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Abstract of the Dissertation,
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by
Luisa D. Stelling
Doctor of Philosophy
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)
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1999

In this work we study an analogue of the Arnol’d conjecture. We
give a lower bound for the number of fixed points of a non-Hamilto-
nian symplectomorphism which is isotopic to the identity through
symplectomorphisms on a closed, semi-positive symplectic mani-
fold M. The result holds for symplectomorphisms whose Calabi
invariant is sufficiently small. The bound on the size of the Calabi
invariant depends only on the geometry of the symplectic manifold

M.

iii




to my father and to Heberto.




Contents

Acknowledgements

1 Introduction

2 Floer homology and Floer continuations
2.1 Floerhomology . . .. ... . .. .. ... .. .. ...

2.2 Floer continuations . . . . . . . . .« v i o e

3 Novikov homology

4 Energy Bounds
4.1 Monotonicity lemma . . . . .. ..o L L
4.2 Setup. . ..o

4.2  Control over number of domaing a section enters . . . . . . . .

5 Proof of the main theorem
51 Maps between the two homologies . . . . ... ... ... ...

5.2 Composite Maps . . .« v v v v v e

6 Examples

vii

17

22

26
26
34
37

44
45
53

65




7 Appendix: on transversality and compactness , 67

Bibliography 73

vi




Acknowledgements

I would like to thank my advisor Dusa McDuff for her patience and all the
advice I received from her throughout my graduate years. And of course, for
the many useful comments on the previous drafts of this work. I enjoyed her
seminar, and learnt a great deal of mathematics by attending and participating
in it.

I am also very grateful to Alain Etcheberry and Enrique Planchart who
made me feel confident about myself, and whose classes I enjoyed deeply.
From them I learnt much more than just mathematics.

I would also want to thank my friends Jennifer, Joe, Olga, Silvia, Jose,
Santiago and Haydee for the many good times we spent together. Thanks to
them I will have real good memories of these five years.

I owe special thanks to my husband Heberto for making me so happy and
for listening to me so many times.

Finally I want to thank my family for the support and encouragement 1

received from them all my life. T specially want to thank Francia for being a

mother to me and making my life so much better.




Chapter 1

Introduction

A symplectic structure w on a manifold M provides us with a one-to-one
correspondence between closed 1-forms and vector fields X satisfying Lxw = 0.
A vector field is called Hamiltonian if it corresponds to an exact 1-form, and a
symplectomorphism ¢ on M is Hamiltonian if it is the time-1 map of a time-
dependent Hamiltonian vector field. The Arnol’d conjecture states that the
number of fixed points of a Han’ﬁltoni&n symplectomorphism on a compact
symplectic manifold can be estimated below by the sum of the Betti numbers
of M provided that all the fixed points are non-degenerate.

The present work generalizes the paper by L. Van and K. Ono where they
consider an analogue of the Arnol'd conjecture for non-Hamiltonian symplec-
tomorphisms in the identity component. In this case the fixed point set may be
empty, for example, an irrational rotation on an even-dimensional torus with
the standard symplectic structure. For this reason, it is necessary to consider
the Novikov homology instead of ordinary homology. The aim of this work is

to prove the following theorem

Theorem 1. Let (M,w) be a closed, semi-positive symplectic manifold of di-




mension 2n. Suppose @ is a symplectomorphism on (M,w) which is isotopic

to the identity through symplectomorphisms, There exists ¢ > 0 such that if
all the fized points of ¢ are non-degenerate, and its Calabi invariant [0] has
representative that satisfies 8|, < e, then the number of fized points of p is ai
least the sum of the Betli numbers of the Novikov homology over Zq associated

to the Calabi invariant.

Here we suppose that M is equipped with some Riemannian metric g and
that the norm |8, is defined via w. The quantity e depends only on the
geometry of (M, g) (see remark 5).

If M is not compact, the symplectic structure should satisfy some condi-
tions implying reasonable behaviour at infinity. For the main theorem to hold

we could have required (M,w) to be tame (geometrically bounded). This

means that there exists an almost complex structure J on M, such that
g(+,-) = w(-,J-} is a complete Riemannian metric whose sectional curvature is
hounded and whose injectivity radius is bounded away from zero.

It is well known (see [12]) that the Novikov homology groups are isomorphic
for almost all cohomology classes in HA'{M,R) and that the rank of these
groups is minimal in the class of Novikov homology groups associated to all
the classes in (M, R). This enables us to estimate the number of fixed points
in terms of the Novikov homology for generic 1-forms.

The main steps towards the proof of the previous theorem are the follow-
ing: first we define Floer homology in this setting (this was already done in
[12]). Then we relate Floer homology, for the case where the Calabi invari-

ant is sufficiently small, to the Novikov homology associated to that Calabi




invariant. This is achieved following the ideas of S. Pinnikhin, D. Salam-

on and M. Schwarz (sce [8]), not by the traditional method of proving that
the connecting orbits used in the definition of Floer homology, for small e-
nough time-independent Hamiltonian, are independent. of the circle variable,
and hence correspond to ordinary gradient flow lines. Finally we prove that
the Floer homology groups are isomorphic under deformations that preserve
the Calabi invariant. This proof is just a reinterpretation of the proof given
in [12| adjusted to our setting.

It is important to note that we chose to use Seidel’'s approach (see [11]) to
Floer homology and rephrased everything in terms of bundles over cylinders,
discs and spheres. This has the advantage that we work then with pseudoholo-
morphic sections of certain symplectic bundles instead of perturbed curves on
a non-compact symplectic manifold. In order to compute the Floer homology
groups, we need to consider deformations that change the ‘Calabi invariant.
Since we will be working on a non-compact manifold, we have an additional
problem. We need to prove that the image of the sections we are working
with lie in some compact subset of the total space of the bundle. This will
enable us to have that the 2-form, on the relevant subspace of the total space,
is non-degenerate (and hence symplectic), so we can apply the weak compact-
ness argument. To prove the latter we rely on a lower bound on the energy
of these sections (monotonicity). Here is where we need the Calabi invariant
to be small enough (in terms of the geometry of (M,w, J)), so that we can
obtain certain results by comparing our situation to the one that considers (un-
perturbed) J—holomorphic curves on a symplectic manifold, or equivalently,

sections of trivial bundles with the product structures.




We also want to point out that the semi-positive hypothesis in the main

theorem is there just to avoid dealing with pseudoholomorphic curves of neg-
ative Chern number. We expect, the same result to hold for arbitrary closed
symplectic manifolds. Recent results by Fukaya-Ono, Tian-1i, and Tian-Liu
show that this hypothesis is no longer necessary to define or compute the Flo-
er homology groups, but the compactification of the moduli spaces we deal
with is much easier to understand, otherwise we would have to deal with the
“yirtual moduli cycle” (see [6] for an explanation of how to deal with these
spheres). Note that L. Van and K. Ono cannot remove the hypothesis on their
main theorem because, unless the symplectic form and the first Chern class
are related on spheres (more precisely, ¢1|mn = Aw|mun for A # 0 and if
X < 0, the minimal Chern number N satisfies N > n—3) they cannot cotmpare
the Floer homology groups for different Calabi invariants, and this is the key
ingredient in the proof of their main theorem (see theorem ‘5.4 of [12]). One
of the problems in this situation is that the ring they use changes when they
rescale the Calabi invariant.

Finally, it should be fairly easy to improve the bound imposed to the Calabi

invariant just by being more efficient when doing the estimates of chapter 4.




Chapter 2

Floer homology and Floer continuations

In this chapter we will define Floer homology and explain Floer continuations
in the bundle setting for non-hamiltonian symplectomorphisms. All of this
material is well known.

First of all recall that (M,w) is semi-positive if one of the following three

conditions is satisfied
1. {[w], A) = Xcy, A) for every A € mo(M) where A > 0 (M is monotone).
2. {1, A) =0 for every A € my(M).

3. The minimal Chern number N > 0 defined by {c,7(M)) = NZ is

greater or equal to n — 2.

Here ¢; = ¢1(T'M, J) is the first Chern class of the tangent bundle with an

almost complex structure J which is compatible with w in the sense that

gs(v,w) = wlv, Jw)

defines a Riemannian metric on M. These assumptions guarantee that for




generic compatible J there are no .J—holomorphic spheres with negative Chern

number. Although this condition is no longer necessary to define Floer Ho-
mology, we use it to avoid the complications that dealing with these spheres
present.

Let o be an element in Sympy(M,w), and {@;} for 0 < t < 1 a path
connecting the identity with ¢ = 1. Let X, be the vector field generating the
flow {.}, and 6, the family of 1-forms defined by 6,(Y) = —w(X;,Y). The

Fluz homomorphism is a map
Flug : Sympo(M,w) = H-(M,R)

defined by Fluz(®) = [ fol Qtdt]. Here WO(M ,w) is the universal cover of
Sympo(M,w). The Calabi invariant of & = [{;}] is the image of & under this
homomorphism.

The following lemma was proved by L. Van and K. Ono (see [12]).

Lemma 1. Let [#] be the Calabi invariant of an element . Then there exists a
smoath path {¢;} in Sympe(M, w), joining the identity with ¢, and a periodic

Hamiltonian H; on M such that 8, = @ + d; for all £.

2.1 Floer homology

Suppose we have {p;} such that @y = id, ¢; = ¢ and the family of 1-forms
that generates this path satisfies the condition of the deformation lemma, that

is, 8, = 8 + dH,, for some periodic Hamiltonian ; on M.

Let p : M—M , be the smallest abelian cover such that the form ¢ is




exact, that is p*6 = df. We will take & = p"w to be the symplectic form on

M. The covering transformation group is isomorphic to the quotient group

_ 'I'T](M)
Ker Ig

Iy

where Ip(6) = [ @ is the period homomorphism of 8. Since the §; satisly the
condition of the deformation lemma we have that for each ¢ ¢ [0,1] p*f; is an

exact 1-form, that is p*f; = dH, where
ﬁt = f + p* Ifi

The time-dependent Hamiltonian flow on (M, &) generated by Hy,say {#,},
is the pullback of the original flow on M, and as before the time-1 map of this
flow @, is denoted by @. We will assume that ¢ is small enough as to have
¢{p) = p for all p € fiz{w}. This is not necessary in order to define Floer
homology (see remark 9), but it is necessary when relating this homology to
the Novikov homology.

We will denote by P the set of equivalence classes § = [{t, %0); %), where
7o is a fixed point of @, and ug is a spheres that represents a class in the image
of my (M) — Hy(M). We say that two of these spherical classes are equivalent
if they have the same evaluation on w and on ¢;. The points in P will be the

vertices of our Floer complex (associated to @). The group I' =T @ I acts

on y € P via

(0, A)#y = [(£,0 - Jo); A + ]




where 'y = W%% We will actually use the subgroup of I'y defined by

Kerlg

FO = W’ and we denote by F’ s ]_—‘1 & Fo.

