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Abstract of the Dissertation
Decompositions of Group Actions on Symmetric Tensors
by

Scott Raymond Greenleaf

E Doctor of Philosophy
1 in
w Mathematics
State University of New York
at Stony Brook
2000
For G = 8O(2m, 2n), m < n, impose the standard ordering on the roots relative
t0 the standard compact Cartan subgroup. Let unp be the si:)an of the root vectors
for the positive noncompact roots, and let L be the compact subgroup built from
the compact Cartan subgroup of G and from all linear combinations of compact
simple roots. The decomposition of the symmetric algebra S {unp) under L plays a

role in cohomological induction, and the thesis studies just what this decomposition

is. Although all the irreducible representations of L fall into an (m -+ n)-parameter
family, it turns out that the highest weights of the irreducible representations of i
L that occur in S(unyp) fall into a 2m-parameter family. A good upper bound is ‘
found for the multiplicities of these representations. The cases m = 1 and m = 2

were known earlier, as a consequence of work of W. Schmid and of B. Gross and

N. Wallach.
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CHAPTER 1: INTRODUCTION

Through work of E. Cartan [C] and Harish-Chandra [H-C], it hes long been

known that an irreducible Hermitian symmetric space G/K embeds cationically as

a bounded symmetric domain in some C*. In a famous 1969 paper [S], Wilfried .

Schmid found how the space of holomorphic polynomials on the domain decom-

poses under the action of K. The set of highest weights is -give.n- by r’eal—f’&tﬁk(G’) T
parameters, Schmid determined which highest weights occur, and"he showed thaf,

edch irreducible representation of K occurs with multiplicity at most one. Already

the number of parameters of the highest weights is a surprise, since the number of
parameters needed to describe all representations of K is the complex rank of G,

“which is often larger than the real rank of G\

B. Gross and N. Wallach [G-W1,G-W2] discovered a related result for irreducible -
quaternionic symmetric spaces G/K. We state this result in a form different {rom -

that envisioned by the authors. For these spaces the group K splits as a commuting =~ .

product K = SU(2)Lgs of the three-dimensional compact Semisimplé group SU(2)

and the compact semisimple group L. The intersection of these two subgroups is

a circle, and we define I to be the product of this circle with L. Relative to a _

positive system of roots compatible with the quaternionic structure, let unp be the

space of linear combinations of root vectors of positive “noncompact” roots. Then

L acts naturally on the complex vector space u My, and the action of L extends

to the complex symmetric algebra § = S(uN p), which is dual to the space of

holomorphic polynomials. Gross and Wallach found how S decomposes under L.
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The set of highest weights is given by real-rank(G) parameters, and the authors S
determmed which hlghcst weights occur and what multiplicities they have. The L
7 multiplici_ties can be greater than one, but they found a substitute mul‘tlplmlty—oﬁe"'f '

- theorem. Namely within 8, the algebra of elements invariant un_dér T is singly - N o

generaﬁed, ‘with a generator f, say. It follows that S can be written as the:tensbr‘

~ product of C[f] and the subspace H of all elements of § annihilated by the nat'_ufa,_l._'
linear differential operator created from f. What Gross and Wallach proved is that

“H decomposes under L with multiplicity one, and they identified ‘which highest. |

weights occur.

This thesis deals with a more general setting that includes both the Schmid case.

and the Gross-Wallach case. We study an irreducible noncompa,cf, gymmetric space

G/K in which rankG = rank K. Borel and de Siebenthal [B- dS] proved Lhat there‘

' is alwa,ys a special positive system of roots generalizing the one in the above two . |
examples—namely one in which thQre is at most one positive noncompact roo_t” -
and that root occurs with multiplicity at most two in the largest root. In this sett.ing. .
we take L to be the centralizer of the sum of all positive noncorﬁpact ro‘ots,_.a'rid .
we again let 4N p be the space of linear combinations of root vectors of positi"ve:‘ :
noncompact roots. Then L acts naturally on the complex vecto_i* space unp, and .th_‘e - '

action of I extends to the complex symmetric algebra & = S{unp). The problem o R

i to decompose S under the action of L.

In the Gross-Wallach setting, the authors showed that their results have im-

plications for constructing “small”, apparently fundamental, irréducible unitary o
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represéntations of G, and we visualize that results in our more general setting Will .

‘sim»ila;r]y_ find applications to the theory of irreducible uﬁita,ry representations of ou_'f

 more general G.

The.thesi's is, however, limited to the structure fheo.ry. We 'sha,ll:, 111 -f_e:u.:t-, Co‘nSidét T
only the Sp-eci'ﬁc family SO(Qm, 2n) of groups, m < n. The case m=1 1s an _ins’bancé -
of the Schmid theory, and the case m = 2 is an instance of the Gross-Wallach theory. =
'Ogr main theorem is a specific statement to the effect that, in the d_ecompoéition o.fl

. S under L, the set of highest weights of L that can OCcur' is given by real—rank(G)' |

parameters. We also obtain an upper bound for the multiplicities‘.

For the class of groups SO(2m,2n), the real rank is 2m. The complex rank

of GG, which is the number of parameters needed to parametrize all irreducible

representations of I, is m + n.

"Actually we conjecture, for all groups G in the class of interest to.us, tl‘iat' the - e
number of parameters for highest weights of L needed to decompose S is always’ -

the real rank of . But there are steps in our argument that we do not know how :

to push through without attempting case—by—case calculations.

Some remarks about techmques may help orient the reader. For his ca,se Schmld": ‘

made use of earlier work of Koranyi and Wolf [K-W) concerning “Ca,yley transforms

of the bounded symmetric domain. A Cayley transform is constructed as a member "
- c-of the complexification G® of G. For SO(2,2n), which is a little simpler tha.n'-'::"_ o -
the .general G that Koranyi-Wolf and Schmid study, Koranyi a,nd Wolf idéntifj? "a_

point e4. on the boundary of the bounded symmetric domain such that the isotropy P
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subg_l*o'up'Kiso of K at this point equals the fixed-point group of":the involutién’ B
7 = ¢? of K. From this identification they are able to identify the :Eél;_g.man—Silov..

3 bouﬁdary of the bounded symmetric domain with K/Kis. The simﬁlest exé,mplle'

' occu'ré for G = SU(l—, 1), in which dase_K is a circle and Kig is a theleIﬁent .
] s.ubgroup. .Schmid’s'work consists in identifying the decompositl'ior-l Of 12 of this:
.c‘.[uotient of K and then, using character computations, in showing which répre_s‘e_n? '

tations of K actually corfespond to polynomials. (For SU.(l, 1), the analysis of the
| _qut)tient would lead to a family of characters of K parametrized By_'the ‘iﬁteg‘ers; |

and the character computations would eliminate the characters (.:orre'spo'_nding to

the negative integers.)

Tn their case Gross and Wallach largely just translate some work done by others.’
in algebraic geometry, particularly in the theory of prehomogeneous spaces of Sato’ R

and Kimura [S-K]. This theory identifies the invariant locus for them, and they S

apply “Luna"s,SHce Theorem” [L] to obtain an alge_braic-geomefric- 'de'compolsitio’n

* that mirrors Frobenius reciprocity. In any event, Cayley transforms and involutions o

~play no role in the Gross-Wallach work.

For the groups SO(2m, 2n) in this thesis, there is no bounded s_ymmét_ricdoinaiﬁ :
or analog from which we caﬁ get started. Our approach instead is to conétruéf a o
_épécial element ey in uNp for which we can show that restriction of holomorph.ic:" =
polynomials Oﬁ unyp to the L orbit of e; is one-one. Then it :fol.low's _that..S =
embeds one-one in I-equivariant fashion into L?(L/Lis,), where Ligo _is.the isotrq.py_l\‘jf' ?_ -1 .

subgroup of L at e;. The Cayley transform element ¢ of G€ makes sense for our -
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groups, and 7 = ¢? is an 1nvolut10n But it is not true for m > 1 tha,t the ﬁxed

Ligo and the guotient space is a compact symmetrlc space. This much structurc

theory allows us to obtain our main theorem.

"group L. equals the isotropy group Liso. What does happen is that L contams '




CHAPTER 2: SETTING AND NOTATION

chapters

For m < n, 1t is customary to let S O(Zm, Zn) be the 1dent1ty component of the

group of real matrices g such tha,t g Igm ongd = Lom,an

dlagonal ma,trlx of size 2m + Zn with 1 in each of the ﬁrst 2m entrles along the |

group may be regarded as the set

(X € gi@m +2n,R) | X*Iom,2n + Lam,2n X = 0}.

