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Abstract. This thesis consists of two sections, connected by a
thread. The symplectomorphism group of a 2-dimensional surface
S is homotopy equivalent to the orbit of a �lling system of curves
on S. In the �rst section, we give a generalization of this statement
to dimension 4. The �lling system of curves is replaced by a de-
composition of M into a disjoint union of an isotropic 2-complex L
and a disc bundle over a symplectic surface Σ. This decomposition
is due to Paul Biran. We show that one can recover the homotopy
type of the symplectomorphism group of M from the orbit of the
pair (L, Σ). This allows us to compute the homotopy type of cer-
tain spaces of Lagrangian submanifolds, for example the space of
Lagrangian RP 2 ⊂ CP 2 isotopic to the standard one.

In the second section, we consider the product of two n-manifolds: Σ×
Γ, each equipped with a volume form σΣ and σΓ. We show that
there is a homotopy equivalence between ΣS� the space of sections
S of this product �bration such that the product form π∗

ΣσΣ +
π∗

ΓσΓ|S is a volume form � and NS2K+a
a � spaces of maps Σ → Γ

with constrained numbers of pre-images. This allows us to com-
pute various identities between the spaces ΣS for di�erent volume
forms. In the case that n = 2, these sections are the symplectic
sections of the product �bration. Finally we compute NS2K+a

a for
certain cases.

1. Motivation

From one point of view, the geometry and topology of a 2−dimensional
surface S is dominated by the study of simple closed curves on S. If S
is equipped with a symplectic structure ω, these curves are Lagrangian
submanifolds of S.
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It is becoming increasingly clear that the study of higher dimen-
sional symplectic manifolds is also dominated by the structure of their
Lagrangian, and more generally isotropic, submanifolds. In the �rst
part of this thesis, we will explain a generalization of one facet of sim-
ple closed curves on a surface to the theory of isotropic submanifolds
of a 4−dimensional symplectic manifold.
We say that a system {γi} of simple closed curves on S �lls S if

S\{γi} consists solely of discs. In this case, the symplectmorphism
group of S, Symp(S), is homotopy equivalent to the orbit of {γi} un-
der the action of Symp(S). For if we examine the stabilizer of {γi}
in Symp(S) we �nd that it consists of the symplectomorphisms of a
disjoint union of discs, �xing their boundaries. This is a contractible
set. One proves this by applying the well-known Alexander trick.
Paul Biran [1]recently showed that every Kahler manifold M whose

symplectic form lies in a rational cohomology class admits a decompo-
sition

M = L
∐

E

where L is an embedded, isotropic cell complex and E is a symplec-
tic disc bundle over a hypersurface Σ. We will argue that a Biran
decomposition of a symplectic 4−manifold should be regarded as the
4−dimensional analogue of a �lling system of curves. In the case that
M is a surface: L is a �lling system of curves on the surface, Σ is a
union of points -one in each disc inside M\L and E is the union of
discs.
We will, at least in dimension 4, provide the necessary �symplectic

Alexander trick�. We will reduce the homotopy type of Symp(M) to
the orbit of pairs (L,Σ) under that group. All this is explained in
greater details in the next section. Our argument will rely heavily on
the relatively mature �eld of J-holomorphic spheres in sphere bundles
over surfaces. Through this theory, which we owe to Gromov, Lalonde
and McDu� [2, 3, ?], we will reduce the 4−dimensional theory to a
parametric Alexander trick.
In the second part of this thesis, we consider n−manifolds Γ and Σ

endowed with volume forms σΓ and σΣ. We then consider the homotopy
typeMaps(Σ,Γ) such that the restriction of π∗ΣσΣ + π∗ΓσΓ to the graph
of the map f is again a volume form.
One can combine the arguments of the �rst section with those of

the second to show that, even for symplectic �brations of S2 × S2 by
spheres, the homotopy type of the spaces of symplectic sections must
sometimes change (at least for certain homology classes) as one deforms
the �bration. However this matierial is not included here.
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Part 1. A Symplectic Alexander Trick

2. Summary of Results

De�nition 2.1. A smoothly embedded cell complex is

(1) An abstract smooth cell complex C � the interior of each cell is
endowed with a smooth structure.

(2) A continuous map

i : C ↪→M

which is a smooth embedding when restricted to the interior of
each cell in C.

We say that a smoothly embedded cell complex is isotropic with respect
to a symplectic structure ω, if i∗(ω) = 0 on the interior of each cell

De�nition 2.2. Let (M,ω) be a symplectic manifold. Let J be an
almost complex structure compatible with ω. Let Σλ a symplectic hy-
persurface of M Poincare dual to λω, and such that:

(1) There is a smoothly embedded, isotropic cell complex Lλ dis-
joint from Σλ. In what follows we will call this cell complex an
Isotropic Spine of M .

(2) M − Lλ is a symplectic disc bundle E over Σλ, such that the
�bers have area 1

λ
with respect to ω. This bundle is symplecto-

morphic to the unit disc bundle in the normal bundle to Σλwith
symplectic form:

π∗ω|Σ +
1

λ
d(r2α)

where r is the radial coordinate in the �ber, and α is the con-
nection 1 form coming from the hermitian metric ω(·, J, ·) on
the normal bundle. α is normalized so that its total integral
around the boundary of a �ber is 1

λ
.

We call such a con�guration (Lλ, E → Σλ) a decomposition of M .

Theorem 2.3. (Biran [1]) Let M be a Kahler manifold with a sym-
plectic, holomorphic hypersurface Σλ Poincare dual to λω. Then there
is a decomposition (Lλ, E → Σλ).

When combined with the following theorem of Kodaira and Donald-
son one sees that every Kahler manifold whose symplectic form has a
rational cohomology class admits a decomposition.

Theorem 2.4. (Kodaira/Donaldson [1]) Let M be a symplectic man-
ifold whose symplectic form ω has an integral cohomology class. Then
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there is a λ0 ∈ Z+such that for all λ > λ0 in there is a symplectic hyper-
surface Σλ Poincare dual to λω. If M is Kahler with integral compatible
complex structure J this surface can be made J- holomorphic.

While Theoreom 2.3requires that M be Kahler, and the surface Σλ

be holomorophic, Biran states that his proofs can probably be general-
ized to all symplectic manifolds, with ε−holomorphic hypersurface Σλ.
He makes his assumptions only for technical facility, and the con�dence
of familiar surroundings. It is probably safe to expect that every sym-
plectic manifold whose form has a rational cohomology class admits a
decomposition.
In this paper we will work with spaces of germs of mappings. A

germ does not have a speci�ed domain, and as a result most natural
topologies on spaces of germs have unwanted pathologies. To avoid
these, we will work at times in the category of Kan complexes, simplicial
sets that satisfy the extension condition. [5]
We will call the germ of a neighborhood of a set a framing, and we

will call a set along with its framing a framed set. If a set is denoted
X, X with its framing will be denoted XF .
Let (L,E → Σ) be a decomposition of M .

De�nition 2.5. Let X be a topological space. By ∆(X) we denote
the Kan complex of continuous maps

∆n → X

If φ is a continuous map, we denote the corresponding map of Kan
complexes by φ∆. If Y is a Kan complex, T (Y ) denotes its geometric
realization. If φ is a map of Kan complexes, we denote the correspond-
ing continuous map by φT .

De�nition 2.6. Denote the space of unparamaterized symplectic sur-
faces abstractly symplectomorphic to Σ and disjoint from a set X ⊂M
by ΣX .

De�nition 2.7. Denote by L the Kan complex of embeddings

φ : LF →M

such that φ∗ω vanishes on L. We now describe the simplices in L. An
n-simplex in L consists of the following data:

(1) A neighborhood U of L in M .
(2) A continuous map φ : ∆n :→ Symp(U,M), where Symp(U,M)

denotes a symplectic embedding of U into M , which admits an
extension to a symplectomorphism of all of M .
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Two such pairs (U1, φ1) and (U2, φ2) are equivalent if there
exists a neighborhood U3 of L such that U3 ⊂ U1, U3 ⊂ U2 and

φ1|U3 = φ2|U3

The degeneration maps to the faces are given by restricting φ
to the faces of ∆n.

De�nition 2.8. Denote by LΣ the following Kan complex :
an n-simplex consists of a triple (U, φ, ψ) where:

(1) U is a neighborhood of L in M .
(2) A continuous map φ : ∆n :→ Symp(U,M)

Two such pairs (U1, φ1) and (U2, φ2) are equivalent if there
exists a neighborhood U3 of L such that U3 ⊂ U1, U3 ⊂ U2 and

φ1|U3 = φ2|U3

The degeneration maps to the faces are given by restricting φ
to the faces of ∆n.

(3) A continous map ψ : ∆n → Σ such that for all x ∈ ∆n, ψ(x) ∈
Σφ(x)(L)

Note that Symp(M) acts on LΣ. For any symplectomorphism will
carry LF to another such spine, and will preserves the the homology
class of Σ as it is Poincare dual to λ[ω].
This paper is devoted to the proof and application of the following

theorem:

Theorem 2.9. Let (M,ω)be a Symplectic 4−manifold with decompo-
sition (Lλ, E → Σλ) such that [Σλ] · [Σλ]is even. Then ∆(Symp(M))is
weakly homotopy equivalent to LΣ.

We do not require thatM be Kahler, only that it has decomposition.
However we do restrict ourselves to dimension 4, and to decompositions
where the self intersection of Σ is even.
The assumption on the self intersection of Σ is technical, made

mostly for the sake of clarity, and we hope to remove it shortly. It
is made only to ensure that when the disc bundle E is compacti�ed
�berwise, the resulting sphere bundle is trivial.
One should note however that every Kahler manifold with rational

symplectic form admits a decomposition where the self intersection of
Σ is even. For as

Σ2λ0 · Σ2λ0 = 4Σλ0 · Σλ0

one can always, by theorem , �nd a hypersurface with even self inter-
section. Biran's theorem then provides a decomposition.
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That we requireM to be dimension 4 may well prove more resistant.
Some aspects of the theory of J-holomorphic curves still apply; however
some do not, and the proof will require some reorginization. I have not
done a serious analysis of this case.

Proposition 2.10. The map π : LΣ → L which forgets the hypersur-
face is a Kan �bration. The �ber of π is ∆(ΣL).

One can compute this �ber by passing to a compacti�cation of the
disk bundle E. The details of this are somewhat technical (see Section
3), however it allows us to separate the problem of understanding the
topology of the symplectomorphism group into two parts: embeddings
of Lagrangian spines up to symplectic equivalence, and a �universal�
problem about symplectic embeddings in S2 × Σ. If Σ is a sphere this
problem admits a complete solution - the �ber of π is contractible. In
these cases the symplectomorphism group also admits a complete com-
putation. This allows us to compute spaces of symplectically equivalent
Lagrangian spines in these cases:

Theorem 2.11. The space of Lagrangian embeddings of RP 2 ↪→ CP 2

isotopic to the standard one is homotopy equivalent to Symp(CP 2).

By work of Lalonde and McDu�, symplectic structures on rational
surfaces are classi�ed by their cohomology class. We establish the
following convention:

De�nition 2.12. By S2×Σa,bwe will denote S
2×Σ with the following

symplectic structure: Let τsphand τΣdenote �xed volume forms on S2

and Σ respectively such that each form has total integral 1. Then
endow S2 × Σ with the symplectic structure aπ∗sphτsph + bπ∗ΣτΣ, where
πsphand πΣ denote the projection onto the respective manifold.

Theorem 2.13. The space of Lagrangian embeddings S2 ↪→S2 × S2
1,1

isotopic to the standard embedding of the diagonal is homotopy equiv-
alent to the identity component of Symp(S2 × S2

1,1) ' SO(3)× SO(3).

3. Scaffolding of Proof

3.1. Statement and introduction to proof. We henceforth con-
sider a symplectic 4-manifold (M,ω) with Biran decomposition (L,E →
Σ), such that Σ has even self intersection k. We embark on the proof
of:

Theorem. 2.9 Let (M,ω) be a Symplectic 4−manifold with decompo-
sition (Lλ, E → Σλ) such that k = [Σλ]·[Σλ] is even. Then Symp(M)is
weakly homotopy equivalent to LΣ.
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Note that both Symp(M,ω) and LΣ are invariant under scaling the
symplectic structure by a constant factor. Thus we safely replace ω by
λω and reduce to the case that the class of Σ and the symplectic form
are Poincare dual, and E's �bers have area 1.
One should not confuse this �sca�olding� for a sketch: the core geo-

metric ideas of the proof of Theorem 2.9 lie in Section 4. This Section
will seek only to perform a series of reductions, transforming Theorem
2.9 into a pair of Propositions (3.12 and 3.13 ) about the action of the
symplectomorphism group of a rational surface on symplectic curves.
This rational surface appears as the �berwise compacti�cation of the
disc bundleM−LF into a sphere bundle over Σ. .The proofs of Propo-
sitions 3.12 and 3.13 proceed by applying the ample resources of the
theory of J-holmorphic spheres in rational surfaces to this compacti�-
cation. They are contained in Section 4.

3.1.1. Conventions: Throughout this paper we will be computing and
comparing the stabilizers of the action of various groups on various
geometric objects. To keep our heads straight it will be helpful to
adopt a few notational conventions.

• Symp(M,ω) denotes the di�eomorphisms of M which preserve
ω. If either M or ω is clear they will be omitted.
• GS denotes the elements in the group G which preserve the set
S. i.e :{g ∈ G : g(S) ⊂ S}.
• GP (S) denotes the elements in the group G which preserve the
set S, and a parametrization P (S). These are {g ∈ G : g(s) =
s, ∀s ∈ S}.
• GP (SF )denotes the elements in the group G which preserve the

set S, and a parametrization of a framing of that S,P (SF ).
These are {g ∈ G : ∃ neighborhood NS ⊃ S : g(s) = s, ∀s ∈
NS}. We endow GP (SF )with the direct limit topology.
• If we �x or preserve more than one set we will denote this by
seperating the two with a comma. Eg: GX,P (Y ) denotes the
elements in G which preserve X and �x Y .

These are only notational guidelines, we will at each turn de�ne each
object considered. As such we will not treat them as sacrosanct, we
will often use this notation with spaces �G� which are not groups, but
which act like them for the purposes of our paper, in the hopes that
this will cause more suggestion than confusion. Moreover not every
use of subscript denotes a group preserving something. For instance LΣ

de�ned above, is not a group at all. However as the �groups� considered
will always have either Symp or Diff embedded in their notation this
practice should not cause confusion.
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3.2. Restatement of Theorem 2.9 in terms of SympP (LF ). In this
section we will consider the action of Symp on various geometric ob-
jects. In each case, we denote the orbit map:

ζ ∈ Symp→ ζ(x)

by φ(x).

Proposition 3.1. φ(Σ,L) : ∆(Symp(M)) → LΣ is a homotopy equiv-
alence if φ(Σ) : SympP (LF ) → ΣL is a homotopy equivalence.

Proof. The action of Symp(M) on L results in the Kan �bration:

∆(SympP (LF ))→ ∆(Symp)→ L
Forgetting the hypersurface Σ results in another Kan �bration:

∆(ΣL)→ LΣ → L

The action of Symp on LΣ gives a morphism of these two �brations:

∆(SympP (LF )) → ∆(Symp) → L
↓ φ∆

(Σ) ↓ φ(L,Σ) ↓ (id)

∆(ΣL) → LΣ → L
This yields a morphism of the associated exact sequences of Kan ho-
motopy groups.[] Thus, by the 5-Lemma (Lemma 10.12), to show that
φ(L,Σ) is a homotopy equivalence (Theorem 2.9 ) it is su�cient to show
that

φ∆
(Σ) : ∆(SympP (LF ))→ ∆(ΣL)

is a (weak) homotopy equivalence. By theorem 16.6 in [5], it is su�cient
to show that the map on the underlying spaces

φ(Σ) : SympP (LF ) → ΣL

is a homotopy equivalence. �

Unfortunately it is di�cult to translate the reduction of Proposition
3.1 to an amenable statement on a compacti�cation of M − L = E
(see Remark 3.5). Instead we must consider a distinguished system of
neighborhoods Lε ⊃ L and compacti�cations of their complements.
E is the unit disc bundle in the normal bundle to Σ, NΣ. Denote by

E1−ε ⊂ E the {x ∈ E : ||x|| ≤ 1−ε}, and denote its complementM\Eε

by Lε. We will end this section by reducing �φ(Σ) : SympP (LF ) → ΣL is a
homotopy equivalence� to a statement which admits a ready translation
to a compacti�cation of E1−ε.
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De�nition 3.2. Denote by ΣLε the space of unparameterized, embed-
ded symplectic surfaces S inM\Lε which are abstractly symplectomor-
phic to Σ.

