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Suppose M is a hyperbolic manifold. This may be described as a quotient
/G, where G is a Fuchsian group acting on the hyperbolic dise . Consider
the set of geodesic rays originating at a fixed point p of M .‘ Some of these
geodesics will return to a compact set infinitely often; correspond to the so
called conical limit points on the limit set of G. Others will go to infinity,
Le. dist(y(t), p) — oo; these are called the escaping geodesics.

We will consider those escaping geodesics which escape at the fastest
possible rate, and find the Hausdorff dimension of the corresponding terminal
points on the boundary of I. In dimension 2, for a geometrically infinite
Fuchsian group, if the injectivity radius of M = /G is bounded above and
away from zero, then these points have full dimension. In dimension 3, when
G is a geometrically infinite and topologically tame Kleinian group, if the
injectivity radius of M = B/G is bounded away from zero, the dimension of

these points is 2, which is again maximal.
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We also obtain a result concerning the quasi-conformal self-maps of jungle
gyms. If the dilatation is compactly supported, then the induced map on the
boundary of the covering disc I is differentiable with non-zero derivative on a

set of Hausdorff dimension 1.
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1 Dimension of Deep points

1.1 Imtroduction

Consider G, a discrete, torsion free subgroup of isometries of the hyper-
bolic metric on the hyperbolic three ball B; i.e. a Kleinian group. Passing
to the quotient B/G by identification of the G-equivalent points we obtain
the quotient space M, which is a manifold. Suppose this group G is non-
elementary and denote its limit set by A. In the limit set we have conical and
non-conical points.

A point z on the boundary of the ball is a non-conical point if there is a
geodesic ray ending at = so that the projection of this geodesic will eventually
leave any compact set and tend to the ideal boundary. Among these points
there is a subset, which escapes to the ideal boundary at the fastest possible
rate. These are called deep points. The original definition of deep points is
due to McMullen [18]. A point is a deep point if there is a geodesic ray v :
[0,00) — C{A) in the convex hull parameterized by arclength and terminating
at z, so that for some ¢ > 0

dist (y(£), 0C(A))

i =

for all ¢, i.e. the depth of « inside the convex hull of the limit set A increases




linearly with the hyperbolic length.

We can generalize this notation by taking any Lipschitz function ¢(#) :
[1,00) — [1,00) with the property of limy ., ¢(t) = co. Fixing a point 2z, €
M =B/, we consider the set of geodesic rays starting at 2z and parameterized
by the hyperbolic arclength, Define the set of geodesics in the convex core

which escape at a rate ¢ as

1 dist(vy(t), 20)

e = { PP NA LT Yo 1Y
TRES T ey © }

Let AG denote the terminating points of the geodesics in I'f, and let Ay =

UcAS.

" The main theorem of this paper is the following:

Theorem 1.1.1. Suppose G is a geometrically infinite, topologicelly tame
Kleinian group, M = B/G has injectivity radius bounded away from zero and
there is a Green’s function on M. Let ¢(t) : [1,00) — {1,00) be a Lipschitz

function satisfying limy .o ¢(t) = 0o, then dimy(Ay) = 2.

The definitions will be given later in Sections 1.2, 1.3 and 1.4. The idea
of the proof: we can find a positive harmonic function « on the manifold
M (Lemma 1.4.1). Then lift this » to the covering space B, so we have a
hyperbolic harmonic function U on the ball B. This hyperbolic harmonic
function is a Poisson integral of some positive measure y, which is supported

on the limit set. Using this measure construct a Bloch martingale { f,} on the




dyadic squares @ of length 27" by defining f,, as

With the help of a technical lemma (Lemma 1.4.4) we can find a Cantor set,
which has Hausgdor{l dimension two (Lemma 1.3.5), on which the martingale

grows approximately at the same rate as the given Lipschitz function ¢, i.e.

1

aS < C.

/(@) ‘
¢(n)

On @ the martingale f,,(Q) has bounded distance from the harmonic function

U on the top of the Carleson square drawn over Q ([6], Lemma. 1.4.2); therefore

< C.

1 _|Ulzg)
Og‘qb(n)

Finally, U{z) approximately gives the distance from ~(t) to the base point,
which gives estimation for dist(~(¢), 0C(A)) on manifolds specified in the main
theorem.

An analogous theorem can also be given for IFuchsian groups:

Theorem 1.1.2. Suppose G is a geometrically infinite Fuchsian group, M =

B/G has injectivity radius bounded and bounded away from zero, and there is '

a Green's function on M. Let ¢(t) : [1,00) = [1,00) be a Lipschitz function

satisfying lim,_,eo ¢(t) = oo, then dimy(Ay) = 1.

Taking ¢(t) = ¢t we can get the dimension of deep points in such sets

using the theorem above.




Corollary 1.1.3. If GG is o geometrically infinite, topologically tame Kleinian
group and M =B/G has injectivity radius bounded away from zero and has o

Green’s function, then the deep points have dimension 2.

1.2 Definitions and notations

A similarity of R? is a map f(z) = Az + b, where b € R and A is a
conformal matrix, i.e. a positive scalar multiple of an orthogonal matrix. The
reflection in the unit sphere is given by J(x) = wE The full or general Mdbius
group GM (R?) acting in R? is defined as the group generated by the similarities
and by the reflection J ([4], [19]). Let GM(B) denote the subgroup of this full
Mibius group, which leaves the unit ball B € R* invariant. _This group can
also be characterized as the group of isometries of the hyperbolic metric on
the hyperbolic ball B, The action of a Mdbius transformation extends from
R¢ to the (d+1)-dimensional hyperbolic space H*™ by its Poincaré-extension.
There are isomorphisms showing that GM (R-') 2 GM (B4) = GM (H¥),

The Mébius group M(R?) acting in R? is the subgroup of the general
Moébius group consisting of all the orientation preserving elements. The sub-
group of M{R?) which preserves the upper-half plane H = {z € R¢ : 24 > 0}
or the unit ball B = {z € R? : |z| < 1} will be denoted by M(H) and M(B),
respectively. A discrete group G of M(B) in dimension 3 is called Kleinion

group. A Fuchsian group is a Kleinian group which stabilizes a round disc

on OB, the sphere at infinity. In this paper we consider only non-elementary
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groups, that is, G has no finite orbit in B,

If G is a discrete subgroup of M (B), the orbit G{a) of any point ¢ € B
can accumulate only on the boundary of B. So we call a point z € § = JB a
limit point, if there is an orbit G(a) accumulating at z. The lmit set is the
set of limit points and denoted by A(G) or simply by A. For non-elementary
groups the limit set is the accumulation points of a single orbit, It can be
shown, that this definition is independent of the particular orbit and the limit
set is a closed subset of S ([4]). The complementary set S\A of A is called the
ordinary set, and denoted by 2.

Let G be a Kleinian group, then the quotient space /G, which is ob-
tained from the ordinary set of (¢ by identifying equivalent points under the
mappings of G, is a marked (possibly disconnected) Riemann surface ([17]). If
Q/G is a finite marked Riemann surface (i.e. a finite union of compact surfaces,
each with at most a finite number of punctures), then we call G analytically
finite, Ahlfors finiteness theorem shows that G is analytically finite if it is
finitely generated.

A convex polyhedron of B (or H) is the intersection of countably many
open half-spaces, where only finitely many of the hyperplanes, defining these
half-planes, meet any compact subset of B (or H) (see [17]). A polyhedron D

is a fundamental polyhedron for the discrete group G if
(i) for every g € G\{id}, g(D)n D =@,
(ii) for every = € B, there is a g € G, with g(z) € D,

(ili) the sides of D are paired by elements of G, and




(iv) any compact set meets only finitely many G-translates of D.

Let ¢ € B be a point not fixed by any non-trivial element of the discrete group

(7, then the set
D, = interior{z € B : p(z,a) < p(z, g(a)},g € G}

is called the Dirichlet region centered at a. The Dirichlet region is a funda-
mental polyhedron ([4], [17]).

A Mobius group ( is called geometrically finite if some convex fundamen-
tal polyhedron has finitely many faces. In dimensions 2 and 3 the standard
definition of geometric finiteness is that the Dirichlet region must have finitely
many faces. It is known, that this criterion implies that every Dirichlet region
and every convex fundamental polyhedron has finitely many faces ([4], [19]).
Moreover, geometric finiteness implies that the group is finitely generated, and
therefofe analytically finite.

The conver hull of A C S, denoted by C(A), is the smallest convex
subset of B containing all geodesics with both endpoints in A. The conver
core of a hyperbolic manifold M = B/G is given by the quotient C(A)/G and
denoted by C(M). For z € M the injectivity radius, inj(z), is half the distance
between the two closest distinct lifts of z to B. In the theorem we assume that
the injectivity radius is bounded away from zero uniformly on M, which in
dimensions 2 and 3 implies that G has no parabolic elements.

A Kleinian group is called fopologically tame, if the corresponding quo-

tient manifold M = B/G is homeomorphic to the interior of a compact 3-




manifold with boundary. This implies that the convex core C(M) consists
of a compact piece and a finite number of ends Ej;, which are topologically
equivalent to S x R, for some compact surface S. We note here, that Canary
showed in (8] that topological tameness is equivalent to analytical tameness in
dimension 3. Moreover, if GG is topological tame, then there is an upper bound
for the injectivity radius inside the convex core.

In the introduction we already gave the definition of a deep point defined
by a geodesic ray in the convex hull of A, An equivalent definition can also be
given on the quotient manifold, as in [6]. A point & € A is deep, if the geodesic
ray v ending at x satisfies

dist (7(t), M\C(M))

>8>0
t

for all t > tg, where 4 denotes the corresponding curve on the quotient space
to v, We also note here, that Ferndndez and Melidn in [10] studied the size of

the set of escaping geodesics starting at a point of the hyperbolic surface.
1.3 Dyadic martingale and Hausdorfl measure

Definitions: An nth generation dyadic cube in R* is

Qn={z=(21,3,..,20) 10y S < + 27", 1 <0 < d}




where ¢ = (a1, a3, . .., 6q) is the corner of the cube, and each coordinate of a is
of the form a; = 3¢ with an integer m,;. The collection of these dyadic cubes
is denoted by Dy. For any given point z € R¥, let @, (2) denote the unique
nth generation dyadic cube which contains the point z. The mth generation
descendants of ¢, are the dyadic sub-cubes of @, with sidelength of 2°™|Q,]|.
There are 2™ of them.