- matrices are skew symmetric in

> 9m, and they are symmetric in the indices ¢ and j otherwise.

 above group by the diagonal matrix whose first 2m diagenal entriee ‘are 1 and
whose last 2n diagonal entries are ¢ = +/—-1. The members g of our new G 8

satisfy g*Ig;n,gﬂg = Inm,2n - The Lie algebra go of G is

X* I2m an -t I2'm 2nX — 0
X;; is real if 4 and j are < 2m,

go=1 X € gi(2m +2n,C) | Xi; is real if ¢ and j are > 2m, -
X;; is imaginary if ¢ < 2mand j > 2m,

X, is imaginary if j < 2m and ¢ > 2m

The complexification g of go is simply the set s0(2m+ 2n,

complex matrices of size 2m + 2n.

The notation introduced in this chapter will be used throughout the reieeiﬁing’ i

where IZm 2n 15 thc square R

' diagonal, and —1 in each of the last 2n diagonal entries. The Lie algebra of this

The complex1ﬁcat10n of this Lie algebla is an inconvenient set of ma,trlees the_ _

the indices ¢ and j if ¢ and j are both < 2m or both |

‘For this reason we shall redefine G = SO(2m, 2n) to be the c_onjﬁ-gate_ of '_the E

Gl

C) of all skew—symmet’rric].

P
i
|
i
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T
!
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| ~ The expression #(X) = —X* defines a Cartan involution on gg,_ﬁrith assbciated' '
Cartan decomposition go = £ @®po. The analytic subgroup K of G Wlth Lie algebra‘ - |

the sﬁbalgebra, to of go is nothing other than K = SO(2m) x SO(Zn), and it islj a |

~ maximal compact subgroup of G.

- The set of block diagonal matrices consisting of 2x2 blocks of the form ( _2 : g ) ; ; 4

“with 7 real, is a Cartan subalgebra ty C go. Note that to also Serves as a Carrt‘an__' o

subalgebra for &. |
~ Let H be a member of the complexification t of t9. Let ( gh Zgj ,
, —th;
- diagonal block of H.

We define e; € t* to be the linear functional such that e;(H) = h;. The roots of _

g are fe; ey, with 1 <i<j<m+n. We denote this set of roots by A.

If ¢ = 3, aje; is a member of (it0)*, i.e., has each a; € R, we say thé,t 4 NONZero - -

@ is positive, written ¢ > 0, if the first nonzero a; is positive. This establishes an -

order for (itp)*.

The simple roots for g are the roots ey —e2, e2 —e3, ..., e-mq_nﬁl ~ Emtn s

Em4n—1 — Em+tn -

We may write g = t®Y acA Ha Wheré go is the root space associated to aEach ) )
g i O-stable; hence for each o € A we have either go C £ or go S 1, where £ and p :

~are the complexifications of ¢ and p, respectively. We say that o is'a compact 'r’o'ot.-'- s S

_ ‘wh'en g C & Otherwise, if gq C p, we say that a is a noncompact' rooi;_ |

We define | C g to be the space [ =t & > car fas Wheré_‘A’,‘g- A'is the subset :_'

of roots in the span of the compact simple roots of g. We define u C g as the spé;ce._‘

7
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U= D he(a—ar), B where (A — A')4 consists of the positive roots in A ok in

A, Likewise i is the space & = Y e(a—ar)_ S where (A — A’ )_ cons1sts of the

negati{ié‘roots in A not in A’. We let Ip = gg N 1. Since the roots of {are closed

under negatives, it follows that [ = (Y)¢. The subalgebra to is a Carta,n subalgebra :

Afor [p. Let L CG be the analytic subgroup associated to Iy C go; I is known to be -

closed, hence compact.

For © as above we deﬁne H, etto be the unique element such that cp(H ) =

- B(H,H,) for all H € & The existence and uniqueness of H, foﬂows from the o

nondegeneracy of the restricted Killing form B|¢x«.
The center of Iy consists of the pure imaginary multiples of He, o e, - -

. The commutator subalgebra of Iy is
(fo)ss = su(1n) @ so(2n),

the su(m) being regarded as a subalgebra of the so(2m) in the first 2m entries.

We say that a member ¢ of t* is ana_ﬂytical@ integral if ¢ is the differential of a =

- multiplicative character of the torus exp to.