Proposition 3.3. φ(Σ) : SympP (LF ) → ΣL is a homotopy equivalence
if φ(Σ) : SympP (LεF

) → ΣLε is a homotopy equivalence for every 0 <
ε < 1.

Proof. Every φ ∈ SympP (LF ) �xes some neighborhood Nφ of L. Nφ ⊃
Lε for some ε > 0. Thus φ ∈ SympP (LεF

). Thus the direct system:

Symp
P (LεF

1 )
↪→ Symp

P (LεF
2 )
↪→ ...

has limit SympP (LF ). Similarily every embedding of η : Σ→M which
misses L, also misses Lε for some ε > 0. Thus the direct system:

ΣLε1 ↪→ ΣLε2 ↪→ ...

has limit ΣL.
We consider the action of each SympP (Lε) on ΣLε . The resulting

orbit maps ψi yield a morphism of direct systems

Symp
P (L

εF
1)

↪→ Symp
P (LεF

2 )
↪→ ... ↪→ SympP (LF )

↓ ψ1 ↓ ψ2 ... ↓
ΣLε1 ↪→ ΣLε2 ↪→ ... ↪→ ΣLF

Finally note that any compact familyNφ ⊂ SympP (LF ) lies in SympP (Lε)

for some ε, and any compact family Nη ⊂ ΣL lies some ΣLε . Thus if
each ψi is a (weak) homotopy equivalence, ψ must also be a (weak)
homotopy equivalence. �

We now begin with a discussion of our compacti�cation:

3.3. Compacti�cation of E1−ε via Symplectic Cutting (a la Ler-
man). We apply the Lerman's Symplectic Cutting [4] to achieve our
compacti�cation.
Consider E ⊂M as the unit disc bundle in the normal bundle to Σ,

NΣ. Denote by E1−ε ⊂ E the {x ∈ E : ||x|| ≤ 1− ε}.

Lemma 3.4. There is a surjective C∞ map Ψ : E1−ε → ˆE1−ε where
ˆE1−ε is a symplectic sphere bundle over Σ. Topologically ψ is given by

the collapse of the boundary circle in each �ber of the disc bundle. ψ:

(1) is a symplectomorphism on the interior of E1−ε,
(2) maps the boundary of E1−ε to a symplectic section Z∞of this

bundle whose self intersection is −k,
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(3) maps the zero section of E1−ε to a symplectic section Z0 whose
self intersection is k.

(4) The symplectic form ω on ˆE1−ε has cohomology class (1−ε)PD([Z0])+

εkPD([F ]) where [F ]denotes the class of the �ber of ˆE1−ε.

Proof. The bundle E → Σ is given as the unit disc bundle in NΣ in
the hermitian metric induced from that on M . Place the following co-
ordinates on the �ber of E = D2: r, is a radial coordinate r = |w|, and
the angular coordinate t lies in [0, 1], (i.e. t = θ

2π
) Then the symplectic

structure on E is given by:

π∗ω|Σ + d(|w|2α)

where α = dt. This structure is invariant under the circle action S(t)
given by the Hamiltonian function µ = |w|2.
We now consider the S1 action P (t) on the product:

(E × C, ω ⊕ τ)
where C denotes the complex numbers and τ denotes their standard
complex structure, scaled by the constant factor 1

π
. The action is given

by:

P (t)(m, z) = (S(t)m, e2πitz)

P (t) is Hamiltonian with function:

ζ = µ+ ||z||2

Let ˆE1−εbe the symplectic reduction of ((E × C, ω ⊕ τ), P (t)) along
the level set ζ = 1− ε. The level set

ζ1−ε := {(m, z) : ζ(m, z) = 1− ε}
has the following structure:

ζ1−ε =
{

(m, z) : µ(m) < 1− ε and z = e2πit
√
µ(m)− (1− ε)

}∐
{(m, 0) : µ(m) = 1− ε}

Where both members of the disjoint union are invariant under the S1

action. The map i : E1−ε → E × C given by:

i : (m) = (m,
√

(1− ε)− µ(m)

is a symplectic embedding, whose image is contained in the level set
ζ1−ε. I claim that the composition of i with the quotient of ζ1−ε by
P (t):

πQ : ζ1−ε → ζ1−ε/S
1 = ˆE1−ε
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gives a map:

ψ = πQi : E1−ε → ˆE1−ε

with the properties above.
Symplectomorphism on int(E1−ε): i(int(E1−ε)) is transverse to

the S1 action P (t) on ζ1−ε. Thus composition with the quotient by this
action:

πQ : ζ1−ε → ζ1−ε/S
1 = ˆE1−ε

yields a symplectic embedding into the symplectic reduction:

πQ ◦ i : int(E1−ε)→ ˆE1−ε

Maps boundary to symplectic section Z∞; ˆE1−ε is a sphere
bundle: We now examine the restriction of πQi to the boundary
(δE1−ε).

δE1−ε = {m : µ(m) = 1− ε}
Thus δE1−εis the level set µ1−ε. T

i(δE1−ε) = {(m, 0) : µ(m) = 1− ε}
P (t) then preserves i(δE1−ε), and its action there is that induced by µ.
Thus

πQ ◦ i : δE1−ε → ˆE1−ε

maps δE1−ε to an embedded copy of the symplectic reduction of µ1−ε
within ˆE1−ε. This then is a symplectic submanifold. The action in-
duce by µ is S(t), given by the rotation in each �ber of Eε. S(t) acts
transiatively on each disc's boundary, and thus πQ ◦ i collapses each of
these.
Z0 and Z∞ have correct self intersection: As ψ is a symplecto-

morphism near Σ:

Z0 · Z0 = Σ · Σ
= k

Denote by [F ] the homology class of the �ber of ˆE1−ε. As ˆE1−ε is a

sphere bundle over Σ, H2( ˆE1−ε) is generated by [F ] and [Z0]. Thus:

Z∞ = aZ0 + bF

As [Z∞] · F = 1, a = 1. As [Z∞] · [Z0] = 0, b = −k. Thus

Z∞ · Z∞ = (Z0 − kF ) · (Z0 − kF ) = k − sk = −k
[ω] has cohomology class (1−ε)PD([Z0])+εkPD([F ]): The classes

PD([Z0]) and PD([F ]) span H2( ˆE1−ε). Thus:

[ω] = aPD([Z0]) + bPD([F ])
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for some a and b.

ω([F ]) = 1− ε
and thus a = 1− ε.

ω([Z0]) = [Z0] · [Z0] = k

as the symplectic form on M was Poincare dual to Σ, and ψ = i ◦ πQ
is a symplectomorphism near Σ. As

ω([Z0]) = (1− ε)k + b

b = εk

End Lemma 3.4 �

Remark 3.5. Why ε can't be 0: Note that for cohomological reasons any
compacti�cation p : E → Ê of the entire disc bundle E cannot map δE
to a symplectic section. To understand the symplectomorphisms of M
�xing L we must understand Symp(Ê)sp(δE), the symplectomorphisms
of the compacti�cation which �x p(δE). This is possible only if p(δE)
is adapted to the symplectic form in some way. Moreover some adap-
tations are superior: the condition �p(δE) symplectic� is much more
pliable than �p(δE) Lagrangian�, at least for the arguments we will
propose.
This compacti�cation ψ : E1−ε → ˆE1−ε thus serves two roles: it al-

lows us to play in the more comfortable compact terrain, and it converts
the problem of computing the stabilizer of an isotropic object to that of
a symplectic object. For this dual service we pay a price: we cannot
compactify all of M −L, and must be satisifed with compactifying the
complement of a neighborhood Lε = M − int(E1−ε) of L.

3.3.1. ˆE1−εis a trivial bundle over Σ. In this subsection we show that
if k = Σ · Σ is even, ˆE1−εis a trivial bundle over Σ:

Lemma 3.6. There are exactly 2 topological S2 bundles over any sur-
face Σ. ˆE1−ε is the trivial bundle if k is even and nontrivial if k is
odd.

Proof. Bundles over Σ are in bijection with π0(Maps(Σ, BSO(3)). Let
γ be a one skelton of Σ, which gives Σ a cell decomposition with only
one 2-cell. Then there is a natural �bration:)
Which induces the following maps on π0:

...→ π0(Maps(S2, BSO(3)))→ π0(Maps(Σ, BSO(3)))→ π0(Maps(γ,BSO(3))
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We �rst show that π0(Maps(γ,BSO(3)) is trivial. Maps(γ,BSO(3))
�bers over BSO(3) with �ber the based maps Maps(γ,BSO(3))∗. As
BSO(3) is connected it is su�cient to show that these based maps
are connected. γ is a bouquet of circles. Thus Maps(γ,BSO(3))∗ ∼=∏
Maps(S1, BSO(3))∗. As π1(BSO(3)) ∼= π0(S0(3)) is the trivial

group, this last space is the product of connected spaces, and thus
connected.
We next show that Maps(S2, BSO(3)) has 2 components. Again it

�bers over S0(3) with �ber the based maps Maps(S2, BSO(3))∗. This
�bration induces the following exact sequence of homotopy groups.

...π1(BSO(3))→ π0(Maps(S2, BSO(3))∗)→ π0(Maps(S2, BSO(3)))→ π0(BSO(3))

Again since BSO(3) is both connected and simply connected, the
connected components of based and unbased maps coincide.

π0(Maps(S2, BSO(3))) ∼= π0(Maps(S2, BSO(3)))∗ ∼= π2(BSO(3)) ∼= π1(SO(3)) ∼= Z2

Thus we have:

...→ Z2 → π0(Maps(Σ, BSO(3)))→ pt

S and thus there are 2 S2 bundles over Σ.
I claim that these two bundles are distinguished by the parity of the

self intersection of their sections. That is

(1) If S1 and S2 are two sections of a sphere bundle P over Σ then

S1 · S1 = S2 · S2(mod2)

(2) This parity is 0 for the trivial bundle, and 1 for the non trivial
bundle.

For if we denote the homology class of the �ber of the bundle by [F ]
we have:

[S2] = [S1] + k[F ]

Thus

[S2] · [S2] = [S1] · [S1] + 2k[S1] · [F ] + k2[F ] · [F ] = [S1] · [S1] + 2k

To see the second claim it is enough to note that the trivial bundle
admits a section with self intersection 0. And that one can construct
Hirzebruch surfaces of any genus with sections whose self intersection
is odd.

�

Proposition 3.7. ˆE1−εis symplectomorphic to S2 × Σ1−ε, k
2
(1+ε).
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Proof. By Lemma 3.6, it is di�eomorphic to S2×Σ. Symplectic struc-
tures ω on S2×Σ are classi�ed by their cohomology class. The propo-
sition thus follows from condition 4 in Lemma 3.4. �

3.4. Translation of Theorem 2.9 to Compacti�cation. In sub-
section 3.2 we reduced Theorem 2.9 to the following Proposition:

Proposition 3.8. For each 0 < ε < 1, Symp(M)P (LεF
) is homotopy

equivalent to ΣLε.

In this subsection we translate both sides of Proposition 3.3 to state-
ments within the compacti�cation ˆE1−ε. Denote the elements of Symp( ˆE1−ε)

which �x ZF
∞ by Symp( ˆE1−ε)P (ZF

∞) .

Lemma 3.9. For each 0 < ε < 1 , Symp(M)P (LεF ) is homeomorphic

to Symp( ˆE1−ε)P (ZF
∞) .

Proof. Restricting to E1−ε gives a homeomorphism from Symp(M)P (LεF )

to Symp(E1−ε)δEF -the symplectomorphisms of E1−εwhich �x both the
boundary and a framing of that boundary. I claim the compacti�ca-
tion Ψ : E1−ε → ˆE1−ε described in Lemma yields a homeomorphism
Ψ∗ : Symp(E1−ε)P (δEF ) →Symp( ˆE1−ε)P (ZF

∞) .

Let η ∈ Symp(E1−ε)P (δEF ). Then de�ne Ψ∗(η) = ΨηΨ−1 on ˆE1−ε\Z∞
, and extend Ψ∗(η) to be the identity on Z∞. As

Ψ|int(E1−ε) → ˆE1−ε\Z∞
is a symplectomorphism and as η preserves the interior of E1−ε, ΨηΨ

−1|int(E1−ε)

is a well de�ned map in Symp( ˆE1−ε\Z∞). As η is the identity near
δ(E1−ε), ΨηΨ−1 is the identity near Z∞ and this extension is smooth

and in Symp( ˆE1−ε)P (ZF
∞) . The inverse map is de�ned in the same

way: Ψ−1
∗ (η) = Ψ−1ηΨ on int(E1−ε) , and extend Ψ−1

∗ (η) to be the
identity on δE1−ε. As η is the identity near Z∞, ΨηΨ−1 is the identity
near δE1−ε and thus this extension is smooth and in Symp(E1−ε)P (δEF ).
End Lemma 3.9

�

De�nition 3.10. Denote by Σε
Z∞ the pairs of disjoint symplectic curves

(Z∞, Z) in ˆE1−ε where Z is a curve abstractly symplectomorphic to Z0,
and Z∞ denotes the �xed curve at in�nity.

Lemma 3.11. Σ → (Z∞,Ψ(Σ)) gives a homeomorphism Ψ∗ : ΣLε →
Σε
Z∞

Proof. Ψ|M−Lε → ˆ(E1−ε\Z∞) is a symplectomorphism. �
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Finally Proposition 3.3 is equivalent to the combination of the fol-
lowing two propositions about the action of Symp on symplectic curves
in E1−ε:

Proposition 3.12. For each 0 < ε < 1Symp( ˆE1−ε)P (ZF
∞) acts transi-

tively on Σε
Z∞.

Proposition 3.13. For each 0 < ε < 1 Symp( ˆE1−ε)P (ZF
∞),Z0

is con-
tractible.

For armed with these we have a �bration:

SympP (ZF
∞),Z0

→ SympP (ZF
∞) → Σε

Z∞

with contractible �ber, and thus the following chain of homotopy equiv-
alences.

SympP (LεF ) '(3.9) SympP (ZF
∞) '(�bration) Σε

Z∞ '(3.11) ΣLε

The proofs of Propositions 3.12 and 3.13 will occur in 4.4 and 4.5
respectively.

4. Curves and Fibrations in ˆE1−ε

4.1. J-holomorphic curves and rational surfaces. In this sub-
section we supply the necessary background from the theory of J-
holomorphic curves on symplectic sphere bundles over surfaces. The
main geometric ingredient in our proof is the following Proposition:

Proposition 4.1. (Gromov-Mcdu�[?]) Consider Σ × S2 with a sym-
plectic form ω. Then if either:

(1) Σ is not a sphere.
(2) ω([Σ× pt]) ≥ ω([pt× S2])

then for every almost complex structure J tamed by ω, there is a J-
holomorphic �bration by spheres in class [pt× S2].

We do not reproduce the proof of this Proposition here.

Lemma 4.2. Consider Σ × S2 with a symplectic form ω, satisfying
the hypotheses of Proposition 4.1. Let {Si}be a collection of symplectic
curves such that [Si] · [S2×pt] = 1, J a tamed almost complex structure
which preserves each curve. Then there is a J- holomorphic �bration
by 2 spheres F in the class of [S2 × pt] which is transverse to each
curve, and such that each �ber meets each curve in exactly one point.

Proof. By Proposition 4.1 there is a unique J-holomorphic �bration
F by 2 spheres in class [S2 × pt]. As J is tamed this �bration is
symplectic. By positivity of intersection each �ber must meet each
curve transversely, and precisely once. End Lemma 4.2 �
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Remark 4.3. The curves {Si} are then symplectic sections of F .

4.2. A softening of the symplectomorphism group. In this sub-

section we will construct a large open neighborhood of Symp ˆ(E1−ε)
within its di�eomorphism group. This neighborhood will have the same

homotopy type as Symp ˆ(E1−ε), but it will be far easier to work with.
In particular, it will be much easier to understand the �action� of this
neighborhood on various objects.
Our compacti�cation ˆE1−ε comes equipped with a symplectic �bra-

tion by 2-spheres, we denote this �bration by F and we consider the
triple (FZ , Z0, Z∞) where Z0 and Z∞ are the symplectic sections dis-
cussed in Lemma 3.4.

