — S + Ee) = 0 to V,[¢], which through the equation D® = w; — dwy
still gives (wq, V) = (dwo, F). Thus the absence of Kgs-components in the
chain in (Tot K)3 implies that each term in F produces two boundary terms in
V which cancel out the integration constants in definition of wy. As a result,
Sr[¢] does not depend on the choice of wq. In the next chapter we generalize

the Liouville action functional to Kleinian groups having the same property.
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Chapter 6

Generalization to Kleinian Groups

6.1 Kleinian groups of Class A

Let I' be a finitely generated Kleinian group with the region of discontinuity
2, a maximal set of non-equivalent components {2, ...,{2, of {1, and the limit jéi:

set A = @\Q As in the quasi-Fuchsian case, a path P is called I'-contracting

in Q, if P = P, UP,, where p € A\ {oo} is a fixed point for I', paths P; \ {p} i

and P\ {p} lie entirely in distinct components of 2 and are I'-contracting at [

p in the sense of Definition 2.3.2. It follows from arguments in Section 2.3.1

that [-contracting paths in () are rectifiable. b

Definition 6.1.1. A Kleinian group I is of Class A if it satisfies the following ¢

conditions. b

A1 T is non-elementary and purely loxodromic.
A2 T is geometrically finite.

A3 T has a fundamental region R in U3US which is a finite three-dimensional

CW-complex with no 0-dimensional cells in T® and such that RN Q C
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U U,

In particular, property A1 implies that ' is torsion-free and does not con-
tain parabolic elements, and property A2 asserts that I' has a fundamental
region R in U? U Q which is a finite topological polyhedron. Property A3
means that the region R can be chosen such that the vertices of R — end-
points of edges of R, lie on { € C and the boundary of R in (fi, which is a
fundamental domain for I" in 2, is not too “exotic”.

The class A is rather large: it clearly contains all purely loxodromic Schot-
tky groups (for which the property A3 is vacuous), Fuchsian groups, quasi-
Fuchsian groups, and free combinations of these groups.

As in the previous chapter, we say that Kleinian group I' is normalized if

oo € Al

6.2 Einstein-Hilbert and Liouville functionals

For a finitely generated Kleinian group T' let M ~ I'\((® U £2) be correspond-
ing hyperbolic 3-manifold, and let I'y,..., I, be the stabilizer groups of the

maximal set §)y,. .., Q, of non-equivalent components of {2. We have

T\Q = T\Q - UT,\Qy = Xy U L X,

so that Riemann surfaces Xi,..., X, are simultaneously uniformized by T
Manifold M is compact in the relative topology of T with the disjoint union

X, U---UX, as the boundary.
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6.2.1 Homology and cohomology set-up

Let S, = S, (1P UQ), B, = B,(ZI") be standard singular chain and bar-
resolution homology complexes and K,. = S, ®zr B, — the corresponding
double complex. When I' is a Kleinian group of Class A, we can general-
ize homology construction from the previous chapter and define corresponding
chains 12, S, E, F, L, V in total complex Tot K as follows. Let R be a fundamen-
tal region for I' in U? LU 2 — a closed topological polyhedron in T satisfying
property A3. The group I' is generated by side pairing transformations of
RNTP and we define the chain S € Kg; as the sum of terms —s ® y~! for each
pair of sides s, s’ of RNU® identified by a transformation v, i.e., 8’ = —vs. The
sides are oriented as components of the boundary and negative sign stands for

the opposite orientation. We have
JR=—F+a's5, ‘ (6.2.1)

where I = RN Q € Kyg. Note that it is immaterial whether we choose

Lor —s' @ «v in the definition of §, since these terms differ by a &"'-

sy
coboundary. Next, relations between generators of I' determine the I'-action
on the edges of R, which, in turn, determines the chain F € K 5 through the

equation

§3=L-0d'E. (6.2.2)

Here L. = &S N € Ky 1. Finally, property A3 implies that

JE =V, (6.2.3)
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where the chain V' € Kg s lies in €2.

Next, let the 1-chain W € K 3 be a “proper projection” of the 1-chain F
onto {2, i.e., W is defined by connecting every two vertices belonging to the
same edge of R either by a smooth path lying entirely in one component of £2,
or by a I'-contracting path, so that W = V. The existence of such 1-chain
W is guaranteed by the property A3 and the following lemma, which is of

independent interest.

Lemma 6.2.1. Let I" be o normalized, geometrically finite, purely lozodromic
Kleinian group, and let R be the fundamental region of T in U UQ such that
RN C QU-- U, — a union of a mazimal set of non-equivalent components
of . If an edge e of RNUP has endpoints vy and v, belonging to two distinct
components € and {);, then there exists a ['-contracting path in ) joining
vertices vg end vy. In particular, §); and $2; has at least one common boundary

point, which 15 a fived point for I,

Proof. There exist sides s; and s3 of R such that e C s1 M s3. For each of
these sides there exists a group element identifying it with another side of
R. Let v € T be such element for s;. Since I' is torsion-free and vy, v, € Q,
element -y identifies the edge e with another distinct edge ¢’ of R with endpoints
v(vo) # vo and y(vy) # . Since RN C QU -UQ, — a union of a maximal
set of non-equivalent components of €, this implies that v(vg) € ; and +y fixes
;. Similarly, y(v1) € ; and v fixes ;. Now assume that attracting fixed
point p of 7y is not co (otherwise we replace v by v1). Join vy and v(vp) by
a smooth path PP inside (;, and let P} = +"(P!) be its n-th ~y-iterate. Since

« fixes €, the path PP lies entirely inside ;. Since limg,_yo ¥*(v9) = p, the
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path £, = U2 PP joins vy and p, and except for the endpoint p lies entirely in

€. Clearly path P? can be chosen so that the path P is stnooth everywhere
except at p. The path P joining points v, and p inside (2, is defined similarly,

and the path P = P, U P, is ['-contracting in 2. 1

Setting £ = F'+ L — V we get rom (6.2.1)-(6.2.3) that

8(R— S+ E) = —X.

Remark 6.2.2. Since (B is acyclic, it follows from general arguments in [AT97]
that for any geometrically finite purely loxodromic Kleinian group I' with
fundamental region R given by a closed topological polyhedron, there exist
chains §' € Koy, F € Ky, T € Ky 3 and chains F' € Ky, L € K1,V € Ky 5 on

1, satistying

dR=-F+38"S8
dS=L-d"F
dE=V+8'T.

Property A3 asserts that T'= 0, and we get equations (6.2.1)-(6.2.3).

Cotrespondingly, let A* = A%L(TP U Q) and C** = Hom(B,,A®) be the de
Rham complex on 1U® U Q) and the bar-de Rham complex respectively. The
cochains wg, wq, wy, dwy, wy are defined by the same formulas as in Section
5.1. For ¢ € CM(T\Q) define the cochains wi{¢], 8]¢], v by the same formulas
(2.2.4), (2.2.5), (2.2.6), with the group elements belonging to I'. Finally, define
the cochains 0[¢], & by (2.2.16) and (2.2.17).
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6.2.2 Action functionals

Let T be a normalized Class A Kleinian group. For each ¢ € CM(I'\Q) let f
be the function constructed in Lemma 5.2.1. As in Section 5.2, we truncate

the manifold M by the cut-off function f and define V,[¢], A.[¢].

Definition 6.2.3. The regularized on-shell Einstein-Hilbert action functional

for a normalized Class A Kleinian group I" is defined by

0l = —41lim (v;[qﬂ — LAJ8) ~ meX0) X)) logs) .

As in the quasi-Fuchsian case, a fundamental domain F' for a Kleinian
group [' in € is called admissible, if it is the boundary in C of a fundamental

region R for I' in U® satisfying property A3.

Definition 6.2.4. The Liouville action functional St : CM(I'\§2) — R for the

normalized Class A Kleinian group I' is defined by

Srl) = = (Wlgl ) — (Olgl, L) + (@, W) , (6.2.4)

DO e

where F is an admissible fundamental domain for I' in £2.

Remark 6.2.5. When T is a purely loxodromic Schottky group (not necessarily
classical Schottky group), the Liouville action functional defined above is, up

to the constant term 4w (2g — 2) log 2, the functional {1.0.8), introduced by P.

Zograf and L. Takhtajan [ZT87c|.

Using these definitions and repeating verbatim arguments in Chapter 5 we

have the following result.
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Theorem 6.2.6. (Kleinian holography) For every ¢ € CM(T\Q) the regular-

ized Binstein-Hilbert action is well-defined and

Erl¢] = Sr[d] = Sr[g] — // e?dz + dm(x(X1) + -+ x(Xn)) log 2.
R
Corollary 6.2.7. The definition of the Liouville action functional does not

depend on the choice of admissible fundamental domain F for I.

As in the Fuchsian and quasi-Fuchsian cases, the Euler-Lagrange equation
for the functional Sp is the Liouville equation, and its single critical point
given by the hyperbolic metric e®tvr[dz|? on ['\Q is non-degenerate. For every
component {; denote by J; : U — € the corresponding covering map (unique
up to a PSL(2,R)-action on U}, Then the density e?*» of the hyperbolic

metric is given by

g Y@ .
eqﬁhw():m it z€8y, i=1,...,n (6.2.5)

Remark 6.2.8. As in Remark 2.2.6, let Al¢] = —4e7%8,8, be the Laplace
operator of the metric ds? = e?|dz|? acting on functions on X, U --- U X,,, let

det A[¢] be its zeta-function regularized determinant, and let

det Alg]
Alg]

Z[¢] = log

Polyakov’s “conformal anomaly” formula and Theorem 6.2.6 give the following

relation between Einstein-Hilbert action £[¢] for M ~ T'\(T*UQ) and “analytic
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torsion” Z[¢] on its boundary Xy U--- U X, ~ '\,

I[é + o] + ﬁg[m o] = Z[g) + 5 £ld], o€ O¥ (L1 X, ).

