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Abstract of Dissertation
Dynamics of Cubic Siegel Polynomials
by
Saeed Zakeri
Doctor of Philosophy
in
Mathematics
State University of New York at Stony Brook

1999

In this dissertation we study the family of cubic polynomials in the complex
plane which have a Siegel disk of a fixed rotation number of Brjuno type. One
of the main results of this work is the theorem that when the rotation number
is of bounded type, the boundary of the Siegel disk of a cubic polynomial is
a quasicircle of Hausdorff dimension greater than 1 and contains one or both
critical points. This generalizes an earlier result of Douady, Ghys, Herman
and Shishikura for quadratic polynomials. In the last part of this work, we

sketch how to generalize these results to Siegel polynomials of higher degtee.
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PREFACE

This dissertation is based on part of my research in Holomorphic Dynamics
during 1995-1999 at Stony Brook. Some version of this work will appear in
Communications in Mathematical Physics [Z3]. My other related works on

rational maps with Siegel disks can be found in [Z2], the joint work [YZ], and

the work in progress [Z4].
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1. INTRODUGTION

Let f be a polynomial of degree d > 2 in the complex plane and consider
the following statements:
o (A,) “If f has a fixed Siegel disk A of bounded type rotation number, then
A is a quasicircle passing through some critical point of f.”
e (B;) “If f has a fixed Siegel disk A such that JA is a quasicircle passing
through some critical point of f, then the rotation number of A is bounded
type.”

Statement (Aj) is a theorem of Douady, Ghys, Herman and Shishikura,
(Bg) is open, even for d = 2, and one of the main corollaries of this work is

(Asg):

Theorem. Lef P be a cubic polynomial which has a fized Siegel disk A of
rotation number 0. Let 8 be of bounded type. Then the boundary of A is a

quasicircle which contains one or both critical points of P.

In fact, we study the one-dimensional slice in the cubic parameter space which
consists of all cubics with a fixed Siegel disk of a given rotation number. Many
of the results apply to general rotation numbers of Brjuno type. In the last
part of this work we sketch how to prove {Ay) for d > 4.

Siegel disks provide examples of quasiperiodic dynamics. Let p be an or-
rationally indifferent fixed point of a rational map f : € — €. This means
that f(p) = p and the multiplier f'(p) is of the form €*™, where the rotation
number 0 < 0 < 1 is irrational. When f is linearizable near p, the largest
domain A on which the linearization is pessible is simply-connected and is
called the Siegel disk of f centered at p. Every punctured Siegel disk A ~ {p}
is foliated by dynamically-defined real-analytic invariant curves. However, as

we get close to A, these invariant curves may become more wiggly, and in

the limit we lose control of their distortion. So, a prieri, we do not even know




if A is a Jordan curve. The topology and geometry of the boundary of Siegel
digks is a current field of research in Holomorphic Dynamics.

It was conjectured by Douady and Sullivan in the early 80’s that the bound-
ary of every Siegel disk of a rational map has to be a Jordan curve (see [D1]).
To this date, this has remained an open problem, even for polynomials, even
when the degree is 2. FEven worse, there are very few explicit examples of
polynomials for which we can effectively verify this conjecture. For instance,
it is easy to see that local-connectivity of the Julia set implies the boundary
of a Siegel disk to be a Jordan curve, but except for one case in the quadratic
family [Pe], we do not know how to check local-connectivity of the Julia set
of a rational map which has a Siegel disk {and even in that single case, the
boundary being a Jordan curve is proved as a first step in t.he proof of local-
connectivity). On the other hand, there are examples of non locally-connected
quadratic Julia sets whose Siegel disks are bounded by quasicircles [H3] or
indifferent linearizable germs with non locally-connected “hedgehogs” whose
Siegel disks are bounded by smooth or even quasianalytic Jordan curves [Pr2].
It is known that in any counterexample to the Douady-Sullivan conjecture, the
boundary of the Siegel disk must either be very complicated (an indecompos-
able continuum) or very simple (a circle with infinitely many topologist’s sine
curves planted on it) [R].

Let [a1,ap,... ,Gpn,-..]| be the continued fraction expansion of the rotation
number ¢ and p,/¢, = [61,a9,... ,an] be its n-th rational approximation,
where every a, is a positive integer. According to the theorem of Brjuno-
Yoccoz [Y], every holomorphic germ with an indifferent fixed point of multi-

plier 2™ is linearizable if and only if 8 satisfies the condition

oQ

1
§o I o, (1.1)
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n=1




Such @ is called of Brjuno type. It is not hard to show that this set has full
measure in the unit interval. The set of irrational numbers of Brjuno type
contains two important arithmetic subsets: (1) numbers of Diophantine type,
the set of all 0 < & < 1 for which there exist positive constants C and v such
that |§ —p/g| > C/q” for every rational number 0 < p/q < 1; and (2) numbers
of bounded type, the set of all 0 < # < 1 for which sup, a, < -o0.

Another issue is the existence of critical points on the boundary of Siegel
disks. This problem was first studied by Ghys under the assumption that
the boundary is a Jordan curve and the rotation number is Diophantine [G],
Later Herman improved the result by showing that when the rotation number
is Diophantine and the action on the boundary is injective, there must be a
critical point on the boundary [H1]. A very short proof of this theorem is now
possible with knowledge of “Siegel compacts” as recently introduced by Perez-
Marco [Pr1] (see [2£2] for such a proof). In the case of quadratic polynormials,
no critical point on the boundary of the Siegel disk automatically implies that
the map acts injectively on this boundary. Hence one concludes that for ¢ of
Diophantine type, the critical point of Qg : z — ™2+ 2% is on the boundary
of the Siegel disk centered at 0. Later Herman gave the first example of a # of
Brjuno type for which the boundary of the Siegel disk for (Jy is disjoint from
the entire orbit of the critical point [H3].

The most significant example in which one can explicitly show that the
boundary of a Siegel disk is a Jordan curve containing a critical point is the
quadratic map Qg : z — ez + 2%, with 6 of bounded type. The idea,
originally due to Ghys but utilized by Douady, Herman and Shishikura, is to
consider the degree 3 Blaschke product

_ i) 2 [ * -3
fols) = z(l—Bz)




which has a double critical point at 1 and 0 < () < 1 is chosen such that the
rotation number of the restriction of fp to the unit circle is #. Using a theorem
of Swiatek and Herman on quasisymmetric linearization of critical circle maps
([Sw], [H2]), one can redefine fy on the unit disk to make it quasiconformally
conjugate to the rigid rotation by angle #. After modifying the conformal
structure of the sphere on the unit disk and all its preimages, one applies the
Measurable Riemann Mapping Theorem of Morraey-Ahlfors-Bers to prove that
the resulting map is quasiconformally conjugate to a quadratic polynomial .
But the image of the unit disk has to be a Siegel disk of rotation number 6 for
), and there is only one such quadratic up to an affine conjugacy, so ) must
be conjugate to Qp, which proves (As). The Julia set of () for the golden
mean ¢ = (v/5 —1)/2 and its self-similar properties was studied empirically
by physicists in the early 80’s (see [MN], [W]). For general € of bounded
type, it has been a subject of recent rigorous studies by mathematicia,ns (see
for example [Pe], [GJ], [Mc3], [YZ]). In a very recent work in progress
[Z4], using a non-quasiconformal surgery on fy, we find explicit arithmetical
conditions on unbounded type rotation numbers @ which guarantee the Siegel
disk of Qg is a Jordan curve passing through the critical point.

In any attempt to generalize (A,) to higher degrees, one must address several

problems. In fact, the main difficulty is not the surgery which can be performed

‘in all degrees in & similar way, provided that one has the appropriate Blaschke

products in hand. Instead, we have to face a different set of questions such
as parametrization of the candidate Blaschke products by their critical points,
combinatorics of various “drops” of their Julia sets, continuity of the surgery,

and surjectivity of this operation. None of thege issues arises in degree 2, where

the corresponding parameter spaces are single points.




In this work we address these questions in detail for cubic polynomials and
later we sketch how to extend them to higher degrees. We introduce the pa-
rameter space P5™ () of critically marked cubic polynomials with a Siegel disk
of a given rotation number # of Brjuno type, which is canonically isomorphic
to the punctured plane. The connectedness locus M3(8) C P§™(6) (the ana-
logue of the Mandelbrot set for the quadratic family) is the set of all cubics
with both critical orbits bounded (see Fig. 1). In the interior of M3(0), every
cubic is either hyperbolic-like, for which the free critical point approaches an
attracting cycle, or capture, for which the free critical point eventually maps
into the Siegel disk, or of neither type, in which case it is called queer (there
may be no queer components. In any case, no cxample is known). The pres-
ence of hyperbolic-like cubics in P§™(#) implies the existence of copies of the
Mandelbrot set all over M;(8), while captures appear as components in Ms(6)
which look like Siegel disks in the dynamical plane. The most significant prop-
erty of queer cubics is that their Julia sets support invariant line fields and in
particular have positive Lebesgue measure (Theorem 3.4).

Motivated by the Douady-Ghys-Herman-Shishikura approach, we introduce
an auxiliary family of degree 5 critically marked Blaschke products which serve
as models for cubics in P§™(0) in the same way [y does for the quadratic (Jg.
We show that these Blaschke products can be parametrized by their critical
'points (Theorem 7.1) and we use this parametrization to define the param-
eter space BZ™(#) which is also homeomorphic to the punctured plane. A
connectedness locus Cs(f#) C BZ"(8) can be defined similarly. When 6 is of
bounded type, one can perform a quasiconformal surgery on Blaschke prod-
ucts in BE™(f) in order to obtain critically marked cubics in P5™(8). The

result of this surgery does not depend on various choices we make along

the way (Proposition 9.2), hence it gives rise to a well-deflined surgery map

S : B&(0) — P§™(#). Continuity of § is far from being straightforward and




depends on the fact thal the parameter spaces have one complex dimension
(Theorem 11.1). In fact, in higher degrees, this continuity step is the only part
in which our techniques for cubics polynomials fail to apply.

Various evidence suggest that the connectedness loci C5(6) and M;(6) are
in fact homeomorphic. One can go even farther as to speculate that S is
a homeomorphism. Although we provide some evidence to support this, we
only need to show that S is surjective (Theorem 13.6) in order to get the
desired results in the dynamical plane of cubics, Surjectivity follows from an
injectivity result (Theorem 13.3) which in particular shows that S induces a
homeomorphism between the complementary components of Cs(f) and M;(6).
The proof of the injectivity result relies on various tools developed along the
way, especially a renormalization scheme to “extract” Q¢ from some cubics
in Pg™(0) and f; from some Blaschke products in Bg™(#). Surjectivity of S

proves {As). As another consequence, we obtain the following

Theorem. For ¢ of bounded type, the boundary of the Siegel disk of P €
P (8) is a continuous function of P in the Hausdorff topology.

It is interesting to contrast this result with the fact that the Julia set of P
undergoes drastic implosions near the boundary of M3(8), especially near the
set of cubics with both critical points on the boundary of their Siegel disk. We
study this locus and describe its topology:

Theorem. For 8 of bounded type, the set I' of all cubics in Psm(0) with both

critical points on the boundary of their Siegel disk is a Jordan curve.

Fig. 18 shows the Jordan curve I'. We give a topological characterization of

this set as the common boundary of the two complementary components of

M3(0) (Theorem 14.4}.




Finally, we sketch how the results of this work can be generalized to arbitrary
degrees, suggesting a near-to-finish program to prove (Ag) for any d > 4. In
this case, we can define the parameter space P5™(0) consisting of degree d
critically marked Siegel polynomials with rotation number 6, and a similar
space BSP (#) of degree 2d — 1 critically marked Blaschke products. We show
that both spaces are naturally isomorphic to the product of d — 2 copies of
] the punctured plane. A similar surgery map S : BSy ,(8) — P§™{0) can be
defined when 6 is bounded type. Assuming the continuity of this map, and by
generalizing the arguments for the cubic case, one can prove that this map is
surjective, which implies (A4). But at the moment, continuity of this map for

d > 4 seems to be open.




2. A Cunic PARAMETER SPACE

We begin by considering the space of all cubic polynomials which have a fixed
Siegel disk of multiplier A = > centered at the origin. Here 0 <0 < 1isa
given irrational number of Brjuno type satisfying the condition (1.1). By the
E theorem of Brjuno-Yoccoz [Y], every holomorphic germ z v+ e*™z 4 O(2%)
: with @ of Brjuno type is holomorphically linearizable near 0. In particular,

every cubic polynomial of the form
215 Azt agz’ + a2, (2.1)

with {ag,a3) € C x C* has a Siegel disk centered at the origin. We are not
directly interested in the rather big space of all such cubics. Instead, we would
like to consider the space of affine conjugacy classes of these cubics together
with a marking of their critical points. A few words on the notion of “marking”
is in order; however, we will hardly refer to the following formal definition in
the rest of this work.

Roughly speaking, a marking of the critical points of a cubic P of the form
(2.1) is a choice of labeling these critical points. It can be thought of as a
surjective function m from the set {1,2} to the set of critical points of P.
Two such critically marked cubics (P, m) and (Q, m’) are affinely conjugate if

there is a dilation ¢ : 2 — oz such that po P = Qo and m' = pom. In

other words, an afline conjugacy must also respect the markings. We denote
| the space of affine conjugacy classes of such critically marked cubics by P5™(8).

One way to parametrize P5™(f) is as follows: In each conjugacy class we
choose the unique critically marked cubic (P, m) whose second critical point
m(2) is located at z = 1 in the complex planc. The first critical point m(1)

will then be located at some point ¢ # 0. It is easy to see that such a cubic

e



has the form

1. 1. 1,
Lz — (L4 D)zt 2. 2.2
P.:z )\z(l 2(1+C)z+3cz> (2.2)

Note that using this normal form, every cubic comes automatically with a
marking of its critical points. Thus (2.2) provides us with an identification
P&(@) ~ C*. Under this identification, the natural Zg-action on P§™(f)
(swapping the markings of the critical points) corresponds to the involution
c — 1/c. By an abuse of notation, we often identify the cubic P. € P5™(8)
with the parameter ¢ € C*.

The parameter space P§™(f) has two very special points: P, which cor-
responds to the conjugacy class of cubics of the form (2.1) with one critical
point, and P_; which corresponds to the conjugacy class of those cubics whose
critical points are centered. The pair {P, P} coincides with the set of fixed
points of the natural Zy-action on P§™(0).

To understand the implication of marking the critical points, let us also
consider the space P3(8) of affine conjugacy classes of cubics of the form (2.1),
this time with no particular marking. Every cubic in {2.1) can be conjugated

to a monic cubic of the form
2 Az 4 a4+ 28,

where a € C, and this polynomial is uniquely determined by a. In other
words, the space P3(f) is parametrized by the invariant { = ¢ € C, hence it
can be identified with the complex plane. Consider the map which sends every
critically marked cubic in P§™(#) to its unigue monic representative in P3(8).
This amounts to “forgetting” the markings of the critical points. Tt is easy

to check that in the coordinates we have chosen, this map P{™(0) — Ps{0) is

3 1\?

given by




It follows that P§™(f) is a double cover of Ps(f), branched over the points
¢ = %1. Note that by the above formula ({¢) = {(1/c), as expected.

Notation and Terminology. Throughout this work, the Siegel disk of the
cubic P, centered at the origin is denoted by A,. When we do not want to
emphasize the dependence on ¢, we denote the Siegel disk of a cubic P by Ap.
By the grand orbit GO{Ap) we mean the set of all points in the plane which
eventually map to the Siegel disk under the iteration of P. In other words,
GO(Ap) = | | P¥(Ap).
k>0

Remark. From classical Fatou-Julia theory, we know that every point on the
boundary of the Siegel disk A, must be in the closure of the orbit of either ¢
or 1 ([M1], Corollary 11.4). According o Herman [H1], P.|sa, has a dense
orbit. It follows that the orbit of either ¢ or 1 must accumulate on the entire

boundary of A,.
The “size” of a Siegel disk can be measured by the following invariant:

Definition (Conformal Capacity). Consider the Siegel disk A, for ¢ € C*
and the unique linearizing map h. : (0,7} — A, with %.(0) = 0 and
R.(0) = 1. The radius r, > 0 of the domain of h, is called the conformal
capacity of A, and is denoted by &{A,).

Alternatively, x(A.) can be described as the derivative ,(0) of the unique
lincarizing map ¢, : D —— A, normalized by ¢.(0) = 0 and ¢.(0) > 0. Natu-
rally, one ig interested in the behavior of the function ¢ — x(A.). This function
is upper semicontinuous [Y|, so a priori it can jump to a lower value, meaning

that the Siegel disk A, can shrink by a very small perturbation of the eubic

10




P,. Later we will see that for @ of bounded type, the closed Siegel disk A, is
a quasidisk which moves continuously in the Hausdorfl topology on compact
subsets of the plane (see Theorem 13.9). Therefore, in that case s(A,) is ac-
tually continuous as a function of ¢. On the other hand, for arbitrary 8 of
Brjuno type, I do not know if ¢+ £(A,) is continuous. However, we have the |

following general theorem of Yoccoz [Y]:

Theorem 2.1, Let 0 < @ < 1 be an irrational number of Briuno type, and
set W(0) = 3.0 (log qni1)/gn < oo. Let S(0) be the space of all univalent i
functions f : D — C with f(0) = 0 and f'(0) = €™, with the mazimal |
Sicgel disk Ay  D. Finally, define x(0) = infregy 5(Ag). Then, there is a i
universal constant C > 0 such that |log(k(0)) + W(8)| < C.