Theorem of the Highest Weight. Apart from equivalence the irreduicble finite- L

 dimensional representations ® of L stand in one-one correspondence with the dom-

inant analytically integral linear functionals A on t, the correspondence being that A -

is the highest weight of @ .

An L-type is an equivalence class of irreducible finite-dimensional represent_a;ti'ons L

of L.




S'i_flCé 1o C o, [lo, o] C ¥ and [lo, Po] € bo- Thus Ad L carries € to itself and ;')07_' '
to itself. One aléo sees that [lo, o] € to and hence (Ad L)(w) g " '
We are intérested in the action of L via Ad on the symmetric téﬁsoré onun .7
', denoted S(unp). The space S{unp) may also be regarded as the space of -

holomorphic polynomials on'iiN p, denoted P(E N p).

We now define root vectors for roots « € A, and give bracket relations. These
are convenient to write down since g = so(2m+2n,C). Let o= te; ey withd <J. |

Then

~ with

The bracket relations are as follows, with i < § < k. We write [Ea,Eg] ——_—.

" eqpForp. The following table defines ca.pg whenever a + > 0 is a root. For:
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a+pB <0, coap="Cop o -
‘ Formutla o 8 Ca,0
| . (1) e; — € € + €k +1

i

(2) e — € € — €k +1 .
(3) e; — €; ej + ek +1
(4) | €€ ej — €k +1
(5) ey —ek e; — € -1
(6). €j — Ck eiter | 1
(7) er — €5 e; + €; +1
(8) e — € e; — €k -1
(9) e; + €k €; — €5 -1
(10) Cejteg €; — Ek +1
(11) —e; — €k e +¢e; +1
(12) —ej — €k | G 4+ e -1
(13) e; +_8j —e; + ek +1

(14) e;+ej | € Ck 1|
The vectors E, have the property that B, = E, when o s noncompact -and
.E‘Ja = —FEq When o is compact. Here the bar denotes the conjugation of g with
respect to go; this is different from entryéby-entry conjugation.
A maximal system of strongly orthogonal positive noncompact roots for g'is

Y1 = €1+ €m+l

Y2 = €1 — Cm1

Y3 = €2t em+2

Y4 = €2 — Em+2

Yam—1 = Em T €om
Yo = €m — €2m

We conclude this chapter with the statement of a weak form of the main theorem.. -

10




Theorem. The highest weight of any irreducible representation of L occurring in

S(unp) is a rational linear combination of Vi, - - »Yom » ond the multﬁ)’licity of any |

L-type in S(unyp) is less than or equal to the degree of the L-type.

e N —— s ot R o T TS S — s T, S - —
TR b s g = e = T AR e R s s £ = et ==

=i T

T e




CHAPTER 3: GEOMETRY OF u

‘Both u and p are invariant under the adjoint action of L on g. Thﬁs the inter:
~ gection u Ny is also invariant under the adjoint action of L. In this chaptér we are

' i:(_lterested in this action of L on unjp. In particular, we are interested in the '(')‘rb'ii-q ..

- of the point
ey :Eph 4.+ By, €unp.
In the following lemma, we find the isotropy subalgebra lig, of | a_,nnihilating €.

Lemma 1. dime ! = dime lo + dim(u np).

Pmof We have dim[ = dlm( (m C‘)) + d1m(50(2n C)) + 1= m2 + 2n —n and_‘

dlm(u Nnp) = 2mn. In order to find the space llso C |, we must find the cofficients

d,, such that

ZdEa,8+ ~—0

aEA!

The left side of this equation may be expanded in terms of the Toot Ve_CﬁO'I'SlfO.I_'

the noncompact positive roots other than 71,...,Y2m. Thus we obtain a system

“of 2mn — 2m equations with |A/| = m(m — 1) 4+ 2n(n — 1) unknowns. For ind.ic'e.s'

1 <i < j<m, we get equations

dei_ea‘ = d€i+m+'€5+m - dﬂj+m"~f3£‘4—m
de;—e; = Qesym—ejim — Aejm—eitm
den'—ei = _d6i+m—ea'+m o d6i+m+ej+m
dej—e; = ~O—eipm—ejim ~ et m it »