6.3 Variation of the classical action

Here we generalize theorems in Chapter 4 for quasi-Fuchsian groups to Kleinian

groups.

6.3.1 Classical action

Let " be a normalized Class A Kleinian group and let D(I') be its deformation
space. For every Beltrami coefficient g € B~"'(I") the normalized quasiconfor-
mal map f*: € — € descends to an orientation preserving homeomorphism of
the quotient Riemann surfaces T\ and I'*\Q#. This homeomorphism extends
to homeomorphism of corresponding 3-manifolds T\(TBUQ) and I\ (TR UH),
which can be lifted to orientation preserving homeomorphism of U?. In par-
ticular, a fundamental region of I' is mapped to a fundamental region of ['*.
Hence property A3 is stable, so that every group in D(T") is of Class A. More-
over, since oo is a fixed point of f#, every group in D(T') is normalized.

For every IV € D(T') let Sp = S[¢},,,] be the classical Liouville action for
I, Since the property of the fundamental domain F' being admissible is stable,
Corollary 6.2.7 asserts that the classical action gives rise to a well-defined real-
analytic function S : D(I') = R.

As in Chapter 4, let ¢ € 2%°(I') be the holomorphic quadratic differential
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'\, defined by

9= 2(¢hyp)zz - (gbhw?)i-

It follows from (6.2.5) that
I(z) =28(J; =) if zey, i=1,...,n.

Define a (1,0)-form 9 on D(T') by assigning to every IV € D(I") corresponding
J e Q&0(1).

For every IV € D([') let Pr and Px be Fuchsian and Kleinian projective
connections on X L1-- LI X} =~ T\, defined by the Fuchsian uniformizations
of Riemann surfaces X7,..., X], and by their simultaneous uniformization by
Kleinian group IV, We will continue to denote corresponding sections of the
affine bundle (I'y — D(T") by Pp and Py respectively. The difference Pp— Py
is a (1,0)-form on D(I'). As in the Section 4.1, |

¥ = 2(Pr — Px).
Correspondingly, the isomorphism
@(F) ~ ,(D(]._‘l, Ql) Xoee X Q(Fnaﬂn)

defines embeddings

and pull-backs S; and (Pr — Py ); of the function S and the (1, 0)-form Py — Py.

The deformation space (I, ;) describes simultancous Kleinian uniformiza-
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tion of Riemann surfaces Xy, -, X, by varying the complex structure on X;
and keeping the complex structures on other Riemann surfaces fixed, and the

(1,0)-form (Pp— Py); is the difference of corresponding projective connections.

6.3.2 First variation

Here we compute the (1,0)-form 85 on D(I').

Theorem 6.3.1. On the deformation space D(I'),
88 = 2(Pp — Py).

Proof. Since F* = f(F) is an admissible fundamental domain for '
and, according to Lemma 2.3.4, the 1-chain W = f*#{(WW) consists of I"**-
contracting paths in £2°*, the proof repeats verbatim the proof of Theorem

4.2.1. Namely, after the change of variables we get

L;LS = % ((LP‘IWJF) - (Lp,é1L> + (LMJQ?W>) ’
where

Lyw=939pdz Adz — d§

and 1-form £ is given by (4.2.2). As in the proof of Theorem 4.2.1, setting
x =66+ L#é we get that the 1-form x on € is closed,

dx = 6(d¢) + L,df = 6(—L,w) + L,6w = 0,
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and satisfies

8x = 6(Lu0 + 6€) = L,80 = L,i = dél.

Since the 1-chain W consists of smooth paths or I'-contracting paths in Q

and function 6/ is continuous on W, the same arguments as in the proof of

Theorem 4.2.1 allow to conclude that '

LS = —;-(ﬁ,udz A dz, F).

L]
Corollary 6.3.2. Let Xy,..., X, be Riemann surfaces simullaneously uni-
formized by a Kleinian group T' of Class A. Then on D, 1) |
1 |
(PF—PK)iZEf?Si.
6.3.3 Second variation |

Theorem 6.3.3. On the deformation space DT, ‘i
d¥ = 008 = —2i wyp,

so that —S is o Kdhler potential of the Weil-Petersson metric on ().

"The proof is the same as the proof of Theorem 4.3.4.
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6.4 Kleinian Reciprocity

Let p € @ Y(I) be a harmonic Beltrami differential, f* be corresponding
normalized solution of the Beltrami equation, and let v = f be corresponding

vector field on @,

vle) = f/ — z)wz;i)l)fw

{see Section 3.2). Then

pu(2) = 823 //(w_z d*w

is a quadratic differential on I'\, holomorphic outside the support of .
In [McM00] McMullen proposed the following generalization of quasi-Fuchsian

reciprocity.

‘Theorem 6.4.1. (McMullen’s Kleinian Reciprocity) Let T be a finitely gener-

ated Kleinian group. Then for every p,v € Q HHID)

([ o= [[ o

\Q O

The proof in [McMO00] is based on the symmetry of the kernel K(z,w),
defined in Section 4.2. Here we note that Theorem 6.3.1 provides a global
form of Kleinian reciprocity for Class A groups from which Theorem 6.4.1
follows immediately.

Indeed, when I' is a normalized Class A Kleinian group, Kleinian reciprocity
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is. the statement

LuLyS = L,L,8,

since, according to (4.4.1),

_%Lﬂﬂ(z) = —g é/ﬁ%dzw = ,(2)
and

[[ow=2 [ 115

YY) G
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e i T e -

“be the complex Banach space of bounded Beltrami differentials on A and let

Chapter 7

Universal Teichmiiller Space and Universal

Teichmiuller Curve

7.1 Teichmiiller theory

Let T'(1) be the universal Teichmiiller space. There are two realizations of this 1

space.

Let A be the open unit disc, A* the exterior of the unit disc. Let L>(A)

L®(A); be the unit ball in £°(A). For any u € L®(A);, we consider the !

following two constructions. 'ﬁ‘

1. Model A: w,, theory. |

We extend p by reflection to A*| i.e.

2
)i z € A", (7.1.1) |
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There is a unique quasiconformal map w,,, fixing —1, —i and 1, such that

(wa)z = plwy)s (7.1.2)
wu(7) = Wy (%) - (7.1.3)

The second identity is due to the reflection symmetry (7.1.1}. As a

result, w, fixes the unit circle §'. We define an equivalence relation on

B T

L*®(A)y, such that p ~q v if and only if w, and w, induce the same map

on the unit circle, or equivalently, w;l o w, Is the identity on the unit

circle:

2. Model B: w* theory. ' Lf'

i
We extend p to be zero outside the unit disc. There is a unique quasi- 'J

conformal map w*, fixing 0,1 and oo, holomorphic outside the unit disc, H

such that i

- \
Wz — lu’wg i

We define an equivalence relation on 7°°(A)y, such that u ~; v if and

only if w# and w? restrict to the same map on the unit circle (and hence

on A*). Or equivalently, (w*)~! o w” is the identity on the unit circle § |

[
(and hence on A*).

It is well known that w, is the identity map on the unit circle if and only

if w* is the identity map on the unit circle. Hence ~4 and ~, define the same ;

equivalence relation ~ on L¥(A);.

The universal Teichmiiller space T'(1) is defined as a set of equivalence
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classes of normalized quasiconformal maps.
T(1) = L®(A)/ ~.

The tangent space at the origin of T'(1) is identified with L*°(A)/N, where A
is the space of infinitesimally trivial Beltrami differentials. It can be described

explicitly by :

N = {ﬂELw(A):fAuqﬁ:O,. ¢€A1(/_\)} , (7.1.4)

where A;(A) is the Banach space of L' holomorphic functions on the disc.

Using model A, we see that 7'(1) has a group structure given by
Akp=v, where w, = wy o w, .

Explicitly, it is given by

Bt (how,) i

V= .
1+ B 0 w,) e

w
{(wu)
Using this group structure, we have a natural way to identify the tangent
spaces at different points.

For convenience, we also consider a slight modification of model B.

Model B': Given u € L*®(A);, we define g € L*(A*); by

i) = (L) 2 N (7.1.5)
pa)=p(<) 5 : 1.
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and extend it to be zero outside A*, We solve the Beltrami equation

f
2

and get a function w” which is holomorphic on A. Moreover, w?(z) = wr(L).

1
=
g
Lo ot

In this model, we identify 7'(1) with L%(A*);/ ~, where §i ~ ¥ if and only if
w™ and w” agree on the unit circle (hence on A). The tangent space at the
origin is identified with L*°(A*)/A*, where N'* is the space of infinitesimally
trivial Beltrami differentials on A*, defined in a similar way as (7.1.4).

