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Abstract of the Dissertation
Gromov Invariants of Symplectic Fibrations
by
Haydee Herrera Guzman
Doctor of Philosophy
in
Mathematics
State University of New York at Stony Brook

1999

We study the Gromov invariants of the total space of é, symplec-
tic fibration w : W — M, where (M, w) is a symplectic 4-manifold
and the fiber is equal to S%. We find a relation between the Gromov
invariatns of W and those of M, for the homology classes A such
that 7(A) # 0. As an application we construct infinitelly many
symplectic structures on W for M = FE(n), the simply connected

minimal elliptic surface.
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Chapter 1

Introduction

In this thegis we study the Gromov invariants of the total space of a symplectic
fibration m : W — M, considering in particular how the Gromov invariants of
W and M are related.

We shall work with almost complex structures on W which are in certain
sense adapted to the fibration. Such almost complex structures will be called
fibered (see definition 2.3 below), and the set of all such structures will be
denoted by Jy.

Assuming that the structure group of the fibration 7 : W — M is a
compact group, we prove that the set of regular fibered almost complex struc-
tures on W is dense in Jyi (see Proposition 3.7 below). This regularity resuls
will be essential for the proof of our main theorem. This concerns the special
case when the fiber # = 5% and dim M = 4 (see Theorem 4.2), and implies
that if there are non-zero Gromov invariants on M, then we can find non-zero

Gromov invariants on W (see Corollary 4.4).

We can apply our results to the construction of infinitely many symplectic




structures on some of the 6-manifolds we mentioned. Namely, let M = E(n)
be the simply connected minimal elliptic surface with fiber 7" and first Chern
class ¢;(E(n)) = (2 —n)PD(T), and let 7 : W — F{n) be any S?-bundle.
Recall that two symplectic forms are said to be deformation equivalent if they

can be joined by a path of symplectic forms.

Theorem 1.1 W has infinitely many deformation classes of symplectic struc-

tures in the same cohomology class [Q] € H*(W,R).

This theorem is a generalization of a result of Tonel and Parker in [6], where
they prove the same statement for E(n)x.5?, and is related to the stability con-
jecture of Donaldson, that states that homeomorphic symplectic 4-manifolds
when multiplied with S? should yield diffeomorphic but not deformation equiv-

alent symplectic manifolds.




Chapter 2

Preliminaries

In this section we study properties of the metrics on a symplectic fibration
that are associated to fibered almost complex structures. First, we recall the
definition of a symplectic fibration and the conditions under which it supports a

symplectic form. Then we define the class of fibered almost complex structures.

Definition 2.1 A locally trivial fibration 7 : W — M with fiber F' is said fo
be a symplectic fibration, if (F, o) is o symplectic manifold and the structure
group of the fibration can be reduced to a subgroup G of the group of symplec-

tomorphisms of the fiber Symp(F, o).

We shall denote by F, = 7~ '(z) the inverse image of z € M, and by o,
the induced symplectic structure on the fiber. We are going to assume that G
is compact.

For every point y € W denote by Vert, = ker du(y) = T, Fyy the vertical

tangent space. A connection I’ on W is a field of horizontal subspaces Hor, C

T, W, for every y € W, such that TW = Vert @ Hor, i.e. there exists a bundle




map ¢ : #*TM — TW, such that dm o+ = id,+pss, which implies that the

short exact sequence of bundles
00— Vert —TW — 7*TM — 0

splits.
We say that a two form 7 € Q2*(W) is compatible with the fibration if
T|p, = o, for every 2 € M. Every compatible 2-form 7, gives rise to a

connection I';, in the following way: for y € W,
Hory =V ={w e T,W | 7{w,v) = 0, for every v € Vert}.

Conversely, for every connection I' on W there exists a two form 7, such that
Hor = Vert™. This form, however, is not unique, 7 and 7 generate the same
distribution if Vert is in the kernel of 7 — 7/, i.e., if ¢(v)(7 — 7') = 0 for every
v € Vert. Notice that it is not hard to construct a compatible 2-form on any
symplectic fibration (see [12]).

Given a connection I, every path 8 : [0,1] — M determines a diffeo-
morphism g : Fgq) — