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Abstract of the Dissertation,

Seiberg-Witten Invariants of Non-Simple Type
by
Heberto del Rio Guerra
Doctor of Philosophy
in
Mathematics
State University of New York
at Stony Brook

1999

We construct examples of four dimensional manifolds with Spin‘-
structures, whose moduli spaces represent a non-trivial homology
class of positive dimension. Our work relies on the analysis of
the Seiberg-Witten equations on manifolds with cylindrical ends,
which correspond, somehow, to certain connected sums. As an ap-
plication of the results above, we show the existence of infinitely
many non-homeomorphic compact oriented 4-manifolds with pre-
determined Euler characteristic and signature that do not carry

Einstein metries.
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Chapter 1

Introduction

After the work of S. K. Donaldson in 1980 it became clear that gauge-theoretic
invariants of principal bundles and connections were an important tool in the s-
tudy of smooth four dimensional manifolds. Donaldson showed the importance
of the moduli space of anti-self-dual connections. Computation of Donaldson’s
polynomial invariants for a wide class of four dimensional maﬁifolds, especially
algebraic surfaces produced many powerful topological consequences, such as,
for example, the diffeomorphism classification of elliptic surfaces. In 1994, N.
Seiberg and E. Witten introduced a different gauge-theoretic invariant. These
new invariants are easier than those of Donaldson because they involve prin-
cipal bundles with structure group U(1), instead of the non-abelian structure
groups in Donaldson’s theory. The new invariant are so powerful that several
long standing conjectures that were proven immediately after their discovery.

Once again, the moduli space of solutions to the Seiberg-Witten equations
plays an essential réle in the theory. The homology class of this moduli space

is an invariant of the smooeth structure of the manifold. The equations defining

the moduli space are elliptic modulo the gauge group. A generic perturbation




of the equations leads to a smooth orientable moduli space, whose dimension
can be computed by the Atiyah-Singer index theorem. One special property of
this theory is the compactness of the moduli space of solutions, a consequence
of a priori bounds for the point-wise norms of solutions to the equations. This
result has no analogue in Donaldson’s theory. The Seiberg-Witten moduli
spaces are compact and vary by a compact bordism as we vary the metric.

In order to define these invariants we have to consider a Riemannian
4-manifold (M, ¢) and a Spin®structure ¢ on M. The Seiberg-Witten equa-
tions are equations that involves a U(1)-connection A on the determinant line
bundle L. associated to the Spin®-structure and a section ¢ of the self-dual
spinors. The configuration space consists of all pairs (A4, ¢). A pair is called
irreducible if ¢ # 0. The configuration space of irreducible pairs has the same
homotopy type of CP® x T%* where b; is the first betti number of M. The
invariants are constructed pairing the moduli space with a cohoinolo-gy class
of the configuration space of irreducible solutions. Originally, these invariants
were defined in a slightly more restrictive fashion, Namely, they were defined
as zero if the moduli space was odd dimensional, and otherwise, they were de-
fined by pairing the moduli space with the appropriate power of the generator
U of the CP* factor.

If the Seiberg-Witten invariant is non zero we say that L. is a basic class. If
all the basic classes are zero dimensional, then M is said to be of simple type.
The first examples of four dimensional manifolds with Spin‘-structures, whose

moduli space represented a non-trivial homology class of positive dimension,

were constructed recently by P. Ozsvith and Z. Szabé [11]. They do this by




finding a cohomology class with non-trivial pairing with the moduli space.
This cohomology class is not a power of U/, and the proof of the non-triviality
of the pairing involves a well-known gluing argument that is known for Don-
aldson’s theory and presumably extendable to Seiberg-Witten theory, but to
our knowledge such an extension has not been published in the literature.

As a consequence of our work, we reproduce some of theirs examples relying

on an entirely different technique, and therefore, bypassing the gluing argu-

ment above. Our work relies on the analysis of the Seiberg-Witten equations

on manifolds with cylindrical ends, which correspond, somehow, to certain
connected sums. These manifolds with cylindrical ends can be thought out as
the limit, of suitable conformal deformations of a fixed Riemannian manifold.
We then prove that the analysis of the limiting manifold can be carried out
through certain conformal properties of the Seiberg-Witten equations. More
precisely, let (M, J, g) be a Kéhler surface with canonical line bundle Kjr of
positive degree, and let M, be the SW-moduli space of g; = e*'g. We show
that M, consists of a single smooth point. Furthérmore after proving that if
a manifold admits a Kihler metric, then, without changing the Kahler class, it
also admits a Kahler metric that is flat nearby any finite collection of points,
we produce a sequence of Riemannian manifolds (M, g} conformally equiva-
lent to (M, g), that converges in the CO-topology to a Riemannian manifold
with finitely many cylindrical ends (Moo, goo). Since the induced sequence
M,, of moduli spaces consists of a single smooth point, we then show that the

SW-moduli space M,_ consists of a single smooth point as well.

The manifold (Mu, goo) is not compact and therefore, in the proof of the




result above, we cannot use the usual analytical tools. Instead of working with
the Sobolev spaces I}, we are forced to use the weighted Sobolev spaces L7
which permit us to overcome the lack of compactness on My,. The introduction
of these weighted Sobolev spaces will ensure that the involved operator is
Fredholm, but it does not give us enough information to compute its index.

We do so by showing that we can extend a solution of the SW-equations on

(Mo, 9so) to & solution of a special kind of perturbation to the SW-equations on -

(M, g). The index in the later case is therefore the index of the operator on the
no.n-compact manifold. For a compact oriented 4-manifold M, the connected
sum M#(S' x S?) can be thought of as 3 manifold with two cylindrical ends
where we cut the ends at some finite length and identify the boundary. We
may then use the result above, and the notion of holonomy, to conclude that if
M is a Kéhler manifold with deg(Kjs) > 0, then the SW-moduli space of any
Riemannian metric on M#(S* x %) represents a one dimensional, non-trivial,
bordism class.

As an application of the results above we show the existence of infinitely
many non-homeomorphic compact oriented 4-manifolds with predetermined
Euler characteristic and signature that do not carry Einstein metrics. These
examples are of the form Mtk CP?#1(S* % 8%), where M, k and { depend
on the predefined Euler characteristic and signature. The fact that the exam-
ples constructed do not carry Einstein metrics does not follow from Hitchin-

Thorpe’s or Gromov’s obstruction theorems [5, 4], Rather, this follows from

careful estimates of the ingredients in the Gauss-Bonnet formula obtained us-

ing SW-invariants and generalizing C. LeBrun’s ideas [8]. Our examples have




free fundamental group. Similar examples with very complicated fundamental

group have being obtained by A. Sambusetti [12] using conneeted sums with

real or complex hyperbolic 4-manifolds.




Chapter 2

Clifford Algebras and Spin Groups

Definition 1. Let (V,{,}) be an inner-product real vector space of dimension
n. The real Clifford algebra Cl(V) is the algebra generated by {e1,... ,en},
with relations €2 = —1, ee; = —eje; for ¢ % j, where {e1,...,e,} is an

orthonormal basis for V.

An alternative definition may be given as follows: Let 7'(V) = ROV @
(VOV)®---@®VE @ and consider the two sided ideal /(V') generated
by v @ v+ |v|%, v € V. Then CI(V) = T(V)/I(V). It follows from this last
definition, that C1(V) is independent of the choice of orthonormal basis.

There is a natural map I : A" (V) — CI(V), where A"(V) is the exterior
algebra of V. F'is linear, but not multiplicative. F(e; A« Aeg) =¢; 1. ep.
There is a Z grading on CI(V): CU(V) = Clp(V) & Cly(V), where

Clo(V (@po /\m ) , CL(V)=F (@zgo /\%H(V))

In the case when n = 4, the structure is richer. Indeed, let {2 = —ejezeseq,

where {e1, eq, €3, €4} is an orthonormal basis for RY, It is easy to see that the

6

P




volume element (2 is independent of the choice of orthonormal basis., Note

that € is in the center of Clo(V). Since 9% = 1, we get a decomposition
Cly(RY) = Clf (R") @ Cl (R*),

where Cly (R*) and Cly (R?) arc the +1 and —1 eigenspaces of Clifford multi-

plication by (2.

Definition 2. Pin(V) C CI(V) is the multiplicative group generated by cle-
ments v € V with |[v|? = 1, and Spin(V) = Pin(V) N Cly(V).

Spin(V) acts on CI{V) by conjugation: coc = o-c-o~". The action of any

o € Spin{V') preserves the subspace V C CI(V). Since this action preserves

the norm and orientation of V, it induces map p : Spin(V) — SO(V).

Lemma 1. Spin(V) is connected and p : Spin(V) — SO(V) gives a double
cover of SO(V).

Since m (SO(n)) = Zs, it follows that Spin(V) is the universal cover of

SO(n) for n > 3.

Definition 3. The group Spin°(V) is the subgroup of the multiplicative group
of units of CI(V) ®g C generated by Spin(V) and the unit circle of complex

scalars,

Lemma 2. There is an isomorphism

Spin®(V') = Spin(V) x 13 U(1) -7 SO(V) x U(1)




Consider the map Spin®(V) — SO(n) given by dividing out by the cen-

ter, and ask when a principal SO(n)-bundle P — M lifts to a principal
Spin®(n)-bundle. The homomorphism Spin®(n) -+ U(1) given by dividing
out by Spin(n) determines a complex line bundle I —+ M associated to any
principal Spin°(n)-bundle. This is the determinant line bundle of the Spin®(n)-
bundle. If this Spin®(n)-bundle lifts a principal SO{n)-bundle P — M, then
it is easy to see that this determinant line bundle has its first Chern class
¢1(L) which agrees mod 2 with wo(P), the second Stieffel-Witney class of P.
CdnverSely, given any line bundle . — M whose first Chern class satisfies this
mod 2 equation, there is a Spin®(n) lifting of P with determinant line bundle
isomorphic to L.

