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Abstract of the Dissertation

Analytic torsion and Faddeev-Popov ghosts

by

Andrew McIntyre

Doctor of Philosophy

in

Mathematics

State University of New York

at Stony Brook

2002

The regularized determinant of the Laplacian on n-differentials on

a hyperbolic Riemann surface is studied. The main result is an in-

trinsic characterization of the connection form for the determinant

line bundle, endowed with the Quillen metric, over the Teichmüller

space, in terms of the Green’s function of the Cauchy-Riemann op-

erator. Further, an explicit series representation of that Green’s

function, on a Schottky uniformization of the surface, is estab-

lished. This is a rigorous version of physical heuristics due to

Martinec and Verlinde & Verlinde, relating the determinant to the

stress-energy tensor of Faddeev-Popov ghost fields on the Riemann
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surface. One corollary is a simpler proof of the rigorous hyperbolic

Belavin-Knizhnik formula, due to Zograf and Takhtajan, which is

an intrinsic characterization of the curvature form of the determi-

nant line bundle with Quillen metric. Another corollary is a proof

of an explicit holomorphic factorization formula for n = 1 and

genus greater than 1, due to Zograf, which generalizes the well-

known formula for n = 1 and genus 1 relating the determinant of

the Laplacian to the Dedekind eta function.
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Chapter 1

Introduction

1.1 History

Let ∆n be the Laplacian acting on n-differentials φ(z)(dz)n on a compact

Riemann surface X of genus g ≥ 1 equipped with a Riemannian metric

ρ(z)|dz|2, and let {λj}∞j=1 be its positive eigenvalues. (See the next chap-

ter for definitions.) Formally, if we form the function ζ(s) =
∑
λ−s

j , then

−ζ ′(0) =
∑

log λj = log det ∆n. Of course, the two equality signs are mean-

ingless, but −ζ ′(0) is not meaningless since ζ(s) has a meromorphic continua-

tion to the whole s-plane, with a single simple pole at s = 1 [MP49]. Hence the

regularized determinant of the Laplacian is defined to be exp(−ζ ′(0)). (Ray

and Singer [RS73] studied the regularized determinant of the Laplacian acting

on differential forms with values in a unitary line bundle, on a Kähler manifold

of any dimension; taking a graded sum gives the analytic torsion.)

These functions are of interest in string theory. In [Pol81], Polyakov showed

how to perform a “sum over histories” for the bosonic free string (the simplest

case). A string is produced from the vacuum, perhaps splits into two or more
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pieces, rejoins, and eventually pops out of existence. The graph of this process

versus time is a metric surface. To calculate the “vacuum to vacuum ampli-

tude”, one must sum over all ways this can happen (over all metric surfaces),

with an appropriate weighting factor. Polyakov showed that the weighting

factor is of the form

W =
det ∆−1

detN−1 detN2

(
det ∆0

detN0 detN1

)−D/2

,

where D is the dimension of the spacetime and Nn is the Gram matrix (φj, φk)

of inner products for some choice {φj}d
j=1 of basis for ker ∆n. (By convention

detNn = 1 when ker ∆n = {0}.) This process is much more tractable if W

can be made invariant under conformal changes of the metric, since then W

descends to a function on the Teichmüller space Tg, so the “summation” may

be performed over a finite-dimensional space. To this end, Polyakov calculates

the “conformal anomaly”:

∂

∂ε

∣∣∣
ε=0

log

(
det ∆n

detNn detN1−n

)
= −6n2 − 6n+ 1

12π

∫
X

ρ−1(δρ)R,

for a family of metrics
(
ρ(z) + ε(δρ(z))

)
|dz|2. R is the Gaussian curvature of

the metric. From this it follows that the conformal dependence cancels in W

exactly when D = 26.

It is then natural to ask if W has any structure with respect to the com-

plex structure on Tg. Naively, one might hope that the property detAB =

detA detB holds for regularized determinants, at least in this case; we could

then use ∆n = ∂
∗
n∂n to factor the determinant as det ∆n = |det ∂n|2, which
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would have the great advantage that, since ∂n = ∂ does not depend on the

metric, and since it depends holomorphically on the Teichmüller coordinates

(see the next chapter for the precise meaning of that statement), det ∂n should

presumably be a holomorphic function on Tg. The first problem is that we have

thrown out zero eigenvalues in our regularized determinants, but this is easily

remedied: the appropriate thing to do is divide by detNn detN1−n as we have

done above (see [Qui85] or [VV87] for the reasoning). Then the conjectured

formula should be

det ∆n

detNn detN1−n

= |Fn|2

for some choice of metric in each conformal class, and for some holomorphic

function Fn : Tg → C. Belavin and Knizhnik showed that this is not quite

true, by calculating the “holomorphic anomaly” [BK86]:

∂

∂ε

∂

∂ε

∣∣∣
ε=0

log

(
det ∆n

detNn detN1−n

)
=

6n2 − 6n+ 1

12π

∫
X

|µ|2Rρ, (1.1)

for a family of metrics ρ(z)|dz+εµdz|2, with µ a harmonic Beltrami differential

on X. However, again when D = 26, this anomaly cancels in W so that

∂

∂ε

∂

∂ε

∣∣∣
ε=0

logW (ε) = 0

and hence locally

W (ε) = |G(ε)|2

where G is some holomorphic function of ε. This suggests that

W = |G|2
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for some holomorphic function G : Tg → C, which was later shown to be

correct.

Since the dependence of
det ∆n

detNn detN1−n

on conformal changes of the met-

ric is relatively well understood, it is reasonable to restrict to metrics of con-

stant curvature −1 (or 0 when g = 1), and in this way consider det ∆n to be

a function on Tg. We will do this for the remainder of the introduction (and

throughout the rest of the thesis). The corresponding version of equation (1.1)

should give some information about the geometry of Tg. The model for this

is the paper [Qui85], in which Quillen studies the simpler case of the family

of all Cauchy-Riemann operators D on a fixed vector bundle E over a fixed

Riemann surface X. This is simpler because X is fixed, and because the pa-

rameter space A is linear (an affine space based on the End E-valued (0, 1)

forms on X). He shows that

∂∂ log
detD∗D

detN detN∗

coincides with the natural Kähler form on A (see [Qui85] for a precise state-

ment). Further, he shows that

detD∗D = exp(−‖D −D0‖2)|F (D,D0)|2

for a holomorphic function F : A → C and a choice of basepoint D0 ∈ A

(again, see [Qui85] for the exact theorem).

The case of det ∆n for constant curvature metrics is considerably more
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subtle, but Takhtajan and Zograf found that an analogous result holds [ZT87a]:

∂∂ log

(
det ∆n

detNn detN1−n

)
(µ, ν) =

6n2 − 6n+ 1

12π

∫
X

µνρ (1.2)

for harmonic Beltrami differentials µ and ν on X; that is, the (1, 1) differential

form
det ∆n

detNn detN1−n

on Tg is, up to a constant factor, the Kähler form of the

Weil-Petersson metric on Tg. Further, guided by physical heuristics regarding

this formula [Pol81], they were able to find a potential for the Weil-Petersson

metric on Tg, that is, a function S : Tg → R>0 (the “classical Liouville action”)

satisfying ∂∂S = −2iωWP [ZT87b]. S is given as an explicit integral expression

over a Schottky uniformization of the surface. In fact, S is well-defined on the

Schottky space Sg, which is a quotient of Tg.

The result (1.2) suggests that, at least locally,

det ∆n

detNn detN1−n

= exp

(
−6n2 − 6n+ 1

12π
S

)
|Fn|2

for some holomorphic function Fn : U ⊂ Tg → C and some appropriate choice

of basis for ker ∆n (or ker ∆1−n). In the case n = 1, Zograf was able to show

that this is correct, and in fact holds true globally: [Zog89]:

det ∆1

detN1 detN0

= exp

(
− 1

12π
S

)
|F1|2 (1.3)

where the basis for Abelian differentials is chosen to be normalized in the usual

way. The holomorphic function F1 : Tg → C is defined globally, and in fact it

descends to a holomorphic function on Sg.

Zograf was able to go further, and find an explicit product formula for
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F1. There already existed an explicit product formula for det ∆n, when g > 1

[DP86], [Vor87], [Sar87]:

det ∆n =


cn,gZ(n) : n ≥ 2

c1,gZ
′(1) : n = 1

where

Z(n) =
∏
[γ]

∞∏
m=0

(1− λm+n
γ )

is the Selberg zeta function. [γ] runs over all primitive conjugacy classes (ex-

cept the identity) in a Fuchsian group uniformizing X, and λγ is the multiplier

of γ, that is, the unique complex number such that γ is conjugate to multipli-

cation by λγ and 0 < |λγ| < 1. This does not address the relation of det ∆n to

the complex structure of Tg, though, since Z(n) is only real-analytic and has

no obvious relation to the complex structure. A better clue comes from the

case g = 1, which (in different language) is due to Kronecker (see[Lan87]):

det ∆n = (Imτ)2|η(τ)|4

where

η(τ) = λ
1
24

∞∏
m=1

(1− λm)

is the classical Dedekind η-function, with τ ∈ H ' T1 and λ = e2πiτ . Note

that η is similar to the Selberg zeta function, except that λ is the multiplier for

a Schottky group uniformizing the torus (it has one generator, and its funda-

mental domain is an annulus). Zograf found an analogue F1 of the Dedekind
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zeta function for genus g > 2 that makes (1.3) true:

F1 =
∏
[γ]

∞∏
m=0

(1− λm+1
γ ), (1.4)

where the product now goes over primitive conjugacy classes in a Schottky

group uniformizing X! It is evident from this expression that F1 is indeed

holomorphic and well defined on Sg. The product only converges on a proper

open subset of Sg (for those groups whose exponent of convergence is strictly

less than 1), but (1.3) shows that there is an analytic continuation to all of Sg.

1.2 This thesis

The guiding problem for this work is to extend Zograf’s results (1.3) and (1.4)

to n ≥ 2. This problem splits into three parts:

1. Find an intrinsic characterization of ∂ log
det ∆n

detNn detN1−n

∈ T ∗
[X]Tg, in

terms of the Riemann surface X associated to the point [X] ∈ Tg. Fur-

ther, express it, up to certain known terms, in a Poincaré series with

respect to a Schottky group uniformizing X.

2. Find an appropriate global normalization for a basis of holomorphic n-

differentials.

3. Find a product formula for Fn.

To give a more specific idea of what is asked for in problem 1, note that the

formula (1.2), together with the construction of the Weil-Petersson potential S,

constitute a solution of this problem for ∂∂ log
det ∆n

detNn detN1−n

∈ T ∗
[X]Tg ⊗ T ∗

[X]Tg.
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For n = 1, the solution to problem 1 was given in [ZT87a]:

∂ log
det ∆n

detNn detN1−n

=
1

6π

(
RF −RB

)
(1.1)

where RF is the projective connection associated to the Fuchsian uniformiza-

tion of X, and RB is the projective connection associated to the classical

Bergman kernel B(w,w′) on X,

RB(w) = 6 lim
w′→w

(
B(w,w′)− 1

π

1

(w − w′)2

)

(see [ZT87a] for definitions). The equality in (1.1) means that the (1, 0) form

on Tg on the left is represented by the quadratic differential on X on the right.