In the usual definition of the Floer complex associated to a family of closed
1-forms &, (see [12], section 4) the vertices of the complex will be obtained
from the elements of P(6;) = {contractible 1-periodic orbits of X4, }. Denote
by P(]?It) the lift of these loops to M (using p), then the vertices of the Floer
complex will be equivalence classes of loops #(t) € P(H;) together with the
discs v they bound. We will denote the elements by [Z(t); 7], and the set by

I
—~

P(H;). In fact, we have the following diagram

LM — LM — M
P LP Lp
LM 25 oM % M

Here e is just the evaluation map z(t) — z(0), and 7 denotes the projection
associated to the action of the homomorphisms 7, I, : m2(M) — R defined
by evaluation of w and ¢; respectively. So I'y is the covering transformation
group associated to p : M — M, and I'; is the one associated to j : LM —
LM. Then P(8,) € LM, P(H,) € LM and 7;@ € LM.

There is a natural grading for the Floer complex, which is given by the
Conley-Zehnder index (see [4] for the definition and properties). Recall that
the Conley-Zehndei index for 2 non-degenerate contractible 1-periodic orbit

x{t} bounding a disc v depends only on the trivialization on the induced com-

plex bundle v*I"M and the linearized flow along z(¢). Therefore, the Conley-

Zehnder index of [Z(t); V] is 'y —invariant, that is p(g - [Z(£);9]) = p([z(t); 9])




for all g € T";. Moreover, it satisfies the following identity

w{[Z(t); A#0]) — p([Z(2);0]) = —2c1(A) for A € w3 (M),

In our case ; is such that P(f,) consists only of points (the zeros of §;).
So there is a 1-1 correspondence between the elements of P and ’,;EETZ) given
by 7 = [{t,%0); uo] +— [Fo; uo), and we can use the Conley-Zehnder index for
the elements of P.

The ring we use is a suitable completion of the group ring Zg[I"] adapted

to this setting, we will denote it by Ag .

Definition 1. The elements of Ay, are formal sums of the form

A= Z AJ,A(&A)

(8,A)er”

for A 4 € Zo, with the following finiteness condition,

# (8, A) [ Asa#0, /w>N10r/9§N2 < 0o

A ]

for all Ny, V.

Definition 2. We define the elements of C'F, (ﬁt) as the formal sums of the

form

z= Zfﬁﬂ

yepr




where £ € Zy and such that for all Ny, N,

#{ﬁ / & #0, /uQ*wéNl and £ (%) >N2} <00

We can easily deduce the following lemma.

Lemma 2. The chain complex OF*(I?Q) is a torsion-free module (of rank

# fiz{p}) over the Novikov ring Ag,,, via

Nk z = Z (Z)\J,Af(J,A)#g) Y

yePr \ 44

Now, as observed by P. Seidel in [11], the idea is to define a symplectic

bundle such that solutions u : R x §' — M of

o ou = .
)5 - Xa(w) =0 2.1)

which are used in the definition of the boundary operator, become holomor-
phic sections of that symplectic bundle with respect to some suitable almost
complex structure (tamed by the 2-form on the total space). Such a bundle is

defined as follows

—

Ts;=(Rx[0,1] x M)/ ~

1
R x St

where the equivalence relation is given by (s,1,z) = (s,0, &(x)). We can equip

this bundle with an almost complex structure Jz = ;J; + 7, and a 2-form

10




Q5 defined by the pull-back of @ to R x [0,1] x M (this form descends to the

quotient 7). Although this form is not symplectic we have the following

Lemma 3. The form 3 is non-negative on Jg-holomorphic sections, that is,

Qz(v, Jzuv) 2 0 for all v.

Proof. Let v = (o, 5, £) be a vector tangent to T at a point p = (s, ¢, z), then
Qp(v, Jpv) = Qp((e, B,8), (- 8,0, B} i) = W(E, 91 Jik) = 0. U

It is easy to verify the following lemma.

Lemma 4. For cach solution u : R x S! — M of (2.1) the map o(s,t) =

(s,t,3; 'u(s, t)) is a Jz—holomorhic section of T and conversely.

Observe that the bundle 7z — R x S is isomorphic to the trivial bundle

via the map

a: Ty —r Rx S x M given by a(s,t,z) = (s,t, pe(z)) .

which is such that a(R x S x {p}} = R x S x {p} for any p € fiz{@}. In }
fact, a0 o = graph(u).

Let So{o) be the sphere in M defined by So(o) = pw o a(o) where pp :
R x S x M —= M is just the projection onto the fiber,

Now for & = [(t, Zp); wo] and ¥ = (£, %o); vo] we define

J5 — holomorphic sections o : R x 8T — Tj, such that

M(z,y) = . _
o — Z, ¢ — ¥ and vy = w + [So(o)]
§—r— 00 §—00

11




We denote by ﬂ(%,@ — M(z,%)/R. Here two sections ¢ and ¢’ are
equivalent iff & = pto for some r € R, where p, : R x S! — R x S' is
defined by p,(s,t) = (s +r,t). This equivalence relation comes from the fact
that we can reparametrize solutions of (2.1) so we don’t want o distinguish
between o(s,t) = (s,t, 7, *u(s, 1)) and o' (s, ) = (s,t, 7 'uls + 7,t)). We are
assuming that the parameters are regular (in the sense of theorems6 and 7 of

the appendix) so that the moduli spaces are manifolds of the right dimension.

Definition 3. The boundary operator dyp : CF*(fIt) — C’F*(fft) is defined

as follows

Ip(Z) = Z#{isolatsd points in M(Z,7)} §

ver
In order to see that this map is well defined we need fo check that

1. There are finitely many isolated points in M (Z,7) for every pair of Z,7 €
P.

9. The finiteness condition holds and 8p(F) € CF,(H,). More explicitly, we

need to see that for all Ny, and N, the set

{i/" / & #0, fuo*w < Ny and f(#) > Nz}
has a finite number of elements. Here

& = #{isolated points in J\/Z(f, ¥}

12




For a given section we define the section encrgy by
E,(0) — / 0

This does not correspond to the usual definition of energy of a pseudoholo-
morphic curve because the form, {2z, on the top manifold is not symplectic,

s0 Qg(:, J5+) is not a metric. Now for any o € M(Z,7) observe that

Eg(a):/a*ﬂg,;:/ w_—f m+/aj
SQ(O‘) Wo kily)

is fixed by its ends.

The main issue in this argument is to prove compactness for the relevant
moduli spaces, in this case M (Z,9), in order to conclude that, whenever the
dimension is zero, they consist of a finite number of elements for every pair
Z,7 € P. There are two ways of doing this. The first one is to use lemma 4
and consider the elements of the moduli spaces as curves in M. This is not
hard because although we are working with perturbed J—holomorphic curves,
the perturbation doesn’t change with the parameter s. More precisely, we are

dealing with curves u : R x S* — M that are solutions of

ou du

such that u — o, u —> 7o and vy = wy + [u]. We have that the (usuval)
5§00

8= —0oC

13




energy of such a curve is

ou|?

— Xi{u)

Blu) = / / ( 8t
= /u w —I—/ H,; To) Ht(y0)> dt
_ _/mm/mmfu (H.(G0) ~ Hn)) at

and this last quantity is fixed by the ends. Since we are assuming the pa-

2 ) dtds (2.2)

Ji

rameters to be regular, the result follows from the weak compactness argu-
ment, see theorem 8 in the appendix. We just need to observe that pou €
Mz, yo; 6, J), where z9 = p(To) and yo = p(to) -

We also need to check that r(%) € CF,(H,), that is we need to verify the
finiteness condition. Suppose we have u, € M(Z,%,) where 7, = [(£,75); v

are such that _f% @ < Ny and f(74) > N, for some N; and Ny, Then

E(w) = / W+ /0 1 (H (@)~ B(3R)) o

_ _/m;wr/ﬂymr/ol (ﬁt(%‘o)—ﬁﬁ(@g)) dt

1 1
< / 54N+ / F1(Zo)dt — () / H, o p(@)dt
wo 0 0

Using that —f(g%) < —N, and the fact that H, has compact support (so
it is bounded) we get a uniform bound on the energy. Now by the weak
compactness argument (see theorem 8) we conclude that the sequence u, has
a convergent subsequence. This means that the ends of the curves have to
be the same for sufficiently large values of v, so we have only finitely many

different 7, as we wanted (for more details see section 4 of [12]).

14




The second approach that we now describe is easier to adapt to the more
general situation of Floer continuations considered below., We argue as before
but now looking at the elements of M(%,y) as holomorphic sections. Since
{0z is non-negative on sections, that is, Jo*Qz > 0 we can make this form
symplectic by adding the pull-back of the area form of the base. The only
problem would be that the base has infinite area. Take a sequence oy of
elements in M(Z,%) we want to see that it has a convergent subsequence.
First observe that since [0}z = a is fixed for all n (uniformly bounded
would be enough) we have that the image of these sections remains in a piece
of T with compact fiber. This is an easy consequence of the monotonicity
lemma (see section 4.1).

Let ﬁ@* = 5 + ds A dt be the symplectic form on T3 Cut the cylinder
at [—2N,2N] in order to have a uniform bound on the area of this sections.
For each N we have f[—zN,QN]xSl cr;‘;ﬁ@ < Jspomy @ HAN = a—}—‘4N is uniformly
bounded, so by the weak compactness argument we end up with a subsequence
(still denoted by o) so that oy |[_w,n) converges. Now we use this subsequence
and repeat the above process but now cutting the cylinder at a larger value
of N. In the limit we will have a subsequence of o,, (on the whole cylinder)
that converges uniformly with all derivatives on compact sets to a holomorphic
gection.

We also need to check that 8x(%) € CF.(H,), that is we need to check the
finiteness condition. Suppose we have distinct elements o, € M(Z, 7, ), and
Un for n € Z are such that fvn W < Ny and f(7%) > N, for some N; and Nj.

Observe that since fvﬂ @ < Ny, we have a bound on [ So(o) & independent of

15




n, that is

/ aa:ﬁf mfzag—f &+,
Solon) wp Un wo

where T = [(f, ¥o); wp), and %, = [(t,7%);v,]. We can use the previous dis-
cussion to conclude that these trajectories converge (they converge up to bub-
bling, but the hypothesis of the main theorem assure that we can avoid bubbles
generically for dimensional reasons), so the ends have to be the same for large

enough n and we get a contradiction.

Remark 1. As we observed above there are two ingredients involved in get-

ting the necessary compactness of the moduli spaces of sections. They are

1. Controlling the section energy of o, that is [ 0*Qg, where Qg is non-

negative. The bounds depend only on the end points of the sections.

2. Knowing that the images of these sections lie in some subset, of the
total manifold of the bundle, that has compact fiber. This set is also

determined by the ends.

Finally, to see that 8% = 0 we use the usual gluing and compactness argu-
ments (see [12]). Also note that since dp is invariant under the action of I”
we can extend it to be a Ag,, —linear map.

