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Let M, be the symplectic manifold (5?2 x S2,wy = (1 + A)og © oo)
" where the 2-form o has total area equal to I and A > 0. This work
calculates the homotopy type of the group of symplectomorphisms
of My, Gy, when 0 < A < 1. It turns out that if A is in this range,
G, contains two finite dimensional Lie groups that generate its
homotopy, and the group is homotopy equivalent to the product |
X = S x SO(3) x SO(3) x L where I, is the loop space on the ;
suspension of the smash product S* A SO(3). A key step in this

work is calculating the mod 2 homology of 5. Although this
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homology has a finite number of generators with respect to the
Pontryagin product, it is unexpected large because it contains a
free noncommutative ring on 3 generators. OQur arguments involve

a study of the space of wy-compatible almost complex structures

on M)\.
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Chapter 1

Introduction

In general symplectomorphism groups are thought to be intermediate objects
between Lie groups and full groups of diffeomorphisms. In 1985, Grom_ov
showed, among several other results, that the symplectomorphism group of a
product of two 2-dimensional spheres that have the same area has the homo-
topy type of a Lie group. More precisely, let M, be the symplectic manifold
(8% x $%,wy = (1 + Nog @ gp) where 0 < A € R and ¢ is the standard
area form on §? with total area equal to 1. Denote by G, the group of sym-
plectomorphisms of M) that act as the identity on H2(S* x §% Z). Gromov
proved that Gy is homotopy equivalent to its subgroup of standard isometries
S0{3) x SO(3). He also showed that this would no longer hold when one
sphere is larger than the other, and in [9] McDuff constructed explicitly an el-
ement of infinite order in H1(G)), A > 0. Abreu and McDuff in [2] calculated
the rational cohomology of these symplectomorphism groups and confirmed
that these groups could not be homotopic to Lie groups. In this paper we
show that when 0 < X < 1 the topology of &G is generated in some way by

its subgroup of isometries SO(3) x SO(3} and by this new element of infinite




order. In particular we will caleulate the homotopy type of Gy:

Theorem 1.0.1. If 0 < A < 1, G, is homotopy equivalent to the product
X =L x 8" x SO(3) x SO(3) where L is the loop space of the suspension of
ihe smash product ST A SO(3).

In this produet, X, of H-spaces, .S* corresponds to the generator in H1(G))
described by McDuff, one of the SO(3) factors corresponds to rotation in
one of the spheres and the other SO(3) factor represents the diagonal in
SO(3) x SO(3). This new element of infinite order represents a S'-action
that commutes with the diagonal action of SO(3), but not with rotations in
each one of the spheres. The loop space L == Q3(S* A SO(3)) appears as the
result of that non-commutativity.

Although this space X is an H-space, its multiplication is not the same as
on (. This can be seen by comparing the Pontryagin products on integral
homology.

The main steps in the proof of this theorem determine the organization of
the paper. Therefore in §2 we have the first main result which is the calculation
of the mod 2 homology ring H,(G\;Z>). Recall that the product structure
in H,(Gy; Zy), called Pontryagin product, is induced by the product in G.
Denote by A(yy, ..., yn) the exterior algebra over Zs with generators y; where

this means that y? = 0 and wy;, = y;u; for all 4,7, and by Zg(zi,...,Zs)

the free noncommutative algebra over Z, with generators z;. Recall that

H.(SO(3);Zs) = Ay1, 1)




Theorem 1.0.2. If0 < A <1 then
Ho(Gy; Za) = Ay, ya) ® Zolt, 21, 72) /R

where degy; = degz; = i and R is the set of relations {t? = 22 = 0,212, =

ToT1}-

The notation implies that y; commutes with ¢ and z;. We see that H.{Gy; Z)
contains A(z1,z2) which appears from rotation in the first sphere, A(y1, y2)
which represents the diagonal in SO(3) x SO(3) plus the new generator t.
The proof ig based on the fact that the space J,, of almost complex structures
on 5% x §% compatible with wy, is a stratified space with two strata Uy and
U, where Uy is the open subset of 7, consisting of all J € 7, for which the
homology classes £ = [S? x {pt}] and F = [{pt} x 5% are both represented
by J-holomorphic spheres and Uy is its complement ( for a pfoof of this fact
see [1] and [8] ). More precisely, U/ is a non-empty closed, codimension
2 submanifold of 7, consisting of all J € J, for which the homology class
of the antidiagonal E — F' is represented by an J-holomorphic sphere. Let
Jo = jo @ jo € J» be the standard split compatible complex structure and
Jy be the Hirzebruch integrable complex structure. Denote by Aut(Jy) the
stabilizer of Jy; in G, and let K; be the identity component of Aut(Js;) with
¢ =0 or 1. Thus Kj is the subgroup SO(3) x SO(3) of isometries and K is
isomorphic to the subgroup St x SO(3) where the SO(3) factor is the diagonal
in SO(3) x SO(3) and the S factor corresponds to the element of infinite order

in H;(G,), A > 0. Each of the U; is homotopy equivalent to a homogeneous

space of the group G:




Proposition 1.0.3. U; is homotopic to the quotient Gy/Aut(Jy;) wherei =0

or 1.

Thus we have that Uy is homotopy equivalent to G, /{SO(3) x SO(3)) and
Ui to Gy /(SO(3) x SY) (see proof of the abave proposition in [2]). Although
the mod 2 homology has a finite number of generators with respect to the
Pontryagin product we can see it is very large because it containg a free non-
commutative ring on 3 generators. From the inclusion of Ky in G we have
generators T, Ty, T3 € H,(Gy;Zz) in dimensions 1,2 and 3 respectively, rep-
resenting the rotation in the first factor. Denote by ¢ the new generator in
Hi(G)), A > 0. It does not commute with z;, and so we have a nonzero class
defined as the commutator and represented by z;t+1tx; for ¢ = 1,2, 3. It is casy
to understand what these generators are in homotopy. For example, z; is a
spherical class, so it represents an element in 71 (G)) and z1t +1tx, corresponds

to the Samelson product [¢, 2] € m2(G)). This is given by the map
S§? =5t x §t/stv st G,
induced by the commutator
St x St — Gyt (5, u) - t(s) e (w)t(s) ey (u) !

In §3 we relate the mod 2 homology to the integer homology using the
Bockstein spectral sequence and the fact that this spectral sequence is multi-

plicative for an f-space.

Finally in §4 we use the results from the previous sections to define a map




f between G and the product X = L x S* x SO{3) x SO(3) and to prove that ‘

it induces isomorphisms on homology with integer coefficients. The existence

of such map together with some standard results in algebraic topology prove

theorem 1.0.1.




Chapter 2

The Pontryagin ring H,(G,; Zs)

Recall that for any group G the product ¢ : G x G — @ induces a product in

homology

Ho(C ) ® Hy (G Ta) =5 HA(G % Gy To) 255 HL (G Zig)

iaon

called the Pontryagin product, that we will denote by “.”. Every time it is
clear from the context we will suppress this for simplicity of notation. In
this section we will compute the ring structure on H.,(G; Z,) induced by this

product. Unless noted otherwise we assume Zg coeflicients throughout.