We obtain the following statement which will be used in Theorem 5.3.

Corollary 2.2. In the family {P,} of cubic polynomials in ‘(2.2), the confor-

mal capacity function ¢ — &(A,) is locally bounded away from 0.

Definition. We define the cubic connectedness locus M;(f) as the set of all
critically marked cubics P € Pg™(8) whose Julia sets J(P) are connected. It
follows from classical Fatou-Julia theory that P € Mj(#) if and only if both
critical points of P have bounded orbits ([M1], Theorem 17.3):

M;3(0) = {c € C*: The Julia set J(F;) is connected }
= {¢ € C* : Both sequences {F*{c)} and {P;*(1}} are bounded}.

Since P, and Py, are affinely conjugate as maps when we neglect markings
of their critical points, Ms(#) as a subset of the c-plane is invariant under the
mapping ¢ — 1/c. Fig. 1 shows the connectedness locus M3(8) for the golden |
mean 6 = (v/5—1)/2 = 0.61803399... and Fig. 2 shows the details of the same |

get near the unit circle.

11




F1GURE 1. The connectedness locus Ms(0)

Proposition 2.3.
(a) Ms(6) is compact and contained in the open annulus A{Z, 30).
(b) The complement C* ~ M;(6) has ezactly two connected components ey
and Sy which are mapped to one another by c > 1/c. Moreover,
Qezt = {c € C* : P*{c) = o0 as k — oo},
Qi = {c € C* : P*(1) = 00 as k — oo}.

Later we will prove that {2es (hence ;) is homeomorphic to a punctured

disk. This will show that Mj3(f) is a connected set (Theorem 6.1).

Proof. (a) Ms3(8) is clearly closed. Let

= (4.38) max{|c|, 1}. (2.3)
If |z| > m, then
1
PN 2 (Gl = gl ~ DI
> (0.461z] — 1)|7|
> 1.0148 |z|,
12




FIGURE 2. Details of M3(#) near the unit circle

from which it follows that
K(Fs) € D(0,me), (2.4)
where K(P,) is the filled Julia set of P,. Now if |¢! > 30, then
1 1
(PAE)| = i~ el 2 (4:5)1e > e

which implies P**{c) — oo as k — oo. Therefore M3(6) C D(0, 30}, hence by
symmetry M3(6) C A(z, 30).

(b) Let Qg be the unbounded connected component of C* \ M3(8). Since
M3(0) is invariant under ¢ — 1/c, there exists a corresponding component
nz of the complement of M3(#) containing a punctured neighborhood of the
origin. By the proof of (a), we have Q. C {c € C* : PP%(c) — oo as k — oo}

and similarly Qi C {¢ € C* : PF(1) - 0o as k — oo}

13




Suppose that there exists a bounded connected component U7 of C* ~ M3(6) .

which is not £2;,;. Then

0 < sup |¢| = R < +oo.
cedly f

If ¢ € AU, it follows from (2.4) that for each k > 0, |P2%(c)| and |P2*(1)| are '

not greater than m,, and

sup m, < (4.38) max{R, 1} < +oc.
ccdly

Since U # Qyns, we have OU C OM;(f) and both P2%(c) and P2*(1) are
holomorphic in U as functions of ¢. It follows from the Maximum Principle
that the iterates P2*(¢) and P*(1) are uniformly bounded throughout U,

which is a contradiction. |

14




3. COMPONENTS OF THE INTERIOR OF Mj(0) ;

First we give the following dynamical characterization of the boundary of
the connectedness locus M3(#), which is reminiscent, of the similar property of
the Mandelbrot set. For terminology and basic results on holomorphic motions

and J-stability, see for example [Mc2]. =

Theorem 3.1 (Boundary of M3(8) is Unstable). The boundary OM3(8) is the

set of parameters for which the corresponding cubics are not J-stable in P§™(§).

Proof. A polynomial P, € P§™(0) is J-stable if and only if both sequences
{P%*(c)} and {P°*(1)} are normal for ¢ in a neighborhood of ¢y ((Mc2], The-

orem 4.2). If ¢g € gy, then ¢y escapes to infinity under iterations of P,

while 1 has bounded orbit. For ¢ close to ¢y, the orbit of ¢ under P, will still
converge to infinity while 1 will have bounded orbit, with a bound given by :
me in {2.3). It follows from Montel’s theorem that both sequences are normal
throughout a neighborhood of ¢;. Hence ¢ is J-stable. Similarly, every P,
with ¢y € Quns 18 J-stable. If ¢y belongs to the interior of Mj(6), then both

¢y and 1 will have orbits contained in D0, m,, ) and the same holds for all ¢
sufficiently close to co. Again both sequences {P°%(c)} and {P2*(1)} are nor-
mal in a neighborhood of ¢y. Finally, if ¢g belongs to the boundary of M3(6),
then a small perturbation will make either ¢ or 1 escape to infinity. Hence
at least one of the sequences {P°*(c)} or {£2%(1)} fails to be normal in any

neighborhood of ¢. O

Corollary 3.2. Let P,, ¢ P§™(0} have an indifferent periodic orbit other than
the fized point at the origin. Then ¢y € OM;3{0).

Proof. Otherwise ¢ will be a J-stable parameter by the above theorem. But
any stable indifferent cycle has to be persistent ([Mc2], Theorem 4.2). So the

indifferent cycle z(co) + FPoofz(co)) v+ -+ = P Yz(co)) — 2z{co) can be

15




continued analytically to the whole plane as a function of ¢ and the multiplier
function ¢ — (P°*)(2(c)) remains constant. This is clearly impossible, since
for example when ¢ = 3 — 62, P.(c} = c is a superatiracting fixed point, hence

there cannot be any indifferent periodic point other than 0. ]

Definition (Types of Components). A component U/ of the interior of M;(6)
is called hyperbolic-like if for every ¢ € U, the orbit of either ¢ or 1 under
P, converges to an attracting cycle. U is called a capture component if for
every ¢ € U, either ¢ or 1 eventually maps into the Siegel disk A.. In case U
is neither hyperbolic-like nor capture, we call it a gueer component. We say
that P, is hyperbolic-like, capture, or queer if the corresponding parameter ¢

belongs to such a component.

For example, there is a hyperbolic-like component in the form of the main
cardioid of a large copy of the Mandelbrot set on the lowér right corner of
Fig. 1. For every c¢ in this component, the orbit of the critical point ¢ of Fe
converges to an attracting fixed point. On the other hand, the large component
which is attached on the right side of the unit circle to ¢ = 1 18 a capture,
consisting of all ¢ for which P,(c) belongs to A,. Fig. 3-Fig. 7 show examples
of the filled Julia sets of cubics in P§™(#) for § = (/5 — 1)/2. Fig. 3 is the
filled Julia set of a hyperbolic-like cubic. The large topological disk in black
is the immediate basin of attraction of an attracting fixed point. Fig. 4 is
the filled Julia set of a capture, with a critical point in the large preimage of
the Siegel disk on the right. The cubic in Fig. 5 is located at the “cusp” of
the large cardioid in the right lower corner of Fig. 1, hence it has a parabolic
fixed point. Fig. 6 has two critical points on the boundary of its Siegel disk.
Finally, the cubic in Fig. 7 belongs to 2.y so it has a disconnected Julia set.

There are countably many components each quasiconformally homeomorphic
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FIGURE 3 FI1QURE 4

FIGURE 5 FIGURE 6

to the quadratic Siegel filled Julia set with the same rotation number. The
uncountably many remaining components are single points.

In the above definition, we tacitly assumed that hyperbolic-like or capture
cubics define components of the interior of M3(f). The condition of being
hyperbolic-like is clearly open. It is also closed in the interior of Ma(f) since
by Theorem 3.1 a cubic P in the interior of Ms(8) is J-stable, so in a small
neighborhood of it the number of attracting cycles remains constant ([Mc2],

Theorem 4.2). This number is 1 if P is accumulated by hyperbolic-like cubics.
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FIGuRE 7

Now consider the property of being capture for P € P§™(6). 1t follows from
Theorem 3.1 that when a capture cubic P belongs to the interior of M3(8),
there is an open neighborhood of P consisting of captures. Let V be the
component of the interior of the set of capture cubics containing P. Similarly,
define U to be the component of the interior of Mjz(f) containing P. Clearly
V < U. If they are not equal, choose a cubic @ € 3V NU. Since ¢ is J-stable,
for all Q' in a small neighborhood of @, a critical point of )" belongs to the
Fatou set of ¢’ if and only if the corresponding critical point of ¢ belongs to
the Fatou set of (). If we choose @' € V, there is a critical point of @' which
hits the Siegel disk Ag. It follows that the same is true for ), hence ¢ is
capture, which contradicts () € V. This proves V = U. In other words, when
a capture cubic PP belongs to the interior of M3(#), the entire component of the
interior of Mj3(#) containing P consists of captures, hence the name “capture

component,.”
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However, the above argument does not rule out the possibility of a capture

being on the boundary of the connectedness locus Mz{@). In fact, that the
capture condition is open follows from a different type of argument which is
standard in deformation theory of rational maps (see Theorem 5.3).

Conjecturally, queer components do not exist. But if they do, every cubic in
a queer component exhibits an outstanding property: It admits an invariant
line field on its Julia set, and in particular, its Julia set has positive Lebesgue
measure. The proof of this fact depends on the harmonic A-lemma of Bers
and Royden [BR) as well as the elementary observation of Sullivan [Su2]| that
if the boundary of a Siegel disk moves holomorphically in a family of rational
maps, then there is a choice of holomorphically varying Riemann maps for the
Siegel disks (also sce the new expanded version [McS]). There is a technical
difficulty showing up in the proof: For a general  of Brjuno type, it is not
known whether the boundary of the Siegel disk of a P € P§™(0) is a Jordan
curve., For this reason, the extension of holomorphic moti‘ons to the grand
orbits of Siegel disks will require some extra work.

We will repeatedly use the following lemma of L. Bers [B], [DH2]:

Lemma 3.3 (Bers Sewing Lemma). Let E C C be closed and U and V' be
two open neighborhoods of E. Let o : U == o(U) and ¢ : V- — %{V) be two
homeomorphisms such that

e © is K -quasiconformal,

o |y g is Ky-quasiconformal,

¢ plar = Ylom.
Then the map @ 111 defined on V by

w(z) z€ B

(ple)(z) = o) zeV I
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is a K-quasiconformal homeomorphism with K = max{K;, Ks}. Moreover,

(¢ 1L 4) = By almost everywhere on E.

Theorem 3.4 (Invariant Line Fields for Queer Cubics). Let U be a queer com-
ponent of the interior of M3(8). Then for any ¢ € U, the Julia set J(F.} has

positive Lebesgue measure and supports an invariant line field.

Proof. Fix some ¢y € U. We first note that every Fatou component of F,
eventually maps to the Siegel disk A,, and the mapping is a conformmal isomor-
phism: There cannot be further attracting cycles (since P,, is not hyperbolic-
like) or indifferent periodic orbits (see Corollary 3.2). In particular, K(F, )=

GO(Ae,).
Choose some ¢ € U with ¢ # ¢g, and let

Yo : CN K(Po) — C~ K(P,)

be the conformal conjugacy given by composition of the Bottcher maps of
Pe, and P,. A brief computation using the normal form (2.2) shows that
pe(2) = v/e/coz + O(1) and we can choose the branch of the square root near
¢o for which ¢ (2) = 2. Since g, depends holomorphically on ¢, it defines
a holomorphic motion of C \ K(FP,)). By the harmonic A-lemma [BR], this
motion extends to a unique holomorphic motion &, of the entire plane, which
is now defined only for ¢ in a small neighborhood V of ¢y, with the following

properties:

e For every ¢ € V, §, is a quasiconformal homeomorphism of the plane.

o~

ggz —g:i is harmonic in GO(A,).

It is easy to see that uniqueness of this extended motion implies that &, conju-

e Forevery ¢ € V, the Beltrami differential

gates Py, to P, on the entire plane (compare [McS]). In fact, one can replace

@e by Pl o @0 Py on GO(A,,), which also extends ¢,, where the branch of
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P.* is determined uniquely by the values of @, on the Julia set J{P,,). Hence

[

P. = Pt o .0 P, by uniqueness.

Next, we want to show that the restriction &, : GO(A,,) = GO(A.) is a
conformal conjugacy. As Sullivan observes in [Su2], the fact that the boundary
of A, moves holomorphically for ¢ € U (Theorem 3.1) implies that there is a
choice of the Riemann map ¢, : D — A, such that {,(0) = 0 and ¢ — (, is
holomorphic in ¢. Define a conformal conjugacy 1, : Ay — A by 1o, = (o ;1,
and extend it to a conformal conjugacy 1. : GO(A,,) — GO(A,) by taking
pull-backs as follows. Take any component W of P_"(A.,) and let W, =
.{W) be the corresponding component of P,"(A,). Define v, : W — W, by
e = P7™ o4, 0 P27, Since ¢ — 1), is holomorphic and ¢, = id on GO(A,)
when ¢ = ¢g, it follows that 1), defines a holomorphic motion of GO(A,,). By
the harmonic A-lemma, 1, extends to a unique holomorphic motion {b\c of the
entire plane which is defined for ¢ in a neighborhood V' of ¢g and has harmonic
Beltrami differential on C ~ K(F,;). By an argument similar to the one we
used for &,, it follows that {b\c respects the dynamics, i.e., it conjugates F,, to
P, on the entire plane. In particular, it sends the marked critical point ¢ of
P,, to the marked critical ¢ of P,. Let us assume for example that the forward
orbit of ¢g accumulates on the boundary of A,,. Then the same is true for ¢
and A,. Since @, was also a conjugacy to begin with, for all ¢ € VNV’ we have
Delco) = ¢ = Bulco), and by induction (P2 (co)) = P*(c) = §o(P*(co)) for
all k. Since every point on the boundary of A, isin the closure of the forward
orbit of ¢y, we conclude that 17)} and &, agree on 0A,,. Evidently this shows
that 1:1;6 and 3, agree on the boundary of every bounded Fatou component of

P.,, hence on the entire Julia set J(P,,). It follows then from the Bers Sewing
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Lemma 3.3 that ¢, U 9, defined by

Pe(2) 2€ CNGO(A,,)

(e T th)(2) = e(2) 2 € GO(Ay)

is a quasiconformal homeomorphism which has harmonic Beltrami differential
in C~ J(P,). Note that ¢, IT 1, is an extension of both ¢, and ,. By
uniqueness, we conclude that @, = .. In particular, when ¢ € V V7, @, s
conformal away from the Julia set J(P,,).

Now, if the Julia set J(P,,) had measure zero, &, would have been conformal,
contradicting ¢ # cp. So J(P,) has positive measure. The desired invariant
line field is then given by &%(op), the pull-back of the standard conformal

structure oy on the plane by @,. O

The existence of holomorphic motions in the above proof was the crucial fact
which made the conformal extensions possible. In the case we have “static”
quasiconformal conjugacies, such conformal extensions are still possible once
we assume that the boundaries of Siegel disks are Jordan curves. Let A be a
Jordan domain containing the origin and R; : z — ¢*™z be the rigid rotation
on the unit circle. Let ¢ : A — D be any conformal isomorphism with (0) = 0.
Then the homeomorphism Al : A — A defined by Al = (™' o R; 0 ( is the
intrinsic rotation of A by angle . By Schwarz Lemma, h% is independent of
the choice of {. Now suppose A; and A, are two Jordan domains containing
0 and ¢ is irrational. Let ¢ : 8A; — 8A; be a homeomorphism satisfying
@ o bk, = hi, op. Then two points a; € Ay and ay € Ay have the same
conformal position with respect to ¢ if ¢;(a1) = (o(az), where the {; : A; —» D

are conformal isomorphisms with {;(0) = 0 and ¢{; = (3 0 ¢ on 94,

Lemma 3.5 (Extending QC Conjugacies). Let P and Q be lwo cubics in Ps™(6)

such that the boundaries of the Siegel disks Ap and Ag are Jordan curves.
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Let p : C — C be a quasiconformal homeomorphism whose restriction € ~ i

GO(Ap) — C~ GO(Ag) conjugates P to (). Then i

(a) If P is not capture, there ezists a quasiconformal homeomorplism ¥
C — C which conjugates P and Q, which is conformal on GO(Ap) and
agrees with p on C~ GO(Ap). .

(b) If P is capture, we can construct a v as in (o) if and only if the captured '
images of the eritical points of P and Q in Ap and Ag have the same

conformal position with respect to .