Suppose (Jp is a unit cube in R%. Then a scquence of functions {f,}5,

is said to be a dyadic martingale on @@y if
1. f, is measurable on each ¢}, € D,
2. I—Ql—nl Jo, fn < 00,
3. [—ciT\me fn = f for all m < n.

In addition to this usual definition, we will also require that f, must be con-
stant on the nth generation dyadic cubes. Since in this paper we will use only
dyadic martingales, so we will often omit the “dyadic” attribute.

If a finite measure p is given on Glo, then the functions

_ #{@n())
) = Taw,

define a dyadic martingale, where @, (%)]a (or just |Q,(z)] if the notation is
clear from the text) denotes the d-dimensional Lebesgue measure of ().

We define the martingale differences as Af,(z) = fav1(z) — fulz), and the




martingale square function as

= /
51(0) = (Slnauwdfalls)
=1

Although this sum is not necessarily convergent, we will have a nice result

if |S¢(z)||e < oo. A martingale is called Bloch if sup,||Afnlle < oco. If ’

{fs} is an L'-bounded martingale, then f, converges a.e. to a function f with

|/]l: < co. For more results on the convergence of martingales, you may see

[11]. We will use two estimates for dyadic martingale that we shall prove first.

Lemma 1.3.1. Let f, be a dyadic martingale on Qo C R with limit function
f. Suppose ||Sf|l < 00. Then for A >0, i

A2

[z € Qo flz) — folz) = Al SGXP(—W) : :

The following proof is due to Herman Rubin and quoted from the paper
of Chang-Wilson-Wolff [9, Theorem 3.1]. First we introduce a generally used
notation. Let G, be the o-algebra generated by the 2"¢ dyadic subcubes on

R
Qo of sidelength 2™ and let E(f,J,) denote the conditional expectation of f
on G, that is

1
E(f,Gu)(z) = el oo f,  where z€ Qu(x). T

Notice, that using this notation a sequence of functions {f,} is dyadic mar-

tingale if E(fart, Gn) = fr. |

4 |




Proof. We may assume fy = 0. Fix ¢ > 0, and define ¢,, : Qg -+ R, n > 1 by

n—1 -1
4u(z) = @ (H (b5, gj)> ,

4=0

These ¢, form a martingale:

j=0

m -1
E'(Q'n-kl, gn) — F (6tfn+l (H E(BtAfja gj)) ?gﬂ)
n -1
(emf“ ebin (H JACR Qj)) :gn)
=0

B (B(e,G,)) L s gn)

FE
= BE(e®, G,) (E(emf", gn)) _IQ’n

It follows that IQO g, = 1 for all n. Using the elementary inequalities,

which we will show below,

[ et < com(lgle) < exo(501%)

for a probability measure p with the property of [ ¢dy = 0, we find that

_ 1
E(etAfa , gj)(g:) < eXp(ﬁtquQj(m)Afj”go) '

10




e

So for all n and =

n~—1 2
[1565,6)(@) <o (G571,

F=1

and by the equality [, g, =1 we get that

tf £ 2
e/ <expl =|[SSI%
Qo 2

for all n. Letting n go to infinity gives fQO et < exp(%g |SFII2). Now take

t= W and apply T'sebyshev’s inequality to get the proof of the lemma,

A AP
_ oo (i)
< e
exp(m)
< al a¥
= e"p(znsjfnzo - IISflﬁo)

B (1 %
- “Eusfuao)'

In the lemma above, we used two elementary inequalities:

[ et < comnl) < exp (51012

which are valid when p is a probability measure and [ ¢dp =0,

The second inequality comes eagily from the Taylor expansion of the two

11




sides, because

2

pn n B (LZ.Z)”
(2n)! = 27nl  nl

The first inequality can be shown by the usual argument in analysis:
proving it first for step functions by induction, then using Lebesgue dominated
convergence theorem it can be proven for any other function.

Suppose first that ¢ is a step function with only two values, i.e. ¢{z) =
axa + bxg, where p(A) + u(B) = C < oo and [ ¢dp = ap(A) + bu(B) = 0.

Using these assumptions and elementary calculus we get that

f e dp = e u(A) + ¢ u( B)

_ o —bC' e aC
T a-b a—b
ae’ — bet
I
= Cf,(b).
Suppose that ||¢|le = @, and consider the function f,(b) = “i% as a function
of b. Differentiating f,(b) with respect to b we get that
Qf (b) = (ae® — e*)(a — b) + ae® — be?
o’ (a — b)2
= @ 4 Ak (ac® — be® + €’ — e%)
a
= mg(b)-

By differentiating g(b) with respect to b we see that the function ¢(b) is an

increasing function on the interval [—a,a| and its value at ¢ is 0. Therefore

12




g(b) < 0 for all |b| < a and so is 5 fu(b). Hence f,(b) is a non-increasing

function on the interval [—q, a], and

—a a
/eﬁb(m)d,u = Cfa(b) < Cfal~a) = cﬁ'iﬁg—;ﬂ = Ccosha.
If [|¢ilo = —a > 0, we can use the same calculations. In this case g(b)

is a decreasing functions on the interval [a, —¢| with initial value g{a} = 0.
Therefore g(b) < 0 on the interval (a, —a) and so & fo(b) > 0 for all |b| < —a.

This means the function f,(b) is increasing on the interval [a, —aj, and

[ < Ch(t) < Ofi—a) = 055 = Crosha

We can use induction to show the inequality for arbitrary step functions.
Let
n+1
¢(z) = Z GiXc;
=1

so that [ ¢du =0 and 3 p(C;) = C < oo and suppose that

le|(Cr) = min {lailp(Ci)}.

1<i<nt1

We are able to write ¢ as a sum of two step functions each having at most n

function-values, therefore we can use the induction step for each of them. So

13




write

where

I =eaxe + eXxel
n+1

g = caxoy -+ ) eiXn
=3

A=C Ul
n41
Cm ( U . )
Choosing the decomposition of the set Cy = C; U CJ carefully we may assume

that both [, fdu =0 and [, gdpu = 0. Therefore

Jow- [+ [

< pu(A) cosh|| flloo + 1£(B) coshl|gl|eo

< C cosh||¢]|co-

If ¢(z) is not a step function, we can approximate it by step functions

and use the Lebesgue dominated convergence theorem to prove the inequality.

Lemma 1.3.2. Suppose u 65 a probability measure on X. Suppose F' is a

measurable, real valued function on X so that [, Fdp =0 and |Flly < Bl[F.

Then
w({o: 70 < ~Z55¥1} ) 2 gpm

14




The following proof was given in [6].

Proof. Without loss of generality we may assume || ||, = 1. Hélder’s inequal-

ity implies that
1/2
L= = ([ FE) < U <

which implies ||F||; > B~2. Write F' = Fi — F.. as the difference of its positive
and negative parts. Since /' has mean value zero we must have ||F_||; > 513,
and hence F(z) < —o7 at some point.

To show F' is negative on a set of large measure, let

Elz{meQ:F_g\/ngQ}, Ezz{er:F_zx/ngz}.

Since

and (F_)du <

2 2 .
NF-Nlz 2 -1l 2 5 . < 3BT

we deduce [, (F.)%dp > gh. Thus if u(Fh) < gpm, we would ges

1/2

1 2 4 1/2 2 1
el B - -
8B4 = /Ez F—d'u s (/ F#d’uj) H'(E2) < 8.86 8B4?

which is contradiction, and this proves the lemma. -

To prove our main theorem we will need the following two lemmas for

dyadic martingales.

15




Lemma 1.3.3. Suppose u is a positive measure on the cube [0,1]¢, d > 1, so

that the corresponding dyadic martingale defined by f,(z) = M(Qn(i:)r) is Bloch
and @IﬂHAan% = 6 > 0 whenever f,(z) 2 1 on Qu(z). There is an e > 0 and
M < oo so that given any sufficiently large n, there is a constant C so that the
Jollowing holds, Let @) be any dyadic cube, and let fqo denote that function in
the martingale, which is defined by Q, i.e. fo = %l on ). Suppose fg > C.
Then among the 2% nith generation descendants of @), at least €29 satisfy

Mn 2 for — fq = 1, and at least 2% satisfy —Mn < for — fo < —1.

Proof. Suppose sup,,||Afalle = L < o0 and I_Ql:\”Af””% > ¢ > 0 whenever
folz) > 1and fix an ¢ with 0 < ¢ < min{%, 1}. By an appropriate scaling
we may assume that |Qf = 1. Then the martingale square function for the

sequence {fﬂ: fl’ ey fN} is
n 1/2
5y(z) = (Zile,-(m)Afjllio> < VAL
j:l

Let ' = Af; + ... + Af,, and suppose that n > 6‘115—];4 and that fo >
L+nL=C. Then f; > 1forall 1 <j<mn,sol||Af|I2>dforalll <j<n.

The system {Af;}7_, is orthogonal, therefore

i
n? 2 \Fll; =Y Il = ns.

i=1

Let A(t) = [{# : [F(x)| > t}| define the distribution function of |F'}. Then

/|F|p :p/ I (t)dt
0

16




__t? 2
and by Lemma 1.3.1, A(t) < e #5rl% < e~ 5% . Therefore

171 = [1F1 =4 [~ erpa
0
o0 2
< 4f e mnhdt
0
:8L4n2f ye Ydy
0

= 8L'n?.

Hence ||F|; < v/8L+/n = Bér/n < B||F||2 with the constant B = %%Q Now

we can apply Lemma 1.3.2 so

w({re@ir@ < 1P} ) 2 g

Using that [|F|jy > v/nd and the assumptions that 1/n > %—25 = %Bz we get

that:

=

uiz € QP < 1)) 2 u({o e Qi Pl < - v} )

(s@:F() < ——IFL})

& 64}312 - (%)12;_5

> 2¢,

Switching F' with —#', with the same assumptions, we get

p({zeQ: Flz) > 1}) > 2.