The universal curve 7(1) is a fiber space over T(1), with fiber over each
point [u] the unit disc A with complex structure given by w*(A) (or equiv-
alently w,(A)). In the models of T(1) described above, given a Beltrami
differential u, if we only require the solution of Beltrami equation to fix the
point 1, we get a family of solutions parametrized by the points in the unit
disc. Hence we can identify 7(1) as the space of the corresponding quasicon-
formal maps normalized such that only the point 1 is fixed. As T(1), T(1)

also has a group structure coming from the composition of maps.

7.2 Univalent functions

Let D* be the space of univalent functions g : A* —s C on the exterior disc

normalized such that oo is fixed and the Laurent expansion at oc is given by:

g(z):z(1+g§+§§+...). (7.2.1)
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In the model B of the universal Teichmiiller space given above, every point [u
(the equivalence class defined by p) can be represented by the helomorphic
map, which is the restriction of w# to the exterior disc. There is a unique way
to normalize w* by a linear fractional transformation v € PSL(2, C) such that
o w* has Laurent expansion at oo given by (7.2.1). Hence 7'(1) embeds as
a subspace of D*

Correspondingly, we consider the space D of univalent functions f : A —
€ on the unit disc, normalized such that f(0) = 0, f/(0) = 1 and f"(0) = 0,

so the Taylor expansion at the origin is given by
f(2) = 2(1 + az2® + ag?® + ...). (7.2.2)

The model B’ of the universal Teichmiiller space embeds as a subspace of D.
It is casily seen that under the transformation g(z) — 1/g() or the trans-

formation g(z) 1/—9(5 the normalization in (7.2.1) corresponds to the

normalization in (7.2.2). Hence there are two natural identifications of D*

with D.

We denote by S(f), the Schwarzian derivative of the function f, which is

s0-(7),-3(%)

It satisfies the transformation property

given by

S(fog)=38(f)ogg:+Sg),
when one of the functions f and g is holomorphic. Moreover, S(f) = 0 if and
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only if f is a linear fractional transformation. Hence a normalized univalent
function is uniquely determined by its Schwarzian derivative. More precisely,

we have

Lemma 7.2.1 (Nehari-Kraus, Ahlfors-Weill). Let f : A* — C be a

univalent function on A*, then
sup [S(f)()(1 ~ |2|*)?] < 6. (7.2.3)
Moreouver if ¢+ A* — Cisa holomorphic function on A* such that
sup [¢(z)(1 ~ |2[")"] < 2,

then there is a univalent funclion f : A* — ¢ , unigque up to Mobius trans-

formations, such that S(f) = ¢ and [ has a quasiconformal extension to C.

The same lemma holds when A* is replaced everywhere by A.
The first half of the lemma is due to Nehari and Kraus. It implies that the
model B of the universal Teichmiiller space embeds into a bounded subspace

of the space

Aw(A?) = {¢ holomorphic on A* : sup [¢(2)(L — |2[*)?| < OO}
ZEAX

[p] = S(w"]ax).

This is known as Bers embedding. The second half of the lemma is due to

Ahlfors and Weill. It implies that the image of 7(1) in A, {A*) contains an
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open ball. Under this embedding, the tangent space to T'(1) is identified with
Ao (A,

Correspondingly, the model B’ of 7'(1) embeds into
An(A) = {qﬁ holomorphic on A : sup [¢(2)(1 — |2]*)?| < oo} ,
2CA

with tangent space identified with A, (A).

Remark 7.2.2. The space of harmonic Beltrami differentials on A is defined as

) = {ul) = (1~ 420 : f € Awl(A)}.

Tt is well known that (see, e.g. [NV90, Nag88]) Q11 (A) is a complementary
subspace to A in L®(A). Hence we can identify the tangent space at the
origin of T(1) with Q= (A), which is complex anti-isomorphic to A {A). It

should not be confused with the identification above.

7.3 Homogenuous spaces of Diff , (5

Let Diff  (8*) be the group of orientation preserving diffeomorphisms of the
unit, circle S*. Let M6b(S') be the subgroup of Mdbius transformations. We
abuse notation and denote also by S the subgroup of rotations. The Lie
algebra, of Diff; (S?) is the Lie algebra of C° vector fields on S'. The com-
plexification of this Lie algebra is the Witt algebra generated by the L, =
ind 8

5 = 12" 2, n € Z. (Here z = €). A tangent vector to Diff, (S1)/S" at

z

€
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the origin is a linear combination

v = E Colin , Ty = Cop,y
n#0

where v = u(G)B% is the corresponding smooth real vector field on the unit

circle and ¢,’s are the Fourier coefficients of u{f). A tangent vector to the

origin of Diff (S')/ Mob(S') is of the form

v = E, Caln , Tn = Cp.
n#-1,0,1

One loses the coefficients ¢_1, ¢y, €1 because Ly, Lo, Iy generate the PSU(1,1)
action.

Consider the model A of the the universal Teichmiiller space 7'(1) given
above. Under the equivalence relation ~, the map [u] — w,|s1 is well defined
and one-to-one. Ahlfors-Beurling extension theorem implies that the image
consists of all normalized orientation preserving quasisymmetric homeomor-

phisms of the unit circle (see, e.g., [Ber72]), in other words,
T(1) = Homeog,(S'}/ M&b(S*)

which contains normalized orientation preserving diffeomorphisms as a sub-

| group. Using similar reasonings, we have the identification
7(1) = Homeog,(S') /S

In [Kir87], Kirillov proved that there is a natural isomorphism between the
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space of smooth contours with conformal radius 1 which contain 0 in their in-

“terior and the space Diff, ($1)/S*. This can be generalized to an isomorphism
between 7(1) = Homeog(S')/S' and the space of all quasi-circles (image
of the unit circle under a quasiconformal map) of conformal radius 1 which
contain 0 in their interior. Moreover, as in [Kir87] there are two natural holo-
morphic functions associated to a point in 7 (1} = Homeo,s(S')/S*. For the
space T'(1) = Homeoy,(S*)/ Mob(S"), this association is well known to Ahlfors
and Bers. Since this is going to play an important role in our discussion below,
we give the details for our case 7(1) = Homeog, (S1)/S".

Given an orientation preserving quasisymmetric homeomorphism «y of the
unit circle, by Ahlfors-Beurling extension theorem, -y can be extended to be a
quasiconformal map w of the plane such that it satisfies the reflection property
(7.1.3). Let p be the Beltrami differential of the map w. Up to a linear
fractional transformation, w agrees with w,, that we define in Section 7.1, i.e.
w = o10w, for some gy € PSU(1,1). The corresponding map wh (Section 7.1)
is holomorphic inside the unit disc A. Define g = o9 0 w# o w™!, where g3 €
PSL(2, C) is uniquely determined by the conditions f = o ow satisfies f(0) =
0, f'(0) = 1 and g satisfies g(co) = co. The maps f and g are holomorphic
inside A and A* respectively. They do not depend on the extension of v and
we have v = g~ o f|g1. The image of S* under f, which is the same as the
image of 5! under g, is by definition a quasi-circle C with conformal radius 1.
By post-composing w with a rotation, the map ¢ also satisfies g'(o0) > 0.

Conversely, by definition a quasi-circle C with conformal radius 1 containing
the origin, is the image of S' under a quasiconformal map h : C — C. Let

1 be the Beltrami differential of h|a, extended to A* by reflection. Let wy,
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be a solution of the corresponding Beltrami equation. Then f = ko w;ll is
a quasiconformal map that is holomorphic inside A. There is a unique way
to normalize w,, by post-composition with a PSU(1,1) transformation such
that f(0) = 0 and f'(0) > 0. The image of S* under f is the quasi-circle C.
In fact by Riemann mapping theorem, f|s is uniquely determined by ¢ and
the normalization conditions f{0) = 0, f’{0) > 0. C has conformal radius 1
implies that f/(0) = 1. Let u be the Beltrami differential of f{a., extended to
A by reflection. Let w, be a solution of the corresponding Beltrami equation.
Define g = fo w;l oo, where o € PSU(1,1) is uniquely determined so that
g{oo) = oo and ¢'(c0) > 0. The map v = ¢~ o f|s is then an orientation
preserving quasisymmetric homeomorphism of the unit circle.

This establishes a one-to-one correspondence between 7(1) and the space
of all quasi-circles with conformal radius 1 that contain the origin in their
interior. We also establish the decomposition of an orient‘ation preserving
quasisymmetric homeomorphism of the unit circle v mod S* as g7! o flg1,
where f is a holomorphic map from A onto the interior Q of the quasi-circle
C corresponding to v and g is a holomorphic map from A* onto the exterior
{2 of C, uniquely determined so that f(0) = 0, f'(0) = 1, g(c0) = oo and
g'(c0) > 0. Using the fact that the correpondence between f and the quasi-

circle C is one-to-one, we see that we can identify 7(1) with the space of

univalent functions

D={f:A— € a univalent function : f(0}=0,7{0)=1,

f has a quasiconformal extension to C}.
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In this picture, the tangent space to D at the origin i a subspace of

D= {u:A—¢C holomorphic : u(0) = »/(0) = 0,

v has a continuous extension to C}.

Remark 7.3.1. Notice that if v = w,|s1 up to post-composition with a PSU{1,1)
transformation, the corresponding f and g are equal to w* and w* up to post-

composition with PSL(2, C) transformations, where u' = y = 0.

For more details about quasi-circles, see [Leh87, Pom92).