2.0.1 Geometric Description

First we give a brief geometric description of the S'-action corresponding to
the element of infinite order in 1 (G,), when A > 0 (for a complete description
see [2]). As we mentioned in the introduction, if A > 0 the space of almost
complex structures compatible with wy, 7y, is a stratified space with two

strata U, 4 = 0 or 1. U; contains the Hirzebruch integrable complex structure




Ja; with a holomorphic sphere Cj,, of self-intersection —2:. In this case J5 is
tamed by wy and $% x §% is diffeomorphic to the underlying manifold in the
projectivization P(O(2) ®C) over S%. Here O{2) is a complex line bundle over
S5? with first Chern class 2. This bundle has two natural sections, P({0} & C)
and P(O{2} @ {0}), in classes £+ F and E - F respectively. E is the class
[S? x {pt}] and F is the class of the fiber [{pi} x S52].

The element of infinite order in 7y (Gy) acts on this fibration by rotation
on the fibers and leaving fixed the sections corresponding to the classes of the
diagonal and antidiagonal. We see that this element is in the stabilizer of Jy
in Gy, because it ﬁxgs each point of the Jy-holomorphic representative for the
class E — F. Therefore for each J € Uj in a neighborhood of Uy the action of

t € 7 (G@,) in J gives a loop around Uy which represents the link of Uy in Uy.

2.1 Relation between H,(G)) and H,(U;): addi-
tive version

As we mentioned before U; is a codimension 2 submanifold of 7, the space of
all complex structures in S? x 2. This implies that Uy = J, — U; is connected.

Hence
Ho(Ug; Zg) = Zg = Hg(Ul; Zg).
Just as M.Abreu showed in [1] we still have for p > 1,

Hp(UO; Zz) = Hp—l(Ul; Zg) (21)




This already implies that Hy(Uy; Zs) = Zy. Now consider the following prin-

cipal fibrations

Ko—2> G K -Gy (2.2)
lpﬂ lpl
Uo Uy

where K; is the identity component of Aut(Jy). As we stated before K is the

subgroup SO(3) x SO(3) and K is isomorphic to S* x SO(3).

We need to prove that the following proposition is true with Z, coefficients:

Proposition 2.1.1. Let Diff(5? x S?) denote the group of diffeomorphisms
of 8% x S? that act as the identity on Ho(S% x 52, Z). The inclusion

i: Ky = S0(3) x SO(3) — Diffp(S* x 57) .

is injective in homology.

Proof. Asin [1] we define a map

F : Diffy(5? x S%) — Map, (5%) x Map;(S?)

where Map, (5?) is the space of all orientation preserving self-homotopy equiv-
alences of S2. Given ¢ € Diffy(5? x S%) we define a self map of 5?, denoted

by ¢1, via the composite

F1:52 B S x 525 5% § T S




where 4, respectively @y, denote inclusion into, respectively projection onto,
the first 52 factor of 5% x 5%. Because ¢ acts as the identity on Hy(5?% x S%, Z),
@1 is an orientation preserving self homotopy equivalence of 5% ie., @ €
Map, (S?). Defining ¢ in analogous way using the second S factor of S? x 52,

we have thus constructed the desired map given by

@ 1 X Py,

It is clear from the construction that F' restricted to SO(3) x SO(3) is just
the inclusion

S0(3) x SO(3) — Map, (5?) x Map,(5?)

Now we use the following theorem ( see [4] )

Theorem 2.1.2. The space of orientation preserving self-homotopy equiva-
lences on the 8-sphere has the homotopy type of SO(3) x Q, where 0 = Q2(5?)
s the universal covering space for the component in the double loop space on

S? containing the constant based map.

This proves that SO(3) is not homotopy equivalent to Map,(5?) but we

have, using the Kiinneth formula, with field coefficients,

H,(S0(3) x Q) & H.(SO(3)) ® H,(Q) = H.(Map,(5?))

thus the map
i+ Hy(SO(3)) — H,(Map,(5?))

induced by injection is injective for any field coefficients. O




It is proved by D.McDuffin [9] that the generator of the Z factor in m(G»)
lies in @ (&). This means that the generator of the S'-action in 7 (K1) maps

to a generator of infinite order in 7y (G,). Thus the map

iyt HAKD) — HL(G))

induced by inclusion is injective. Since we are working over a field, the co-
homology is the dual of homology, thus from the above and prop 2.1.1 the
maps

i H* (o) — H*(G))

and

it HY(I) — H*(G))

induced by inclusions g and ¢; are surjective.
By the Leray-Hirsch Theorem, we know that the spectral sequences of the
fibrations collapse at the Fs-term, and we have the following vector space

isomorphisms

HY(Gy) & H*(Uo) @ H*(Ky) (2.3)

H*(Gy) & HUy) ® H*(Ky) (2.4)

Passing to the dual we get the homology isomorphisms as vector spaces

H.(C) = Hy(Up) ® H(Ko) (2.5)

10




H(Gy) 2 H(Uh) @ H(K)). (2.6)

2.2 The elements z;,y;,t and w;

Denote by ¢ the generator of infinite order in H,{Gy;Z), A > 0. We know
that H,(SO(3)) = A(z1,z2) where A is the exterior algebra on generators z;
of degree i. Thus H,(Ky) = A(z1, %2, 21, 22), where z;, z; represent rotation
in first and second factors respectively. The homology of the SO(3) factor in
K, 2 SO(3) x St is generated by 7;, and we explain in the next lemma the

relation of these generators with the generators z; and z;.

Lemma 2.2.1. The homology ring of the diagonal in SO{3) x SO(3) is given
by H.(SO4(3)) = Ay, y2) where

M = T+
Yo = Do+ 2o+ T2
Y3 = Z3-+z3 4 X12p + Tan

where z; and z; are the generators of the homology ring of SO(3) x SO(3).

Proof. Tt is clear that y; has terms x; + #z;, just looking at the cell structure.
Note that we define the cup product using the diagonal map d : SO(3) —
50(3) x SO(3). If @ € H*(SO(3)) then (aUa)(y2) = d*{a X &)(y2)- We know

that the cup product of #; and 2, does not vanish, so we have 0 # (£1U2)(y2).

11




Thus we also have

(@1 U2) () = (&1 % 21) (1)

= (ﬁ,‘l X 21)(03*?;2) 7%_ 0

Therefore we see that d,y, must have a component in H, (SO(3))® H:(SO(3)).
The only element like that is z;2;, 80 ¥, must involve this element. Similarly
we prove that y3 must involve an element in Ho(SO(3)) @ H,(SO(3)) and
Hi{50(3)) @ Hy{(SO(3)) and those are ry2 and z: 2.

o

It follows that the generators y; commute with generators z; and z;. From
injections iy, and iy, we have elements ¢, z;, z; and y; in H,(G5). From isomor-
phisms (2.1) and (2.5) we know that the rank of H(G,) is 3 and as we just
showed we have elements ¢,z and ¥, in H(G,). Clearly these are linearly
independent.

Looking at (2.5) and (2.6) we see that ¢ must have a nonzero image in
Hi(Uy). On the other hand, since the homology of the SO(3) factor in K is
generated by v, x;, for example, must have a nonzero image in H;{Uy). The
class z; must correspond , by (2.1), to a class in Ha(Up) and we will see in
lemma 2.3.1 below that this class is the image of 2;¢ in U, 2 is a spherical
representative of the first SO(3) factor in H{(Kp). Therefore, since Ky acts
on Jy by multiplication on the left there is a well defined 2-cycle @17 in Uh.

More precisely, if z, is represented by

S Gy iu e 3 (u)

12




and £ by

St — Gy v (o)

we define a 2-cycle in (7 given by the map
$?=8"x8"/5'v 5t = G,
induced by the commutator
S x St — Gy i (wyu) = tHw)z (w)t(v) e (u)

Let’s recall that for any group G the Samelson product [z, y] € 7,.4(G) of

elements © € n,(G) and y € m,(G) is represented by the commutator
SPH = §P % ST/SP v 87 5 G : (u,v) = z{w)y{v)s(v) y(v)™!

The Samelson product in 7,(G) is related to the Pontryagin product in H.(G :
Z) by the formula

[z,9] = zy — (~1)lEWlyz,

where we suppressed the Hurewicz homomorphism p : 7 (@) — H.(G) to
simplify the expression. Therefore we see that this 2-cycle is given by the
commutator [z, 1], so in homology, i.e., in Hy(G), 7o) is simply given by »,¢+
tz;. Similarly we define a cycle in Hy(G, Zz) that in homotopy is given by
the commutator [t, z3]. Although z is not a spherical class, i.e., 27 ¢ m(G))

we can consider a cycle in degree 3 given by zot + txy in H,(G), Za).

Definition 2.2.2. We define elements w; € H; (G, Zs) to be the commu-

13




tators xit + tx; with + = 1,2,3. For a word in the wjs we use the notation

Wr = Wy, .Uy, with I = (?,1,,’4‘%)

The reason why we use these generators z;t -+ tz; instead of simply x;t, tz;
is first because they project simultaneously to additive generators in H,(Ui)
and H.,(Uy) so it is easier to see the correspondence between elements in iso-
morphisms  (2.5) and (2.6). Secondly their dual in cohomology represent
a new generator in the ring H*(G)), this meaning that they are not in the
subalgebra generated by the duals of £, z; and y,. We show this fact in the
next lemma. First we define the duals of these elements in H*(G,). f is the
clement in H'(G) such that £(¢) = 1 and £(z;) = #(y;) = 0. We define #; and

7 in the obvious way. We also have #; = (#1)* and ¢; = {¢;)*.

Lemma 2.2.3. We have (tU%)([x;,1]) = 0, where t and £; represent the dual

of t and x; in H*(G),) respectively.

Proof. Although in this section we are working with Z, coefficients we will
prove a stronger result by showing that the statement is true also over % .
Note that (U ) ([2s, £]) = (U $) (st + t;) = (FU5) (z2) + (FU£)(tz;) and
we show that (fU £)(tz;) = (4; U ) (z:8) = —( U £;)(zit) = 1. For example,
in the case when ¢ = 1 consider f : S* x S' — G, : (¢, 8) @b, where
S5 G it = ¢, and S' — Gy : s > ¥, represent the cycles ¢ and

respectively. Then

EUg) () = fFEUH)S xS
= FHUE)S xS
SO #)S ] =1

I

14




Thus (fU ) ([2),1]) = -1+ 1 =0. [

The idea is to work in terms of basis for each group H*{U) or H,(U),
because in this case we have a canonical identification between H*(U) and
H,(U), this meaning that if {c,} is a basis for H,(U) then &, is the element,
in H*(U) such that é,{cg) = dap-

We choose a normalized set of elements in the subring of H,(G,) generated

by &, x;,y; with 4,7 = 1,2, 3.
Lemma 2.2.4. Any word in the ,z;,y; with,7 = 1,2,3 is a sum of elements
of the form

wrtziy;’, (2.7)

where e, = 0 or 1, I = (41,...,0) and 4,§ = 1,2 or 3 (x5 = 21%0,y3 =

’ylyz)-

Proof. We know that y; commutes with all other elements and we have equa-

tions

zyw; = wizy if (4,5) # (1,2) or (2,1)
riwy = wizy +ws if (4,7) = (1,2) or (2,1).

We also know that z,t = tx; + wy, ¢ commutes with w; for 2 = 1,2,3 and
t2 = 0. These facts together with the two equations imply that we can always

bring any copy of z; to the right of the wy’s, adding, if necessary, words on the

w;'s. ]

15




2.3 A generating set for H,(G))

In this subsection the aim is to show that the elements ;,y;,t generate the
ring H.(G);%s). In order to do that we give a geometric description of the
isomorphism H,1(Up) = H,(Th).

We have projections p;, to H,(U;) with = 0 or 1. Since x; has image in
H;(Ky) we see that py, ([2i,%]) = po.{zit) in H.(U) and py,([z:,t]) = p1,(t2)
in H,(U;) because ¢ has image in H((K;). We write ¢ for po,(t) € H.(Us)
and z; for p;,(z) € H,(U1). However it will be convenient to distinguish
notationally between the different incarnations of wy,we,ws on the different
spaces. We will denote by v; = po,(w;) the generators in H.(Up) and by
u; = pr, (w;) the generators in H,(Uy) where i = 1,2 or 3. Let v; = po, (wy) and
ur = p1,(wy) where wy is given as in definition 2.2.2. This way we give meaning
to expressions as v;v; = po, (wiw;), vit = po(wit) and weu; = pi,(wiwy). We
can write v;t or tv; to refer to the same element because ¢ commutes with w; in
H,(G). Note that H,(I};) is a left H,(G»)-module, so H.(G)) acts on H,(U;)
by multiplication on the left. Using this module action we have vy = w;.vr
and up = wyur for I' = (4, 7).

We can choose right inverses s; : H,(U;} = H.(G,) such that so(t) =1,
solv;) = wy, s1{m:) = x4, s1{u;) = w; and py, 0 5; = id. They exist because
of isomorphisms (2.5) and (2.6). Moreover we can choose s; such that sg

preserves multiplication by #,w; and s; preserves multiplication by w;.

Lemma 2.3.1. The isomorphism Hyp,1(Up) & H,(Uy) is given by the map

¥ Hy(U1) = Hpa(Uo) : ¢ = po,(s1(c)?)

16
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Proof. Note that since U is a codimension 2 submanifold of 7, there is a

circle bundle ONy, where ANy, is a neighborhood of Uy in Uy:

St ——= Ny, (2.8)

lw

U
'Thus for any map ¢ : C — Uj representing a cycle in H,(U;) we can obtain
a cycle in H,yy(Up) by lifting ¢ to Ny,. This is the geometric interpretation
of the isomorphism H,(U1) — Hpy1(Up; Ze) stated in (2.1). More precisely,
using the section s; we can lift ¢ to a compact set s1(c) € Gy. Then for each
g € s1(c) there is a map to Uy given by g — g,J, where we can choose J € U
close to U;. In fact, we can choose J € Ny, so close to U; such that g,J € N,
also. Then a cycle in Ny, C Uy is obtained by the action on s1(c) of the
Sl-action represented by £. For each g € s1(c) we have a loop ﬁround U1 given

by g.(t.J) = (gt)«J, so the cycle ¢ lifts to pg,(s1(c)t) in Up. W]

Remark 2.3.2. Using the notation introduced before we can say that ¥(z;) =
po, (51(2)t) = zit = vy, P(ws) = Po.(s1{u)t) = wit = wit, P(urz;) = wry; =
vp with I = (1,4) and Y{ur) = vt

The map P that gives the corresponding isomorphism in cohomology, 47

HP(U) — HPY(U,), is the composite of the restriction
i H*(Ug) — H{ONy,)

with integration over the fiber of the projection = : ONy, — Ui, of the fibration

(2.8) ( see [1]).

17
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Now we use the lemma to prove the following proposition.

Proposition 2.3.3. The generators of the Pontryagin ring H.(G\) are t, %,

yy with i, =1,2.

Proof. We know we have elements ¢, z;,y; in H,(@,) because of injections g,
and 41,. Let R, C H,(G)) be the subring generated by ¢, x;,y,;. Suppose there
is an element of minimal degree in H,(G}) — R,. From isomorphism (2.5) we

can conclude that such an element would be mapped to a sum of elements

Zq@)kg € ?(Hd—l(Uﬂ)(g'Hl(KO))

with 0 < [ < 6. For some {, ¢ is not a polynomial in the vy, t. Take the
largest such {. By the isomorphism in lemma (2.3.1) and remark 2.3.2 this
would create an element in Hy ;.(U;) that is not a polynomial in u; and
x;. But this is impossible because this would give rise to a new generator in
Hy_i 1 (G)) corresponding to this new element in Hy,y(Uy) ® Ho(K1) and

this contradicts the minimality of d. _ Cl

2.4 Main theorem

We first show that we have isomorphisms H.(G,) = H,{(U;) ® H,(K;) given

by Pontryagin product. More precisely, we can define maps

©; H*(U:,,)@)H*(Kz) -'%H*(G)\) C®ff}|—>81(c)k (29)

18




with ¢ = 0 or 1. Since K; C () and ¢; is injective in homology we denote
i, (k) simply by k. It is clear that p;,(s;(c).k) = 0 if & € H.(K;), with * > 0,
Clearly the product so(c)k is an element in the normalized set we defined in
lemma 2.2.4, because sy(c) is a product of wis and ¢ and k is a product of z;

and y;. Then we prove that these maps are isomorphisms.

Proposition 2.4.1. The maps ¢; : H(U;) ® H.(K;) — HJ(G,) : c®k

5:(¢).k given by Pontryagin product are isomorphisms.

Proof. Consider the elements of the form v, with ¢, = 0,1 in H,(Uy). If they
are not linearly independent, choose a maximal linearly independent subset
B = {c,}. It follows from proposition 2.3.3 that this is a basis for H,(Uy).
Now consider the image in H,(G,) of B. This is given by B’ = {sq(c,)} with
ca € B. These are elements of the form wt%, ¢ = 0,1 and the set B’ is
linearly independent. Therefore it is an additive basis for the space spanned
by elements of the form w;t®. Note that H,.(G) has a subalgebra isomorphic
to H,(Ko) and an additive basis for this is D = {ky} = {z§'y}} where ¢; and
n; are equal to 0 or 1, so an additive basis for H,(G,), will contain all elements
of this form. To prove the theorem in the case i = (0 we need to show that
the set B" = {so(cq)-ky} where so(c,) € B' and k, € D is an additive basis of
H.(G)). First we will prove that these elements generate additively H,(G,).
Suppose we have an element ¢ € H,(G,). From proposition 2.3.3 and lemma
2.2.4 we know that every element in H,(G)) is a sum of elements of the form

(2.7). Thus

a = E wy tmg
24

We know that oy is in D and if wy,t% is not in B’ we can write it as sum
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of elements in B'. Thus « is a sum of elements in B".

Now we need to prove that the elements in B” are linearly independent.
We know that for a fixed degree d, the dimension of Hy(G)) is given by
Ef:{) dim Hy(Up) x dim Hy_;(Ko), because of the vector space isomorphism
(2.5). But this is precisely the number of elements in B” of degree d. So
they must be linearly independent, otherwise their span would not be the
space H,(G,). This means that the set B” = {s¢(c,).ky} defined above is an
additive basis for H,(G,). Therefore g is an isomorphism.

In the case 2 = 1, ¢ maps ¢ ® k to s1{c).k and this is not in the form
(2.7). However we can prove a result analogous to lemma 2.2.4 stating that
any word in the z;,y;,¢ is a sum of elements of the form w;o:?ty?j . This is
clear because wrtz;y; = wrzity; + wrwty; for all 1,4 and j. Now repeating
the steps for the case ¢ = 0 and using isomorphism (2.6), it follows easily that

1 is also an isomorphism. ]
We are now in position to calculate the algebra structure on H,(G,).

Theorem 2.4.2. If0 < A <1 then
H(Gx; L) = Aly1, y2) ® Zalt, o1, 22) /R

where degy; = degx; = i and R is the set of relations {1* = 2? = 0,112, =
.’1325131}.
Procf. We already know from proposition 2.3.3 that the generators of the

Pontryagin ring are {,z;,y;. Now we need to prove that the only relations

between them are the ones in R. We will prove by induction on the dimension
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that the elements of the form (2.7) give an additive basis of H.(G,). The
induction hypothesis is that this statement is true up to dimension d 1. This
implies that elements of form (2.7) are linearly independent, thus we have no
relations between these elements up to dimension d — 1. Suppose there was
some relation of minimal degree d in Hy(G,). The first step is to show that
the relation would be between the w}s only. Assume the relation was given by

a finite sum of the type
wakAk’ =0
k

where wy, is a word on the wis and Ay = t%b; where by is an element in
H.(Ky) and ¢; equals 0 or 1. Then from proposition 2.4.1 with ¢ = 0 we can

conclude that we must have

Zw;kte’“ ® by = 0.
k

We can group together the terms in which b, is the same, thus we can write

the relation as

D O wt) @b =0

k4

where now by, runs over a set of basis elements of H.(K;). This implies that

we have a relation of the type

Z w;tté‘ =0.
i

Using proposition 2.4.1 with 2 = 1 we show that the relation is between the
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wis, because
an ® 18 = wa[ﬂ, ®t+zwh” ®1=0
! I "

implies

Zw;‘, = 0 and waw = 0.
ln’

I

A relation in the w!s projects, under the map po,, to a relation in the v;s in
Hy(Uy). Using isomorphism (2.1) this would give a relation in degree d — 1
between the w;/s and zis in Hy_1(Uh). But this contradicts the induction
hypothesis because such relation implies one in H,(G,) with % at most equal
to d — 1.

Since there are no relations between the w!s the Pontryagin ring H,(G)) con-

tains a free noncommutative ring on 3 generators, namely wy, wa, ws. O

So we proved also the following proposition

Proposition 2.4.3. An additive basis for H (G,) is given by
wrtaiy, (2.10) '?;i it

where e,e,m; = 0 or 1, I = (i1,...,%) and 4,5 = 1,2 or 3 (z3 = 31Z2,¥y3 = fH,‘;

Y192). g
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2.5 Relation between cohomology and homol-

ogy

Proving isomorphisms (2.5) and (2.6) does not imply that we have algebra

isomorphisms. That is proved in the next lemma.

Lemma 2,5.1. The following isomorphisms hold as algebra isomorphisms.
H*(Gy) =2 H*(U;) @ H*(K;) with 1= 0,1 (2.11)

Proof. The proof is based in the argument used by Abreu in [1] with some
necessary changes. H*((G,) has subalgebras p*(H*(U;)) & H*(U;). From
theorem 2.1.2 we know that Map, (S?) is homotopy equivalent to SO(3) x §
where {2 denotes the universal covering space of Map,, (S%). Therefore we
have a map Map;(S?) x Map,(5?) — SO(3) x SO(3). The composite of
Gy — Map, (S?) x Map,{5?) with the previous map gives us a map p: G, —
Ky. Thus H*(G,) has a subalgebra p*( H*(K,)) & H*(K,). Composing these
inclusions of H.(Uy) and H*(K)) as subalgebras of H*{G,) with cup product

multiplication in H*(G,) we get a map
g . H*(U()) ®H*(I{U) — H*(G,\)

vy 18 an algebra homomorphism because H*(G,) is commutative and it is
compatible with filtrations ( the obvious one on H,(Up) ® H*(Kj,) and the
filtration F on H*(G,) coming from the fibration on the left in (2.2)). The

degeneration of the spectral sequence at the Ly-term implies that vy is an
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algebra isomorphism. This proves isomorphism (2.11) in the case ¢ = 0. For
the case ¢ = 1 note that the map 4% : H*(G,) — H*(Ky) is surjective, so there
are t and § in H*(G,) such that 43(f) and ¢} (§) generate the ring I*(K), where
i¥(f) is the generator of the cohomology of S and { is such that #(z;) = 0.
i1(9) is the generator of the cohomology of the SO(3) factor. Now we need to
prove that £2 = 0 in H*(@,) in order to claim that the subalgebra of H*(Gy)

generated by  and § is isomorphic to H*{K}).

Lemma 2.5.2. 2 =0 in H*(G))

Proof. Using isomorphisms (2.1), (2.5) and (2.6) we can show that the rank
of Hy(G,) is 6. But in H(G)) the cycles zq, ys, txy, tyr, z1y1, w1 are linearly
independent. We will show that #* evaluated on all these classes is 0. The only
one at which is not obviously 0 is w;. Let the map o : §%2 = St x §1/Sv St —
(') represent the 2-cycle wy. Then £2(w) = o*(£2)[S?] = (o*(£)[S?])? and this

vanishes because wy is a spherical class,i.e., o*(f) € HY{(S?) = 0. O

Again composing these inclusions of H*(K,) and H,(U,) as subalgebras of

H*(G,) with eup product multiplication we get a map

o H*(Ul) & H*(KI) — H*(GA)

which is an algebra isomorphism. (]
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From the isomorphisms in the previous lemma and in proposition 2.4.1 we

would be tempted to think that the diagram

H,(Us) ® Hu(Ko) —— H,(G))

| |

0" (Us) ® H*(Ko) —= H*(G))

commutes, where the vertical arrows are given by the dual isomorphisms with
respect to basis in H,(Uy), H,(G)). Actually this diagram does not commute.

To see that first recall that for a topological group we have maps

that give rise to a Hopf algebra (H,(G, Zs), ps, ds) where p, is the Pontrya-
gin product. The dual algebra is (H*(G, Zs),U, p*). To givé a complete de-
scription of H,(Gy;Zs) as a Hopf algebra we will also need to compute the
ring hémomorphism d,. The dual of H,(G;Zq) is given by H™(Gy;Zg) =
Hom(H,(Gx; Zy)). The value of a homomorphism ¢’ on ¢ will be denoted by

(¢, c}. Tt is understood that (¢, ¢} = 0 unless dim¢’ = dime.

Lemma 2.5.3. The following formulas hold.

k
d*(l';ﬂ) = Z Ti D Ty
i=0

o

-1
do(wg) = (z5 @ Wiy + Wi @ T;)

%

i
=

with k =1,2,3 and assuming zo = 1.
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Proof. Recall that H*(SO(3)) = Zy[#]/{#,* = 0} and & = #,* when i = 2,3,
Denote 7, simply by £. Because degree of 2 is 1 we obtain dy(z,) =1 ® 21 +

331@1.

(" @ 3™, d(z2)) = (" (2" Q@2™),mq) =
= (F"Ui™ za) =
= (G ) =

1 ifn+m=2

0 otherwise
So this proves that
de(z2) =22 @14+ 21 Q21 +1® @9
and

di(23) = du(z120) = di(z1)du(22).

Thus

d*($3) =1+ X2+, @21 +1& x3.
We also have d,(w;) = d.(x;t + tz;) therefore
di(w1)) = 1Q@w +unr®1

d*(‘lUQ) = 1®’U)2+$1®1U1+’w1®331+w2®1

d*(w3) = 1®w3+$1®w2+wg®a¢1+m2®w1—l—w1®$2+w3®1
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Now consider the following example.

Example 2.5.4. If we had o commutative diagram then we would have {w U
i, w1T1y2) = 1 and Wy U Z19a evaluated at ell other elements would be 0. 1
But this does not happen as we can see in the following calculations. We have r“
j

(y U Z1, wiz1yn) = 1 IJ

and I‘Jl
(W1 U Eil, ways) = (1) ® 513, du(wae)) =

i

=ty ® 57, du(w)du(3)) = )

= (1 @ Z1Y2, % ® Wy + TyY2 ® Wy + Wit @ 21 + ’

+welya @ 1 + 4y & woyn + z171 ® wiyh +

+wiyt @ T1ih + wel @ Y1 + 1 @ wayo +

+3 @ wiys -+ w @ 1Yo + w2 Rye) =1
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Chapter 3

Torsion in H,(G);7Z)

We can repeat the argument of the previous section with @ and Z, coefficients,
with p prime and # 2. In this case the homology of SO(3) is given by a
single generator in dimension 3, so the generators of the homology ring of
(7, are simply f,z3 and y3. An additive basis for the homology is given by
elements of the form w¥t“zSyy, where ¢;, ¢, = 0 or 1 and wj is obtained as the
commutator of 23 and £. The results are the same if we consider @ coefficients
or Z, coeflicients with p # 2. Therefore we can conclude that H,(G»;Z) has
no p-torsion if p # 2.

In this section we will prove that in fact H.(G\;Z) contains no torsion

elements of order greater than 2.

3.1 The James construction

For a pointed topological space (X, ), let J;(X) = X*/~ where

(iL‘l, weey g1, ¥, T4, ...,$]c) ~ (:1?1, vy L1y Tjg1, ¥, ,$k)
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The James construction on X, denoted J (X)is defined by

J(X) = lim Je(X),
k

where Ji(X) € Jgq1(X) by adding * in last component. There is a canonical
inclusion X = Ji(X) <> J(X). J (X) is a topological monoid and any map
from X to a topological monoid M extends uniquely to a morphism J (X)—-» M
of topological monoids. That is, X < J(X) is universal with respect to maps
from X to topological monoids, ie.,if f: X — M is given there is a unique 7

such that

N

Jx-t-M
the diagram commutes. f is defined by F(@1y s Th) = flz1)...f(xy). From the

definition, JEX/JFIX =X AX A AKX and since we have a filtration
JXD.OJPXD>JFX D

applying the Kiinneth Theorem we conclude that ( see [14] )

Theorem 3.1.1.
H(J*X; Tg) = Ho(J¥ X Zo) ® Hy (XAX A AXZ)
and

H(JX, 7)) = Bk H(X:22) ® . ® (X3 Z) = T(H(X; Z2))
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where given a vector space H, T(H) is the tensor algebra on H and the last

wsomorphism is an isomorphism of Pontryagin rings.
Now note the following theorem ( see proof in [12] )

Theorem 3.1.2 {James). If X has the homotopy type of a connected CW-

complex then JX and QXX are homotopy equivelent.

Thus we can conclude thak

H (DX Zg) = T(H(X; 7))
so, in particular, if X = St A SO(3) we get
H,(52(8 A SO(3)); Zg) = T(H,(S* A SO(3); Zo)) = Zp(wr, wg, ws),

where w, wq, w;y are generators in dimension 2, 3, 4 respectively. So we see that

the homology with Zy coefficients of this space is isomorphic to a subalgebra

of H.(Gx;Zy). We are going to use this to prove that H,(Gy;Z) has only ¥i

Zip-torsion. l

Theorem 3.1.3. The homology of the space Q¥(S' A SO(3)) has only Z, 5

torsion.