Given a Spin®(n)-lifting ¢ of a principal SO(n)-bundle then we can con-

struct the associated Spin®-bundle
S(C) = XSpin"(n) Sc(Rﬂ),

where Sc(R*) is an irreducible, finite dimensional, representation of CI(R™).
In fact S(c) is a complex vector bundle.

When n = 4, Sc(R*) decomposes into Sz (R') under the action of Q.
This decomposition is a decomposition of modules over Cly(R*) ® C. Clifford

multiplication induces isomorphisms

(Clo(R") ® C)F = Endc(Sz (RY))

Varying the Spin‘(n)-lifting by a class o € H%(M;Z) has the effect of




replacing S(¢) by S(¢) ® L, where L, is the complex line bundle with first

Chern class o.

Definition 4. Given a smooth compact oriented n-manifold M, a Spin®(n)-
lifting ¢, of the frame bundle associated to a Riemannian metric g on M will

be called a Spin®-structure on M.

Example 1. Let {V,{,}) be a finite dimensional real inner product space,
with a complex structure J : V — V. We assume that this complex structure
is compatible with the inner product in the sense that J is an orthogonal
transformation. Since J%2 = —I, the space V ®g C decomposes into the i and
the —1 eigenspaces for the complexification of the action of J. We denote these
eigensubspaces by V(Cl ) Vg’l and we denote the projections onto them by 7/
and 7! respectively. Notice that w0 is complex linear. This decomposition
induces a bigrading of the complex exterior algebra Ar(V @ C). We denote
by A¢ V the subalgebra of the exterior powers of Vé Y We define an action of
Voon A¢V by

0@ (et AL Add) =) ()N 70wt AL A AL Al

and the inner product {of, 7%*(v)), is the Hermitian inner product on V ® C

9
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|

extending the given inner product on V. ]

Next we will construct an embedding p of the unitary group U{(V) into i

Spin®(V). For any A € U(V) there is an unitary frame ei,...¢, for V, con- |
sidered as a complex vector space, in which A is diagonal; say A{ey) = ey,

for 1 < k < n. We associate to A the element in the complexification of the

Clifford algebra of V given by

if g )
H}::le_z&(cos(zk) + Sm(%)ek - Jeg). }
If (M,J) is an almost complex 2n-manifold, the complex structure and the |
Riemannian metric determine a reduction of the frame bundle of the tangent |
bundle to U(n). That is to say we have a principal U(n)-bundle Py — M

and an isomorphism Pyg) Xym) SO(2n) with the orthogonal frame bundle

Pso(an) of M. We form
Py = Pyiny Xy Spin®(2n)
using the embedding p : U(n) > Spin®(2n} constructed above. Clearly, )
Py /SY = Pymy Xpgmy SO(2n)

where the representation U(n) — SO(2n) is the quotient of p. By con-
struction this quotient is the natural embedding. This proves that Py is a | !

Spin®structure on M. The determinant line bundle of this Spin®-structure

is Py/ Spin(2n) = Pymy Xumy S* via the determinant map det : U(n) — S™.
That is to say the determinant line bundle of Py is the determinant line bundle

10




of Pyny. This is the inverse line bundle of P{}(n), the unitary frame bundle for
the cotangent bundle. The determinant line bundle of the cotangent bundle

is of course the canonical line bundle of (0, n)-forms.

11




Chapter 3

Spin Bundles and the Dirac Operator

There is a preferred connection on the frame (principal SO(n)) bundle associ-
ated to a Riemmanian metric g, the Levi-Civita connection V. Now let us fix
an U(1)-connection A, on the determinant line bundle, L., of ¢. This gives a
product connection on the principal SO(n) x U(1}-bundle. Pulling back the
product connection to the double cover gives a Spin®(n)-connection V4 on ¢

and on S(c).
Definition 5. We define the Dirac operator D4 induced by the U(1)-con-

nection A,

Dy C(S(¢)) = C=(S()),

DA(Qb) = Zei ) (VA)81¢=

=1

where ¢; is a local orthonormal coordinate system for TM, ¢ € C=(S(¢)},

12




(V4)e; s the covariant derivative in the e; direction and - is the Clifford mul-

tiplication.

Note that D, is independent of the choice of the local coordinate system.

When n = 4 the Dirac operator D4 decomposes in the following way
D4 C(SE(c)) — C™(SF(v)),

Example 2. Let (M, J,g) be a Kéhler 2n-manifold. We take the Spin®-
structure induced from the complex structure J (see Example 1). The de-
terminant line bundle is identified with K ]“Ml, the inverse of the canonical line
bundle. Of course, the complex structure on M determines a holomorphic
structure (or equivalently a (0, 1)-connection on K 7). The metric g on M de-
termines a Ilermitian metric on Kj;. There is a unique Hermitian connection
A on K;; which is compatible with the holomorphic structure in the sense that
the (0, 1)-part of the connection is the holomorphic (0,1)-connection. As we
have seen (Example 1), the complex spin bundle of the Spin®-structure is iden-
tified with the bundle of (0, g)-forms. Let ¢ be a (0, k)-form, let (21, ... , 2,) be
holomorphic coordinate near a point p € M, so that setting -1 = R(z) and
Tg; = J(z) the Riemannian metric is standard to second order at the point p.

We let e; be the unit tangent vector at p in the z,-direction. By definition for

any section ¢ of the complex spin bundle we have

Da(8)(p) = Zea (Va)e () ().

since the metric is standard to second order at the point, the connection A

13




is the product connection at the point and (V4)e; = ;. Thus in a local

trivialization,

= Zez‘ - 0;(¢) (p)

which in turn is given by
n
V2> " n% (dai) A 8i(9)(p) — 7 (dwi) S8i() (p)-
i=1
Of course 70! (dwor 1) = dzy/2 and 7% (dzes) = 4dZ;/2. Thus, we have

z\/az B2 A 5 (Oox1(9) ) + 0(6)0)
_ ﬁimdmmaﬁ(@(m
which is
\/—Zdzk/\— \/_Zvr“dm }-13:{(¢).

Since contraction is complex anti-linear in the first variable we can rewrite this
last sum as

8

32}4;

\/_Zdzk/\ )

. \/—Z (dzg) I(Ook—-1(9) (p) — 102k () (D).

14




This is the same as

Da(p)(p) = V2 (5(@ (p) - Z dmai(qﬁ)(p)) -

Which can be rewritten as

15




Chapter 4

SW-Moduli Space

Definition 6. Let (M, c) be a smooth compact oriented 4-manifold with a -

Spin®-structure ¢. Let L, = det{c) be the determinant line bundle associated
to ¢. Fix a Riemannian metric g on M. The configuration space C{¢) consist of
pairs (A, @) , where A is an U(1)-connection on L, and ¢ € C®(S*(c)). We say

that (A, @) satisfy the Seiberg-Witten equations (SW-equations) if and only if

Dap=0

where q(¢) = ¢ @ ¢* — %Eld.

Example 3. Recall from Example 2 that an orthogonal almost complex struc-
ture J : TM — TM on a Riemannian 4-manifold induces a Spin®structure ¢

whose determinant line bundle is K7, the inverse of the canonical line bundle

16




of the almost complex structure. The spin bundles are given by

St(e) = Q°(M; C) @ Q™ (M; C)

S=(c) = QUM C).

Clifford multiplication by a one-form a € Q'(M;C) is given by the sum of
wedge product and minus contraction with /275! (a) € Q% (M;C) of a (see
Example 1). Furthermore, if the almost complex structure is in fact a complex
structure for which the Riemannian metric is a Kihler metric, then the Dirac
operator on self-dual spinors associated to the Spin®-structure and the natural

holomorphic, Hermitian connection on K37 is (see Example 2)
V2(8+8) : Q0 (M;C) @ Q2 (M;C) — QVY(M; Q).

Any other Spin®~structure ¢ differs from ¢ by tensoring with some U(1)-bundle
Py — M. Let Lo be the complex line bundle associated to Fyy. Then the

spin bundles for ¢ are given by

S+(E) - S+(C) & L{) = Q.O(M; LU) 3%, Qo’z(M; Lg)

S7(E) = S7(c) ® Ly = Q™ (M; Ly).

As before, Clifford multiplication by a € Q'(M;C) is given by the sum of
wedge product and minus contraction with +/27%!(a) € Q®(M;C). Further-
more, the determinant of ¢ is identified with K;,fl ® L3, or in other words

Lo = vVEu ® L; where I is the determinant line bundle of €. To each U(1)-

17




connection A4g on Ly therg is a canocnical connection on ¢ which is the lift of the
product of the holomorphic connection on M (induced by the Kghler metric)
with Ay via the covering map on Lemma 2. This canonical connection on ¢

induces a U(1)-connection A on Lz, To summarize

Proposition 3, There is a one-to-one relationship between U(1)-connections

on Ly and U(1)-connections on Ly.

We now have a good description of the Dirac Equation: A spinor field ¢,
has two components ¢ = (a, ) € QUM, Lo) @ Q%2(M; L), and the Dirac

equation is
V3(B(a) + 7 (8)) = 0.

Let us write the equation for the curvature, Let w be the Kéhler form,
it is a nowhere zero, self-dual real 2-form of type (1,1). The complex-valued

self-dual 2-forms on a Kéhler manifold split as

Q%M; Clw @ (Q*°(M; C) @ Q°*(M; T)).
The purely imaginary self-dual 2-forms are then

QM iRw & {p — il p € Q**(M; C)}.