The kernel B(w,w′) has an explicit representation as a Poincaré series with

respect to a Schottky group uniformizing X:

B(w,w′) =
1

π

∑
γ

1

(w − γw′)2
γ′(w′). (1.2)

The main results of this thesis are generalizations of (1.1) and (1.2) to

n ≥ 2, giving a complete solution to problem 1. The intrinsic characterization

generalizing (1.1) is theorem 4.1, where the Bergman kernel is replaced by

the Green’s function of ∂n. The series representation of the Green’s function,

generalizing (1.2), is given in theorems 3.2 and 3.3. The appearance of the

Weil-Petersson potential S is explained in theorem 5.1.

The idea for the statement of the main results comes from the physical

heuristics developed by Verlinde & Verlinde, who used a functional integral
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to assert that ∂ log
det ∆n

detNn detN1−n

is given by a “b-c stress energy tensor”

[VV87], and Martinec, who gave a computation of the b-c stress-energy tensor

on a Schottky uniformization, up to certain undetermined “zero-mode” terms

[Mar87]. We determine the missing zero-mode terms in [Mar87] and make

rigorous the constructions given there, and show directly that the b-c stress

energy tensor equals ∂ log
det ∆n

detNn detN1−n

, bypassing the functional integral

(and hence giving a rigorous justification for it).

Further, Martinec gives a rough calculation (again, not rigorously and up to

some undetermined terms, in particular, ignoring problem 2) which indicates

that the function Fn is what one would expect from the above discussion

[Mar87]:

Fn =
∏
[γ]

∞∏
m=0

(1−Km+n
γ ).

The solutions to problems 2 and 3 do not appear in this work but will be

addressed in a later publication.
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Chapter 2

Background

In this chapter, we fix notations and definitions for use in the rest of the paper,

and collect some results we will need. Everything in this chapter is known.

2.1 Riemann surfaces, bundles, differential op-

erators

Throughout, X will denote a compact Riemann surface of genus g > 1, en-

dowed with its unique Poincaré metric of constant curvature −1, written lo-

cally as ds2 = ρ(z)|dz|2, ρ > 0. Let K be the holomorphic cotangent bundle

of X, and let Dp,q(Kn⊗Km
) be the space of smooth differential forms of type

(p, q) on X with values in Kn ⊗ K
m

. An (n,m)-differential (abbreviated to

n-differential when m = 0) is an element of D0,0(Kn ⊗K
m

); symbolically, it

is an expression of the form φ(z)(dz)n(dz)m. Note that Dp,q(Kn ⊗ K
m

) '

D0,0(Kn+p ⊗K
m+q

).

The metric on X induces a pointwise Hermitian metric 〈f, g〉 = ρ−n−p−qfg

and a global Hermitian metric (f, g) =
∫

X
ρ1−n−p−qfg on Dp,q(Kn). (Here and
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in the sequel we abbreviate, for example,

∫
X

ρ1−n−p−qfg =

∫
X

ρ(z)1−n−p−qf(z)g(z)d2z,

where z is any local coordinate (summing over partitions of unity if necessary)

and

d2z =
i

2
dz ∧ dz

is the usual plane measure.)

There is a unique connection

D = ∂n ⊕ ∂n : D0,0(Kn) → D1,0(Kn)⊕D0,1(Kn)

compatible with the metric and complex structure; it is given by

∂n = ∂ : D0,0(Kn) → D0,1(Kn) ' D0,0(Kn ⊗K)

and ∂n = ρn∂ρ−n : D0,0(Kn) → D1,0(Kn) ' D0,0(Kn+1),

where ∂ = ∂/∂z and ∂ = ∂/∂z.

With respect to the Hermitian metric, the operator ∂n : D0,0(Kn) →

D0,1(Kn) has adjoint ∂
∗
n = −ρ−1∂n : D0,1(Kn) → D0,0(Kn), so the ∂-Laplacian

∆ = ∂
∗
∂ + ∂∂

∗
is given by

∆0,0
n = ∂

∗
n∂n = −ρ−1∂n∂n : D0,0(Kn) → D0,0(Kn)

∆0,1
n = ∂n∂

∗
n = −∂nρ

−1∂n : D0,1(Kn) → D0,1(Kn).
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We abbreviate ∆n = ∆0,0
n .

Since ∆n is self-adjoint, its eigenvalues are nonnegative real, and since X

is compact, Hodge theory implies that they form a discrete set accumulating

only at infinity. Further, each eigenspace is finite dimensional, and the L2

closure of D0,0(Kn) equals the direct sum of the eigenspaces.

The nonzero spectrum of ∆1−n is identical to that of ∆n, since ∆0,0
n = ∂

∗
n∂n

and ∆0,1
n = ∂n∂

∗
n have the same nonzero spectrum, as does ∆0,1

n , and

∆0,0
1−n = ρ−n∆0,1

n ρn.

Here ∆0,1
n means

∆0,1
n = −∂ρn−1∂ρ−n : D1,0(K

n
) → D1,0(K

n
);

it has the same spectrum as ∆0,1
n since the eigenvalues are real.

Write ∆0
n for the restriction of ∆n to the orthogonal complement of ker ∆n,

and write ∂
0

n for the restriction of ∂n to the same space. Then, for n ≥ 2,

(∆0
n)−1∂

∗
n = (∂

0

n)−1.

2.2 Fuchsian and Kleinian groups

See [Ber72], [Ber81] for the material in this and the next section. The Rie-

mann surface X may be realized as a quotient space of the upper half plane

H = {z = x + iy|y > 0} by a Fuchsian group Γ, that is, a discrete group of

hyperbolic linear fractional transformations with real coefficients. The hyper-
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bolic metric y−2|dz|2 then induces the Poincaré metric ρ on X. The space

of (n,m)-automorphic forms is the space of smooth functions φ : H → C

satisfying

φ(γz)γ′(z)nγ′(z)
m

= φ(z)

for all z ∈ H and for allγ ∈ Γ; it is isomorphic to the space of (n,m)-

differentials on X and the two spaces will be implicitly identified in the sequel.

More generally, X may be realized as the quotient of an open set Ω0 ⊂ C

by a Kleinian group Σ, in the following sense. Suppose Σ ⊂ PSL(2,C) is a

discrete group of linear fractional transformations. The limit set Λ ⊂ C of Σ

is the set of accumulation points of orbits of Σ, and the ordinary set Ω ⊂ C

of Σ is the complement of the limit set. The group Σ is called a Kleinian

group if Ω is nonempty, and it is called a function group if Ω has at least one

nonempty connected component Ω0 ⊂ Ω invariant under the action of Σ. We

say that X is uniformized by a function group Σ if X ' Ω0/Σ for such an

invariant component Ω0. In this case the space of (n,m)-differentials on X is

isomorphic to the space of smooth functions φ : Ω0 → C satisfying

φ(γw)γ′(w)nγ′(w)
m

= φ(w)

for all w ∈ Ω0 and for all γ ∈ Σ.

Of particular importance will be the case where Σ is a Schottky group, that

is, a free Kleinian group, all of whose elements (except the identity element)

are loxodromic (i.e. not elliptic or parabolic). In this case, Ω = Ω0 has

only one component. A fundamental domain may be found which is bounded

by 2g Jordan curves {Cj, C
′
j}, such that the g generators {γj} of Σ satisfy

13



γj(Cj) = −C ′
j. A classical theorem (the retrosection theorem) asserts that

any Riemann surface X may be realized in this manner.

Suppose X is uniformized by both a Fuchsian group Γ and a Kleinian group

Σ. By the uniformization theorem, there is a holomorphic, surjective, locally

invertible map J : H → Ω0, such that γ ◦ J ∈ Γ if and only if γ ∈ Σ.

Naturally, (n,m)-differentials may be pulled back by J : given an (n,m)-

automorphic form φΣ with respect to Σ on Ω0, define an (n,m)-automorphic

form φΓ with respect to Γ on H by

φΓ(z) = φΣ(J(z))J ′(z)nJ ′(z)
m
.

Less obviously, (n,m)-differentials may be pushed forward by J . Given φΓ an

(n,m)-automorphic form with respect to Γ, define φΣ by

φΣ(J(z)) =
φΓ(z)

J ′(z)nJ ′(z)
m .

To show this is well-defined, let J(z̃) = J(z) for some z̃, z ∈ H. Then z̃ = γz

for some γ ∈ Γ such that J ◦ γ = J , and hence

φΣ(J(z̃)) =
φΓ(z)

γ′(z)nγ′(z)
m · 1

J ′(γz)nJ ′(γz)
m

=
φΓ(z)

(Jγ)′(z)n(Jγ)′(z)
m

=
φΓ(z)

J ′(z)nJ ′(z)
m = φΣ(J(z)).

When there is no risk of confusion, we will omit the superscripts and let the

pullback or pushforward be implied by the domain of the variable: for z ∈ H
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and w ∈ Ω0, φ(z) = φΓ(z), while φ(w) = φΣ(w).

2.3 Teichmüller and Schottky spaces

Let Tg be the Teichmüller space of compact, marked (i.e. with a distinguished

standard basis {A1, . . . , Ag, B1, . . . , Bg} of π1(X)) Riemann surfaces of genus

g > 1. This is realized as the Teichmüller space of a corresponding Fuch-

sian group with a distinguished set of standard generators. Tg has a natural

structure of a complex manifold of dimension 3g− 3. Its holomorphic tangent

space, at a point [X] representing a surface X, is isomorphic to the space

of harmonic Beltrami differentials on X, i.e. (−1, 1)-differentials µ satisfy-

ing ∆0,1
−1µ = 0. The dual holomorphic cotangent space of Tg consists of the

holomorphic quadratic differentials on X, i.e. (2, 0)-differentials φ satisfying

∂φ = 0.

Given a basepoint [X] ∈ Tg, we can give coordinates (Bers coordinates) for

a neighbourhood of [X], also parametrized by harmonic Beltrami differentials,

as follows. Given a harmonic Beltrami differential µ on X satisfying ‖µ‖∞ =

supz∈H|µ(z)| < 1, there exists a unique homeomorphism fµ : H → H fixing

0, 1,∞ and satisfying ∂fµ = µ∂fµ. Set Γµ = fµΓ(fµ)−1 and Xµ = H/Γµ.

Choosing a basis µ1, . . . , µ3g−3, µ =
∑
εjµj, the εj ∈ C form coordinates of Tg

in a neighbourhood of [X].

There is a canonical complex fibration π : Tg → Tg, (the Teichmüller uni-

versal curve), such that π is a holomorphic submersion and the fibre π−1([X])

is isomorphic to the surface X. Over Tg, there is a natural holomorphic line

bundle, the vertical tangent bundle TV Tg → Tg, consisting of vectors in TTg
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that are tangent to the fibres π−1([X]). We can then define a family φε of

(n,m)-differentials on Xεµ to be a section of the bundle

((TV Tg)
∗)n ⊗ ((TV Tg)∗)

m → Tg.