Next, consider the following subsequence {fo, ..., fn}. By Lemma 1.3.1,

17




for a positive constant M > Lv/—21ne

{z € Q: fulz) — folz) = nM}| < exp(-zi%%g)

—niM?
()
M2\ P
s (GXP("ZL?))

<€

IA

¢

for every n > 1 and if € < 1. Repeating this argument with {—fo, ..., —fo} we

get that
Hz e Q: fulz) — folz) < —nM}| <e

Therefore, for every sufficiently large n there is a constant C =1+ nlk

so that if fg > C then
u({r € Q: 1 < Flz) = fule) - folz) <nM}) 2 ¢
and
p({z € Q: =1 > F(z) = fo(z) — fo(z) 2 —nM}) 2 e

In other words, among all of the 2%" nth generation descendants of () at least
€247 gatisty the inequality Mn > for — fo > 1, and at least €2%" of them satisfy

MMﬂéer—fQS—l. (|

18




Definitions: Suppose ¢ is an increasing, continuous function from [0, 0o) to

itself such that ¢(0) = 0. For a given set £ we define the Hausdor[f content as

He(B) = inf{z $(r;) : E C U;D(z;, rj)}.

Specially, if ¢(£) = t* we denote HZ, by H2,. The Hausdorff dimension of this

set F is
dimgy(E) = inf{a : HZ(E) = 0}.

Lemma 1.3.4 (Mass Distribution Principle). [f E supports a strictly pos-

itive measure | which satisfies
p(B(z,r)) < Crt

for every ball B(z,r), then HE, > u(E)/C and therefore dimy(F) > d.
For more details on Hausdorff dimension, you may see [7].

Lemma 1.3.5. Suppose E, is a union of closed dyadic cubes of generation ky

s0 that By D Fy D Ey O ... and there are constants N and € with
1. |kn = kpg1| = N for all n,
2. If Q € B, is generation ky, then | By N Qs > €|Q)a.

If B = N, E,, then dimy(E) > d—C(N, €) where C(N,¢) — 0, whenever ¢ > 0

is fized and N — oc.

19




Proof. Fix 1 > ¢ > 0 and N > 0, and consider the probability measure y
defined on the Cantor set E, so that for a given @ € £, each Q' € QN Fppy
has the same mass. To prove the lemma, we will use the Mass Distribution
Principle 1.3.4. From the first hypothesis we can deduce that &, = ky + nV.
Using the second hypothesis we can find an upper estimation for the measure

of each dyadic cube. For each @ ¢ E,

1
€ QE; =€ |Q|d
S |En+1 M Qld
o] . hd 1
= (the number of dyadic cubes in E,.; N Q) Y
1 1
= (the number of dyadic cubes in Fy,.; N Q) odhn 5N
Therefore

(the number of dyadic cubes in B, 1 N Q) > ¢ 24N
Suppose that in %y there are B dyadic cubes, then
(the number of dyadic cubes in E,) > B {(e2%V)".

Our measure defined on the Cantor set £ gives equal mass to each cube in

E,,, therefore

M(Q3Q6En)<

— Ben 2dNn '
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Let B(z,r) be a ball of radius r and choose n so large that s < 7 <

g 16 geremw < ¢ < gremwe Then B{z,r) can hit at most 2% of the kyth

generation cubes so

w(Bz,7) N E,) < 2%u(Q : Q € Ey)
20!
« 5
- BE”QN”d
2d 1 2Nd+kud

T B 9nrlogze Olkot{n-1)N)d
2(l+k’0)d nlogg € (1) E%dl_ﬁ
Td

B FRtDN

r
2(1+"50)d u( Nd_____ nlogge )
=" B Fn N T Rt (DN

(1+kﬂ)d logn ¢
S _%B—Td_(kg{\lrjt\’ﬁm ?\? )

3 Nd Nd nlogs € log, €
if n > N and r < 1, because then ol < ol and ot (A TN > .

By the Mass Distribution Principle 1.3.4, for any fixed ¢ > 0 and N > 0

the Hausdorff dimension dimg(E) > d—C(N, ¢) where C(N, ) = ko—ﬁ%—a —logge

Moreover C'(N,¢) —+ 0 as N — oo and € > 0 is fixed. O

1.4 The hyperbolic space and harmonic functions

Definitions: The unit ball B in R* is the disc model for the n-dimensional
hyperbolic space equipped with the hyperbolic metric

2|dzx|

dp = -
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An alternative model of the hyperbolic n-space is the upper half plane H =

{z= (21, 22,...,%0) : T, > O} C R™ equipped with the metric

_ |daz|
=

dp

Using the hyperbolic metric defined in B we may construct the hyperbolic

volume element:

anmldmz T d.’l?n

Vi =~ " Japy

On the upper half plane model the volume ¢lement is:

dridry - de,
zh '

dVH =

The hyperbolic Laplace-Beltrami operator for the unit ball B < R"* is

given by

_(1=r?)? 2(n—2)r 8
e e s |

where v = |z|. On the upper half plane

Agzmi[ﬁ—n—z 9 ]

Tn Oy

A function f is called hyperbolically harmonic if it satisfies the hyperbolic
Laplace equation, Ay f = 0.

We define the Green’s function on a quotient manifold M as follows, F
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is a Green’s function on M with a pole at the projection of a point q, if there

exists a function f : B\{G(a)} — R such that the projection of f is I and the

followings are true for f:
e fis a hyperbolic harmonic function on B\{G{a)},

o fog= fforall g e,

1

e lim,_,, (f(z) — ""—'E) =exists, i.e. f has singularity E%E at the point a,

k4

e f is the smallest positive function with these properties.

The hyperbolic version of Green’s formula:

/ (uAgv — vAgu)dVy = [
D

oD
where in B = {z € R* : [z] < 1}:

2hdzidxy - - dzy,
W= ey
27 ldo
ov  1—lz|* Ov

dop =

Ongy 2 on
1— 2
VH'LL = —'CEIV’U,
2
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inH={z=(21,...7,) € B, z, >0}:

dxy - day,
dVy = 1_n_w_,
x’n
do
do_H = n—1
o ou

- = .’E S
c?ng ”8n

VHU = mnV'u,

are the hyperbolic counterparts of the volume element, area element, normal
derivative and gradient in the hyperbolic ball. More detailed description can

be found in [2] and [19].

Lemma 1.4.1. Suppose G is topologically tame, geometrically infinite, M =
B/G has injectivity radius bounded below by € > 0 and that Green’s function
G(w, z) exists on M. Then there exists a positive harmonic function U on M

such that

sup|VU(z)| < 1
ZEM

and U tends to zero in the geomelrically fintte ends of M. If, in addition, G

is topologically tame then for any ay > 0 there are constants a, and aqg so that

/ VUV > as,
B(z,e1)

for every z such that dist (z, C(M)) < ag. Moreover, U(z) tends to +oo in the

geometrically infinite ends as dist (2, 0C(M)) — oco.
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The proof of this lemma can be found in [6].

Lemma 1.4.2, Suppose U on Rﬁ“ is the hyperbolic Poisson integral of the
positive measure p and satisfies |VyU(2)| < 1. For a square Q € R, let

Qi = {(g,ﬁ) T e Q}. Then there is an A < oo so that

|U(2q) - ﬁ[QU(m, t)dz| < A,

Jor any 0 <t < UQ), where £(Q) denotes the side-length of @, and

1
U - — | d A
Utea) ~ iy [, s <

The proof of this lemma in dimension 7 = 2 was given in [6].

Proof. If Q is a cube in R", then @ = Q x [0,4(Q)] is called the Carleson
cube in R with base @, and let zg denote the center of (). By rescaling
we may assume 2o = (0,1) and by replacing U/ by [/ — U(zg) we may assume
U(ZQ) = 0. Let ¢ € Coo(RTT1) be chosen with supp(e) C 3Q. Our first goal

is to prove

Lw@ﬁU@ﬂ@=OOL

with bounds depending only on the C%norm of v (in particular, independent
of t).

We begin by assuming U is smooth up to the boundary (later we will
apply these estimates to functions of the form U{z,y +¢)). Let W(z) be the

hyperbolic Poisson extension of the characteristic function of ¢} to Rﬁ“ and let
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I(2) = y™i(2)W(z). We now apply Green’s theorem (in hyperbolic setting)
to U(z) and F'(z) to get

I3
/ UAHF——FAHUCZVH = Ui“ '—Fa—UdO'H.
RIH Re  Ong ong
Since AxU = 0 this becomes
UAgFdVs = | UL Py —dow.
RT'I RBr anH BTLH

First we estimate the right hand side. Since |VgU| = O(1) and F =

Oy™) we get,

R

n 3713

To estimate the first term on the right hand side, note that

I8 ) = 2y ) 1 i 2w () + o B

= O™ + ¥(2)y"W(2) + O(y“ min (W {2),1 — W(z)))

Now break the integral [, U %};—Idag into three terms according to this
equation. As y —» 0 the integral of the first term over the boundary tends to
zero. The integral of the second term gives [p. Uy"Wdoy = |, o Ulz)y(z)de.
Since min(W (z),1 — W(z)) — 0 almost everywhere as y — 0, the Lebesgue

dominated convergence theorem implies the integral of the third term also
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tends to zero. Thus we deduce

/ Ua—F—F ou dom :fU(gs_)?p(g)ngrO(l).
R @

n 8?’1,]-] BnH

Now we estimate the left side of the equation above. Since 9 is C? up to

the boundary, we have V59 = O(y) and Agy = O(y?®). Thus

AHF = Ap(yy"W)
= Ay W +pAgy" W + gy Ay W |
+ VayVuy"W + Vapy"VgW + 9V gy"VeW

= O™ +0@") + 0+ O(y™) + O(y™™)

+ O(yanW)

The integral fRnH UA g FdVy breaks into six terms, the first five of which are
+

either zero or are obviously bounded (since U(z) = O(log é)) To bound the

last term, we use the fact that |VgW| = O(y|VW|) and the simple estimate

[ 19w @ sl = 000,
3Q

independent of y. This gives of order

1 1
f Yy VgW|log —dVy = f f VW | log —dzdy
|z]<3 Y 0<y<3 J |zi|<3 Y

1
= / log —dy
0<y<3 Y

= 0(1).
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Thus we have now proven that if U/ is hyperbolically harmonic, has
bounded hyperbolic gradient and U(zg) = 0 then fQ Updz = O(1), with
bounds depending only on the C? norm of 1. To deduce the first part of the
lemma, set F'(z) = U(z - (0,¢)) — U(0Q, L — ) and apply the preceding case to
F. Choose 7 so that ¢ = 1 on Q. Then