De�nition 4.4. Denote the di�eomorphisms of ˆE1−ε which �x H2 by
Diff2.

De�nition 4.5. Denote the orbit of (FZ , Z0, Z∞) under Diff2 by F∞
0 .

Denote the triples such that each member is symplectic by SF∞
0 . The

orbit map �bers Diff2 over F∞
0 . Consider the restriction of this �bra-

tion to SF∞
0 and denote the induced total space by Diff(SF∞

0 ). These
are the elements which take (FZ , Z0, Z∞) to another triple in SF∞

0 .

Lemma 4.6. Symp( ˆE1−ε) ⊂Diff(SF∞
0 )

Proof. If γ ∈ Symp( ˆE1−ε) it is clear that each member of the triple
(γ(FZ), γ(Z0, )γ(Z∞)) is symplectic.What is required then is to show

that Symp( ˆE1−ε) ⊂Diff2. Each γ ∈ Symp( ˆE1−ε) preserves ω, and
thus also the cohomology class

[ω] = (1− ε)PD([Z0]) + εkPD([F ])

Thus, as [ω] is Poincare dual to

(1− ε)([Z0]) + εk([F ])

γ preserves this homology class as well. As [Z0] and [FZ ] together

span H2( ˆE1−ε), it is enough for us to show that γ preserves [FZ ]. By

Proposition 3.7 ˆE1−ε is symplectomorphic to Σ× S2
1−ε, k

2
(1+ε)

, thus [FZ ]

is characterized by the following properties:

(1) [FZ ] is spherical.
(2) [FZ ] · [FZ ] = 0.
(3) ω([FZ ]) < ω([pt× S2])

Thus γ must �x [FZ ].
�
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De�nition 4.7. Denote the space of closed 2-forms which restrict to
symplectic forms which agree with the orientation induced by ω on
each member of the triple (FZ , Z0, Z∞) by P . Denote the symplectic
members of P which induce the same orientation as ω by PSym. Finally,
denote those forms in P with cohomology class [ω] by P ω, and let
P ω
Sym ⊂ P ω be the symplectic members of P ω.

De�nition 4.8. Denote by πF : ˆE1−ε → Σ the map induced by the
leaves of FZ .

Proposition 4.9. P ω
Sym is weakly contractible.

Proof. This argument is more or less the same as one of the argu-
ments that Lalonde-McDu� use to classify symplectic structures on
ruled surfaces[3]. We simply do it with more parameters.
We remind the reader that

[ω] = (1− ε)PD([Z0]) + εkPD([FZ ])

To lighten our notation in the calculations ahead, we let

a := 1− ε
b := εk

Then,

[ω] = aPD([Z0]) + bPD([FZ ])

Note that every form in PSym induces the same orientation on the
ambient manifold, as well as the �bers of FZ .Thus they also induce the
same orientation on NF the normal bundle to the �bers of FZ . Choose
a volume form σΣ on Σ such orientation induced by π∗F (σΣ) on NF

agrees with that of PSym.
To construct our contraction of spheres in P ω

Sym we will require the
following properties of the a�ne �ow given by Θκ : α→ α+ κπ?F (σΣ).

Lemma 4.10. The a�ne �ow on 2-forms, given by Θκ : α → α +
κπ?F (σΣ), satis�es the following conditions:

(1) For any compact family Γ ⊂ P there is a κ > 0 such that the
entire family Θκ(Γ) ⊂ PSym

(2) Θ preserves PSym: If Γ ⊂ PSymthen Θκ(Γ) ⊂ PSym
(3) Θ preserves P : If Γ ⊂ P then Θκ(Γ) ⊂ P
(4) If we denote the convex hull of a set X by Conv(X): Conv(Θ(Γ)) =

Θ(Conv(Γ)).
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Proof.

Θ(κ)(α) ∧Θ(κ)(α) = (α+ κπ?F (σΣ)) ∧ (α+ κπ?F (σΣ))

= α ∧ α+ 2κα ∧ π?F (σΣ) + κ2π?F (σΣ) ∧ π?F (σΣ)

= α ∧ α+ 2κα ∧ π?F (σΣ)

Let α ∈ P . Let {v1, v2, h1, h2} be an oriented basis of the tangent
space to a point such that {v1, v2} span the tangent space to FZ . If η is
closed two form, η∧η(v1, v2, h1, h2) is positive if and only if η is symplec-
tic, and induces the same orientation as ω. Thus α∧α(v1, v2, h1, h2) > 0
if and only if α ∈ PSym. I claim that α ∧ π?F (σΣ)(v1, v2, h1, h2) > 0. As
this second term dominates for large κ this will show both claim 1 and
claim 2.

α ∧ π?F (σΣ)(v1, v2, h1, h2) = Σµ∈S4α(µv1, µv2)π
?
F (σΣ)(µh1, µh2)sign(µ)

The only non-vanishing pairings in this sum are those of the form:

α(v1, v2)π
?
F (σΣ)(h1, h2)

for π?F (σΣ) vanishes on any pair of vectors which contains a vertical
vector vi. Terms of this form are strictly positive due to our choice of
sign of σΣ, and α's positivity on FZ . As π

?
F (σΣ) is positive on both Z0

and Z∞,Θ preserves P (claim 3). Θ preserves convex hulls (claim 4) as
it is a�ne. End Lemma 4.10 �

Let φ : Sn → P ω
Sym be a sphere of symplectic forms based at ω. (For

the sake of this argument we de�ne the 0-sphere to be the boundary of
the 1-disk, that is the union of 2 points, one speci�ed as the basepoint).
Let κ be such that ΘκConv(φ(Sn)) ⊂ PSym. Begin by homotoping φ
so that it is constant in a neighborhood Ub of the basepoint b. Let

χ : Sn → [0, 1]

be a continous function on the sphere such that α(b) = 0, and α = 1
outside Ub. We introduce χ to insure that we preserve the basepoint of φ
throughout the homotopy. It plays no essential role in the construction.
We follow with the homotopy given by ΨΘ(x, t) = Θχ(x)t(φ(x)) as t

travels from 0 to κ. The image of ΨΘ in H2 is a line of classes [ω] +
tκPD([F ]). Compose this homotopy with the contraction of Θκ(φ(Sn))
within Conv(φ(ΘκS

n). As Conv(φ(ΘκS
n)) = ΘκConv(φ(Sn)) ⊂ PSym

this is also a contraction within PSym. Denote the resulting homotopy
by φt.
The cohomology classes of the forms φt(x) lie on the line [ω]+tκ[F ].,

where PD(·) denotes Poincare duality. We will now alter the homotopy
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φt by adding a su�cient multiples of a Thom class of the section for
each value of t so that the form φt(S

n) is Poincare Dual to [ω] =
aPD([Z0]) + bPD([FZ ]). This process is called in�ation. Its earliest
appearance came in the papers of Lalonde-McDu� on the classi�cation
of symplectic structures on ruled surfaces. The version we will use is
more re�ned:

Lemma 4.11. (McDu�) Let (M,ω) be a symplectic 4-manifold with a
compact family of tamed almost complex structures ζJ : Γ→ J , which
make a symplectic curve C with C · C ≥ 0 holomorphic. Then for
each β > 0 there is a compact family of closed 2 forms ζκ : Γ → Ω2 ,
supported in an arbitrarily small neighborhood of C, and such that the
form ω + ζκ(γ) is symplectic, tames ζJ(γ) and has cohomology class
[ω] + βPD([C])1

The proof of this Lemma is in []. We content ourselves with its appli-
cation: Consider the normal bundle to Σ given by NΣ with symplectic
structure σ. By Weinstein's symplectic neighborhood theorem we can
�nd a family of embeddings

ψx∈Sn,t∈I : NΣ →M

of the normal bundle to Σ, which map the zero section S0 of NΣ to Z0

and such that

(4.1) ψ∗x,t(φt(x)) = σ

on some neighborhood Ux,t of S0. As the family ψx,t is compact, we can
�nd a single neighborhood Uψ of the zero section such that Equation
4.1 holds restricted to Uψ for all x and t. ψ−1

x,t (F,Z0) is then a family
of �brations on Uψ. By Proposition 10.9 we can �nd a family of

ζJ : Sn × I → J (Uψ.σ)

of almost complex structures on Uψ which are tamed by σ and such
that ψ−1

x,t (F,Z0) is ζJ(x, t) holomorphic.
We then apply McDu�'s Lemma above with:

(1) M = (Uψ, σ)
(2) C = S0

(3) β = aκ
b

(4) ζJ = ζJ .

1This is actually a good bit more re�ned than what we require. Mcdu� achieves
positivity on all holomorphic planes, while we require only positivity on �bration
and section. Still it su�ces, and there doesn't seem to be a need to populate the
literature with weaker in�ation lemmas.
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This provides us a family of forms ζτ : Sn × I → Ω2(Uψ), such that
σ + ζτ (x, t) tames ζJ(x, t). The set of forms taming a given almost
complex structure is convex. Thus as σ and σ + ζτ (x, t) both tame
ζJ(x, t) so does σ + tζτ (x, t) for t ∈ [0, 1]. We obtain a set of forms
σ + tζτ (x, t) such that:

(1) σ + tζτ (x, t) = σ outside the neighborhood of S0.
(2) ψ−1

x,t (F,Z0) is symplectic with respect to the form σ + ζτ (x, t).

Transporting back to N we gain a family of forms (ψ−1
x,t )

∗(tζτ (x, t)) such
that the form

φt(x) + (ψ−1
x,t )

∗(tζτ (x, t))

is symplectic and positive on the triple (FZ , Z0, Z∞).
Thus the homotopy φ1

t :

φ1
t (x) = φt(x) + χ(x)t(ψ−1

x,t )
∗(ζτ (x, t))

lies in PSym. Moreover:

[φ1
t (x)] = [φt(x)] + χ(x)t[(ψ−1

x,t )
∗(ζτ (x, t))]

= aPD([Z0]) + bPD([FZ ]) + χ(x)tκPD([FZ ]) + χ(x)t
aκ

b
PD([Z0])

= (1 +
κχ(x)t

b
)(aPD([Z0]) + bPD([FZ ]))

= (1 +
κχ(x)t

b
)[ω]

Thus we have moved our homotopy to one which takes place only in
classes which are multiples of [ω]. One can then rescale each part of
the homotopy by the appropriate constant factor to obtain a homotopy
of our sphere within the original cohomology class:

[φ2
t (x)] = 1

(1+
κχ(x)t

b
)

(φt(x) + χ(x)t(ψ−1
x,t )

∗(ζτ (x, t)))

φ2
1(x) is then constant outside Ub, and maps Ub to the line of forms:

1

(1 + κχ(x)t
b

)
(ω + χ(x)tκπ∗F (σΣ) + (ψ−1

x,t )
∗ζτ (χ(x)t))

and one can complete the homotopy by retracting this line down to its
base point. End Proposition 4.9 �

Proposition 4.12. The inclusion Symp( ˆE1−ε) → Diff(SF∞
0 ) is a

weak deformation retract.
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Proof. Let ψ : Dn → Diff(SF∞
0 ) such that ψ(δDn) ⊂ Symp( ˆE1−ε).

We will produce a retraction of ψ to a disc of symplectomorphisms,
while �xing its boundary.
Consider the disc of symplectic forms ψ?(ω) =

⋃
d∈Dn ψ∗(d)(ω). As

ψ(d) is a symplectomorphism for d ∈ δDn, this disc is a sphere based
at ω once we quotient out its boundary. As

ψ(d)((FZ , Z0, Z∞)) ∈ SF∞
0

for each d ∈ Sn = Dn/δ , each form in ψ?(ω) makes each member of the
triple (FZ , Z0, Z∞) symplectic. As Diff(SF∞

0 ) ⊂ Diff2 each form in
ψ?(ω) has cohomology class [ω]. Thus ψ?(ω) ⊂ P ω

Sym. By Lemma 4.9
P ω
Sym is weakly contractible, and thus that we can �nd a contraction of
ψ?d(σ) to the constant sphere. Moser's Lemma then yields:

Mψ,t : Dn × I → Diff

such that: �

(1) Mψ,1(d)
∗(ω) = ψ?d(ω)

(2) Mψ,0(d) = id
(3) Mψ,t(δD) = id

M−1
ψ,t(d)ψ(d) : Dn× I → Diff(SF∞

0 ) then yields a retraction of ψ into
Symp as t travels from 0 to 1.End Proposition 4.12

4.3. Application to the action of Symp on geometric objects.
We now characterize SF∞

0 :

Lemma 4.13. SF∞
0 = Z0,∞,F , the space of all triples (FS, S0, S∞)

where (S0, S∞) ∈ Z0,∞and FS is a symplectic �bration by two spheres
in class [F ] which makes each of the symplectic curves S0 and S∞ into
symplectic sections of FS.

Proof. Each element inDiff2 preserves homology class of each member
of the triple. Thus SF∞

0 ⊆ Z0,∞,F . To show the reverse inclusion we
must construct a di�eomorphism ζ carrying the triple (FZ , Z0, Z∞)
to any other triple (FS, S0, S∞) ∈ Z0,∞,F . By Proposition (??) in
[Mcdu�] there is a di�eomorphism taking any symplectic �brations by
2-spheres with �ber in class [F ] to any other. Let ΦF ∈ Diff such that
ΦF (FZ) = FS As the �brations we consider are all product �brations
it is su�cient to show that:

Lemma 4.14. Let F be the product �bration on Σ × S2. There is a
�ber preserving di�eomorphism η which transforms any pair of sections
(Σ1

k,Σ
1
−k)) to any other (Σ2

k,Σ
2
−k).
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Proof. Sections in class [Σk] are given by graphs of deg k maps from Σ
to S2.As all such maps are homotopic we can �nd an isotopy between
Σ1
k and Σ2

k. We can then �nd a �bration preserving path of di�eo-
morphisms which induces this isotopy. Denote the end of this path by
η0. Then η0(Σ

1
k,Σ

1
−k) = (Σ2

k, η0(Σ
1
−k)). Denote the sections of F which

miss Σ2
k by S2. These are sections of the disc bundle F−Σ2

k. Thus S2 is
contractible, and we may can �nd an isotopy of sections from η0(Σ

1
−k)

to Σ2
−k lying in S2. This isotopy may then be induced by a path of

di�eomorphims which preserve both F and Σ2
k. Call the end of this

path of di�eomorphims η∞0 . Then η∞0 η0(Σ
1
k,Σ

1
−k) = (Σ2

k,Σ
2
−k), so we

can take η = η∞0 η0. End Lemma 4.14 �

ηΦF is then a di�eomorphism carrying (FZ , Z0, Z∞) into (FS, S0, S∞).
End Lemma 4.13

�

Denote by Z0,∞ the space of pairs (S0, S∞) of symplectic curves in
ˆE1−ε such that [S0] = [Z0] and [S∞] = [Z∞]. Then the pair (Z0, Z∞) ∈
Z0,∞.
We remind the reader that Σε

Z∞ is de�ned as the pairs of disjoint sym-
plectic curves (Z∞, Z) such that Z is abstractly symplectomorphic to
Z0.

Lemma 4.15. Σε
Z∞ ⊂ Z0,∞

Proof. We must show that if Z is a symplectic curve in ˆE1−ε\Z∞, ab-
stractly symplectomorphic to Z0 then [Z] = [Z0]. As [Z0] and [F ] span

H2( ˆE1−ε)
[Z] = a[Z0] + b[F ]

I claim that b = 0. For as Z misses Z∞:

0 = [Z] · [Z∞]

= (a[Z0] + b[F ]) · [Z∞]

= a[Z0] · [Z∞] + b[F ] · [Z∞]

= 0 + b

Moreover as the Z and Z0 are abstractly symplectomorphic

ω[Z] = ω[Z0]

aω[Z0] = ω[Z0]

and thus

a = 1
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thus [Z] = [Z0], and Σε
Z∞ ⊂ Z0,∞. �

Proposition 4.16. The forgetful map π : SF∞
0 → Z0,∞ is a �bration

with contractible �ber.