Instead of considering the deformation space of a marked Fuchsian group

representing X, we can consider the deformation space of a marked Schottky

group (with g free generators distinguished) representing X. This corresponds

to fixing a normal subgroup N ⊂ π1(X) generated by a set of “B-cycles”,

that is, the set {B1, . . . , Bg} in a standard basis of π1(X). In this way we

obtain the Schottky space Sg of Schottky-marked Riemann surfaces of genus

g. Sg is a quotient space of Tg. All of the constructions described above work

analogously for Sg; see [Ber75].

2.4 Zero modes

Suppose n ≥ 1. The kernel of ∆n consists of the holomorphic n-differentials

on X, the space of which has finite dimension d(n) (d(n) = (2n− 1)(g− 1) for

n > 1 and d(1) = g). A basis of the holomorphic n-differentials can actually

be chosen, holomorphically and simultaneously, for all Riemann surfaces of a

fixed genus; that is, there exist d(n) global holomorphic sections φε
1, . . . , φ

ε
d(n)

of the bundle ((TV Tg)
∗)n → Tg, which form a basis of ker ∆n on X when

restricted to π−1([X]) [Ber66]. When n = 1, the basis may be chosen so that

it is normalized in the usual manner, with respect to the marking of X [Ber66].

Note that this shows that the vector bundle ind ∂n = ker ∂n = ker ∆n over
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Tg is holomorphically trivial, as is the line bundle det ind ∂n = Λd(n) ind ∂n.

The Hermitian metric on n-differentials induces a metric on these line bundles.

The metric on det ind ∂n is detNn, where [Nn]jk = (φj, φk) is the Gram matrix

of the chosen basis of zero modes.

2.5 Variational formulas

We collect here some variational formulas which we will need later. Define the

pullback of an (n,m)-differential φε over Xεµ to an (n,m)-differential over X

by

f εµ
∗ (φε) = φε ◦ f εµ · (∂f εµ)n(∂f εµ)m,

where f εµ : H → H as defined above. Using the pullback, we can define Lie

derivatives of φε in the directions µ and µ:

δµφ =
∂

∂ε

∣∣∣∣
ε=0

f εµ
∗ (φε),

δµφ =
∂

∂ε

∣∣∣∣
ε=0

f εµ
∗ (φε).

Similarly, for a family of operators Aε taking (n,m)-differentials to (k, l)-

differentials, we define the Lie derivatives by

δµA =
∂

∂ε

∣∣∣∣
ε=0

(
f εµ
∗ A

ε(f εµ
∗ )−1

)
δµA =

∂

∂ε

∣∣∣∣
ε=0

(
f εµ
∗ A

ε(f εµ
∗ )−1

)
.

If G : Tg → C, then G may be naturally identified with a family of constant
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0-differentials, and then the Lie derivative coincides with the usual derivative:

δµG = ∂G(µ)

δµG = ∂G(µ),

where ∂ and ∂ are the (1, 0) and (0, 1) components, respectively, of the exterior

differential d on Tg.

We collect here, without proof, some formulas we will need. Let µ be a

harmonic Beltrami differential on X, representing an element of T[X]Tg. If we

let

Fµ =
∂

∂ε
f εµ|ε=0, Φµ =

∂

∂ε
f εµ|ε=0,

then we have [Ahl61]

∂Fµ = µ

and Φ′′′
µ (z) = −1

2
y−2µ(z).

If ρ is the Poincaré metric, considered as a family of (1, 1)-differentials, its first

derivatives on Tg vanish [Ahl61]:

δµρ = δµρ = 0.

18



Using this result and the chain rule, we can calculate

δµ∂n = −µ∂n δµ ∂n = 0

δµ∂n = 0 δµ∂n = −µ∂n.

Using these formulas, we may then derive:

δµ∆n = ρ−1µ∂n+1∂n

δµ∆n = µ∂n−1ρ
−1∂n.

We will also need a formula for the second variation of the metric [Wol86],

δνδµρ =
1

2
ρ

(
∆0 +

1

2

)−1

(µν),

and a formula for the Lie derivative of a vector field [Wol86],

δνµ = −∂ρ−1∂

(
∆0 +

1

2

)−1

(µν);

consequently we have

∆0(ρ
−1δνδµρ) =

1

2
(µν − (ρ−1δνδµρ))

and δνµ = −2∂ρ−1∂(ρ−1δνδµρ)

Note that if φ is a holomorphically varying family of holomorphic n-differentials

(for example, the elements of the basis chosen in the previous section), differ-
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entiating ∂φ = 0 yields

∂(δµφ) = µ∂nφ.

Finally, we will need a formula for the variation of the period matrix. Let

{φε
1, . . . , φ

ε
g} be a basis for the space of holomorphic 1-differentials on Xεµ,

normalized in the usual manner
∫

Aj
φk with respect to the marking of Xεµ,

and let [N1]jk = (φj, φk). Then [Rau65]

∂[N1]jk = −φjφk,

under the identification of T[X]Tg with the space of holomorphic (2, 0)-differentials

on X.

2.6 Green’s function of ∆n

The Green’s operator for ∆n is an operator Gn : D0,0(Kn) → D0,0(Kn) such

that ∆nGn = Gn∆n = I − Pn, where Pn is the orthogonal projection onto

holomorphic n-differentials, and such that GnPn = 0. (Pn is zero when n < 0.)

For a realization of X = Ω0/Σ by a Kleinian group Σ, the Green’s function

for ∆n is the integral kernel for this operator, that is, a function Gn(w,w′),

w,w′ ∈ Ω0, smooth for w 6= w′, which is an (n, 0)-differential in w and a

(1−n, 1)-differential in w′, such that Gnφ(w) =
∫
DGn(w,w′)φ(w′)d2w′, where

D is a fundamental domain for Σ, and d2w = i
2
dw ∧ dw is the usual volume

form. The kernel Pn(w,w′) for the projection Pn is defined in the same way.
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Fixing a basis {φ1, . . . , φd} for the holomorphic n-differentials, we can write

Pn(w,w′) =
d∑

j=1

d∑
k=1

[N−1
n ]kjφj(w)φk(w

′).

The Green’s function Qn(z, z′) for ∆n on the upper half plane H is uniquely

determined by the following properties:

1. Qn(z, z′) is smooth for z 6= z′;

2. Qn(γz, γz′)γ′(z)nγ′(z′)1−nγ′(z′) = Qn(z, z′) for all γ ∈ PSL(2,R) and

z 6= z′;

3. Qn(z, z′) = − 1
π
y′−2 log|z − z′|2 +O(1) as z → z′;

4. ∆nQn(z, z′) = 0 for z 6= z′;

and an additional growth condition as z → ∂H.

The Green’s function Gn(z, z′) for a Riemann surface X, expressed on the

upper half plane, is then given by the Poincaré series

Gn(z, z′) =
∑
γ∈Γ

Qn(z, γz′)γ′(z′)1−nγ′(z′),

where Γ is the Fuchsian group such that X = H/Γ. Gn(z, z′) is uniquely

determined by the following properties:

1. Gn(z, z′) is smooth for z 6= γz′, γ ∈ Γ;

2. Gn(γ1z, γ2z
′)γ′1(z)

nγ′2(z
′)1−nγ′2(z

′) = Gn(z, z′) for all γ1, γ2 ∈ Γ and z 6=

γz′;
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3. Gn(z, z′) = − 1
π
y′−2 log|z − z′|2 +O(1) as z → z′;

4. ∆nGn(z, z′) = −Pn(z, z′) for n ≥ 0, ∆nGn(z, z′) = 0 for n < 0, where

z 6= γz′;

5.
∫
DGn(z, z′)φ(z′)d2z′ = 0 for all holomorphic n-differentials φ and for all

z.

Gn(z, z′) also satisfies the symmetry property

ρ′n−1Gn(z, z′) = ρn−1Gn(z′, z).

The kernels Ln = (y′)2∂′1−nQn and Kn = (y′)2∂′1−nGn will be needed later.

For the former we can derive the formula

Ln(z, z′) =
1

π
· 1

z − z′

(
z − z′

z − z

)2n−1

from the properties above, and it follows that

lim
z′→z

(Ln(z, z′) + L1−n(z′, z)) = 0.

For the kernel Kn, we have the corresponding formula for n 6= 0, 1:

Kn(z, z′) +K1−n(z′, z) = 0,

which follows from the fact that the left hand side is regular on the diagonal

(and hence everywhere), harmonic with respect to both variables (in the sense

of ∆n and ∆′
1−n), and automorphic with respect to both variables; since one of
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the spaces ker ∆n, ker ∆1−n contains only zero, the left side must be identically

zero.

Note that the definition given here of the Green’s function disagrees with

much of the literature, including [ZT87a]; there, the Green’s function (call it

G̃n(w,w′)) on the upper half plane is defined so that

Gnφ =

∫
D
G̃n(z, z′)φ(z′)(y′)2n−2d2z′,

so the two definitions are related by Gn = (ρ′)1−nG̃n. The notational change

is convenient because we are considering Kleinian groups which are not neces-

sarily Fuchsian.

2.7 Determinant of ∆n

We review the zeta function regularization of the determinant of the laplacian

operator, and the proper time regularization, and give the relation between

the two approaches. We also show that det ∆n : Tg → R is a smooth function.

2.7.1 Zeta regularization

The Minakshisundaram-Pleijl zeta function of ∆n is defined to be ζ(s) =∑∞
j=1 λ

−s
j , where λj runs through the nonzero eigenvalues of ∆n. It is initially

defined for Re s > 1, and has an analytic continuation to all s ∈ C except

s = 1 where it has a simple pole [MP49].

Ignoring convergence, formal manipulation gives −ζ ′(0) =
∑

j log λj =

log det ∆n. This motivates the definition of the regularized determinant of ∆n
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as [RS73]

det ∆n = e−ζ′(0).

Corresponding to the zeta function, we may also define a theta function

associated to ∆n by θ(t) =
∑∞

j=1 e
−tλj for t > 0, where again λj runs through

nonzero eigenvalues. Note that

Tr
(
e−t∆n

)
= θ(t) + d(n),

where d(n) is the dimension of the space of holomorphic n-differentials. We

have the asymptotic expansion

θ(t) ∼ a−1

t
+ a0 + a1t+ · · · ,

valid as t → 0, with a−1 = area X
4π

= g − 1 and a0 = 1
6

∫
K = π

3
(2 − 2g). The

theta and zeta functions are related by

Γ(s)ζ(s) =

∫ ∞

0

θ(t)ts−1dt.