7.3.1 Complex structures

The almost complex structure J at the origins of 7(1) ~ Homeo,,(S*)/S" and
T(1) ~ Homeog,(S')/ M5b(S?) is defined by:

Ju = Z isgn(n)c,e™, where v = Zcﬂema. (7.3.1)

(See references in [NV90]. Notice that we differ from the definition in [NV90]

by a negative sign). Hence the holomorphic tangent vectors are of the form

v —iJu .
W = = E ™
2
n>»0

and the antiholomorphic tangent vectors are of the form
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The corresponding holomorphic and antiholomorphic derivatives in the direc-

tion w are defined as

0 _1(4 .o
Bew 2 \Bhy Otn )

0 _1(8 .0
d, 2\0t, Oty,)’

means the Lie derivative in the direction wv.

.
dty

where

In [NV90], Nag and Verjoysky proved that the almost complex structure
is integrable and corresponding complex structure coincides with the complex
structure on 7T'(1), which is induced from the complex structure of L®(A).
Adapting their proof to our convention, we immediately see that the complex

structure J on 7 (1) coincides with the complex structure induced from D.

Remark 7.3.2. If we use model B of T'(1) for Bers embedding, the complex
structure pull back from A, (A*) will be the opposite to the complex structure

above. This explain our preference for model B’

7.4 Metrics

In [Kir87] and [KY87], Kirillov and Yuriev studied Kihler metrics on
Diff, (S1)/8*. It is known that the homogeneuos Kahler metrics on
Diff . (S)/S! must be of the form

| v [|*= Z(anS + b)|en|* U= chLn. (7.4.1)

n>0 n#0
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They gave a potential to the Kéhler metric || v ||*= 7. n|ca|*. We call this

particular metric Kirillov metric.

On the other hand, in order that (7.4.1) defines a metric on
Diff . (5%)/ Mob(81), it is necessary that an® + bn = 0 for n = —1,0, 1. This
implies that up to a constant, there is a unique homogeneuos Kahler metric

on Diff  (S)/ Mob(S') given by

Jv =3 Y n* — nlenf” (7.4.2)

n>0

Let I' be a Fuchsian group realized as a subgroup of PSU(1,1). Let
L>(A,T) be the space of Beltrami differentials for T, i.e.

L®(AT) = {,ue LAY : MO’T%IM,V"}’G F} :

The Teichmiiller space of I, ¥(I") is the subspace of the universal Teichmiiller

space .
T(CY) = L®(A, 1)/ ~,

where

L¥(A,T) = L2(A) N LP(A T,

and ~ is the same equivalence relation we use to define 7°(1). The tangent

space at the origin of T(I') is identified with the space of harmonic Beltrami
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differentials for T

QLA T) = Q7 VYA) N LO(A, T .

When I'is a cofinite Fuchsian group, i.e. the quotient Riemann surface I'\ A
hasg finite hyperbolic area, it is well known that there is a canonical Hermitian

metric on T(L) given by

(i, #) = Re // {op v € Q VAT
A
where p is the area form of the hyperbolic metric on A. This metric is called
Weil-Petersson metric. The notation T'(1) for the universal Teichmiiller space
indicates that it corresponds to the group I' being the trivial group {id}. This _

suggests to define the Weil-Petersson metric on 7'(1) by
{t,v) = Re ff HYp p,v € Q7H(A),
A

However, this integral does not converge for all p, v € Q~11(A). In particular,
it diverges when both u, v are Beltrami differentials of a Fuchsian group that
contains infinitely many elements.

Let o1 € L(A) be a tangent vector at the origin of T'(1). It generates the

one-parameter flow wy, and the corresponding vector field is given by 1&#5‘%,

123




where

(2 = 9 // 2)d¢ A dg,

B (z —1)
R = e

and [i is the extension of p by reflection to €. Restricted to S!, we have
() = izu(z), where u(0)2 is the induced vector field on S™.

n [NV90], Nag and Verjoysky proved that the pull back of the canoni-
cal Weil-Petersson metric on 7(1) to Diff(S1)/ M6b(S?) coincides with the
unique homogenuous Kihler metric (7.4.2). In particular, the Weil-Petersson
metric on 7T'(1) is convergent on the Sobolev class H 5 vector fields, which
contains the C? class vector fields. Here the Sobolev space H®(S") is defined

as

(Sl { Zan ind | Z|n|25|an|2 < OO}

ne nex
On the other hand, since 7 (1) contains Diff , (5')/S" as a natural subspace,

we can extend Kirillov metric to 7(1). At the origin, it is of the form

| vlf=)nlel?,

n>0

inf a is the corresponding vector field on the unit circle.

where v = 37, Cn€
We are going to prove that this series is always convergent. By using the
group structure on 7 (1), we can transport this metric to every point on 7{1)

by right action.

Remark 7.4.1. Tt was proved by Reimann that the tangent space at the origin
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of T(1) ~ Homeoy(S')/ Mob(S") is the Zygmund class A(S") (see [Rei78,
(892]). However, we don’t know the characterization of this class using Fourier

coeflicients on 5.

7.5 Identification of tangent spaces

We have the following isomorphism which relates the two models of 7 (1).

W : Homeo, (S1) /ST — D,

v f

We want to compute the derivative of this map at the origin.

Consider the smooth one parameter flow v* = (g*) "o f¥| 5 from the origin.
From the theory of quasiconformal mappings (see, e.g., [Leh87]), we know that
~* has a quasiconformal extension to C, smooth on C\ S', which depends
smoothly on the parameter t. Since f' and g¢* are conformal on A and A*
respectively, this implies that f* and g* also have quasiconformal extensions to
C, smooth on C\S*. In what follows, we regard +*, f* and g* as quasiconformal
mappings on the plane. The corresponding vector fields

d d ,

. d

$ t
—y —f nd -
dt '’ dt’’ A dtg

are continuous on C, smooth on C\ ™.
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We write

2) =z + tu+ O = 2 + tz(ayz + ag2® +...) + O(t*),

for z € A and

¢ (z) = z+tw + O = 2+ ta(bo + bz +boz? +...) + O,

for z € A*.

We denote by

d . d

r = E’Y t:[],

then f|a = u and g

A = 1.
As we mention in Section 7.2, S(f*|a) belongs to a bounded subspace of

A(A) and the corresponding tangent vector at the origin is
e = 2S(f'1a)| € AwlA).
Fdt =0

Remark 7.5.1. This is not a priori clear that the embedding 7'(1) into an
open ball of the Banach space A, (A), identifies the tangent space of T'(1) =~
(L (A*)1/ ~) with A, (A). We sketch a proof here (see details in [Nag88]).
Given a Beltrami differential fi € L®(A*), the curve ¢ — w' in T(1) gives the

curve ¢ — S(w#|a) in Aoo(A). We have to show that

d

Nl t
2| Swla) € Anl(2)
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"This is proved by using the explicit formula

Swla) = it (0) = -2 [[ G lee A,
A

@
dt

=0 (1 — zw)*

where o € L®(A) is the reflection of i € L*°(A*) and the identity

3 I -

(see, e.g., [Kra72a]) implies that
Sup |wzzz(z)(1 - IZ|2)2| < 00.

We need the following two theorems.

Theorem 7.5.2. Let Q € Ax(A), then the series Y -, nlay|? is convergent,
where Q(z) = Y 27 ,(n® — n)a, 2" 2.

Proof. ) € Aw(A) = {¢ holomorphic on A : sup,ca [¢(2)(1 — [21%)?] < oo}

implies
f |Q(2)(1 — |2*)*|*dzdy < oo,

where z = x + 4y. But this integral is equal to

X nd—n 0
24 al.
ﬁg(nm)(nm)'“'
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(4] o0

Slal <3 T < oo
YT (4 2){n43)" '

n=2 n=2

U

Theorem 7.5.3 ([Zyg88]). If the function f(z) = ag+mz+.. . +a,2"+. .. is
holomorphic for |z] < 1 and continuous for |z| <1, and if the series Y, n|a,|*

is convergent, then the series

ag +are® + ..+

converges uniformly to F(e¥) in 0 <8 < 2r.

Since uw = Y .0 | a,2"*! is holomorphic on A and continuous on C, the

theorems above imply that the series

)
E :anem(ﬂ+l)9
n=1

converges uniformly to the continuous function wu|g:(e) on the unit circle ST.

Similar arguments imply that the series

oo
Z bnei(l—n)(;?
n=0

converges uniformly to the continuous function #|g (¢¥) on St
Taking the derivative with respect to ¢ on the relation v = (g*)~! o f* and

setting £ = 0, we have

Y=—g+]. (7.5.1)
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This shows that the series

Z anei(n+1)0 _ Z bﬂei(l—n)ﬁ
n=1 n=0

converges uniformly to the function (u — v)|s:, which is ¥|s:. In particular it

is the Fourier series of the function ¥|g1. Let

u(f) = Z cne’:“g%, Copy = Cp.

be the corresponding tangent vector, so that ¥ = izu(z) on S*. Hence we have

'[’Z cnez‘(n+1)0 — Z anei(m—l)ﬁ . Z bnez’(lfnjﬂ.
n=1 n=0

ncZ
Comparing coeflicients, we have
Ay, = iy , b, = —ic_, n>1, (7.5.2)
which implies
G, = by (7.5.3)
Theorem 7.5.4. The derivative of W at the origin is

DoW : TyHomeo,(SY) /S — D

oo

chez’nﬂ — iZCnZMl-

nZ0 n=1
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By imposing extra normalization conditions, we can pass from the models
for 7(1) to the models for T'(1), where the corresponding tangent vectors have

no n = +1 components.