/U(;g,t)dg:fﬁ‘dg—% U(0,1 1) = Ulzg) + O(2),
Q Q

as desired. To prove the second part of the lemma we simply wish to note that

lim —— /Umt /d .
0 [Qn 1@k Jo

To prove this, we first observe that u(0¢) = 0. This is because we can cover
AQ by 2n20=1m gquares of size 27, and U is bounded by C’ﬂﬁ in the tops of
the corresponding Carleson boxes, Hence the p measure of each square is at
most Cm2~™" and the total 4 measure of 8Q is at most Cm2-"2p9~(n—Hm —
20mn2-™ — 0. Next note that fQ Py (z,t)dz converges to 1 inside ¢ and to
0 outside ¢, and hence to xo p-almost everywhere. Now use the fact that
U is the Poisson integral of y, Fubini’s theorem and the Lebesgue dominated

convergence theorem to get

o [ veoe= - [ [ Pate ] de
= [, [iar,  Pete 10a]

— lfxdu
|QIﬂRnQ'
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This completes the proof of the lemma. U

Remark 1.4.3. Define a martingale on the dyadic cubes using this positive

measure i by

Then by the lemma above, there exists a constant A so that |U(zg) — fo| < A.

Lemma 1.4.4. Suppose G is a topologically tome and geometrically infinite
Kleinsan group, so thal M = B/G has injectivity radius bounded below by
some positive epsilon and there exists a Green’s function on M. Let U ba a
positive harmonic function on M for which sup,ep | VrU(2)| < 1, and let {f,,}
denote the corresponding martingale as defined in the remark obove. Then
this martingale {fp.} has bounded differences away from zero in the Ly norm,

whenever its value larger than some fized constant C.

Proof. Suppose fr, > C on the dyadic cube @Q,,. From Lemma 1.4.2 we know
that |U(zg) — fm| < A, where zg denotes the center of the Carleson square
in %™ with base Q,,. Since G is topologically tame and inj(z) > ¢ > 0, the
convex core C'(M) can be written as a compact part and a finite number of
ends [;, each of which is topologically equivalent to § x R with some compact
surface S ([8]). We may suppose that we are already in such and end.

First, we will show that for the given constant A, there exists a constant
L, so that for all v € C(M) with U(v) > C we can find another point w with

plv,w) < L and |U(v) — U(w)] > 64. Lemma 1.4.1 says, there exist r and a

29




so that

/ |VU2dV > a
B(z,r)

for every z € C(M). Consider a geodesic ray on M originating at the point v
and going to infinity in the convex core. We may put digjoint discs of radius r
along this geodesic, say N discs, and denote w the endpoint, so p(v, w) = 2rN.
Cut E; at v and at w, and call these surfaces >y and X, respectively, and let
T denote the part of E; between these cuts. Moreover, we may also assume
that U(v) = 0. Green’s Theorem says that

dg  Of
Ag— gAFfdVy = 22 _ L do.
fo g—gAfdVy /BIUEQ o 5,90

Let f =1 and g = U?, then

a(U?)

21U on

f AUV = do.
T

By elementary calculations we will get from this that

f|VU|2dV:/ Ua—Uda.
T U, on

Using Lemma 1.4.1, we can estimate the left-hand side by
/ |VU|* > Na.
T

For the estimation of the right-hand side of the equality we can use that
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VU] <1, 50

/ Ua_Udo' < diam(El) area (),
%, On

./2 U%%dcr < (U(w) + diam(,)) area(%,).

Since Ej = § x RY, diam(X;) < D and area(3;) < S along the entire end .
Using these estimations in the equality above reduced from Green’s Theorem,

we get that
Na < DS+ (U(w) + D) S,

and so

%E — 2D < U{w),

‘Therefore, we can choose a uniform N large enough so that [U(v)—U{w)| > 64
and let L = 2rN.

Next, we will show that there is a point w such that p(zqg,w) < 3L,
but |U{zg) — U(w)| > 3A. Start at the point zg on the Carleson square and
go straight down toward the boundary by hyperbolic distance 2L, call this
point v. As we just showed above, there exists a w such that p(v,w) < L
and \U(v) — U{w)} > 6A, which means that either [U(zg} — U(v)| > 34 or
|U(2g) — U(w)| > 3A. Assume the latter is true.

Finally, we show that there is a subfamily { f,,,} in the original martingale

sequence with bounded differences away from zero in Ly-norm, and m; —m; <
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3L for all i. From Lemma 1.4.2, [U(2g) — f,u| < A and we can find a w such

that |[U{zq) — U(w)| > 34, but p(zg, w) < 3. We may also assume that w
is in the middle of a Carleson square, since |[VU| < 1. This Carleson square
is different from the original Q,,, call it v, and let f,; be the martingale
function determined by the size of this square. ‘Then |U{w) — foy| < A,
[U(2q) — fm| < A and |U(zg) — U(w)| > 84, 80 | fm — f] > A on @,y while
im — m/| < 3L. Therefore

@] _

1
m/{gm]fm—fmrﬁdm > @%TAQ =550

1.5 The proof of the theorem

Suppose G is a topologically tame, geometrically infinite Kleinian group
and the quotient manifold M = B/G has injectivity radius bounded away from
zero. This implies that G has no parabolic elements. Suppose ¢(t) : [1,00) —

[1,00) is Lipschitz, i.e.

|B(t) —~ ¢(s)| < Bls — |

for some B < oo and satisfies lim,_, ., ¢(t) = oo. Fix a point 2y € M and
consider the set of geodesic rays starting at z, parameterized by hyperbolic

arclength. Define the set of geodesics in the convex core which escape at rate
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¢ as

¢ [ 1 dist ((2), 20)
Fqﬁu{'y.C S—Wgo}.

Let Ag denote the terminal points of these geodesics, and let Ay = UcAg.

Theorem 1.5.1. Suppose G is a geometrically infinite, topologically tome
Kleinian group and M = B/G has injectivity radius bounded away from zero
and there is o Green's Function on M. Let ¢(t) : [, 00) — [1,00) be a Lipschitz

funetion satisfying lim;_ o ¢() = oo, then dimy(Ay) = 2.
The analogous theorem for Fuchsian groups:

Theorem 1.5.2. Suppose G is a geometrically infinite Fuchsian group, M =
B/G has bounded injectivity radius which is also bounded away from zero and
there is a Green's function on M. Let $(t) : [1,00) — [1,00) be a Lipschitz

function satisfying limy 0o ¢(t) = 00, then dimg(Ag) = 1.

Proof of Theorem 1.5.1. By Lemma 1.4.1 there exists a positive harmonic
function U on M with sup,c,|VU(z)| < 1 and U tends to zero in the ge-
ometrically finite ends of M. This U lifts to a hyperbolic harmonic function
(which we will also call U) on B, and this function is a Poisson integral of
some positive measure p supported on the limit set. Consider the correspond-
ing dyadic Bloch martingale fgo(z) = %g(%in

Using Lemma 1.4.4 we may pass into a subsequence of {fg} for which

the martingale differences are bounded away from zero whenever the value of

the martingale is not less than a constant C. Notice that even if we work with
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this subsequence in the future we can still use the previous lemmas because
there are upper and lower bounds for the number of generations we skipped.
To simplify our indexes we will suppose that { fa} is a Bloch martingale and
it has differences bounded away from zero whenever the value is not less than
.

Using Lemma 1.3.3 we can create a Cantor set {F} of nested dyadic
cubes, so that the dyadic martingale and the function ¢ are comparable there.
As in Lemma 1.3.3 find appropriate € > 0, M < oo, fix a sufficiently large
N, and also fix the corresponding constant €. Since U7 tends to infinity on
the geometrically infinity ends we may suppose that fo = C, except for finite
many generations of cubes.

First notice that we may suppose that the function ¢ is Lipschitz with a

Lipschitz constant 71\7: Le. |¢(z) — d(y)| < %[33 - 4|, This implies that
Plkn) = 1 < $lkny1) < d(kn) + 1

for all n € N. In case |¢(z) — ¢(y)| < Blz — y| with a bigger constant
B than &, we can rescale our function by choosing ®(z) = w¢{z). Then

fu(Q) < D on a set @,

|®(z) — ®(y)| < F|z —yl, and if we prove that & < T

then

/(@)

D
$(n)

— BN

1
<
BND —

will also be true. The second thing we should notice is that if the difference

| foner — @ (kni1)] is bounded, that also means the quotient ‘ ‘p{f;ill) is bounded,
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since limy o, $(t) = 0o. We will show that the difference is bounded.

Define Ej as the collection of those largest cubes ¢} where fg > C and

let kg be the number which denotes the generation of these cubes. Then there
is a positive constant D so that |fx, (@) — ¢(ko)| < D on all Q € Ey. We may
also assume that D > M N, We define the sets {F;} inductively. Suppose we
already have the set £, defined, and the quotient or the difference of fy, and
¢(k;) is bounded on all the previous sets, say —]15 < | fo, — (k)| < D for all
! <mn. Let ki1 = kn + N and for each @ ¢ E,, compare fi, (@) to ¢{kni1):

If £ (@) < ¢(kpq1) then choose those Nth generation descendants @'
of Q) for which MN > fi.,, — fr, = 1. According to Lemma 1.3.3 there
are at least €2%" of them, and then fi, . (Q') = fi, + ¢ where a € [1, MN].
‘Therefore, |fi,, (@) — ¢(knt1)| < D because

Jhner — lkng1) = fr, +a— ¢lbnp1) <a<MN LD

and

Glkni1) = ooy = Olknt1) — fen — @
< kn) ~ fr,t1 -0
<D+1-a

< D.