The homology of the complex (C’F* (ﬁf), BF) is the Floer homology asso-
ciated to (M, w, #;, J), which we will denote by HF, (M, w, 8, J; Zy).

16




2.2 Floer continuations

As we did with the boundary operator, we will now work out an alternative
interpretation of Floer continuations (taken from [11] and adapted to our sit-
uation). This will enable us to compare the Floer homolegy groups obtained
for different choices of parameters.

Let v: R —»H am(f\/f ,@) be a smooth path of hamiltonian symplectomor-
phisms of (H ,@) which is constant outside some compact set. We will work
basically with two kinds of paths. First let us consider the family of exac-
t 1-forms p*0,; = dil,;, where Hyy = p(s)(f + p*H,) for H, any periodic

time-dependent Hamiltonian on M and p is a smooth function such that

0 s<1
pls) =
1 s>2
For each fixed s we denote by {{,,;} the Hamiltonian flow of Ers,t for 0 <
t <1, and 7, € Ham(ﬁ?f,&]) denotes the time-1 map of this flow, that is,
¥s = ©s;. Note that in this case, the Calabi invariant of the corresponding
path in M changes with s (since 8, ; = p(s)(0 + dI;)).

Tetw:RxS' 3 Mbea cylinder satisfying

ou ou
Bs + Jgjt(u)(g - Xs,t(u)) =0 (2.3)

where )?S,t is the Hamiltonian vector field induced by I?S,t, and Jy; is a 2-
parameter family of almost complex structures that is constant outside some

compact set. This is the kind of connecting orbit generally used when relating

17




the Floer homology groups for two different sets of parameters (in this case we
relate (0, J) to (Hy, Ji)). As before we want to construct a syroplectic bundle
so that solutions of (2.3) will become holomorphic sections of that symplectic
bundle with respect to some suitable almost complex structure. Such a bundle

is defined as follows

Fy=(Rx[0,1] x M)/ ~

1
R x 81

where the equivalence relation is given by (s,1,2) = (s,0,7:(z)). This bundle

has a connection whose projections onto the vertical spaces are

Hs,t,.’n (C\{, tB! 5) - § - a}/S;tsﬂ'}
where Y is the vector field defined by
0Py

Yotz = a—s’(‘PS,t(m))

Using this we can define an almost complex structure as follows
JW(O{: ﬁ) 6) = (_JB? o, a:,tjs,t (‘5 - CYY) - )BY)

This almost complex structure agrees with t,“o’j}tJE,t on the vertical subspaces.

18




Now let o be a section of E5 given by

a(s,t) = (5, Gpuls, 1))

Then o is J5—holomorphic ift

. 00 .. 0o
D(Ps,t(a) = Js,tDQOS,t(E - Y)

Using

~ Do, Opyy, . Ou . 0o _ Ou
D‘Ps,t(g) + a1 (o) = ETk D%,t(g ~Y(o)) = 95

we get

Lemma 5. A scction o(s,t) = (s,t,@r;u(s,t)) of By — R x S' is Jy-

holomorphic iff u: R x §1 — M satisfies (2.3).

We want to equip E5 with a closed 2-form that extends & using our con-

nection. First, let U =@ — ds Adiyw. However this form is not closed,

df&’:ds/\dt/\m;w

&t

but since our maps @, are actually Hamiltonian on M , we have that

0,
éz(lyw) = sz,t- (24)

On R x R x M we have ds A diA 9 (iyw) = d(K,ds A dt), and we can choose

K, so that it descends to Fy. So we have a function K : By — R defined by

19




K|(s,t,z)] = K, 4(z). Finally our closed 2-form is
Q, =W —ds ANy — Kyyds A dt (2.5)

Note that the functions K, are not bounded. They do not pull back from
M because the Calabi invariant of -y, (the path of time-1 maps in M) varies
with 5. This implies that we cannot make €2, symplectic, that is, there is no
way to make this form non-degenerate by adding a large enough multiple of
the form on the base.

NOW let us consider the case where 7 is the pull back of a path v, €
Sympe(M,w), such that the Calabi invariant docsn’t change with s. More
precisely, v, is the family of time-one maps of the flow on M induced by
Nsp = 0 + p(s)dity. Then ¥, is the corresponding family (on M) induced
by EM = H, | p(s)p* Ry, where p*n,, = dfzs,t. We can repeat the previous

construction now using this kind of path to get

By = (R x [0,1] x M)/ ~

1
R x St

where the equivalence relation is given by (s,1,z) = (s,0,%;(z)). By the pre-
vious process we obtain an almost complex structure J5, and a closed 2-form

Q...

%

Holomorphic sections of E5 are in one-to-one correspondence to solutions
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w:R x S' —s M of 4

ou . ou '

S T} (5~ X, () = Xyt () = 0 :

Observe that in this case the form we add to & — ds A iy~ in order to
get the closed 2-form 0, say —K7,ds A di, is such that K, is bounded (it is
the pull back of functions on M). Hence this form can be made symplectic by :

adding a large enough multiple of the area form of the base.

Remark 2. In conclusion, for each smooth path ¥ : R—}Ham(]\? ,w) of }
hamiltonian symplectomorphisms on (M,) which is constant outside some ;
compact set of R we can construct a bundle as above. The holomorphic section-
s of the bundle will be in 1-to-1 correspondence with perturbed holomorphic

curves, where the perturbation is determined by 7.
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Chapter 3

Novikov homology

In this chapter we will briefly define the Novikov homology and list a few useful
facts. For more details and proofs we refer the reader to the appendix C of
[12].

Let & be a closed 1-form on M which is not exact. Let p: M — M be
the smallest abelian cover on which 6 is exact. Then there exists a function
b M —» R such that p*8 = df. For a generic Riemannian metric # on M,
the gradient flow of f with respect to p*u is of Morse-Smale type and the
Novikov complex CN, (8, ¢) is defined in the same way as the Morse complex.
An element of the nth Novikov chain group associated to @ is a formal sum of

the form

T = E Q20 T0

zo€erit{f}

where the index of the Hessian of f at zp is n and the set

{zq | txe # 0 and f(xo) > N}
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is finite for all values of N. The boundary operator is defined using the tra-

jectories of the gradient flow of f, that is, we count the isolated points in
M(zo, 50} = W" (o) N W (10)

where yo € erit{ f}. Here W¥(z,) and W*(zq) denote the unstable and stable
manifolds of zy respectively. The Novikov ring Ay is defined as the completion
of the group ring of the covering transformation group of p : M — M with
respect to the period homomorphism Iy. Its elements are formal sums of the

form

A=Y\, where A € Zy
§CTH

subject to the condition that the set

{6|)\57é0and _/59SN}

is finite for all values of N. The complex C'N,(6, i) is a graded module over

Ay via the action

Aez= Y (ZAaaa.mo) o

zocerit{ f} \del1

The homology groups Now, (0, 1) of CN,.(8, 11) is called the Novikov homol-
ogy associated to 6.

Some facts about the Novikov homology:

L. Nowv,(8, ) is independent of the choice of Riemannian metric x4 for which
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the flow of f is of Morse-Smale type.

2. Nou,(6) depends only on the projective class of the cohomology class of

7.

3. If h is a Morse function on M, then p*h is a Morse function on M. The
Novikov homology can be computed from the Morse complex of p*h, that
is, Nov, () = H.(Ci(p*h) Qz,r,j Ap). We will refer to the ranks of this

groups over the Novikov ring Ay, as the Novikov-Betti numbers.

Now we want to consider the Novikov complex defined as a module over
the ring Ay, defined in chapter 2. More explicitly, we think of elements of

CN,(6,w) as formal sums of the form

£= ) &upalzo,A)

(mO sA)

with coefficients &z, 4 € Zo, where zy € crit(f) and A € T'y. The index of
(20, A) is defined by u(zo,A) = inds(ze) — 2e1(A). We impose the finiteness

condition

(@0, A) | Eson 20, fA w0 < Ny and flag) > Ny} < oo

for all Ny, Ns.

We define the boundary operator 9y as follows

O (o, A) = Y (w0, 90) (Yo, A)
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where n(zg, %) counts the number of isolated trajectories of the negative gra-
dient flow of f, that is the elements of M(zg,4s). As groups we have that
Nov,(8,w) = Nov,(0) @4, Ao -

We have Kiinneth’s formula in Novikov homology theory

Theorem 2. Let M and N be closed manifolds and & and 7 closed 1-forms on
M and N respectively. If the kernel of the weight homemorphism for mi&+min
is the direct sum of the kernels of the weight homomorphism for £ and 1, we

have

Nov (M x Nymié+ min) = (Nov (M; €) ®z, Nov(N; 1)) @a.an, Aaternyy.

Theorem 3. The FEuler number of the Novikov homology, that is, the alter-
nating sum of the ranks of the Novikov homology groups over Ag, equals the

Euler number of the ordinary homology of M.
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Chapter 4

Energy Bounds

The computations of this chapter are the main ingredient needed to have the
necessary compactness of the moduli spaces we use. The estimate in section
4.1 is obtained by perturbing a standard result. However, the estimate in

section 4.3 is new.

4.1 Monotonicity lemma

Here we will give a lower bound for the energy of holomorphic sections of
certain bundles over discs. This bundles are constructed using a path in
H am(ﬂ/f ,w), and the result will be achieved only for small paths, where the
notion of small will be clear by the end of this section.

Let Fg = (R x [0,1] M }/ ~o where the equivalence relation is given by
(s,1,2) = (5,0, %), and E5 as before, be bundles over R x S'.

The following two lemmas are taken from [1]. The proofs are included so

that the reader can observe that controlling the injectivity radius of is the

basic ingredient in order to have the desired result, namely proposition 9.




Let (W, w, J) be a tame (geometrically bounded) symplectic manifold, and
p is the metric obtained from w and J. For a J—curve S and a point z on S,

let us consider the intersection of S with the ball B(z, &) in W.

Definition 4. For z € &, we will say that the curve § is properly embedded
in the ball B(z,e) if SN B(z,¢) is compact and its boundary is contained in
the boundary 0B{(z, ¢).

Since we assume W to have bounded geometry we have that all the con-
stants mentioned in the following lemmas do not depend on the considered

points z, ¥...

Lemma 6. (Monotonicity lemma). There are constants ¢y and gy such that

for every £ < gg, every J—holomorphic curve S, and every z € .S we have

T
82
1+ Cp&

area, (SN B(z,¢)) >

provided that S is properly embedded in the ball B{z,¢).
This result will be an easy consequence of

Lemma 7. There are constants ¢; and g; such that for every compact J-
holomorphic curve S {with boundary) contained in a ball B(z, &) with ¢ < ¢,

the area a and the length £ of the boundary verify

s AT

- 1+018a

Proof. We will give the ball B(z, s} two sets of structures, for small enough

g. The first set is just {w,J, ) where y is the metric obtained from w and
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J. The second set will be denoted by (ws, J., tt;) and consists of the constant
structures obtained on T, W by translation, so if we choose E’l small enough
the exponential map allows us to carry all these struétures onto B (m,s’l). In
what follows the norm notation without a lower index z will denote the use of
the metric g, and similarly the norm notation with a lower index z will mean
the use of py.