Proof. (a) Fix some b, € dAp and let by = ¢(b;). Consider conformal iso-
morphisms ¢; 1 Ap -» D and ¢ : Ag — D, with ({0) = 0 = ((0) and ¥
G(b) = 1 = (a(by), which conjugate P on Ap and @ on Ag to the rigid

rotation Ry : 2z — 2z on I, Since the boundaries of Ap and Ag are Jordan '
curves, (; and ¢, extend homeomorphically to the closures. ‘The composition
W= (o Ap — Ag is conformal and conjugates P on Ap to ¢ on Ag.
Also 9(by) = @(by) = by and by induction ¢(P*(b:)}) = Q% (by) = @(P°*(b1)).
Since the orbit of b, is dense on the boundary of Ap, we have ¥[sa, = ©|aap-
Therefore, i gives the required extension of ¢ to the Siegel disk Ap. Tt is
now easy to extend v to the grand orbit GO(Ap): P°¥ maps any component
of P~*{Ap) isomorphically onto Ap. Hence we can define ¢ on any such
component as the composition Q% o 1|a, o P°¥, where the branch of @ % is

determined by the values of ¢ on the Julia set J(P). Clearly this composi-

tion is conformal inside this component and agrees with ¢ on its boundary.
¥ defined this way is a quasiconformal homeomorphism by the Bers Sewing 1
Lemma 3.3, with /' =V =C and £ = C~ GO{Ap).

(b) Now let P be capture. The construction of %) goes through as in case

(a) except for the last part where we want to extend v by taking pull-backs.

Suppose that there exists a positive integer & such that the critical point ¢
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Fioure 8. Extending ¢ in the capture case.

of P belongs to the component U7 of P7%(Ap). Let Vi = P{U;) and let
vy = P(c)) be the critical value in V4. Since P : 0l — 0V is a double
covering and ¢ conjugates P to ¢ on the Julia sets, there must be a critical
point ¢o of Q in a component Uy of @~*(Ag), with 8U, = (dU;). Similarly
define V3 and vy. By the proof of part (a) we can define ¢ inductively up
to the (k — 1)-th preimages of Ap, including ¥;. This gives us a conformal
isomorphism ¢ : Vi — V4 which necessarily maps v; to vy, because by our
agsumption P°*(c;) and Q°*(cy) have the same conformal position in Ap and
Aq and so one gets mapped to the other by ¥|a,. Choose any simple arc 7
in V, connecting v; to some boundary point 3. The simple arc 7, = 1(m) in
V, connects g to the boundary point 8, = 1{(#1). Pull v back by P to get
two branches of a simple arc passing through the critical point ¢; with two
distinct endpoints oy and o} on the boundary of U;. Similarly we consider the
pull-back of v, by @ and we get two endpoints on the boundary of Us, which
we label as oy = () and o = () (see Fig. 8). Now the inverse Q' can
be defined analytically over V3 ~ 2 and has two branches which take values

in two different connected components of Uy~ @71 (7y2). Define 9 on Uy as the
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composition @~ o1 o P, where the boundary orientation tells us which of the

two branches of Q' has to be taken. This way we extend 4 to Uy and ¢ can

then be defined on further preimages of Ap similar to the case (a). O
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4. RENORMALIZABLE CUBICS

This section briefly studies the class of renormalizable cubics in P§™(8).

These are the cubics with disjoint critical orbits from which one can extract

the quadratic Qg : z ++ €72 + 2% by straightening. From a different poini

of view, one may consider a renormalizable cubic with connected Julia set as
the result of “intertwining” the quadratic Qs with another quadratic with con-
nected Julia set (compare [EY]). For background on polynomial-like maps,

straightening and hybrid classes, see for example [DHZ2].

Definition. A cubic P € P§(0) is called renormalizable if there exists a
pair of Jordan domains U and V, with 0 € U € V, such that the restriction

Ply : U — V is a quadratic-like map hybrid equivalent to Q@ : z — "™ 242,

When # is irrational of bounded type, it follows from the work of Douady-
Ghys-Herman-Shishikura [D2] that the boundary of the Siegel disk of @)y is a
quasicircle passing through the critical point. Hence the same is true for the
Siegel disk Ap when P is renormalizable.

To prove the next theorem, we need the following useful lemma of Kiwi in
[K|. This lemma in particular shows that each indifferent cycle for a cubic

P € P™(#) must attract its own critical point.

Lemma 4.1 (Separation Lemma). Let P be a polynomial with connected Ju-
liog set. Then there exists a finite collection of closed preperiodic external rays,

separating the plane into disjoint open simply-connected sets {U;}, such that:

e Fach U; contains at most one non-repelling periodic point or periodic

Fatou component of P.
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o If 20 1 - 3 2, > 21 48 @ non-repelling cycle meeting Uy, +— -+

Uy, — Ujy, then U?:l U;; contains the entire orbit of at least one critical

point of P.

Theorem 4.2. A cubic P € P{™(8) is renormalizable if either of the following

conditions holds:

(a) P has a non-repelling periodic orbit other than 0 which is not parabolic.

(b) P has disconnected Julia set.

Proof. First assume that we are in case (a) so that J(F) is connected. Let
R be the finite collection of the closed preperiodic external rays given by the
Separation Lemma 4.1. Let V be the component of C ~ R which contains
0, cut off by an equipotential of K (P). Finally, let U be the component of
P~Y(V) containing 0. Since all the rays in R are preperiodic, P(R) < R,
hence I/ < V. U necessarily contains a critical point of P since otherwise
Schwarz lemma and [P'(0)] = 1 would imply that U = V and Pjy : U =V
is a conformal isomorphism conjugate to a rotation. This would contradict
the fact that U intersects the basin of attraction of infinity for P. The other
critical point of P has to stay away from V because by the second part of the
Separation Lemma its entire orbit lives in the cycle of components of C ~ R
which contains the non-repelling periodic orbit of P

Since by our assumption the non-repelling cycle of P is not parabolic, the
landing points of the external rays in R must all be repelling. Therefore, by
a simple “thickening” procedure (see for example [M3]), we can assume that
U C V,sothat Ply : U — V is a quadratic-like map. Up to affine conjugation,
there is only one quadratic polynomial which has a fixed Siegel disk of rotation
number 8, so this quadratic-like map has to be hybrid equivalent to Qp : 2 +—

e2mily 4 22,
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FiGURE 9. Filled Julia set of the quadratic Qg : 2 — ™0z + 22

for @ = (v/5 —1)/2.

Now suppose that J(P) is disconnected. For e > 0, let U, be the connected
component of {z € C : Gp(%) < €} containing the Siegel‘ disk Ap, where
Gp:C — {z ¢ R:z > 0} is the Green’s function of K(P). It is not hard
to see that for small ¢, P|y, : U, — Us is a quadratic-like map, necessarily

hybrid equivalent to (. 0

Fig. 3 and Fig. 7 demonstrate the above theorem. In ecither example, one
can see the filled Julia set of the quadratic-like restriction Ply : U — V given
by the above theorem, which is quasiconformally homeomorphic to the filled

Julia set of Qg : z > €22 + 27 in Fig. 9.

Remark. When P € P§™(6) has a parabolic cycle, we can no longer expect to
extract Qg from it by renormalization. However, there must be a homeomor-
phic embedding K(Qs) — K(P), conformal in the interior of K{(Qy), which
conjugates @Qp to P. This can be proved directly when @ is of bounded type,
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and in the general case by using the parabolic surgery recently introduced in

[Hal.

Corollary 4.3. Let 0 be an irrational number of bounded type. Let P €
Pem (0} be hyperbolic-like or have disconnected Julia set J{P). Then J(P)

has Lebesgue measure zero.

Proof. Let Ply : U — V be the quadratic-like restriction given by Theorem 4.2
and let K be its filled Julia set. Since this restriction is hybrid equivalent to
Qg : z — €27 | 22 whose Julia set has measure zero by the theorem of
Petersen [Pe], we simply conclude that 8K has Lebesgue mcasure zero.

It is well-known that the forward orbit of almost every point z € J(P)
accumulates on the w-limit set of the critical points of P ([Ly], Proposition
1.14), which in this case is just 8Ap union the attracting periodic orbit (resp.
8Ap) if P is hyperbolic-like (resp. with disconnected Julia set). So the orbit
of almost every z € J(P) accumulates on dAp. This implies that for all
n > N = N(z), P*(z) € V. This can happen only if P°"(z) € 0K or
equivalently z ¢ P~V(8K). We conclude that, up to a set of measure zero,
J(P) = Upso P~V (0K). But the right-hand side has rmeasure zero because
8K does. This proves that J(P) has Lebesgue measure zero as well. O
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5. QUASICONFORMAL CONJUGACY CLASSES

In this section we characterize the quasiconformal conjugacy classes in P§™(6).

A central role is played by the following:

Theorem 5.1 (Parametrization of QC Conjugacy Classes). Let Py, Ps, be dis-
tinct cubics in P§™() and let ¢ : C — C be a K-quasiconformal homeomor-
phism which conjugates Py, to P.,, i.e., po Py = Py o and p(co) = ¢;. Then
there exists a holomorphic map ¢+ ¢; from an open disk D(0,7) (r > 1) into
C* which maps 0 to ¢y and 1 to cy, such that for every t € D(0, 1}, P, 18 con-
jugate to P, by a Ki-quasiconformal homeomorphism @, : C — C. Moreover,

K, —1ast—0.

Proof. The idea of the proof is standard in complex dynamics (see [Su2],
[DHZ2]); however, we briefly sketch it here because similar arguments appear
again in the rest of this work. Define a conformal structure o on C by ¢ = ¢* oy,
where, as usual, oy is the standard conformal structure on C. (To simplify the
notation, in what follows we identify a conformal structure on C with its
associated Beltrami differential.) Since P, is holomorphic, P, has to preserve
o. Since @ is quasiconformal, ||o||e < 1. Define a one-parameter family {o;} of
complex-analytic deformations of o by o, = o, where ¢ € (0, r) and r > 1 is
chosen such that r||o|le < 1. By the Measurable Riemann Mapping Theorem
|[ABI, there exists a unique quasiconformal homeomorphism ¢, of the plane
which solves the Beltrami equation ¢jo¢ = o, and fixes 0, 1 and co. Define
P! =y, 0 P, o @;'. Since P,, is holomorphic, it acts as a pure rotation on
Beltrami differentials. Hence P%o = o implies P} oy = oy and therefore P is
a quasiregular self-map of the plane which preserves oy and is conjugate to a
cubic polynomial. It is then easy to see that P? itself is a cubic polynomial
with a fixed Siegel disk of rotation number & centered at 0 with a marked

critical point at z = 1.
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Note that ¢ — ¢, is holomorphic, so the same is true for ¢ —+ ¢, and hence

t ++ P! by the analytic dependence of the solutions of the Beltrami equation on
parameters [AB]. Therefore the map ¢ +— ¢; which defines the second critical
point of P! so that P* = P,, is holomorphic. It is easy to see that ¢, has all
the required properties. 1

Corollary 5.2. Quasiconformal conjugacy classes in P§™(0) are cither siﬁgle
1 points or open and connected. In particular, cubics on the boundary OM;(0) i

are quasiconformally rigid, i.e., their conjugacy classes are single points. !

Theorem 5.3 (Capture is an open condition). Let Py, be a capture cubic. Then
there is an open neighborhood U C PS™(0) of o such that for every ¢ € U,
P, is also capture. In particular, capture cubics belong to the interior of the

connectedness locus Ms(#).

Proof. To fix the ideas, let us assume that Pg¥(cy) € A, and k > 1 is the
smallest such integer. First assume that P2f{co) # 0. Let A C A, be the

annulus bounded by 9A., and the analytic invariant curve in A, passing
through P2¥(cy). Take a conformal isomorphism ¢ : A =5 A(l,¢€), with '
¢ = ¢2mmod(4) > 1 which conjugates P, on A to the rotation on A(1,¢).
Postcompose % with a (non-conformal) dilation A(1,€) — A(1,¢*) to get a |
quasiconformal homeomorphism ¢ : A — A(1, ¢) conjugating P, to the rota-
tion. Define a P, -invariant conformal structure o on C by putting o = ¢*aqg

on A and pulling it back by the inverse branches of P, to the entire grand

orbit of A. Set ¢ = oy elsewhere. As in the proof of Theorem 5.1, we define
o, = to for t € (0, r) for some r > 1, solve the Beltrami equation piop = oy

and set Pt = p,0 P, 0p; L. Then P*is a capture cubic in PF™(#) and P® = P,

The holomorphic mapping ¢ -+ P! is not constant because mod{p1(A}) is the s.

same as the modulus of A equipped with the conformal structure o, which in
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turn is (1/27) log(e?) = 2 mod(A). Hence P* # P° and the mapping t — P
is open.

Now consider the case where Pof(cy) = 0. In this case, by Corollary 2.2,
the conformal capacity of A, has a positive lower bound for all ¢ sufficiently
close to ¢g. It follows that there exists an € > 0 such that for all ¢ close to
co, A, D (0,¢). Hence a small perturbation of P, will still be a capture
cubic. ]

By a center of a hyperbolic-like component U/ C Mj3(f) we mean a cubic
P, € U with one of the critical points ¢ or 1 being periodic. Similarly, a center
of a capture component will be a cubic with one critical point eventually

mapped to the indifferent fixed point at the origin.

Lemma 5.4 (Existence of Centers). Every hyperbolic-like or capture compo-

nent of the interior of Ms(0) has a center.

By the remark after the proof, centers of hyperbolic-like or capture compo-

nents are unique when 6 is of bounded type.

Proof. First let U be a hyperholic-like component. For every ¢ € U, consider
the multiplier m(c) of the unique attracting periodic orbit of F;. The mapping
¢+ m(c) from U into D is easily seen to be proper and holomorphic. Hence
it vanishes at a finite number of points in U.

Now let U/ be capture. To be more specific, let us assume that for every
¢ € U, P°*(c) belongs to the Siegel disk A;, and let k be the smallest such
integer. Since P, is J-stable by Theorem 3.1, the boundary of A, moves holo-
morphically. Then, as in the proof of Theorem 3.4, there is a holomorphically
varying choice of the Riemann maps {, : D — A, with (,(0) = 0. Define a
map m: U —= D by

m(c) = ¢HEF(e).
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Clearly m is holomorphic. Let ¢, € U be any sequence which converges to
¢ ¢ OU as n — oo. For simplicity, put (., = ,. Let z, = P(‘f’f(cn) € A,, and
wy, = me,) = (, (zn) € D. If w, does not converge to the unit circle, we
can find a subsequence wy(;y such that wy; — w € D as j — co. Since the
family of univalent functions {¢, : D — C} is normal, by passing to a further
subsequence if necessary, we may assume that (5 — ¢ locally uniformly on
D. Clearly ¢(I) C A, Therefore, {{w) = lim; (o3 (W) = limy zn) =
P*(c) € A,. But this means that P, is capture, which contradicts ¢ € 9U.
This proves that w, converges to the unit circle. Hence m is a proper map.

Now, as before, m~*(0) has to be non-vacuous and finite. O

Remark. To show uniqueness of centers, by Theorem 5.1 it would be enough
to prove that any two centers for a component are quasiconformally conjugate.
When the rotation number 8 is of bounded type, this can be proved by a pull-
back argument similar to Lemma 3.5 since in this case the boundary of Ap
for P ¢ Pg™(0) is a Jordan curve by Theorem 13.7 (compare [Mcl] or [M2],
where uniqueness of centers is shown for every hyperbolic component in the

space of polynomial maps).

Theorem 5.5 (QC Conjugacy Classes in P§™(0)). Quasiconformal conjugacy
classes in P§™(0) are given by the following list:
(a) Hyperbolic-like or capture components of the interior of Ms(0) with the
center(s) removed.
(b) The two components Qogy and iy,
(¢) Queer components of the interior of M3(0).
(d) Centers of hyperbolic-like or capture components.
)

(e) Single points on the boundary of M3(8).

Proof. Corollary 5.2 shows that no conjugacy class intersects two distinct mem-

bers of the above list. It also proves that (d) and (e) are in fact conjugacy
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classes. Also the proof of Theorem 3.4 shows that every queer component is a
conjugacy class. That (a) and (b) are quasiconformal conjugacy classes follows
from the fact that over the components of type (a) or (b), the family {7} has
no critical orbit relations ([McS], Theorem 2.7). |
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6. CONNECTIVITY OF M;(#)

In this section we prove that Mj(#) is connected. This amounts to showing
that each of its complementary components ez and ), are homeomorphic
to the punctured disk. One way to do this is to mimic the standard Douady-
Hubbard proof of connectivity of the Mandelbrot set [DH1]: We can construct
a holomarphic branched covering ® : Qg — C ~ I by assigning to each
P. € Q.u the position of the critical point ¢ in the Bottcher coordinate of P,.
@ extends holomorphically to infinity with ®~1{c0) = co. The degree of this
map is 3, so to prove that Qe is a punctured disk we must show that ¢ has
no critical point other than co. (This additional difficulty does not show up in
the case of the Mandelbrot set where the similar map has degree 1.) To prove
that @ is locally injective, one can start with two nearby polynomials in the
same fiber of ® and define a conformal conjugacy between them near infinity
by composing their B&ttcher coordinates. This conjugacy can be conformally
extended using the dynamics to the entire basin of attraction of infinity. Then
a delicate argument is necessary to prove that one can extend the conjugacy
further to the complex plane in a holomorphic way, proving that the two
polynomials are identical (see [Z3] for details of such a proof).