Proof. The proof of this Proposition will rely heavily on the results in
the Appendix on almost complex structures.
We begin by showing that π is a �bration. π is surjective, for as

the curves in (Z0, Z∞) are disjoint from one another we can �nd a
tamed almost complex structure J which makes each curve holomor-
phic. Lemma 4.2 then provides a �bration F so that (F,Z0,∞) ∈ SF∞

0 .
I claim that π has path lifting: Let B be a polyhedron. We consider

Φ : B × I → Z0,∞, along with a lifting Φlift : B × 0 → SF∞
0 . We

aim to extend Φlift to all of B × I. By Proposition 10.11 there is
a ΦJ : B × I → J , , such that Φ(b, t) is ΦJ(b, t) holomorphic, and
Φlift(b, 0) is ΦJ(b, 0) holomorphic. Applying Lemma 4.2 we gain a
family of �brations, Φlift(b, t) extending our original lifting on B × 0.
Finally we show that π has contractible �ber. Denote by J0,∞ the

tamed almost complex structures which make both Z0 and Z∞ holo-
morphic. It is enough to show that the map

ρ : J0,∞ → π−1(Z0, Z∞)

ρ(J) = (F,Z0, Z∞)

where F is the unique J-holomorphic �bration determined by Lemma is
a �bration with contractible �ber. For then ρ will be a weak homotopy
equivalence, and as J0,∞ is also contractible by Proposition 10.8, so
must π−1(Z0, Z∞) be contractible. We commence with this task.
We �rst show that ρ is a �bration on its image, i.e. that it has path

lifting: Let B be a polyhedron. Consider Φ : B × I → π−1(Z0, Z∞),
along with a lifting Φlift : B × 0→ J0,∞ such that Φ(b, 0) is Φlift(b, 0)
holomorphic. Then Proposition 10.10 allows us to extend Φlift to all
of B × I.
Let (F,Z0, Z∞) ∈ π−1(Z0, Z). Then ρ−1(F,Z0, Z∞) = JF∞0 the space

of almost complex structures making each member of the triple holo-
morphic. I claim that JF∞0 is nonempty and contractible. Thus ρ will
be surjective with contractible �ber.
That JF∞0 is nonempty is immediate from Proposition 10.10. To see

that it is also (weakly) contractible it is enough to show that any map
ΦJ : Sn → JF∞0 admits an extension to the n+ 1 ball Bn+1. We apply
Proposition10.10 with

(1) B = Bn+1 the n+ 1 ball.
(2) Φ : B → SF∞

0 the constant map Φ(b, t) = (F,Q0, Q∞).
(3) Q = Sn
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�

Proposition 4.17. Symp acts transitively on Z0,∞.

Proof. It is enough to show that there is a symplectomorphism car-
rying (Z0, Z∞) to any other pair (Z1

0 , Z
1
∞) in Z0,∞. Let J be an

almost complex structure leaving both Z0 and Z∞ invariant. Ap-
ply Lemma 4.2 and denote the resulting �bration by F . Then by
Lemma 4.13 there is a α1 ∈ Diff(SF∞

0 ) which carries (F,Z0, Z∞) into
(F 1, Z1

0 , Z
1
∞). Since Symp ↪→ Diff(SF∞

0 ) is a deformation retract by
Proposition 4.12, there is an isotopy αt through Diff(SF∞

0 ) to a sym-
plectomorphism α0. Applying this isotopy to (Z0, Z∞) yields a path
of pairs of curves αt(Z0, Z∞) which begins at α1(Z0, Z∞) = (Z1

0 , Z
1
∞)

and ends at α0(Z0, Z∞) within the orbit of (Z0, Z∞) under Symp.
One can then induce this path αt(Z0, Z∞) by a path of symplecto-
morphisms Ψt.constructed by an easy application of Moser's Lemma.
Then Ψ1α0(Z0, Z∞) = (Z1

0 , Z
1
∞). �

4.4. Proof of Proposition 3.12. We combine the background from
subsection 4 to prove Proposition 3.12:

Proposition. 3.12For every 0 < ε < 1, Symp( ˆE1−ε)P (ZF
∞) acts tran-

sitively on Σε
Z∞.

Proof. By Proposition 4.17 Symp acts transitively on Z0,∞. By Lemma

4.15, Σε
Z∞ ⊂ Z0,∞. Symp( ˆE1−ε)P (ZF

∞) are then precisely the symplecto-
morphisms which preserve Σε

Z∞ , and act transitively on this space. �

4.5. Proof of Proposition 3.13. In this subsection we will leverage
the background developed in 4 to complete the proof of Proposition
3.13:

Proposition. 3.13For every 0 < ε < 1, Symp( ˆE1−ε)P (ZF
∞),Z0

is con-
tractible.

Henceforth we will suppress the ˆE1−ε from our notation of symplec-
tomorphism groups.
Denote by SympZ∞,Z0 the symplectomorphisms that preserve both

Z∞ and Z0. Denote byDiff(SF∞
0 )Z∞,Z0 the di�eomorphisms inDiff(SF∞

0 )
which do the same.

Proposition 4.18. SympZ∞,Z0 ↪→ Diff(SF∞
0 )Z∞,Z0 is a homotopy

equivalence.

Symp acts transitively on Z0,∞ by Corollary 4.17. Thus the orbit
map φ : Symp→ Z0,∞ is a �bration.
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Consider

η : Diff(SF∞
0 )→ SF∞

0 → Z0,∞

The �rst map Diff(SF∞
0 ) → SF∞

0 is a �bration by De�nition 4.5.
The second SF∞

0 → Z0,∞ is a �bration by Proposition 4.16 . Thus so
is η -the composition of the two. The �ber of η is Diff(SF∞

0 )Z∞,Z0 .
The inclusion SympZ∞ ↪→ Diff(SF∞

0 )Z∞ yields a morphism of �-
brations:

SympZ∞,Z0

i1
↪→ Diff(SF∞

0 )Z∞,Z0

↓ ↓
Symp

i2
↪→ Diff(SF∞

0 )
↓ φ ↓ η
Z0,∞

(id)→ Z0,∞

i2 and (id) are homotopy equivalences, thus so is i1 by the 5-Lemma
(Lemma 10.12).

Proposition 4.19. Diff(SF∞
0 )Z∞,Z0is homotopy equivalent to DiffF∞0 ,

the di�eomorphisms which preserve the �bration FZ and both sections
Z0 and Z∞

Proof. Denote the subset of SF∞
0 given by triples (F, S0, S∞) where

S0 = Z0 and S∞ = Z∞ by F(Z0, Z∞). Restricting the �bration of
Diff(SF∞

0 )→ SF∞
0 to F(Z0, Z∞) yields a �bration:

Diff(SF∞
0 )Z∞,Z0 → F(Z0, Z∞)

with �ber DiffF∞0 .
As F(Z0, Z∞) is the �ber of the forgetful �bration π : SF∞

0 → Z0,∞
it is contractible by Lemma 4.16. �

Next we aim to calculate the symplectomorphisms which preserve
Z0 and �x Z∞. We compare these to Diff

F
P (∞)
0

- the di�eomorphisms

preserving Z0, �xing Z∞, and preserving FZ - a space that admits
ready computation. Again we proceed by constructing a morphism
of �brations. However it is not easy to do this directly, and we will
�nd it easier to reintroduce the Diff(SF∞

0 )Z∞,Z0 and their newest
incarnation: Diff(SF∞

0 )P (Z∞),Z0 the di�eomorphisms in Diff(SF∞
0 )

which �x Z∞ and preserve Z0.

Proposition 4.20. SympP (Z∞),Z0 ↪→ Diff(SF∞
0 )P (Z∞),Z0 ←↩ DiffFP (∞)

0

are each homotopy equivalences
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Proof.

SympP (Z∞),Z0 → Diff(SF∞
0 )P (Z∞),Z0 ←↩ Diff

F
P (∞)
0

↓ ↓ ↓
SympZ∞,Z0 ↪→ Diff(SF∞

0 )Z∞,Z0 ←↩ DiffF∞0
↓ φ ↓ η ↓ π

Symp(Z∞) ↪→ Diff(Z∞) ← (id) Diff(Z∞)

π is a group homomorphism, and thus a �bration on its image. More-
over it is surjective- given a di�eomorphism of Z∞ we lift it to DiffF∞0
in the following way: First use the product structure to lift δ ∈ Diff(Z∞)
to a di�eomorphism µ which preserves FZ (but may not preserves the
sections). Then compose µδ with a di�eomorphism ζ which preserves
the �bration and takes µδ(Z∞) to Z∞ and µδ(Z0) to Z0. As ζ preserves
the �bration, the composition ζ · µδ still induces δ on Z∞.
η is surjective as π is its restriction to DiffF∞0 . If ψ : P × I →

Diff(Z∞) is a family of paths with an initial lifting ψlift : P × 0 →
Diff(SF∞

0 )Z∞,Z0 we can extend this lifting by endowing the original
triple (FZ , Z0, Z∞) with a connection for which both Z∞and Z0 are
parallel. Then we use the di�eomorphisms given by ψlift to induce a
connection on each �bration ψlift(p)(FZ). Finally we use these connec-
tions to lift each path of di�eomorphisms ψ(p, t) to those preserving
the �bration ψlift(p)(FZ).
To see that φ is surjective on π0 note that both Symp(Z∞) ↪→

Diff(Z∞) and SympZ∞,Z0 ↪→ Diff(SF∞
0 )Z∞,Z0 are homotopy equiv-

alences, and thus isomorphisms on π0. Thus, as the above diagram
commutes, and η is surjective on π0, so η must also be surjective on
connected components. To see that it has path lifting: If ψ : P × I →
Symp(Z∞) is a family of paths with an initial lifting ψlift : P × 0 →
SympZ∞,Z0 , �rst extend ψlift to a symplectic automorphics of the nor-
mal bundle to Z∞, and then to a di�eomorphism in a neighborhood
of Z∞. Near Z∞ the forms ψ(p, t)∗ω remain in a convex neighbor-
hood of ω, one can thus use Moser to adjust ψ(p, t) to be a family of
symplectomorphisms near Z∞. Then, as the embedding of Z∞ ↪→ M
is injective on H1, H2(M) → H2(M,Z∞) is surjective. Thus we may
apply the symplectic isotopy theorem to extend the lifting to the rest
of the manifold. As Z∞and Z0 are disjoint one can arrange this cut o�
so the resulting lifting preserves Z0.
Finally we note that all of the maps between total spaces and base

spaces are homotopy equivalences thus, by the �ve lemma both of the
outer �bers must be homotopy equivalent to the inner one, and thus
to each other.

�
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Finally we aim to calculate the symplectomorphisms which preserve
Z0, and �x both Z∞ and its normal bundle. These we denote by
SympP (Z∞)F ,Z0

. Denote the �ber preserving di�eomorphisms which
preserve Z0, and �x both Z∞and its normal bundle by Diff

F
P (∞)F

0

.

Proposition 4.21. SympP (Z∞)F ,Z0
is homotopy equivalent to Diff

F
P (∞)F

0

.

Proof. First we �ber each space SympP (Z∞),Z0 ↪→ Diff(SF∞
0 )P (Z∞),Z0 ←↩

Diff
F

P (∞)
0

over the automorphisms of the normal bundle to Z∞. They

�t together in the following morphism of �brations:

SympP (Z∞),P (NZ∞ ),Z0 → Diff(SF∞
0 )P (Z∞),P (NZ∞ ),Z0 ←↩ Diff

F
P (∞),N(∞)
0

↓ ↓ ↓
SympP (Z∞),Z0 ↪→ Diff(SF∞

0 )P (Z∞),Z0 ←↩ Diff
F

P (∞)
0

↓ φ ↓ η ↓ π
Sp(NZ∞) ↪→ GL+(NZ∞) ← (id) GL+(NZ∞)

where Sp(NZ∞) consists of the symplectic automorphisms of NZ∞

and GL+(NZ∞) consists of the orientation preserving automorphisms.
Each map is a group homomorphism, thus it is enough to show that
each is surjective. This follows by standard arguments for the right
two maps � one can use the exponential of a metric for which F is
totally geodesic lift an path of automorphisms of the normal bundle
to a path of di�eomorphisms ψt in a neighborhood of Z∞, which pre-
serve the �bration F . One can then use a bump function χ, supported
in a neighborhood of Z∞ to obtain a path of di�eomorphisms ψχ(t)t

supported near Z∞, which preserve F . This shows that π and thus η
is surjective. To show that φ is surjective we apply the same Moser
argument from the previous lemma.
Finally we note the commutative diagram:

SympP (Z∞),P (NZ∞ ),Z0 → Diff(SF∞
0 )P (Z∞),P (NZ∞ ),Z0 ←↩ Diff

F
P (∞),N(∞)
0

↑ ↑ ↑
SympP (ZF

∞),Z0
↪→ Diff(SF∞

0 )P (ZF
∞),Z0

←↩ Diff
F

P (∞F )
0

Again the right two vertical inclusions are homotopy equivalences by
standard arguments, and the left inclusion follows by an application of
Moser. �

Proposition. 3.13 SympP (ZF
∞),Z0

is contractible.

Now follows from combining the above Proposition 4.21 with the
following �parametric Alexander trick�:
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Lemma 4.22. Diff
F

P (∞)F

0

is contractible.

Proof. As the elements in Diff
F

P (∞)F

0

�x the section Z∞, they must

carry each �ber of FZ into itself. Thus Diff
F

P (∞)F

0

consists of

Maps(Σ, Diff(S2)0,∞F )

where Diff(S2)0,∞F consists of the di�eomorphisms of S2 which �x a
point 0 and the neighborhood of another point∞. This is a contractible
set, thus Maps(Σ, Diff(S2)0,∞F ) is also a contractible set. �

5. Computation of Σε
Z∞

Proposition 5.1. If Σ is a sphere Σε
Z∞ is contractible.

Proof. Denote by J∞the set of tamed almost complex structures on
ˆE1−εwhich make Z∞holomorphic. Denote by J S

∞ the space of pairs(J,S)
where J ∈ J∞ and S = (Z∞, S0) ∈ Σε

Z∞ such that both curves are J-
holomorphic.
In the following two lemmas 5.2 and 5.3 we will show that both J∞

and Σε
Z∞ are homotopy equivalent to J S

∞. Thus as J∞ is contractible,
this will show that Σε

Z∞ must also be contractible. �

Lemma 5.2. The projection πΣ : J S
∞ → Σε

Z∞is a �bration with con-
tractible �ber, and thus a homotopy equivalence.

Proof. The �ber of πΣ is the set of tamed complex structures which
make both Z∞and S0 holomorphic. As Z∞and S0 form a disjoint pair
of symplectic curves this is a contractible set. �

Denote the 2 disc by D2.

Lemma 5.3. The projection πJ : J S
∞ → J∞ is a �bration with con-

tractible �ber and thus a homotopy equivalence.

Proof. Let J ∈ J∞. Fix k+1 distinct points xi on Z∞. By Proposition4.1
there is a unique J-holomorphic curve Fi in class [F ] which passes
through xi.
As both S0 and the Fi are J-holomorphic they must intersect posi-

tively. Thus S0 meets each Fi in precisely one point σi. As S0 misses
Z∞, σi ∈ Fi−xi ' D2. Lemma 5.4 below shows that for any k+1-tuple
in
∏

i=1..k+1 Fi − xi there is a unique such curve S0: �

We remind the reader that by 4.15 [S0] = [Z0].

Lemma 5.4. Let J ∈ J∞. If Σ = S2, then there is a unique, smooth
J-holomorphic curve in Z0 through any k + 1 points in ˆE1−ε\Z∞.
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Proof. For a generic J the moduli space of J holomorphic curves through
q points has dimension:

4 + 2c1(T ( ˆE1−ε))([Z0]) + 2q − 6− nq

2c1(T ( ˆE1−ε))([Z0]) = 2(χ(Z0) + [Z0] · [Z0]) = 4 + 2k

so for the dimension to be 0 we need:

q = k + 1

The Gromov Witten Invariant for this class is 1. Thus there is a J-
holomorphic curve Θ through any k+ 1 points. I claim that this curve
is unique. Let Θ1and Θ2 be two curves through these k + 1 points.
Then these two curves must coincide by positivity of intersection as
[Z0] · [Z0] = k.
I claim that Θ is always smooth and irreducible. For as the set of

generic almost complex structures is dense one can always approximate
J by a sequence of complex structures Jn so that the Jn holomorphic
curve through these q points Θn is smooth. The sequence of curves Θn

then converges to Θ, and Θ is thus controlled by Gromov compactness.
It consists of a union of J-holomorphic spheres, which meet in points.
In Lemma 5.5 below, we will now show that the need to:

(1) Intersect the curves in class [F ] positively. (Curves in class [F ]
exist for every J tamed by ω by Proposition 4.1.)