We have at every y € B(x,&)) the following inequalities:

L (u(y) — ma(w)|| < cudist(z,y)

2. 17y) = L@ < cudist(z, )

for some constants ¢, and ¢; independent of z and y. This two inequalities
will enable us to compare the lengths and areas of p, to those of p. In fact
there is a constant ¢ (c is such that 14-ce > /1 + ¢,¢) so that for every curve

contained in the ball B(z,¢) for £ < &/, the respective lengths £, and £ verify:
(1+ce)l =iy

The next step is to find a relation between the area a of S and the inte-
gral [, w,. Consider an orthonormal (for ) frame (U, JU) of T;;S. Using the

previous inequalities {repeatedly) plus the following relation

lwo (U, JU = TU)| < 1T = Tl 1UI2
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we can obtain:
we(U, JU) > 1 — cdist(z,y)

which implies that for any J—curve S as in the lemma, contained in some

B(z,¢) with £ < &}, there is ¢ such that

/wm > (1 — e£)a.
5

Finally a homological argument and Wirtinger’s inequality allow us to re-

late the preceding integral to the length £ as follows. Let us go back to T,,W
and consider there the image of S (still denoted by S). Choose a surface S
which has the same boundary as S and whose p,—area a; verifies the isoperi-
metric inequality £2 > 4wa,. For a hand-made solution see [1].

Applying Wirtinger’s inequality to S* and using the previous estimate we

obtain (for suitable ¢)

(1+ )l > 22> dna, > 47r/

fwm=4'fr/wm
g S

> dn(l—ce)a

Then if we choose g1 so that e; < 6'1 and 2cg; < 1 we get

£2 471' a fi‘
“\l+4+ce/

]

\Y

Proof. (of the monotonicity lemma) Let A(e) be the area of the intersection
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SNB(z,¢). Its derivative with respect to ¢ is related to the length L(g) of the

boundary 8(5 N B(x,£)) by A'(g) > L(g). The lemma yields for every £ < g

(o) 2wz, A

A'(e) [ Ar ‘
= Ale) = 1+ e |

Integration from 0 to £ together with Taylor’s formula gives

and hence the result by taking for example ¢ = ¢; and 160 < 1,69 < &1, U

Consider (Fy, go) where gy is the metric induced by © + ds Adt and Jy =

j + Ji. Denote by cg,e0 > 0 the constants obtained from the monotonicity

s
1+cnean

lemma for (M,w,J). Actually what we denote by ¢y is the quantity
obtained from the lemma. Recall that J—holomorphic curves in M correspond
to holomorphic sections of Ey. So we have the following monotonicity result,

now for sections of Ey.

Corollary 8. For every € < &g, every holomorphic section S and every p € g

we have
areago(gﬂ E(p,a)) > cpe?

provided that 3 is properly embedded in the ball B (p, €). |

For each family of 1-forms n; = 6 + dl;, where L, is any time-dependent

—

Hamiltonian on M, we have a bundle F, = (R x [0,1] x M)/ ~ . Here the
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equivalence relation is given by (s, 1, z) = (s, 0, {D“S,l(m)) where {pvs,t denotes the
flow generated by Es,t = p(s)(f +p*L) for 0 < ¢ < 1. We have a closed 2-
form €2, and an almost complex structure J, associated to these bundles. The
bundles constructed in this way are isomorphic to the product bundle via the
map &, : By — Ey, defined by §,(s,t,2) = (s,t,@z;} (x)). This construction
is done in detail in chapter 2 (Floer continuations).

Let
Vo= (R x [0,1] x Bo)/ ~

where Ag is the closure of Ay, a fundamental domain of the cover p : M -
M. We denote by V,, = B(V) the corresponding subset of F, which has
compact fiber. In the following proposition we will work only with s € [1,2],
so even though we don’t change the notation, we are working with the bundles
restricted to [1,2] x §*. Since V; have compact fiber we can make the form €,

symplectic there. Let’s denote this form by
Qv, = Qy + kyg(s)ds A dt

where g is a cut-off function on R with g(s) = 1 for s € [1,2]. We can assume

that k, = 1 for || near zero, so Qy, = i+ ds A dt. We can actually have that -

the change in the parameter s occurs for s € [1 +6,2 — §] for very small § > 0,
so that g will have support contained in [1,2] and 1 > m = f;, g{s)ds. This V,,
acts as a “fundamental domain” in £, , under the obvious action of I'; induced

from that on .
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Remark 3. Since

(Vb! QO|VO) C (an g()),

we have that for every Jy-holomorphic section S in Vo, and for = € S the

following holds
areag, (S N B(p,sg)) > coe’
provided that S is properly embedded in the ball B (p,€0). The values of ¢, £

are the same ones obtained for (Ey, go).

The idea is to transfer this estimate to the bundles £, for small enough 7.
Let hy, be the metric induced by Qv, and J, on V. Also || is the C!

norm induced by g (the metric on M) on 1-forms via w.
Proposition 9. There exists e > 0 such that if ||, < e then the minimal
energy result holds in (V;, hy) for c = 2,¢ = 2. That is,

arear,, (5N B(p,e)) > ce?

Proof. By examining the proof of the previous two lemmas, we observe that
to be able to relate the size of the constants ¢g and ¢¢ {of the monotonicity
lemma) obtained for some differentiable manifold, in this case V5, with different

metrics, go and Sphy, = gy, we need to relate the following quantities:

1. the injectivity radius of both metrics,




2. the constants ¢y, and ¢; that appear in the inequalities that make possi-
ble the comparison of the lengths and arcas of the metric gy (or g,) with

the constant one g7 (or g2).

To relate the injectivity radius of the different metrics on V; we note that
as e — 0 we have that Oy, — Oy, and J, — j + J; in the C*—topology (since
we have a C' control over 7;). Now we use the well known fact that in a
compact manifold the map njectivity radius is continuous if we consider the
set of metrics on that manifold with the C%—topology. Let our manifold be
Vb, and consider the space of metrics on that manifold with the C?—~topology.
Then for each § > 0, there exists a neighbourhood of g, say Uy, (8), such
that if A € Uy, (d) then the injectivity radius of A lies in a §—ball around the
injectivity radius of go. So we get our result because for e = 0 the metrics gy
and Fph, are the same.

So for each fixed § > 0, there exists e small enough as to have Bl = gy
€ Uy, (d). To relate the constants ¢, and cy, for the different metrics (in this
neighbourhood of gy) we will basically rely on the fact that there exists a
constant £ > 1 such that %977 < go < Rgy,, this will enable us to compare
the different measurements (lengths and areas) obtained with the two metrics.
Note that B — 1 as § — 0, so we can compare the constants ¢,, and c;
(that give cy) with the constants c,, and c;, obtained using a meiric g, in a

neighbourhood of go. 1




4.2 Setup

In this subsection we present all the necessary elements involved in the con-
struction of the maps that will allow us to compare the IFloer Homology
to the Novikov homology. We saw that for any choice of family of 1-forms
1 = 0 + dL,, where I; is any time-dependent Hamiltonian on M, we have a

bundle E, = (R x [0,1] x M)/ ~ . We fix a choice of 7, such that it satisfies

proposition 9. Using these n; we can perform the following constructions.

Definition 5. Let

E =D*x MU®RF x [0,1] x M)/ ~
!
¥ =D?UR' x &

with the structures ¥ and J' obtained from the ones in Ey and the product
structures on the trivial bundle over the disc. Here we assume that a collar
neighbourhood of 8D? = S* looks like (—1, 0] x S*. Also note that the bundle
Eyli-1,1yxst is trivial. So we can define the bundle E' by gluing D? x M and I
E, over (—1,0] x 8§ x M using the identity. The form €' on the gluing region
is just w. The almost complex structure J' is Q' —compatible on each fiber,
it agrees with J, on the cylindrical end, and makes the projection onto ¥ a

(4, J ) —holomorphic map.

We will also work with the bundle E,, — R x 8! constructed in the same

way as K, — Rx S (see chapter 2 for the construction) but the equivalence

relation defining this bundle is given by (s,0,z) = (s, 1, {{)V:;‘,l(m)) where ar/js,t

denotes the flow generated by Es,t = p(s)(f +p*Ly) for 0 < ¢ < 1.
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Definition 6. Let

E =D?x MU (Rt x [0,1] x M)/ ~'

I
T — R x S'UD?

with the structures ﬁf and j obtained from the ones in E,,.? and the product
structures on the trivial bundle over the disc. Here we assume that a collar
neighbourhood of 8D? = S* looks like [0,1) x S*. Also note that the bundle
Epl_11]xs1 18 trivial. So we can define the bundle 1] by gluing D?* x M and
E, over [0,1) x ST x M using the identity. The form Q on the gluing region
is just w. The almost complex structure j is ﬁ—compatible on each fiber,
it agrees with 7,? on the cylindrical end, and makes the projection onto EI a

—

(4,J )--holomorphic map.

We will assume that I'y ~ Z and 7 denotes the generator of this group.

Later we prove that this assumption posses no restriction at all.

Definition 7. Let V' be defined by

, Vi over [0,00) x S*

D?x Ay over D2

Note that the translates of V' by deck transformations cover E'. We will

call such a translate 7V’ a domain for E'.
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Similarly we can define a domain for E — fl as follows, let

o Va over (—o0,0] x S*
D? x Ay over D?

where V,, is constructed in the same way as V.

Remark 4. When the image of a section o (or just a point p) lies in the
subset of E' given by izQwTiV’ we will say that o (respectively p) lies below
7"V, Similarly if Im(o) lies in EJOTT"V' we will say that o lies above 7" V.
Another notion we will use is the minimal width of a domain V', which
is given by twice the injectivity radius of (V', h). Since the injectivity radius
of (V',h) is greater or equal to one half of the injectivity radius of (V;, go)
(see proof of proposition 9), and we can get things so that the latter is 1, we
have the minimal width of a domain V' is 1. In fact, since we .WELIlt everything
independent of the covering we will proceed as follows. Let [' = {free part
of m (M)}, and M® —3 M be the covering with this transformation group.
Denote by A* the fundamental domain associated to this cover. Now, for any
[6] € Hi(M;R) the cover associated to this form is smaller than M, that is,
My —s M —s M, and Ag is a union of A*. We get everything so that the

minimal width of A is 1.

We need one more piece of information, and that is related to the behaviour
of the form Q’, from definition 5, under deck transformations. If we recall how
this form was constructed (see 2.5), we see that the part of the 2-form that
is not invariant under the deck transformations is the term K, .ds A dt. We

can easily deduce, from the way they were constructed (see 2.4 ), the following
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lemma,

Lemma 10. The function K : &' —» R satisfies the following
K(p) + A = K(7'p)

for any p = [(s,¢,2)] € F'|1gxs and r > 0. Here A = Eiélg; |f59| for [} =
1
[1\{0}, and A, = 2. If s ¢ [1,2] this function is zero.