However, to prove that Q.. is a punctured disk, it would be much easier to
nse methods of Teichmiiller theory of rational maps as developed in [McS].
(There one can also find a different proof for connectivity of the Mandelbrot
set.) Let P € P{™(#). By definition, the Teichmiiller space Teich(P) consists
of all pairs (@, []), where @ € P§™(#) and ¢ : C — C is a quasiconformal
conjugacy between P and @, i.e., Poyw = @o (). Here [¢] means that we only
consider the isotopy class of ¢. The modular group Mod(P) is the group of iso-
topy classes of quasiconformal homeomorphisms commuting with P. Mod{P)

acts on Teich(P) properly discontinuously by [#}(@, [¢]) = (@, [¢ ¢ ¢]). The
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quotient Teich(P)/Mod(P), also called the moduli space of P, is isomorphic
to the quasiconformal conjugacy class of P in P5™(8).

More generally, one can define the Teichmiiller space Teich(T P}, where U
is an open set invariant under P. It consists of all triples (V, @, [¢]), where
V is open and invariant under (), and the quasiconformal homeomorphism
©:V — U conjugates P and ). But now [¢] denotes the isotopy class of ¢
rel ideal boundary of V.

Theorem 6.1. The connectedness locus M;(8) is connected.

Proof. Let P = P, € Quy. Then J(P) is disconnected and the critical point
¢ belongs to the basin of attraction of infinity. Let ~ be the equipotential of
the Green’s function of K(P) passing through ¢. Topologically «y is a figure
eight with the double point at ¢ (see Fig. 10). Let J(P) be the union of
J(P) together with the backward orbit of the fixed point 0 as well as the
union of all forward and backward images of . In other words, J (P) is the
closure of the grand orbits of all periodic points and critical points of P. The
complement U = C - 7 (P) consists of countably many annuli A; of finite
modulus (contained in the basin of attraction of co) and countably many
punctured disks (corresponding to the Siegel disk and its preimages). On U

the grand orbit equivalence relation is clearly indiscrete. By [McS], Theorem

6.2.,

Teich(P) ~ Teich(U, P) x M1(J(P), P},

where M;(J(P), P) is the unit ball in the space of all P-invariant Beltrami
differentials supported on J(P). This factor is trivial by the following

Lemma 6.2. The Julia set of a cubic polynomial outside the connectedness

locus M3(6) admits no invariant line field.
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Figurg 10

Note that for arbitrary # of Brjuno type, it is not known whether this Julia

set has measure zero (compare Corollary 4.3).

Proof. By Theorem 4.2(b), such a cubic is renormalizable. By straightening,
an invariant line field on its Julia set gives rise to an invariant line field, or
equivalently an invariant Beltrami differential o, on the Julia set of Qg : 2 —
e?™0y 1 22 Now, as in the proof of Theorem 5.1, by deforming ¢ to oy =
to we can get a holomorphic family @' of normalized quadratic polynomials
all quasiconformally conjugate to Qy. But Qs belongs to the boundary of
the Mandelbrot set, hence admits no non-trivial deformations, implying that
QF = Qg for all ¢. So the normalized quasiconformal homeomorphisms ¢y
which solve the Beltrami equation @}cy = oy must all commute with ¢. Now
for any periodic point z € J(Qy) of period n, ¢ ++ @4(2) is a continuous path
in the finite set of all period-n points in J(Qg). Since ¢y(2z) = 2z, we must have
©y(2) = z for all £. Such points z are dense in the Julia set, so @ 5(q,) must

be the identity. Since o; = 0 off the Julia set, it follows from the Bers Sewing
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Lemma 3.3 that 8¢, = 0 almost everywhere in the plane. This implies that oy,

or equivalently o, vanishes almost everywhere, which is a contradiction. [

Now by Theorem 5.5, Q4 coincides with the quasiconformal conjugacy class

of P. Tt follows that
Qegs ~ Teich(P)/Mod(P).

By [McS], Theorem 6.1, Teich(P) ~ Teich(U, P) is isomorphic to the upper
half-plane H. Finally, every quasiconformal self-conjugacy ¢ of P preserves
grand orbits of the distinguished points 0 and ¢, hence it fixes the boundaries
of all the annuli A; pointwise. In particular, ¢ is the identity on the Julia
set J(P). Hence the action of [1f] € Mod(P) is identity except in the anmuli
A; where it is possibly a power of a Dehn twist. So Mod(P) is at most Z.
Since §l.; is not simply-connected, Mod(P) = Z. It follows that {2 18

homeomorphic to a punctured disk. 1
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7. CRITICAL PARAMETRIZATION OF BLASCHKE PRODUCTS

This section is the beginning of a digression in the study of cubic Siegel
polynomials. We look at certain Blaschke products which will serve as models
for the cubics in P§™(6). We will introduce these model maps in Section 8 and
return to their relation with the cubics in Section 9.

Let us consider the following space of degree 5 normalized Blaschke products:

A_ . 3 Z_p z_q . ] — -
B (B:2m 2 (1_@) (lqu) . B(L) = 1and lp| > 1, lg > 1},
(7.1)

where the rotation factor 7 on the unit circle T is chosen so as to achieve the
normalization B(1) = 1. Fach B & B has superattiracting fixed points at 0 and
oo and four other critical points counted with multiplicity. We are interested
in the open subset B C B of those normalized Blaschke products of the form
(7.1) whose four critical points other than 0 and co are of the form

1 1

C1, Coy —,

C1 Ca

with |c1] > 1, |ca| > 1. Our goal is to parametrize elements of B by their critical
points ¢; and ¢;. The following theorem provides this “critical parametriza-

tion” for B:

Theorem 7.1 (Critical Parametrization). Let ¢; and cy be two poinis outside

the closed unit disk in the complez plane. Then there exists a unique normalized
., . 11

Blaschke product B € B whose critical points are located at 0,00, ¢1, €2, =, =

C1 O

The proof of this theorem will be given after the following two supporting
lernmas. It would be interesting to find a conceptual proof of this fact which
can be generalized to higher degrees (compare a similar situation in [Z1], where

such a proof is given).
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The space B of all Blaschke products of the form (7.1) can be identified
with the set of all unordered pairs {p,q} of points outside the closed unit
disk. This is homeomorphic to the symmetric product of two copies of the
punctured plane. The latter can be identified with the space of all degree 2

monic polynomials
w i (w—w)(w— wy) = w® — (W + wo)w + wiwy

with wywy 7 0. It follows that B is homeomorphic to € x C*. In particular,
it is an open topological manifold of real dimension 4.

In the same way, we may consider the space C of all unordered pairs {c;, ca}
of points outside the closed unit disk, which has a completely similar descrip-
tion.

We consider the continuous map
v:B—=C

which sends a normalized Blaschke product B ~ {p, ¢} with critical points

1 1
{0, 00, c1, ca, —, —} to the unordered pair {c;, ¢}
€1 C3

Lemma 7.2. V¥ is a proper map.

Proof. Let By, =~ {pa, gn} be a sequence of normalized Blaschke products in B
which leaves every compact subset of B. Then, a priori we have the following
three possibilities:

e Some critical point of B, accumulates on the unit circle, or

o After relabeling, p, goes to oo, or

o After relabeling, p, accumulates on the unit circle (later we show that

this cannot be the case; see Lemma 7.4).

In the first two cases, it is easy to see that ¥(B,) leaves every compact subset

of C. In the third case, there is a subsequence of B,, which converges locally




uniformly on € ~. T to a Blaschke product of degree < 5. It follows that il
the corresponding subsequence of W(B5,,) has to leave every compact subset of 4

C. U

Lemma 7.3. ¥ is injective.
Proof Let A and B be two normalized Blaschke products in B with the same

. . 1
critical points {0,00,¢1,¢2,—, —} . Let “
1 C2 !1

i
A'Zl—)TAZS it 4} T4 %
' 1Dz 1—giz/’

Bz rp2t . .t
' L—paz ) \1 -Gz )’

If p = ps or p1 = o, or if one of the critical points ¢y, ¢ coincides with one of

4
i
i
i
ik
4
‘g :

the zeros p;, g, then a straightforward computation shows that A = B. So let

us assume that p; # pe and p; # qo and consider the rational function

A(z)
3 R = ‘
Clearly deg R = 4 and hence R has 6 critical points counted with multiplicity. :

We have

2 1(z — ¢;) (1 — g52) 22 1[{z — es)(1 — Gz)
A7) = (const.)Z 1l J 977 B'(z) = {const. M EA Sl
(8) = (eonst) 7 it » P = T (L gy
from which it follows that
1 Tz p) (2 g (L - Py2) (L — jz)
R'(z)} = (const.)— z—e; ) (1—Cz { J 2 SMEA .
(Note that all the sums and products are taken over j = 1,2.) From the

above expression, R has already 4 critical points at the ¢; and 1/¢;. So the i

rational function in the braces could have at most 2 zeros. Since this fraction 1

is irreducible (by our assumption p; # ps and p; # ga), the numerator should

have degree < 2. But that implies ]

P = e,
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L+ o) + @+ o) =51 + @) + @& (1 + [p2]?)

from which it follows that p; = ps or p; = ¢o, hence ¢; = g2 or g1 = pg, which

contradicts our assumption. ]

Proof of Theorem 7.1 (Critical Parametrization). By Lemma 7.2 and Lemma 7.3,

W is a covering map of degree 1. Hence, it is a homeomorphism 8 — C. O

In particular, the theorem shows that B is also homeomorphic to the product
CxC.

Lemma 7.4, Let B : z — 72° (z — p)(z — q)/((1 — Bz)(1 — Gz)) be any nor-
malized Blaschke product in B. Then |p| > 2 and |g| > 2.

Proof. Write B(z) = pz*/R(z), where |p| = 1 and

B(z) = (12—_ b?z') (1z—_ ﬁi)

is a degree 2 Blaschke product preserving the unit disk having zeros at « = 1/7

and 3 = 1/g. We look at the logarithmic derivative LD(z) = d(log R(z))/d(log z) =

zR'(z)/R(z) on the unit circle T. A brief computation shows that for z € T,

_1—Jof* 18P
B |z — o |z2— 5%

LD(z)

which is strictly positive. It is easy to see that

1+ |a 1+ﬁ}
L—lal" 118"

Hence if either || > 1/2 or |3| > 1/2, the maximum value of LD on T will

max LD(z) > max {
zcT

be greater than 3. On the other hand, R induces a 2-to-1 covering map of the
unit circle, so the average value of || = LD on T will be 2. Putting these

two facts together, it follows that if |a] > 1/2 or |3] > 1/2, then

min LD(z) < 2 < 3 < max LD(z).
zeT €T
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This simply implies that when |a| > 1/2 or |5| > 1/2, there are at least two
points on T where LD takes on the value 3. Now B(z) = pz*/R(z) gives

32°R(z) — 2 R'(z) _ o 3 — LD(z)
R(z)? R{z)

Hence by the above argument, B has at least two critical poinis on the unit

B'(z) =p

circle as soon as |p| < 2 or |g| < 2. Certainly this cannot happen since by

definition B € B means the critical points of B are off the unit circle. O

Corollary 7.5. Given any two points c; and cg in the plane, with |e| > 1 and
co| = 1, there exists a unique normalized Blaschke product B in the closure B

. " . 1 1
with critical points {0, 00, ¢1, €0, —, —}-
€1

In other words, critical parametrization is possible even if one or both eritical

points ¢1, ¢ belong to the unit circle.

Proof. Take a sequence {cf,c5} of pairs of points outside the closed unit disk
such that ¢ — ¢, and ¢ — ¢z asn —+ 0o, The zeros py, ¢, of the corresponding
normalized Blaschke products ¥~1({e}, ¢h}) stay away from the unit circle by
Lemma 7.4. Therefore, ¥~ ({c},c}}) has a subsequence which converges to a

normalized Blaschke product which, by continuity of ¥, has critical points at

To see uniqueness, it is enough to note that the proof of Lemma 7.3 can be

repeated word by word even if we assume [¢;| =1 or |cg| = 1. O

We conclude with the following proposition, the proof of which is quite

straightforward.

Proposition 7.6. Fuvery B € B induces a real-anolytic diffeomorphism of the
unit circle. Consequently, if B € B~ B, the restriction of B to the unit circle

will be a real-analytic homeomorphism with one (or two) critical poini(s).

43




8. A BLASCHKE PARAMETER SPACE

Now we focus on a certain class of degree 5 Blaschke products. These are

the maps B with the following two properties:
{i) B has the form

B:zHe%iizE‘(z—p)(zmq), lp| > 1,1q| > 1 (8.1)

1—pz 1 —gz
where p and ¢ are chosen such that B has a double critical point on the
unit circle T and a pair (¢, 1/¢) of symmetric critical points which may
or may not be on T.
(if) ¢ is the unique number in [0, 1] for which the rotation number of By is

equal to @, with 0 < 8 < 1 being a given irrational number.

The number ¢ in (ii) is unique because the rotation number of B in (8.1)
is a continuous and increasing function of ¢ which is strictly increasing at all
irrational values (see for example [KH], Proposition 11.1.9)..

From the above description, it follows that every B which satisfies (i) and
(ii) can be represented as a normalized Blaschke product in B B followed by
a unique rotation which adjusts the rotation number to #. As a consequence,
Corollary 7.5 shows that every such 73 is uniquely determined by the position
of its critical points.

The rotation group rot= {R, : z ++ pz with |p| = 1} acts-on the set of all
such Blaschke products by conjugation. In faet,

R;I oBoR,:zr+ 2t pt P (f:;{;’i) (f__;i) :
We would like to understand the topology of the space Bg™(6) of all “critically

marked” Blaschke products satisfying (i) and (ii) modulo the action of rot.
Here by a marking of the critical points of such a Blaschke product B we mean
a surjective function m from the set {1,2} to the set of finite critical points of

B outside the open unit disk. Two critically marked Blaschke products (B, m)
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FIGURE 11. Topology of the parameter space BE™(9).

and {A, m') are equivalent under the action of rot if there exists an R, such
that R,0o B = Ao R, and m' = R, om.

Here is how we parametrize the space Bg™(f): For j = 1,2, consider the
closed set E; consisting of all conjugacy classes in B5™(0) for which the critical
point m(j) belongs to the unit circle. In each class in Fi, we choose the unique
representative (B, m) for which m(1) = 1. It follows from Corollary 7.5 that
E, can be parametrized by the location of the second critical point m(2) €
C~.D. Similarly, in each class in Ky, pick up the unique representative (B, m)
for which m(2) = 1. This shows that E; can be parametrized by the location
of the first critical point m(1) € C~\ID. Now on the common boundary £,MEy,
consisting of all Blaschke products with two double critical points on T, we
have two different coordinates which must correspond to the same conjugacy
class. This simply yields the identification m(1) = 1/m(2) between the two
copies of € ~. I along their boundary circles. Consequently, Bg™(6) can be
identified with the punctured plane (see Fig. 11).

It is easy to see.that this gluing corresponds to choosing the uniformizing

parameter 4 = m(1)/m(2) € C* for the space Bg™(#). Here is the concrete




interpretation of this identification BF™(0) ~ C*: For u € C* with |u| > 1,
the corresponding Blaschke product B, has marked critical points at m(1) =
p,m(2) = 1. Similarly, if |¢| < 1, B, is the unique Blaschke product with
marked critical points at m(1) = 1,m(2) = 1/u. Note that B, = By, as

maps, if we forget the markings of the critical points.

As in the case of the cubic parameter space P§™(8), the Blaschke space
Bg™(6) also has two very special points: g = 1 which corresponds to the

conjugacy class of Blaschke products with a critical point of local degree 5 on

T, and p = —1, which corresponds to the conjugacy class of Blaschke products
with two centered double critical points on T.

The identification with C* puts the following topology on BE™(6): If || # 1
so that B, has only one double critical point on T, then B, — B3, simply

means uniform convergence on compact subsets of the plane respecting the

convergence of the marked critical points. On the other hand, if ju| = 1 so

that B, has two double critical points on the unit circle, then B, — B, means
that in the topology of local uniform convergence, {B,,, } can only accumulate i

on By, or its conjugate R;' o B, o R,

For the future reference, we need to analyze the structure of the invariant :

set [y B~*(T) for a Blaschke product B € Bg™(8). For similar descriptions

in a family of degree 3 Blaschke products, see [Pe] or [YZ].

Definition (Skeletons). Let B € BE™(@). Define Ty = T and 7. = B~1(Tp) ~ To.
}
In general, for k > 2 we define T}, inductively as Tj, = B~} (T}_1). We call the g

closed set T, the k-skeleton of B. Note that B commutes with the reflection i

I:z v 1/Z. Therefore, every T} is invariant under I w

Fig. 12 shows different possibilities for the 1-gkeleton of a B € B{™(8).
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The next proposition gives basic properties of k-skeletons. ‘The proofs are

straightforward and will be omitted.

Proposition 8.1 (Structure of the k-Skeleton).

(a) Fork > 1, the k-skeleton Ty, is the union of finitely many piecewise ana-
lytic Jordan curves {T}}, -, Ti*} which intersect one another at finitely
many points and do not cross the unit circle T. None of the T} encloses
T. For any T¢ in this family, the reflected copy I(T}) also belongs to this
family.

(b) With the notation of (a), let D% denote the bounded component of C~ T}
Jor k > 1. For k = 0, D} could mean either D or C~D. Then for
k> 1, B maps D% onto some Diml. The mapping 15 either a conformal
isomorphism or a 9-to-1 branched covering. As a result, B°* is a proper

holomorphic map from D% onto I or C-D.