(2) Intersect Z∞ positively. (J ∈ J∞ and thus Z∞ is a J∞ holo-
morphic curve.)

eliminate all such nodal curves, save those of the form:

Z∞

k⋃
i=1

Fi

where the Fi are (possibly repeated) spheres in class F . However curves
of this last form are eliminated as well. They have only k �ber curves
Fi, they cannot pass through all k + 1 points. For I remind you that
each point lies o� Z∞ and in a distinct J-holomorphic �ber.

�

Lemma 5.5. Every nodal curve Θ consist of:

Z∞

k⋃
i=1

Fi

where the Fi are (possibly repeated) spheres in class F .
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Proof. We begin by proving a weaker statement, namely that Θ must
consist of:

(1) A curve in class [Z0]− l[F ] for l ∈ Z, l > 0.
(2) A collection of curves which are �bers for the J- holomorphic

�bration by 2-spheres.

The second homology of ˆE1−ε is spanned by [Z0] and the �ber class
[F ]. The class of each irreducible component Θi of a curve may thus
be written ai[Z0] + bi[F ]. Each ai > 0 as ai = [Σi] · [F ] and each of the
classes are represented by a holomorphic curve.
The union of these components lies in class [Z0] thus:

Σi(ai[Z0] + bi[F ]) = [Z0]

As all the ai are positive integers, the only possibility which remains
is that one ai = 1 and the rest vanish. Moreover for all i such that
ai = 0, bi must be positive, as ω evaluated on each component must be
positive. Thus we have reduced ourselves to:

(1) A curve in class [Z0]− l[F ] for l ∈ Z, l > 0.
(2) A collection of curves in class bi[F ] bi > 0 such that Σibi = l.

Since there is a unique curve through each point in class [F ] these
curves of �type 2� must be unions of �bers in F . we will now show that
the only J-holomorphic curve in class [Z0] − l[F ] (l > 0) is Z∞, with
l = k.
Denote another such J-holomorphic curve by Zother. Distinct J-

holomorphic curves must intersect each other positively. Since J ∈
Z∞there is a J-holomorphic curve in class [Z∞]. But:

[Z∞] · ([Zother]) = ([Z0]− l[F ]) · ([Z0]− k[F ]) = [Z0]
2 − k − l = 0− l

which is negative. Thus Zother = Z∞S.
�

Corollary 5.6. If Σ is a sphere, SympP (LF ) is contractible.

Proof. By Propositions 3.3 and 3.8, φ(Σ) : SympP (LF ) → ΣL is a homo-
topy equivalence. ΣLF is give by the direct limit:

ΣLε1 ↪→ ΣLε2 ↪→ ... ↪→ ΣL

as each ΣLεi is contractible by Proposition 5.1, so must ΣL be con-
tractible. �

6. Applications to spaces of Lagrangian Embeddings

6.1. Getting rid of framings.
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De�nition 6.1. Let (M,ω) be a symplectic 4-manifold with the de-
composition (L,E → Σ) such that φ : L ↪→M is a smooth submanifold
of M. Then we denote by L−Σ the space of pairs (ψ, S) where

(1) ψ : L ↪→ M is a Lagrangian embedding of L symplectically
equivalent to φ.

(2) S is a symplectic embedded unparamaterized surface which is
abstractly symplectomorphic to Σ and disjoint from ψ(L).

If the spine of the decomposition L is a smooth submanifold, and L
satis�es suitable cohomological assumptions, one does not have to in-
troduce Kan complexes. The situation is much simpler. In this section,
we will show that in this case Symp(M) is homotopy equivalent to L−Σ
Proposition 6.2. Let L ↪→M be a Lagrangian submanifold. Suppose
that H2(M) ⊗ R → H2(M,L) ⊗ R is surjective. Then SympP (LF ) ↪→
SympP (L) is a homotopy equivalence.

Denote by SympP (L),P (NL) the symplectomorphisms which �x both
L and act trivially on its normal bundle.

Lemma 6.3. Suppose that H2(M)⊗R→ H2(M,L)⊗R is surjective,
then SympP (LF ) ↪→ SympP (L),P (NL) is a deformation retract.

Proof. We will deform any family in SympP (L),P (NL) into SympP (LF ).
As a neighborhood of L is symplectomorphic to T ∗L and we will per-
form our deformation there. IfH2(M)⊗R→ H2(M,L)⊗R is surjective
we can then apply the isotopy extension theorem [?] to extend it to all
of M.
Denote by λ multiplication by λ in the �bers of T ∗L. This multi-

plication scales the symplectic structure by λ. Thus conjugation by λ
takes symplectomorphisms into themselves. We consider the conjuga-
tion of elements in SympP (LF ) by λ :ψ → 1

λ
ψλ, as λ tends from 1 to

∞.
Near the zero section we can write any symplectomorphism in SympP (L),P (NL)

as a Taylor series whose linear term is the identity map:

Id+ quadratic+ cubic...

The quadratic, cubic and higher order terms tend to zero under this
conjugation. More speci�cally for the nth degree term:

Xn
λ−1ψλ =

1

λn−1
Xn
ψ

WhereXn
ψ denotes the nth degree term of ψ′s taylor series, andXn

λ−1ψλdenotes
the nth degree term of the conjugated symplectomorphism. Thus in
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the limit λ → ∞ these higher order terms tend to zero and λ−1ψλ ∈
SympP (LF ). �

We complete the proof of Proposition with the following Lemma:

Lemma 6.4. Every symplectomorphism in SympL also �xes NL

This follows from the corresponding linear statement:

Lemma 6.5. Let (V, ω) be a symplectic vector space. Let L ↪→ V be a
Lagrangian subspace. Then the only sympletic linear map which �xes
L is the identity map.

Proof. We �rst note that ψ : v → ω(v, ·) gives an identi�cation of V/L
with the linear functions on L. ψ is well de�ned on the quotient V/L
as L is Lagrangian, and thus for any l ∈ L ω(v+ l, ·) = ω(v, ·). Further,
the image of ψ seperates vectors in L. For if l ∈ L, there is a v ∈ V
such that ω(v, l) is non zero. As L is lagrangian, this v cannot lie in L.
Thus if we denote its image in V/L by v the functional ω(v, ·) is also
nonzero on l. Thus ψ(V/L) seperates vectors and so ψ is surjective.
As the dimensions of V/L and L∗ coincide the map is an isomorphism.
Further any linear map η which preserves both L and the symplectic
form must also preserve this identi�cation- the induced map on V/L is
the adjoint of η|L. Thus if η|L is the identity, so is the induced map on
V/L. �

Theorem 6.6. Let (M,ω) be a symplectic 4-manifold with the decom-
position (L,E → Σ) such that φ : L ↪→ M is a smooth submanifold
of M , and such that H2(M)⊗ R→ H2(M,L)⊗ R is surjective. Then
Symp(M) is homotopic equivalent to L−Σ.

Proof. We apply our machinery to this decomposition. We consider
the �bration:

SympP (L) → Symp → L−
↓ φ(Σ) ↓ φ(L,Σ) ↓ (id)
ΣL → L−Σ → L−

where SympL denotes the stabilizer of L. I claim that φ(Σ) is a ho-
motopy equivalence. The theorem will then follow from the 5-Lemma,
Lemma10.12.
Consider the following commutative diagram:

SympP (LF )

i
↪→ SympP (L)

↓ φ′(Σ) ↓ φ(Σ)

ΣL → ΣL
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By Proposition 6.2, the inclusion i is a homotopy equivalence. By
Propositions 3.3 and 3.8 φ′(Σ) is a homotopy equivalence. Thus by the
commutivity of the diagram, φΣ is also a homotopy equivalence. �

Corollary 6.7. Let (M,ω) be a symplectic 4-manifold with the decom-
position (L,E → Σ) such that φ : L ↪→ M is a smooth submanifold
of M , H2(M) ⊗ R → H2(M,L) ⊗ R is surjective, and Σ is a sphere.
Then the space Lφ of Lagrangian embeddings isotopic to φ is homotopy
equivalent to the identity component of Symp(M).

Proof. We re-examine the �bration:

SympP (L) → Symp→ L−

As Σ is a sphere, Corollary 5.6implies that SympP (LF ) is contractible.
Thus SympP (L) is also contractible, and Symp(M) is homotopy equiv-
alent to L−. Moreover if H2(M) ⊗ R → H2(M,L) ⊗ R is surjective
one can induce any isotopy of the embedding φ : L ↪→M by a path of
symplectomorphisms. �

6.2. Applications to spaces of Embeddings. We now apply Corol-
lary 6.7 to compute spaces of Lagrangian submanifolds in cases where
we know the homotopy type of the symplectomorphism group of the
ambient manifold M .

Corollary 6.8. LRP 2, the space of Lagrangian embeddings of RP 2 ↪→
CP 2 isotopic to the standard one is homotopy equivalent to Symp(CP 2).

Proof. We note the following proposition

Proposition 6.9. (Biran [1]) There is a decomposition of CP 2 with :

(1) Σ a quadric (and thus a sphere).
(2) L the standard RP 2 ↪→ CP 2.

H1(RP
2) is torsion, thus H2(M)⊗R→ H2(M,L)⊗R is surjective,

and we can apply Corollary 6.7
�

Corollary 6.10. LS2the space of Lagrangian embeddings S2 ↪→S2 ×
S2

1,1 isotopic to the standard embedding of the diagonal is homotopy
equivalent to the identity component of Symp(S2 × S2

1,1) ' SO(3) ×
SO(3).

Proof. We note the following proposition

Proposition 6.11. (Biran[1]) There is a decomposition of S2 × S2
1,1

with :

(1) Σ the diagonal
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(2) L the antidiagonal

H1(S
2) vanishes, thus H2(M)⊗R→ H2(M,L)⊗R is surjective, and

we can apply Corollary 6.7
�

Part 2. Positive Sections

7. Introduction and summary of results

We consider the product of two n-manifolds Σ× Γ. We endow each
factor with a volume form given by σΣ and σΓ respectively. These
volume forms induce a product n-form on Σ× Γ:

σ = π?ΣσΣ + π?ΓσΓ

Denote the space of C1 sections of πΣ in class [Σ× pt] + a[pt×Γ] by
ΣFa .

De�nition 7.1. We will call the sections S ∈ ΣFa such that σ|S is a
volume form the positive sections.
Products of volume forms such as σ are determined by their volume

on each factor, up to di�eomorphism which preserve the product struc-
ture, and thus the �bration πΣ. This is an immediate consequence of
Moser's Lemma. The space of positive sections of πΣ depends only on
the ratio vol(Σ)

vol(Γ)
, as it is invariant under scaling the form σby a con-

stant factor. We denote this ratio by K, and we denote the positive
sections in ΣFa by PΣK

a . When n = 2 the positive sections will be the
symplectic sections with respect to σ.

Denote the degree a, C1 maps from Σ to Γ by C1
a(Σ,Γ). There is

a canonical homeomorpism Φ : ΣFa → C1
a(Σ,Γ) given by considering

the section S ∈ ΣFaas the graph of a map Φ(S) ∈ C1
a(Σ,Γ) . We will

reserve Φ throughout this paper to denote this identi�cation.

De�nition 7.2. A C1 map f : Σ→ Γ is called non Q−Surjective if
there is an open ball in U ⊂ Γ such that every x ∈ U has less than Q
pre-images. If Q is 1 this is the space of non-surjective maps.

Denote the space of C1 smooth deg a, non Q−surjective maps Σ→ Γ
by NSQa Here a ∈ Z, and Q ∈ R. However, NSQa = Ø if Q < |a|.
Moreover NSQa changes as a function of Q only at discrete intervals:

Lemma 7.3. NSQ1
a = NSQ2

a if
⌊
Q1−a

2

⌋
=
⌊
Q2−a

2

⌋
.
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Proof. Let f ∈ NSQa . Let U ⊂ Γ be an open ball such that every
x ∈ U has less than Q pre-images. Let x ∈ U be a regular value of f .
As Γ and Σ are both compact, the set of regular values of f is open.
Let Ureg be a neighborhood of x consisting of regular values of f . Then
for every y in U , f−1(y) has the same cardinality.

Card(f−1(y)) = a+ 2l < Q

for l a positive integer. The claim follows. �

The main Theorem of this section is the following:

Theorem 7.4. Φ(PΣK
a ) ⊂ NS2K+a

a , and the inclusion Φ : PΣK
a ↪→

NS2K+a
a is a deformation retract.

Note that neither PΣK
a nor NS2K+a

a is changed if we scale σ by a
constant factor so that vol(Γ) = 1. For simplicity of exposition we do
so. K henceforth denotes vol(Σ).
Theorem 7.4 has the following corollaries:

Corollary 7.5. PΣK1
a = PΣK2

a if bK1c = bK2c

Proof. This follows immediately by combining Theorem 7.4 with Lemma
7.3 �

Corollary 7.6. Suppose that Γ admits a degree −1 di�eomorphism φ,
then PΣK

a is homotopy equivalent to PΣK+a
−a .

Proof. φ determines a homeorphism:

φ∗ : NS2K+a
a → NS2K+a

−a

α → φ ◦ α

By Theorem 7.4 we have homotopy equivalences:

PΣK
a ' NS2K+a

a

PΣK+a
−a ' NS2K+a

−a

combining these with the homeomorphism φ yields the Corollary. �

Remark 7.7. In a later paper, we will combine this result with identi-
ties in the spaces of symplectic embeddings in S2 × S2 to show that
the homotopy type of the space of sections of a �bration must change
(in certain classes) as the �bration moves in the space of symplectic
�brations.
We now commence with the proof of Theorem 7.4. It will carry us

through the next two sections.
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8. Proof of Theorem 7.4

De�nition 8.1. Let α be an n-form on an oriented n-manifold Σ.
Denote by Dgn(α) ⊂ Σ the x ∈ Σ such that α(x) ≤ 0, where this sign
is determined by the orientation of M. Denote by Neg(α) ⊃ Dgn(α)
the x ∈ Σ such that α(x) < 0.

If f : Σ → Γ and σΓ is a volume form on on Γ we will sometimes
denote Dgn(f ∗σΓ) and Neg(f ∗σΓ) by Dgn(f) and Neg(f) respectively,
for these sets depend only on f , and not on the choice of volume form
σΓ.

8.1. De�nition and Basic Properties of Negative Area.

De�nition 8.2. De�ne the negative area of an n-form α denoted
NA(α) to be −

∫
Neg(α)

α.

If f : Σ→ Γ we will denote NA(f ∗σΓ) by NA(f).
For regular values of f : x ∈ reg(f) ⊂ Γ denote by µf (x) the cardi-

nality of f−1(x) ∩Neg(f) Then:

Lemma 8.3. Let η be a volume form on Γ. Then NA(f ∗η) =
∫
reg(X)

µf (x)η

Proof. f |Neg(f) is a covering map over each connected component of
reg(x), the regular values of f in X. This may be the empty cover
over certain components - some regular x may have no negative preim-
ages.Thus

f |Neg(f)∩f−1(Xi)

is a cover. µf (x) is constant for x ∈ Xi, and gives the number of sheets
in this cover. Thus∫

Neg(f)∩f−1(Xi)

f ∗η = µf (x)

∫
Xi

µ

We gain the Lemma by integrating over each Xi. �

Lemma 8.4. Let γ ∈ Diff(Σ), α be an n-form on Σ. Then NA(γ∗α) =
NA(α)

Proof. Neg(γ∗α) = γ−1(Neg(α)). Then∫
Neg(γ?α)

γ∗α =

∫
γ−1Neg(α)

γ∗α =

∫
Neg(α)

α

End Lemma 8.4 �

Lemma 8.5. NA : Ωn(Σ) → R is continuous in the C0 topology on
forms.



A SYMPLECTIC ALEXANDER TRICK AND SPACES OF SYMPLECTIC SECTIONS37

Proof. Let α ∈ Ωn(Σ). Let β be C0close to α. Then
∫

Σ
|α − β| < δ,

where we can take δ to be as small as we like by moving β closer to α.
Then∫
Neg(α)∪Neg(β)

α−
∫
Neg(α)

α <

∫
Neg(α)∪Neg(β)\Neg(α)

α−β <
∫

Σ

|α−β| < δ

Similarily:∫
Neg(α)∪Neg(β)

β−
∫
Neg(β)

β <

∫
Neg(α)∪Neg(β)\Neg(α)

β−α <
∫

Σ

|α−β| < δ

Finally

|
∫
Neg(α)∪Neg(β)

α−
∫
Neg(α)∪Neg(β)

β| <
∫
Neg(α)∪Neg(β)

|α− β| < δ

Thus ∣∣∣∣∫
Neg(α)

α−
∫
Neg(β)

β

∣∣∣∣ < 3δ

End Lemma 8.5 �

De�nition 8.6. Denote by NAKa the space of degree a maps f ∈
C1(Σ,Γ) such that NA(f ∗σΓ) < K.