Observe that we can choose p so that % < 1 for every s € R, so we can

assume that Ay < A,

4.3 Control over number of domains a section
enters

Our next task will be to control the number of domains (in the sense of defini-
tion 7) a section of F enters. This point is crucial in getting the appropriate
compactness result for the moduli spaces we use.

For the following argument to work, we will assume that # is such that

A < &, where A = (SiélIfT f 59[, and the constants ¢ and ¢ were obtained from
proposition 9.

Let o be any holomorphic section of E' —» %' that ends at § = [(¢, To); %]
and is such that ¢(0) ¢ {0} x W*(xq) (the unstable manifold of z,). We can

assume without loss of generality that z lies in V'. We define the section
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energy of o as follows

Suppose that [ o*Q = g is fixed for any such o. We will see in the next
section that this is the case, and that the value a only depends on the end,
that is, on y. We will split the base manifold ¥’ into two pieces, namely,

2" = %3 U Xy where £y = D? U ([0,2] x SY) and 5 = [2, 00} x S

Lemma 11. Since '|n, = & we have that §' is non-negative on sections

restricted to Xg, that is, fzz o*Q > 0. This implics that le Q) < a.

Let us work with the bundle over 33, first. Since 3, is compact then oly,
enters a finite number of domains V' of &', so we can make the form €)'
symplectic there by adding a large enough multiple of the area form on the

base. For sufficiently large & the 2-form
Q= Q + kj(s)ds A dt

is symplectic on V, |5,,. Here V, is an *-neighbourhood of V'. Alsoj: % —» R
is a function with compact support that takes the value 1 on ¥y, and whose
integral is m; = [ j(s)ds.

Let I, + 2 be the number of domains that o|y, enters, for I; > 0. Then, by

lemma, 10, the form

Q= + U Ag{s)ds A dt (4.1)
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will be symplectic on the part of E |5, that lies below 71V, where g(s) is

a, cut-off function that takes the value 1 for ¢ = [1,2]. Although the form
€Y, is defined on all of E' it will only be symplectic on the region of El|21
below 7V |g,. Recall that €, over ¥, is non-negative, in fact, it equals & for
sufficiently large s (s = 3 will do).

Since o|s;, enters [; +2 domains we can find &V disjoint balls of radius £ with
centers in o(31). We have at least 2 of these balls. To have this last statement
we used that the minimal width of (V', k) is 1 (recall that 1 > 2 = g, see
remark 4).

For each ball B(g), there is  with 0. < |r| < [; such that 77 B(g) C V.. Let
Ble) = o YB(e) No(Z1)) C 2.

The key point in this argument is that we can relate the Oy, -area of o|pg

with the {ys-area of 770 | () in the following way.

/__O'*le —/ (") Qo = // —K, (o) + K, 1(770) + liAsg(s)dtds
Bie) Bs) B(e)

For s ¢ [1, 2] the right hand side in this equation is positive because K ; =
0. When r > 0 we have that — K ;(0) + K, (77¢) > 0 so

/ ol — /*(TTU)*QV’ 20
Ble) B{e)

Now for s € [1,2] and r < 0 (—r > 0) we have

— I (7770) — s = — K, (o)
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(see lemma 10 to recall how K behaves under deck transformations).

Therelore

/ o'y, > f_(T—TU)*Qvf + //(51 — 1) Asdlds > / (7 "oy Qy
Be) Be) B(e}

in this case as well.

Now
i
f oy, > Z/ a*§ly, > / (T ) 2y
Bife) Bi(z)
> f:cs *hﬁ
= 2

The last inequality follows from pfoposition 9. On the other hand, by 4.1

/21 o'y, = /21 o* +//(kj(s).+ 51,\39(3))@3

< a+kmi+him<a+4+kmg+4LA

To get the first inequality we used that [ ot < a (see lemma 11), my =
fi(s)ds, m = [ g(s)ds and A; < A. For the second inequality we just used
that m < 1.

Now combining all the previous observations we can estimate the quantity

{; as follows

o -+ kg

(5 —A)

lice
a+hm+hA2%? I <

So we get an upper bound for the number of domains that o|g, enters given
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by zl < a.+k'm,1.

Now if zy € 779V (instead of V') we conclude that o|x, lies below prothy’

in particular, o(2,t) lies below this level.

Lemma 12. ¥or any such ¢ we have L o*0 > —L, where L > 0 only

depends on z; and 7.

Proof. The form = Q'+ (rq -+ 1) (s)ds A d¢ is symplectic below oty
30

US] G*Q:/ O'*.Q!-I—(T‘g-l-ll)ml
b bM]

and the conclusion follows. Cl

'To control the number of domains that oly, enters we will regard the

section over ¥y as a perturbed holomorphic curve u into M (sec lemma 4},

Using equation (2.2) we have that

0 < Euls,) / uw+/ u(2, ) ~ H(Gi)]
Zg

Since le a* () + sz o*() = a we use the previous lemma to conclude that

f o0 < a— L,
g

but Q'fs, = @s0 [y o*Q = J5, %6 = [5, w'B < a — L. This together with
the fact that o(2,) lies below 704V’ (which implies that u(2,%) lies below
a certain level in M) will give us the uniform bound on E(uls,). Suppose

u enters [y fundamental domains (of the projection p : M — M , which we
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denoted by Ag). When a curve v enters a fundamental domain it uses certain
(fixed) amount of energy (this ig a consequence of monotonicity on M ), s0
since we have a uniform bound for the total energy that gives us a bound on
lo.

Now combining the previous estimates we get the following
Proposition 13. If o is a holomorphic section of E — % with

1. [po*' =a

2. ends at ¥ = (£, ¥o); ual,

3. and such that o(0) € {0} x W*(zy),

for o € 79V and %o € 7'V’ then

where { is determined by rg,71, I1 and I, In fact,

max{rn J-11 Rt +I2 }
!
Q= U V.
r=—lz—li+r1

It is important to remember that the quantities [; and [ depend only on the

value o (determined by ug), on zg and %, and the geometry of M.

By the same arguments we can get a bound on the number of domains a
section of E — f’ enters. As before this bound will only depend on the ends
of the section.

Now we can say precisely how “small” @ has to be in order for the bounds

of this section to hold. First observe that for each value of e > 0, there exists
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a v > 0 small enough so that if ||, < e then |m|o < e, where 1, = 6 4+ vdH,

can be chosen to be regular (in the sense of theorems 6 and 7 of the appendix).

Remark 5. The bound on the gize of the Calabi invariant, that is, the size
of e such that |f|, < e, imposed to get the result of the main theorem will

depend only on the geometry of (M, w, J) and is such that

1. The flow of the vector field Xy (the dual under w to #) will not have any

non-constant 1-periodic orbits.

2. A < %, recall that A = 6i&ﬁ f58], e =%, ¢ = 2. Here g0 and co are the
L |

constants obtained from corollary 8.

3. The result of proposition 9 holds for (V,, h,), where n, = 6 + vdH, as

above.
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Chapter 5

Proof of the main theorem

We will now relate the Novikov homology to the Floer homology by defining
a chain map such that the resulting map in homology is injective. In section

5.1 we define the chain maps

U : CN.(6,w) — CF,(L,)
and

T : CF. (L) — CN,(f,w).

In section 5.2 we will see that the composition of these maps is chain
homotopic to the identity, so the induced map in homology, namely W¥,, is

injective.
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5.1 Maps between the two homologies

To define the map
T : ON{(0,w) — CF,(L)

we will study spaces of sections of B' — ¥ (see definition 5). We always
assume the parameters to be chosen generically (in the sense of theorems 6
and 7 of the appendix) so that all the moduli spaces arc manifolds of the right
dimension, and all intersections are transverse.

Observe that since the bases of these bundles are just discs, we have that
they are isomorphic to the trivial bundle ¥ x M (via the map § defined at

the beginning of chapter 4). Therefore mo(F) ~ my(M).

Definition 8. Given a section ¢ of E' — ¥ with end § = [(¢,%0); uc)| we
denote by S(o) be the sphere in M obtained as follows. Define the flat section
o5, : £ — E by og(2) = (2,7). Then o4 — oy, is a sphere in F', so it is
homotopic to a sphere in M. We denote this last by (o). To be more precise,

we have the following diagram

LG Y BV ¥
4 }pr
Zf

—

M

and S(o) = pr o flo# — ag,).




Now, for ¥ = [(£,70); u0)] let

J — holomorphic sections ¢ : & — E, such that
M(y) = —
g s':} 'Eja,nd [S(U)] — g =0€ TE'Q(M)

Let W*(xo) denote the unstable manifold of zy € crit{f}. Now Mz, 7))
is just the intersection of M(¥y) with {0} x W*(x,), that is, o € M(zo,7) if
o € M(¥) and o(0) € {0} x W¥(z,).

Finally our map ¥ : CN,(0,w) - C'F,(L,) is defined as follows

U(zo, A) = > _##{isolated points in M(zo, (~A)FH)} 7
gcr

As always, in order for ¥ to be well defined we need

1. The spaces of connecting orbits, namely the isolated points in Mz, ¥)
for any xo € crit{f} and ¥ € P, to be compact. So they consist of

finitely many points.

2. The finiteness condition holds, therefore W(zy, A) € CF,(L;). More

explicitly, we need to see that for all N7, and N, the set

{@’ [ #0, [t <N amd 1) > N2}

has a finite number of elements. Here
&y = FH{isolated points in M(xzq, (—A)#7)}.

‘The main problem in proving this is that if we think of these connecting
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orbits as {perturbed) holomorphic curves in M, we cannot bound the energy
unlegs the curves remain in a compact piece of M (determined only by zq
and ¥). On the other hand, if we think of them as holomorphic sections of
F' — Y, the problem is that the closed 2-form € we have on the total space
cannot be made non-degenerate unless these sections remain in a subspace of
E' with compact fiber.

By the same arguments that led to the proofl of proposition 13, we have

the following result

Lemma 14. If g € 7V’ and j; € 771V’ then any o € Mz, 7} is such that

l I . .
Im(o) C Q= U z 77V where [ is determined by rq, 71, ; and ls.
r=—

Proof. We just need to observe that every ¢ ¢ M(y) has the same section
energy. To see this, note that S{o) ~ o# — oy, (recall definition 8), and any

element in this moduli space satisfies [S(co)| — up = 0 we get .

/a*ﬂ’mfogog‘:/ Q':/ Q’:f 35:/5
D’#*D’yo S(U) S(O’) kits)

850

Es(a):Lra*Q':f G—l—/}ja&oﬂrza
g

Now we just apply proposition 13 to get the result. O
Observe that we have M(x, %) = @ for many choices of zy and ¥, for
example if 7y + 1y + I3 < r; the moduli space will be empty.