‘ (c) Tk>1 andi # j, we have DiN DI =0,

(d) Fork > £ > 1, either Di and D3 are disjoint or Di < Dj. Conversely,

if Dt C Dg, we necessarily have k > £,

Every Dt is called a k-drop or simply a drop of B. In other words, k-drops are
the open topological disks bounded by the Jordan curves in the decomposition
of the k-skeleton of B. For k = 0, we have slightly changed the notion of drops.
The unit circle T is the only Jordan curve in the O-skeleton of B, and we agree
to call any of the two topological disks D or C-Da 0-drop. The integer k is
called the depth of 1L,

Definition (Nucleus of a Drop). Let Di be a drop. We define the nucleus N}
of Di as the set of all points in D¢ which are not accumulated by any other

drop of B. The nuclei of k-drops are said to have depth k.
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FIGURE 12. Four different configurations for B~(T), where
B € Bg"(#). The shaded regions are components of B~(DD).
The shaded subregion of D is mapped to D by a 3-to-1 branched
covering with a superattracting fixed point at the origin. There
is a critical point at z = 1 and the other critical poini(s) (marked

by an asterisk) are symmetric with respect to the unit circle.

It follows from Proposition 8.1(c) that

N = Db~ U U D;g.
EEk
Clearly every nucleus is open. It is also non-empty because every drop contains
an open set which eventually maps to the immediate basin of attraction of 0
or oo, and this open set cannot intersect the closure of any other drop of B.
We have two nuclei of depth zero: Ny, which is the nucleus of I and contains
the immediate basin of attraction of 0, and N, which is the nucleus of C-.D

and contains the immediate basin of attraction of co. Obviously N, = I(Ng).
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It is not hard to see that both Ny and N4 are invariant under B:
B(NU) C Ng, B(Noo) C Ny (82)

This of course implies that Ny and N, are subsets of the Fatou set of B.

It follows from Proposition 8.1(b) that B maps every nucleus of depth &
onto some nucleus of depth & — 1 and the mapping is either a conformal
isomorphism or a 2-to-1 branched covering. We include the following lemma,

for completeness:

Lemma 8.2. Let Ni be the nucleus of a drop Dt which eventually maps to
the unit disk . Then
(a} No point in the orbit

; ; B : B " f fo B
Ni=Np 23 N3 oo =5 NP N

can intersect any of the reflected nucles I(N,ij_j), 0<j<k.
(b) For z € Ni, B is the first iterate of B which sends z to Ny.

Proof. (a) B commutes with I, so there is a reflected orbit
I(V)) = I(NP) 25 r(vin ) 2y o B TV 2y N

Now any point in both orbits would have to map to a point in N, and Ng,
simultaneously, which is impossible since Ng M Ny, = 0.

(b) This is obvious if k = 1. Suppose that k£ > 1 and that for some 0 < £ < &,
B°(2) € Ny. Then by (8.2), B*~(2) € Ny C D. But B*7'(2) € B*1(Dj)
and B°*~1(Di) is a 1-drop which does not intersect D. O

Remark. If z € N}, it is not true that B°% is the first iterate of B which

sends z to the unit disk. In fact, the orbit of z can pass through IJ several

times before it maps to Nj.
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Proposition 8.3.

(a) Distinct nuclei are disjoint.
(b) The map B°* from N} onto Ny or Ny is either a conformal isomorphism

or a 2-to-1 branched covering.




Proof. (a) Let N and Ng be two distinct nuelei which intersect. By Proposi-
tion 8.1(c), we have k #£ £. Without loss of generality, we assume that & > £
and the iterate B°* maps Nj onto Ny. So for every z in the intersection NiNNVZ,
B°¢(z) will belong to Ny. This contradicts Lemma 8.2(h).

(b) Since by (a) distinct nuclei are disjoint, an orbit

; iv D i B B gy B
Ny=NpP® — N>, ==+ — N — Ny or Ny

can hit every critical point of B at most once. Since the critical point z =1
of B does not belong to any nucleus, the above orbit can only hit the pair
of critical points ¢ and 1/, with |¢| # 1. By Lemma 8.2(a), these critical
points cannot belong to the above orbit simultaneously. This means that
B . Ni — Ng or Ny, is either a conformal isomorphism or a 2-to-1 branched

covering. 1

Fig. 13-Fig. 15 show the Julia sets of some Blaschke products in Bg™(8) for
8 = (v/5 —1)/2. In Fig. 13 there are two symmetric attracting cycles in the
nuclel Ny and N, whose basins of attraction consist of the topological disks
in black. Fig. 14 shows the Julia set of a map outside of the connected locus
Cs{(0) (see Section 10). In Fig. 15 there is a critical point in the nucleus of the
large 1-drop attached to the unit disk at z = 1 which maps into V. Hence
this nucleus contains the zeros p and ¢. Surgery (see Section 9 below) will turn
the first Blaschke product into a hyperbolic-like cubic, while sends the second

to a cubic in (g and the last one to a capture cubic in PF™(4).

b1




i it e R

9. THE SURGERY

For the rest of the paper, unless otherwise stated, we assume that § is an
irrational number of bounded type. We describe a surgery on Blaschke products
in BE"™(#) to obtain cubic polynomials in P§™(f). A similar surgery has been
done in the case of quadratic polynomials [D2] using the following theorem
of Swiatek and Herman (see [Sw] or [H2|). Recall that a homeomorphism

h:R — R is called k-gquasisymmetric, or simply quasisymmetric, if

o k(@4 — h(@)
O <k S @) —hm =7

<k <400

for all z and all £ > 0. A homeomorphism A : T — T is k-quasisymmetric if

its lift to R has this property.

Theorem 9.1 (Linearization of Critical Circle Maps). Let f : T — T be a
real-analytic homeomorphism with finitely many eritical points and rotation
number 8. Then there exists a quasisymmetric homeomorphism b : T — T
which conjugates f to the rigid rotation Ry : z — €™z if and only if 6 is
an irrational number of bounded type. Moreover, if [ belongs to o compact
family of real-analytic homeomorphisms with rotation number 0, then h is k-
quasisymmetric, where the constant k only depends on the family and not on

the choice of f.

Let us briefly sketch what this surgery does on a Blaschke product B €
Be™(6). By Proposition 7.6, the restriction Bly is a real-analytic homeo-
morphism with one (or two) critical point(s). When the rotation number
of this circle map is of bounded type, by Theorem 9.1 one can find a unique

k-quasisymmetric homeomorphism k& : T — T with A(1) = 1 such that the
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following diagram commutes:

'JI‘—33—>'I[‘

b

T T

Moreover, the family {B|r}sesgm(s) is compact (see Theorem 12.3), hence h
is k(f)-quasisymmetric, where the constant k() only depends on the family
B&™(6). We can extend h to a K (#)-quasiconformal homeomorphism H : b —
D whose dilatation depends only on k(f). Possible extensions are given by
the theorem of Beurling and Ahlfors [A] or Douady and Earle [DE] (which
has the advantage of being conformally invariant). Define a modified Blaschke
product B as follows:

B = B(z) 2| = 1 | 9.1)

This amounts to cutting out the unit disk and gluing in a Siegel disk instead.
Note that the two definitions match along T by the above commutative di-
agram. Now define a conformal structure o on the plane as follows: On D,
let ¢ be the pull-back H*og of the standard conformal structure oy. Since
Hy preserves oy, B will preserve o on D. For every k& > 1, pull o|p back by
B°F = B°% on B~F(D) 1 (which consists of all the mazimal k-drops of B; see
Section 10). Since B°* is holomorphic, this does not increase the dilatation of
o. Finally, let ¢ = go on the rest of the plane. By the construction, o has
bounded dilatation and is invariant under B. Therefore, by the Measurable
Riemann Mapping Theorem, we can find a quasiconformal homeomorphism

@ : C - C such that ¢*oy = 0. Set

P=goBoyp™ (9.2)
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Then P is a quasiregular sclf-map of the sphere which preserves oo, hence it
is holomorphic. Also P is proper of degree 3 since B has the same properties.
Therefore P is a cubic polynomial. Evidently, ©(D) is a Siegel disk for P
whose boundary ¢(T) is a quasicircle passing through the critical point ¢{1).

To mark the critical points of P, hence getting an clement of P§™(0), we
must normalize ¢ carefully. Recall from Section 8 that Bg™(0) is uniformized
by the parameter p € C* as follows: If [u] > 1, B, has marked critical
points at m(1) = g, m(2) = 1, while for || < 1, B, has marked critical
points at m(1) = 1,m(2) = 1/u. In the first case, we normalize ¢ such
that @(H1(0)) = 0 and ¢(1) = 1. Call p(p) = ¢ and mark the critical
points of P by declaring P = P, as in Section 2. In the case |p| < 1, we
normalize i similarly by putting @(H~1(0)) = 0 and ¢(1/x) = 1, but this
time we call (1} = ¢ and set P = P,. It is easy to see that when ju| = 1,
both normalizations produce the same critically marked cubic polynomial in
Pem ().

Let us denote the polynomial P constructed this way by Sy(B). We will
see that for two quasiconformal extensions H and H’, the cubics Sg(B) and
Sy (B) are quasiconformally conjugate and the conjugacy is conformal ev-
erywhere except on the grand orbit of the Siegel disk centered at the origin,
When Sy (B) is capture, we can certainly end up with two different cubics if we
choose the extensions arbitrarily. In fact, let k& be the first moment the orbit
of the critical point ¢ of B hits the unit disk, and let w = B°*(c}). Then for two
quasiconformal extensions H and H’, the captured images of the critical points
of Sy (B) and Sy (B) have the same conformal position in their corresponding
Siegel disks if and only if H(w) = H'(w). It follows that Sg(B) # Su:(B) as

soon as we choose two different extensions H, H' with H(w} # H'(w).
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The following proposition has a very non-trivial content in case the result
of the surgery is a cubic whose Julia set has positive measure (say, in a queer

component). It is the Bers Sewing Lemma which makes the proof work.

Proposition 9.2. Let P = Sy(B) and H' be any other quasiconformal ex-
tension of the circle homeomorphism h which linearizes Bly. Then, if P
is not capture, Sg(B) = Sw(B). On the other hand, when P is caplure,
Sy (B) = Sy (B) if and only #f H{w) = H'(w), where w € D is the captured
image of the critical point of B.

Proof. Let Q = Sip(B) and @y and @g denote the quasiconformal homeo-
morphisms which satisfy P = pg o EH o (p};l and () = pg 0 EI{; ) gp}_ﬁ as in

(9.2). The homeomorphism ¢ defined by

o(z) = (o © o )(2) z € C~ GO(Ap)
(gm0 BF*oH 'oHoB%o (p};-l)(z) z € PTR(Ap)
is quasiconformal and conjugates P to Q. By Lemma 3.5, one can find a qua-
siconformal conjugacy % : C — C between P and ¢ which is conformal on the
grand orbit GO(Ap) and agrees with ¢ everywhere else. By the Bers Sewing
Lemma, 0y = 8y almost everywhere on C ~ GO{Ap). But the latter gener-
alized partial derivative vanishes almost everywhere on C ~ GO{Ap) because
the surgery does not change the conformal structures outside g5 B* (D).

Hence Ay = 0 almost everywhere on C, which means 1) is conformal. 'This

shows P = Q. a

Convention. For the rest of this paper, we always choose the Douady-Earle
extension of circle homeomorphisms to perform surgery. By the above propo-
sition, this is really a “choice” only in the capture case. We can therefore

neglect the dependence on H and call

81 BT(0) — P™(6)
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the surgery map.

As an immediate corollary of the normalization of ¢ and the construction

of 8, we have the following:

Corollary 9.3. Let y € C* and P, = S(B,,) be the cubic obtained by perform-
ing the abouve surgery.

o If lu| > 1, then 1 € 8A, and ¢ ¢ OA..

o If |ul <1, then c € 8A, and 1 ¢ 0A,.

o I |u| =1, then both ¢ and 1 € OA.,.




10. THE BLASCHKE CONNECTEDNESS Locus C5(4)

Suggested by the case of cubic polynomials, we define the Blaschke connect-

edness locus Cs(6) by
Cs(8) = {B € BE™(0) : The Julia set J(B) is connected}.

The following theorem provides a useful characterization of C5(f) in terms of

the critical orhits.

Theorem 10.1. B € C5(6) if and only if one of the following holds:

o The orbit of ¢, the critical point of B in C~ D other than 1, eventually
hits D.

e The orbit of ¢ never hits D, but remains bounded.

The proof of this theorem depends on an alternative dynamical description
for Julia sets of Blaschke products in B¢™(#) which is obtained by taking pull-
backs along a certain type of drops called maximal drops. This description

will be useful later in the proof of Theorem 13.1.

Definition. Let Di be a k-drop of B € Bg™(#). We call D} a mazimal
drop if Di =D, or if Di N1 = and D}, is not contained in any other {-drop
of Bfor £ > 1.

1t follows in particular that maximal drops of B are disjoint.

Proposition 10.2. Let B € B{™(6) and let P = S(B) = po Boyw™! s in
(9.2). Then
(a) D% is a mazimal drop of B if and only if (D) is a Fatou component of
P which eventually maps to the Siegel disk Ap.
(b} @ maps the nucleus Noo of B onto C ~ GO(Ap).
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(¢) The boundary of the immediate basin of ottraction of infinity for B is
precisely the closure of the union of the boundaries of all mazimal drops

of B. Under @ this set maps to the Julia set J(P).

Proof. (a) and (b) are easy consequences of the definitions. For (c), just note
that under ¢, the boundary of the immediate basin of attraction of infinity for
B corresponds to the similar boundary for P, and the closure of the runion of
the boundaries of all maximal drops of B corresponds to the Julia set J{P)

by (a). ]

Lemma 10.3 (Alternative description for Julia Sets). Let B € Bg™(0) and
let Jy be the boundary of the immediate basin of altraction of infinity for B.
Define a sequence of compact sets J, = J,(B) inductively by

L= |J B*IJanD)nDi (10.1)
DL maximal

Then

J(B) = Jn. (10.2)

Proof. Bach J,, is compact and contained in J(B). By Lemma 10.2(c), Jo C J;
and it follows by induction on n that J, C J,41 for n > 0. Put

Joo = | .

n>0

Clearly Jo is compact and contained in the Julia set J{B), and it is not hard
to see that it is invariant under the reflection 7. We will show that J is totally
invariant under B, i.e., B (Jy) = Joo. This will prove that J, = J(B).
First we prove that J, is forward invariant. For any n, it follows from (10.1)
that B{J, ~ iﬂ)) C Jy C Joo. On the other hand, B(J,ND) = B(IJ,_;ND) =

IB(Ju1 ~D) C [Jy = Jy. These two inclusions show that B(J,) C Je,
hence B(Jy) C Jeo.
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To prove backward invariance, first note that for any n, B~'{J,) N D C
Jn C Jo by {10.1). To obtain the same kind of inclusion for B~!(J,) N D,
we distinguish two cases: First, B~1(J, N DND =B i, 1N D)ND C
(B (Juo D)) C Iy 1Udy C Joo. Second, B~ {Jp~\D)(OD = (B~ (17N
D)D) C I{B™Y(Jps1) D) C IJpy1 C Joo. Altogether, these three inclusions
show that B~1(J,) C Jy for all n. Hence B7'(Jy) C Joo and this proves
(10.2). O

Proof of Theorem 10.1. One direction is quite easy to see: If the orbit of c
never hits the closed unit disk and escapes to infinity, one can easily show that
J(B) is disconnected in a way identical to the polynomial case by considering
the Béttcher map of the immediate basin of attraction of oo for B (see for
example [M1], Theorem 17.3). Conversely, suppose that the orbit of the crit-
ical point ¢ either hits D or stays bounded in C ~ I. Then the Julia set .J(P)
is connected, where P = §(B). Consider the sequence of COmpaét sets Jy, in
(10.1). By Proposition 10.2(c), Jy is connected and it follows by induction on
n that each J, defined by (10.1) is connected. Therefore (10.2) shows that
J{B) is connected. Hence B € C5(d). O

In what follows, we prove that the connectedness locus C5(#) is compact.
Other facts, e.g. having only two complementary components, or connectivity,
will be proved later using surgery (see Corollary 13.4 and Corollary 13.5). We
would like to remark that unlike the case of cubic polynomials, it is often
difficult to prove anything about the topology of the Blaschke connectedness
locus, partly because of the complicated way these Blaschke products depend
on their critical points, but more importantly because of the fact that the

family 1 — B, does not depend holomorphically on g.
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Lemma 10.4. Let {B,,} be an arbitrary sequence of Blaschke products in
B (0) and hy, : T — T be the unique normalized quasisymmetric homeomor-
phism which conjugates By, |n to the rigid rotation Ity. Let H, denote the
Dovady-Earle extension of hy,. Then the sequence {H,} has o subsequence

which conwverges locally uniformly to a quasiconformal homeomorphism of 1.

It follows in particular that the sequence {,(0)} stays in a compact subset

of the unit disk,

Proof. This follows from the facts that the space of all uniformly quasisym-
metric normalized homeomorphisms of the circle is compact ([L.e], Lemma 5.1)

and the Douady-Earle extension depends continuously on the circle homeomor-

phism [DE]. O

Corollary 10.5. Let B € Bf™(0) and wp : € — C be the quasiconformal
homeomorphism which conjugates the modified Blaschke product B to the cubic
P=38(B) asin (9.2): P=ypo Bo w5 . Then the family F = {pp}pese (o)

18 normal.