Proof. Let g : P*(B) — B be the fibration where the fiber of ¢ is the Moore k
loop space , Q*(B), defined by (i

Q(B) = {(s,w) e R x BR+| w(0) = x and w(t) = « for t > s}, £
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and P*(B) is the Moore path space on B defined by
P*(B) = {(s,w) € R* x B®"| w(0) = * and w(t) = w(s) for t > s}.

We think of elements of Q*(B) and P*(B) as paths parameterized by [0, s].
Such paths have a strictly associative multiplication under which the prod-
uct of paths of length s and s’ has length s + s'. We introduce these related
spaces with strictly associative multiplication, because multiplication of paths
in Q(B) and P(B) is only homotopy associative. The operation of multipli-
cation of paths defines an associative left action of £2*(B) on the fibration
q.

Suppose now that B is the suspension of a space W. We have the fibration
P*(ZEW) — LW with fiber F' = Q*(ZW). Let us consider W as a space with
base point and F as a free space. Then the quotient W x F/ + x F' ig just the
reduced join W A F. As we can see in [14](p321), in this case the total space
is contractible and the Wang sequence of the fibration reduces to a family of
isomorphismsg

H (W A F) = H,(F)

for all ¢ > 0. This allows a recursive calculation of the homology groups of F.

For, by the Kiinneth Theorem

H(F) = H(WAF) (3.1)
> (P HW,x) @ H,F) @ Tor{H(W,+),H,(F)} (3.2)
r+a=g r4+s=g—1

If W is O-connected, H,(W, ) = 0 for < 0, and therefore the right-hand side of
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the above formula involves only the homology groups of F' in dimensions less
then q. It is also proved in [14] ( Corollary 2.19 of Chapter III) that Q(ZW)
and Q*(XW) have the same homotopy type. Therefore they have isomorphic
homology and cohomology groups, and even isomorphic cohomology rings.
That they have isomorphic Pontryagin rings follows from the observation that
the homotopy equivalence h : Q(XW) — Q*(XW) is an H-map. If we put
W = S' A SO(3) and using the fact that the homology of W has only Z,-

torsion, i.e.,

Ho(S*ASOQ3);Z) = Z
Hi(S* ASO(3);Z) = 0
Hy(S*ASOB)Z) = 7
H3(S'ASO(3);Z) = 0

Hy(S*ASO(3);Z) = Z

We can conclude from (3.2) that H,(F,Z) has only Zs-torsion. Therefore we
proved that H,(QX(S* A SO(3)); Z) has only Zo-torsion. ]

3.2 The Bockstein Spectral Sequence

Let C be a chain complex of free abelian groups and let p be a positive integer.

The short exact sequence of groups

0= Zp— Zyp —> Ly — 0
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vields a short exact sequence of chain complexes
02 CQ®%Zy— CQRZyp = CQL, — 0.

The boundary map 8, : H,(C;Z,) = Hn_1(C;Z,) from the corresponding
long exact sequence is called the mod p Bockstein.When p is clear from the

context, it is dropped in the notation. f, factors as the composition
H,(C;Z,) =2+ H, (C;Z) 1> H,_1(C,Z,) .

There is a graded exact couple in which D, = H,(C;Z) and E, = H,(C;Z,)

with the maps induced from the short exact sequence of groups

The corresponding spectral sequence is called the mod p Bockstein spectral
sequence of C. It is clear from the definitions that 8 is the d!-differential of
this spectral sequence. The d"-differential is written 5} and is called the rth
Bockstein modulo p. Here are some key facts about the Bockstein spectral

sequence.
Fact 3.2.1. (see [3] and [12])

1. If C is an arcwise connected H-space with H;(C) finitely generated for
each i, then

B) = (H,(C)/Torsion) ® Z,

as Hopf algebras.
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2. B2 H,(C;Z,).

3. The spectral sequence of C collapses at E™ Y H,(C) has no clements of

order p™ for m > v, 1]

4. Let ( )y denote localization at p. If H.(C) is finitely generated then
H, (C’)(p) can be reconstructed from its Bockstein spectral sequence. Sup-
pose Hp(Clpy = Z(Sp) @ Zipt D ... © Ly, for some integers s, b1, tg, .y
ty. Corresponding to a summand Zy,) there will be a basis element
r € H,(C;Z,) = EL such that 8% (z) = 0 for all v, and correspond-
ing to o summand Zg there will be o pair of basis elements x € El
y € EL., such that B")(z) = 0 for all v, B (y) = 0 for r < t and
BO(y) = z.

For an H-space this spectral sequence is multiplicative which means that

the following equality is valid

A (ab) = BT (a)b + (~1)asP ()

with a,b € EI. i
Since Q%(ST A-SO(3)) is an H-space, we can look at its mod 2-Bockstein .
spectral sequence. It will degenerate at the second term, by Theorem 3.1.3

and fact 3, i.e., N

E? = B = (H,((S* A SO(3)); Z) / Torsion) ® Zs.
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We have

(H,(Q5(S* A SO(3)); Z)/Torsion) ® Q = H,(QX(S* A S0(3)); Q)

=2 P(1,(S* A SO3); Q) = Qlus]

This implies that the differentials 87) must satisfy 5 (w3) = 0 for all r > 0,
because ws is the generator of the algebra I, (Q%(S" A SO(3)); Q). Because
the mod-2 Bockstein spectral sequence of this space collapses at the second

term, 5 = 0 if r > 2 and the following lemma is true.

Lemma 3.2.2. If w € H,(QX(S' A SO(3)); Zs) and B(w) =0, either w is in

the subalgebra Wy = Zo[ws] or there is W € Zo{wy, e, ws) such that S{i) = w.

In particular, since wy and w; must disappear and there’s nothing in di-
mension 1, we have 8(w;) = 0 and therefore §(w?) = 0. Thus B{ws) = w;.

Looking now at the homology of Gy
H (G, ) =2 M, v2) ® Zot, 71, 22) /R,

with relations R = {t? = z} = x5 = 0}, we see that the differential 3 of the

mod 2-Bockstein spectral sequence of ¢, must satisfy

Blw)) = Bltxy + z1t) =18(z1) + B(z1)t = 0, (3.3)
Blwe) = pltza+ Lb'zt) =tz + z1t = Wy, (34)
Blws) = 0, (3.5)
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because 8{z,) = 0, B{za) = =1, B(t) = 0 and wy corresponds to the generator

of the rational homology.

We know that in isomorphism
H (G, B2) = Ho(Uo, Lz) @ H.(Ky, Zz)

the elements wy, ws, W3 correspond to the elements vy, V2, U3 in H*(UO,ZQ).

From (3.3), (3.4), (3.5) we can conclude, because 5 is natural, that

Blo) = Blpo.(ws)) = po.(Bwi)) =0,
Blva) = 5(390*(1“2)) = po.(B(ws)) = po.{w1) = v1,
B(vs) = Bpos(ws)) = po.(Blws)) =0

where 3 is the dl-differential of the spectral sequence of Up. Cpmpar'mg the
spectral sequence of Uy with the one of Q(SIASO(3)) we see that lemma 3.2.2
must be true also for every v € Zip{v1, vz, v3) Where v; = po,(w;) € Hu(Uo, Zs)
. On the other hand , we proved in the previous section that an additive basis
for H,(Up, Zy) is given by vyt® with ¢, = 0, 1. Denote a word on v}g simply
by v. Then B(vt) = B(v)t, because B(t) = 0. This implies that the spectral
sequence of Up collapses at the second term and therefore H. (U, Z) has no
clements of order greater then 2. This means that H,{(Us, Za) has only Zo-
torsion. Using isomorphism (2.5) together with the fact that H., (Ko, Z) has

only Zo-torsion we prove the following theorermn.

Theorem 3.2.3. The integer homology of the group G, H,(G);Z), contains

no torsion elements of order greater than 2.
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3.3 The Integer Homology of G

Now we can use the previous result to describe the integer homology. We
know there is no p-torsion if p # 2 | so we just have to check which cycles w

in H.(G)y; Zs) represent also cycles with Z coefficients. 3 is the composition
Ho(Gri ) 2> Hy 1 (G 2) — I, 1 (G 2)
where § is reduction mod 2 and imj = H,(Gy; Z) ® Zg. We have inclusions
imf# Cimj C ker 3.

On the other hand, since we know that z3,ys and ¢ correspond to generators
of the rational homology, if w is in the subalgebra A(ys) ® Za(t, xs) where
ys = yi1y2 and m3 = =x;%9, then it represents a cycle in infeger homology.
Otherwise we proved that if S(w) = 0, then there is @ such that 5{&) = w.
So we conclude that ker 8 C im 8 in H,(G); Zza) — Alys) @ Zo(t, x3). Therefore

we have

Lemma 3.3.1. The image of B in H,(Gx;Zs) equals the image under j :
H.(G), Z) — H,(Gyx;Zg) of the torsion subgroup of H,(G»;Z) under the obd-
vious inclusion Tor H,(Gx; Z) < Hp,(Gy; Zy).

Remark 3.3.2. Note that this injective image of j is the full 2-torsion sub-
group of H,(G); Z), because Hn(G; Z) contains no elements of order greater

than 2.

Thus the classes in the Z, homology that lift to torsion classes in the integer
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homology are precisely the ones that are in the image of B.

3.4 An algebraic proof of m B = ker 5 on
ZQ <w1: W3y, ’LU3> - WO

We gave a topological proof that H L[O5(ST ASO(3)); Z) bas only Zio-torsion.
Now we will see an algebraic proof of this fact. We know that F,(QS(S" A
SO(3)); Zg) = Lolwy, wa, ws), and what we want (o show is that im 3 = ker 8
on Zg(wl,wg,wg) — W, where Wy is the subalgebra generated by ws, le.,

W, = Zo|ws) and f is the Bockstein homomorphism
,(Q%(S" A SO(3)); L) — H, 1(Q2(S* A SO(3)); Za)-

We have to exclude Wy because w3 corresponds to a generator in the rational
homology, so the elements wj never get killed in the Bockstein spectral se-
quence. From now on we will assume that we are working with Z, coeflicients.

First consider the following simplified problem:

Problem 3.4.1. Suppose we have a free non-commutative algebra generated
by wy, w2 and @ differential d © A — A such that dwy = 0 and dws = Wi
We want to show that imd = kerd and describe this ring { In our cose A=

Tonlun, we) and d = g )
This is equivalent to solving the problem:

Problem 3.4.2. Let V be @ vector SPAce OVET 7., spanned by Wi, Wa and cor-

sider VO ( this space is isomorphic to words on wy, W of length n ). Assume
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there is a differential d acting by the Leibnitz rule. Then we want to:

1. Prove that imd = kerd.

2. Calculate graded dimension of ker d ( assuming wlog that degw; = 1 and

degwe = =1 ).

The solution is given by considering graded d-modules, or vector spaces

with action of the differential d and Z-grading. Assume d = 2.

Example 3.4.3. Let V(a) be a vector space spanned by u,v of degree o — 1

and a + 1 respectively, such that du = v and dv = 0.

We claim that

Lemma 3.4.4. V(0) ® V({a) =2 V(e — 1)@ V(e + 1), where V(0) = V =

span{w, wa}

Proof. This is easy to prove looking at the following diagram

g & U

PN

wy @ u Wy Qv

~

U XU

The element in the first row has degree a — 2, the elements in the second row
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have degree @ and in the third row degree a+2 and d(w; ®u) = w1 Qut+uwLdv,

| dlw: @ u) = wy ®v. u
Moreover we have
Corollary 3.4.5. V" = P, (V2 - (n—-1))

Proof. We give a proof by induction. If n = 1 then we obtain

- 5‘_90 (2)”2’“) — V(o).

Now assume the result is true for n. Then

yenth) = V() Ve

= V() ® {@1 (”; l)V(zzc— (n— 1))}

0

- P (”;1 (V(2k —n) & V(2k — (n - 2)))

O

It’s clear that for each V(a) we have ker djy() = im djy sy and dimker dvia)

= 1, so from the previous result we can conclude that ker diyen = im d|yen and

dim ker djyer = 2;[1) (“gl) dimker djy(ak—(n-1)) = }:;(l) (”;1). This shows
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that ker 5 = imf in Zy{wy, wy) when the differential § acts in this algebra
satisfying #(ws) = wy and f{w;) = 0. Moreover the dimension of the kernel
restricted to the space of words on w; and w, of length n is EZ;& (”;1).
Now we can introduce the generator ws, by considering the space ¥ (0) =
V(0) @ Wy, where W; is the vector space over Z, spanned by wi, i.e., Wi =
span{wi}. We assume that dws = 0 and degws = 0. Then the space V®" =
V(0)®" is isomorphic to the space of words on wy,w, and wy of length n.

Similarly we define V (a) = V(a) ® Wi. It is clear from lemma 3.4.4 that

~

V) eVe)2Ve-DaV(et+1)o Vo) o Vie) o Ws

therefore we can prove the following lemma.
Lemma 3.4.6. Ve 2 @p_ (Ve o Wy
Proof. The proof in given by induction on n. If n = 1 we obtain V=V Wy,

Now assume the result is true for n. Then

ot = peng T

n

12

(”) Ve o vV @ @ (”) VeE g W(')n+1
k k
k=1 k=1
n n—1
I~ A 1okl o\ yek+l o 1 @ it
o @(k)v @@(kﬂ) eVaew
k=1 k=0
n—1
. @ n n n Yektl g yentl o (n+1)V Won-+—1
et k k+1
—1 n -+ 1
= (k N 1) Vet g Vel g (n+ 1)V @ Wit




2 1
(: i 1) Vol g (n+ 1)V @ W

I
XS

n+1 n+ 1
= ( i )V@“ea(nﬂ)x/eaw,;*“
k=2
n+1
o ”;’ 1) vk g Wt
k=1

O

We already proved that kerdjyes = imdjyen. Therefore it is clear that
the restriction of the differential d to the subspace W = D, (%) Y&k of i
V& also satisfies kerdw = imdw. This means that ker dipen = kerdw + |
ker djwp = myw -+ ker djwy.- This shows that the differential 8 satisfies im 8 =
ker A on Zg{wy, wa, ws) — Wo. Moreover we can compute the dimension of the
kernel of 3 restricted to the space of words on wy, ws and wj of length n on

T, wo, w3y — Wo. From lemma 3.4.6 and corollary 3.4.5 this dimension is

given by 22:1 Zfz_ll (:) '(k?l)' I |




Chapter 4

Homotopy type of G,

Let I, = 3(STASO(3)) and consider the space X = L x S x SO(3) x SO(3).
We will show that G, is homotopy equivalent to X. It is known (see [5] ,
Cor.3.37) that