Hence, the self-dual part of the curvature of the unitary connection A on
L can be written as F = ¢fw + p — @ for some real-valued function f on M

and some complex-valued (0, 2)-form g on M. As an endomorphism on S¥(c)

18




thiz can be written

2f  #2(pn()
2un()  —2f

On the other hand the matrix representation for ¢(¢) is given by

2 _ 5 2 —_
|ex 2| of

g B=la

ag Pkl

Thus, we see that the curvature equation is equivalent to the following equa-

tions

(Ff) = Lol 181 (4.1)
02 = %ﬁ |

The solution space for the SW-equations is usually infinite dimensional
(in case is not empty) and one has to mod out by an appropriate infinite

dimensional group, the gauge group, to get a finite dimensional moduli space.

Definition 7. The gauge group G(¢) consists of smooth automorphisms of the

principal Spin®(4)-bundle ¢ that cover the identity on M.

Remark. Note that the center of Spin®(4) is S and the action of this S on
Spin®{4) covers the identity on SO(4). Now is easy to see that G(c) consists of
smooth maps ¢ : M — S,

Note that any o € G(c) acts on L, S*(c) and S™(c). Now suppose that

¢ € C°(ST(c)) and A is a U(1)-connection on L,. Then there is an induced

19




action (4, ¢) — (c*A,07'¢).

Definition 8. We will denote by B(¢) the equivalence classes under this action

i.e B(c) = C(c)/G(x).

Lemma 4. The Seiberg- Witten solution space is invariant under the action

of the gauge group G(¢).

Lemma 5. The stabilizer in G(c) of an element {A, ¢) € C(c} is irivial unless

of M to S*.

Definition 9. We say that an element (A, ¢) is irreducible if ¢ # 0, otherwise
it is reducible. We denote by C*(c) the open subset of irreducible configurations

and by B*(¢) the open subset of irreducible equivalence classes.

i i L i el S T e S St s

o o A A A B B G e

The naive definition of the Seiberg-Witten moduli space would be:

My(c) = {(A,4) € C(c)] Dad =0, Ff = q{¢)}/G(c),

but in order to use the usual analytical tools, one has to extend the C* objects
to appropriate Sobolev spaces. From now on Wé extend the configuration space
A(c) and the gauge group G(c) by requiring A and ¢ to be in L3(M, g) and
o to be in LZ(M, g). The SW-equations and the gauge actions make sense in

1 this context also and we define:

Definition 10. The Seiberg-Witten moduli space is:

My(e) = {(A,¢) € C(¢)] Dad =0, Ff = q(¢)}/G(c),

20
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i

b e S b o

where A(¢) and G(c) are the extended configuration space and gauge group.

The formal dimension of this moduli space is

ci(c) — (2e(M) + 30(M))
4

d(c) =

In general therc is no reason to expect that the moduli space form a smooth
manifold. The best we can hope for is that generically it does. The next

Theorem guarantees that this is the case. For the proof see [10],

Theorem 6. Suppose that bf > 0. Fiz a melric g on M. Then for a generic
C> self-dual 2-form h on M the following holds. For any Spin‘-structure ¢
on M the moduli space M,(c,h) C B(c) of gauge equivalence classes of pairs

[A, ¢ which are solutions to the perturbed SW-equations

Dad =0

form a smooth compact submanifold of B*(c) of dimension d(c).

Proposition 7. Consider a fived U(1)-connection A on Le. Let [A;, &) be
solutions to the SW-equations, and let (A;, ¢;) be the unique representalives
such that A; — A is co-closed (gauge fizing condition, see {10]), for i = 1,2. If
é1 = ¢y then AL = Ay, '

Proof. The first thing to notice is that A, = A; + 6, where 8 is a co-closed -

21




1-form. Since (A;, ¢1) and (As, ¢4) are solutions to the SW-equations we have

Fy = q(¢1)
= q(¢a)

—
=Fi.

Therefore

Fi —Ff =0&(df)*=0
< *dl = —di
= dx*xdf = —ddf =0
& kdxdf =0

& 0df = 0.

This last statement and the fact 68 = 0 implies that

Al = d66 + 5do
= odf

= 0.

22




Since (Ag, ¢;) 4 = 1,2 are solutions to the Seiberg-Witten equations we have

0 s DA2¢2
:DA1+0¢1
= DA1¢1 + 9 . (bl‘

:g'gbl:

multiplying by 0 both sides of the equality we get that |62¢, = 0. Taking the
point-wise norm we will have |8%|¢1| = 0. If we denote by Zjgz and Z),,| the
set of points where |6]> and |¢;| vanish respectively, and we denote by Zg.
and Zﬁhl their corresponding complements, we will have that Zﬁhll C Zygp2,
therefore if [Aq, ¢1] is not a reducible solution then ZICrMI is a non-empty open
set. By a result of N. Aronszajn ([1]) we will have that # = 0, since it vanishes

in an open set. ]

Since C(c) is an afline space it is contractible. Also the space of reducible
configurations A(c) x {0} is contractible and has infinite codimension in €{c).
Since C*(¢) is open in C(c) and it is the complement of A(c) x {0} then it is
contractible. B*(¢) = C*(c)/G(c) is the classifying space of G(¢) = Map(M, S")
since G(c) acts freely on C*(c).

Moreover,
Map(M, SY) ~ Map(M, S"), x mo(Map(M, S1)),

where Map(M, S'), denotes homotopically constant maps. Map{M, S*), can
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H

be identified with S, therefore Map(M, S*) ~ S* x H*{M;7Z), so the classify-

ing space for Map(M, S*) is weakly homotopically equivalent to CIP*° x gi Eﬁi';%,
and
H*(B*(c); ) 2 Z[U) @ Q*H' (M; Z), (4.2)

where U is a generator for H*(CP*; Z).

Definition 11. The Seiberg-Witten invariant SW(c) for the Spin®-structure

¢ is defined as follows

(UH2 M (c)

B if d(c) is even
SW (c) = ©

0 otherwise

It is easy to see that this invariant is a cobordism inva,riaﬁt of the moduli
space M(c), therefore it does not depend on the metric we used to define the
Dirac operator, it does define an invariant of the smooth manifold M.

From this definition it is easy to see that we are loosing information about
the moduli space. For example if the moduli space is odd dimensional this
invariant is zero, even though the moduli itself may not represent a trivial

bordism class in B*(¢).

Definition 12. Let (M, ¢) be a smooth compact oriented 4-manifold with a
Spin®-structure ¢. We will say that ¢ is a B-class if for some {then for any)
Riemannian metric g on M, the moduli space M,(¢) of irreducible solutions to

the SW-equations is a smooth manifold of dimension d{c) > 0 that represents a

non-trivial bordism class in B*(¢c}, é.e. there exists n € H*(B*(c); Z) of degree
| 24




d(¢) such that

{n, M{e}) |~y # 0.




Chapter 5

SW-Equations and Conformal Structures

It is easy to see that conformal changes on the metric can be lifted to a fixed
Spin‘-structure, and one can study the associated change in the Dirac operator.
A basic important fact is that the Dirac operator remains essentially invariant
under all conformal changes of the metric.

We now make this statement precise. Let (M, c¢) be a ﬁx;ad smooth com-
pact oriented n-manifold with a fixed Spin®structure ¢ and a fixed Hermitian
structure k& on the determinant line bundle L.. Fix a Riemannian metric g
on M and consider the conformally related metric gy = e2fg, where f is a
smooth function on M. To each g-orthonormal tangent frame {ei}i=1..n WE
can associate the g-orthonormal frame {e}}i=1..n, where el = pre;) = e e
for each . This map induces a bundle isometry between the bundles S(c) and
S'(c}. Let ¥y = e~ ;. The resulting map is a bundle isomorphism which

is conformal on each fiber.

Proposition 8. Let D4 and D'y be the Dirac operators (induced by the U{1)

connection A) defined over the conformally reluted Riemannian manifolds
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(M, q) and (M, g¢) respectively. Then

\IffODA:DhO‘I’f

Proof. Since we are not. changing the UU(1)-connection A on L, the proof is the
same given by Lawson and Michelsohn, (see [7], pages 132 — 134) which we
reproduce it here for the sake of completeness. We have two metrics g and gs
defined on the same vector bundle T'M. Let V and V' respectively denote the
associated canonical Riemannian connections. It is easy to check that for any

two vectors X and Y we have

VLY = ViY + X(/)Y + Y(/)X - g(X,Y)V].

Suppose now that {e;}i—1..n and {e}}i=1..n are local orthonormal frame ficlds

for g and g; respectively, and let wi; = g(Ve;, e;) and wy; = g7(V'e;, e;) be the .

associated 1-forms. It is easy to check that for any vector X we have
w;J(X) - wiJ(X) + eﬁ(f)g(X! ej) - eg(f)g(X, 6;,;).

The local tangent frame field {e;};1. n determines a local frame field {oiti=1.m
for 5{c). Similarly, {e}}i=1. » determines a frame field {c!}iz1..m for 8'(c) where

o = (o) for each j. And the induced connections on S{c) and S'(¢) are
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related as follows:

X0, = ) Z%z
= Z?f)f{zw‘;i(X)@iej%
— _¢f{z wii(X) + ei(/) X, e5) — €5 ()X, &))eiejo0}
1]
= (Vx0T {(VF X =X V)ou}

Since Vf - X = -X -Vf —2(Vf, X}, we conclude that

=y o (Vx = 2X -V = 2X (1)} o™

If D4 denotes the Dirac operator on S{¢) and D'y denotes the Dirac operator

on S'(¢) then we have
1 -1
o{Ds+ §(n~ DV Yo
Finally, for every constant « we have

Da(e*o) = e (Dao+a Y e;(fle;o)
J

=e*(Dyo+aV ] o),
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and therefore

UpoDyo Wy = "5 ypy 0 Dao (e o)
1 _
zd’fo(DA‘l'g(nA]-)vf)Oy)fl

=D,

Corollary 9. There is bijection between ker D4 and ker D;.