Remark 6. We should have in mind that the bound on the section energy

(denoted by @) determines the quantities /; and lo. The position of the ends,

47




that is, the values ry and r such that zy € 77V and Yo € T Vf, determine

the position of our compact set ) (in E' relative to V’).
Lemma. 15. The .map ¥ is well defined.

Proof. First we verify that the zero dimensional component of Mz, %) for
any xo € crit{f} and § € P is compact.

We use lemma 14 to conclude that ¢ remains on a subset @@ of £ with
compact fiber (this set is determined by z; and §). We can make the form
Q) symplectic in Q| pruo2)xst by adding a suitable multiple of the form on the
base, in this case we can use Q; = Q' + (k7 (s)+iAg(s))dsAdt, where kj(s)dsAdt
is what we needed to add to Q' to make it symplectic on V',‘DEUm’Q]xSl, and g
is a cut-off function with support contained on [1, 2] (see equation 4.1). The
sections have uniform energy bound, the 2-form €2; on the total space is non-
negative, and the sections lie in a piece of ' with compact ﬁber, S0 we are in
the same situation of remark 1. Therefore we can use the same compactness
argument to conclude that the number of isolated points in M (xo, ) is finite.
To be more precise, we take a sequence of elements in M (zo, (—A)#Y) we cut
the cylindrical end at some large value of s, say R, and consider the sections
over this base. We can easily check that the area (we add to £; the pull-back
of a suitable form from the base, so as to make it symplectic on @) of such
sections is uniformly bounded, also recall that their images lie in some compact
piece of E', so by the usual compactness arguments we have that there is a
convergent subsequence. We repeat this process using the subsequence, but
now cutting the cylindrical end at a larger value of s. We now let R — oo, and

end up with a convergent subsequence on the whole of ¥'. Bubbling does not
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occur for regular parameters because of the semi-positive condition imposed
on M.

Now we have to verify the finiteness condition. Suppose, by contradiction,
that we have infinitely many different elements o,, € Mz, (—A)#¥n), where
the g, are such that [, & < Ny, and f(7F) > N, for some N, and N, Since
F(U®) > Ns, this implies that these curves ends lie above certain level (so the
function —K,(p) has a supremum in this region). This together with the
hypothesis on the homology class bounds the section energy of o,. Namely,

since [S(on)] — (uy ~ A) = 0 and [, & < Ny, we get from equation 2.5 that

Ey(on) = fa;Q’—/ ED—fAEJr/U%Q’
" 1 2
< N_/&i—/ / K.y (§0)dsdt = a
A 0 1

~where a is independent of n.

Suppose f(ro)} = co. Since f decreases along the gradient trajectories we
have that f(0,(0)) < ¢5. This means that o,(0) lies below a certain level
in E,if (this level is determined by z,). Using lemma 14 for frajectories in
M((zg, (— A)#7,) we can conclude that g lies at most ! domains above the
level where zg is. Therefore %§ remain in a compact piece of E', so this set is
finite. Again by compactness arguments we conclude that the 7, = [(£, ¥}); un]
are finite, what implies by our previous result that there are finitely many o,

this gives a contradiction. a

Remark 7. Observe that having sections o of &' — ¥’ with a uniform bound

on f a*§), and such that their images remain in a piece of FE' with compact,
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fiber is the same as having a uniform bound on the (usual) energy of the
perturbed curves u in M used to construct these sections, so we are in the

same situation as in [8] (since the image of the curves lies in a compact piece

of H)
Lemma 16. V¥ is a chain map.

Proof. We want to see that W commutes with the boundaries. For this we will
use the usual gluing and compactness arguments. Using the definitions of the

operators Oy, Op, ¥ and fixing (z, A) we have that

(9 0 W + W 0 Oy)(zo, A) = ) #{S((w0, A);2)} 2

FeP
where S({zg, A); Z) is the set consisting of one of the following

1. The set of pairs counsisting of an isolated point v € M\(Qfo,yo), for
some 1o € crit{f}, and an isolated element ¢ € M(yy, (—A)#Z). Here

Mz, o) is the space of unparametrized gradient trajectories of f (the

trajectories used to construct the boundary in the Novikov homology).

2. The set of pairs consisting of an isolated point o € Mz, (—A)#7),
for some 7 € P, and an isolated element oy € M(7,%). Here M(7,3)
consists of isolated sections of T (the sections used to define the Floer

boundary).

We have to show that for any Z = ({¢,%p);v) € P, the set S{{(zg, A);Z)
has an even number of elements. The proof follows the gluing-compactness

argument used in [2] to prove the invariantness of Floer homology.
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To see this, fix Z = ((¢,%);v) and study the space A7 of trajectories in
the 1-dimensional components of M(zg, (—A)#%). Using gluing arguments
(sce [8]) we can show that any element of S({zg, A);Z) can be considered as
a compactifying point for exactly one end of N. We already proved that any
trajectory in this space remains in a compact piece of E% that can be made into
a tame symplectic manifold. Also by the same arguments as before we have
that no bubbling-off occurs as we move along . So the appropriate version
of the compactness theorem claims that A" has finitely many components, and

every end of A can be uniquely compactified in one of the following ways

1. The set of pairs consisting of an isolated point v € M (2o, yo), for some

yo € crit{ f}, and an isolated element o € M(yo, (—A)#7).

2. The set of pairs consisting of an isolated point o € Mz, (—A)#y), for

some ¥ = [(t,%0); ug] € P, and an isolated element o¢ € M (v, 2).

The proof of this is standard except that in 2 we need to make sure that
the conditions on S{o) and Sy{og) are satisfied. Let us see;

Suppose a,, — (0, 0p), and observe that S{o# ;) = T}LI&S('JH) =1y — A,
since oy, € M(zg, (—~A)#2). We will prove that [S{o#oy)] = [S(o)] + [Solon)].
From this it follows easily that [S{o)] — up = 0 and [Sp(o9)] + wg = v, which

are the appropriate conditions on S(¢) and Sy{oq) respectively. Let us see;

S(oftoy) = pro Blofantt — o5) = pro B(o# — oy HogFoott — T3)
= pro Blo# — oy )#pr o Blog,)#pr o Bloo)#pr o B{—05)
S(O’) + So(O’D).

12
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To get the last relation just observe that f|p,c)xst = a and that pg o 8(oy,) =
Yo and pr o Blog) = Z.

We just saw that there is a one-to-one correspondence between elements in
S{(zo, A); Z) and the ends of the 1-dimensional components of M (zq, (—A)#72)
which are even in number (and finitely many). We get that > S((wo, 4); E)fi =
0. It follows that ¥ is a chain map. - O

Our next task is to define a map in the other direction (“an inverse”), that

is,
U OF(Ly) —» CNL(f,w).

We will do this by studying sections of the bundle FI — f, which is
constructed in the same way as £ — %', but using the equivalence relation
(5,0,2) = (5,1,7_+(z)) on the cylindrical end (see definition 6) We can also
define an almost complex structure and a closed 2-form, by the same method
used in chapter 2. Note that for sufficiently large s we have that the almost
complex structures and the closed forms on the two bundles agree, in fact
since Yo = Kopo = Y o0 = K 54, = 0 unless s € [1,2], we have that
Q%(s, t,x) = WQJ;;(S, t,x) = Wy if || > 2, similarly for the almost complex struc-
tures. Actually we can think of sections of E‘j — Ef as pseudoholomorphic
sections with a cylindrical end to the left converging to some critical point.
Definition 9. Civen a section o of B — 5 with end 7 = [(t,90); uo)] we
denote by S(o) the sphere in M obtained as follows. Define the flat section
Ty, - S o F by o5 (2) = (2,%). Then o# — Gy, is a sphere in E so it is

homotopic to a sphere in M. We denote this last by ${o). To be more precise,
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S(e) = pp o floft — T ), where f is the isomorphism between E and the

trivial bundle over Ef.
For § = [(2, §o); o] lot

—

. J - holomorphic sections o : X — FI, such that
M) = e -
o —+ y and [S(c)] — ug = 0 € m(M)

§—00

Now M~(¥, z) is just the intersection of M~ (%) with {0} x W*(z), that
is, 0 € M™(¥,2) if o € M~(%) and o(0) € W*(z). Now define the map ¥

as follows,

U () = Z #{isolated points in M((—A)#Y, 20) } (20, A)
(z0,4)
We can reproduce the previous arguments to show that U is well defined,

and that it is a chain map.

5.2 Composite maps

Now to see that W o W is chain homotopic to the identity, we will glue together
the two bundles in order to define the map that realizes the chain homotopy.
This is exactly the case when you have a homotopy {or continuation} of ho-

motopies, usually used when proving that the Floer homologies for different
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choices of regular parameters are isomorphic. We proceed as follows

;

7 —

E

i 4
D.=D*U0,k+2]x8 [-xk—20xS'UuD?=D,

E

For &« > 1 we cut the ends at s + 2. Choose an orientation reversing
— == f
diffeomorphism g : 0D, — 8D, and form the connected sum E #F = £ Uy
—t f —! .
E (this uses the trivializations of E |gp, and £ |55 ). The resulting bundles

over the spheres S* will be

] —
Pfi - E ng‘ﬁdE
!
SKa

Note that since the symplectic forms and the almost complex structures
defined on the bundles over the disc agree on the gluing region, we can equip
P, with a closed 2-form §,; that restricts to @ on the fibers. We also have and
an almost complex structure J, that restrict to J and 7 over D, and D,
respectively.

For & € [0, 1], we use the time one map of the flow generated by ﬁf”, say
Nf;,l = 7%, and perform an analogous construction, to build bundles over the
sphere for these values of k as well. Therefore we have a one-parameter family
of bundles over the sphere that are all isomorphic to the trivial bundle. To
study pseudoholomorphic sections of these bundles is equivalent to the study of

perturbed Cauchy-Riemann equations, where the perturbation and the almost
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complex structure change with an extra parameter k.

Because of the nature of ¥, (they are all in I am(ﬂ ,w)) it is easy to
see that these bundles over the sphere are isomorphic to the trivial bundle.
Let % @ P, — S x M denote these isomorphisms (these maps Yy are
constructed using the maps 8 and # that trivialize the bundles B and E’, over
D?U[0, k-+2]x S* and [~k—2,0] x STUD? respectively). As a consequence we
have that my(Py) o my(M) x m2(5%). Let pr denotes the projection onto M,

and o be a J,—holomorphic section of P, — 8%, Then we have the following

Definition 10. We set S,(0) = & (k,0) as the sphere in M obtained by
Sk(0) = pr o xx(0).