12




- and for indices 1 <4 < m and k > 2m + 1, we get the equations

deitep, = Ociten

doj—ep = ;e -

To arrive at these equations, we are making critical use of our b'ra,-ckét felati:(jns:‘f_-' N
for the root vectors established in Cha,pter 2. Each equation is in an_indeijexideﬁt:
set of four equations, like the first set above, or of two equations, like the secoid

- get above. Each independent set of four yields a 2-dimensional subspace of lisos and R

~ each independent set of two equations yields a 2-dimensional subspace- of ligg. -~
| A basis of lig, consists of the following elements:

'Ee.,-—ej + E(Eea+m+'ej+m + E6i+m“‘ej-|—m) - E(E—-ei+m—€j+m + E_Bj+m_ei+m_)

Eej_e'i + %(Eei+m+ej+m + Eei+m_ej+m) — %(E—Si+m'—sj+m + Eéj%m_5i+m_)-. .
for1<i<j<m,
| Ee, e, + Bevye, form+1<i<2mand2m+1<k <m+n, -

. Eojfep +E_c;_e for m+1 < < 2m and om 1< kg.m_:&_n,, .

Eie e, for 2m+1 <k < £<m+n,
H,, for2m+1<k<m+n.
Thus dim lige = m? + 2n? — n — 2mn. Comparison to dim | and dim(u n p) gives us _" s s

. _the desired result.

“The complexification g of go is the Lie algebra of GC = SO(2m + 2n; C) Let L€

~ be the analytic subgroup of GC with Lie algebra [,

13
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7 Lérnma 2. (AdL%)e, is an open subset of uN p.

“Proof. Under the map L€ x eq —> uNp given by (£,eq) Fr Ad(ﬁ)e+, the dlfferentlal

s the'xnap [ % eq — wNp given by (X,eq) — X, ey Lemma 1 shows that

the differerential is onto. Hence the image of the original map contains an Open o

neighborhoo.d of ey. Using translations within LC, we see that the image of the

 original map confains an opet neighborhood of each of its points.

' Theorem. The restriction map from P(unp) to the L orbit of ey 18 one-one.

Consequently if L denotes the isotropy subgroup within L at the pomt €+ then

P(unyp) embeds one-one into L*(L/L1) in an L-equivariant fashion.

Proof. Starting from P in P(unyp), define p# (6) = (Ad L%ey for te IS 'I‘hénP"f‘jE |
is a hol.omorphic function on LY, being the composﬂ;wn of holomorph1c functlons

By Lemma 2, Ad(LC)e+ is an open 8 subset of u N p, and it follows that the map . '-

P+ P# is one-one. On the other hand, restriction of P# from L‘C to L is Qne— - R

one as we see by consideration of Taylor expansions in local coordinates about the .

identity of LE. This proves the ﬁrst conclusmn The argument respects the act10n .:'; -

* of I throughout, and thus the second' statement follows.

1t will be inconvenient to deal with the full isotropy subgroup Iy .of L af e+
Instead we shall work with the identity component, which we denote LIE,,0 If we
regard L (L/L1} as consisting of functions of L that are right 1nvnr1ant under L1, h
then we can consider L*(L/ L) to be a subset of LA(L/ Llso) and it, follows froml '
the theorem that that P(uNp) embeds one-one 1nto Lz(L / Liso) in an Laeqmvamant:-.-"_ 8

14




. faghion. The range space for this embeddmg is stable under complex conjugatlon of '
' functlons hence the I-type by L-type contradgredient mapping carr1es L2 (L /Lwo) .

- into 1tSelf The L-type by L-type contradgredient of P(uNyp) is Just SN p) and

we obtain the following corollary.

Corollary. The symmetric algebra S(uNp) embeds one-one in L-equivdm'ant fa.éh— _

jon into L?(L/Liso)-

Since L?(L/Liso) can be regarded as a Subspace of L%(L), it follows _fr_onl the |

corollary that any L type in S (unp) occurs at most as many times as its degreel o

To proceed with the analysis, we first relate the Lie algebra [l of the lemma to

"_' the .conlnected Lie group Lig, defined above. |
Let ([o)iso = liso N go-

| Proposition. The Lie algebra of Liso is (l0)iso-

Proof Every elemeﬁt of Lis fixes e, and hence cvery element of the Lie .a,lgebra of

this group annihilates ey. Thus the Lie algebra of Ly 18 contained in ligo, a8 Well

as go, and hence is contained in ([0)130 Oonversely suppose X is in ([0)150 Then Lo

[X,e4] =0, and also X is in go and §. These latter conditions say that X is in [0

Hence exptX is in L for all ¢, and Ad{expiX Je. = ey for all ¢. Therefore exptX

‘i in Ligo, and X is in its Lie algebra.