Let (M,c) be a fixed smooth compact oriented 4-manifold with a fixed
Spin-structure ¢. We want to relate the moduli spaces M (¢} and M'(c) for
two Riemannian metrics g and g¢ (respectively) in the same conformal class.
It is well known (see [10]) that both moduli spaces represent the same bordism
class (in B(c)), but when one of the metrics is Kéhler, both moduli spaces are

diffeomorphic. This last statement will be proven in the next section.

Proposition 10. Let (M,c) be a fized smooth compact oriented 4-manifold
with o fized Spin®-structure ¢. Let g be a fized Riemannian metric on M
and consider the conformal metric g; = €2/ g. Solutions to the Seiberg-Witten
equation for the metric gy are in one-to-onc correspondence with solutions of
the following pair of equations:

Dap =0

(SWy)
Fi=eq(9).

The one-to-one correspondence is given by the map (4, ¢) — (A, V).
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Proof. This is a consequence of Proposition 8, the expression for ¢ (see Defi-

nition 6) and that «'|y2 = %|,2, where x and «’ are the Hodge operators of g

and g¢, respectively.

30

a




Chapter 6

SW-Moduli Space and Conformally Kahler

Surfaces

The principal result in this section is that for any two representatives of the
conformal class of a Kahler metric the corresponding moduli spaces are dii-
feomorphic, more specifically, if the degree of Ky is negative then the moduli
spaces are empty i.e. the only solutions to (SW;) are reducible, but if the
degree of Ky is positive then the moduli spaces consist of only one point.

This section is entirely based on [10].

Lemma 11. Let (M, g) be a smooth compact oriented Kihler surface, fiv a
Spin®-structure ¢ and a smooth function f on M. Let L, be the determinant
line bundle for ¢ and set Ly = /Ky ® Le. Let (A, ) be a solution of (SWy).
Let write ¢ = (o, f) with a € QU(M; L) and 8 € Q*(M; Ly). If deg(L,;) <0,
then we have 8 = 0, and if deg(L.) > 0 then o = 0. Furthermore, A induces o
holomorphic structure on L., With respect to the induced holomorphic struc-

ture on Lo, the section « is holomorphic and B is o holomorphic section of

Ky® Lyt
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Proof. Let us begin by proving that @g is zero. We have the harmonic spinor

equation (see Example 3)
V2 (84g(c) +83,(8)) =0, (6.1)

where Ay is the connection on /Ky ® L, which is the square root of the natu-
ral connection induced by a holomorphic connection on K s and the connection

A on L, (see Proposition 3). Applying ﬂ_la% to this equation we get
D00 a0 (02) + B0, (8) = 0. (6.2)

Of course, 5310(04) = F* - a. Tt is clear from equation (4.1) that

1 1

= EFﬁi’z = ie_faﬂ

Plugging this into equation (6.2) gives
Zliemqo‘lgﬁ + 04,04, (8) = 0.
Taking the L?-inner product with 3 yields
[ S o8 + 128 =0

Since each of this terms is non-negative, it follows that they both vanish. Of
course, |af|? = |a|?|B[% so that we conclude that & = 0. This means that

Fﬁ’g = (0, and hence that A is holomorphic connection. It follows that Ay is
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also a holomorphic connection, We also see that 510(,6) = (. This implies
that 2 is an anti-holomorphic section or equivalently that 8 is a holomorphic
two-form with values in Ly = Lg*. From equation (6.1) it now follows that a
is a holomorphic section of Ly. In particular, since M is connected, if either «
or 3 vanish on an open subset of M, then it vanishes identically on M. Thus,
we see that one of o and § is identically zero since their product is identically
zero. All that remains is to show that the sign of deg(L,) determines which of

o and 3 is zero. We have
il F o .
(Ff)™ = Tt (lol? - 18P
Thus, we see that

deg(r) = [ @ Aw= = [ eI(8° - o),

Since at least one of o and f is zero, we see that if deg(L.) is non-negative,

then & = 0 and if deg(L,) is non-positive, then 8 = 0. O

Corollary 12. Ifdeg(L.) is non-positive, then any solution of (SW;) consists

of a holomorphic, Hermitian connection A on L. and a holomorphic section a

Of Lo with
(5 = ze7!lofw.

Two such pairs (A, o) and (A, o) determine the same point in the moduli

space if and only if there is a holomorphic, Hermitian isomorphism between
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the holomorphic structures on L, induced by A and A', such thal the induced

holomorphic isomorphism on Ly carries « to o . s

Proof. In the previous Lemma we have seen that the conditions on (A4, ) are i
equivalent to the fact that this pair yields a solution to equation (SWy) and “‘r‘

‘_
that any solution to equation (SW;) arises in this way provided that the degree I

of L. is non-positive. The uniqueness statement is clear. [l i
i
There is a similar result in the case that the degree of L. is non-negative.

Corollary 13. If deg(L,) is non-negative, then a solution of (SW;) consists 1§
of a holomorphic, Hermitian connection A on L, and a holomorphic section B i

ofKM®L51 with H

PR = et Blw,
4 4

Two such pairs (A, ) and (A, 5"} determine the samc point in the moduli
space if and only if there is a holomorphic, Hermitian isomorphism between
the holomorphic structures on L, induced by A and A', such that the induced i

holomorphic isomorphism on Ky ® Ly" carries 3 to 8.

Lemma 14. Suppose that deg(L.) is negative, A is @ Hermitian, holomorphic i
connection on L., and finally that o is a non-zero holomorphic section of Lg 1
(with respect to the holomorphic structure defined by Ag). Then there exisis fi’
another Hermitian structure b' on L. such that for the connection A" which is |

Hermitian with respect to i/ and which defines the same holomorphic structure
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on L, as A does, we have
io_
ot = 1€ et (6.3)

where |alyy means the norm measured with respect to the Hermitian structure

on Ly determined by h'.

Proof. Let us denote by 4 the given Hermitian inner product on L. A new
Hermitian structure A’ on L. is given by e*h for some smooth real-valued func-
tion ¢. Of course |2 = e’|af?. The curvature of the holomorphic connection

A’ which is Hermitian with respect to A’ is given by
Far = Fu+ 0L,
Thus, the equation that we need to solve for ¢ is
Ff + (@01 = %ete_fa|2w,
or equivalently
Fihw 00t Aw= %ete_fa}zw/\w. (6.4)

Of course, since the metric is Kéhler we have

2 ( 0%t t

tAw==|—————=
v ‘ 8318271 832322

2
dit, = =A .
i ) ,Urg ?. tdlu'g
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Also, since deg(L,) is negative, we have

/ 1y Aw < 0.
M

Thus, we can rewrite equation (6.4) as
At+e o’ +C =0 (6.5)

where C is the smooth function with Cdp, = %FA A w. Because of the degree

condition on L, we have

/ Cdpg < 0.
M

According to [6], equation (6.5) has a unique solution. : 3

Corollary 15. Let (M, g) be a smooth compact oriented Kdihler surface, fiz a
Spin®-structure ¢ and fiz a smooth function [ on M. Suppose that the degree
of the determinant .line bundle L. is negative. Fir a pair (5, ), where 0 is
a holomorphic structure on L. and oy is a non-zero holomorphic section of

Ly = /Ky @ L. Then there is a solution (A, «) to (SW;) as in Corollary 12

with the following properties:

1. A determines a holomorphic structure on L, which is wsomorphic Lo the fi

holomorphic structure 8, and

2. there is a holomorphic isomorphism from the structure determined by A

and & which sends o to oy.




Such a solution (A,«) is unigue up to gouge eguivelence. In this way any
pair (0, cqn) es above determines a point in the moduli space My, (c). All
points of Mr,(c) arise in this way. Two pairs (8,a) and (@, a) determines
the same point in My ,(c) of and only if the holomorphic structures on L,
are isomorphic and the induced holomorphic isomorphism of Ly carries the

holomorphic sections to constant scaler multiples of each other.

Proof. Let us denote by £ the given Hermitian metric on L,. We begin with
a pair (0, ) as in the statement of the Corollary. By Lemma 14 there is
a Hermitian metric A’ on L, such, letting A’ be the A'-Hermitian connection
inducing the holofnbrphic structure 8, we have

i

h=

e ag|hw.

Let p : Lo = L, be a C® complex linear isomorphism with p*(h') = h. Let
A = p*(A"). Then A is a h-Hermitian connection inducing a holomorphic
structure on L, which is isomorphic to the holomorphic structure 8. Clearly,

o = p~!(w) is a holomorphie section of Ly and
+_ b f 2
Fi= k || “w.

This proves the first statement of the Corollary.

Now let us show that the resulting solution (A, ) is unique up to gauge
equivalence. The point is that the function ¢ which scales the metric is itself
unique (see Lemma 14). This means that the isomorphism p is unique up to

an S change of gauge. From this the uniqueness of (A4, «) up to change of
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gauge is clear.

Notice that if we replace o by a constant complex multiple Agce with Ag # 0
then the resulting solution to equation (SW}) is gauge equivalent to the one
produced by a. By Lemma 11 any solution to equation (SWp) arises in this
way.