Given (zp, A) and (yo, B) in UN,(0,w) we define

Jy-hol sections o : §* — P, /[S,(c)] = B~ A
a(0) € W*(zy) and o(c0) € W*(y,)

M((0,50); B — A) =

J
Now let I

M((@0,90); B = A) = {(k,0) / o € My((z0,0); B — A) and k € [0,00)}. ;

Finally we define the map © : ON,(0,w) — CN, (6, w) as follows ;

O(xp, A) = Z #{isolated points in M{(z,, #); B — A)}yp, B)

(9'0 :B)

'To check that this map is well defined, first observe that since o is a section
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p5(Xs 0 0(S%)) = S*, where pj; denotes the projection from S* x M onto S*.
This implies that x.[o] = [Sk(0)] + [S¥]. By construction, the sections we are
using are such that f[srﬂ] (xx00)*Q = 0 for all x, enabling us to have a bound
on the section energy (o) = [ 0%}, independent of 5. That is, [o*Q), =
fr_4@. We now show that this implies that we will have a bound on the
number of domains the sections (of the different bundles) enter, independently
of the bundle. This is equivalent to having a uniform bound on the {usual)
energy of perturbed pseudoholomorphic curves, where the perturbation and

the almost complex structure change with the extra parameter «.

Lemma 17. Every o € M,((zo,%0); B—A) is such that its image is contained

in Q,, a compact subset of P,. Moreover, if zy € 70V, and y € 771V, then

ro-+iy+Ha
Q. = u =7V,

’I'Z’Fl—ﬂl—lz

where {; and I, are determined by {zq, A) and (yo, B) independently of .

Proof. TFirst of all we have that the section energy of any such o is given by
fsm o*Qy = [, , @ = a (a fixed value). Recall that we denoted by D,, and D,
the two discs that make up the manifold S,. Observe that o|p, is a section of
E'|p,, and o|p, is a section of B |5, Sincea = [ 0*Qp = [}, "0+ [5 o0
then one of the two quantities on the right hand side is bounded above by a.
Suppose without loss of generality that [ D 0*(0' < a. Then by the arguments
previous to lemma 12 we get a bound on the number of domaing that o|p,
enters, say l;. So if zg € 779V, then o|p, lies below 77°t1V,. With this we
can conclude, just as in lemma 12 , that | D, a*Q) > —L where I depends only

—
on the ends. This implies [5 ¢*Q < a+ L. So we can bound the number
. DK‘

96




of domains, say I, that o|5_ enters as well. Using that o(0) € W¢(z,),
a{o0) € W#{yp) and the bounds for {; and Iy we can conclude that o remains
i H
on a compact subset @), of P,.. In fact ¢}, = " le zl 7"V, By the way these
. T=71—t1—t2

sets are constructed we easily see that they are detecrmined by (zg, A) and

(y0, B) independently of x as we wanted. O
Lemma 18. The map O is well defined.

Proof. Since there are diffeomorphisms X, : P, — Fy, where X, = F, 0y, for
E, 8% x M — SO% M — P, the obvious map, we can use £ as the reference
manifold, with a family of symplectic and almost complex structures indexed
by k. As before we have the fundamental domain ¥y = S® x Ua, of Py and
we define V,, = X,1(V5). We can also think of V; as made out by the gluing
V' Ugxid 7’, here the two domaings are taken from the corresponding bundles
E and E‘J cutting the cylindrical ends at x + 2 and —x — 2 ‘respectively (see
section 4.2 for all these definitions).

Now recall that every (k,0) € M((zq,30); B — A) has the same section
energy, namely [ 0*Q, = [, @. By the previous lemma we can conclude that
o remains on a compact subset @, of P,. In fact this set is given by Q) = ij?;
7"V, where iy and 7; are determined by (zy, A) and (y, B) independently of

x. Now we use that x.(7"Vi) = 7V = X« ( 6 TTVK) = b V) = Qg to
r

=i r=iy

conclude that, for any & and any o € M, ((z0,y0); B — A), Xx(0) remains in
the fixed compact subset Qg of Fy. So again we are in the usual situation
(see remark 1). That is, if we think of the elements of the moduli space as
curves in M , we can uniformly bound the energy of this curves independently

of k. By the weak compactness argument (see theorem 8) we have that the
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number of isolated points in M ((wo,10); B — A) is finite. If we think of these
elements as sections, we argue as in the definition of ¥ to make the 2-form on
the appropriate subspace symplectic, and proyve the compactness of the moduli
space in question.

Observe that we cannot have x, —+ 00 because this will imply having a
broken trajectory ¢ = (o, 0_) as limit, but this is impossible for dimensional
reasons. More precisely, suppose we have as a limit of (k,,0,), such a pair
of isolated trajectories o = (o4, 0_), where g, € Mz, (—A)#Z) and o_ €
M ((—=B)#7%,yo), for some z € P. Then p(oy) = 0 and plo-) = 0, but also
since p{(Kn,0n)) = 0 we have that p(o,) = —1 (see remark below), this gives
a contradiction.

To check the finiteness condition we use an analogous argument. Suppose
that o, € My, ((2q, Yn); Bn — A) and (Y, B,) are such that for some Ny and
Ny we have ana < N; and f(y,) > Np. Observe that as Before we have

uniform bound on the section energy, since

fo;;sz,;n:/ a;:f wgm-/w
Skplon) B,—A A

so we have a maximum length, say I, for all ,,. Now using that 0,,(0) € W*(zq),
on(00) € W*(yy,), the fact that f(y,) > N, and the previous lemma we can
conclude that ¥, (0,,) remains in a compact subset @ of Py. Remember that
0,(0) € W¥(z,) implies that f(xo) > f(0n(0)), which means that all o, have
at least one point below the level where zg lies. Similarly on{o0) € W*{yn)
implies that Ny < f(1n) < f(0n(00)), which means that all o, have at least

one point above certain level. These observations, together with the fact that

58




[ ¥, is uniformly bounded gives that the image of X, (5,) is contained
in Qg for all n. There are only finitely many different (y,, B,) with these

characteristics. This is precisely the finiteness condition we require. |

Remark 8. Due to the extra parameter £ € RT incorporated in the moduii
space M((mg, yo}; B — A), we have that p(x,0) = p{c) +1. Here pu(k, o) repre-
sents the index of (k, o) viewed as a trajectory in M((iﬁg, yo); B—A), and p(o)
is index of o as a trajectory in M((zo, %0); B — A). So, for example, when we
take sections in the 1-dimensional part of M((zy, yp); B — A), this means that

the ends of such sections have the same index.

Proposition 19. ¥o¥ is chain homotopic to the identity. In fact, Vol +id =
Qody +dro0.

Proof. The idea, in this proof is the same as in lemma 16. To see that ol +
id = © o Oy + O 0 © we study the 1-dimensional componénts of the spacc
M{(zo, 2); B — A), and use gluing-compactness argument to get the desired

result. Fixing (zq, A) we have that

(\Ifo\IJ+?,d+3N09+@OaN Zg, A Z#{S Lo, A (zﬂa ))}(ZDJB)

ZO,

where S((xg, A); (20, B)) is the set consisting of one of the following

1. The set of pairs consisting of an isolated point x € Mz, y0), for some
1o C cm’t(f); and an isolated element (x,c) € H((yo, z); B — A), where
M (o, o) is the space of negative gradient trajectories of f (the trajec-

tories used to construct the boundary in the Novikov homology).
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2. The set of pairs consisting of an isolated point (%, o) € M ((zo, yo); B —
A), for some yp € crit(f), and an isolated element x € M (yq, 2¢), where
M (10, 20) 18 the space of negative gradient trajectories of f (the trajec-

tories used to construct the boundary in the Novikov homology).

3. The set of pairs consisting of isolated continuation trajectories o, €

M (zy, (—A)#7) and o_ € M((—B)#7, z), for some y € P.

4. The set which contains cxactly one element when zy = 2z, and A = B,

and is empty otherwise.

The gluing theorem (see [8]) shows that any element of S{(xq, A); (2, B))
can be considered as a compactifying point for exactly one end of the 1-

dimensional part of M({zy, z); B — A), (where (4) is identified with the set

of isolated sections the trivial bundle over the sphere, that is the elements of

Mo({zo,40); B — A). This space has just one element for dimensional rea-
sons). Since no bubbling occurs as we move along the 1-dimensional part
of ﬂ((mo,yg); B — A) we can use the appropriate version of compactness to
claim that the 1-dimensional part of M ({0, v0); B— A) has finitely many con-
nected components, and every end of this space can be uniquely compactified
in one of the ways described above. To have 3. we only need to check that
o, € M(zg, (—A)47) and o_ € M((—B)#%¥, z0), for some y§ € P, that is,

S(oy) and S(o_) represent the appropriate classes. This will easily follow
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from

B~ A = S(kn,on)=8(0#0.) =prox(op#o_)
~ ppof(oy)#wr o Blo)
= pr o o) #pr o B(—oy,)H#pr 0 B(—05,)#pr 0 Bla-)

= Sloy)+S(o2)

we just need to recall that x|z = £ and X"'E’ = B for all &, and that

pr o X(o5#05) = Yo 0

Our next task is to see that the Floer homology does not depend on the
choice of generic pair ({6}, J) with prescribed Calabi invariant #. So we can
denote this homology by HF,(f).

We now consider the case where 7 is the pull back of a path v, v, €
Sympe( M, w), such that the Calabi invariant doesn’t change with s. That is, v,
is the family of time-one maps of the flow on M induced by 7, ; = 8{ -+ p(s)dR,.
Then 7, is the corresponding family (oﬁ M ) induced by L ot = He + p{s)p* R,

(where p*n,; = dis,t). We will use the bundles defined in chapter 2, namely

Fy=Rx[0,1]x M)/~
3 (5.1)
R x S1

where the equivalence relation is given by (s,1,2z) = (s,0,%,(z)). Recall that
this bundle is equipped with an almost complex structure J;, and a closed 2-

form 2. Since holomorphic sections of F5 are in 1-to-1 correspondence with
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solutions v : R x §1 — M of

Ou O,
s T a5 = X, (v) — Xyoprn,(u) =0 (5.2)

the following result is equivalent to theorem 4.3 in [12].

Theorem 4. For generic pairs (02, J%), (82, %) such that 87 = 67 1 dR,,

there exists a natural Ay ,— module isomorphism
HF% . HE(62,J%) — HF,(67,J°)

that preserves degree.

Proof. The proof of this theorem can be carried out using arguments similar
to the ones used when defining all the previous maps. Namely, we construct
a chain homomorphism with sections of bundles over the cylinder, where the
key problem, which is the control of the energy of such sections, can be easily
solved in this situation. We do not need to control the length of sections in
this case. The main difference between this bundles and the ones used when
defining ¥ and ¥ is that the form {1, can be made symplectic by adding a
suitable multiple of the area form on the base. The only thing we need to
further explain is how to define S(¢) for a section o of the bundle 5.1 that
has T = [(¢, To); uo) and ¥ = [, Yo); vo] as ends. Observe that in this case
Fo € fix{@}, but %o € fiz{F }, where ¥, = G for s < 1land ¥, = & for s > 2).
We do this by capping-off the ends of the cylinder with constant discs. That is,
let gp(2) = (2,p), where z € D> and p € M. Then o5, #o# — o5, is homotopic

to a sphere in M which we denote by S(c}). So, as before, the topological
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condition on the space of sections we use to define the chain homomorphism
will be [S({o)] + wo = wo.