2.7.2 Proper time regularization

The material of this section is based on [Shv81]. Formally, we may write

−ζ ′(0) = −
∫ ∞

0

θ(t)

(
ts

sΓ(s)

) ∣∣∣∣∣
s=0

t−1dt = −
∫ ∞

0

θ(t)t−1dt,
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but the integral does not converge. We could make an alternate definition of

the regularized determinant by

log d̃et∆n = “Finite part” of −
∫ ∞

0

θ(t)t−1dt

= lim
ε→0

(
−
∫ ∞

ε

θ(t)t−1dt+
a−1

ε
− a0 log ε

)
;

this is the proper time regularized determinant. The two definitions vary by

a constant:

log det ∆n = log d̃et∆n + a0γ,

where γ = Γ′(1) is Euler’s constant. The remainder of this section is devoted

to a proof of this fact.

For Re s > 1, write

Γ(s)ζ(s) =

∫ ∞

1

θ(t)ts−1dt+

∫ 1

0

(
θ(t)− a−1

t
− ao

)
ts−1dt+

a−1

s− 1
+
a0

s
.

The right side is defined for Re s > −1, so this gives the analytic continuation

to this line. Hence

ζ ′(s) = −Γ′(s)

Γ(s)2

(∫ ∞

1

θ(t)ts−1dt+

∫ 1

0

(
θ(t)− a−1

t
− a0

)
ts−1dt

)
− Γ′(s)

Γ(s)2

(
a−1

s− 1
+
a0

s

)
+

1

Γ(s)

(∫ ∞

1

θ(t)(log t)ts−1dt+

∫ 1

0

(
θ(t)− a−1

t
− a0

)
(log t)ts−1dt

)
+

1

Γ(s)

d

ds

(
a−1

s− 1
+
a0

s

)
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From Γ(s+ 1) = sΓ(s), we find

s
Γ′(s+ 1)

Γ(s+ 1)2
=

1

sΓ(s)
+

Γ′(s)

Γ(s)2
,

and hence

lim
s→0

sΓ(s) = 1, lim
s→0

Γ′(s)

Γ(s)2
= −1,

and

γ = lim
s→0

1

s2Γ(s)
+

Γ′(s)

sΓ(s)2
.

It follows that, as s→ 0, the first line in the expression for ζ ′(s) becomes

∫ ∞

1

θ(t)t−1dt+

∫ 1

0

(
θ(t)− a−1

t
− a0

)
t−1dt.

The third line is 1
Γ(s)

times a factor with a finite limit, so the third line goes

to 0 as s→ 0. Combining the second and fourth line, as s→ 0 we obtain

− a−1 − a0 lim
s→0

(
Γ′(s)

sΓ(s)2
+

1

s2Γ(s)

)
= −a−1 − a0γ.

So finally, we find that

−ζ ′(0) = −
∫ ∞

1

θ(t)t−1dt−
∫ 1

0

(
θ(t)− a−1

t
− a0

)
t−1dt+ a1 + a0γ.
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On the other hand,

lim
ε→0

−
∫ ∞

ε

θ(t)t−1dt− a−1

ε
− a0 log ε

= −
∫ ∞

1

θ(t)t−1dt− lim
ε→0

∫ 1

ε

(
θ(t)− a−1

t
− a0

)
t−1dt

−
∫ 1

ε

(a−1

t
+ a0

)
t−1dt+

a−1

ε
− a0 log ε

= −
∫ ∞

1

θ(t)t−1dt−
∫ 1

0

(
θ(t)− a−1

t
− a0

)
t−1dt

+ lim
ε→0

(
a1 −

a−1

ε
+ a0 log ε+

a−1

ε
− a0 log ε

)
= −

∫ ∞

1

θ(t)t−1dt−
∫ 1

0

(
θ(t)− a−1

t
− a0

)
t−1dt+ a1.

So our final result is

log det ∆n = lim
ε→0

(
−
∫ ∞

ε

θ(t)t−1dt+
a−1

ε
− a0 log ε+ a0γ

)
,

as claimed.

2.7.3 Smoothness of det ∆n

Note that we can also continue ζ(s) by integrating by parts:

ζ(s) =
1

sΓ(s)

1

s− 1

∫ ∞

0

d2

dt2
(tθ(t)) tsdt

for Re s > −1. This gives

ζ ′(0) = −
∫ ∞

0

d2

dt2
(tθ(t)) log tdt− (γ − 1)a0.
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Now, the nonzero eigenvalues are real-analytic functions on Tg in any neigh-

bourhood where none of them are repeated. If there are multiple eigenvalues,

the eigenvalues are real-analytic along any real-analytic curve in Tg. (See

[Bus92], theorem 14.9.1 and 14.9.3 for a careful statement and proof.) Conse-

quently, θ(t) is a real-analytic function on Tg for t > 0, and hence det ∆n is

real-analytic on Tg.
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Chapter 3

Green’s function of ∂n

The main result of this chapter is an explicit expression for the Green’s func-

tion Kn of ∂n (n ≥ 1) as a Poincaré series with respect to a function group

uniformizing X, plus a “zero mode correction” term constructed from a ba-

sis of holomorphic n-differentials. For n ≥ 2 the function group is arbitrary;

for n = 1 we prove the result only for a Schottky group for which the series

converges. The definition of the Green’s function of ∂n is given in the first

section, its relation to the Green’s function of ∆n is established in the second

section, and the explicit expression is defined and proved in the third section.

This completes and makes rigorous partial constructions of Martinec [Mar87].

3.1 Definition

Let n be any integer. The Green’s operator of ∂n is the unique operator

Kn : D0,1(Kn) → D0,0(Kn)
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satisfying

Kn∂n = In − Pn

and Kn

∣∣
(Im ∂n)⊥

= 0,

where In is the identity and Pn is the orthogonal projection onto ker ∂n.

Since our objective is to study det ∆n, and det ∆1−n = det ∆n, we concen-

trate on the case n ≥ 1. If n ≥ 2, the second condition in the definition of Kn

is vacuously satisfied, since

(Im ∂n)⊥ = ker ∂
∗
n

= {φ ∈ D0,1(Kn)
∣∣ρ−nφ holomorphic},

and there are no nonzero holomorphic (1− n, 0)-differentials. When n = 1,

(Im ∂1)
⊥ = {kρ

∣∣k ∈ C}.

Now, let Σ be a function group uniformizing the surface X, so X ' Ω0/Σ

for some invariant component Ω0 of the ordinary set of Σ. Then the Green’s

function for ∂n is the integral kernel Kn(w,w′) of the Green’s operator for ∂n;

that is, Kn(w,w′) is an automorphic form of type (n, 0) in w and type (1−n, 0)

in w′, with w,w′ ∈ Ω0, smooth for w 6= w′, such that for all φ ∈ D0,1(Kn),

Knφ(w) =

∫
D

Kn(w,w′)φ(w′)d2w′,

where D is a fundamental domain for Ω0 with respect to Σ, and d2w = i
2
dw∧
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dw is the usual volume form.

3.2 Relation to Green’s function of ∆n

Proposition 3.1. Let n ≥ 1, and let Gn(w,w′) be the Green’s function for

∆n in some uniformization X ' Ω0/Σ of X. The Green’s function Kn for ∂n

on Ω0 is given by

Kn(w,w′) = −(∂
∗
1−n)′Gn(w,w′).

Proof. From

Gn∆n = (Gn∂
∗
n)∂n = In − Pn

and (Gn∂
∗
n)
∣∣
(Im ∂n)⊥

= (Gn∂
∗
n)
∣∣
ker ∂

∗
n

= 0,

we see that Kn = Gn∂
∗
n, so we need only show that the integral kernel of Gn∂

∗
n

is −(∂
∗
1−n)′Gn(w,w′). This is essentially trivial integration by parts, except

that we must check that the boundary contribution about the singularity goes

to zero. Start by assuming that Σ = Γ is a Fuchsian group, Ω0 = H. Let
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φ ∈ D0,1(Kn). Then, (abbreviating Gn(z, z′) = Gn, φ(z′) = φ′, etc.),

∫
D
(−(∂

∗
1−n)′Gn)φ′d2z′ =

∫
D
(ρ′

−n
∂′ρ′

n−1
Gn)φ′d2z′

=

∫
D
Gn(−ρ′n−1

∂′ρ′
−n
φ′)d2z′

+
1

2i
lim
ε→0

∫
|z′−z|=ε

ρ′
−1
Gnφ

′dz′

=

∫
D
Gn((∂

∗
n)′φ′)d2z′

− 1

2πi
lim
ε→0

∫
|z′−z|=ε

log|z − z′|2φ(z′)dz′

= Gn∂
∗
nφ,

since the integral under the limit is bounded by Cε log ε.

The result now follows for any function group by simply changing coordi-

nates.

3.3 Series expression

In this section, we define an explicit Poincaré series K̂n and a “zero mode”

term Zn such that the Green’s function Kn of ∂n is given by

Kn = K̂n − Zn,

with a slight modification when n = 1.
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3.3.1 The series K̂n, n ≥ 2

Let the surface X be given a uniformization X = Ω0/Σ by some function

group Σ, and let n ≥ 2. Choose 2n− 1 points {a1, . . . , a2n−1} in the limit set

of Σ. Then, following Bers [Ber71], we define for w,w′ ∈ Ω0, w 6= γw′ for any

γ ∈ Σ,

K̂n(w,w′) =
1

π

∑
γ∈Σ

1

γw − w′

(
2n−1∏
j=1

w′ − aj

γw − aj

)
γ′(w)n.

K̂n converges absolutely provided n ≥ 2; it converges for certain groups when

n = 1 (for example, if Σ is a Schottky group, it converges when the Hausdorff

dimension of the limit set is strictly less than 1). We will assume n ≥ 2 in

this section and return to the case n = 1 later. The series is a meromorphic

n-differential in the first variable: for any α ∈ Σ,

K̂n(αw,w′)α′(w)n = K̂n(w,w′).

In the second variable it is not quite a (1− n)-differential, but rather a mero-

morphic Eichler integral of weight 1− n; that is, for any α ∈ Σ,

K̂n(w, αw′)α′(w′)1−n = K̂n(w,w′) + Πα(w,w′),

where Πα(w,w′) is a holomorphic n-differential in w, and a polynomial of

degree at most 2n− 2 in w′. This follows from a straightforward calculation:

first, using the formula

1

(w − w′)2
=

γ′(w)γ′(w′)

(γw − γw′)2
,
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valid for any linear fractional transformation γ, calculate

K̂n(w, αw′)α′(w′)1−n =
∑
γ∈Σ

1

γw − w′

(
2n−1∏
j=1

w′ − α−1aj

γw − α−1aj

)
γ′(w)n.

Then,

K̂n(w,αw′)α′(w′)1−n − K̂n(w,w′)

=
∑
γ∈Σ

1

γw − w′

(
2n−1∏
j=1

w′ − α−1aj

γw − α−1aj

−
2n−1∏
j=1

w′ − aj

γw − aj

)
γ′(w)n,

and the factor in parentheses vanishes when γw − w′ = 0, cancelling the first

factor and leaving a polynomial of degree 2n− 2 or less in w′.

3.3.2 The zero mode term Zn, n ≥ 2

We will define a term Zn with the same transformation properties as K̂n, so

that the difference will be a differential of the required type.