Lastly, we need to see when two pairs (@, cy) and (8, o) as in the statement
of the Corollary determine gauge equivalent solutions of equation(SWy). If
they determine gauge equivalent solutions, then the holomorphic structures
9 and 9 are isomorphic. Thus, we may assume that & = a. Clearly, if
the pairs determine gauge equivalent solutions to equation (SWy) then there
must be a holomorphic isomorphism of 8 which sends aqg to af. But the only
holomorphic isomorphisms of a holomorphic line bundle are multiplication by

constant complex scalars. This completes the proof. : O

There is a completely analogous result when the degree of L, is positive.

Corollary 16. Let (M, g) be a smooth compact oriented Kihler surface, fir o
Spin®-structure ¢ and fir a smooth function f on M. Suppose that the degree
of the determinant line bundle L. is positive. Fiz a pair (0, Bo), where 8 is
a holomorphic structure on L. and By is o non-zero holomorphic section of
Ky ® Lyt = /Ky @ L7'. Then there is a solution (A, f) to (SWy) as in

Corollary 18 with the following properties:

1. A determines a holomorphic structure on L, which is tsomorphic to the

holomorphic structure 9, and

2. there i8 a holomorphic isomorphism from the structure determined by A
to O which sends 8 to fq.
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Such a solution (A, p) is unique up to gauge ecquivalence. In this way any
pair (0, 8y) as above determines a point in the moduli space Meas (). All
points of Mas,(c) arise in this way. Two pairs (3, ) and (0, ') determines
the same point in M s ,(c) if and only if the holomorphic structures on L,
are isomorphic and the induced holomorphic isomorphism of Ly carries the

holomorphic sections to constant scalar multiples of each other.

Finally we have to consider the case when the degree of L, is zero. Since
the degree of L. is both non-positive and non-negative we conclude {using
Corollary 12 and Corollary 13) that the spinor field {c, ) vanishes identically.

This yields the following result.

Corollary 17. Let (M, g) be a smooth compact oriented Kihler surface, fir a
Spin®-structure ¢ and fiz a simooth function f on M. Suppose that the degree of
the determinant line bundle L, 1s zero, then any solution to (SWy) consists of
an anti-self dual connection A on L. and a triviel spinor field. This identifies
the moduli space My ,(c) with the space of gauge equivalence classes of anti-

self dual connections on L.

Proposition 18. Let (M, g) be a Kéhler surface with Kéihler metric g. Then

for any smooth function f: M — R

o If the degree of K is negative the only solutions to (SW¢) are feducz'ble,
1. €. Mezfg(c) ={.

e Let ¢ be the Spin®-structure determined by the complex structure. If the
g

degree of Ky is positive then #M s (c) = 1.
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Proof. Let us first consider the case when Ks has negative degree with respect
to the Kahler form. Fix a Spin®structure ¢. Let us first consider the case when
the determinant line bundle L, is non-positive. According to Lemma 11, in
this case § = 0 and « ig holomorphic section of Ly, If @ # 0, then we see that
the degree of Ly is > 0. But this is a contradiction since L = Ky & L, clearly
has negative degree. It follows that in this case « = 0 also and the solution is
reducible.

If the degree of L. is non-negative, then according to Lemma 11 the section
o = 0 and B is holomorphic section of Ky ® Ly OIf B £ 0, this implies
that this bundle has non-negative degree. But this bundle is isomorphic to
a square root of Kpr ® L1 which implies that it has negative degree. This
contradiction shows that 8 = 0 and hence in this case as well there are only
reducible solutions to equations (SWp). This completes the proof of the first
item in the statement of the Proposition.

Now let us suppose that the degree of K is positive and that the Spin®-
structure ¢ that we are considering is the one induced by the complex structure.
Of course the determinant line bundle L. is equal to K 1.}1 and hence has nega-
tive degree. This is the Spin°~structure for which Ly is trivial as a C* complex
line bundle. Suppose that we have a solution (4, @) to (SW;). The holomor-
phic structure on Ly induced by the Ag has a non-trivial holomorphic section
¢. Since the bundle is topological trivial, this holomorphic section must be
nowhere zero and « is a constant section. This proves that the moduli space
Meary(¢) is a single point.

Next we show that this point is a smooth point by computing the differen-
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tials in the elliptic complex associated to the solution (A4, «).

The complex is

QY M;iR) 02 (M;R)

0 — QO(M;iR) 2 & Ly s —0

QM C) 0 QHM;C)  QOL(M;C)

where
[ ..
Dyif) = 2id f
—if -
D, A _ /d+(i)\) — e~ f((iR(a@)/2)w + (ab — TWb)/2)

@b ]\ V20(a) +/20° (1) + 70 (iA) - 0/ V2

Since « is a constant, non-zero section , it is clear that the kernel of [y is

trivial. Let us consider the kernel of D,. Suppose that

(,0)

Applying 0 to the second coordinate of Dz( (;}) ) and using the fact that 9 =0

and that o = 0, we conclude that

S50 (1X)) - o+ 30 () =0,
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We also have

@b
e'f#.

(i) = d(in)*? = e

(The second equality uses the fact that the first coordinate of Dz({:;j\b)) is

zero.) Plugging this in gives
P —
i |x|*b -+ 00 b = 0.
Taking the Z? inner product with & we find that
Ly g2 412 a2
S + 10780 = 0,

and hence @b = 0, implying that b = 0.
We write iA = & — £ for some £ € QOY(M; C). The equations telling us that

the element is in the kernel of D)y now become

V29a+ —=€ - a= (6.6)

(8 — 88)y = e "R(aa)w. (6.7)

We write ¢ = (u + 4v)a with « and v being real-valued functions. By
adding D, (iv) to (4X, a,b) we arrange that in fact & = uo with u a real-valued

function. Equation (6.6) now reads

\/éau.w_liz.a:o




from which we conclude

E = —20u.

Using this, equation (6.7) is equivalent to

8AY + e fu = 0.

Since A has a non-negative spectrum, this implies that « = 0. We conclude
that ¢A = 0 and that o = 0. This proves that any element in the kernel of
Dy is in the image of I} and hence that the first cohomology of the elliptic
complex is trivial.

Lastly we need to compute the second cohomology of the elliptic complex.

But we know that the index of the complex is given by

(K — (26(M) + 30 (M))) /4.

Since M is a Kahler manifold, it follows that this index is zero. Since H® =
' =0, it follows that the second cohomology is zero as well. This completes
the proof that the unique solution to (SW;) is a smooth point of the moduli
space and hence that the Seiberg-Witten invariant of the Spin®-structure is ¢

is =1 when computed with respect to the metric 2/ g. O

Remark. Note that #Mas,(c) = 1 is stronger than SW,zs,(c) = 1, which we

already knew (see [10]).
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Chapter 7

SW-Moduli Space of a Manifold with a

Cylindrical End

In the previous Section we proved that if (M,g) is a Kéhler surface with
deg(Kr) < 0 the Seiberg-Witten moduli space for any metric g¢ = e?/ g in the
same conformal class of g consists of a single point. In this Section we extend

this result to a manifold with finitely many cylindrical ends.

Definition 13. We will say that (M, goo) i a manifold with o cylindrical
end modeled on R* x S°, if M, is diffeomorphic to M — {p} where M is a
closed manifold, and F : U, — {p} — Rt x S where F(z) = (log(|z|™), z/|2])
is a diffeomorphism such that (geo)|y,—{p} is the F-pull-back of the standard

product metric di? + ggs on RT x §* and U, is a neighborhood of p.

If (M, g) is a Riemannian manifold such that g is flat in a d-neighborhood
of p, where § < inj(M,g), there is a canonical way to produce a manifold
with a cylindrical end using the conformal class of g. Here inj(M, g) denotes

the injectivity radius of (M,g). Choose a function J; : (0,1] — {1, c0) which
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satisfies

1 ifto<r<eléd
Mr)=q62/r ifets? <r <4

1 ifr> 4.

Consider the sequence of functions { f;}, where e () = M|z

) and the sequence
of metrics g, = e*'g. This sequence of metrics converges in the compact-open
topology on M —{p} to a metric g,,. The pair (M —{p}, gs0) is & manifold with
a cylindrical end. We will denote by W¥; the associated conformal isomorphism
defined above Proposition 8.

The SW-equations make perfectly good sense on a manifold with a cylin-
drical end, but in order to use the usual analytical tools, one has to extend
the C* objects to appropriate weighted Sobolev spaces (see [9]). From now
on every time we work on a manifold with finitely many cylindrical ends we
extend the configuration space A(c) and the gauge group G(¢) by requiring A
and ¢ to be in L3 (M, goo) and o to be in L (Moo, goo). The Lf (Moo, go0)

norm is defined as

Ilh’”P,q:ﬁ = ”egtthﬂ’

where € is a smooth non-decreasing function with bounded derivatives, € :
M — [0, ¢], such that &(z) = 0 for z ¢ B;(p) and &(z) = ¢ > 0 for = € Bg(p).
Here we choose the weight ¢ < 1 because we want to produce solutions on

the manifold with cylindrical end from solutions on the manifold (M, g) via
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the conformal process (g = goo) using Proposition 10.

Proposition 19. Let (M, g} be any Riemannian 4-manifold, where g is flat
in the neighborhood of some point p € M . If (A @) is a solution of the
SW-equations on (M, g) then (A, Vo) is a solution of the SW-equations on
(Moo, Goo), such that (A, Weetp) € L] (Mo, goo)-

Proof. The fact that (A, ¥y¢) satisfies the SW-equations follows from Propo-
sition 10. We just need to show that (A, ¥oodp) € L} (Meo, goo)- In order to

do this, we will use the metric g as the background metric.