Remark 7.5.5. In [Nag93], Nag proved a similar theorem by using explicit
formulas for 4, f and ¢ from the theory of quasiconformal mappings. Here we
use a slightly different approach, and justify that the Fourier series for |51

indeed converges to ¥|S*.

On the other hand, we have another isomorphism that relates the other

models of T'(1).

B Homeog, (S")/ M6b(S') — L®(A)1/ ~— As(A),

v [u] = S(wha),

where v = wy|g1. The map w” coincides with the map f up to a linear frac-
tional transformation. However, infinitesimally composing with linear frac-
tional transformation only affects the n = —1,0,1 components of the vector

fields. Hence our argument above gives immediately

Theorem 7.5.6. The deriative of the map B at the origin is

DoB : ThHomeoy(S")/ MBb(S") — A (A),

o0

Z cne™ 1 zZ(n3 —n)ep 22,
nEt—1,0,1 n=2

Using this identification, we get

Corollary 7.5.7. The Weil-Petersson metric defined on Q(z) =300 (n® —

n=2
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n)an 2" € Ag(A) which corresponds to H? vector fields is given by

oo

yis
1Q o= D" = m)lanf? - / [1QGIP — |2P)dady
n=2
Remark 7.5.8. The map f f‘m can be viewed as sending vector fields to
quadratic differentials. The theorem above implies that the Weil-Petersson
metric on Ay (A) pushed forward by the embedding T'(1) < A (A) is the
usual Weil-Petersson metric defined on the space of quadratic differentials. In

particular, we have

1 Qoy(¥)* lve=I Q llwe, for all v € PSU(1,1).

Remark 7.5.9. All the results above can be restricted to the finite dimensional

Teichmdiiller spaces embeded in the universal Teichmiiller space.
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Chapter 8

Velling’s Hermitian Form and Kirillov’s Metric

8.1 Spherical area theorem
We denote by Ag(§2) the spherical area of a domain  in C. It is given by
/ / Adzdy
1+ 2%)?
Notice that it is invariant under rotation, i.e. Q — ().
Following Velling [Vel], given @ € Ag(A), consider the one parameter

family of functions £'@ satisfying S(f*?} = ¢Q, normalized such that it belongs

to D. We consider the spherical area of the domains Q; = f*9(A)
/ /' 4dzdy
1+ |2)?)2
/ / _ldfte
L+ |f@f2)2

Velling‘s spherical area theorem says that
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Theorem 8.1.1 (Velling[Vel]). Let Q € A (D), we have

d

& As(FUA im0 = 0. (8.L.1)
& As (P o = 0 (512

The first identity follows from the following theorem.

Theorem 8.1.2 (Velling[Vel]). Let f : A — C be a univalent function
(perhaps meromorphic) such that it has Taylor expansion f(z) = z(1 + a2 +

323 +...) at the origin. Then the spherical area Ag(f(A)) satisfies
AS(f(A)) 2 27‘—)-

with equality if and only if f =
It follows from the classical area theorem.

Theorem 8.1.3. Let g : A* — C be a univalent function such that i has

Laurent expansion at co g(z) =z + by + bzt +.... Then

oQ
Z:'n,|bn|2 <1
n=1

The second inequality in Velling’s spherical area theorem implies that
2 L As(f19(A))]mo is a candidate for a metric on A (A), which in turn in-
duces a metric on 7'(1). Qur goal is to compute this metric explicitly and
compare to the Kirillov metric and Weil-Petersson metric.

We state a lemma that is very useful for the computation:
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Lemma 8.1.4 ([Zyg88]). Let f(z) =3 7 ,an2" be an analytic function on

A and ¢(r) an integrable function of r on [0,1), then

//qb |z} Re (f(2))dzdy = 2r Re {ag / ¢(r)

[ teispacay - 2&:)0 anl / () ar

8.2 Velling’s Hermitian form

Given @ € Ax(A), we want to compute Velling’s bilinear form
& As(f*9(A))|imo. For t sufficiently small, let /%@ : A — € be the continuous

family of normalized univalent functions such that S(f*¢) = ¢Q. For ¢ small,

we write the perturbative expansions

[19(2) = 2 + tu(z) + 2(2) + O(£%), | (8.2.1)
u(z) = z(ags® +az2® +...) = i an 2", (8.2.2)
v(z) = 2(be2” + b32* +...) = 3 b2 (8.2.3)

n=2

Taking ¢ derivative and setting ¢ = 0, we see that the relation between u{z}

and Q(z) is given by

134




co

Q(z) = Z(n3 —n)anz" 2.

n=2

We want to compute Ag(f*?(A)}) to find the term in #2. We have

As(F9(A ]fLQ|2dchy
(A FIFapy
Il |1+tuz + 2w, |

3
T+ 1797~ (1 et tu v op 00

Henee the ¢? term is

v + T Jus® o F0 7+ lul? + (2% + 2u)(u, + ;) N 3(zﬁ+ Zu)?
(14 12[*)? (14 [2[?)8 (L+ 22

Using the series expansion (8.2.1) of w and v, we find that since v does not
have constant term and terms in z, v will drop out from the integration. By

applying Lemma 8.1.4 we get the ¢? term in Ag{f*?(A)) is given by:

o]
SWch|an|2

n=2

where

rdr.

.- /1 Brnte _(4n+6)r2”+2+(n+1)2r2”
"o (L)t (14 r2)8 (14 7r2)2

We compute ¢, by making a change of variable and repeatedly using integration
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by parts:

Cp —

1 /1 Grmt2 _ (dn +6)rmtt N (n + 1)%"
2/ (L+r)* (14 7)3 (1-+7)2
1 n—+2 2 1 n—1
/ (r P 2n —|—7n—|—7+n(n+1)(n+2)/ r dr,

0 0

dr,

1+7")4T:_ 24 6 1+7r

o @473 8 2 Jy 1+r

1 1 -1

s 1 Rt
———r = —— dr.
/0 (14 r)? 4 2+n/0 147 r

Substituting into ¢y, all the terms with integrals cancel and we are left with

¢ = =

Therefore, we have

Theorem 8.2.1. Let @ € A (A), then

d?
A8 im0 = 2w2nian|2

Hence, we can define a Hermitian bilinear form on A, (A) by

1 d2 @A > )
1 QU5 = 5oz As(F (AN lms = 3 nlanf?,
n=2

00

where Q(z) = Z(n3 —n)apz" 2,

n=2

which we called Velling’s Hermitian form.
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8.3 Kirillov metric

We want to define a homogenuous metric on 7(1}. Using the group structure,
it is sufficient to define a Hermitian metric on the tangent space at the origin.
Using Velling’s approach, given the tangent vector v = >~ 0 cne™ at the
origin with the associated one parameter flow v* = (g*)~! o f#|s1, we define a
Hermitian form by

= 1 o2
2T di?

| v oA (F1(A)).

The proof in Section 8.2 holds with an extra term n = 1 {notice that we only
need the fact there are no constant terms and terms in z in the first and second

order perturbations), and we get

1 o = St

0 1= ] AP = Y ol = 3 e

n=1 n=1

which is just the Kirillov metric.

As we mentioned in Section 7.4, all the homogenuous Kéhler metric on

Diff (S1)/5* must be of the form

v [*= "(an® + bn)|c, | (8.3.1)

n>>0

Since Ay (A) is a codimension 1 subspace of the tangent space at the origin
of 7(1), using Theorem 7.5.2, we see that the Kirillov metric converges and

is well defined everywhere on 7(1). On the other hand, up to a constant, the
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Weil-Petersson metric on Ay (A) is given by

lo =) (" — n)leal®.

n >0

We have seen that it does not converge at all elements of A (A). Since every
metric given by (8.3.1) can be written as a linear combination of the Kirillov

metric and the Weil-Petersson metric, we have

Theorem 8.3.1. The Kirillov metric is the unique homogenuous Kahler metric

on T(1).

Here 'unique’ means unique up to a constant.
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Chapter 9

Metrics on Teichmiiller Spaces

9.1 Universal Teichmiiller space

Since the spherical area is only invariant under the rotation group S', and
not the whole group of isometries of the disc-PSU(1, 1}, we need to average
the Kirillov metric over the disc to get a homogenuous metric on the universal
Teichmiiller space.

We identify Ay {A) as the tangent space to the universal Teichmiiller space.
When we choose a different base point w € A, we translate it to the origin by
Y5 (z) = &% € PSU(1,1). The tangent vector ¢ at the point w is identified

with the tangent vector @y, = @ o Y(7,)? € Ax(A) at the origin, where

Yo(2) = £%. We define the Velling metric || @ [|i; to be the average of

| @ ||% over the unit disc, using the invariant hyperbolic metric, i.e.,

' 4dad
1= [[ 1wt s
A

where w = z - 4y. To be more precise, we have a metric that is defined on
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the fiber space 7 (1), in order to project to an invariant metric on the quotient
space T'(1}, we use a familiar technique in compact group theory: averaging
over the group action. Here we are averaging over the PSU(1, 1) group action,
or equivalently PSU(1,1)}/9" since the metric is already S' invariant. Notice
however that, since PSU(1, 1) is not compact, it is not a priori clear that this

averaging converge.