Let {φ1, . . . , φd(n)} be a basis for the holomorphic n-differentials on X,

written in the local coordinate w ∈ Ω0. Let {a1, . . . , a2n−1} in the limit set of

Σ be the same points as chosen in the definition of K̂n. Again following Bers

[Ber67], [Ber71], define potentials of the φk by

Fk(w) = − 1

π

∫
Ω0

ρ(ζ)1−nφk(ζ)

ζ − w

2n−1∏
j=1

w − aj

ζ − aj

d2ζ

= −
∫
D
ρ(ζ)1−nφk(ζ)K̂n(ζ, w)d2ζ,
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where ρ(ζ) is the hyperbolic metric on Ω0. The function Fk has the property

∂Fk = ρ1−nφk

on Ω0.

Recall that [Nn]jk = (φj, φk) denotes the Gram matrix of the chosen basis.

Define

Zn(w,w′) = −
d∑

j=1

d∑
k=1

φj(w)[N−1
n ]kjFk(w

′);

from the property of Fk stated above, we see that

∂
′
Zn(w,w′) = −Pn(w,w′).

Zn, like K̂n, is a holomorphic n-differential in the first variable, and an Eichler

integral of weight 1 − n (though not holomorphic) in the second variable. In

fact, Zn has the same Eichler periods as K̂n:

Zn(w, αw′)α′(w′)1−n − Zn(w,w′)

=
d∑

j=1

d∑
k=1

φj(w)[N−1
n ]kj

∫
D
ρ(ζ)1−nφk(ζ)Πα(ζ, w′)d2ζ

=
d∑

j=1

d∑
k=1

φj(w)[N−1
n ]kj(Πα(·, w′), φk)

= Πα(w,w′),

the last line following because Πα(w,w′) is a holomorphic n-differential in w.

Consequently, K̂n − Zn is a (1− n)-differential in the second variable.
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3.3.3 Equality of Kn and K̂n − Zn, n ≥ 2

We come to the main theorem in this chapter, in the case n ≥ 2. The case

n = 1, which is slightly different, will be addressed in the next section.

Theorem 3.2. Let X ' Ω0/Σ be a uniformization of X by a function group

Σ, let w,w′ ∈ Ω0, w 6= γw′ for any γ ∈ Σ, and let n ≥ 2. Then, with notations

as defined above, the Green’s function Kn(w,w′) for ∂n on X in Ω0 is given

by

Kn(w,w′) = K̂n(w,w′)− Zn(w,w′)

=
1

π

∑
γ∈Σ

1

γw − w′

(
2n−1∏
j=1

w′ − aj

γw − aj

)
γ′(w)n

+
d∑

j=1

d∑
k=1

φj(w)[N−1
n ]kjFk(w

′).

Proof. It has been established above that Kn and K̂n − Zn are bidifferentials

of the same type. Since n ≥ 2, it will be sufficient to show that, for any

φ ∈ D0,0(Kn), ∫ ′
(K̂n − Zn)∂

′
φ′ = (In − Pn)φ

(with the abbreviations φ′ = φ(w′),
∫ ′

=
∫
D d2w′). Integrate by parts:

∫ ′
(K̂n − Zn)∂

′
φ′ =

∫ ′
∂
′
((K̂n − Zn)φ′)−

∫ ′
(∂

′
(K̂n − Zn))φ′.

Since K̂n(w,w′) is holomorphic in w′ for w′ 6= w, the second integral becomes

−
∫ ′

Pnφ
′ = −Pnφ.
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The first integral is a sum of an integral over ∂D, which vanishes since (K̂n −

Zn)φ′ is a (1, 0)-differential in w′, and a boundary term around the singularity:

∫ ′
∂
′
((K̂n − Zn)φ′) = lim

ε→0

i

2

∫
|w′−w|=ε

(K̂n − Zn)(w,w′)φ(w′)dw′

= lim
ε→0

1

2πi

∫
|w′−w|=ε

1

w′ − w
φ(w′)dw′

= φ(w),

where the circle |w′ − w| = ε has the standard orientation. Here the singular

part of K̂n−Zn as w′ → w comes from the term corresponding to γ = identity

in the series K̂n.

3.3.4 The case n = 1

When n = 1, we can formally write the same series K̂n as above:

K̂1(w,w
′) =

1

π

∑
γ∈Σ

1

γw − w′

(
w′ − a

γw − a

)
γ′(w)

=
1

π

∑
γ∈Σ

(
1

γw − w′ −
1

γw − a

)
γ′(w).

However, this series need not converge. We will restrict our attention to the

case of Σ a Schottky group whose exponent of convergence (the supremum of

δ such that
∑
|γ′(w)|δ converges) is strictly less than 1; δ can also be described

as the Hausdorff dimension of the limit set in this case [Bow79]. These groups

form an open set in the space of Schottky groups. However, even with these

conditions, the series will converge only when a is not in the limit set, but in

the ordinary set. (Note that if the series was to converge when a and infinity
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are in the limit set, it would represent a nonzero 1-differential with a single

simple pole.) So we assume that Σ is a Schottky group of the type described,

and that a is in the ordinary set of Σ.

Let {φ1, . . . , φg} be a basis of the holomorphic 1-differentials, normalized

so
∫

Ak
φj = δjk, where the A-cycles on X are taken to be represented by

half the bounding curves Ck, k = 1, . . . , g of a fundamental domain D of Σ.

(Recall that Σ has g free generators {γ1, . . . , γg}, and the fundamental domain

is bounded by 2g Jordan curves Ck and C ′
k = −γkCk, k = 1, . . . , g.) The

construction of potentials for φk given above for n ≥ 2 does not work in this

case. It is natural to take an abelian integral
∫ w

a
φk as the potential for φk,

but this is not single-valued on the fundamental domain; hence we must take

instead

Fk(w) =

∫ w

a

φk(ζ)dζ −
∫ w

a

φk(ζ)dζ,

which also satisfies

∂Fk = φk

and is single-valued on Ω0. Then we define

Z1(w,w
′) = −

g∑
j=1

g∑
k=1

φj(w)[N−1
1 ]kjFk(w

′)

as before, so

∂
′
Z1(w,w

′) = −P1(w,w
′).

Both K̂1(w,w
′) and Z1(w,w

′) are holomorphic 1-differentials in w and are

abelian integrals in w′. We claim that in fact they have the same periods in

w′, so that the difference is a 0-differential (automorphic function) in w′.
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First consider K̂1. We will need the formula

γ′(w)

γw − w′ =
1

w − γ−1w′ +
1

2

γ′′(w)

γ′(w)
,

valid for any linear fractional transformation γ. Using this, the period Πα(w) =

K̂n(w,αw′)− K̂n(w,w′) becomes a telescoping series:

Πα(w) =
1

π

∑
γ∈Σ

(
1

γw − αw′ −
1

γw − w′

)
γ′(w)

=
1

π

∑
γ∈Σ

1

w − γ−1αw′ −
1

w − γ−1w′

=
1

π

∑
γ∈〈α〉\Σ

∞∑
n=−∞

1

w − γ−1αn+1w′ −
1

w − γ−1αnw′

=
1

π

∑
γ∈〈α〉\Σ

1

w − γ−1aα

− 1

w − γ−1bα
,

where aα and bα are the attracting and repelling fixed points of α respectively,

and 〈α〉\Σ denotes the quotient on the left of Σ by the cylic group generated

by α, or equivalently, the set of all reduced words in Σ not beginning with a

power of α. Consequently, for a group generator γr we have

∫
Cj

Πγr(w)dw = 2iδjr,

which shows that

Πγr(w) = 2iφr.
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Now consider Z1. We have

Z1(w, γrw
′)− Z1(w,w

′) =

g∑
j=1

g∑
k=1

φj(w)[N−1
1 ]kj

(∫
Br

φk −
∫

Br

φk

)

= 2i

g∑
j=1

g∑
k=1

φj(w)[N−1
1 ]kj[N1]kr

= 2iφr(w),

since N1 = NT
1 .

Hence K̂1 − Z1 is a (1, 0)× (0, 0) bidifferential, and we may now state the

main theorem of the chapter in the case n = 1:

Theorem 3.3. Let X be uniformized by a Schottky group Σ with exponent

of convergence strictly less than 1, X ' Ω0/Σ, and let w,w′, a ∈ Ω0, with

w 6= γw′, γa for any γ ∈ Σ. If K1(w,w
′) is the Green’s function for ∂1 on X

in Ω0, then, with notations as defined above,

K1(w,w
′)−K1(w, a) = K̂1(w,w

′)− Z1(w,w
′)

=
1

π

∑
γ∈Σ

1

γw − w′

(
w′ − a

γw − a

)
γ′(w)

+

g∑
j=1

g∑
k=1

φj(w)[N−1
1 ]kj

(∫ w′

a

φk −
∫ w′

a

φk

)
.

Proof. The proof that

∫ ′
(K̂1 − Z1)∂

′
φ′ = (In − Pn)φ

is identical to the proof given for n ≥ 2 in the previous section. However, this
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only shows that K̂1 − Z1 and K1 agree on Im ∂1, or equivalently, that

K1(w,w
′) = K̂1(w,w

′)− Z1(w,w
′) + ψ(w)

for some holomorphic 1-differential ψ(w) not depending on w′. To evaluate

ψ(w), set w′ = a, which shows ψ(w) = K1(w, a) and completes the proof of

the theorem.

Remark 3.4. Taking ∂′ of the equation in theorem 3.3 yields a formula of Fay

relating the classical Schiffer and Bergman kernels; see [Fay77], pp. 160–161.
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Chapter 4

First variation of log det ∆n

The purpose of this chapter is to prove the following expression for the deriva-

tive of the function log det ∆n on the Teichmüller space Tg.

Theorem 4.1. Let the surface X be uniformized by a Fuchsian group Γ, so

X ' H/Γ, and let D ∈ H be a fundamental domain. Let µ be a harmonic

Beltrami differential on X (representing an element of T[X]Tg). Then for n ≥

1,

∂ log det ∆n(µ) =

∫
D
µ

((
n∂′ − (1− n)∂

)(
Kn −

1

π

1

z − z′

)) ∣∣∣
∆
,

where Kn is the Green’s function of ∂n defined in the previous chapter, and |∆

means the limit as z′ → z.

The form of the differential operator appearing in the integral comes from

considering b-c “ghosts”: see [Mar87], [VV87].

Theorem 4.1 will follow from

Theorem 4.2. With assumptions as above,

∂ log det ∆n(µ) = −
∫
D
µ
(
∂n(Kn − Ln)

)∣∣
∆
,
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where Ln(z, z′) = −(∂
∗
1−n)′Q(z, z′) is the “Green’s function of ∂n on H”.

Theorem 4.2 appears (in slightly different form) in [ZT87a].

It is not immediately obvious that the integrals appearing in theorems 4.1

and 4.2 are independent of the choice of fundamental domain D; this will be

proved below.

In the first section it will be shown that theorem 4.2 implies theorem 4.1,

and that the integrals do not depend on the choice of D. In the following

two sections, we give two different proofs of theorem 4.2, both different than

that given in [ZT87a]. The first uses the Green’s function of ∆n, while the

second uses the Green’s function of ∂n (“bosonic” and “fermionic” proofs re-

spectively).