If fi, (Q) > é(knyy) then choose those Nth generation descendants Q' of .
@ for which ~MN < fg... — fe, < —1. From Lemma 1.3.3 we know that

there are at least €2%¥ of them, and then f;, (Q') = fi, —a where a € [1, M N]. 5}
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Therefore |fy,,, (@) — ¢(kai1)] < D, because

Jings = Ohnr) = fon — a = $lkny1) > —a > —MN > —D,

and
$(kns1) = frnys = Gng1) — fr, +a
Eﬁb(kn)_fkn -1l+a
>-D+a-1
> —D.
Define

Ept1 = Ugeg, {all the chosen descendants of QR}.

Then E,; C B, and for all € E,,; we have |21 (@) — ¢(kny1)| < D,

moreover

Bu Qe 2 2128 g,

for all @ € E,. Since limy e ¢(t) = oo, the inequality (@) — ¢(n)| <
D implies that the quotient

%’}'(%1‘ is also bounded above. Moreover, it is

bounded away from zero for sufficiently large values of . 'Therefore, for all
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Q C Ep:

The nested sets {E;} defined this way will satisfy the requirements of

Lemma 1.3.5, so the Hausdorfl dimension of the set £ = M F; is

dimy(E) > d — C(N,¢)

with limpy_eo C(N, €} = 0. According to Theorem 3 in Sullivan’s paper [21]

1 U(z)
— < || £ .
C — |dist(z, 20) 50
Since |U(z) — fg,| < A and § < f;T(nQ)l < D, so
1 |dist(v(n), z)
— < {—— <O,
c- ¢(n) B
Therefore dimy(Ay) = d. O

Fix a point z; € M and consider the set of geodesic rays starting at 2y
parameterized by hyperbolic arclength. A point z € A is a deep point if there is
a geodesic ray «y : {0, 00) — C(A) parameterized by arclength and terminating
at xz, such that for some § > 0 |

dist (v(t), 8C(A))
t

>4
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for all £ > 4.

Choosing ¢(t) = ¢ the set Ay determines the deep points and using the

theorem above we get the following Corollary:

Corollary 1.5.3. If G is non-compact, topologically tame Kleinion group and
M =B/G has injectivity radius bounded away from zero, then the deep points

have dimension 2. For Fuchsian group the dimension of the deep points 1s one.
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2 Differentiability of Quasiconformal maps on

the Jungle gym

2.1 Introduction

Suppose G is a Fuchsian group covering of the ‘1-dimensional jungle gym’,

pictured in Figure 2.1. Consider a quasiconformal deformation f of this surface
by using a dilatation in a ball I/ with compact closure on the ‘jungle gym’,
i.c. on the quotient Riemann surface D/G. We can lift this map f to the

universal covering space, to the hyperbolic disc D. The lifted map F: D — D

is a quasiconformal self-map of the hyperbolic disc, it has the same complex
dilatation as f, and the dilatation is supported in the lifts of the ball U, i.e. in

a. union of hyperbolic balls in I. Moreover, any quasiconformal self-mapping

Figure 2.1: 1-dimensional jungle gym
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of a disc, in particular this map F, admits a homeomorphic extension to the

boundary. Outside the unit ball F' is defined by the reflection across the
boundary of the unit ball. We will show that this extended map, call it also

£, is differentiable with a non-zero derivative on a set of Hausdorff dimension

of 1.

Theorem 2.1.1. Let [ be a quasiconformal self-map of the jungle gym so
that the dilatation of f is compactly supported, and F' be its lifted map to the
hyperbolic disc extended to the boundary of the dise. Then F' is differentiable
with non-zero derivative af the deep points, and the Hausdorff dimension of
these points 1s 1.

To show that the function ' is differentiable with non-zero derivative at
the deep points, we are going to use a Theorem by O. Lehto from [13]. For
the second part, we would like to use Theorer 1.5.1 to show‘ that the set of
deep points has full dimension. Although that proof relied on the existence of
a Green’s function on the quotient manifold (Lemma 1.4.1), in the special case
of the jungle gym we can still make the theorem work, as follows. Sullivan in
[21] showed that on manifolds like this one, there are no positive non-constant
superharmonic function, so there is no positive non-constant harmonic function
either. But we can construct a harmonic function on each half of the jungle
gym separately. Cut the jungle gym into two quasi-cylinders with a curve
through the point 2. Then on each quasi-cylinder, M;, we are able to construct

a positive harmonic function, A;, so that

L dist(e, 00M) < huler) < edisi(a, o)
[
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with some constant ¢ < co. For these harmonic functions we can apply Theo-

rem 1.5.1, which shows that the dimension of deep points has full dimension.
2.2 Definitions and notations
2.2.1 AQuasiconformal mappings

There are several ways to define quasiconformal mappings, The definition
I will give here is called the analytic definition. Another equivalent definition,
the geometric, can be found in several books, for example in [15] or [16].

Let f be a diffeomorphism between domains A and B of the extended
complex plane, i.e. homeomorphism which with its inverse is continuously

differentiable. We also agsume that f is a sense-preserving map, i.e.
J(f) =18f* —18f* > 0,
where
1 , - 1 .
of = §(fa: - ny) and Of = é"(fm +3fy)-

The dilatation quotient is defined as

L. a0l og| 4|
7 minfdaf|  [0F] - 10f)
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where

o — tim 1) 1)

r—0 rete

— 3f + 8 fe e

the derivative of f in the direction ce. Note that the mapping f is conformal
if and only if f =0, i.c. Dy = 1. We call a sense preserving diffeomorphism
[ K-quasiconformal if Dy(2) < K holds everywhere.
The function
_of

is called the compler dilatation of f. This is a continuous function and
u(z)] < 1. A sense preserving diffeomorphism f : A — B is gquasiconfor-
mal if sup,c 4|p(2)| < 1. In particular, f is K-quasiconformal (K >1)if

K -1
<

for all z € A.

A homeomorphism f : S; — Ss between the Riemann surfaces S (with
atlas H;) and Sy (with atlas Hy) is called K-quasiconformalif hyo fo hit s
K-quasiconformal on its domain for all h; € H;. This is an invariant definition,
because the change of local coordinates does not change the maximal dilata-
tion, since the mappings h; o k; ! are conformal by definition. For every point
p € S, choose h; € H; defined in a neighbourhood of p and f(p) respectively.

Let w = hyo foh!, then = g—ﬁ’f exists almost everywhere in the domain of
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w. We call it the complez dilatation of f.

Let (D, IL;) be the ﬁniversal covering space of S;. Then s, K-quasiconformal
mapping f from Sy to S, induces a map F : D — D, which is also quasicon-
formal with the same dilatation, because I, o F' = foll;.

A quasiconformal mapping f of a Jordan domain A onto another Jordan
domain I can always be extended to a homeomorphism from the closure of A
to the closure of B ([16]). In particular, a quasiconformal self-map in a disc
can be extended to the boundary of the disc homeomorphically. Let F be a
quasiconformal mapping from a domain A to a domain B, and let v, ¥ be free
boundary arcs or curves of these domains respectively. If v corresponds to v
under the mapping F' and they are quasiconformal, then F can be continued
to a quasiconformal mapping of a domain containing A U+, So does our map
P8t — S ([16]). If A and B are two n-tuply connected domains whose
boundary curves are quasiconformal, then every quasiconformal mapping F':
A= BV can be extended to a quasiconformal mapping of the whole plane.
"The following weaker theorem is still true in higher dimensions. If D and '
are quasiconformally equivalent to a ball, then every quasiconformal mapping
f 1D — D' can be extended to a homeomorphism F ; 2 — D'. For a detailed
description on quasiconformal mappings in the n-dimensional space you may
see [27],

‘The generalization of the complex dilatation and the dilatation quotient
for n > 2 is the matrix dilatation ( [1], [23]). Let f : U — V be a differentiable

map at ¢ € U, where U and V' are domains of R*. The dilatation matriz of f

43




at x is

) = [detf ()% £ (2)"f'(z),

where f'(z) denotes the differential at 2 and /()7 is its transpose. If n = 2
the dilatation matrix gives the direction of the principal axes of the dilatation

ellipsoid and their ratios, Dy,

Let U be an open set in R™ and let £ : I — R" be a homeomorphic map.

This map is called K -quasiconformal if
1/ (=)™ < KJs(z) ae.

where J;(z) denotes the Jacobian determinant of f'(z) and |lf ()] is the
matrix norm, ie. ||f'(z)|| = sup,|f'(z)A, where h is a unit vector of R* ([5]
and [27]).

The outer, inner and linear dilatation of f at z respectively:

Kf(:?:) . ”f’(ﬂ?)”ﬂ Lf(m) 3 _in@_ Df(m) B 17 ()]]

Iy(z) )

where £(f'(2)) = inf,|f'(z)h|. These dilatation coefficients are well-defined at
regular points of f and we let K;(z) = Ly(z) = D¢(z) = 1 at the non-regular
points and for constant mapping. Usually theorems are shown only for one of

these coefficients, since the following inequalities are true for them for every
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Li(w) < K} ™Yz), Kp(z) <L Hz), Dilz)= Kp(a)Ls(x).

2.2.2 Deformation of Riemann surfaces

Let S5; be a Riemann surface and (D, I1,) a universal covering space of 5,
and G; the cover transformation group, i.e. D/G; is equivalent to S;. Suppose
f is a continuous map from S into S; (see Figure 2.2). Then [ induces a

continuous mapping ¥ : D — D so that
f o Hl = Hg oF.

If f is a homeomorphism, then so is the lifted map F, and if f is conformal,

then F'is conformal ([14]).

O O3

T T I
ST —f.. ST
f_\f v

5 Sa

Figure 2.2: Deformation of Riemann Surfaces

The map f also induces a mapping I' : G5 — Gy, Take g1 € Gy, then
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llsoFog, = folliogy = folly =150 F, therefore for every z € D there is a.
transformation go € Gy such that (F o g;)(2) = (ga0 F)(2). Define I'(g1) = go.
If f is continuous, then this map I' is well defined homomorphism and bijective
if F' is bijective.