As a consequence of the lemma, liso is closed under the conjugatien of g with- o

respect to go. Therefore (Ip)%, = liso- This is a special property of ligo that we have RESCENY
. . B " i

not used so far.

15




C'HAPTER 4: THE INVOLUTION 7 OF g
For each 7y;, define the Cayley _tmnsform as a map on g by

¢, = Ad(exp(§i(By; -+ Fry))):

- Next define the map 7 on @ by

TE=Ch 2 = Ad(exp(Ei(er + 24.)))-

Propoéitioh. r2=1o0ng
Proof. Consider some 7j;
Gt = S0 (2m + 2n, C) that is a homomorphic image of SL(2,C).
. EAY s ~1 0Y).
gffect by Ad (% 0). Then ¢, acts as Ad ( 0 _1) ing.
Consequently in g, c3, acts by Ad(exp miH},), where

iyl

For 3 € A, we have

¢t Bp = Ad(expmiHi ) Ep = exp(ad(miH}y ) Ep.

- Now

ad(wif, ) Ep :lvr'i[ny,,E,@]
omi

l'YJ lg
274

l J|2 ﬁ(H"fj) .6

27”‘(5: ’Yj) E
|1

[Hy;» el

16

1 <4 < 2m. ‘Corresponding to v; 18

'a subgroup of

In g, Gy; acts I




So cij.Eﬁ' = eﬂ(z(ﬁ"”_)/""f'z)Eﬁ = + K, and therefore

2E, = [Hewi(Z(.@ﬁj))H’ﬂB}] Ep,
; |

~where |y|? denotes the common value of |-v;|>. The indices j for which 2(8,7,))/ = S

~ —1 oceur in pairs ex + e, with & < £, and thus the number of indices j for which R

- 2(B, fyj))/lfﬂ? = —1 is even. Thus 72(Kg) = Eg for all § € A

7,

Further, for any I € t, we have c"‘j (H) = Ad(exp(wiﬂéj))ﬂ - H since tis-

~ abelian. Thus 72 = 1 on all of g.

" Now we compute the effect of 7 on root vectors in g. Expressing

.T — Ad(eXP(J(E71 + E’Yl +--et E’Ym + E’Ym)))

and_using the table in Chapter 2, we see that, for i < 7

~ Bl (e e;) for 1<i<j<m
—FBt(ei—e;) Cform+1<i<i<2m

. ’ E ) o l — ) . .
_T H(ei—ei) +Ex (e te;) form+1<i<2m, 2m+1<j<m+n
+E:i:(ei—e,-) for2m+1<i<j<m+n
and
—Ex(eie;) form+1<i<ji<2m R e
TEpisey = +Bp(e—ey form+1<i<2m, 2m+1<j<m+n 0

+EBp (e 1e)) for2m-+1<i<j<im+n.
Thus 7 carries [ to itself.
- Also 7 carries & @ ipg to itself because each ¢y, has this property. Since [y =

1N (kg @ ipg), 7 carries Iy to Io.

17




We define (fo)+ to be the subalgebra of ly fixed by 7. We see, by the work above,

“that a basis for [; over Cis

Fe,—e; — Eej—ei forl <i<jg<m.
Eeie; — Boi—e form+1<i<j<2m
Boye, — Hocie; formAl<i<jsam
Boyoe; + Ecime; for m 4 1< i< 2m, 2m 1< j<m+n
Bejre; T Heite; form+1 <1 T<_.2.m, 2m+1< i< m +n
Eiec,te: for 2m+1§k'<£§rﬁ+n |

He, for2m+1<k<m+n

The first three members of the above list are in (lo)r Sin(_:e Ea — F_, is in go if

o 18 _compact For the fourth and fifth members, we can group ‘the terms in pairs

consisting an element and its (independent) conjugate. For SllCh a pair X and X,
the elements X +X and #(X — -X X) span the complex 9-dimensional spaCe spanned by _ _‘ -

X and X, and thus X 4+X and (X — X)) span over 'R the intersection of thls complex

2-dimen51ona1 space with go- For the sixth members, the terms may mmﬂaﬂy be

grouped in pairs to give pairs of basis elements for (lp)r- Fihally the elements z'HeJ;e R !

are a’ basm of the 1ntersect10n of go with the complex span of He2m iy Hem 4n i

In this way we obtain a basis of (lp)- over R.