4.1 Theorem 4.2 implies theorem 4.1

The fact that the integral in theorem 4.2 is independent of the choice of fun-

damental domain follows from

Lemma 4.3.
(
∂n(Kn−Ln)

)∣∣
∆

is a (2, 0)-automorphic form with respect to Γ.

Proof. ∂nKn is an (n + 1, 0) × (1 − n, 0)-automorphic form. The same is not

true of ∂nLn in general, but it is true in the case of the diagonal action of Γ:

(∂nLn)(γz, γz′)γ′(z)n+1γ′(z′)1−n = (∂nLn)(z, z′)

for all γ ∈ Γ. This is sufficient to prove the lemma.
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Lemma 4.4. For any smooth function K(w,w′) of two variables,

((n∂′ − (1− n)∂)K)|∆ = n∂1(K|∆)− (∂nK)|∆

= (n− 1)∂1(K|∆) + (∂′1−nK)|∆

Proof. Using ∂n = ∂+n(−ρ−1(∂ρ)), we see that ∂1(K|∆) = ((∂′1−n +∂n)K)|∆,

and the result follows.

The integral appearing in theorem 4.1 is also independent of the choice of

D:

Lemma 4.5. Let Tn be defined by

Tn(z) =

((
n∂′ − (1− n)∂

)(
Kn −

1

π

1

z − z′

)) ∣∣∣
∆
.

Then Tn is a (2, 0)-automorphic form with respect to Γ.

Proof. Follows from the previous two lemmas.

Lemma 4.6. With notations as above,

∫
D
µ
(
∂n(Kn − Ln)

)∣∣
∆

=

∫
D
µ
((
n∂′ − (1− n)∂

)(
Kn − Ln

))∣∣∣
∆
.

Proof. Using lemma 4.4, we find that the difference of the two sides is

n

∫
D
µ∂1

(
(Kn − Ln)|∆

)
.

Reasoning as in lemma 4.3, we find that (Kn − Ln)
∣∣
∆

is a (1, 0)-automorphic

form with respect to Γ, and consequently we may integrate by parts. But
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∂−1µ = 0, so the integral vanishes.

We must now equate the regularization terms appearing in the two theo-

rems.

Lemma 4.7.

(n∂′ − (1− n)∂)Ln =
1

π

1

(z − z′)2
+O(z − z′).

Proof. This is a direct computation, based on the formula

Ln(z, z′) =
1

π

1

z − z′

(
z − z′

z − z

)2n−1

.

Since

∂′Ln =
1

π

(
z − z′

z − z

)2n−1(
1

(z − z′)2
− (2n− 1)

1

(z − z′)(z − z′)

)
=

1

π

(
z − z′

z − z

)2n−1(
1

(z − z′)2
− (2n− 1)

1

(z − z′)(z − z)

+ (2n− 1)
1

(z − z)2
+O(z − z′)

)

and

∂Ln = − 1

π

(
z − z′

z − z

)2n−1(
1

(z − z′)2
− (2n− 1)

1

(z − z′)(z − z)

)
,

we obtain

(n∂′ − (1− n)∂)Ln =
1

π

(
z − z′

z − z

)2n−1(
1

(z − z′)2
− (2n− 1)

1

(z − z′)(z − z)

+ n(2n− 1)
1

(z − z)2
+O(z − z′)

)
.
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Expanding

(
z − z′

z − z

)2n−1

= 1 + (2n− 1)
z − z′

z − z
+ (2n− 1)(n− 1)

(z − z′)2

(z − z)2
+O((z − z′)3)

and multiplying out, we find that lower order terms cancel, yielding the re-

quired formula.

Now, collecting the results of the previous lemmas shows that theorem 4.2

implies theorem 4.1.

4.2 First proof of theorem 4.2 (using Green’s

function of ∆n)

In this section we give a proof of theorem 4.2 using the Green’s function Gn

of ∆n. Recall that e−t∆n is the corresponding heat operator; write its integral

kernel on H as pn(z, z′, t). Start with the definition of det ∆n by proper time

regularization:

δµ log det ∆n = δµ lim
ε→0

(
−
∫ ∞

ε

(
Tr
(
e−t∆n

)
− d(n)

)
t−1dt+

a−1

ε
− a0 log ε+ a0γ

)
= − lim

ε→0

∫ ∞

ε

δµ
(
Tr
(
e−t∆n(I − Pn)

))
dt

= lim
ε→0

∫ ∞

ε

Tr
(
(δµ∆n) e−t∆n(I − Pn)

)
dt

= lim
ε→0

∫ ∞

ε

Tr
(
ρ−1µ∂n+1∂ne

−t∆n(I − Pn)
)
dt

= lim
ε→0

∫ ∞

ε

Tr
(
∂ne

−t∆n(I − Pn)ρ−1µ∂n+1

)
dt

= lim
ε→0

Tr
(
∂ne

−ε∆nGnρ
−1µ∂n+1

)
.
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Now, write kn(z, z′, ε) for the integral kernel of e−ε∆nGn. For ε > 0, kn(z, z′, ε)

is regular as z′ → z because pn(z, z′, ε) is. We can therefore use integration by

parts and the fact that ∂−1µ = 0 to show that the integral kernel of

∂ne
−ε∆nGnρ

−1µ∂n+1

is

µ(z′)∂n(∂
∗
1−n)′kn(z, z′, ε).

Hence

δµ log det ∆n = lim
ε→0

∫
D
µ(z)

(
∂n(∂

∗
1−n)′kn(z, z′, ε)

) ∣∣
z′=z

.

Now, let p0
n(z, z′, t) be the heat kernel for the upper half plane (see, for example,

[DP86]), and introduce

k0
n(z, z′, ε) =

∫
D
p0

n(z, z′′, ε)Qn(z′′, z′)d2z′′.

Note that kn − k0
n is regular as z′ → z even for ε = 0, and that kn(z, z′, 0) =

Gn(z, z′), k0
n(z, z′, 0) = Qn(z, z′). Then

δµ log det ∆n = lim
ε→0

∫
D
µ(z)

(
∂n(∂

∗
1−n)′(kn(z, z′, ε)− k0

n(z, z′, ε)
) ∣∣

z′=z

+ lim
ε→0

∫
D
µ(z)

(
∂n(∂

∗
1−n)′k0

n(z, z′, ε)
) ∣∣

z′=z

= −
∫
D
µ(z)

(
∂n(Kn − Ln)

)∣∣
∆

+ lim
ε→0

∫
D
µ(z)

(
∂n(∂

∗
1−n)′k0

n(z, z′, ε)
) ∣∣

z′=z
,
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so we need to show that the second integral goes to 0 as ε→ 0. Note that

(
∂n(∂

∗
1−n)′k0

n(z, z′, ε)
) ∣∣

z′=z
= −

∫
D
∂np

0
n(z, z′′, ε)Ln(z′′, z)d2z′′.

We will show that this approaches 0 as ε→ 0.

Write the integral on D1, the unit disc model of the hyperbolic plane, so

for the rest of the paragraph pn, Ln and D are the appropriate pullbacks onto

D1. Let γ0 be a linear fractional transformation preserving D1 and moving z

to 0. Since

∂np
0
n(γz, γz′, ε)γ′(z)n+1γ′(z′)1−nγ′(z′) = ∂np

0
n(z, z′, ε)

and Ln(γz, γz′)γ′(z)nγ′(z′)1−n = Ln(z, z′)

for all linear fractional γ preserving D1, the integral becomes

−γ′0(z)2

∫
γ0D

∂np
0
n(0, z′′, ε)Ln(z′′, 0)d2z′′.

Now if we rotate D1 about 0, the integrand transforms as

∂np
0
n(0, eiθz′′, ε)Ln(eiθz′′, 0)ie2iθ = ∂np

0
n(0, z′′, ε)Ln(z′′, 0)

(by applying the rotation to both variables). Hence in polar coordinates the

integral takes the form

−γ′0(z)2

∫
γ0D

f(r)e2iθdrdθ
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where f(r) is a function only of the distance from the origin. Taken over a disc

Da ⊂ D, the integral is exactly zero, and the integral over the rest of D goes

to 0 as ε→ 0, since pn approaches 0 uniformly in that region. This completes

the proof of theorem 4.2.

4.3 Second proof of theorem 4.2 (using Green’s

function of ∂n)

We now give another proof of theorem 4.2, obtaining the Green’s function Kn

of ∂n directly rather than indirectly through Gn. This proof follows closely

the proof (in the simpler situation with a linear parameter space and no zero

eigenvalues) in [Qui85].

Let D be the restriction of ∂n to (ker ∂n)⊥. Then D is invertible, with

D−1 = Kn. The operator D∗D is the restriction of ∆n to (ker ∂n)⊥ in both

domain and range. Temporarily abbreviate Pn = P . Then

∂n = D(I − P ),

∂
∗
n = (I − P )D∗.

Varying these gives

δµ∂n +D(δµP ) = (δµD)(I − P ),

(δµP )D∗ = (I − P )(δµD
∗).
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Varying the equation P 2 = P shows that

P (δµP ) = (δµP )(I − P ),

(δµP )P = (I − P )(δµP ).

Note further that

∆n = (I − P )D∗D(I − P ),

e−t∆n − P = (I − P )e−tD∗D(I − P ),

and, if we denote by Tr0 the trace on (ker ∂n)⊥,

Tr0A = Tr
(
(I − P )A(I − P )

)
.

Finally also note that PKn = 0.

Now,

ζn(s) = Tr0
(
(D∗D)−s

)
,

which implies that

−δµζn(s) = sTr0
(
(D∗D)−s−1δµ(D∗D)

)
= sTr0

(
(D∗D)−s−1

(
(δµD

∗)D +D∗(δµD)
))

= sTr0
(
(δµD

∗)(D∗)−1(D∗D)−s + (D∗D)−sD−1(δµD)
)

=
s

Γ(s)

∫ ∞

0

Tr0
(
(δµD

∗)(D∗)−1e−tD∗D + e−tD∗DD−1(δµD)
)
ts−1dt

= s lim
t→0

Tr0
(
(δµD

∗)(D∗)−1e−tD∗D + e−tD∗DD−1(δµD)
)

+O(s),
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and hence

δµ log det ∆n = lim
t→0

Tr0
(
(δµD

∗)(D∗)−1e−tD∗D
)

+ lim
t→0

Tr0
(
e−tD∗DD−1(δµD)

)
.

The first term on the right is

lim
t→0

Tr
(
(I − P )(δµD

∗)(D∗)−1e−tD∗D(I − P )
)

= lim
t→0

Tr
(
(I − P )(δµP )e−tD∗D(I − P )

)
= lim

t→0
Tr
(
(δµP )Pe−tD∗D(I − P )

)
= 0.