[Woodllzr,e = e Toadllzs

/ (16 + [VP)du +

M—B;s(p)

[ (6l + 0T b s
R+x 53

(161 +Vé[*)du +

I
o

M—Bs(p)

1
(|T~E+3/2¢|2 n |T—f+1+3/28TV¢|2);deMSS

o

Bs(p)—{r}
- / (1612 + Vo) du +
M—Bj(p)
P2 (|62 + |8, V6|2 drduss
B;s(p)—{p}
< ClI4IL2..

To prove that A € L} ,(Mu, goo) We need to recall that

gy lae = e 2 sy e
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where gy = e?/g. The computation is very similar to the one above. L

Corollary 20. For any compact oriented Kihler surface (M, g) with canonical
line bundle Ky of positive degree, where g is flat in o neighborhood of some

point, the induced manifold with a cylindrical end (Mw, goo) admits solutions

to the SW-equations.

Remork. We will see later (Proposition 24) that there is no loss of generality

in assuming that a Kéhler metric g is flat in a neighborhood of some point.

In order to prove that the Seiberg-Witten moduli space of a manifold with
a cylindrical end consists of only one point if deg{ K} < 0, we will need the i

following

Proposition 21. Let (M, 9oo) be a 4-manifold with a cylindrical end. If

(Ao, boo) € C® N LE (Moo, goo) i a solution of the SW-equations on the man- i
ifold with cylindrical end (Mu, 9o0), then (A, Vil deo) extends to a smooth i
solution of (SW;) on (M, g), replacing the strictly positive function e~/ by the

non-negative function

©|/62 if |z| < 62

Aoo(Z) =
1 if |z] >4

Proof. Tt is easy to see that (A, UZl¢w) € L?(M,g), as it is to see that
(Ao, Yoothoo) is a solution of (SW;) with function Ag, replacing e~f. The first
equation in (SW;) tell us that W ¢ is a holomorphic section on M — {p}.

Using Hartog’s Theorem we can extend this to a holomorphic section on M.

All the analysis done in Section 6 can be carry out if we replace the strictly
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positive function e~ in (SW;) by a non-negative function Ao whose zero set

has measure zero. L]

Corollary 22. Let (M, g) be a compact oriented Kihler surface with canonical
line bundle Ky of positive degree, where g is flat in a neighborhood of some
point. Then there ezists a solulion (Aco, doo) € C°(Li (Moo, goo) of the

SW-equations on (Mu, goo). This solution is unique up to gauge equivalence.

Proof. 'The existence is a consequence of Corollary 20 and uniqueness is ob-

tained using Proposition 21 and Proposition 18 O
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Chapter 8

SW-Invariant, Holonomy and Connected Sums

with S! x §3

Remark. Consider the diffeomorphism

FiR {0} > RxS% F(z)= <logm, 1:%) .

It is easy to see that the pull-back of the standard product metric g on Rx 53

under thig diffeomorphism is given by

Fg(e,n) = Bﬂ—zq,n)

for |z| < 1. Fix § > 0 and choose a function X; : (0,1] — [1,00) as in (7) and

congider the metric

al(€,m) = M(le)? (& m).
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Figure 8.1: Manifold M with a flat metric around two points

Note that for 716 < |z] < §? this metric agrees with the above pull-back

metric F*g.

It is convenient to think of the connected sum M#(S? x %) as follows. Let
M be a smooth compact oriented 4-manifold. Fix two points py,p2 € M, and
choose a metric g on M which is flat in a d-neighborhood of p; (see Fig.8.1).
For every I € N consider the e "1§2-neighborhood of p; (with respect to g)

By, (e77716%), and denote by M, the open subset of M given by the complement

of B, (e71-182) U B,,(e~+18%). If we denote by T; = Ti(e 'd% e"16%) the
annulus centered at p; with radii e=*"162 and 782, it is easy to see that there
exist a diffeomorphism (orientation reversing) that takes 77 into T and if we
define g; == Alg, such diffeomorphism becomes a g-isometry. Since we have
observed that T} and Tb are g-isometric we can identify 7 with 75 , and call
them T}, to obtain a Riemannian manifold {M#,(ST x S%), g;) (see Fig.8.2).
This manifold is simply the manifold M with two cylindrical ends of length
! obtained by conformally rescaling the metric g and identifying the annuli.
It is easy to see that such manifold is diffeomorphic to the connected sum
MHE(St x §3).

Even though the process above described can be realized on any smooth
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Figure 8.2: Manifold M#£(S! x §%) with a neck of length /

4-manifold the following results are only valid when M is a Kéahler surface,
because to prove them, we (strongly) use that on a given conformal class
of metrics, the moduli spaces of solutions of the SW-equations for any two
representatives are diffeomorphic, and this was proved for Kéhler surfaces on
Section 6.

Our next task is to explain how a Spin®structure on M transforms into
a Spin‘-structure on M#(ST x %) under the process above described. The

following Proposition will be very useful to explain it.

Proposition 23. There is a canonical projection map 7 : M#(S'x 5% — M.

It has the following properties:

1. The induced maps in cohomology
7 HY(M;T) — HY (M#(ST x S*), 1)

are injective, Here F = Zy or Z. In particular for i = 0,2,4, 7* is an

isomorphism.

2. m* (wo(M)) = wa(MA(S* x S%)).
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Since we start with a Spin®-structure ¢ on M we know that ¢;(L;) = wa(M)
mod 2. Consider the complex line bundle L, on M#(S* x S%) with ¢;(L,) =
7*(c1(Le). By 2 in the Proposition above we know that ¢ (L) = wy(M#(S* x
5%)) mod 2, therefore there exists a Spin‘-structure on M#{S" x 5*) whose
determinant line bundle is ;. The uniqueness of this Spin®-structure is due to
the fact that when we restrict this Spin®-structure to M; — M#(S x 5°) it
has to be ¢, and when we restrict it to 7} it has to be the trivial one. We will
denote this Spin®structure by ¢g;. It is not difficult to show that the formal
dimension of the moduli space associated to ¢gy is d{cqy) = d(c) + 1.

To explain the extra unit in the dimension above we need to recall the
concept of holonomy. Let Pg — M be a principal G-bundle over M, with a
connection A. Let z € M and denote by C(z) the loop space at z. For each
v € C(z) the parallel displacement along «y is an isomorphism of the fiber =~ G
onto itself and we will denote it by hol,(A). The set of all sﬁch isomorphisms
forms a group, the holonomy group of A with reference point x.

Once and for all for each { > 0 we will choose p; € 11, ¢ € T2 and a path
[;: T — M from p; to q; such that after identifying T7 with 7% we obtain and
embedding y; : ST — M+#(S' x $3). It is not difficult to observe that for all
1> 0 [y 0 € m(M#(S' x $%)), and in fact  represents the S* factor of
the connected sum.

If A is a U(1)-connection on the determinant line bundle L., we can triv-
jalize L, along [y so that the parallel transport along 1'; induces the identity
from the fiber at p; to the fiber at ¢;. When we identify 1) with 15 we still have

the extra degree of freedom of how to identify the fiber at p; with the fiber
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at ¢, and this is measured by hol,(A), where A is the glued connection. If
we change of gauge, hol,(A) remains unchanged because the structure group
/(1) is Abelian. In this section we will prove that when M is a Kihler surface
then every solution to the Seiberg-Witten equations for a Spin®-structure ¢,
induces an S' family of solutions to the SW-equations for the Spin®-structure
co,1 on M#(S! x 53, but, before we have to prove the following non-obstruction

result.

Proposition 24. Let (M?*,g) be a Kéhler 2n-manifold with Kéahler metric g
and induced Kihler form w . There is no local obstruction to finding a Kdhler
metric on M, flat in a neighborhood of a point (a finite collection of points)

without changing the Kdhler class of w.

Proof. Let p € M. The existence of such metric is equivalent to finding a
neighborhood U of p, and a Kéhler form w' in the same Kéhler class of w,
such that w'ly = wo = Y1 dz* Adz'. Tt is well known that there exist
an e-neighborhood U, of p and a function f : U — R such that wly, =
i89(27Z + f(2)) > 0, where | f(2)| ~ o{|z|*) and |2| denotes the distance {using
the Kihler metric g) on U, to p. Let K®(f) be the space of smooth functions

on M that satisfy
K () = {hey € (M) h(z) = —F(2) i |2] < s, h(z) = 0if £ < 2]}

where 0 < s < t < ¢, depend on h. Observe that if f is zero we do not have
anything to prove, otherwise 0 ¢ K°(f), but 0 € K¥(f), where K5*(f)

denotes the completion of X*®(f) in the C*' topology. To see this consider
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T
112 L

Figure 8.3: p: R" — R

the one-parameter family of functions hy(z) = —p(klz|}f(2), where p (sce

Fig. 8.3) is a smooth non-negative non-increasing function such that

1 ifo<r<1/2
p(r) =
0 if1/2<r<Ll.

All these functions are in K®°(f) and satisty

()] ~ of[2[")
|Vhn(2)] ~ o(l2])
|V2hi(2)] ~ of|2])
V¥ hie(2)] ~ ol|z])

|V4hy(2)| ~ o(1).