Proof. By the surgery construction as described in Section 9, F is uniformly
quasiconformal. Choose a sequence {By, } in B§*(0) and let ¢, = ¢p,,, denote
the corresponding sequence in F. Choose a subsequence, still denoted by B,,,
such that |, > 1 for all n (the case {u,] < 1 is similar). By the way we

normalized @,

on(H7H0) =0, @a(1)=1, @n(o0) =00

But {#71(0)} lives in a compact subset of ID by the previous lemma. Hence
the three points H'(0), 1 and oo has mutual spherical distance larger than
some positive constant independent of n. This implies equicontinuity of {¢n}

by a standard theorem on quasiconformal mappings ([Le], Theorem 2.1). [




Proposition 10.6. The surgery map 8 : BE“(#) — P§™(6) is proper.

Proof. Let the sequence { B, } leave every compact set in Bg™(0) and consider
the corresponding cubics P, = §(B,,) = ¢n© Eun o, 1. To be more specific,
let us assume that the critical point g, tends to infinity. Clearly ¢, = @n(in).
Since {¢,} is normal by the above corollary, we simply conclude that ¢, —
oo, )

Proposition 10.7. The Blaschke connectedness locus Cs(0) is compoct and
invariant under p > 1/u. As a result, there ezists an unbounded compo-
nent Ay of C* < Cs{(0) which contains a punctured neighborhood of oo and @

corresponding component Ay which is mapped to it by p—> 1/p.

Proof. The invariance follows from the definition of B{™(f)) and its identifica-
tion with C*. Note that the unit circle T C Bg™(f) is contained in C5(f) by
Theorem 10.1. So Agze and Ay are actually distinet components of C* ~.C5(6).

Cs5(0) is clearly closed by Theorem 10.1. Let us prove it is bounded. As-
suming the contrary, there is a sequence B, € C5(#) with ,un — oo as in the
above proof. It follows from Proposition 10.2(c) and Theorem 10.1 that the
corresponding polynomials P, = S(By,) = @n © E“n o ¢ have connected
Julia sets. By Proposition 2.3, 1/30 < |¢,| < 30. This contradicts properness
of §. O
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11. CONTINUITY OF THE SURGERY MAP

This section is devoted to the proof of continuity of the surgery map &
which depends strongly on the cubic parameter space being one-dimensional.
We point out that the situation is similar to Douady-Hubbard’s proof of the
continuity of the “straightening map” in their study of the space of quadratic-
like maps [DHZ2]. One additional difficulty here is the lack of complete in-
formation on quasiconformal conjugacy classes in the non-holomorphic family
Be™(@) (the analogue of Theorem 5.5; see however Theorem 12.4).

The idea of the proof is as follows: Given a sequence B, € B§™(#) such that
B,, — B = B,, we prove that there exists a subsequence {By,; | such that
S(By,;,) = S(B) in P§™(0). The topology of the parameter space P (H) is
local uniform convergence respecting the markings of the critical points. The
same is true for BE™(0) with one exception {sec Section 9): If p has absolute
value 1, i.e., if B has two double critical points on the unit circle, then I3, — b
means that every subsequence of {B,, } has a further subsequence which either
converges locally uniformly to B or to iis conjugate R;l o Bo R,. From the
construction of & it is easy to see that S(B) = S(R,;' o B o R,). Therefore,
in order to prove continuity of &, all we have to show is that B,, — B locally
uniformly on C (respecting the markings of the critical points) implies that for
some subsequence {B, .}, S(B,,;,) — S(B) locally uniformly on C (again,
respecting the markings of the critical points).

So let h, and h be the unique k(#)-quasisymmetric homeomorphisms which
fix z = 1 and conjugate By, |t and Bly to the rigid rotation R. It is casy
to see that h,, —» h uniformly on T. Consider the Douady-Farle extensions
H, and H, which are K (f)-quasiconformal homeomorphisms of the unit disk.
By the construction of these extensions, II, and H are real-analytic in D and

H, — H locally uniformly in C°° topology [DE|. In particular, the partial
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derivatives 8H,, and 8H,, converge locally uniformly in I to the corresponding

derivatives OH and 8H. This shows that o,|p — ¢|n locally uniformly, where
on = Hiog and o = H*oy are the conformal structures we constructed in the
course of surgery for B, and B (see Section 9).

At this point, the main problem is to prove that B,, — B and o,/p — olp
implies o, — & in the L'-norm on C, for this would show that the normalized
solutions ¢, = g, of the Beltrami equations ¢} o0 = on converge locally
uniformly on € to the normalized solution ¢ of the equation oy = o. This
would simply mean that S(B,,) — S(B) as n — oo.

Unfortunately, we cannot prove o, — o in L'(C) in all cases. So, following
[DH?2], we take a slightly different approach by splitting the argument into
two cases depending on whether S(B) is quasiconformally rigid or not. In
the former case, we show continuity directly using the rigidity. In the latter
case, however, we prove ¢, — ¢ using the fact that S(3) admits non-trivial

deformations.
Theorem 11.1. The surgery map S : BE"(0) — Ps™(6) is continuous.

Proof. Consider B,,,B € Bg™(f) and start with the same construction as
above to get a sequence {o,} of conformal structures on the plane with uni-
formly bounded dilatation and the corresponding sequence {@n} of normalized
solutions of @*oy = o, Since {¢,} i3 a normal family by Corollary 10.5, it
has a subsequence, still denoted by {¢,}, which converges locally uniformly
to a quasiconformal homeomorphism ¢ : C — C.

Set Py, = ¢n 0 By 05t = 8(Bu), P = 9o Boyp™ = S(B), and Q =
# o B o™ All these maps are cubic polynomials in P§™(¢). Also P is
quasiconformally conjugate to @, and P, — () as n — co. We will show that

P = @ and this will prove continuity at B.
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FicURE 16. Sketch of the proof of continuity of S.

For the rest of the argument, we distinguish two cases: If P = §(B) is
quasiconformally rigid, then automatically P = @) and we are done. Otherwise,
P is not rigid, so the quasiconformal conjugacy class of P is‘ a non-empty
open set U ¢ P¢™(0) by Corollary 5.2. Assume by way of contradiction that
P #£ Q. Since P,, — Q as n — oo, P, € U for large n. Hence F, is
quasiconformally conjugate to P for large n, i.e., there exists a normalized
quasiconformal homeomorphism 7, : C — C such that 7, 0o P = P, o1
Observe that the dilatation of 7, is uniformly bounded, since by Theorem 5.1
the dilatation of (o @ 1) o n;" goes to 1 as n goes to oo (see Fig. 16). By
“lifting” 1, we can find a quasiconformal conjugacy &, = @, L om0 between

the modified Blaschke products B and EM, ie.,

¢noB =B, ok, (11.1)

Again, note that the dilatation of &, is uniformly bounded.
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We prove that the sequence of conformal structures {o,} converges in L'(C)
to o. This, by a standard theorem on quasiconformal mappings (see for ex-
ample [Le], Theorem 4.6) will show that ¢, — ¢ locally uniformly, hence
P, — P, hence P = @, which contradicts our assumption.

To this end, we introduce the following sequences of conformal structures
(where, as usual, we identify a conformal structure with its associated Beltrami
differential):
on(z) when z € | B;i(D)

0 otherwise

and

o(z) when z € Ui, B-i(D)

0 otherwise

Note that o* — o in L*(C) as k — oo and for every fixed k, ok — o* in L'(C)

as 1 -—— 0.

Lemma 11.2. The L'-norm |o,, — o||1 goes to zero as n — oo if the area of

the open set | i, E;:(D) goes to zero uniformly in n as k — oo,

Proof. For a given e > 0, take ko so large that & > &y implies area(l Ji=, é;: (D)) <

¢ for all n. Then for a fixed large k > kg and n large enough,

lon = olli < Nlow = okl + Nl = o*[l + |lo® = olh

< low - onll + 2

= / _ |onl dady + 2¢
UiZk1 Bien (B)

< 3Je.

This completes the proof of the lemma. 1

So it remains to prove that the area of |2, E;: (D) goes to zero uniformly

inn as k — oo. Clearly area(|J&°, B~*(D)) — 0 as & — oo. Since {£,} is
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uniformly quasiconformal, there is a constant C' > 1 such that i “

C~! area(E) < area(&,(B)) < € area(F) I

for every n and every measurable set B C (J2, B74(D). By (11.1), i

Um =50 '

so area{ 2, E;:(]D)) < C area(lJ2, B~i(D)) and this proves that the left 'FF
side goes to zero uniformly in n. u )i{{i
”l[,
i




12. RENORMALIZABLE BLASCHKE PRODUCTS

Iere we consider those Blaschke products in Bg™(#) from which one can
“extract” the standard degree 3 Blaschke product fj to be defined below. The
importance of this particular Blaschke product lies in the fact that it provides
a model for the dynamics of the quadratic polynomial ¢y : 2 ¥y 1 22,
It will be convenient to define renormalizable Blaschke products in Bg™(0) as
ones which after the surgery give rise to renormalizable cubics in P§™(8) (see
Section 4). In what follows we will have to work with a symmetrized version
of the notion of a quadratic-like map in order to show that any renormaliz-
able Blaschke product is quasiconformally conjugate near the Julia set of its
renormalization to the standard map fy. The proof of this fact resembles the
proof of [DH2] that every hybrid class of polynomial-like maps contains a
polynomial.

First we include the following simple fact for completeness.

Proposition 12.1. Let0 < 0 < 1 be a given irrational number and [ : ¢ C
be a degree 3 Blaschke product with a superattracting fized point at the origin
and a double critical point at z = 1. Let the rotation number of fir be 8. Then

there exists a unigue 0 < t(8) < 1 such that

F(2) = fo(z) = €m0 (f :31) : (12.1)

Proof. Clearly f(z) = emtzz(lz—_—aé), with |a| > 1 and 0 < ¢ < 1. The fact
that f/(1) = 0 implies @ = 3. Since the rotation number of flr as a function
of ¢ is continuous and strictly monotone at all irrational values, there exists a

unique ¢ for which this rotation number is . ]

Remark. Computer experiments give the value t() =~ 0.613648 - for the
golden mean ¢ = (v/5 —1)/2. Fig. 17 shows the Julia set of fy for this value of
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FIQURE 17. Julia set of f3 for 8 = (/5 —1)/2.

0. This standard degree 3 Blaschke product was introduced by Douady, Ghys,
Herman and Shishikura as a model for the quadratic Qg : 2 —> €™z + 2% in
the case 6 is irrational of bounded type [D2]. It was also used by Petersen

[Pe] to prove that the Julia set of @y is locally-connected and has measure zero.

Definition. A Blaschke product B € Bg™(6) is called renormalizable it
S(B) € P§™(#) is a renormalizable cubic, as defined in Section 4.

Theorem 12.2. Let B € B&™(8) be renormalizable. Then there exists a pair
of annuli W' € W, both containing the unit circle and symmetric with respect
to it, and a quasiconformal homeomorphism @p : C — C such that:

(a) B:0W' - W is a degree 2 covering map,

(b) ppol=1Iops,

(c) (¢ o B)(z) = (foowp)(z) for all z € W',

Moreover, one can arrange 8pg = 0 on K(B) = Muso B~(W").
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Proof. Consider the cubic P = §(B) =g o Bo gl e Pe(f) which is renor-
malizable. Consider the quadratic-like restriction P|y : U — V and the cor-
responding regions Uy = ¢ 1 (U) and V; = ¢ 1(V). Clearly U; € V1 and both

contain the closed unit disk. Define the symmetrized regions
W' =UinIU), W=WnI{V)

which are topological annuli with W' & W. Note that B sends W' to 8W in
a 2-to-1 fashion.

Now extend B[y to the whole complex plane by gluing it to the polynomial
2 > 2% near 0 and oo as follows: Let r > 1and w: C~ W' — C~ A{r™,7)

be a diffeomorphism such that

wol=1ow,

w(B(2)) = w(z)?, z¢cdW'.
Define the extension of Bly» by

B(z) zeW

F(z) =
“ w(w(z)?) z¢ W

Note that F is a quasiregular degree 3 self-map of the sphere, Fol =1Ic I
and every point outside W’ will converge to © or co under the iteration of .

Define a conformal structure ¢ on the plane as follows: Put o = w*ag on
C~ W', and pull it back by F°* to all the components of F~*(C~ W)W’
Finally, on K(B) set 0 = op. It is easy to see that ¢ has bounded dilatation on
the plane, is symmetric with respect to the unit circle, and F*(¢) = . By the
Measurable Riemann Mapping Theorem, there exists a unique quasiconformal
homeomorphism g of the plane which fixes 0,1, 00, such that ¢h(00) = o,
The conjugate map f = ppo F O-gogl is easily seen to be a degree 3 rational
map on the sphere. The quasiconformal homeomorphism I o g o I also fixes

0,1, 00 and pulls oy back to o because o is symmetric with respect to T. By




uniqueness, ¢p = I o pg o I. This implies that f commutes with I, hence it is

a Blaschke product. By Proposition 12.1, f = fj, and we are done. [

While the above theorem establishes a direct connection between some
Blaschke products in B§™(6) and fy, it is curious to note the following en-

tirely different relation:

Theorem 12.3. Let B,, be any sequence in BE™(0) such that p, — 0o as

n — oo. Then By, — fo locally uniformly on C* as n — co.

In other words, fy can be regarded as the point at infinity of the parameter

space Bg™(8).

Proof. As in Section &, let

B P 2ty 3 Z—DUn Z—(On .
fin e 1 —pnz 1 —Gnz

The first and second logarithmic derivatives

B;"n and B""'"‘ Bﬁn B (ZB.L:-n. ) ?
B!J'n (BP'H)

both vanish at z = 1. A brief computation shows that these two. conditions

translate into

|pn12 -1 |Q'n|2 -1
|pn - 1|2 |Q¢1 - 1|2 " 3, (12.2)

and

(pn = Pa)pal* — 1) | (gn— @)@l = 1)
PRSI 1 (123)

Since u, — 00, both p, and ¢, cannot stay bounded. Hence, after relabeling,

_l_

pn — 00 (compare Theorem 7.1). Then (12.2) shows that {|ga|*—1)/|gn—1* —
2, or equivalently, |g, — 2| — 1 but g, stays away from z = 1 by Lemma 7.4.
On the other hand, (12.3) shows that (g, —3n){|g.|> — 1)/|¢n — L|* — 0, hence

(@n — Tn)/lgn — 1] — 0. Since g, does not accumulate on # = 1, this implies

T0
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that (g, — g,) — 0. Near the circle |z — 2| = 1 this can happen only if g, — 3.
Since the rotation number depends continuously on the circle map, it is easy

to see that B, — fp locally uniformly on C*. ]

Consider a sequence B, going off to infinity as in the previous theorem.
Consider the cubics P,, = 8(B,,) = pnoB,, op;" asin (9.2). By the previous
theorem, B, — fp locally uniformly on C*, so Eun — ﬁ; locally uniformly
on C. Here f; denotes the modified Blaschke product for fy, defined in a way
similar to (9.1). Since {¢y,} is normal by Corollary 10.5, by passing to a sub-
sequence if necessary, ¢, converges to a quasiconformal homeomorphism ¢.
Since the surgery map is proper by Proposition 10.6, ¢, — co. By examining
the normal form (2.2), we see that P,, — @), where @ : z — Az(1 — 1/2z)
is affinely conjugate to Qg : z v €™z + 22, Hence, Q = wo fso @ ! and
we recover the surgery introduced by Douady and others. We conclude that
the surgery map S : Bg™(#) — P5™(#) extends continuousl}; to the points at

infinity of both parameter spaces, and the extension is also a surgery.

The next theorem is the analogue of Theorem 5.1 for Blaschke products. It
will be more convenient to formulate it for a general Blaschke product since

we would like to use it for f as well as the elements of Bg™(0).

Theorem 12.4 (Paths of QC Conjugacies). Let A and B be two Blaschke
products of degree d and let @ be a gquasiconformal homeomorphism which
fires 0,1,00 such that ol =To® and ®c A = Be @. Then there ewists a
path {®:}oct<r of quasiconformal homeomorphisms, with &g = id and @, = @,
such that Ay = d,0A0 'EI)[1 1s a Blaschke product for every 0 <1 < 1. In par-
ticular, either A is quasiconformally rigid or its conjugacy cluss is non-trivial

and path-connected.
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Proof. The proof is almost identical to that of Theorem 5.1. Consider o =

d*gy, which is invariant under A, and take the real perturbations oy = to,
0 <t <1 Let ®, be the unique quasiconformal homeomorphism which fixes
0,1, 00 and satisfies ®fop = 0y. The map A; = P, o0 Ao ®; ! is easily seen to
be a degree d rational map. By uniqueness, [ o ®; o I = @ since the left-hand
side also pulls oy back to ¢, and fixes 0, 1, co. Hence A, commutes with {. So

it is a Blaschke product. O

We will need the next lemma in the proof of Theorem 13.3.

Lemma 12.5 (Rigidity on the Julia Set). Let ¢ be a quasiconformal homeo-
morphism defined on an open annulus containing the Julia set J(fg) of the
Blaschke product fy defined in (12.1). Suppose that 1 commutes with I and
conjugates fo to itself. Then 1|y, is the identity.