The second term is

lim
t→0

Tr
(
(I − P )e−tD∗DD−1(δµD)(I − P )

)
= lim

t→0
Tr
(
(I − P )e−tD∗DD−1(δµ∂n +D(δµP ))(I − P )

)
= lim

t→0
Tr
(
(e−t∆n − P )D−1δµ∂n

)
+ lim

t→0
Tr
(
(I − P )e−tD∗DP (δµP )

)
= − lim

t→0
Tr
(
µ∂ne

−t∆nKn

)
,

so in summary we have

δµ log det ∆n = − lim
t→0

Tr
(
µ∂ne

−t∆nKn

)
.

Applying the same regularization subtraction as before,

δµ log det ∆n = − lim
t→0

∫
D

∫
D
µ(z)

(
∂npn(z, z′, t)

)(
Kn(z′, z)− Ln(z′, z)

)
d2zd2z′

− lim
t→0

∫
D

∫
D
µ(z)

(
∂npn(z, z′, t)

)
Ln(z′, z)d2zd2z′,
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and the second integral, exactly the one appearing in the first proof, goes to

zero as before. Integrate by parts, use ∂−1µ = 0, and let t→ 0 to find

δµ log det ∆n =

∫
D
µ(z)

(
∂′1−n

(
Kn(z, z′)− Ln(z, z′)

))∣∣
z′=z

d2z.

Now applying lemma 4.4 yields theorem 4.2.
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Chapter 5

From Fuchsian to function groups

(holomorphic anomaly)

The purpose of this chapter is to extend theorem 4.1, which is valid for the

Fuchsian uniformization of the surface X, to a statement which is valid for

any uniformization X ' Ω0/Σ by a function group Σ.

Since Kn is automorphic, the only discrepancy when changing coordi-

nates (“holomorphic anomaly”) comes from the non-automorphic regulariza-

tion term
1

π

1

z − z′
.

Theorem 5.1. Let X ' H/Γ be a Fuchsian uniformization of X with funda-

mental domain D, and let X ' Ω0/Σ be another uniformization by some func-

tion group Σ. Let J : H → Ω0 be the conformal, surjective, locally invertible

covering map which respects the group actions. Let µ be a harmonic Beltrami

differential on X (representing an element of T[X]Tg). Then for n ≥ 1,

∂ log det ∆n(µ) =

∫
J(D)

µΣ(w)
(
n∂w′ − (1− n)∂w

)(
KΣ

n (w,w′)− 1

π

1

w − w′

) ∣∣∣∣
∆

d2w

+
6n2 − 6n+ 1

6π

∫
D
µΓ(z)S(J)(z)d2z,
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where S represents the Schwarzian derivative,

S(J) =

(
J ′′

J ′

)′
− 1

2

(
J ′′

J ′

)2

.

Proof. Begin by splitting the integral:

∫
D
µΓ(z)(n∂z′ − (1− n)∂z)(K

Γ
n (z, z′)− 1

π

1

z − z′
)|∆d2z

=

∫
D
µΓ(z)(n∂z′−(1−n)∂z)((K

Σ
n (J(z), J(z′))− 1

π

1

J(z)− J(z′)
)J ′(z)nJ ′(z′)1−n)|∆d2z

+
1

π

∫
D
µΓ(z)(n∂z′ − (1− n)∂z)(

J ′(z)nJ ′(z′)1−n

J(z)− J(z′)
− 1

z − z′
)|∆d2z

The second integral will give the term involving the Schwarzian, and will be

discussed below. The first integral is

∫
D
µΣ(J(z))

J ′(z)

J ′(z)
(nJ ′(z′)∂w′−(1−n)J ′(z)∂w)(KΣ

n (w,w′)− 1

π

1

w − w′ )|∆J
′(z)d2z

+

∫
D
µΓ(z)(KΣ

n (w,w′)− 1

π

1

w − w′ )(n∂z′ − (1− n)∂z)(J
′(z)nJ ′(z′)1−n)|∆d2z,

where w = J(z), w′ = J(z′). The second term vanishes, since

(n∂z′ − (1−n)∂z)(J
′(z)nJ ′(z′)1−n) = n(1−n)J ′(z)nJ ′(z′)1−n(

J ′′

J ′
(z′)− J ′′

J ′
(z)),

which vanishes on the diagonal, is multiplied by a factor which is nonsingular

as z approaches z′. For the same reason, the first term becomes

∫
J(D)

µΣ(w)(n∂w′ − (1− n)∂w)(KΣ
n (w,w′)− 1

π

1

w − w′ )|∆d2w
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as required.

Turning to the second integral, we must show that

lim
z→z′

(n∂z′ − (1− n)∂z)(
J ′(z)nJ ′(z′)1−n

J(z)− J(z′)
− 1

z − z′
) =

6n2 − 6n+ 1

6
S(J)(z).

For n = 1, this assertion becomes

J ′(z)J ′(z′)

(J(z)− J(z′))2
=

1

(z − z′)2
+

1

6
S(J) +O(z − z′),

a classical result. We will use the n = 1 case to prove the formula for n > 1.

For n = 1, simply expand:

J ′(z)J ′(z′)

(J(z)− J(z′))2
=

1

(z − z′)2

1 + J ′′

J ′
· (z − z′) + 1

2
J ′′′

J ′
· (z − z′)2 + . . .

(1 + 1
2

J ′′

J ′
· (z − z′) + 1

6
J ′′′

J ′
· (z − z′)2 + . . .)2

=
1

(z − z′)2
(1 +

J ′′

J ′
· (z − z′) +

1

2

J ′′′

J ′
· (z − z′)2 + . . .)

· (1− J ′′

J ′
· (z − z′) + (

3

4

(
J ′′

J ′

)2

− 1

3

J ′′′

J ′
)(z − z′)2 + . . .)

=
1

(z − z′)2
(1 + (

1

6

J ′′′

J ′
− 1

4

(
J ′′

J ′

)2

)(z − z′)2 + . . .)

=
1

(z − z′)2
+

1

6
S(J) +O(z − z′).

(The dependence of J ′′/J ′, always on z′, has been suppressed.) The formula

for n > 1 may be proved similarly by brute force, but it saves some work to
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add and subtract a term so that the n = 1 formula may be used:

lim
z→z′

(n∂z′ − (1− n)∂z)(
J ′(z)nJ ′(z′)1−n

J(z)− J(z′)
− 1

z − z′
)

= lim
z→z′

(
n(n− 1)J ′(z)nJ ′(z′)1−n

J ′′

J ′
(z′)− J ′′

J ′
(z)

J(z)− J(z′)

+
nJ ′(z′) + (1− n)J ′(z)

(J(z)− J(z′))2
J ′(z)nJ ′(z′)1−n − 1

(z − z′)2

)
= n(n− 1)

(
J ′′

J ′

)′
+

1

6
S(J)

+ lim
z→z′

(
nJ ′(z′) + (1− n)J ′(z)

(J(z)− J(z′))2
J ′(z)nJ ′(z′)1−n − J ′(z)J ′(z′)

(J(z)− J(z′))2

)
.

Now all that remains is to show that the term under the limit goes to

−n(n− 1)

2

(
J ′′

J ′

)2

.
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Use the n = 1 case again, and expand:

lim
z→z′

(
nJ ′(z′) + (1− n)J ′(z)

(J(z)− J(z′))2
J ′(z)nJ ′(z′)1−n − J ′(z)J ′(z′)

(J(z)− J(z′))2

)
= lim

z→z′

J ′(z)J ′(z′)

(J(z)− J(z′))2
(nJ ′(z)n−1J ′(z′)1−n + (1− n)J ′(z)nJ ′(z′)−n − 1)

= lim
z→z′

(
1

(z − z′)2
+O(1)

)
·

(
n

(
1 +

J ′′

J ′
· (z − z′) +

1

2

J ′′′

J ′
· (z − z′)2 + . . .

)n−1

+(1− n)

(
1 +

J ′′

J ′
· (z − z′) +

1

2

J ′′′

J ′
· (z − z′)2 + . . .

)n

− 1

)
= lim

z→z′

(
1

(z − z′)2
+O(1)

)
·
(
n

(
1 + (n− 1)

J ′′

J ′
· (z − z′)

+

(
n− 1

2

J ′′′

J ′
+

(n− 1)(n− 2)

2

(
J ′′

J ′

)2
)

(z − z′)2 + . . .

)

+(1− n)

(
1 + n

J ′′

J ′
· (z − z′)

+

(
n

2

J ′′′

J ′
+
n(n− 1)

2

(
J ′′

J ′

)2
)

(z − z′)2 + . . .

)
− 1

)

= −n(n− 1)

2

(
J ′′

J ′

)2

.

This completes the proof of the theorem.
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Chapter 6

Second variation of log det ∆n

This chapter is devoted to an alternate proof of the rigorous Belavin-Knizhnik

formula due to Zograf and Takhtajan:

Theorem 6.1 ([ZT87a]). Let µ and ν be harmonic Beltrami differentials on

the surface X (representing elements of T[X]Tg). Recall that [Nn]jk = (φj, φk)

for a choice {φ1, . . . , φd} of a basis for holomorphic n-differentials, varying

holomorphically on Tg in a neighbourhood of [X] ∈ Tg. Recall also that (µ, ν) =∫
X
ρµν is the Weil-Petersson inner product. Then

∂∂ log

(
det ∆n

detNn

)
(µ, ν) =

6n2 − 6n+ 1

12π
(µ, ν).

The proof in [ZT87a] is essentially different in the cases n = 1 and n ≥ 2;

we give here a simpler proof of the n ≥ 2 case along the lines of the n = 1 proof

in [ZT87a]. (This is possible since we have established a “good” description of

the field of quadratic differentials corresponding to the (1, 0) form δ log det ∆n

on Tg; see [ZT87a], p.184.)
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It will be convenient to define

ωj =
d∑

k=1

[N−1
n ]kjρ

1−nφk,

where {φ1, . . . , φd} is our choice of basis of the space of holomorphic n-differentials

varying holomorphically on Tg, so we may write the kernel of the projector on

holomorphic n-differentials as

Pn(w,w′) =
d∑

j=1

φj(w)ωj(w
′).

Define also

ψj =
d∑

k=1

[N−1
n ]kjFk,

where Fj are Bers potentials for the φj as defined earlier, so we have ∂ψj = ωj,

and Kn(w,w′) = K̂n(w,w′) +
∑d

j=1 φj(w)ψj(w
′). Recall the definition

Tn(w) =
(
n∂′ − (1− n)∂

)(
Kn(w,w′)− 1

π

1

w − w′

) ∣∣∣
w′=w

,

and make the abbreviation |∆ = |w′=w.

Now, recall that we have

δµ log det ∆n =

∫
J(D)

µΣTΣ
n +

6n2 − 6n+ 1

6π

∫
D
µΓS(J),

where Σ is some function group uniformizing X. We will take Σ to be a

Schottky group uniformizing X, since in that case all of the group parameters
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are holomorphic functions on Tg.

δνδµ log det ∆n =

∫
(δνµ)Tn +

∫
µ(δνTn) +

6n2 − 6n+ 1

6π
δν

∫
µS(J).