8.2. Symplectic Sections are a Deformation Retract of Maps
with Bounded Negative Area. This section is devoted to the proof
of the following proposition:

Proposition 8.7. Φ(PΣK
a ) ⊂ NAKa and the inclusion Φ : PΣK

a ↪→
NAKa is a deformation retract.

We �rst note that Φ : PΣK
a ⊂ NAKa . For if S ∈ PΣK

a the following
equation holds for any domain U in S :∫

U

σ =

∫
U

π∗Σ(σΣ) +

∫
U

π∗Γ(σΓ) > 0

holds for integration over any subset of the section. If we take this
domain to be the subset Dgn(Φ(S))∫

Dgn(Φ(S))

π∗Σ(σΣ)−NA(Φ(S)) > 0

and thus

NA(Φ(S)) <

∫
Dgn(Φ(S))

π∗Σ(σΣ) < [σ](Σ) = K
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Now consider a disc ρ of non-surjective maps with boundary in
Φ(PΣK

a ):

ρ : (Dn, δDn)→ (NAKa ,Φ(PΣK
a ))

We will construct a retraction of this disc into the positive sections
Φ(PΣK

a ). i.e. we will construct a homotopy of pairs

ρt : (Dn × I, δDn × I)→ (NAKa ,Φ(PΣK
a ))

such that:

(1) ρ0(d) = ρ
(2) ρ1(D

n) ⊂ Φ(PΣK
a )

(3) ρt|δDn = ρ|δDn for all t

Denote the space of volume forms on Σ by V ol(Σ). Denote those in
class [σΣ] by V ol(Σ)[σ]. We will construct ρt by constructing a family

ζρ : (Dm, δDm)→ (V ol(|Σ)[σ], σΣ)

Then using Moser's Lemma we will provide a family of di�eomorphisms
φt of Σ. φt× id will then be a family of di�eomorphisms of Σ×Γ which
will induce ρt.

Lemma 8.8. Let ρ : Dm → NAKa be a disc of maps, such that
ρ(δDm) ⊂ Φ(PΣK

a ). Then there is a continuous map ζρ : Dm →
V ol(Σ) such that:

a With respect to the form π∗ΓσΓ + π∗Σζρ(d) the section Φ−1(ρ(d))
is positive.

b For all d in the family [ζρ(d)] = [σΣ]
c ζρ(δD

m) = σΣ

Proof. We �rst note that if one restricts π∗σΓ to the section Φ−1(ρ(d)),
and then uses πΣ to identify Φ−1(ρ(d)) with Σ, the resulting form is
ρ(d)∗(σΓ). Thus Condition (a) can be rephrased as: �the form

ρ(d)∗(σΓ) + ζρ(d)

is a volume form on Σ.�
Denote ρ(d)∗(σΓ) by σΓ(d) to lighten our notation. We begin by

adding a positive form to σΣ where σΓ(d) + σΣ is (nearly) degenerate.
Let δ ∈ Vol(Σ). We will think of δ as small, and we will specify how
small shortly. Let

Uδ =

(⋃
d∈Σ

Neg((σΓ(d) + σΣ − δ)× d

)
Claim 8.9. Uδ is open, and δ − σΓ(d) > 0|Uδ

.
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Proof. Let (x, d) ∈ Uδ. Trivialize the tangent bundles of Σ and Γ
in neighborhoods Ux of x and Uρ(d)(x) of ρ(d)(x) respectively. Use
these trivializations to identify Txi

with Tx and Tρ(di)xi
with Tρ(d)x

for (x, d) ∈ Ux × Uρ(d)(x). Then, for (x0, d0) near (x, d) the anti-
linear n−forms σΓ(d0) = ρ(d0)

∗(σΓ)0 are near the antilinear n−form
ρ(d)∗(σΓ)x = σΓ(d). δx is also near δx0 . Thus as σΓ(d)x < δx so must
σΓ(d0)x0 < δx0 . The second statement is immediate from the de�ni-
tion. �

Let φ1 : Σ→ R be a function such that:

(1) φ1(x) > 0 for x ∈ Uδ
(2) φ1(x) = 0 for x ∈ Σ\Uδ

The map:

ζ1
ρ(d) = φ1(δ − (σΓ(d) + σΣ)) + σΣ

then achieves condition (a), but may well fail the rest. In particular
its volume is probably not

∫
Σ
σΣ. In fact:

(8.1)

∫
Σ

ζ1
ρ(d) ≥

∫
Σ

σΣ

We now aim to modify ζ1
ρ so that

∫
Σ
ζ1
ρ(d) =

∫
Σ
σΣ, and thus achieve

condition (b).
Let f be a smooth function on Dm × Σ such that:

i f(x) = 1 for x ∈ Ūδ (the closure of Uδ)
ii 0 < f(x) < 1 elsewhere

We now consider the map:

Ψ : (d, k) → (d,

∫
Σ

fkd ζ
1
ρ(d))

As k approaches in�nity the function fd approaches the characteristic
function of Ūδ, and thus the integral

∫
Σ
fkd ζ

1
ρ(d) approaches

∫
Uδ(d)

ζ1
ρ(d).

Moreover Ψ(·, d) is montone decreasing in k. Thus the map gives a
di�eomorphism:

Dm × [0,∞) → Dm× (

∫
Uδ(d)

ζ1
ρ(d),

∫
Σ

ζ1
ρ(d)]

Note that :
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∫
Uδ(d)

ζ1
ρ(d) = (NA(ρ(d)) +

∫
δUδ(d) +

∫
(Uδ(d)−Deg(σΓ(d)))

ζ1
ρ(d)

= (NA(ρ(d)) + εd)

where we can make εd as small as we like by making both δ and our
neighborhoods Uδ small. Thus, as we assume that NA(ρ(d)) <

∫
σΣ,

we may force εd to be small enough so that∫
Uδ(d)

ζ1
ρ(d) = (NA(ρ(d)) + εd) <

∫
σΣ

Combining this with 8.1 we see that the interval (
∫
Uδ(d)

ζ1
ρ(d),

∫
Σ
ζ1
ρ(d)]

must contain
∫
σΣ.

Choose k(d) such that Ψ(d, k(d)) = (d,
∫

Σ
σΣ). Then∫

Σ

f
k(d)
d ζ1

ρ(d) =

∫
Σ

σΣ

and

ζ2
ρ = fk(d)ζ1

ρ

will thus satisfy (b). Moreover ζ2
ρ will still satisfy condition (a) as

fk(d) = 1 on Uδ, and thus ζ2
ρ = ζ1

ρ there.
The only condition on ζρ which remains is (c). By assumption ρ(δD)

is symplectic with respect to our original form σ = π?ΓσΓ + π∗ΣσΣ . The
condition of positivity is open, thus there is some neighborhood UδD of
δDm such that π?ΓσΓ +π∗ΣσΣ makes each map ρ(UδD) positive. Let φδD,
φint be a partition of unity subordinate to the cover given by UδD and
a slightly smaller interior disc Dint ⊂ Dm. Then, as both conditions
(a) and (b) are convex. :

ζρ = φδDσΣ + φintζ
2
ρ

provides our ζρ satisfying each condition. End Lemma 8.8
�

8.3. ζρ to a retraction of ρ via Moser's lemma. We now use this
family of forms ζρ to construct our isotopy of sections. Consider the
homotopy:

ζt = tσΣ + (1− t)ζρ
where σΣ denotes the constant map Dm → σΣ. ζt is a homotopy of ζρ
to σΣ which �xes δDm throughout. Moreover
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[ζt(d)] = t[σΣ] + (1− t)[ζρ(d)] = [σΣ]

as [ζρ(d)] = [σΣ] by Lemma 8.8 condition 2.Thus Moser's Lemma
applies and so if we denote the di�eomorphisms of Σ by Diff(Σ) we
obtain:

Mζ : (Dm × I, δD × I)→ (Diff(Σ), Id)

such that Mζ(d, 1)∗(σΣ) = ζρ(d).
Let

ρt = ρ(d)M−1
ζ (d, t)

By Lemma 8.4:

NA(ρ(d)M−1
ζ (d, t)) = NA(ρ(d)) < K

Thus ρt(d) ∈ NAKa . I claim that Φ−1(ρ1(d))is symplectic with re-
spect to our original form σ = π?ΣσΣ + π?ΓσΓ. For Φ−1(ρ1(d)) is given
by the graph of ρ1(d):

(Mζ(d, 1)x, ρ(d)(x)) ∈ Σ× Γ

This section is the same as that obtained by applying (Mζ(d, 1)×Id)
to Φ−1(ρ(d)). That is:

(Mζ(d, 1)× Id)(Φ−1(ρ(d)) = (Mζ(d, 1)x, ρ(d)(x))

Thus

σ|Φ−1(ρ1(d)) = (Mζ(d, 1)× Id)∗σ|Φ−1(ρ(d))

= (σΓ + ζρ(d))|Φ−1(ρ(d))

which is everywhere nondegenerate by condition (b) of Lemma 8.8 .
End Proposition 8.7

8.4. Maps of bounded negative area are a weak deformation
retract of non Q-surjective maps. For f ∈ C1(Σ,Γ) denote by
µf (x) the cardinality of f−1(x) ∩Neg(f).

Lemma 8.10. Let f be a degree a map in C1(Σ,Γ)\NS2K+a
a then

µf (x) ≥ K for all regular points x ∈ X.

Proof. If a ≥ 0: Then x has (at least) 2K �excess� pre-images. Half of
these must be negative.
If a < 0: Then x has (at least) 2K− 2|a| �excess� pre-images. Again

half of these must be negative. We also have |a| negative pre-images
coming from the degree of the map. This again yields K in total. �
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Proposition 8.11. NAKa is contained in NS2K+a
a , and the inclusion

i : NAKa ↪→ NS2K+a
a is a weak deformation retract.

Proof. We �rst show that NAKa ⊂ NS2K+a
a . Let f be a degree a map

in C1(Σ,Γ)−NS2K+a
a . I claim that f is not in NAKa . For by Lemma

8.10 f must cover a dense set X ⊂ Γ at least (2K + a) times.

Claim 8.12. By Lemma 8.3,

NA(f) =

∫
reg(f)

µfσ

=

∫
reg(f)∩X

µfσ

≥ K

∫
reg(f)∩X

σ

= K

Thus f is not in NAKa , and NA
K
a ⊂ NS2K+a

a . We will show that this
inclusion is a weak deformation retract. Consider then a map of pairs:

φ : (Dn, δD)→ (NS2K+a
a , NAKa )

Our strategy is the same as before. Denote the volume forms on Γ by
Vol(Γ). We will construct a map ηφ

ηφ : (Dn, δD)→ (Vol(Γ)[σ], σΓ)

such that

NA(φ(d), ηφ(d)) < K

We will then contract ηφ to the constant map Dn → σΓ. Moser will
then yield a family of di�eomorphisms. Post composition with these
di�eomorphisms will contract our disc of maps to those with negative
area < K, while �xing the boundary.

Lemma 8.13. Let φ : (Dn, δD)→ (NS2K+a
a , NAKa ) There is a contin-

uous function ηφ : (Dn, δD)→ (Vol(Γ)[σ], σΓ) such that

NA(φ(d), ηφ(d)) < K

Proof. First we construct a form ηε such that for a �xed d the map
φ(d) has NA(φ(d), ηε) < K:
Partition the sphere into a set X< with less than 2K+a pre images,

and its complement X≥. As φ : (Dn) ⊂ NS2K+a
a , X< has nonempty
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interior. We may thus �nd a volume form ηε such that makes X< very
large: ∫

X<

ηε = 1− ε

and X≥very small: ∫
X≥

ηε = ε

We may further require that

ηε(x)

σΓ(x)
< C(ε)

for all x ∈ X≥where C(ε) > 0 is a constant which can be made as small
as we like for small ε.
Now x ∈X< has < 2K + a pre images under a map and thus:

µφ(d)(x) < K − δ
for x ∈ X, and some de�nite δ > 0, given by the di�erence between K
and the next lowest integer. By Lemma 8.10:

NA(φ(d)|φ(d)−1(X<), ηε) =

∫
X<

µφ(d)(x)ηε

< (K − δ)
∫
X<

ηε

< (K − δ)(volX<).

On X≥ we have the following bound:

NA(φ(d)∗ηε|φ(d)−1(X≥)) < C(ε)
(
NA(φ(d)∗σΓ|φ(d)−1(X≥))

)
As:

NA(φ(d)∗ηε) = NA(φ(d)∗ηε|φ(d)−1(X<)) +NA(φ(d)∗ηε|φ(d)−1(X≥))

We have:

NA(φ(d)∗ηε) < (K − δ)(1− ε) + C(ε)
(
NA(φ(d)∗σΓ|φ(d)−1(X≥))

)
which approaches K − δ as ε→ 0. It is thus less than K for small ε.
By Lemma 8.5, NA(·, ηε) : C1(Σ,Γ)→ R is continuous, thus there is

some neighborhood of d denoted Ud such that for d1 ∈ Ud NA(d1, ηε) <
K. Let ⋃

di

Udi
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be a covering of int(Dn) by open sets Udi
with forms ηiε such that

for d ∈ Udi
NA(φ(d)∗ηiε) < K. Let UδD be a neighborhood of the

boundary such that NA(φ(d)∗ηφ) < K for d ∈ UδD. Finally let {γi, γδ}
be a partition of unity subordinate to the covering of Dn given by the
Udi

and UδD. Then, as both NA(f, ·) < K and having cohomology
class [σΓ] are convex conditions:

ηφ = γδσΓ + Σiγiη
i
ε

satis�es each condition. End Lemma 8.13 �

8.5. ηφto a retraction of φ via Moser's lemma. We now use this
family of forms ηφ to construct our isotopy of sections. Consider the
homotopy:

ηt = tσΣ + (1− t)ηφ
where σΣ denotes the constant map Dn → σΣ. ζt is a homotopy of ηφ
to σΣ which �xes δDn throughout. Moreover

[ηt(d)] = t[σΣ] + (1− t)[ηφ(d)] = [σΣ]

as [ηφ(d)] = [σΣ] by Lemma 8.8 condition (b) Moser's Lemma applies
and so if we denote the di�eomorphisms of Σ by Diff(Σ) we obtain:

Mη : (Dn × I, δD × I)→ (Diff(Σ), Id)

such that Mη(d, 1)∗(σΣ) = ηφ(d). Let

φt(d) = Mη(d, t) ◦ φ(d)

Clearly ρt remains in NSKa :postcomposing a map with a di�eomor-
phism doesn't change its Q-surjectivity.
I claim that

NA(φ1(d)
∗σΓ) < K

For φ1(d) = Mη(d, 1) ◦ φ(d). Thus φ1(d)
∗σΓ = φ(d)∗Mη(d, 1)∗σΓ. So

NA(φ1(d)
∗σΓ) = NA(φ(d)∗Mη(d, 1)∗σΓ)

= NA(φ(d)∗ηφ(d)) < K

End Proposition 8.11
�

Combining Propositions 8.7 and 8.11 we achieve Theorem 7.4
End Theorem 7.4
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9. S2 → S2

In this section we examine the case where Σ = Γ = S2. Then
σ = π?ΣσΣ + π?ΓσΓ is a symplectic form, and the positive sections PΣK

a

are symplectic sections for the product �bration.
Our goal will be the proofs of the following two theorems:

Theorem 9.1. PΣK
0 is homology equivalent to S2 for K ∈ (0, 1)

Theorem 9.2. PΣK
a is homology equivalent to SO(3) for :

(1) K ∈ [0, 1), a = 1
(2) K ∈ [1, 2), a = −1

9.1. Simplicial Approximation. Let T0 be a triangulation of Γ. We
consider the system of triangulations Ti of Γ, where Ti+1 denotes the
barycentric subdivision of Ti.
Convention: In the arguments that follow, it will be convenient for

our triangles to have smooth boundary. We replace each triangle ∆ in
Ti by a smooth, closed neighborhood ∆̃ ⊃ ∆ which �rounds o�� the
corners of ∆. We will abuse notation throughout; when we refer to a
triangle ∆ in a triangulation Ti we will mean this smooth neighborhood
∆̃.