It is not difficult to see that by — 0 in the C3*® topology. It is important to
recall that the set P{w) of smooth functions A such that wy, = w +180h > 0, is

open in the C™ topology. This two facts allow us to find b, € K®(f) P (w),
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C¥ close to 0, such that

Whyy = W+ i00hs, > 0

= Wp + ?,ag(f -}- h's,t)a

therefore we have

Wit |Bs(p) = Woy

where B,(p) = {z € Up| || < s} r

From now on we will assume that our 4-manifold is given a Kahler metric
that is flat nearby two points, p; and ps.
We can glue a solution (A, ¢) of (SWy) to produce a solution (A, ¢;) of

the following set of equations on (M#;(S! x §°), g))

Dy, by = p( Ay, dr) = 1y

Fi —alé) =v(A,é) = v,
where (ug,v) € S(c) x Q2 (M#,(S" x 57);4R). It is not difficult to see that

(0, 1) € L%(M;Q)

Lim 1, )2, = O,

Definition 14. We will denote by My(cg1) C M(eg1) the solution subspace
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of the SW-equations satisfying the extra condition
hol,(A) =8,

and by SWy(co,) the cobordism invariant associated to this moduli space
(counting solutions with appropriate sign}. Note that the condition hol,(A) =

# reduces the dimension of the moduli space by one.

Proposition 25. Let (M#,(S' x S%), ) be the connected sum of M with
St x 5% with a neck of length . For every 0 € S and for every | > 0, there
evists some generic perturbation n € 2 (M#(S" x 5%);iR) with suppn C
Ty such that SW@T;"(O:??J) # 0, where SWp,(A,¢) = (Dad, F} — q(¢)) and
hol,(A4) = #.

Proof. Observe that the condition of m having supprn C i is not much of
a restriction at all, because the space of such 2-forms is open and the set of
generic perturbations is dense (see [10]).

Suppose otherwise, there exists some # € S* such that for every [ > 0 we
have SW;'(0,m) = . This would imply that SW'(0,0) = @ since we have
seen (see Corollary 22) that (M+#(S' x 5%),q)) = (Mx, 9oo), but this is a
contradiction because we have proven (see Corollary 22), that SW'(0,0) #
0. O

Definition 15. We will say that (4, qgg) on M, C-extends a solution (A4, &)
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Figure 8.4: Manifold M; € M,, with a neck of length {
of SWo (A, ¢) = (0,m) on MA(S* x S%) if

(A1, ¢)|ag, = (Ay, 1) and
(A(t, ), pi(t, ) = (Ai(m), e y(z))for (t,2) € [l,00) x S* C R x %

Note that (4, ¢1) € L2 (Mu, goo) (see Fig.8.4).

Remaork. From now on we will fix a U(1)-connection A on L..

Lemma 26. If for every [ >> 0 there exist two different irreducible solutions

AL éy] and [A}, 7] of

Dag =0

Fi —q(¢) =m

on M#,(St x $3) for some generic perturbations ny, then

1

(Cr ) = (|67 — Sillope (Al — A7), m(&} )
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satisfies

(Ciyhr) — (C, W) € L?,e(MOO:goo)

H'l/)H?',O,E = 1:
where (At ¢i) CO-cxtends (AL, ¢f) to (Moo, goo) for i = 1,2, and (A, %) are the
unique representatives obtained by the gauge fizing condition §(AL— A) =0.

Proof, Proposition 7 shows that ¢} # ¢7, so after C’-extending these solutions

we get ||éF — ¢F|| # 0. We will have on M,

1 - -
D"ﬂ,b = s D”1¢‘l —.D‘“N;b2
W T Bl PR
1 -
e T D‘l(,bg
\BE — Bl |
1 ~ 1, - oo
- _ D~2gb2—rA1—A2-q52
A e

1, - o~
= —‘2‘(14;1 — A7) - 8.
Therefore, we have that

1 IR
Dt = “ngg((Azl — A}) - 07)
1

U . S "

= —5(d(A} - A + (A} - AD) - 6 + 5 (A — 4D Dudt
[ S S - .
—Lah - A F - - A

1

1 e
L, - )98 - GG - AP
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By the Bochner formula,

1

1 ~ !
c |26,
4| gt — 912, X

. 8 1 1, . ~
Vi Vit 1101 + EFA} = *i(FA:; - F,;{dz) S —

Since (Af, @), ¢ = 1,2 are solutions to (SW) on M;, we have

rf = e IPg(dhy, i=1,2.

We also have (since (Al ¢) are CO-extensions of (A%, ¢), 1 = 1,2), y

16 (2)]” < —e"®)s(a)

|Ff(@)] < —e"@s(z)/2,

on M.,. Observe that even if we have x; € 7T} such that elt#) 5 o0 as | = o0,
we would have ef®g(z;) = 0, since s(z) = 0 on 7}. Using these, it is not
difficult to see that (C),¢) € I} (Moo, goo). Moreover (Ci,4fy) are uniformly
bounded in L2 (M, §oo). These last estimates this are necessary in order to

obtain the Lj , estimate on 1. O

Lemma 27. The same hypothesis as before. If (Al ¢ — (Aco, boo) in the

L2 (My, goo) topology, then we have

lim [|D(SWo) s an(Ci i)l = 0

=00
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Proof. Observe that

d*Cy — e" ' Dag (1)

D(SWo )z gy (Cti} = |
3C Y+ Dty

Let us consider the first coordinate of D(SWy;) ( A}’Q;;)(O;, )

d*Cy — e Dag (1)

= 1191 — BlleoFhy = Fh) = Dagy ().

It is easy to see that the right-hand side of this equation vanishes as [ — co.
Finally it is easy to see that the second coordinate of D(SWj,), 151"5;)(0,5, W)

vanishes as [ — co. O
Proposition 28. For every 0 € S*, SWy(co1) = 1.

Proof. Assume that SWy(eo1) # £1. By Proposition 25 this implies for [ >
0 there exist (at least) two different irreducible solutions (A%, ¢f), i = 1,2
on (M#,(S* x $%),9). By Lemma 26 and Lemma 27 we would have an
element of ker DSW, at (Ao, Poo) the unique solution on (M, geo ), obtained
in Corollary 22. But this is a contradiction since (A, ¢o) 18 & smooth point.

The same kind of argument shows that SWj{cp1) =1 since SW(c) =1. U
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Chapter 9

Cohomology of B*(¢)

In this section we will build cohomology classes for B*(c} in order to detect
B-classes (see Definition 12). To describe the cohomology of B*(¢) we have to
introduce the concept of universal family of W -conmections associated to a
Spin® structure ¢, parameterized by B*(c). A ST -connection is simply a pair
(4,¢), where A is a U(1)-connection on Lg and 0 £ ¢ € ST(¢).

A cohomology class 8 € HH(B*(c); 7.) can be thought of as a homomorphism
81 Hy(B(c);Z) = T and the elements of H;(B7(c); Z) can be thought of as
homotopic classes of maps f: 7T B*(c), where T is a compact space. The
maps f T — B*(c) are naturally interpreted in terms of families of SW-

connections.

Definition 16. A family of SW -conneclions in G bundle Lo —+ M parametri-
zed by a space T' is a bundle I — T x M with the property that each slice Ly =
Lgsyxn 18 isomorphic to L., together with a SW-connection (Ag)e = (As, &)
in L, forming a family Ag = {(Ag)e}-

Lot oy 2 C(c) x M — M be the projection onto the second factor and

let £, — C*(c) x M be the pull-back line bundle, mile. Then Lo carrics a
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tautological family of SW-connections Ay, in which the SVW-connection on
the slice Lc|q(ag) over {(A, ¢)} x M is (m5(A),75(¢)). The group G(c) acts
freely on C*(c) x M as well as on £, = C*{c) % L., and there is therefore a

quotient bundle

L — B*(c) x M

L, = £./G(¢).

The family of SW-connections Ay is preserved by G(c), so L, carries an in-
herited family of SW-connections Ay. This is the wniversal family of SW-
connections in Ly — M parameterized by B*(c).

If a family of SW-connections is parameterized by a space 7" and carried

by a bundle L — T x M, there is an associated map f : 7 — B*{(c) given by

f(t) = [At: ‘?Bt]

Conversely, given f : T — B*(¢) there is a corresponding pull-back family of
connections carried by (f x I}*IL,. These two constructions are inverses of one
another: if f is determined by the above equation, then for each ¢ there is a
unique isomorphism 1, between the SW-connections in I, and (f x I)*(L¢)s,
and as ¢ varies these fit together to form an isomorphism 1 : L — (f x I}*L
between these two families. (The uniqueness of 4 results from the fact that

G(c) acts freely on C*(c)). Thus:

Lemma 29, The maps f: T — B*{(c) are in one-to-one correspondence with

familics of SW -connections on M parameterized by T', and this correspondence
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is obtained by pulling back from the universal family (L, A,).

Remark. Let {7} be fixed representatives for the generators of the free part of
H (M Z). I f1, fo : T — B*(c) are homotopic, the corresponding bundles Ly
and I, are isomorphic, and the corresponding holonomy maps h; : T — (S1)™
and hy @ T — (SY)" arc homotopic, where the holonomy map is defined as
hit) = (holy, (fi(£), .. holy, (fi(2))).

There is a general construction which produces cohomology classes in B*(¢),

using the slant-product pairing
[ H&Y(B(o); Z) x Hy(M;Z) — HY(B* (<), Z).
We have built over B*(c) x M a line bundle L, so we can define a map

g Hy(X;7) — H*(B*(c); Z)

pla) = i) /e

If T is any (2 —i)-cycle in B*(c), the class x(c) can be evaluated on T using

the formula
(M(@):T)B*(c) = <CI(I[JC);T X a)B*(c)xM‘;

which expresses the fact that the slant product is the adjoint of the cross-
product homomorphism. Next we will describe another way to build cohomol-
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ogy classes.

Definition 17. A closed curve v: gl _y M induces a holonomy map
hol,, : B*(¢) — S

defined as the holonomy of the SW-connections A, along . The pull-back of
the canonical class dff of gt defines a cobomology class on H(B*(c); Z) which

we will call the holonomy class along -

Proposition 30. The cohomology groups of B*(¢) are generated by the image
of the map H(X;L) — H2 (B (c); ). Moreover, given ¥ € H, (M),

pu(v) is the holonomy class along v, holf;(dﬂ).