Let L, C L be the analytic subgroup corresponding to (lg)r- Let, (; = ([o)g. By

comparing our basis of 1. to the basis for (iso in Chapter 3, we observe that

[iso - ['r C L

18

SE SrmmmeES




CHAPTER 5: PROOF OF THE MAIN THEOREM

~ In Chapter 2, we stated a weak form of the main Theorem. Here .WG present the

st_rong form of this Theorem, and provide the proof.

Theorem. The highest weight of any srreducible representation of L oCCUTTING N
S(unyp) is a rational linear combination of i, .. -;Yam , and the multiplicity of any
L-type in S{unp) is less than or equal to the multiplicity of the L-type in I2(L/ Ligo) -

The coefficients of this linear combination must be in %Z.
Proof. In Chapter 4, we established the inclusion

[iso C ['r C L.

On the group level, we have
Liso - L’r C L.
By the Corollary in Chapter 3, we may regard S(unp) as a subset of L?(L/Ligo)-

To prove our Theorem, we make use of the following identity

L?(L/Liso) = indf, 1.

igo

But rather than examine these induced representations directly, we look af the |

equivalent two-step induction

indf_ (’indf;nl).

We found bases for figo and [ in Chapters 3 and 4, and we use these bases to observe |

_that

o = su(m) @ RiHy, 1. 4e, © s0(2n),
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(Ir)o = so(m) & 0 ® (so(m) @ s0(2n — m)),

- and finally,

(liso)o = diag(so(m) @ so(m)) ® so(2n — m).

The first induction, from Lig, to L, gives us the trivial representation in the third

_ factor, and contragredient representations in the first two nonzero factors. In the '
next induction, we make use of a theorem of Gelbart [G], who establishes that there
are only m paramaters in describing the irreducible representations of SO(n) which -

“appear in L2(S0(n)/SO(n — m)). Through the use of Gelbart’s result, and our

expressions above, we establish that the L-types which occur in S(un p) must have

highest weights which are a linear combination of vy, ... s Yo, -

The Theorem of the Highest Weight, presented in Chapter 2, puts some restric-

tion on the coefficients of these combinations, through the integrality condition.

A straightforward computation shows that this integrality condition forces the

coefficients to lie in %Z.

Finally, because S(uMp) can be regarded as a_sub_spa,cer of L(L/Lis,), the mul-

tiplicity of any L—type in S(unp) must be less than or equal to its multiplicity in

IAL/ Ligo)-

20




Bibliography
[B-dS] A. Borel and J. deSiebenthal, Les sous-groupes fermes de rang maximum des
groups de Lie clos, Comm. Math. Helv. 23 (1949), 200-221.

[C] E. Cartan, Sur la determination d’un systeme orthogonal complet dans un espace
de Riemann symetrique clos, Rend. Circ. Math. Palermo 53 (1929), 217-252.

[G] S. Gelbart, A theory of Stiefel harmonics, Trans. AMS 192 (1974}, 29-50.

[G-W1] B. Gross and N. Wallach, A distinguished family of unitary representa-
- tions for the exceptional groups of real rank = 4, in: Lie Theory and Geometry,
. Birkhauser (1994), 289-304. '

[G-W2] B. Gross and N. Wallach, On quaternionic discrete series representations,
and their continuations, J. reine agnew. Math. 481 (1996), 73-123.

[H-C] Harish-Chandra, Representations of semi-simple Lie groups 1, II, Trans. AMS
75 (1953), 76 (1954), 185-243, 26-65.

i _ [K-W] A. Koranyi and J. Wolf, Realization of hermitian symmetric spaces as gen-
eralized half-planes, Ann. Math. 81 (1965), 265-288.

[L] D. Luna, Slices etales, Bull. Soc. math. France Memoire 33 (1973), 81-105.

P [S] W. Schmid, Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen
Raumen, Inventiones math. 9 (1969), 61-80.

[S-K] M. Sato and T. Kimura, A classification of irreducible prehomogenous vector
spaces and their relative invariants, Nagoye Math. J. 65 (1977), 1-155.

21