De�nition 9.3. .Denote by (NSa+1
a , Ti) the degree amaps f ∈ C1(Σ,Γ)

such that there is a triangle ∆ ∈ Ti such that f−1(∆) consists of a dis-
joint discs Di, and f : Di → ∆ is a di�eomorphism, and f maps
Σ\
⋃
Di → Γ\∆.

If a = 0 these are the degree 0 maps which miss ∆.
This de�nition is stable under re�nement: If ∆1 ⊂ ∆ then f−1(∆1)

consists of a disjoint discs D1
i ⊂ Di and f restricted to these is a di�eo-

morphism, and it maps their complement to Γ\∆1. Thus as every trian-
gle ∆ ∈ Ti contains several triangles in Ti+1 (NSQa , Ti) ↪→ (NSka , Ti+1).
Moreover we have:

Lemma 9.4. For 0 < Q ≤ 2, NS
|a|+Q
a is the direct limit of the system

.

(NSa+1
a , T0) ↪→ (NSa+1

a , T1) ↪→ · · · (NSa+1
a , Ti) ↪→ (NSa+1

a , Ti+1) ↪→ · · ·
By Lemma 7.3 it is enough to consider the case Q = 1. Moreover,

it is enough to show that f ∈ C1(Σ,Γ) is in NSa+1
a if and only if there

exists a disc D ⊂ Σ such that f−1(D) consists of a disjoint discs Di,
and f : Di → ∆ is a di�eomorphism, for every such D will contain a

triangle ∆ ∈ T i for i >> 0. It is clear that such f lie in NS
|a|+Q
a . We

commence with the converse:
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If f ∈ NS
|a|+Q
a , then there is some disc D1 ⊂ Γ such that every

point in D1 has a pre-images. Let x ∈ D1 be a regular value of f .
Then f is a di�eomorphism in a neighborhood Uyi

of each yi ∈ f−1(x).
We may then choose our discs D′

i to be disjoint, lying in Uyi
, and

such that f(Di) ⊂ D2. Denote by Di the connected components of
D ⊂ f−1

⋂
f(D′

i). Then f : Di → D is a di�eomorphism, and f maps
the complement of

⋃
iDi to the complement of D.

9.2. Coverings of (NSKa , Ti).

De�nition 9.5. Let T be a triangulation of Γ, Denote by {∆k, k ∈ S}
the closed n-simplices in Γ. Let Uk ⊂ (NSa+Qa , T ) be the maps such
that f−1(∆k) consists of a disjoint discs Di, and f : Di → ∆k is
a di�eomorphism, and f maps Σ\

⋃
Di → Γ\∆k. Then

⋃
k∈S Uk =

(NSa+Qa , T ).

These coverings will be used to construct homology equivalences
S2 → (NS2

0 , Ti), and Diff(S2)→ (NS3
1 , Ti) via the following proposi-

tion.

Proposition 9.6. Let f : X → Y be a continuous map. Let U i
Y be

a �nite covering of Y by m open sets, and denote f−1(U i
Y ) by U i

X .
Suppose that the map f is a homology equivalence on each U i

X and
each of their mutual intersections, then f is a homology equivalence.

Proof. Idea: Given a covering
⋃
i≤m U

i
X of a space X, one can compute

the homology of X from the the homology of the U i
x and their mu-

tual intersections via an inductive application of Mayer-Vietoris. This
proposition follows from noting that f provides a isomorphism of the
�inductive processes� resulting from the covers

⋃
i≤m U

i
X and

⋃
i≤m U

i
Y

of X and Y respectively.
Formal proof:The trick in carrying out this idea is to �nd an in-

ductive hypothesis of the proper strength. The following su�ces:
Suppose:

f |(
⋃
i≤k

U i
X) ∩ (

⋂
k<i≤l

U i
X)

is a homology equivalence, for all k < k0 then

f |(
⋃
i≤k0

U i
X) ∩ (

⋂
k0<i≤l

U i
X)

is a homology equivalence.
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The conclusion of the proposition, that f : X → Y is a homology
equivalence, is the special case k0 = l = m. Note moreover that the
initial case k0 = 0 follows by our assumption that:

f : (
⋂
i∈S

U i
X)→ (

⋂
i∈S

U i
Y )

is a homology equivalence for each subset S ⊂ {1, ..k}.
We thus proceed with the proof of the inductive hypothesis. So

that our notation does not overwhelm our argument we introduce the
following abbreviations:

Xi0..ij :=
⋃

i0≤i≤ij

U i
X

X i0..ij :=
⋂

i0≤i≤ij

U i
X

X
l0..lq
i0..ij

:= Xi0..ij ∩X l0..lq

and similarly for Yi0..ij and Y i0..ij . Note that Xi0..i0 = X i0..i0 = Ui0 .
Then:

Xk+1..l
1..k = (

⋃
i≤k

U i
X) ∩ (

⋂
k<i≤l

U i
X)

=

(
(
⋃

i≤k−1

U i
X) ∩ (

⋂
k<i≤l

U i
X)

)
∪ (

⋂
k−1<i≤l

U i
X)

= (Xk+1..l
1..k−1) ∪ (Xk..l)

We then apply Mayer-Vietoris to the covers given by (Xk+1..l
1..k−1) ∪

(Xk..l) and (Y k+1..l
1..k−1 ) ∪ (Y k+1..l) of X and Y respectively. The result is

the following morphism of exact sequences:

H∗
(
(Xk+1..l

1..k−1) ∩ (Xk..l)
)
→ H∗

(
(Xk+1..l

1..k−1)⊕ (Xk..l)
)
→ H∗

(
(Xk+1..l

1..k−1) ∪ (Xk..l)
)

↓ f∗(left) ↓ f∗ ⊕ f∗(middle) ↓ f∗(right)
H∗
(
(Y k+1..l

1..k−1 ) ∩ (Y k..l)
)
→ H∗

(
(Xk+1..l

1..k−1)⊕ (Xk..l)
)
→ H∗

(
(Y k+1..l

1..k−1 ) ∪ (Y k..l)
)

We wish to show that the right morphism:

H∗
(
(Xk+1..l

1..k−1) ∪ (Xk..l)
)

↓ f∗(right)
H∗
(
(Y k+1..l

1..k−1 ) ∪ (Y k..l)
)

is an isomorphism. By the 5-lemma it is su�cient to show that the
other two maps induced by f are isomorphisms. The inductive hy-
pothesis implies that each factor of the middle map:
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H∗
(
(Xk+1..l

1..k−1)⊕ (Xk..l)
)

↓ f∗ ⊕ f∗(middle)
H∗
(
(Xk+1..l

1..k−1)⊕ (Xk..l)
)

is an isomorphism, and thus so is their sum. For the left map:

H∗
(
(Xk+1..l

1..k−1) ∩ (Xk..l)
)

↓ f∗(left)
H∗
(
(Y k+1..l

1..k−1 ) ∩ (Y k..l)
)

we note that:

(X1..k−1 ∩Xk+1..l) ∩ (Xk..l) = (
⋃

i≤k−1

U i
X) ∩ (

⋂
k<i≤l

U i
X) ∩ (

⋂
k−1<i≤l

U i
X)

= (
⋃

i≤k−1

U i
X) ∩ (

⋂
k−<i≤l

U i
X)

= (X1..k−1 ∩Xk..l)

and analogously

(Y1..k−1 ∩ Y k+1..l) ∩ (Y k..l) = (Y1..k−1Y
k..l)

thus our left map

H∗
(
(Xk+1..l

1..k−1) ∩ (Xk..l)
)

↓ f∗(left)
H∗
(
(Y k+1..l

1..k−1 ) ∩ (Y k..l)
)

is also an isomorphism by the inductive hypothesis.Homology equiv-
alence S2 → (NS2

0) �

We now restrict ourselves to the case Σ = Γ = S2. Denote the
constant maps from S2 → S2 by CM. Then CM is homeomorphic to
S2, andCM ⊂ (NS2

0Ti).

Theorem 9.7. η : CM ↪→ NS2
0 is a homology equivalence.

If i < j, η factors as:

η : CM ↪→ (NS2
0 , Ti) ↪→ (NS2

0 , Tj) ↪→ NS2
0

Moreover as, ⋃
i=0..∞

(NS2
0 , Ti) = NS2

0

and as homology commutes with direct limits, it is su�cient to show
that:
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Lemma 9.8. f : CM ↪→ (NS2
0 , Ti) is a homology equivalence.

Proof. We consider the cover U∆j
of (NS2

0Ti) provided by De�nition .
The sets V∆j

:= f−1(U∆j
) then cover CM. I claim that

f :
⋂
j∈S

V∆j
→
⋂
j∈S

U∆j

is a homology equivalence for all indexing sets S ⊂ 1..m. When com-
bined with Proposition 9.6 this will show that f must be a homology
equivalence.⋂

j∈S U∆j
consists of the maps S2 → S2 which miss

⋃
j∈S ∆j.

⋂
j∈S V∆j

consists of the constant maps S2 → S2 which miss
⋃
j∈S ∆j. Denote

S2\
⋃
j∈S ∆j by S2

∆. It may have many connected components. We

denote its kth component by (S2
∆)k .

Fix a point x in the domain. Then over each (S2
∆)k we have a �bra-

tion, induced by evaluating each map at x:

Maps∗(S
2, (S2

∆)k)
↓⋂

j∈S U∆j

↓ πx
(S2

∆)k

where Maps∗(S
2, (S2

∆)k) denotes the based maps from S2to (S2
∆)k,

and π(γ) = γ(x). Evaluation at x also induces a �bration of
⋂
j∈S V∆j

over⋂
j∈S V∆j

:

pt
↓⋂

j∈S V∆j

↓ πx
(S2

∆)k

the inclusion f then induces a morphism of these �brations:

f : pt ↪→ Maps∗(S
2, (S2

∆)k)
↓ ↓

f :
⋂
j∈S V∆j

↪→
⋂
j∈S U∆j

↓ ρx ↓ πx
(S2

∆)k id (S2
∆)k

(S2
∆)k is either a disc, or a bouquet of circles. In either case it is a

K(π, 1). For any space X,

πl(Maps∗(S
2, X)) ∼= πl+2(X)
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Thus if X is a K(π, 1), Maps∗(S
2, X) is weakly contractible.

So both ρx and πx are (weak) homotopy equivalences. Thus

f :
⋂
j∈S

V∆j
↪→
⋂
j∈S

U∆j

is also a homotopy equivalence for every indexing set S. f : CM →
(NS2

0 , Ti) itself is thus a homology equivalence by Proposition 9.6 . �

9.2.1. Homology equivalence Diff(S2)→ (NS3
1 , Ti).

Theorem 9.9. η : Diff(S2) ↪→ NS3
1 is a homology equivalence.

If i < j, η factors as:

η : Diff(S2) ↪→ (NS3
1 , T

i
Γ) ↪→ (NS3

1 , T
j
Γ) ↪→ NS3

1

Moreover as, ⋃
i=0..∞

(NS3
1 , T

i
Γ) = NS3

1

and as homology commutes with direct limits, it is su�cient to show
that:

Lemma 9.10. η : Diff(S2) ↪→ (NS3
1 , T

i
Γ) is a homology equivalence.

Proof. Denote the covering described in De�nition by Uj. We aim to
prove this Lemma (and thus our theorem) by applying Proposition 9.6
to the η and the cover given by Uj. Thus we must show that

η|
⋂
j∈S

Vj →
⋂
j∈S

Uj

is a homology equivalence, where {Vj} denotes the cover of Diff(S2)
given by {η−1(Uj)}. As Uj ⊃ Diff(S2), this cover is trivial: each Vj,
and thus all of their mutual intersections, consists of all of Diff(S2).
Denote

⋃
j∈S ∆j by ∆.

⋂
j∈S Uj consists of the maps S2 → S2 which

are di�eomorphisms on f−1(∆), and which map S2\f−1(∆) to S2\∆.
To remind us of its content we will denote

⋂
j∈S Uj by NS∆. Denote

f−1(∆) by θf .
Denote the connected components of the boundary of ∆ by Kh for

h ∈ H. Denote the connected components of S2\
⋃
j ∆j by Al where

Al = D2 −ml discs

Note that one may have ml = mk though k 6= l.
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The connected components of ∆ have the same form. We denote
these by

Bq = D2 −mq discs

De�nition 9.11. Denote by C the space of orientation preserving em-
beddings g : ∆→ S2 such that if⋃

j∈J⊂H

Kj

bound some Al then
⋃
j∈J⊂H g(Kj) also bound a connected set in

S2\g(∆)

Lemma 9.12. There is a �bration:

π1 : NS∆ → C
π2 : Diff(S2) → C

where πi(f) is the embedding

f−1 : ∆→ θf

Proof. We begin by showing that im(πi) ⊂ C. As im(πi) ⊂ im(π1) it
is enough to show this for i = 1. Let f ∈ NS∆ and suppose that

KJ =
⋃

j∈J⊂I

Kj

bound some connected component Al of S
2\∆.

Both S2\θf and S2\∆ are complements of embeddings of ∆ =
⋃k
i=1Bq

into S2. If ϕ is any embedding

ϕ(
k⋃
q=1

(Bq = D2\mqdiscs)→ S2

then

S2\ϕ(
k⋃
i=1

Bq)

has Σmq components. Thus both S2\θf and S2\∆ have the same
number of components. f maps S2\∆ to S2\θf . As f is degree 1 this
map is surjective. Thus f induces a bijection on connected components
between those two spaces. f−1(Bl) is then a connected component of
S2\θf . Denote this component by Cml

. As

f : Cl → Bl

is surjective
f(δCl) ⊂ δBl = KJ
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thus f−1(KJ) bounds Cm.
Next we show that πi is surjective. It is enough to show this for π1.

Let γ ∈ C. We seek to construct an f inducing γ. It is more natural
to construct f−1 and this is the task we take up.
Let

f−1|∆ = γ

We now aim to extend f−1 over each connected component Aml
of

S2\∆. f−1(δAml
) bound a component Cl of S

2\θf . Cl like Al is a genus
0 surface. Both have the same number of boundary components. Thus
Cl is abstractly di�eomorphic to Al and moreover we can construct a
di�eomorphism

Cl → Al

which extends f−1 on δAl.
Finally, we show that each πi has path lifting. Here we will explain

the proof for π1, the proof for π2is identical except by obvious substi-
tutions. Let P be a polyhedron and let

Φ : P × I → C
be a family of embeddings. Let

Φlift : P × {0} → NS∆

be an initial lifting of Φ. We seek to extend Φlift to a lifting over all
P ×I. Let φ(p, t) be a family of di�eomorphims in Diff(S2) such that

φ(p, t) ◦ (Φ(p, 0)) = Φ(p, t)

Then let

Φlift(p, t) = Φlift(p, 0) ◦ φ−1(p, t)

This is the required lifting. To construct the analogous proof for π2

replace NS∆ everywhere by Diff(S2).
�

�

Corollary 9.13. C is connected.

Proof. This follows immediately from the surjectivity of π2. �

We denote the degree 1 self maps of Al which are the identity near
the boundary by (Al, Al)

◦
1. Then the �ber of π1 is homeomorphic to∐

i

(Al, Al)
◦
1

Summarizing we have:
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∐
i(Al, Ali)

◦
1

↓
NS∆

↓ π1

C
We have a similar �bration of Diff(S2):∐

iDiff(Al)
◦

↓
Diff(S2)
↓ π2

C
Where Diff(Al)

◦ denotes the di�eomorphisms of Al which are the
identity near the boundary. The inclusion η induces a morphism of
these �brations:

η :
∐

iDiff(Al)
◦ ↪→

∐
i(Al, Al)

◦
1

↓ ↓
η : Diff(S2) ↪→ NS∆

↓ π ↓ π
C id C

Moreover the induced map

η : Diff(Al)
◦ ↪→ (Al, Al)

◦
1

is a homotopy equivalence. Thus

η : Diff(S2) ↪→ NS∆

is also a homotopy equivalence by the 5-lemma. Our Lemma, and thus
Theorem 9.9, then follow from applying Proposition 9.6 to η and the
cover given by the Uj.