Remark 9.1.1. We slightly abuse terminology here. We call || Q [|5 Velling
Hermitian form and || @ ||2 Velling metric although the latter is not the

metric correponding to the former Hermitian form, but rather its average.

As a digression, we identify the corresponding flow for the tangent vector
Qov(v).
Theorem 9.1.2. Let @@ € Ax(A). Given that the normalized solution to the
equation S(fY) = tQ is f1(z) = z + tu(z) up to the first order in t. Then
the solution to S(f*) = t(Q o v(v")?) up to the first order in t is fi(2) =
2 —l—t(%'l(z) +p(2)), where v € PSU(L,1) and p(z) is a polynomial of degree 2

such that the solution is normalized.

Proof. Tf fi(z) = z+tv(z)+O(t?) is a solution to S(f*) = t(Qoy(v')?), taking

derivative with respect to ¢ and setfing ¢ = 0, we have

T o@) = (@010 (2)

But we also have
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It is well known in the theory of Eichler integrals that this implies

S ) = Qo)) (@)

Hence the difference between v(2) and 3 (z) is a polynomial p(z) of degree
2, which is uniquely determined so that the coeflicients of the constant term

and the terms in z and 2? of “3(z) + p(z) vanish. Ol

Since the metric || @ ||% is expressed in terms of the norm square of the
corresponding coefficients |a,, |2, it is suflicient if we can average |a,|* for n > 2.

We denote by

Qu= Qo Y(?,) =) (n® —nayz"",

n=2
where

Z -+

%’(Z) 14wz
Then
w 1 (Qoyw(y,))"?
al = ) (= 2] (0), (9.1.1)

and

| Qu I5="_ nlay

n=2

Theorem 9.1.3. Let Q(z) = 3 oo ,(n® — n)a,2"* be a tangent vector corre-

ponding to HE vector fields. For j > 2, the average of the norm square of the
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coefficients |a;|* is

//| 4dTi?|J - (j32_ 7) / |Q(w)|2(1 — |w|*)*dzdy

47 i
= — (TL3 — ﬂ)lan|2,_
3(7° —J) =

n=

Progf. Using (9.1.1)

wo_ 1 (Q o 7wl ));, =2) 0) = ¢;(w)
) )] s

We write the generating function for the ¢;(w)’ s.

oo

flu,w) = Z ¢ (w)u

J=2

:Z(Qoqfw( o )(3 2)

j=2 (7 —2)!

= Q oY) (7, (1))

()

L o ic
Z'cj w)[*p S %/ | f (pe®, w)|Pda
0
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5 o =5 [ [f ot e

/ / Q0 mulpe) (raloe ™) dﬁsz) das

Denote this integral by Z, substituting the series expansion of @ and using

polar coordinates w = re®

2 W2 (1 . ?"2)
[ dﬁrd’rdoz (1 + rpeile-)a

n—2 oo ; 0 m—2
3 _ pe et 3 _ pet® +re””
g(n n)a’n (1 + ?,,pef,(a{ 9)) Z(m m)a (1 i ,r,pe—z(a 0} '

m=2

, We get

2

(9.1.2)

(9.1.3)

We do some juggling

pei“ + pett n—2 pe"m+7"e_w m—2
1+ rpeile=0) 1 + rpe—ia—f)

_ pei(a—ﬁ) 7 o pe—z(a O yr e i(n—m)d
A\ L+ rpetla=6) 1 + rpe a—?) ¢

143




and make a change of variable o (- #) to get

1 2w 1 27
T=— / / dfrdrdo Z (n® —n)(m® — m)a,am
2w Jo Jo Jo

Ry >2
pet 4 p n? pe”i% - g m ‘ (1- Tz) ‘2 i(n—m)d
e Tr ER— (1 L rpeiayt| ©
|+ rpei 1 rpeia (1 + rpeie)t

2ar 1
:f f rdrdo
0 0
et peia + )n—Z ( pe—‘:‘:a 47 )TLZ‘ (1 . 7‘2) 2
(

3 N2, |2
Z(ﬂ’ )| (1 + rpete 1 + 7pe—ia 1 + rpeio)?

n—==2
2T 1
= / f rdrdo
0 0

o n—2 —io o
Z('rﬁ_n)2|a k ptre prre o (1-r% P
prt "L+ preie 1+ pre—ie (1 + preie)s
oo n—2 — -
Z//Z(n3 —n)?|a,|? (—mp+w ) (—’Hw ) B * ddy
~ "L+ pw L + pw (1 + pw)? ’
A =

where we have done another juggling to get the second to the last equality.

Observe that

1+ pw = %),
A
(L+pw)t  (1-p%)7?
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Hence we have

() ()it
= [[ @ om0 )@ o) ) A

(1—p?)*

dxdy

using the invariance of the Weil-Petersson metric under PSU(1, 1) transforma-

tion. Thig gives us

//Z n® — n)2|ay [Pu" T 2(( |‘;’|)) dudy

f [ 106 P~ wi?dady

:Zf Lo | / Q) (L~ fu)Pdsdy

Compare coeflicients, we get

d
/A esw)l* 5 Ty _ / 1Q(w)2(1 — [w]?)2dzdy,

= |w?)?

w2 4d.‘17dy . .wz —wzzm
/Alajl(1;|w|2)2_3(j3_j)£ Qw)*(1 — |w|*) dzdy.

This finishes the proof. |

Theorem 9.1.4. Velling’s metric defined on the subspace corresponding to
i
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HE vector fields of the universal Teichmdiller spoce is given by

Adzd
Q- [ I QI 7t = f Q)P = w)Pdsdy,

(1= [w|2)?
which is twice the Weil-Petersson metric.

Proof. This is just a simple sum of the telescoping series:

Adzd i Adad
//ucawus s Z/W T

=2

MS“

i @H/ Q)(1 ~ ] dady

- % / Q(w)[*(1 — [w]?)dady.
A

9.2 Finite dimensional Teichmiiller spaces

Let I' be a cofinite Fuchsian group. The tangent space to T(I") is identified

with
Ao (A T) = {Q € A (A): QOfy(’y’)Q =Q,Vy € I‘}
with the Weil-Petersson metric given by

1 QU= [[ 10u)a ~ oltyeasay ©:21)

A
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When @ € A (A, 1), we cannot average || () ||% over the whole disc. Since
otherwise we are summing infinitely many copies of identical integrals. Instead

we use regularization procedure suggested by Velling [Vel]. We define

Areag (T\A) ffa.r, | Qu |3 dAx

1@ 5= lim
rf—1

ffA,,, dAg ;
where A, = {z: |z| < r} and
ddzdy
Agp = ——
S e

the hyperbolic area form and Areay(I'\A) the hyperbolic area of the quotient
Riemann surface I'\A.
First we rewrite the Weil-Petersson metric (9.2.1) in terms of regularized

integrals.

Theorem 9.2.1.

1O e i N Ja, Q) PR dady
et Nz :

Proof. We use the fact that the number of lattice points N, in a disc of radius

r', A is given asymptotically in terms of v’ by

Ny = m/fmg(uou)), as ' — 17, (9.2.2)
A

(sce [Pat75]).
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Let /' be a fundamental domain of I' that contains the origin. Let

Iy = {")’ el: ’y(O) e Ar’}- iL'

The number of elements in I, is exactly N, Using (9.2.2), we have

Z //dAH = Ny Areag(I\A) = //dA_H(l +0(1))_

7€l yF

Since

sup |Q(w)(1 — |w[*)?] < o0,
wEA

we have

> ffl@(w)(l—!wl2)2|2dAH:/f |Q(fw)(1w|w|2)2|2dAH_(1+0(1)).

yel', yF
Hence
1 i
1 Qe = 5 /[ 10~ fof)idsdy
' F ‘u
1 :
S //|Q(w)|2(1 — |w[?)2dedy |
yel,.r N FF
1 1 |w|®)? _
Arean(I\A) [, 1Q(w) PO oy
= r +o(l).
ffArl dAH ( )
We have used (9.2.2) again to get the last equality. O
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Theorem 9.2.2. Let ' be a cofinite Fuchsian group, @ € Ax{A,T'), then

~Areag(INA) [[, | |a¥[*dAg
lim ! =

ITROYT:
T [, dAu 32 —4) " T

Proof. The proof follows almost the same as in Theorem 9.1.3. We use the

sarne notation. We have

=3 [l g

j:2Ar’
[se] -2 — -2
Zf/Z(TLS—n)QM |2(P+w)” (p+’w)n ‘ 1—|’w|2.
2 s "L+ pw L+ pi (1+ pw)t

Now observe that if v € PSU(1,1) and @ € Ax(A,T), then @ o y{v')* €

2

dxdy.