Proof. First we will prove that if {v} are fixed representatives for the gen-
erators for the free part of H L (M; Z) then {ps(:)} generates o (B (c); ). 1t
is enough to prove that for every i we can find B St = B*(c) such that
{pu(i)s Bl = L Clonsider the line bundle L — S, and observe that
there is no obstruction to extend it to a line bundle L = gt x §' such that
deg L = {& (L), gl x §%) = 1. Let A; be a U(1)-connection on L and consider

the map

hol.xgx(A,;) : Sl — Sl.

It is not difficult to see that deg L = deg{holux a1 (Ay)).  After extending
A(t, i) to a U (1)-connection on L. — M for each t, we obtain (see remark

below TLemma 29) our desired maps B;: St = B(c).
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To prove the last statement we proceed as follows: let «: S — B*(¢),

{p(7i), ) ey = (e (L), @ X ¥i)Be(eyx :
= {en((or x ) (L)), S* x S")
= deg(hol g1 (4) : 5" — S1) |
= deg(hol,, oav : §* — ")
= (degy (df), a)p+()-

Finally we have to show that if £ € M then u(z) generates the coho-
mology of the CP™ factor. Since Map(M,S'), acts freely on C*(c), then it | ll
is easy to show that ILg|g«y & C*(c)/Go(c), where Gy(c) is the kernel of the |
homomorphism G(c) — S! given by evaluating on the fiber over z. Ol ; ;

|
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Chapter 10

Applications

C. LeBrun [8] showed that under some mild conditions on M, M #k@fﬁ does

not admit Finstein metrics. The precise statement is the following:

Theorem (C. LeBrun). Let M be a smooth compact oriented 4-manifold
with 2¢ + 3¢ > 0. Assume, moreover, that M has o non-trivial Seiberg- Wilten
invariant. If k > 2(2e + 30) then M#k CP? does not admit an Einstein met-

TiC,

Remark. The proof of this Theorem only requires that M has a Spin‘-structure

¢ that is a B-class.

Theorem 31. Let (M,c) be a smooth compact Kihler surface with o Spin®-
structure ¢. There is a canonical Spin® structure in the connected sum manifold
M#(S" x S%) which we will denote by ¢o1. Moreover d(cos) = dl¢) +1. If ¢
is @ non-trivial SW-class for M then ¢y, is a B-class for the connected sum

MA(St x 5%).

Proof. SWy(cg,1) is a cobordism invariant for every ¢ & S'. Consider the s

mooth cobordism induced by the family of metrics g on M#(S* x %) as
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| — oo and observe (Corollary 22) that SWao(c) = 1. This shows that
(holz,(dg), M(Co,l))

of the connected sum. This, the definition of a B-class and Proposition 30

Brleon) = 1, where v is @ representative for the St factor

complete the proof. O

Corollary 32. Let (M,¢) be a smooth compact oriented Kdhler surface with
a Spin-structure . There is a cononical Spin® structure in the connected sum
MA:2(S" x S%) which we will denote by coo. Moreover d(coq) = alc) +2. If ¢
is o non-trivial SW-class then ¢p2 18 @ B-class but has trivial Seiberg- Witten

invariant.

Proof. Theorem 31 shows that every time that we perform a connected sum
with St x §% we add ¢ eycle to the moduli space, that lies entirely in the

HY(MA+(ST ¥ S3), R)/H? (M#(S' x $3); 7) part of B*(co,1)- 0

Lemma 33. Let (M,¢) be a smooth compact oriented Kehler surface with a
Spin®-structure ¢ and 2e + 30 > 0. Assume that ¢ s @ non-trivial SW-class.
Let k,1 be any two natural numbers. Then there is a B-class cgy 0N My =

Mtk CPP# (S x S°) such that
(cf(ck,;))z > (2e+ 30)(M).

Proof. First observe that My, = (M H#k @5)0,3. dince M is a Kahler surface,

we know that M#k CP? is also a K#hler surface, and its associated Spin® struc-

. k
ture ¢,o sotisfies cilerp) = crle) + > =1 By where By, ... , [y arc generators




Let ¢;(c,) be the first Chern class of (cx0)o; Which is a B-class by Theorem

31, and notice that ¢;(cx;) = ci1{ckp). One then has

(el (er))® = (ef (er0))”

i 2
= (ci"(C) + ZE;)

J=1

= (P +2) e (co) - Bf + (3 B}

LeBrun’s Theorem can be generalized in the following way:

Theorem 34. Let (M,¢) be a smooth compact oriented Kihler surface with
a Spin®-structure ¢ and 2e + 30 > 0. Assume that ¢ is o B-class. If k+ 41 >

25(96 + 30) then My, = M4tk CPXE (ST x %) does not admit an Binstein
B7 :

metric.

Proof. The proof is the same as the one given by C. LeBrun {8], we reproduce

here for completeness. For any Einstein metric ¢ on M, C. LeBrun showed
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that

(2¢ + 36) (M) = ﬁ fM (2|W+lz + f) dy > (e o)

for any B-class ¢ on M;,.

By Lemma 33, My, has a B-class ¢ with (¢ (¢g;))? > (2e+30)(M). Thus

(2 + 30)(M) — k — 4l = (2e +30) (My) > =2 (2 +39)(M).

Assuming that M ; admits an Einstein metric we get that

25
: 2
E+4l < 57( e+ 30),

which contradicts the hypothesis. The result follows. , O

There exists two well known topological obstructions to the existence of
Binstein metrics on a differentiable compact oriented 4-manifold M.

The first one is Thorpe’s inequality, that comes from the Gauss-Bonnet-
Chern formula for the Euler characteristic e(M) of M and from the Hirzebruch
formula for the signature o(M) of M (see [2]), which allow us to express
these two topological invariants in terms of the irreducible components of the

curvature under the action of SO(4). It can be stated in the following way

Theorem (N. Hitchin, J. Thorpe). Let M be a compact oriented manifold
of dimension 4. If e(M) < 2|o(M)| then M does not admit any Einstein
metric. Moreover, if e(M) = 3|o(M) then M admits no Einstein metric unless

it is either flat, or a K3 surface, or an Enriques surface, or the quotient of an
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Figure 10.1: Chen’s region

Enriques surface by a free antiholomorphic involulion.

This theorem implies a previous result of M. Berger who proved that there
exists no compact Einstein 4-manifold with a negative Euler characteristic.

On the other hand, combining the Gauss-Bonnet-Chern formula for the
Euler characteristic with Gromov’s estimation of simplicial volume || M| of a
Riemannian manifold M (see [4]), M. Gromov obtained the following obstruc-

tion

Theorem (M. Gromov). Let M be a compact manifold of dimension 4. If

e(M) < g || M| then M does not admit any Einstein metric.

A. Sambusetti (see [12]) found a topological obstruction to the existence
of Einstein metrics on compact 4-manifolds which admit a non-zero degree
map onto some compact real or complex hyperbolic 4-manifold. As a conse-
quence, by connected sums, he produces infinitely many non-homeomorphic

4-manifolds which admit no Einstein metrics. This fact is not a consequence
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of Hitchin-Thorpe’s or Gromov’s obstruction theorems. A. Sambusetti also
proves that any Euler characteristic and signature can be simultaneously re-

alized by these non-homeomorphic manifolds admitting no Einstein metrics.

Definition 18. We say that a pair (m,n) € Z* is admissible il there exists
a smooth compact oriented 4-manifold with Euler characteristic m and signa-
ture n. In fact a necessary and sufficient condition for (m,n} € Z* to be an

admissible pair is that m =n mod 2.
Z. Chen [3] proved the following theorem:

Theorem (Z. Chen). Let z, y be integers satisfying

18644
2129

352

z— 365.7:1:2/3,

z > C,

where C 1s a large constant. There exists a simply connected minimal surface
M of general type with ¢i(M) = y, x(M) = =, Furthermore, M can be

represented by a surface admitting o hyperelliptic fibration.

Remark. Recall that (M) denotes the Euler-Poincaré characteristic of the

invertible sheaf (5;. Using Noether’s formula we have that

e} (M) + e(M)
12

e(M) + o (M)
4

xX(M) =

If M is not a complex surface ¢(M) + (M) is not necessarily a multiple of 4

but it is always an even number.
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In our last result, the manifolds in Chen’s theorem play the same réle as

that of the hyperbolic manifolds in Sambusetti’s construction.

Theorem 35. For each admissible pair (m,n) there ezist an infinite number
of mon-homeomorphic compact oriented 4-manifolds which have Euler char-
acteristic m and signature n, with free fundamental group and which do not

admit Einstein metric,

Proof. Let (mg,ng) be an admissible pair and consider the pair of integers

2l yp) = (Tt 2myg -+ 3ng). It is always possible to find (infinitely many
0 2

positive integers k and ! such that

t 41
(ﬂﬁ,y) = (x[}; ;Yo 1 k) €Z
32 25
o> 2T

where Z denotes the set of (z,y) € Z? that satisfy the conditions of Chen’s
Theorem. The reason for this last statement is that the region Zg determine

by (z,y) € R? such that

, — 365.
89x+1402:c <y< 5195 5.7z,
z > O,

where C is a large constant, is open, connected and not bounded (see Fig.
10.1).

If we denote by M the simply connected Kiahler surface with ¢} = y and |
x = z, then My, = M#k (CTP’Z—#;&:I(‘S’1 x 8%), is a manifold that realizes the pair
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{mg,no) and does not admit any Einstein metric. This last statement is a

consequence of Theorem 34. O
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