We compute each term in this expression in turn.

Lemma 6.2.

∫
(δνµ)Tn = (n− 1) Tr((µν − (ρ−1δνδµρ))Pn).

Proof.

∫
(δνµ)Tn = −2

∫
Tn∂ρ

−1∂(ρ−1δνδµρ)

= 2

∫
(∂Tn)ρ−1∂(ρ−1δνδµρ)

= 2(n− 1)

∫
∂1(Pn|∆)ρ−1∂(ρ−1δνδµρ)

= 2(n− 1)

∫
(Pn|∆)∆0(ρ

−1δνδµρ)

= (n− 1)

∫
(Pn|∆)(µν − ρ−1δνδµρ).

In the third line we have used

∂Tn = (n− 1)∂1(Pn|∆),
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which follows from

∂Tn(w) =

((
∂ + ∂

′)(
n∂′ − (1− n)∂

)(
Kn(w,w′)− 1

π

1

w − w′

)) ∣∣∣
∆

=
(
n∂′ − (1− n)∂

)
∂
′
Kn

∣∣
∆

= (n− 1)∂1(Pn

∣∣
∆
) + (∂′1−nPn)

∣∣
∆

since the second term is zero.

Lemma 6.3.

∫
µ(δνTn) = −nTr((µνPn))−

∫
µ(∂nδνK

Σ
n )|∆.

Proof.

∫
µ(δνTn) =

∫
µδν(((n∂

′ − (1− n)∂)(Kn −
1

π

1

w − w′ ))|∆)

=

∫
µ((−nν∂′ + (1− n)ν∂)(Kn −

1

π

1

w − w′ ))|∆

+

∫
µ((n∂′ − (1− n)∂)(δνKn))|∆

= −n
∫
µν(∂

′
Kn)|∆ + n

∫
µ∂1((δνKn)|∆)−

∫
µ(∂nδνKn)|∆

= −nTr((µν)Pn)− n

∫
(∂−1µ)(δνKn)|∆ −

∫
µ(∂nδνKn)|∆,

and ∂−1µ = 0.

Lemma 6.4.

δν

∫
µS(J) =

1

2
(µ, ν).

Proof. This is proved in [ZT87b]; for the convenience of the reader, we repro-

duce the proof here. Remembering that S(J) is a quadratic differential with
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respect to Γ,

δν

∫
µS(J) =

∫
(δνµ)S(J) +

∫
µ(δνS(J)).

Since S(J) is holomorphic, it represents a differential form of type (1, 0) on Tg.

On the other hand, δνµ is a vector field of type (0,−1) on Tg, so the two pair

to give zero, showing that the first integral vanishes. To calculate the second

integral, let f̃ εν be the quasiconformal deformation of the ordinary set Ω of Σ

satisfying

f̃ εν ◦ J = J εν ◦ f εν .

Since Σ is a Schottky group, f̃ εν depends holomorphically on ε. Taking the

Schwarzian derivative of this equation gives

S(f̃ εν) ◦ J · (J ′)2 + S(J) = S(J εν) ◦ f εν(∂f εν)2 + S(f εν),

and taking ∂
∂ε

∣∣
ε=0

yields

0 = δν(S(J)) + Φ′′′
ν = δν(S(J))− 1

2
ρν,

and the result follows.

Now for the other side of the equation.

Lemma 6.5.

δνδµ log detNn = −
∫
µ(∂nδνKn)|∆ + Tr((−µν + (1− n)(ρ−1δνδµρ))Pn).
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Proof. First note that

∫ ∑
j

(δµφj)(δνωj) =

∫ ∑
j

(δµφj)∂(δνψj)

= −
∫ ∑

j

(∂δµφj)(δνψj) +

∫
∂(
∑

j

(δµφj)(δνψj))

= −
∫
µ
∑

j

(∂nφj)(δνψj) + 0

= −
∫
µ(∂nδνKn)|∆.

The integration by parts is justified because, although ψj is an Eichler integral,

δνψj is a genuine (1 − n, 0)-differential: since all quantities in K̂n depend on

Schottky parameters, δK̂n = 0, and consequently the Eichler periods of Zn

vary holomorphically as well:

∑
j

φj(w)(δνψj)(γw
′)γ′(w′)1−n =

∑
j

φj(w)(δνψj)(w
′).

and integrating this equation against ψk(w) gives

(δνψk)(γw
′)γ′(w′)1−n = (δνψk)(w

′)
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Now calculate:

δνδµ log detNn = δνtr(N
−1
n (δµNn))

= δν

∑
j

∑
k

[N−1
n ]kj[δµNn]jk

=

∫ ∑
j

(δµφj)(δνωj) + (1− n)

∫
φjωj(ρ

−1δνδµρ)−
∫
φjωj(µν)

= −
∫
µ(∂nδνKn)|∆ + Tr((−µν + (1− n)(ρ−1δνδµρ))Pn).

Collecting the results of the previous four lemmas establishes the theorem.
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Chapter 7

Zograf’s product formula for det ∆1

In this chapter we prove the following result, due to Zograf [Zog89], [Zog97]:

Theorem 7.1. Let the surface X be uniformized by a Fuchsian group, X '

H/Γ, and by a Schottky group, X ' Ω0/Σ, and let J : H → Ω0 be the

locally invertible holomorphic surjection respecting the group actions. Let

S : Sg → R>0 be the function on Schottky space defined in [ZT87b], (the

“classical Liouville action”, a Kähler potential for the Weil-Petersson met-

ric) satisfying δµS = 2
∫

X
µS(J), where S is the schwarzian derivative. Let

{φ1, . . . , φg} be a basis of holomorphic 1-differentials on X, normalized with

respect to the Schottky marking (taking the bounding circles of a fundamental

domain as A-cycles), and let [N1]jk = (φj, φk). Denote the multiplier of an

element γ ∈ Σ by λγ, 0 < |λγ| < 1.

Now, suppose Σ is such that
∑

γ∈Σ|γ′(w)| converges. Then

det ∆1 = cg|F |2 detN1 exp(
1

12π
S),

where F =
∏
[γ]

∞∏
m=1

(1− λm
γ ),
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the product being taken over primitive conjugacy classes in Σ. cg is a constant

on Tg, depending only on g, which we do not determine.

Remark 7.2. 1. The set of groups satisfying the convergence condition is a

proper open subset of the Schottky space Sg, except for g = 1, when it

is the entire space.

2. F is a holomorphic function on a subset of Sg, because the multipliers

λg are holomorphic on Tg and (obviously) well-defined on Sg.

3. The result is actually true not only on an open set of Tg but descends to

Sg, because detN1 turns out to be single valued on Sg (see [Zog89]).

4. The function F actually admits analytic continuation to the whole of

Sg, by [Zog89], and the formula for det ∆1 remains valid, though the

product formula for F is only valid under the convergence hypothesis in

the theorem.

Proof. It has been established so far that

δµ log det ∆1 =

∫
µ∂′
(
K1(w,w

′)− 1

π

1

w − w′

) ∣∣∣
w′=w

+
1

6π

∫
µS(J)

where

K1(w,w
′) =

∑
γ∈Σ

1

γw − w′γ
′(w) +

g∑
j=1

g∑
k=1

φj(w)[N−1
1 ]kjFk(w

′).

We would therefore like to express each term on the right as the variation of

some function on the Teichmüller space Tg.
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Zograf and Takhtajan have found a positive real-valued function S on Tg

(the “classical Liouville action”) such that

δµ
1

2
S =

∫
µS(J),

and moreover they give a formula for S as an explicit integral defined on the

Schottky uniformization of X. We do not reproduce their arguments here, but

refer the reader to [ZT87b].

Next we show that

∂F = ∂′
(
K1(w,w

′)− 1

π

1

w − w′

) ∣∣∣
w′=w

.

The equation should be understood to mean that the holomorphic derivative

on Tg on the left is represented by the holomorphic quadratic differential on

X given on the right, so that for any harmonic Beltrami differential µ on X,

∂F (µ) =

∫
µ∂′
(
K1(w,w

′)− 1

π

1

w − w′

) ∣∣∣
w′=w

.

We will need the standard formula ([Zog89])

∂λγ

λγ

= − 1

π

∑
α∈〈γ〉\Σ

(aγ − bγ)
2

(αw − aγ)2(αw − bγ)2
α′(w)2,

where aγ, bγ are the attracting and repelling fixed points respectively of γ, and

the sum is extended over the quotient, on the left, of Σ by the cyclic group

generated by γ.
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First we do the usual manipulation

logF =
∑
[γ]

∞∑
m=1

log(1− λm
γ )

= −
∑
[γ]

∞∑
m=1

∞∑
r=1

λmr
γ

m

= −
∑
[γ]

∞∑
m=1

1

m

λm
γ

1− λm
γ

,

then take the derivative on Tg (again identified with a quadratic differential

on X),

∂ logF = −
∑
[γ]

∞∑
m=1

λm
γ

(1− λm
γ )2

∂λγ

λγ

=
1

π

∑
[γ]

∞∑
m=1

λm
γ

(1− λm
γ )2

∑
α∈〈γ〉\Σ

(aγ − bγ)
2

(γw − aγ)2(γw − bγ)2
α′(w)2

=
1

π

∑
[γ]

∞∑
m=1

∑
α∈〈γ〉\Σ

(γn)′(αw)

(γnαw − αw)2
α′(w)2

=
1

π

∑
[γ]

∞∑
m=1

∑
α∈〈γ〉\Σ

1

(α−1γnαw − w)2
(α−1γnαw)′(w)2

=
1

π

∑
γ

1

(γw − w)2
γ′(w)2

= ∂′K̂1(w,w
′)|w′=w

where in the third line we have combined the definition

λγ =
w − bγ
w − aγ

· γw − aγ

γw − bγ
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and its derivative

λγ =

(
w − bγ
γw − bγ

)2

γ′(w)

to obtain
λm

γ

(1− λm
γ )2

(aγ − bγ)
2

(w − aγ)2(w − bγ)2
=

(γn)′(w)

(γnw − w)2
.

As for the zero mode term,

∂ log detN1 = tr(∂ logN1)

= tr(N−1
1 ∂N1)

=

g∑
j=1

g∑
k=1

[N−1
1 ]kj∂[N1]jk

= −
g∑

j=1

g∑
k=1

[N−1
1 ]kjφj(w)φk(w)

=

g∑
j=1

g∑
k=1

[N−1
1 ]kjφj(w)∂Fk(w),

where we have used Rauch’s formula, and have used that

Fk(w) =

∫ w

a

φk(ζ)dζ −
∫ w

a

φk(ζ)dζ

when n = 1.

Summarizing, we have

δµ log det ∆1 = δµ log

(
F detN1 exp(

1

12π
S)

)
.
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Further, noting that all quantities are real except F ,

δµ log det ∆1 = δµ log

(
F detN1 exp(

1

12π
S)

)
.

Now since F is holomorphic, we can integrate up to an overall constant:

det ∆1 = cg|F |2 detN1 exp(
1

12π
S).

This establishes Zograf’s formula.
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