Conversely, a continuous mapping F' : D — D can be projected to a
mapping f : Sy — S if and only if Gof' = I'Gy. We have seen that it is
a necessary condition. It is also also sufficient, and we can construct f as ‘
follows. Let p € Sy, choose 2z € II; '(p) and sct f(p) = [I5(F(z)). Then f ;
is well defined, because if 2/ € 117 (p) then there exits ¢; € G; such that ‘
gi(z) = 2 and Iy o F(2") = Iy 0 F o g1(2) = Iy 0 go 0 F(z) = Tl 0 F(z),
The construction shows that the induced mappings F and I' are not uniquely
determined by f. We may replace F' by hg o F' o h; where h; € G, and T'(g)

by ho o T'(hy o gy o hyt) o hyt. We call such groups homomorphism equivalent.
2.3 Rigidity of Mobius groups, overview of results
2.3.1 Mobius groups

Let G; and G5 be two groups of Mobius transformations of R", and let
A; be a Gy-invariant subset of R?, i.e. g(4;) = 4, for all g € G;. We say that L

amap f: A — Ay is Gi-compatible if there is a homomorphism ¢ : Gy — G
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such that

Jog(z) = ¢(g) o flx)

for all g € Gy and z € Ay, In this case we call ¢ the induced homomorphism
by f.
Amap f: U R U c R, is differentiable at a point x € R", if there

is an afline map a of R so that

[/ (y) = e(y)]

=0 asy—zinlU
[y — =

If the map « can be chosen to be an affine homeomorphism, then f is differ-
entiable with a non-vanishing Jacobian at z.

A point z € R” is called radial point of the group G (point of approzima-
tion or conical point) if there exists a sequence of different 9; € G so that for
a given z € H"™ and for a hyperbolic line I terminating at the point z, we
can find K such that the hyperbolic distances dist(g;(z), L) are all bounded
by K, and lim;, g;(2) = 2z in H**'. On the quotient manifold this means
that there is a geodesic ray returning to a compact set infinitely often.

Tukia showed ([23] Theorem A) that if G = Gy = Gy is a group of
Mdbius transformations of R* and f : R* -+ R® is a G-compatible map which
is differentiable with a non-vanishing Jacobian at a radial point of G, then
it is a Mdbius transformation unless there is a point z € ®* fixed by every
element g € G. If there is such a point z fixed by every element of @, then

there are two Mobius transformations » and A’ so that A'f hlg is an affine
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homeomorphism.

In the same paper, Tukia also showed ([23] Theorem D) a similar result
for a map defined only on smaller G-compatible set, for example if the function
is defined on the limit set of the group. The theorem says that if A C R* is
a G-invariant set containing at least three points and if f : A — R* is a G-
compatible map of R* which is differentiable with a non-vanishing Jacobian
at a radial points £ of G, then f is an affine map of K*, up to composition
with M&bius transformations. Moreover, if A is a k-sphere for some & < n
(i.e. A is the image of R* under a Mobius transformation of R*} and there is
no point, fixed by every element g of G, then f is a Mdbius transformation.
In the theorem it is essential that « is a radial point ([23] D2). In the second
part it is necessary, that there is no common fixed point in ¢, as we can see
it in the next example,

Let G be the group of orientation preserving similarity maps of R7,
ie. G = {g|g(z) = Az +b, where A > Oand b € R"}, Every element in
this group fixes oo, and every point in R® is a radial point of G. So take
A =R, and choose an affine homeomorphism o for f. Since aga™ is an ori-
entation preserving similarity for every ¢ € G, the map f = « induces a group
isomorphism ¢ : G = G, g — fgf™*. By definition the map f is differentiable
with non-vanishing Jacobian, but this is not a Mobius transformation unless
¢ is a similarity.

If ¢ : G1 — Gy is an isomorphism induced by a map f, then this map
f is not always homeomorphism. How can a non-homeomorphic map f look?

In [26] Tukia gives an example for this situation. The groups (1 and Gy are
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two finitely generated Fuchsian groups of the first kind containing parabolic
elements, and ¢ : i1 — G5 is an isomorphism between them. Then the map
fo (which induces ¢) will be continuous outside the parabolic fixed points of
(7, and not continuous on a dense set, on the get of the parabolic fixed points.
This map f, is injective outside a countable set, which consists of the fixed
points of certain hyperbolic elements, and maps a set of full measure onto a

null-set.

2.3.2 Geometrically finite and convex co-compact groups

A M&bius group G of R® is called geometrically finite, if its action on
H*™! has a finite sided fundamental polyhedron. In the previous section we
saw that not every isomorphism ¢ : (G; — (75 is induced by a homeomorphism,
however if the groups are geometrically finite, then there is always a Borel map
[ A(G1) = A(G3) inducing ¢ ([25], [26]). This function can be constructed
50 that it is continuous and injective outside the parabolic fixed points of G;.
If a rank-one parabolic fixed point of (; is mapped onto a loxodromic fixed
point of G, then f is not continuous at this parabolic point. Moreover, the
preimage of a rank-one parabolic fixed point of G may consist of two points,
Therefore, if Gy and G are two non-elementary, geometrically finite Mobius
groups of R® and if ¢ : G; — G is an isomorphism which carries parabolic
elements bijectively onto parabolic elements, then there is a homeomorphism
I+ A(G1) = A(G2) inducing ¢.

A group G is called convex co-compact, if He/G is compact, where Hg
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denotes the smallest hyperbolically convex and closed subset, of H**! such that
A(G) ¢ Hg. (If n = 1 then Hg is the usual Nielsen region.) Another char-
acterization of the convex co-compact groups is that G is convex co-compact
iff Mg = (HH \A(G)) /G is compact. Moreover, a geometrically finite group
is convex co-compact iff it contains no parabolic element. If the groups G4
and G are convex co-compact then f is a homeomorphism, since they do not
contain parabolic elements ([24]).

Tukia showed (|23]) that if G4 is a non-elementary Mobius group, and if
f is differentiable with a non-vanishing Jacobian at a radial point of G, then
flacey) is a Mébius transformation. For a geometrically finite Mdbius group
(or if H**! /G has finite hyperbolic volume) a limit point is a radial point
unless it is fixed by some parabolic element. Therefore, if 71 and G5 are two
non-elementary, geometrically finite Mébius groups, and f : A{G|) — A(G2)
is not a Mobius transformation, then the set of points where f is differentiable
with a non-vanishing Jacobian ig contained in the set of parabolic fixed points,
so it is at most a countable set. If (1 has no parabolic element, then this set
is empty.

There is an application of this for Fuchsian groups. Let ; be Fuchsian
groups of the first kind acting in H? such that H*/G4 is compact, so a limit
point is a radial point unless it is fixed by a parabolic element. Let f: R = R
be the map on the limit sets which fixes oo, then f can have at noz € R a

finite, non-zero derivative unless f is a Mdbius transformation.
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2.3.3 Divergence type groups

A discrete group G fixing the n-dimensional unit ball B is called diver-

gence type if the series

S -lg))" T

9cG

is divergent. The convergence of the series above is necessary and sufficient
for the existence of a Green’s function on the quotient manifold B/G. A
discrete group G has finite volume, if it has a fundamental region in B of finite
hyperbolic volume. If the group G preserves B and has finite volume, then G
is of divergence type ([19]).

Let Gy and G5 be two discrete Mdbius groups acting on B, n > 2,
such that H"™ /G; has finite hyperbolic volume, and let ¢ : Gy —+ G be an
isomorphism. Then there is a quasiconformal map f : R* — R* inducing ¢,
and this map f is a Mobius transformation. More generally, if G is a discrete
Mébius group of divergence type, and f : R* — R*, n > 2 is a quasiconformal
and G-compatible map, then f is a Mobius transformation ([23]). Agard’s
result for quasiconformal deformations: let G be a discrete groups of Mobius
transformations in R and suppose it is of divergence type. Let f: R* = R”
be a quasiconformal map such that fgf~! is a Mobius transformation for all
g € G. Then if n > 2, f is a Mébius transformation; and if n = 1 then f is
either a Mobius transformation or it is singular ([1]). In dimension one, instead

of quasiconformal we mean quasi-symmetric, and the map f : R — R' can be
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very irregular. These results are often quoted as follows. Let & be a discrete
group of M&bius transformations on H**' (or on B, n > 1, We say that
G has the Mostow rigidity property if for cach homeomorphism f : R* — R»
(or S™) with f o G o f~ a Mé&bius group, it holds that either f is a Mdbius
transformation itself or completely singular, Therefore the divergence groups
have the Mostow rigidity property for all n > 1. A stronger result for Fuchsian
groups is due to Astala and Zinsmeister ([3]): a Fuchsian group has the Mostow

rigidity property if and only if it is of divergence type.

2.3.4 TFuchsian groups

Kuusalo ([12]) has a more extensive study on Fuchsian groups acting in
the unit disc D (or in the upper half plane H?). Consider an isomorphism ¢
G — G of two Fuchsian groups and suppose there exists a homeomorphism
f D — D inducing ¢. He calls the action of ¢ geometric. If Gy and G are
Fuchsian groups of the first kind then f has a unique homeomorphic extension
f: D — D, and the boundary map F = flap is uniquely determined by ¢
([20], [22)).

If Fis a boundary map of two Fuchsian groups of the first kind as above,
and if one of the quotient Riemann surfaces D /Gy is of class Ogp (i.e. has no
non-constant bounded hyperbolic harmonic function on it), then F is either
absolutely continuous or completely singular. Moreover, if D/G; is of class Og
(i.e. has no Green’s function), then F' is either linear fractional or singular,

A consequence of this dichotomy is that if the groups G; are finitely
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generated Fuchsian groups of the first kind acting in H?, so that F : R -
R is increasing, then F' is either afline map or a completely singular quasi-
symmetric function ([12]).

Here we should mention again a result about some special boundary maps
of Fuchsian groups we showed earlier. If G; are Fuchsian groups such that
I? /G, is compact, and if ' : R — R fixes oc, then F can have atnoz € R a

finite, non-zero derivative unless f is a Mdbius transformation ([23]).

2.4 Differentiable points on the Jungle gym

Now consider the original assumptions, that ¢ is a I"uchsian group cov-
ering of the ‘I-dimensional jungle gym’ and let f be a quasiconformal defor-
mation f of this surface by using a dilatation in a ball U with cémpact closure
on the ‘jungle gym’. Lift this map f to the universal covering space (see Fig-
ure 2.2), to the hyperbolic disc D. The lifted map ' : I — D is quasiconformal
self-map of the hyperbolic disc, it has the same complex dilatation as f, and
the dilatation is supported in the lifts of the ball I/, i.e. in a union of hyperbolic
balls in . As we showed in Section 2.2.1, this quasiconformal self-mapping F
of a disc admits a homeomorphic extension to the boundary. We would like
to show that this extended map, that we also name F', is differentiable with a
non-zero derivative on a set of Hausdorff dimension of 1.