Ag(A, ¥ 1T), and we have

(I Q I p)amy = (| @ 0 ¥(¥)* lwe)ae-rn-

In particular, for any u = pe*® € A, we have

—lw|®)?
O ] D ORGP el
wpr— =1 ffArf dAI{ ,

since Areag(I\A) = Areag (v, I'v\A). It follows that

” Q ”2 — lim Area‘H(F\A)% fogﬂ ffAr, I(Q °7u(7;)2)(w)|2u;‘lﬂ—wﬁd$dyda
L wpeP— 11— ffAldAH .
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But we have

2m W
/f| o2l e

o o o 2)(1 -
f d9rdrdo | 1+T,oe‘(9“°‘))‘

Z( . ) M fi— 2i( - ) pe*m—}—m’w m—1
T 1-1-7“,083(9 a) m m 1+ rpe i(f—n) ) it

n=2 m=2

This is similar to the integral (9.1.2) with the role of # and « interchanged,

50 it equals to

A ] St (52 (F5R) il e
_ Q—zé’_)mz.
Hence
i Areay (T\A) ff, |‘3j(w)|2%p%_4
> T, 4

4
S U= 1@ e - i

Compare coefficients, we have

drd . . !
. Areag([\A) ff,g e (w)|? ‘f’["&%)_z _ 2(5° — 7) 102
Jim ffA ) dAH 3 we R
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and

I AreaH(P\A) ffAr’ |a,;-"|2dAH 8 |
1M . == s .
[ JIA,J dAH 3(}3 — ])

KAl

L

Theorem 9.2.3. Let I be a cofinite Fuchsian group. The Velling metric on

the Teichmiller space (D) is twice the Weil-Petersson melric. i.c.

Q=212 e

Proof. The same as Theorem 9.1.4. ]

For a general Fuchsian group I" and @ € A (A, T), we can define

1Q 2= li f.fArmF(P) dAg ffA-,-! | Qu 1% dAx
v rfl}I{l_ ffAr.‘ dAH- :

where F(T') is a fundamental domain of I acting on A. When I" is the trivial
group, it reduces to integrating over the whole disc, which coincides with our

original definition.
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Chapter 10

Euclidean Area and Kirillov-Yuriev Potential

10.1 Euclidean area

Here we use Velling’s approach, but instead of spherical area we consider the
Fuclidean area. We find the corresponding Hermitian form at the origin of the
universal Teichmiiller curve.

Given a tangent vector v with the associated one parameter flow 4 =
(9")7" o f*|s1, and the family of domains €2, bounded by the quasi-circles Cy,

we consider the Euclidean area of the domains €,:

Au(FH(A)) z//ﬂ dady — —%fc 2dz,

We denote by

PR =Y a@, zen, al=1,
n=0

9'(z) = an(t)zl‘”, z € N”
n=0
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Using the fact that f¢ and g* extend to quasiconformal mappings on the whole
plane and are absolutely continuous on S, with f(51) = ¢*(S') = C; we can

evaluate the Euclidean area in two different ways:

As(() =~ [ Ffidz= w3+ Dl (O,
T =N PR -
A0 = [ Gtz = >0 =)
This gives the equality
>t Dlaa®F = S0 = m) (A (10.1.1)
n=0 n=0

The analog of the spherical area theorem is

Theorem 10.1.1.

9 As(FHAN)], =0,

dt
j—;AE(ft(A))\tzo =27 Z(n + 1)dn(0)d,(0) > 0.
Proaof. We compute directly
%AE( £UA)) =7 S+ 1)(@n()an(®) + an(t)an ).

n=0

But since
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it follows immediately that

d ¢ _
T AB(F{(A))] =0
and
% s(fHA))],_,= 2n Z(n + 1)an (0)a,(0) > 0

o

As in Section 8.2, we write a,, = @, (0), and define a new Hermitian metric

on 7T (1) by

1 d? it

1o 1P= 5 s A A= D _(r+ Dlanf?

=1

at the origin and extend it to other points by the right grou}p action. Notice
that this does not belong to the family of Kihler metrics on Diff, (S1)/ S
Hence it is also not Kahler on 7 (1). However, if we do the averaging procedure
to project it as a homogenuous metric on 7'(1), we still get a multiple of the
Weil-Petersson metric defined on vectors corresponding to H 3 vector fields
by Theorem 9.1.3. After regularization of the averaging procedure, we also
get a multiple of the Weil-Petersson metric on Teichmiiller spaces of cofinite

Fuchsian groups, which follows from Theorem 9.2.2.
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10.2 Kirillov-Yuriev Potential

We use the equality (10.1.1) to get information about the variation of by. First

we take derivative with respect to ¢ on both sides,

+ 3 0 = 1) (F0050) + ) 550 )

Setting ¢ = 0, and using the fact that by(0) = 1, we have

d d—— '
(dtbo() dtbo(t)) =0 (10.2.1)
We write
d d
O, = Ean(t)ltz(] and by = Eb"(t) o

We take the second derivative, set £ = 0 and use (7.5.3), which gives

& i
(Sbo(®) + 50l —|—2|—~bg ) o =

22 (n+1 |a,,,|2+zz n— 1)|by [
= 4Zn\an|2.
n=1

Notice that |by| = |¢'(00)}|. Using (10.2.1), we have
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42 1 d2 d2 R d
5 V0815/09) | = 5 ( gatolt) + 70000 + 2] a0 g

x2
=2 Zn|an|2,
n=1

Given a tangent vector v = 3 ¢,e™, let w = (v — iJuv) and %, %
the corresponding holomorphic and antiholomorphic derivatives (see Section

7.3.1).

From the identity (7.5.2) and the definition of J, we have

=0 (n (tJ 'U)

an(v)] = \%aﬂ(m

:\8

£ } = |an(Jv)|,

=0

which immediately gives

v

=3 (Z n|an (v)[* + E n|an(JU)|2)

log g0} =+ (2 1+ 2 ) 10g |g'(c0)]
e e, oI T  \ e "o, ) BV
1

i

= nlan(v)?.

In [KY87], Kirillov and Yuriev proved that log|g'(o0)| is a potential for a
Kihler metric on Diff { (S')/S! and stated that the Kahler metric is the Kirillov

metric. This directly follows from our computation above.
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Chapter 11

Variations of Laplace Operators and Selberg

Zeta Function

11.1 Mathematical set-up

Let gy, 1a) be the Teichmiiller space of Riemann surfaces of type (g; v1, -,
Vn),gtn/2>land 2 <1y <... <y <. A poiint on F(giwi,e )
corresponds to a normalized Fuchsian group I' that is generated by the 2g
hyperbolic elements oy, -« -, a; B4, - -+, §, and the n elements q, -+ , &, such
that r; is elliptic of order v; if v; < co and &, is parabolic if v; = co. Moreover,

they satisfy the following relation:

[Ofl,ﬁl] PN [Olg,ﬁg]fﬁ e Ry = ?;d,

where |y, B5] = ayfra; By, T is normalized such that the attracting and
repelling fixed points of a; are 0 and oo respectively and the attracting fixed
point of 4y is 1.

Let Tiguwn,m ) be the universal Teichmiiller curve. The fiber over a point [

157




is the Riemann surface X = I'\U, where U is the upper half plane. Denote by
H*®! the space of automorphic forms of weight (2k, 21) of I, which corresponds
to the space of (k,I)~tensors on X = I'\U. For & an integer, denote by 8y
the d-operators acting on kdifferentials ((k, 0)-tensors) on X. 8, its adjoint
operators and Ay = 5;@ the k- Laplacian. Denote by Q%0 the subspace
Ker Ay, = Ker 0, in H*Y, consisting of holomorphic kdifferentials. Denote by
P, the orthogonal projection (with respect to the Hodge metric corresponding

to the hyperbolic metric) of H? to QF0.

11.2 Selberg zeta function

The Selberg Zeta function Z(s) of a Riemann surface X = I'\U is defined for

Res > 1 by the absolutely convergent product

H H _ ple+m)log )\(’Yo))

{0} m=0

where 7y runs over the set of conjugacy classes of primitive hyperbolic ele-
ments of I', and 0 < A(y) < 1 the multiplier of . The function Z{s) has a
meromorphic continuation to the whole s—plane.

Under a deformation of I' (given by a quasiconformal map) f#* : T\U —
I\U, let v* = f* oo (f*)7!. Then log A(v*) defines a function on the
Teichmiiller space Ty ,,.... 1), the geodesic length function. The following for-

mula is well known (see, e.g., [IT92]).

9log M)(2) = —— 3 7)o = pi)® (11.2.1)

2 ERY
?TO_E<T>\I‘ (0z —p1)%(0z — pa)
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where p1, p, are fixed points of v. Here @1is the (1, 0) component of the de Rham
differential on the Teichmiiller space and we identify the cotangent bundle of
the Teichmiiller space at the point [ with the space of holomorphic quadratic
differentials on I'\U. The series on the right hand side of this formula is known

as the relative Poincare series of the element . It can be rewritten as

S (Ao)E - A(a)-éf(—f"(f)—g, (1122)

gy

where we sum over all the elements ¢ that are conjugate to .
We consider Z(s)r as defining a function on the Teichmiiller space Tg0, . i)

{(which depends on the parameter s). Using the formula (11.2.1), we will get

Theorem 11.2.1. For Res > 1,

Ilog 2 () =3 3 (AOF T+ Q-0 L (1129

— 27
¥ hyp & ’YZ)
where the sum runs over all the hyperbolic elements in ',

Proof. Applying the formula (11.2.1), we have

dlog Z(s) ZZ (5 4 m)A (o) z o' (2)*(py — p1)?