10. Appendix

10.1. Tamed almost complex structures preserving sub-bundles.
In this subsection we collect the results we require about tamed almost
complex structures preserving sub-bundles. They are listed below in
order of their di�culty. The �rst two are classical, the last less so, and
we provide a proof of it here.

De�nition 10.1. If π : V → B is a symplectic vector bundle, Let
πJ : J (V ) → B be the bundle such that π−1

J (b) are the tamed almost
complex structures on π−1(b). If ηi ⊂ V are symplectic sub bundles,
let πJ : J (V, η1, η2, ...)→ B be the (possibly locally non trivial) bundle
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where π−1
J (b) are the tamed almost complex structures on π−1(b), which

preserve each ηi.
The �rst result goes back at least to Gromov's seminal paper.

Lemma 10.2. Let Let (V, ω)→ B be a symplectic vector bundle over a
polyhedron B. Then ρ : J (V )→ B is a bundle with contractible �bers.

Next we consider almost complex structures preserving a given plane
�eld. This is also a classical result:

Lemma 10.3. Let (V, ω) → B be a 4 dimensional symplectic vector
bundle over a polyhedron B. Let ϑ ⊂ V be a 2 dimensional symplectic
sub-bundle of V . Then ρ : J (V, ϑ) → B is a bundle with contractible
�bers.

Let Q ⊂ B be a sub-polyhedron of B. Then given a section φQ
of ρ : J (V, ϑ) → Q, Lemma allows to construct a section φ of ρ :
J (V, ϑ)→ B extending φQ.
Finally we will need to consider the tamed almost complex structures

preserving 2 plane �elds. Preserving 2 planes requires a good deal more
work than preserving one, as pairs of symplectic planes have moduli.
This, while probably not new, is much less well known and we include
a proof of it here.

Proposition 10.4. Let (V, ω) → B be a 4 dimensional symplectic
vector bundle over a polyhedron B. Let ϑ1, ϑ2 ⊂ V be 2 dimensional
symplectic sub-bundles of V , such that ϑ1, ϑ2 intersect transversely in
each �ber, and the the symplectic orthogonal projection π⊥12 : ϑ1 → ϑ2

is orientation preserving. Let Q ⊂ B be a sub-polyhedron, and let φQ
be a section of ρ : J (V, ϑ1, ϑ2)→ B , de�ned over Q.

Lemma 10.5. Then: There is a section φ of ρ which extends φQ.

Proof. Constructing φ is equivalent to constructing a section of φ1⊕φ2

of J(ϑ1) ⊕ J(ϑ2) such that the resulting almost complex structure is
tamed by ω. Denote by φiQ the sections such that

φQ = φ1
Q ⊕ φ2

Q

Constructing φ1 alone is fairly simple, for by Lemma:

J(ϑ1)→ B

is a bundle with contractible �bers. Thus this bundle admits a section
φ1 extending φ1

Q. We now proceed with the problem of constructing φ2

extending φ2
Q.

Our main tool in will be the following Lemma in Linear Algebra,
which provides the almost complex structures satisfying our conditions
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with (something resembling a) convex structure. This will allow to use
partitions of unity to construct φ2.

Lemma 10.6. Let V, P be 2 symplectic planes in R4 with symplectic
structure ω. Let π⊥ : P → V ⊥ denote the symplectic orthogonal pro-
jection. Suppose that π⊥ is orientation preserving. Fix an ω−tame
complex structure JP on P , and s1 ∈ V, s1 6= 0. Denote the space of
almost complex structures JV on V such that J = (JP ⊕ JV ) is ω-tame
by JV .
Then: Φs1 : JV → V given by JV → JV (s1) gives a homeomorphism

of JV onto a convex set.

The proof of this Lemma is involved, and we defer it to the end
of this subsection. For now we concentrate on its application to our
argument. It has the following immediate consequence

Lemma 10.7. Let s be a section of ϑ2 ,non vanishing over a set Xs ⊂
B. Then there is a section φ2 ∈ J (ϑ2) such that φ2 extends φ2

Q and

φ1 ⊕ φ2 is tamed by ω over Xs.

Proof. As s is non-vanishing, α is determined by its action on s. Lemma
10.6 tells us that the set of allowable choices for α(s) form an open,
convex set. As Xs is paracompact, so we can use a partition of unity
to construct a section sα of ϑ2 over Xs, so that for

φ2 : s → sα

φ2 : sα → −s
the almost complex structure φ1 ⊕ φ2 is tamed by ω. �

Proposition 10.4 then follows by applying a partition of unity to a
covering Xsi

coming from a �nite set of sections {si} of Φ1∗
Z (η) such

that
⋃
iXsi

= Σ× P .
�

10.1.1. Proof of Linear Algebra Lemma. In this subsection we provide
the proof of the promised linear algebra lemma.

Lemma. 10.6Let V, P be 2 symplectic planes in R4 with symplectic
structure ω. Let π⊥ : P → V ⊥ denote the symplectic orthogonal pro-
jection. Suppose that π⊥ is orientation preserving. Fix an ω−tame
complex structure JP on P , and s1 ∈ V, s1 6= 0. Denote the space of
almost complex structures JV on V such that J = (JP ⊕ JV ) is ω-tame
by JV .
Then: Φs1 : JV → V given by JV → JV (s1) gives a homeomorphism

of JV onto a convex set.
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Proof. We begin by establishing some useful coordinates. Let π : P →
V denote the symplectic orthogonal projection.
Let

p ∈ π−1(s1) ⊂ P

Then
p = w1 + s1

where w1 ∈ V ⊥.

JPp = w2 + s2

where w2 ∈ V ⊥, s2 ∈ V ⊥.
Then

Jw1 = w2 + s2 − JV s1

Applying J to both sides of this equation we compute Jw2:

Jw2 = −w1 − JV s2 − s1

Throughout this lemma we will suppress ω and just denote the pairing
of two vectors p and q by (p, q).
π⊥ is orientation preserving. Thus as (π⊥(s), Jπ⊥(s)) > 0 their pro-

jections to V ⊥ must pair with the same sign, and so (w1, w2) > 0 as
well. To lessen our burden of constants: scale s1 so that

(w1, w2) = 1

This scaling in turn dilates the image of Φs1 , and thus does not a�ect
its convexity.
As P is symplectic (w1, w2) + (s1, s2) > 0 and thus

(10.1) (s1, s2) > −1

We now commence in earnest. Let w + v ∈ V ⊥ ⊕ V = R4. What
must we require of JV so that (w + v, J(w + v)) > 0 for all such pairs
w and v ?

(w + v, J(w + v)) = (w, Jw) + (w, Jv) + (v, Jw) + (v, Jv)

(w, Jv) = 0 as J must preserve V . And we have:

(w, Jw) + (v, Jw) + (v, Jv)

(v, Jw) = (v, q) where q is the projection of Jw to V. This term
may well be negative. We seek to bound its absolute value in terms
of the other 2 (positive) terms. We replace v by −Jv throughout the
equation. As we seek a bound for all pairs w,v this has no e�ect on
our task. Moreover as (v, Jv) = (−JJv,−Jv) this has no e�ect on the
third term. As JV has determinate 1, it preserves ω|V , thus (·, JV ·) is
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a (symmetric) inner product on V . The second term (v, q) becomes
(−JV v, q) = (v, JV q).
We seek to show that:

|(v, JV q)| ≤ (w, Jw) + (v, Jv)

Note that the right-hand side of the inequality depends only on the
magnitude of v and not its direction. Cauchy-Schwartz then implies
that:

|(v, JV q)| ≤ (v, JV q)
1
2 (q, JV q)

1
2

If v = kq this bound is achieved. Thus the tamed JV are precisely those
such that:

(10.2) (v, JV v)
1
2 (q, JV q)̇

1
2 < (w, Jw) + (v, Jv)

We now unpack this inequality. Write w as aw1 + bw2. Then

(w, Jw) = (aw1 + bw2, J(aw1 + bw2))

= (aw1 + bw2, a(w2 + s2 − JV s1) + b(−w1 − JV s2 − s1))

= a2(w1, w2)− b2(w2, w1)

= a2 + b2

(q, JV q) = (as2 − aJV s1 − bJV s2 − bs1, aJV s2 + as1 + bs2 − bJV s1)

Expanding the right hand side creates 16 pairings, however some of
them are 0, and the 4 �ab� terms all cancel. Upon summing we are left
with:

(q, JV q) = λ(s1, JV s1) + λ(s2, JV s2)− 2λ(s1, s2)

where we denote (a2 + b2) by λ.
Our inequality 10.2 then reads:

(v, JV v)
1
2 (λ(s1, JV s1) + λ(s2, JV s2)− 2λ(s1, s2))

1
2 < λ+ (v, JV v)

If v = 0 the inequality places no restriction on JV . Thus we may assume
that v is not zero. Since the condition (w+v, J(w+v)) > 0 is invariant
under scaling by a positive constant, we may scale the vector v +w so
that (v, JV v) = 1, if we assume that JV tames ω on V. We do so, are
left with one free parameter λ > 0.

(λ(s1, JV s1) + λ(s2, JV s2)− 2λ(s1, s2))
1
2 < λ+ 1

squaring both sides yields:
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λ|(s1, JV s1) + (s2, JV s2)− 2(s1, s2)| < λ2 + 2λ+ 1

This may be achieved, for all λ if and only if:

|(s1, JV s1) + (s2, JV s2)− 2(s1, s2)| < 4(10.3)

At this point our proof bifurcates into two cases:

Case 1. rk(π = 2))

Φs(JV ) = JV s1

JV s1 = cs1 + ds2(10.4)

where c, d ∈ R.

We now describe the constraints that 10.3 places on c and d. We can
compute JV s2 by applying JV to both sides of equation 10.6. We get:

JV s2 = −1

d
(c2 + 1)s1 − cs2

Substituting into 10.3 we get:

|(d+
c2 + 1

d
− 2(s1, s2)| < 4

JV 's tameness restricted to V 2 translates to d having the same sign
as (s1, s2). Thus (d+ c2+1

d
) and −2(s1, s2) have opposite sign, and our

inequality is equivalent to:

|(d+
c2 + 1

d
)| < 4 + 2(s1, s2)

If we denote 4 + 2(s1, s2) by γ, the set of whose solutions of this in-
equality form disc, centered at

(c, d) = (0,
γ

2
)

with radius (γ
2

4
− 1)

1
2 . Since (s1, s2) > −1 by 10.1 , γ > 2, and this

disc is nonempty.

Case 2. rk(π) = 1

Write s as

s = αs1 + βs3

where α, β ∈ R, and s3 ∈ V , such that (s1, s3) = 1. We introduce s3

because s1 and s2 are linearly dependent.

2we assumed this when we scaled v so that (v, Jv) = 1



A SYMPLECTIC ALEXANDER TRICK AND SPACES OF SYMPLECTIC SECTIONS59

Then if

JV s1 = cs1 + ds3

we have that

JV s3 = −1

d
(c2 + 1)s1 − cs3

Φs(JV ) = JV s

JV s = αJV s1 + βJV s3(10.5)

= (αc+−β
d

(c2 + 1))s1 + (αd− βcs1)(10.6)

As s2 = ks1, the constraints that 10.3 places on c and d are much
weaker. Substituting into 10.3 we get:

|d| < k0 =
4

1 + k2

and no condition on c. JV 's tameness restricted to V 3 translates to
d having the same sign as (s1, s3), and thus the image of Φs are the
vectors

(αc+−β
d

(c2 + 1))s1 + (αd− βcs1)

where c is free, α and β are �xed constants one of which must be
non-zero, and

0 ≤ d <
4

1 + k2

These vectors form a convex set. In fact the map

(c, d) → (αc+−β
d

(c2 + 1), αd− βc)

gives a di�eomorphism of the strip,

{(c, d) : 0 < d < k0}

onto the region in the plane to the convex side of the parabola:

(c, d) : (αc+− β
k0

(c2 + 1), αk0 − βc)

The case β = 0 is degenerate and yields the band

(c, d) : 0 < d < 4

Case 3. rk(π) = 0

3we assumed this when we scaled v so that (v, Jv) = 1
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This case actual requires no proof at all, for here the two planes are
orthogonal. Thus for any JV tamed by ω|V , JV ⊕ JP is tamed by ω,
and im(Φs) is a half plane.

�

10.2. Applications. In this subsection we collect some immediate con-
sequences of the Lemmas in the previous subsection. Each follows
quickly from the lemmas in the previous section.
Let {Si} be a collection of disjoint symplectic curves. Denote the

tamed almost complex structures preserving the tangent space to each
curve by J?.

Proposition 10.8. J? is contractible.

Proposition 10.9. Let N be a symplectic 4-manifold, let P be a poly-
hedron, and let Φ : P → SF∗ be a family of symplectic �brations with
symplectic section. Then there is a family ΦJ : P → J of tamed almost
complex structures such that Φ(p) is ΦJ(p) holomorphic. Moreover if
Q is a sub polyhedron of P and ΦJ |Qmakes Φ|Q holomorphic, we can
extend ΦJ |Q to such map on all P .

Proposition 10.10. Let P be a polyhedron. Let Φ : P → SF∞
0 . There

is a map ΦJ : P → J such that Φ(p) is ΦJ(p) holomorphic. Moreover
if Q is a sub polyhedron of P and ΦJ |Qmakes Φ|Q holomorphic, we can
extend ΦJ |Q to such map on all P .

Proposition 10.11. Let Φ : B × I → Z0,∞, along with a lifting Φlift :
B×0→ SF∞

0 . There is a ΦJ : B×I → J , such that Φ(b, t) is ΦJ(b, t)
holomorphic, and Φlift(b, 0) is ΦJ(b, 0) holomorphic.

10.3. A non-Traditional 5 Lemma. The 5-Lemma is usually pre-
sented in the context of chain complexes, and as such it is usually stated
as a Lemma about abelian groups. However its usual proof actually
applies in much more generality. As we will require it we present the
more general statement here. The proof is the standard one, which
we reproduce from Spanier, with cosmetic changes due to the di�erent
language.

Lemma 10.12. Let

G5
α5→ G4

α4→ G3
α3→ G2

α2→ G1

γ5 ↓ γ4 ↓ γ3 ↓ γ2 ↓ γ1 ↓
H5

β5→ H4
β4→ H3

β3→ H2
β2→ H1

be a diagram of pointed sets, with each row exact. Suppose that G3

and G2 are groups, γi makes Hi a Gi-set, and the morphisms α3 and
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β3 respect this structure. Suppose further that γ1, γ2, γ4 and γ5 are
bijections then γ3 is a bijection.

Proof. Denote the base point of each set by e. For G3 this is also the
identity element. We �rst show that γ3 is an injection. It is enough
to show that γ−1

3 (e) = e, as γ3 is a morphism of G3 sets. Suppose
γ3(g3) = e. Then γ2α3(g3) = β3γ3(g3) = e. Thus α3(g3) = e, as γ2 is
injective. Thus, by exactness, there is a g4 ∈ G4 such that α4(g4) = g3.
Then β4γ4(g4) = γ3(g3) = e. Thus there is an h5 ∈ H5 such that
β5(h5) = γ4(g4), and so g4 = α5(g5). Therefore g3 = α4α5(g5) = e.
Next we show that γ3 is surjective. Let h3 ∈ H3. There is a g2 ∈

G2such that γ2(g2) = β3(h3). Then γ1α2(g2) = β2β3(h3) = e. Therefore
α2(g2) = e, and there is g3 ∈ G3 such that α3(g3) = g2. Then

β3(h3 · γ3(g
−1
3 )) = β3(h3) · γ2(α3(g3)

−1)

= β3(h3) · γ2(g
−1
2 ))

= e

and thus there is an h4 ∈ H4 such that β4(h4) = h3 · γ3(g
−1
3 ). Let

g4 ∈ G4 be such that γ4(g4) = h4. Then α4(g4)g3 ∈ G3 and

γ3(α4(g4)g3) = β4(h4)γ3(g3)

= h3 · γ3(g
−1
3 )γ3(g3)

= h3 · γ3(g3)
−1 · γ3(g3)

= h3

�

Remark 10.13. To prove that γ3 is injective we needed only that γ2 and
γ4 are injective, and γ5was surjective. We also needed only that G3 was
a group and thatH3 was a G3 set. We did not need the structures on G4

and H4. To prove that γ3 was surjective we needed that γ2and γ4 were
surjective, and that γ1 was injective. However the above statement is
general enough for our purposes.
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