Proposition 4.0.7. A map f : X — Y induces isomorphisms on homology

with 7. cocfficients iff it induces isomorphisms on homology‘with Q and Z,

coefficients for all primes p. 4

We will define a map f from X to G5 and we will prove that induces i
isomorphisms on homology with Q and Z, coeflicients, for all primes p. We

have an inclusion map

i1 St % SO(3) = G

given by

(2, ) = 11 (z)io(y)in (z) Hioy) (4.1)

where 49 and 4, are the inclusions given in section 2. More precisely, in this

formula 4, is the restriction of the inclusion K; — G to the 5! factor and
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ip is the restriction of the inclusion Ky < () to the first SO(3) factor. The

restriction to S*V SO(3) of i is the identity so there is an induced map
h:S'ASO(3) = G,
This map induces the right correspondence between generators in homology
ha o Ho(SY A SO(3); Zo) — H,(Gy; %),

this meaning that the three generators of H,(S' A SO(3);Zs) are mapped
to wy,wq, ws € H,(Gy;Zs), because as we saw before these generators in
H,(G»;Zy) are obtained as commutators as in (4.1). Moreover there is a
unique map A that extends A to Q3(S* A SO(3)) as in section 3.1. Therefore

the map
hy @ H(QS(S A SO(3)); Zy) — H,(Gy; Zo) (4.2)

takes the generators of H,{Q25:(S' A SO(3)); Z,) to the elements wy, ws, ws in
H,(G; Zy). Now consider the map [ : L x S x SO(3) x SO(3) = G, given
by

(w, 1,9, %) = h{w)ia (¢, y)i0(x),
where w € L = Q2(S* A SO(3)).

Lemma 4.0.8. The map [ defined above induces isomorphisms on homology

with Q and Z, coefficients for all primes p.

Proof. We see that f restricted to S! x SO(3) or the second SO(3) factor is
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just the inclusion in G'y. Moreover, using the Kiinneth formula for homology

with coeflicients in a ficld F, we obtain that

H(XF) 2 © H(L;T)® H(S* % SO(3): F) ® H,(SO(3); F). (4.3) ‘

Let I be Q or Z, with p # 2. Note that in this case H,(SO(3); F) has only a '
generator in dimension 3. Therefore an additive basis for H,(G,; F') is given

by

ket €1 A

where €;, ¢, = 0 or 1. Thus comparing equation (4.3} and an additive basis
for H,(G,; F') we see that the homology groups of X and G, are the same. We !
i just need to show that f induces those isomorphisms. The elements ¢, 3 and .|

[ ys are the images of the generators of I7,(S' x SO(3); F) and H,(SO(3); F)

under the injective maps

i1yt H (ST % SO(3), F) — H,(Gy; F)

and

ioe : H (SO(3); F) = Ho(GA; F)

induced by inclusions %y and 4;. We also know that the restriction of f to L is

given by the map h, and we know that hy maps the 4-dimensional generator li
of
H(Q2(SYASO(3)) F) = T(ITL,‘(S1 ASO(3); F)) = Flws)

to the element in H,(G,; F') obtained as the Samelson product of ¢ and z3. This
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proves that f induces an isomorphism in homology with @ and Z,, coeflicients
for all primes p with p # 2.

If F' = Zy then an additive basis for H,(Gy; Zo) is given by (2.7). Thus
from equation (4.3) we can conclude that the homology groups H,(Gy; Zo)
and H,(X;Z,) are isomorphic. The elements #,3, 4, are the images of the
generators of H,(S' x SO(3);Z,) and z,,z, are the images of the generators
of H,(SO(3);Z,). In this case the map A, mentioned in (4.2) takes the
generators of H,(QN(ST A SO(3));Zs2) to the elements wy, wy,ws which are
the three generators of the free noncommutative subalgebra of H,(G); Zs) .

Therefore, again we have an isomorphism in homology. Cl

Now we have the conditions of 4.0.7 satisfied, thus f induces isomorphisms
on homology with Z coefficients. Finally, we know that (G, is an H-space and
X is also an H-space, because is the product of H-spaces. Therefore for both
spaces 7 acts trivially on all m,'s (see [14] , pp 119). Now we can apply the

following corollary of Whitehead’s theorem ( [5] prop 4.48):

Corollary 4.0.9. If X and Y are CW-complexes that are abelian () acts
trivially on oll m,'s) then a map f : X — Y that induces isomorphisms in

homology is a homotopy equivalence.
Therefore we proved the following theorem:

Theorem 4.0.10. If 0 < A < 1, G, is homotopy equivalent to the product
QX(ST A SO(3)) x 8t x SO(3) x SO(3).

Remark 4.0.11. Although the spaces G and QE(STAS0(3)) x S* x SO(3) x
SO(3) are homotopy equivalent the above homotopy equivalence is not an H-

map, because it does not preserve the product structure. This can be seen
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by comparing the Pontryagin products on integral homology. It would be a
interesting question to find an easy understandable H-space with a Pontryagin

ring isomorphic to the one of G,.

Remark 4.0.12 (The Kiinneth formula with integer coefficients).
Looking ot the Kinneth formula with integer coefficients we can check in

low dimensions that the homology groups of this spaces are in fuct the same.

H.(X;Z) = & H,(SYZ)Y® H,(SO(3) x SO3);Z) ® Hi(L;Z) ®

pgti=n

@ Tor (H,(S' x SO(3) x SO(3); Z); Hy(L; Z))

pt+g=n—1

First we need to know what is the integer homology of SO(3) x SO(3). Again

using the Kinneth formula

H,(SOB) x SO@),2) = @ IL(50(3);Z) ® Hy(SO(3); Z) &

ptg=n

@ Tor (H,(SO(3); Z); H(SO(3); )

p+g=n—1
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we get

n | Hy(SO(3) x SO(3); %)
0 7,

1 Ly @ Lo

2 Z,

3 ZBLB Ly

4 Zio B 7y

) 0

6 Z

The generator of the Zy factor in the homology of degree 3 is m1ys + xoun,
where x|, T, Yy, Y2 are the generators of the Zy-homology of the two SO(3)
components. Although za, 42 represent cycles only with Zy coefficients, because

Oxe = 2z and Oyy = 2y, and they do not represent integer cycles, we get

N1y + zay1) = —2x1y1 + 22131 = 0,

since A(ab) = 8(a)b+ (—1)1*ad(b),where a,b are homology classes. Looking at
the homology of X we shall see that it is the ezistence of torsion elements of
the same order in the homology of S* x SO(3) x SO(3) and L which prevents
the homology of St x SO(3) x SO(3) x L from being just the product of the
homology of S* x SO(3) x SO(3) and L. Therefore using the Kinneth formula
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again we see that the generators of the homology groups H,(X;Z) are

1 |t,z,0

2 | try, by, wy, Ty

3 | twy, mwy, iwn, T, Y, Y1, X1Ye -+ Ty

4 | txywy, tyhw, tx, ty, t(mlyg, + :E-z’yl), T,

2 p
T1Y, TYL, W, Ws, Tywy + Ty, Yy + Yoy

where the last two generators are coming from the torsion term, because if

n =4 then

@ Tor (H,(S" x SO(3) x SO(3); Z); H,(L; Z))

p+g=3

contributes with two Zgy factors since Hy(S' X SO(3) x SO(3);2) = Z&ZD Lo

and Hy{Il;7) = Tg. We can check that in fact zywg + xéwl,ylwg + yattn

represent integer cycles, because, for example, d(z1wy + Town) = —z10ws +
2z1w1 = —2zywy -+ 2xywy = 0. This agrees with the fact, proved in section |
3.8, that in H,(Gy; Zs) the generators that lift to torsion classes m H (G, Z)

are the ones in the image of B and we have B(zowse) = T1wa + Taws.
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