Proof. Extend v to a quasiconformal homeomorphism C ~+ € which commutes
with I and conjugates fy to itself. By the previous theorem, there exists
a path t — ¢ of quasiconformal homeomorphisms, with 0 < ¢ < 1 and
iy = id,v; = 1, such that ¢, o fo o ¥t is a degree 3 Blaschke product
quasiconformally conjugate to fp. By Proposition 12.1; this Blaschke product
has to be fp itself, so 9; commutes with fy. Now, that |s,) must be the

identity map follows from an argument similar to the proof of Lemmma 6.2. [
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13. SURJECTIVITY OF THE SURGERY MAP

In this section we prove that the surgery map & : BE™(6) — P§™ () is surjec-
tive. We do this by showing that & is injective on the set of Blaschke products
which map to C* ~. M3(0) or to hyperbolic-like cubics. The proof of this fact
is based on the combinatorics of drops and their nuclei as developed in Section
8. Here is the outline of the proof: If S(A) = &(B) for some A, B ¢ Bg™(0),
there exists a quasiconformal homeomorphism of the plane which conjugates
the modified Blaschke products A and B , which is conformal everywhere ex-
cept on the union of the maximal drops. A careful analysis will then show
that when S(A) is not capture, one can redefine this homeomorphism on all
the drops of the two Blaschke products to get a conjugacy between A and
B everywhere. A pull-back argument together with the Bers Sewing Lemma
at each step shows that this conjugacy is conformal away from the Julia sets
(Theorem 13.1). When S(A) is hyperbolic-like or has disconnected Julia set,
one can use the renormalization scheme of Section 12 and the rigidity on the
Julia sets (Lemma 12.5) to conclude that the conjugacy between A and B is
in fact conformal {Theorem 13.3). Surjectivity of S, Theorem 13.7 and some

corollaries will follow immediately.

Theorem 13.1. Let A, B € BE™(#) and S(A) = S§(B) = P. Suppose that P
is not capture. Then there exists o quasiconformal homeomorphism @ C—C
which fizes 0,1, 00, commutes with I and conjugates A to B. Moreover, © is

conformal on the Fatou set G~ J(A).

Proof. Following the notation of (9.2), we assume that P = ¢ o Aoy =
¢ o B o' for some quasiconformal homeomorphisms ¢ and '. Consider
the quasiconformal homeomorphism ® = ¢’ ~L o ¢ which conjugates Ato B

on the entire plane and is conformal (i.e., 90y = 0) everywhere except on

U0 A+(D).
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Note that by Proposition 10.2(b) the open set C \m is precisely
the nucleus N, as defined in Section 8. Also, Upso A5(D) is the disjoini
union of the maximal drops of A {which by Proposition 10.2(a) correspond
to the bounded Fatou components of P which map to the Siegel disk A P
Qimilar correspondence holds for the open set Ueso B~*(D). Therefore, for any
maximal k-drop Di(A), there corresponds a unique maximal k-drop Di{(B) =
®g(Di{A)). Finally, note that for any such maximal drops, A%k DE(A) D
and Bk : Di(B) —» D are conformal isomorphisms since by our assurnption P
ig not capture.

Tn what follows we construct a sequence of quasiconformal homeomorphisms
p,:C—C which preserve the unit circle T and another sequence Ty by

symmetrizing each @

g T 1 2 1
(Io®g0 Nz lzl <1
We have already constructed @q, hence Y. Consider the sequences of compact
sets {J,(A)} and {J,(B)} as in Lemma 10.3. Note that @go A= B0 @, on
Jo(A). The next step is to define @ Let &, = To everywhere except on the
maximal drops of A. On any maximal k-drop Di(A) we define ® : DL(A) —
Di(B) by B o Too A%, (When k = 0, the only maximal 0-drop is D and
by this definition Oy lp = Tolp.) Observe that the two definitions match along
the common boundary. Hence ®, is in fact a quasiconformal homeomorphism
by the Bers Sewing Lemma. Note that @15 = Dol 1004) and by definition of
Ji(A) in (10.1), @10 A= Bo® on Ji(A). The homeomorphism Y is then
obtained by symmetrizing ®y.
Continuing inductively, we define ®,, to be equal to T,_1 everywhere except

on the maximal drops of A and then on the maximal drops we define it by
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taking pull-backs. In other words, ®, : Di(A) — Di(B) will be defined by
B %o, 10 A%.

Lemma 13.2. The sequence of quasiconformal homeomorphisms {®,} has

the following properties:

@uls () = Pt liesiay (13.1)

and
(@noA)(2) = (Bo®B,)(z) 2 € Ju(A). (13.2)

Proof. Both properties follow by induction on n. Let us prove (13.1) first. We
have already seen (13.1) for n = 1. Assume (13.1) is true and let z € J,(A).

We distinguish three cases:

oCase 1: z € J(A)ND. Then I(2) € Jo_1(A) and we have &, ;1(2) =
Tn(z) = (I o®,0I)(2) = ({ 0 ®y_q0I)(2) by the induction hypothesis. The
latter is clearly equal to T,,_1(2) = &, (2).

eCase 2: z € Jo(A) N~ D and A%*(z) € D for some k > 1. A%*(2) € I/,
and hence (I o A%)(2) € J_1(A). So Ppii(z) = (B™F o Ty o A%)(2) =
(B*oTo®,0l0A%)(z) =(B*olo®,  0loA*)(z)by the induction
hypothesis. Again, the latter is equal to (B™% 0 T,,_1 0 A%)(2) = &, (2).

eCase 3: z € J,(A) ~ D and 2 is accumulated by points of the form Cuse
2. Then, clearly, ®,,1(z) = ¢,(z) by continuity.

Altogether the three steps show that ®,11]7,(4) = Pyl 1, (4), Which completes
the induction step and the proof of (13.1).
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To prove {13.2) we have to work a little bit more. We have already seen
(13.2) for n = 1. Assume (13.2) is true and let z € J,41(A). We split the

induction step into the following cases:

oCase 1: 2 € Jppy (A)NDand A(z) ¢ D. Then (®,,104)(2) = (Bo®,11)(2)

automatically since @, is defined by pull-backs.

e Case 2: z € Jyy (A)D but A(2) € D. Then (D,104)(z) = (TroA)(2) =
(Bo B 0,0 A)(2) = (Bo®ui)(2).

eCase 3: 2 € Jpy (A)ND and A(z) € D. Then (®,104)(2) = (TroA)(2) =
(I o ®, 0 I){A(2)) = (I o ®, 0 A)(I(2)). But () € Jo(A) so by the induction
hypothesis, (I o &, 0 A)(I(2)) = (I o Bo ®,}(I{2)) = (Bolod,)(I(z)) =
(BoTu)(2) = (B o Buy1)(2)

eCase {: z € Jo1(A)ND but A(z) ¢ D. Then I{2) € J,(A). Let w = A(z).
Since A(I(z)) = I(w) € D, we have I(w) € IJ,—1(A), hence w € J, 1(A). By
(13.1), one has 1 (w) = ®p(w) = Ppoy(w) = Tp_1(w) = (Lo Tpyol)(w) =
(To®yo0) (1) = (IoB,0I)(A(2)) = (TobuoA)(I(2)) = (IoBo,)(I(2)) by the
induction hypothesis. The latter is equal to (Bolo®,)(I(2)) = (BeTy)(2) =
(Bo®,y1)(2). L

Back to the proof of Theorem 13.1. By the Bers Sewing Lemma, the sym-
metrization @, — Y, does not increase the dilatation. On the other hand,
the modification T,, — ®,4, achieved by pull-backs along the maximal drops
does not increase the dilatation either, simply because A and B are holomor-

phic. So we may assume that {®,} is uniformly quasiconformal. Since all the
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®,, fix 0,1, 00, it follows that some subsequence ;) converges locally uni-
formly to a quasiconformal homeomorphism ®. Lemma 10.3 and Lemma 13.2
imply that ® o A = Bo ® on J(A).

In particular, this shows that ® sends all the drops of A bijectively to the
drops of B (before we only had a correspondence between the mazimal drops
of A and B).

It is easy to check that @ obtained this way is conformal on the union
N =, NE(A) of all the nuclei of drops of A at all depths as defined in
Section 8 and in fact conjugates A to B there. Since N is clearly disjoint from
the Julia set J(A) by (8.2), it remains to show that every Fatou component of
A is contained in N.

Consider a component U of the Fatou set of A. Under the iteration of A,
U visits both I and € ~. D either finitely many times or infinitely often. In
the first case, U has to map eventually into the nucleus Ng(A) or Neo{A),
hence it has to be contained in N. We prove that the seco‘nd case cannot
occur. In fact, suppose that the orbit of U visits I and C ~ D infinitely
often. According to Sullivan [Sul], U eventually maps to a periodic Fatou
component of A which is either an attracting or parabolic basin or a Siegel
disk or a Herman ring. It follows that this cycle of periodic Fatou components
intersects both I and C~.ID, so in either case a critical point of A has to enter
D and leave it infinitely often, which is impossible since S{A) is not a capture.
This shows that N = C ~ J(A) and proves that ® is a conjugacy between
A and B everywhere and is conformal on € ~ J(A). It is easy to see that ®

constructed this way commutes with I. d

Theorem 13.3. Let A, B € B§*(9) and S(A) = S(B). If S(A) is hyperbolic-

like or has disconnected Julia set, then A = B.
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Proof. A and B are renormalizable by Theorem 4.2. Consider the quasiconfor-
mal homeomorphism ® given by Theorem 13.1. By Theorem 12.2, there exists
a pair of annuli W% @ W, (resp. W} € Wpg) and a quasiconformal homeomor-
phism @4 (resp. @g) which conjugates A (resp. B) to fy on W} (resp. W}
Since S(A) = S(B), we can assume that Wj = ®(W}) and Wp = ®(WW,). The
quasiconformal homeomorphism 1 = g o ® o, 1 wa(W)) = wp(Wg) is a
self-conjugacy of fp near its Julia set which commutes with /. By Lemma 12.5,
we must have 1| J(fs) = id. It follows from the Bers Sewing Lemma that the &-
derivative of 9 is zero almost everywhere on J(fy). Since by Theorem 12.2(b)
w4 (resp. wp) has zero d-derivative on K (A) (resp. K(B)), we conclude that
8% = 0 almost everywhere on K(A). But, as in the proof of Corollary 4.3,
up to a set of measure zero, J(A) = |J ., A" (K(A)). Therefore, 0% has to
be zero almost everywhere on the Julia“set J(A). Hence & is conformal, so

A=DB. e

Remark. We believe that the surgery map is a homeomorphism, at least
outside of the capture components where it might have branching. This would
imply that the connectedness loci C5(6) and M3(8) are actually homeomorphic,

a conjecture that is strongly supported by computer experiments.

Corollary 13.4. The surgery map S restricts to a homeomorphism Aq =
Qugr. Similar conclusion holds for Ay and Qine. In particular, the connected-

ness locus Cs() is connected.

Proof. Clearly S maps Ay into Qg injectively by the previous theorem. Since
§ is a proper map by Proposition 10.6, it extends to a continuous injection
Az U {00} © Qe U {00}, We claim that this injection is onto. To this end,
we show that for any sequence B, € A which converges to the boundary of
the connectedness locus Cx(@), the sequence P,, = 8(B,,) € Qep converges to

the boundary of M3(#). If not, there is a subsequence of B,,, which converges
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to B € 0Cs(0) but the corresponding subsequence of F,, converges to some
P € Q.. By continuity, P = S(B). But B has connected Julia set while
J(P) is disconnected. This is impossible by Theorem 10.1. O

Corollary 13.5. The connectedness locus Cs(f) has only two complementary

components Aoz and Ay

Proof. Let U be a bounded component of C* ~\.C5{f) which is not A;;. Without
loss of generality, we assume that U/ maps into Q..; by §. Take A € U. By
the previous corollary, there exists a B € Ay such that S(A) = §(B). By
Theorem 13.3, A = B and this is a contradiction. ]

Corollary 13.6. The surgery map 8 : BE*(8) — P§™(6) is surjective.

Proof. Compactify BE™(f) and PS™(f) by adding points at 0 and oo to get
topological 2-spheres. S extends to a continuous map between these spheres
by Proposition 10.6. This map has topological degree # 0 because it is a
homeomorphism Aggy — Qe and 8 {Qegs) = Aess. Therefore it has to be

surjective. O

Since the boundary of the Siegel disk of a cubic which comes from the
surgery is a quasicircle passing through some critical point, we have proved

the following:

Theorem 13.7 (Bounded type cubic Siegel disks are quasidisks). Let P be a
cubic polynomial which has a fized Siegel disk A of rotation number 8. Let 0
be of bounded type. Then the boundary of A is a quasicircle which contains

one or both critical points of P.
By a recent theorem of Graczyk and Jones [GJ], we have

Corollary 13.8. Under the assumptions of Theorem 13.7, the boundary of
the Siegel disk A has Hausdorff dimension greater than 1.
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A recent result of McMullen [Mc3] implies the following interesting fact:
The Hausdorff dimension of 04, is equal to the Hausdorfl dimension 1 <
§(0) < 2 of the boundary of the Siegel disk of Qg 1 z — 20 5 4 2% whenever P,
i renormalizable. It follows from Theorem 4.2 that the function ¢ — HD{0A,)
takes on the single value §(8) on Qegz, $lint 88 well as on all the hyperbolic-like
components of M3(6). (One can actnally find more rigorous estimates for the
value of §(6) when @ = (v/5 — 1)/2; see [BOS].)

Now it is possible to show that despite all the bifurcations taking place near
the boundary of the connectedness locus M3(8), which give rise to disconti-

nuity of the Julia sets, the boundaries of the Siegel disks move continuously.

Theorem 13.9 (Boundary of Siegel disks move continuously). The boundary
OA, of the Siegel disk of Fe € P(6) centered at 0 is a continuous funclion
of c € C* in the Hausdorff topology-

Proof. Let us fix some P ¢ P§™(f). 1t P ¢ OM;(0), Theorem 3.1 shows
that J(P), hence dAp, moves holomorphically in a neighborhood of P and
continuity at P is obvious. So let us assume that P € OM;3(f) and consider a
sequence P, € Ps™(#) which converges to P asn — oc. Since the surgery map
is surjective, there exists a sequence By, € Bg" (0) such that §(By,) = Fe,. By
properness (Proposition 10.6), some subsequence which we still denote by B,
converges to some B € Bem(9), which by continuity maps to P. Now consider
the representations P, = ®n © By, o @y as in (9.2). Then the boundary
8Ap,, is just the image ¢n (T). Since {w@s} is normal by Corollary 10.5, some
further subsequence, still denoted by {pn}, converges to a quasiconformal
homeomorphism 1. The map @ =4 © Boy™leP§m(0)is quasiconformally
conjugate to P. Since P is rigid by Theorem 5.5, P = Q. Now, as n —
0o, BAp, = pn(T) converges in the Hausdorf topology to %(T) = 8Aqg =
OAp. 0O
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Remark. We can actually make this theorem stronger in the following sense:
Let P, € P§™(0) be a cubic for which one of the critical points ¢o or 1 is
off the boundary dA,, (this happens if P, is off the Jordan curve I studied
in the next section). Then the boundary A, moves holomorphically as a
function of ¢ in a neighborhood of ¢g. To see this, assume for example that
for all ¢ sufficiently close to ¢y we have ¢ € A, but 1 ¢ 0A.. Evidently the
critical orbit {P%(c)}s»o moves holomorphically as a function of ¢, and we
can extend this motion to the closure of this critical orbit by the A-lemma.

But this closure is precisely the boundary 8A, if ¢ is close to ¢.




14 S1ECEL Disks wiTH Two CRITICAL POINTS ON THEIR BOUNDARY

Tn this section we characterize those cubics in P§™(6) which have both criti-
cal points on the boundary of their Siegel disk. In Theorem 14.3 we will prove
that the set of all such cubics is a Jordan curve I' in Pg™(6). The proof of
this theorem will use the fact that the quasiconformal conjugacy classes in
Bg™(8) are path-connected (Theorem 12.4). We then show that when there
are no queer components, I' is in fact the common boundary of Qes and Qin
(Theorem 14.4).

Consider the set I' which consists of all cubics P € P§™(9) such that both
critical points of P belong to the boundary of the Siegel disk Ap. Fig. 18
shows this set in the parameter space P5™(8).

Since the surgery map S : Bg"(8) — Py™{0) is surjective by Corollary 13.6,
every P e I is of the form §(B,) with B, having two double critical points
on the circle. Corollary 9.3 shows that g must belong to the unit circle T C
C* ~ Bg™(8). Therefore, we simply have

I = 8(T).

In particular, I' is a closed path in Pgm(f) ~ C*. Suggested by Fig. 18, we
want to prove that T is a Jordan curve. This would follow immediately if one
could prove that S|y is injective. However, I have not been able to show this.
In fact, I do not know how to prove that Blaschke products on the boundary of
the connectedness locus Cs(8) are quasiconformally rigid. So we take a slightly

different apptoach by showing that the fibers of S|y : T — I are connected.

Lemma 14.1, Let A, B € B™(6) and S(A) = S(B) = P. Suppose that P is
not capture. Then there exists a path ¢ — Ay € BE™(0) of Blaschke products
for 0 <t <1, with Ag = A, AL =5, such that S(A;) = P for all t.
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FIGURE 18. The Jordan curve T, the locus of all critically
marked cubics in P& (6) which have both critical points on the
boundary of their Siegel disk. Topologically it can be described
as the common boundary of the complementary regions ey and

Qins- Note that T is invariant under ¢ — 1 /c.