We will use Lehto’s theorem on differentiability of quasiconformal map-

pings to show that the corresponding boundary map on the circle is differen-
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tiable with non-zero derivative at the deep points.

Theorem 2.4.1. (O. Lehto [13]) In a domain D, let u{z) be measurable with

suplp(z)| = k < 1, and let w = w(z) be a quasiconformal mapping whose

complex dilatalion is equal to u(z) a.e. If
I(z) ://wda< oo, # € D,
[z — 2z
D

then at z = z, w(z) 4s totally differentiable, J(z) > 0, and w(z) has the

complez dilatation p(z).

First, we will show that the integral in Lehto’s theorem is finite over a
small Fuclidean ball around every deep poing zg. Fix a point z inside U/, where
U denotes the compact support of the dilatation, and consider a geodesic ray
v(t) corresponding to this deep point and starting at the point 2p. By the

definition of deep points this means

>4>0

> dist (fyt(t), %)

for all ¢, i.e. dist(v(),U) > 8t — diam(U) = 6¢ — D for all £ > 2. Because
of this inequality there is a region around this geodesic that none of the lifted
preimages of U can hit. Call this set H, and its symmetric image over the
boundary H,. We know that 4 = 0 in the two regions Hy and Hy touching
the ideal boundary at the deep limit point zy. Therefore it will be enough to
show that the integral I(z¢) in Lehto’s theorem is finite in a neighborhood of

xp outside these regions H, and H,.
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Let A, lenote the annulus with radii ¢+ and ¢ ™ about the point .
We will use the upper half plane model as the universal covering space for the
surface. We ay suppose that xq = 0 and the initial point of the geodesic
ray is 29 = ©. We shall show that the integral in Lehto’s theorem over the set
Un{An\H;) is finite, j = 1, 2.
Lemma 2.4.2. [[ do < ce e ",

An\H,

Proof. Since dist(y(t),U) > 6t — D for all & > o, iv particular for ¢ = n, the
set U cannot intersect with the hyperbolic ball of radiug 4n — D around the
point ie”™. Hstimate the area of A,\H; by the area of the wedge shown in
Figure 2.3. For this estimation we need to find the angle o = AOA'Z of the
wedge. Since 0 < o < 5, we know that %a < sina, so enough to estimate

sina =

prsa

]
AN/
ie™
— ] o B A
0 B ' -mr_‘r;l—u;- I

Figure 2.3: Estimation for the integral

The point A = x + iy is the intersection of the hyperbolic ball with the




Euclidean ball, so

z* + ('g — e "cosh(dn — D))z = (e‘” sinh(én D))Z 3

Eliminating =2, we get that

—2ye™" cosh(én — D) + e cosh?(6n — D) = e **sinh?(6n — D) — e, .

and rearranging this we have the following
¢ (1 e?) = 2y cosh(dn — D).

Therefore

sine = —

. 1 -+ 82 v

"~ 2ecosh(Sn — D) L

14+e* 1 K

& 2¢ edn—D -

_ (e? +1)6D_le"5
2

n

We should also justify that the picture above is correct, i.e. the wedge does
cover the whole set A,\H;. For this we have to show that AOA'Z is bigger ' |
than BOB'Z, or equivalently sin o = sin(AOA'Z) > sin{BOB'/) =sin §. We

can calculate sin 8 similarly as we did for sin .

Point B is the intersection of the same hyperbolic ball and the Euclidean
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ball of radius e™", so

2* + (y — e cosh(on — D))’ = (¢ ™sinh(én — Dy)*

CEZI + yz — G—En'

So solve this system for sin § = X

—2ye " cosh(én — D) + e7*" cosh®(n — D) = ¢ (sinh?(6n — D) — 1)
™" (cosh®(6n — D) — sinh' (6n — D) + 1) = 2y cosh(én — D)
e”" = ycosh{dn — D)

_ 1

Y
e=®  cosh(én — D)

Therefore

sin 8 = L L <1+62 ! = gin
~e™  cosh(én — D) 2¢ cosh(én — D) @

This means, Figure 2.3 above is correct and we can use angle ¢ to

give upper bound for the area A,\H;. Using this estimation for the area
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of A,\(Hy U Hy), where the dilatation may differ from zero is:

20
de < —n+IN2 _ r —nNZ
o < [(e ) (e™ ]W—QW
An\(H1UH2)

E (62 + 1)8D—1 6~6n

O

Remark 2.4.9. In general, if dist (y(t), z0) > ¢(¢) for all ¢, then with the same

calculation we can show that

/ do < ee” e,

An\Hl

Lemma 2.4.4. If xy is o deep point then

// |,u ida<oo
|m—m0|2

Proof. Using Lemma 2.4.2 the integral I(zy) over the euclidean ball of radius
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e~V where NNy is an integer bigger than % is:

f/W mmmdz z0)|

Z /f Miﬂ; - $0|20)ld0

n=Nog \(H1UI:)

S i f/ 6—2271, do

n=Nog \ (B UH2)

1
< Z —zneﬂn € _1) mled ) B_Jn
n=Ngp

4 1 D—1 i
_ (=1 ix 3 e < oo

O

Therefore we have shown that F' is differentiable with non-zero derivative

at the deep points.

Remark 2.4.5. In the general case, when dist(v(t), z0) > ¢(t) for all ¢, then

<e i e 9,

n=Np

In particular, if ¢(¢) > (1 + ¢) Int with some positive €, then

1
I(ZL'Q) < Czefqﬁ(n) S CZW < 00
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2.5 Harmonic functions

] In this section we collect a few facts about harmonic functions and special

properties of harmonic functions living on surfaces like the half of the jungle

Lemma 2.5.1 (Harnack’s Inequality). For0 <t < 1, define the functions
at) = m%";ff:j‘ and () = (1—_1;%:?, where d denotes the dimension. If u is a

positive harmonic function on Bla, R) and |z — o] <1 < R, then

Proof. Recall, that the Poisson formula for the unit batl B(0,1) is

1 1— |:CPU .
’U(:E) o G(S) J |£C __ad (g)d (f)

in dimension d. If u is a positive harmonic function on the closed call B(0, R),
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then using the Poisson formula for u(Rz) = v(x) we get

o) = s [ e e
g R

1— |22 1
C(1-1g)te®)
_ -
BT TR
:_Liiu(o)

1 — I%Dd-—l

[ utreyaote

8

since the function S(t) is increasing in the interval (0,1).
Similarly,
] - P

8B(0,R)

1|5
T (a+En”
_ 13
(1+]5)""
= af| 5[)u(0
o(5)0

since the function «(t) is decreasing for 0 < ¢ < 1.

u(0)

v
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Figure 2.4: Quasi-cylinder

Let M be a quasi-cylinder as demonstrated in Figure 2.4. That is, a com-
plete Riemann manifold with compact boundary, and with bounded geometry
locally, i.e. each point of M away from the boundary hag a ball neighbourhood
of radius 1 which is a geometrically bounded distortion of a unit ball in Eu-
clidean space. Furthermore, we suppose that M has the following additional
properties: let 5, denote the hypersurface at distance n from the boundary
of M and suppose S, is homologous to M and diam(S,) < D. Suppose
there are closed bands Ly, Ly,... on M, so that each band f,; contains a unit

neighbourhood of S; with vol(Z;) < V.

Lemma 2.5.2. Let L; denote the closed band on M, which is a unit neigh-

hourhood of S; and vol(I;) < V. Then there exist a constant ¢ so that

< i .

Proof. Fix a point z; in each L; where v takes its maximum on L;. Lift these
points up to the universal covering space B so that x; lifts to the origin, Denote
the lifted image of z; by Z;, similarly for other lifted points and sets. Take a ball
B(#;, R;) = B(0, R;} around the origin so that L; C B(0, R;)/G C M\0M.
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Since vol(L;) are bounded there exists R so that
L; € B(0,R) c B(0,2R) C (M\OMY.

Since u is a non-negative harmonic function on B(0,2R) by the Harnack’s

Inequality 2.5.1

2R—1r - 2R+
< if <
SR Tu(O)_'u,(re ) < 2R~7‘u(0)

forall0 <r < 2R and all 8. Sofor all z € I?i, and for all 4

This implies that

< 4mi .
B = 4 il

W

Corollary 2.5.3, If u is a positive harmonic function on M then either u is

bounded or u(z) — 0o as z — oo in M.

Proof. If all the maxger, u(z) are bounded then by the maximum principle A
is bounded. Otherwise, there exists a subsequence of {maxser, u(a:)}t which
tends to infinity. The inequality above shows that ming,er, u(z) also tends to

infinity. By the maximum principle, the minimum between the bands L; and
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L;11 is attained on the boundary which is greater or equal than

mm{;r&r:u(w), Lin w(z)}.

Therefore u{z) — oo ag & — co. O

Theorem 2.5.4. Let M be a complete oriented Riemann manifold and h be
a hermonic function on it. Suppose M, = h'[0,00) has a compact boundary
and that h="[a,b] is compact for all 0 < a < b < oo. Assume that each point
of M. (away from the boundary) has a ball neighbourhood of radius one which
15 a geometrically bounded distortion of a unit ball in euclidean space. Then

the gradient of h is uniformly bounded on M, .
The proof of this theorem can be found in [21].

Lemma 2.5.5. Let M be a quasi-cylinder, and let S, denote the hypersur-
face at distance n from the boundary of M and suppose S, is homologous to
OM with diam(S,) < D. Then M admits a non-constant positive harmonic

Junction b so that
%dist(m, OM) < h(z) < cdist{z, IM).
Theorem 2.5.4 and Lemma 2.5.5 are due to D. Sullivan and were published

in [21],

Proof. For each n construct a harmonic function h, which is 0 on M and n
on S,. Then this function is non-negative by the minimum principle. Fix a

point p € M, then by multiplying each function by a positive constant we may
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suppose that h,(p) = 1. Let K be a compact neighbourhood of this point p.
By Harnack’s inequality 2.5.1 @ = ah,(p) < h.(2) < Bh,(p) = B on this set
K, where o and § depend on the sets K and M\OM only. This shows that
the family {h,} is pointwise bounded on the compact set K.