™ {0 m=0 — Al oS {1o\T (02 = p1)*(0z — p2)?*

(11.2.4)
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We do some manipulation on the sum over m term:

oo 5 0o 00
Z 81+ W;Siim Z Z g+ m /\k(&—ﬂ—m
m=0 m=0 k=1

o0

(X - mA™F)

g
Pag

Inserting into the right hand side of (11.2.4), we have

dlog Z(s) = i Zi 3’\(7“)36(8_1) +(1— 3))\(%)1@5 Z U’(Z)2(p2 - 101)2

(11.2.5)

Recall that we can write every group element ~ € I' as ¥, where k is a positive
integer. The multipliers satisfy the relation A(y) = A{y)®. We can rewrite

the above sum as

A T+ (1= 9)A)* o'(2)*(p2 — p1)’
% (MM = Aly) 2)? JE%\P (07 = p)*{oz — )’

where now the sum runs over conjugacy classes of hyperbolic elements. Since
v = ~F and v, have the same fixed points and centralizer, analogous to

(11.2.2), we can rewrite the inner sum as
!
S -2 hr

(z —02)?
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We usge the fact that A(o} = A(y) when o is conjugate to . Summing over
conjugacy classes of hyperbolic v and then summing over all the elements
conjugate to 7, we end up with summing over all hyperbolic elements. So we

finally have (11.2.3). 0

11.3 Variations of Laplace operators

For { a non—positive integer, denote by Qg)(z,z’ ) the resolvent kernel of the
Laplace operator A; on U, i.e. Qg)(z, ') is the kernel of the operator (A, +
i(s —20){s - 1))"'(I < 0,Res > 1}. Denote by G¥(z,2'),1 < 0 the kernel of
the operator (A, +%(s—20)(s—1)) "(I <0,Res > 1) on the Riemann surface

X =T\U. It is given by the absolutely convergent series

@0z #) = 3 Q0 (277, SR 5Y

vel

which admit term by term differentiation with respect to z and 2.

We have the following result.

Theorem 11.3.1. Let ¢ > 2 be an integer. We have the following formula:

P ((—pm 0 (@2 — Q)] ) ) (11.3.2)
SIS @) T mad)
v hyp

where p is the hyperbolic metric on U and | o 18 @ restriction of the kernel to

the diagonal z = 2'.
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Proof. We use the formula (see [ZT87a)):

1 1 Z—z

(D5 7) = — (=)

Tz— 27—z

and (11.3.1) to get

~-1 _ N 2¢-2
_a, g (e — ot q) (2 z—z .
o (G Qi ;m (yz — 2) -

It is well known (see [AhI87]) that the kernel K (z,w) for the projection F; is

given by

__Z 77_w)4 I 2.

~el

We denote by Z the left hand side of the equation (11.3.2), we have

//K ( )'y’(w)q_l ( w- T )QH duw A dm|
_ w)? — D '
2 #m w) w — W 2
We unravel the sum over v in the term K({z, w) and get
dw A dw

A R

yHid
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Interchanging the integration and summation, we have

g [ ) _

(11.3.4) ‘

_ —%Zf’f | (11.3.5) M
y#id

Divide it into 3 cases:
(I) v = (25) is hyperbolic.
Let pi, ps be the attracting and repelling fixed points and 0 < A < 1 the

multiplier of . We diagonalize v as ¢ 0o D o 07!, where

o1 (z) = Zi; (11.3.6)
D(z) = Az ‘ (11.3.7)

Then we make the substitution w — ow in the integral 7, and get

x! /((a*)’(z))? (w — )™
U 2

I’y = ()\% — /\_%jg (g—lz _ m)4 w? (’U) _ Aw)gq_Q

dw/\d@’

we want to write the expression

(w — @) i
w?(w — Aw)2 \‘

as Oyf. Using elementary mathematics, by treating W as a constant, we can
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write the partial fraction expansion

2g—2

(w w Bj
w2{w — \uj)2e—-2 l+z Z (w— Nw)i’ (11.3.8)

g*l

where A;, B; are functions of . Hence I is given by

I =Ailogw + Bylog(w — Aw) + (w — )

s 1 1
+A2""+ *ZJ-1 w2y T @ ey

= + .[2,

where

2q-—-2

If4w~myhﬁﬁm—$+%ﬂ+§:?ﬁ?(_( {ﬁ4+wm—imﬁl

=i W — AW)

vanishes on the real axis w = wW. Now we have

(A2 — A72)2 s (c~1z —w)* 2
BT R o (G ()
ST e

by Stokes’ theorem. In the term I, we take the principal values on the loga-

rithm, i.e. logw = log |w| + ¢ argw, where 0 < argw < 2m. We have

I, = AT 2] (o V(= ))Q(Al( )logz + By (x) log(z — Az)) dz.
JE)

Z
2005 — A" 1)2 Jg (0712 — z)*
(11.3.9)
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We want to compare it to the integral

lim /C ) (—(Q)ﬁt%g (Ar(w)logw + By(w)(log(1 — A) - logw)) dw,

R—co g -z —

where C'g i the union of the line segment from the point (—R, 0) to (R,0) and
the semicircle {w : |w| = R,Imw < 0} going from (R, 0) to (—R,0). Here the
branch of the logarithm is taken such that 0 < argw < 27, Notice that since
o~ 1z ig on the upper half-plane, the integrand is holomorphic in the region
bounded by Cx. By Cauchy’s theorem, the integral is identically zero. On the
other hand, the integral along the semicircle {w : |w| = R, Imw < 0} tends to

rero as K — 0. So we have

0= / ((Ll)'(z)_)z_ (Ai(z)logz + Bi(z)(log(l — A) +logx)) dz. (11.3.10)

(o712 — ) :

' We compare the integrals (11.3.9) and (11.3.10) by looking at the branched

values of the logarithms carefully. We get

w2 {e ) R)”
Ts a2ty (o7t —a)t

(A1(z) + Bi(z)) de. (11.3.11)

We find the Ay, By as functions of 7 from the expression (11.3.8) by treating
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W as a constant. We have

(A, + B)(@) = lim & ( (e-w)* 1)

T—00 .’L‘Q(ZC - )\@)QQMQ

=-2(q+ (1 —gN)w.

Substituting into (11.3.11), we have

(oY) da |

g T 4 (1 — )\ /“’“ T
— 2w i T
Az —x2)2 Jo (07'z—7)
w1 )M (0T (2)°
3 (,\% — ,\—%)2 otz

— _ Tt ey T .
BT G A0y 2

where we have used the formulas (11.3.6) and the formulas |

I
|
1 §

C(P1—P2)=)\_% — A%, |

cfw — p1)(w — s ;
cw + d ' |

YW —w =

(IT) v = (2 %) is parabolic.

Let p be the fixed point. We diagonalize v as ¢ 0 T o o', where I
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Then we make the substitution w — ow in the integral Z, and get

] e

We expand the term

dw/\dfw‘

(w — )™
(w — W — by

as
2¢
2 o
2 ( .q) (1w —w - b7,
im0 N7
so that we can write it as 0,1, where

I = (qu) Ploglw—w—b)+ Y (Qfg) " (w — T — b)37 @ - by .

0<<2¢ J 3—1J
373

:Il‘E'IQ, ‘ I

and :

29\ (w—w—b°7 — (W —w — b3~
L= Z (Q)b,( ) 3_(. )
0<i<ag N 0
s

vanishes on the real axis w = w. So we have
AP |

(o) (=)* 1
Ly = 2b2 fR (o=1z —w)* :I
252 E(" )_( 33 (23‘5’) 5 log(—b) da.

r (0712

Since
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can be extended as a holomorphic function

1
(o712 —w)
in the lower half plane and it behaves as R* as [w| = R tends to cc. By
Cauchy’s theorem, the integral is identically zero.
(TI0) v = (2 4) is elliptic.
Let p be the fixed point in U and P — the complex conjugate of p, the other

fixed point. We diagonalize  as 0 0 D oo™, where

-1 _®=P
g (z)_Z'*T)’
D(z) ="z

We make the substitution w — ow in the integral Z,. Notice that o—! maps the

upper half plane onto the unit disc A = {z:]z] < 1}. After the substitution,

we get an integral over A

I - gill-ae f / (2))? (1 — wiw)® dw A dT
T (efF - ¢7i9)? 11— (0‘125 Vo)t w? (1 — e~ ieqwan) 202 2 '
Using polar coordinates, we have
'r,(l —q)o 2 —1 )) (1 _ ?,.2)2.:]
1,= dfdr.
1T @ e ) / f 1 — (o *1z) YA 220 (] — o 2ye2 raver
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Using standard technique to evaluate the integration over 8 term

f% dé B jg 1 du
o €401 r(o12)e ) S w20 - (o zyu )

N j‘ilﬂ i{u — T:EE;LlZ))a:

=0.

So Z,, 18 identically zero.

We see that (11.3.4) only have contributions from the hyperbolic elements.

Summing the terms together, we prove (11.3.2). O

Combining Theorems 11.2.1 and 11.3.1, we immediately have

Corollary 11.3.2. Let ¢ = 2 be an integer, we have
8108 Z(q)r(2) = Po ((~00"'0 (A0 - Qo) () (11.312)

Remark 11.3.3. The formula (11.3.12) is usually proved by means of Selberg

transform. For the proof, see [TZ91].

Remark 11.3.4. When X = MU is a compact Riemann surface, we can give a

separate proof that
Blogdet Ay = I (-0 (GYT QEMip) ()
(see, e.g., [£T87a]). We immediately get

dlog Z(q)|r(2) = 0logdet Aglrs
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which can be integrated on the Teichmiiller space to prove that

Z(q) = c(g) det A, q > 2,
where c(g) is an integration constant that does not depend on the moduli.

1 This formula is usually proved by using Selberg Trace Formula {see [Sar87],

[DP86)).
.
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