Proof. Since P is not capture, by Theorem 13.1 there exists a quasiconformal
homeomorphism & which conjugates A to B, which is conformal away from
the Julia set J(A). By Theorem 12.4 there exists a path {®;}o<t<1 connecting
the identity map to ® and a corresponding path {A; = ®;c Ao &) 1}05151 of
clements of B¢™(#) connecting A to B. Note that by the definition of ®,, these
quasiconformal homeomorphisms are all conformal away from J(A).

It remains to show that S(A;) = P for all 0 < ¢ < 1. Consider the Douady-
Earle extension H : D — I used in the definition of S(A) in Section 9. Recall
that Hl|y conjugates Alr to the rigid rotation Ry. Hence, the quasiconformal
homeomorphism Hy = Ho®; ' : D — D will conjugate Az|y to the rigid rotation

as well. Note that H; is not in general the Douady-Farle extension of the




linearizing homeomorphism h; : T -+ T for A,. Nevertheless, Sg, (As) = S(A4,)
by Proposition 9.2. Consider the modified Blaschke products

A=) 4@kt
(HloRpoH)(2) |2l <1
and
Avt(z) = At(_zz
(f[t oflgo Ht)(Z) |Z| <1

zj>1

Note that ®; o E = A"’t o Py,
Define the corresponding conformal structures ¢ = H*op and oy = H{og a8

in Section 9. It is easy to see that
o = ®joy. (14.1)

Here we use that fact that ®, is conformal away from J(A). Consider the

normalized solutions ¢ and ¢, of the Beltrami equations
Yoy =0, @0y =0
By (14.1) and uniqueness, we have
pe=pod;".

Hence, by Proposition 9.2,

S(A) =woAow!
=gpo®;tod0d 00
—@podop!

— S5(A).

This completes the proof of the lemma. O

Corollary 14.2. The fibers of S|v: T — T are connected.
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Proof. Let A, B € T C B&(f) and S(A) = 8(B). Apply the previous lemma
to A and B. Note that A, € T for all 0 < ¢ <1, since A; is quasiconformally

conjugate to A, hence has two double critical points on the unit circle. [
Theorem 14.3. T is a Jordan curve.

Proof. Consider 8|y : T — I' whose fibers are closed and connected by Corol- E

lary 14.2. By general topology, I' is homeomorphic to T/ ~, where A ~

means S(A) = S(B). Since each equivalence class of ~ is a closed connected

proper subset of T, it follows that T/ ~ is homeomorphic to the circle. ] ’

Finally, we find a topological characterization of I' in P§™(#) under the

assumption that there are no queer components in the interior of M;(9).

Theorem 14.4 (Topological Characterization of I'). I' is a subset of the bound-
ary OMs(0) and it contains ey N Ming. If there are no queer components
in the interior of M3(0), then I' = 0Qq N 0.

Proof. First let us show that 0Qem N 0Qns C 1" Let P, € Qe M e and
assume that P, ¢ T. Choose B, € BZ™(6) such that S(B,) = F.. We can

assume without loss of generality that |u| > 1. Choose a sequence P, € ipe \

converging to P, and a sequence B,, € Ay such that S(B,.) = F,. By
passing to a subsequence, we may assume that B, — B, as n — oo, where
1| < 1. By continuity, S(By) = F, and by our assumption F, ¢ I, so we
must have |z/| < 1. Since P, is not capture by Corollary 5.3, Lemma 14.1 shows
that there is a path £ = A; of quasiconformally conjugate Blaschke products

in B¢™(6) connecting B, to By, all of which are mapped to F,. Since this path

must intersect T somewhere, we conclude that P, € I" which is a contradiction.

Now we prove that I' € OM3(0). Fix some P € I'. Since P has both critical

points on 8Ap, it cannot belong to any hyperbolic-like or capture component. |

Also, P cannot be in a queer component U of the interior of Mj(f), since [
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1 belongs to the boundary of A .

¢ belongs to the boundary of A |

Ficure 19

otherwise every @ € U would have to be quasiconformally conjugate to P by i

Theorem 5.5, which would imply that @ has two critical points on A, which
would show U C . But this is evidently impossible because U is open and T'
is a Jordan curve. Therefore, P has to lie in dM;3(0) = 9zt U Hins.

Now assume that there are no queer components in the interior of Ms{@).

To show that I' = 9Q.z:NQns, let P, € T and assume by way of contradiction

that cg € gt ~ Ohne. Since ¢y has positive distance from 1y, for all ¢ in

a neighborhood D of ¢y the sequence {P{1)} has to be normal. Assuming

that D is a small disk, the Jordan curve I cuts D into two topological disks
D, and D5 such that for every ¢ € Dy, 1 € A, and ¢ ¢ 84, and for every
c€ Dy, ce A, and 1 ¢ A, (see Fig. 19). g

Clearly Do N ezt = Do N8 = 0. So Dy has to be a subset of a '|

component U of the interior of M3(f). Since there are no queer components

by the assumption, U is either hyperbolic-like or capture. |
For every ¢ € Dy, we have 1 € A, and the restriction P,|aa, is conjugate to il
the rigid rotation by angle #. Therefore, P29 (1) — 1 for all ¢ € D, where the i

)

g, are the denominators of the rational approximations of 6. Since {F;"(1)} is

normal in D, for a subsequence {g,(;} we must have P; " (1) — 1 throughout
D. In particular, if ¢ € Dy, the critical point 1 of P, must be recurrent. This

is impossible if U is hyperbolic-like or capture, since over Dy, ¢ € 04, and
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hence 1 either gets attracted to the attracting cycle or eventually maps to the

Siegel disk A.. J




15, THR HIGHER-DEGREE CASE

The techniques developed in the previous sections can be used to study
Siegel polynomials of higher degrees. When appropriately formulated, many of
the results of this work for cubic Siegel polynomials generalize directly without
significant extra effort. However, there is one particular step in this program
which seems problematic. In this section we shall try to sketch, without proofs,
how this generalization can be achieved and what that particular snag seemns
to be.

Fix an integer d > 4 and an irrational number 0 < 6 < 1 of Brjuno type.
Consider the space P (6) of affine conjugacy classes of critically marked poly-
nomials of degree d which have a fixed Siegel disk of multiplier A = e**® cen-
tered at the origin. Recall that a marking in this context is a surjective function
m from the set {1,2,...,d — 1} to the set of critical points, and that affine
conjugacies between critically marked polynomials are dilations which respect
the markings. Fach conjugacy class in Pom(8) has a unique répresentative P,

with marked critical points located at
c={m(l)=ci... ,m(d - 2) = cgo,m(d—1)=1),

where ¢; € C*. It is easy to see that

2

Poizm A (=) (C—ca2)(C — 1) dE,
E’_UH_}\ (15.1)

C1° " Cd—2

where A =

Tt follows that P¢™(#) is isomorphic to the product (C*)%2 of d — 2 copies of
the punctured plane, with coordinates (e1, ... ,Cd-2).
The full symmetric group Sg-1 acts on PY™(9) in a canonical way (permuting

the markings of the critical points). In fact, in the above coordinates for
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Pt (), the transposition ¢ > j for 1 <i < j <d — 2 acts as
L,;,j : (Cl,... s Ciyvve 3Gy e ,Cd_g)l*%(cl,... N T ¢ PR ,Cd_z),

while the transposition j <> d — 1 acts as the biholomorphic involution

€1 1 Cdoa?
Lj,a!—].:(clg---;ng---;cd,—2)*_)’ ey ey,
C4 C4 C4

We define the connectedness locus My(0) as the subset of P§™(#) consist-
ing of all polynomials with connected Julia set. It is not hard to show that
the filled Julia set of P. € P5™(6) is contained in the disk (0, me ), where
me = rgmax{lell,...,|ca—s], 1} and 74 is a constant only depending on the
degree d. It follows from this fact that My(f) is a compact set in Pg™(6).
Moreover, M4(0) has many symmetries since it is invariant under the action
of the biholomorphic involutions L; ;. It should be possible to show, for exam-
ple using an argument similar to [La}, that the connectedness locus My(0) is
connected, although the rest of the arguments will not depend on this fact.

The definitions of hyperbolic-like and capture polynomials should now be
modified as follows: A polynomial P, € P5™(0) is called hyperbolic-like if all
but one of the critical points ¢i,... ,cq 2, 1 get attracted to attracting cycles.
On the other hand, P, is called capture if at least one of the critical points
eventually hits the Siegel disk A, of P, centered at the origin and other critical
points which do not hit A, if any, get attracted to attracting cycles.

It can be shown, using the same technique of holomorphic motions as in
Section 3, that hyperbolic-like and capture polynomials form components of
the interior of the connectedness locus My(f). We call all the possible remain-
ing components queer. Again, one can show that the Julia set of every queer
polynomial in P§™(#) admits an invariant line field and has positive measure;

this requires an adaptation of the argument in Theorem 3.4.
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Outside the connectedness locus, at least one of the critical points gets I

attracted to infinity. We are particularly interested in the domains
O ={Pe€ Pe™(@) : All critical points of P except m(j) get attracted to oo}

There is a principal domain {41, which in coordinates {(c1, ... ,c4-q) intersects

every neighborhood of (oo, ... ,00) of the form |

{Jes| = R} x -+ x {lea2| 2 B}, it

and plays the role of Qe in the cubic family. Other copies Q= Lja1(Qa-1)

|

|

for 1 < 7 < d— 2 are just biholomorphic images of this principal domain 1

(analogues of £y in the cubic case). Note, however, that there is a significant |
difference between the domains {2; and the topological disks Q. and {0 For

d > 4, Q; is not a component of PF™(6) ~ My(0). i

Every P € ; is renormalizable in the sense that it has a quadratic-like
restriction hybrid equivalent to the polynomial Qy : 2 — 2705 4 22, The Julia

set of such P consists of countably many components each quasiconformally

homeomorphic to the Julia set of (g, as well as uncountably many points. It

has Lebesgue measure zero if ¢ is bounded type.

Inside a hyperbolic-like or capture component, we expect t0 have different
critical orbit relations. These are defined by a finite number of algebraic
subvarieties of codimension at least 1 (the generalization of “centers” in the
cubic case) which do not disconnect the component. y i

In order to prove conjecture {(Ag) of the introduction for arbitrary d > 4,
we introduce a similar family of degree 2d — 1 Blaschke products. Let

E:{B:zﬁmd(f:;z)---(g%) py| > 1 for all 1gjgcz—1}, I

where the rotation factor 7 € T is chosen so as to achieve the normalization e

B(1) = 1. Clearly, B is homeomorphic to the symmetric product of d —1 1IN
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copies of C ~ D, or equivalently, the punctured plane. Therefore, it can be

identified with the space of all monic polynomials of the form

w (w—wp) - (w—wgg) = wht — o+ (1) oy,

where w; € C* and the o; are symmetric elementary functions on {wy,... , We—1}-

It follows that

BeC 2 x (.

We are interested in the subset B C B of those normalized Blaschke products

of the above form whose critical points other than 0 and oo are of the form

1 1
Cly oo 3Cd1y =50y ——
G Ca—1
with |e;] > 1 forall1 < j < d—1. The following critical parametrization

result is a generalization of Theorem 7.1:

Theorem 15.1. Let ¢y,... ,cq.1 be points outside the closed unit disk in the
complex plane. Then there exists a unique normalized Blaschke product B € B

whose critical points are located at

1 1
anouclv"'acdfli:)"'::-
C1 Cd—1

As a result, B is also homeomorphic to (92 x C*, A straightforward gener-
alization of Lemma 7.4 (with the constant 2 replaced by (d-+1)/(d— 1)) shows
that this theorem holds even if some of the c; belong to the unit circle.

Now consider the space of Blaschke products B of degree 2d — 1 subject to
the following two conditions:

(i) B has the form

, - Zz — Pd—
| 1—pa1z
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where the points p; are chosen such that B has a double critical point on the
unit circle T and d — 2 pairs (¢;, 1 /?:;) of symmetric critical points which may

or may not be on T.

(i) 0 < ¢ < 1 is chosen so that the rotation number of the analytic homeo-

morphism B|r is equal to the given irrational number 0. !

By definition, B () is the space of all critically marked Blaschke products

satisfying (i) and (i), modulo the action of the rotation group. Here a marking i

of the critical points of B is a surjective function m from the set {1,2,..., d—1} |
to the set of finite critical points of B outside the open unit disk. To understand
the topology of B? (6), for 1 < j < d — 1 we define £; C Bgp () as the

set of all conjugacy classes (B, m) of critically marked Blaschke products with

m(j) € T. In each E; one can choose a unique representative with m(j) = 1
and hence by the remark after Theorem 15.1 use the other d — 2 critical points
m(i) € C\D (i # j) as coordinates for [2;. It follows that &; is isomorphic to
(C ~ D)¥2. On the common boundary 05; N 0E; ~ (C ~ ]D))'d“a x T, a point

|
% has two coordinates
!

(m(1),...,m@E) =1,...,m(j),... ,m{d - 1)) € L;

and '

(m(l) Lme _”E‘,(_d(_;__)}l)ean

[ ]

m(7)" " m(j)’ m

which we must identify. The space By ,(f) is therefore homeomorphic to the

digjoint union of d — 1 copies of (C ~ D)2 glued along the boundaries by the

above identification. Fortunately, there is an easy way to identify the topology
of this quotient. It suffices to consider the map & : ]_[d H(C\D)#2 5 (Cr)4 2
defined by
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An easy cxercise shows that the fibers of ® are precisely the equivalence classes
defined by the above gluing and hence ® descends to a homeomorphism be-
tween BT | (A) and (C*)*2. As a result, the y; € €' (1 < i< d—2) can be

used as coordinates of Bg ,(0).

Theorem 15.2. For every d > 4, both parameter spaces P§™(8) and BSj1(0)
are homeomorphic to the product of d — 2 copies of the punctured plane C*.

For an clement B € BSP ,(#) one can define the notion of a drop, the
nucleus of a drop, ... in a similar way. All the basic properties of these objects
developed in Section 8 remain valid when appropriately restated.

Now a similar surgery map S : B&® ,(8) — P§™(0) can be defined in a way
identical to the cubic case. An argument similar to the one in Proposition 10.6
shows that this map is proper.

Tnside the Blaschke space BST , (#) we have the connectedness locus Czq--1(6)
consisting of all maps with connected Julia sets. This locué is compact and

we can consider in its complement the domains

Ay ={B € B (8) : All critical points of P except m(j) get attracted to oo}

It is easy to see that S(A;) € ; for 1 < j < d-—1. In particular, the Blaschke
products in A; are renormalizable so that one can extract the standard map
f, from them by straightening (the analogue of Theorem 12.2).

Now consider the following:
Statement. The surgery map S : BSy,(6) — PI™(8) is continuous.

Assume for a moment that this statement is true. Consider the compacti-
fication

(C*)d—Z oy @d*Z
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into a product of 2-spheres for both parameter spaces Py (0) and Bsp ((0).
The added points in these compactifications have well-defined dynamical mean-~
ings. For example, it is easy to check using the normal form (15.1) that when
k of the critical point ¢; tend to infinity (or zero), the polynomial P, converges
locally uniformly on C to a critically marked Siegel polynomial of degree d—k,
i.e., an clement of P (¢). Similarly, using the parameters ji; for B (0),
one can check that when & of the critical points y; tend to infinity {or 7€10),
the corresponding Blaschke product converges locally uniformly on C* to a
Blaschke product in Bg’(";_ -1 (6).

Knowing this fact and properness of S, it is not hard to show that § extends
to a continuous map C4 2 — L% 2, so it has a well-defined topological degree.
We show that this degree is non-zero, which proves & must be surjective. To
this end, it suffices to note that the proof of Theorem 13.1 extends word-by-
word to the case of Blaschke products in Bgp,(#). In particular, it follows
that S injects Ag_; into Q4 3. We claim that the map & : Ad_l — Qg1 is a
homeomorphism. Let a sequence B, of Blaschke products in Ay converge to
B € 8A4 , and the image sequence P, = S(B,) converge to some P € {241,
Then either B has a lower degree so that it belongs to B5™ , for some 1 < s < d,
or B € Bg? (#) but at least two of the critical points of B have bounded orbits.
If the surgery map is continuous on the compactified space €42, it follows
that either P has degree less than d or at least two distinct critical points of
P have bounded orbits. Either possibility would contradict P & {41, proving
that the restriction S|a,_ , : Ag—1 — fla—1 18 & proper injective map. Hence it
has to be a covering map of degree 1, or in other words a homeomorphism.
Since S~ (Qy-1) = A1, the topological degree of & C4-2 - C92 cannot be
zero, and this shows surjectivity of §. Conjecture (A) follows immediately.

So all the ingredients for a generalization of (As) to any (Ag) is available

using the techniques developed in this work, except for one missing link which
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is the above continuity statement for S. The proof given for the cubic case
in Theorem 11.1 relies strongly on the fact that nontrivial quasiconformal
conjugacy classes in Pg™(6) are open. This definitely fails in PI(@) when
d > A. But still we believe that it should be possible to show continuity by a
different method.
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