The Harnack’s inequality 2.5.1 gives the following estimation for the gra-
dient of any harmonic function u on B{a, R):
lim u(a + ve) — ula)

e—=0 €

u(atve] 1
Wﬂﬁgﬁwﬁ ula)

< u(a) lim max{f(£) - 1,1 —a(£)}

e—0 |eL

|0yu(a)| =

= lim
e—+0

= u(a)=.

R

The family of harmonic functions { A, } on the set K has therefore bounded
gradient, since dist(K, M) is bounded away from zero. So {h,} is equicon-
tinuous and pointwise collection of complex functions, so by the Arzela-Ascoli
theorem it has a subsequence that converges uniformly on compact subsets of
K. Take a larger compact neighbourhood and apply the Arzela-Ascoli theo-
rem again, we gain a subsequence of this which converges uniformly on the
compact subsets of this bigger set. Continue this process, then take the di-
agonal subsequence. That converges uniformly on each set K and h,(p) = 1
for all n. So {hy} converges uniformly on each compact subsets of M to a
harmonic function k. Applying Theorem 2.5.4 for h, we can even see that the

gradient of A is uniformly bounded by a constant, so the right-hand side of
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Figure 2.5: Quasi-cylinder

the inequality of Lemma 2.5.5 is proven.

From the construction the harmonic function A is not constant and we
have to show that there is some constant ¢ so that 1 dist(z, 9M) < h(z). We
will use the notations illustrated on Figure 2.5.

The following argument is true for any non-constant harmonic function
on the surface. By Green’s identity jan Vhds = 0 whenever h is a harmonic
function on . Apply this equality for that part of the surface M which is

bounded by two hypersurfaces S, and S, to get

Vhds :/ Vhds :/ Vhds > 0.
Sn Sm oM

Since the length of 9, is bounded and the integral of the gradient of h is
bounded away from zero over S, there must be a point p, € 9, so that
Vh(p,) 2 ¢ > 0. Let R, denote those points on the surface which has distance
less than n, i.e. that part which is bounded by @M and S,.

On each hypersurface S,, we have a point p,, where the gradient has some

definite value, say VA(p,} > ¢. The function k is harmonic so b = R{f(2)}
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real part of a complex analytic function, at least locally since M has bounded
= 2
geometry locally. Then we know that |VA|* = (%)2 + (%%) = |f'(2)? and if

we take the unit disc D around the point p, then

o L1z i 7] =

which means |Vh| = |f'(z)| > ¢ for all points on D. Therefore

)| > ¢,

/ |Vh|2dV 2 C17e.
Ly

We can use Green’s formula I:

fVqudmdy f u—ds—/u[h’udmdy
a9

with « = v = h to rewrite the integral:

of
cmﬁ/ (Vh)de: h?ﬁds—/ hAhds:/ ——Eds%—/ h—
R, oR, On i sp 0N

Since the gradient is bounded by some constant K, |%| < K and therefore

i — h?ﬂ- < hahds < Khds.
M on on Sn

Using that f our h .~ is a constant, we can deduce that f S hds > con with some
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constant ¢g. Moreover

length(Sn)
/ hds < / h(zo) + Kzdx < length(S,)h{zo) + (length(Sn))zg
" 0

for any zq € S,. Combining this with the inequality f s, hds > neg and using

that each 5, has bounded length, we get that

h(zg) > ney = dist(zo, M )cs.

for any z¢ € S,. We can apply the minimum principle for any point on
M between S, and S,y1 to get the 1dist(z,dM) < h{x) < cdist(z, OM)

everywhere on M. ‘ O

Remark 2.5.6. The proof above is true for any non-constant harmonic func-
tion, therefore for any non-constant positive harmonic function on the quasi-

cylinder there exists some constant ¢ < oo, such that

%dist(a:,@M) < h(z) < cdist{z, dM). |
2.6 Proof of the theorem and its corollaries

Now we can prove the main theorem of this chapter:

Theorem 2.6.1. Let f be a quasiconformal self-map of the jungle gym so
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that the dilatation of f is compactly supported. Let F' be its lifted map to the
hyperbolic disc eztended to the boundary of the disc. Then F' is differentiable
with non-zero derivetlive at the deep points, and the Hausdorff dimension of

these points is 1.

Proof. In Lemma 2.4.4 we showed that I(zg) is finite at every deep point,
and so by Lehto’s Theorem 2.4.1 we can conclude that the map F' is totally
differentiable there with nonzero derivative. Now cut the jungle gym in half.
On each half there is a positive harmonic function which grows linearly as z
goes to infinity (Lemma 2.5.5). Even though there is no Green’s function on
this manifold we may still use Theorem 1.5.2, because the harmonic functions
on each half of the quasi-cylinder have the properties described in Lemma 1.4.1.
Therefore the Hausdortf dimension of deep points is 1. By Theorem 2.4.1 and
Lemma 2.4.4 the map F is differentiable with non-zero derivative at the deep
points, so we can conclude that the Hausdorff dimension of those points where

F' is differentiable with non-zero derivative is 1. Il

Remark 2.6.2. Let M be a hyperbolic manifold, so that one of its ends is a
quasi-cylinder, i.e. this end has bounded geometry locally and if S, denotes
the hypersurface at distance n from the beginning of this end, then S, is
homologous to St with diam(S,,) < D. Consider a quasiconformal deformation
of this surface M by dilatation with compact support, Lift this deformation
to the universal covering space B, extend to the boundary of B and call it
F. Then F is differentiable at the deep points, which have full dimension,
therefore the Hausdorff dimension of the points where F'is differentiable with

non-zero derivative is also full.
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Corollary 2.6.3. Consider a quasi-symmetric homeomorphism f of the unit
circle which conjugates two divergence type groups with quasi-cylindrical end,
like the covering group of the jungle gym. Suppose that the dilatotion has
compact support. Then f is differentiable with non-zero derivative on o set of
dimension one and the image of this set also has dimension one. We claim
that there is no subset E of the circle so that E and f(E°) both have dimension

less than 1,

Proof. In Theorem 2.6.1 we have shown that the set
F = {z: f'(z) exists and non-zcro}
has dimension one. Define the set
Py ={z: o < /') < M},

By the definition, Fyy, C Fyy, whenever My < My, and Uy Fyy = F. Therefore
for all € > 0 there exists M so that dimg(Fp) > 1 —e.
First we will show that if x € Fjs there exists a neighbourhood B, of «

50 that 51| By| < |f(By)| < 2M|B,|. Since z € Fyr s0

iglimM<M.

Yy l’y —CL“ -

Therefore if |y — | is small enough then |y —a| < |f{y)— f(z)] < 2M|y—=|.
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This means we can choose a neighbourhood B, around the point = so that
1
Sail Bl < 11(B)] < 2M B

Notice that the diameter of this neighbourhood depends on M and on the

point . To get rid of the dependence on z, define the set

B,
Fys={z€Fy: VBm,|B|<(5| |

< |f(Ba)| < 2M| By}

Then Fyr = UsFus and Furgs, C Fypg, if ) > dg. Therefore, for any small
positive epsilon we can find M and 4 so that dimy(Fars) > 1 — €.
Now we will show that dimy (f(Fis)) = dimu(#ars). On the one hand,

if we take any covering of Fyss with balls {U;} of diameter less than 4, then

|U|

< |F{U)| < 2M|U;|

and {f(U;)} gives a cover for f(Fuss). This gives an estimation for the Haus-
dorff content of f(Fyrz):

F(Fus)) < SN < (230 S

for any covering {U;} of the set Fis 4, so

HA(f(Fuag)) < H* (Farg)
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and therefore

dimH (f(FM’a)) S dimH(FM,(s).
On the other hand, take a covering {V;} of the set f{Fas) so that [V; < 2.
We may assume that V; N f(Fus) is not empty for any 4, so there exists a
point & € f7'(V;) N Fays. From the definition of the set Fhs, « has a é-

neighbourhood B,, for which

| Bz
2M

< |f(Ba)] < 2M|By|.

Since |V;]| < Z?\Z: the set V; lies inside the image set of B,, or equivalently

7Y (Vi) C B,, and so by the definition Fy;

-1 g
% < Vil < 2MfF~H V).

The set Fiyg is covered by {f~H(Vi)}, so
W (Fars) < Y IV < (2M) > (VA9

and hence

H(Fir5) < HE(f (Fags)),

Therefore we proved the equality of the Hausdorff dimension of Fys and its
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image under the map f. Since the dimension is preserved for every § and M,

dimg(F) = dim, (f(F)).

For the last statement of the corollary assume that dimg{F) =1—¢€ < 1, i

then we have to prove that dim,(f(#£°)) = 1. Since the dimension of E is

strictly less than 1 but dimy(F) = 1 > dimgz(F), so

dimg(F N F) < dimgy(F) =1 —e.

We may write F' as the disjoint union of the two sets, F\E and F N E.
Then dimy(F) = max{dim,(#\F),dimu(F N E)}, and since dim,(F) = 1
but dim,(F' N E) = 1 — ¢ the dimension of F\Z must be one, The map f
preserves the Hausdorff dimension of #', as we have shown in the first part of

this proof, therefore dimy,(F\E) = 1 and so does the dimension of f(£€). O

Corollary 2.6.4. There is a quasiconformal deformation of a divergence type
group with quasi-cylindrical end on the quotient manifold, so that the limit set

might not be a circle, but does have tangents on a set of dimension one.

| Proof. As previously, let f be a quasiconformal deformation of the quotient

manifold, whose dilatation is supported in a compact set on the manifold. Lift

this deformation up to D, and now define the dilatation on R*\ID to be zero. ‘
This defines a quasiconformal deformation of the group which sends S! to a
quasicircle. The same argument as in Theorem 2.6,1 shows that the lifted map
F'is differentiable with non-zero derivative at the deep points. Therefore the
|

quasicircle has tangents on a set of Hausdorff dimengion one. Ll
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