The chain map is defined, as usual, by counting isolated sections of the
bundle 5.1, or equivalently solutions of 5.2. By the usual gluing and compact-
ness arguments we get that this map is well defined, that it is a chain map,
and that it has an inverse. To prove all this just reproduce a simplified version
of the arguments given when we verified similar results for ¥. The arguments
will be simpler because the closed 2-form on the total space of the bundle is

already non-negative, so we do not need all the estimates of chapter 4. O

Remark 9. We would like to point out that we can use this capping off proce-
dure to get a sphere homologous to Sp(op) for sections ag : Rx S — T (the
bundle used to define boundary operator dr). This will have the advantage
that we do not need @,(p) = p for all p € fiz{p} in order to have the sphere
So(ap), so we can use it to define Floer homology even if ¢ is not close to the

identity.

Theorem 5. Let (M,w) be a symplectic manifold of dimension 2n satisfying
the conditions of the main theorem. If 6 ¢ Hy(M;Z) then there exists e =
e(M,w,J) > 0 such that if |#|cn < e the sum of ranks of HF.(m) is greater

than or equal to that of Nov,(f).

Proof. The proof of this theorem is an immediate corollary of proposition 19.
Since (¥ o ¥), = id the map W, : Nov, () ®n, Ago — HF,(n,) is injective,
and the conclusion follows. The appropriate value of e such that all the bounds
of section 4 hold, having then that the maps ¥, W and © are well defined is

explained in remark 5. O
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Remark 10. The same kind of arguments should enable one to show that in
fact W, is an isomorphism. We will not deal with this situation here. The only
difficulty that one finds when doing this is constructing the correct bundie that
corresponds to the gluing of a section of ¥ with one of ¥, so that (¥ o W), is
the identity of the Floer homology (see to get an idea of how this argument

should be).

Finally observe that whenever 'y o~ Z we have

#fix{o} = ranka, ,(HF.(0,)) = ranky, ,(HF.(n:)) > ranka,(Nov.(0)).

Here the first inequality is given by construction (recall that 8, = 6 +dH,),
the next equality follows from theorem 4, and the last inequality from the
previous theorem.

Now, when I'; ~ Z* we can use a continuation argument. It is easy to see
that if 6 € Hy(M;Z) then I'y ~ Z. If § € H,(M;Q) then there exists a ¢ such
that ¢f € H(M;Z) and we are in the above situation. If # € H,(M;R} we
can approximate it by any sequence of rational forms a,, in a small enough
neighbourhood of # as to have that zeros{0} = zeros{c,}. This is possible
because the quantity e that bounds the size of # only depends on the geometry
of M.

The main theorem follows.
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Chapter 6

Examples

Theorem 3 tells us that the Euler number of the Novikov homology of a free
abelian covering of a manifold W is the same as that of the original manifold.
Thus we have the Lefschetz fixed point formula for non-Hamiltonian symplec-
tomorphisms in a ncighbourhood of the identity. Here we will give examples
of semi-positive symplectic manifolds such that the sum of the Novikov-Betti
numbers corresponding to certain free abelian coverings of W is strictly greater
than the Euler number of W, and such that the syrmplectic form and the first
Chern class are not related.

Example 1. Take W = Z; x M® with the product symplectic structure.
Here M is any 6—dimensional symplectic manifold such that: the first Chern
clags is not a multiple of the symplectic form, the minimal Chern number
N > 2, and b3 # 0. &, is a Riemman surface of genus g > 1.

An example of such a manifold will be for g and ¢ > 2 let

(W, Q) = (Zg x By X S* x 8%, w, ®wy & wy S dw).
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Here wy and wy are any non-degenerate 2-forms on X, and ¥ respectively.

9
This manifold is not monotone, in fact the symplectic form and the first Chern
class are not related. It is semi-positive because the minimal Chern number
is 2. Take any 1-form 8 such that the minimal free abelian cover that makes
it exact is W = 5, x Ly x 5% x 8% or (= By X Eg: X §% x §% (for example
g = (6,,0) or 6 = (0,6,) ¢ H'(W;R) = H(Z,;R) x HI(EQJ X 5% x S%R)).
Using theorem 3 we see that the Novikov-Betti numbers of ig (respectively
igr) are 0, 29 — 2, 0 (respectively 0, 2¢' — 2, 0). Using theorem 2 we see that
the sum of the Novikov-Betti numbers of W is (2g — 2)(8¢' + 8) whereas the
Euler number is equal to (2g — 2)(8¢' — 8).

Example 2. Let M =%, x X5 with ¢ > 2, where Xj is the hypersurface
in CP* defined by {2 + 28 + 25 + 25 + 2] = 0}. It is a well known fact that,
c; = 0, and that its Betti numbers are by = 0, by = 1, and b3 = 204. The
maximal free abelian covering of M is M = f)g x X, Whefe flg denotes the
maximal free abelian cover of £,. We have, using theorem 2 and theorem 3,

that the sum of the Novikov-Betti numbers of M is 416{g — 1) while the Euler

number is 400{g — 1).
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Chapter 7

Appendix: on transversality and compactness

In this appendix we will state some useful results. The proof of the following
theorems can be found in complete detail in [3], see also [4].

Qiven any smooth periodic 1-form 0; = 0 + dH, we denote by Us(f;) the
set of all periodic 1-form 6, = 6+ dH, with | H, — H,||, , where the norm A,

is defined as follows

1Al = Z’fk Hh”Ck(SlxM}

Where &, is a rapidly decreasing sequence (see [12]).

We choose a generic almost complex structure compatible with w. The
weak monotonicity condition yields the non-existence of J-holomorphic spheres
of negative Chern number for generic .J. Moreover, we denote by Mi{c; J) the
set of points p € M for which there exists a non-constant J—holomorphic
sphere v : 52 = M with ¢;(v) < k, w(v) <candpc v(S5?). The set Mp(o0; J)
is then a subset of M of codimension 4 and the set M:(oo; J) has codimension

2 [4]. Recall that we are working with M semi-positive.

67




Theorem 6. There exists a dense subset ©y C Us(0;) such that the following
holds for 0, € ©y
(1) every periodic solution x € P(0;) is non-degenerate;

(ii) (1) & Mi(oo; J) for every x € P(8;) and every t € R.

By the previous theorem there exists a periodic 1-form 8; = ¢+dH; in a pre-
scribed cohomology class [A] such that every element in P(8;) is non-degenerate
and does not intersect Mj(oc; J). Choose disjoint compact neighbourhoods
Ui, Usy .o, Uy € S* x M of the graphs of the finitely many contractible peri-
odic solutions of z(t) = Xg,(2(¢)). We denote by Vs(8,) the set of all periodic
1-form 8, = 6+dH, with ||H, ~ H||, < § and H, = H, on U; for j = 1,2, ..., m.
If § is sufficiently small then there are no contractible 1-periodic solutions of

the previous equation outside the sets U; for 6, € V;(6,).

Theorem 7. There is a generic set ©; C Vs(0,) containing E’t such that the
following holds for 8, € 6

(i) the moduli space M(z~,z*;8,, J) of connecting orbits is a finite dimen-
sional manifold for all z* € P(6;).

(i) u(s, t) & My(co; J) for every u € M{z~,z7;0,, J) with p(u) < 2 and
every (s,t) € R x St

Here u(u) is the local dimension of M{z~,x%;6,, J) neor u, that is the
Fredholm indez of the operator obtained by linearizing the perturbed Cauchy-

Riemman eguation.

Theorem 8. Suppose (0, J) are reqular parameters (in the sense of theorem

6 and theorem 7). Then the parts of M(z~,z%;0;, J) of dimension less than
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or equal to 2 with a uniform bound on the (usual) energy are compact, up to

splittings.

Proof. (taken from [4]) Let u, be a sequence of elements of M(z~,z; 8, .J)
such that p(u,) < 2 and F(u,) < ¢ Assume without loss of generality
that E(u,) converges. Using a standard argument as in [9] one can show
that there exists a subsequence (still denoted by u,), periodic solutions 77 =
2%, 2%, .., 271, 28 = =t (not necessarily distinct), and connecting orbits 1’ €
M(z?=4 29;8,, J) for § = 1,2,..., 1 with total energy Xl:E(uﬁ') < csuch that the
following holds. Given any sequence s, € R the sequje:nlce vy(8,1) = uu(s+s,,t)
has a subsequence that converges modulo bubbling either to /(s + &%,t) for
some s’ or to z7(t) for some j. Here convergence modulo bubbling means
that there exist finitely many points in R x S1 such that u, converges with its
derivatives uniformly on compact subsets of the complements of these points.
Moreover, every ©/ is such a limit and no other connecting orbit can be ap-
proximated by u, in this way.

We prove that bubbling cannot occur. There are only finitely many holo-

morphic spheres that can bubble off in our limit process. We denote this

spheres by v, v?,...,v™. We get that

{ m

ZE('LLJ) +ZE(vj) = limE(u,) <c

Y300

and
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Since there is no J—holomorphic sphere of negative Chern number this
implies that u(u’) < 2 for every j. The key point in our argument is that the
spheres +/ together with the connecting orbits 4/ and the periodic solutions
2? form a connected family. So if bubbling occurs then one of the spheres o7
must intersect one of the connecting orbits u’ or one of the periodic solution
x?. Since the connecting orbits «’ avoid spheres of Chern number 0 there must

t .
be a 7 with ¢;(v?) > 0. This implies > p(w') < 0. But for regular parameters

i=1
there is no nonconstant connecting orbit w with u{u) < 0 (see lemma 3.5

of [12]). Hence = = z*, I = 1, and one of the spheres must intersect the
periodic solution z* contradicting the fact that holomorphic spheres of Chern
number 1 do not intersect the periodic solutions. The same argument works

for 1(u,) = 1 and this proves the theorem. O

For a regular homotopy J; (s € R) of almost complex structures constant

outside some compact set, we have that the set
M(A ALY = {(s,0) | v € Ms(4; 1)}

is a manifold of dimension 2n + 2¢,(A) + 1 for a generic family {J;}. This
space will be empty in the case ¢;{A) < 3 —n. In the case ¢i(A) = 0 the
set of pairs (s,p) such that p is a point in a Je-holomorphic curve in class
A is roughly speaking a set of codimension 4 in R x M. So the previous
theorems remain valid if we consider perturbations of the Cauchy-Riemann
equations that depend also on the real parameter s. That is, we can still avoid
bubbling when we take limits of sequences of connecting orbits of index 0 or

1 for dimensional reasons.
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Theorem 9. Let (W, Jy, pin) be uniformly tame and such that J, converge to
Joo. Let S be a closed real surface (not necessarily connected) and 7, o se-
quence of complex structures on S. Let f, : (S, jn) — (W, J,) be a sequence
of J,,—holomorphic maps. Assume that the area(f,) is bounded by some con-
stant A and that the smage f,(S) meet o fized compact sel. Then there is a

subsequence which converges o a cusp curve.

For a proof of this theorem see [1}.
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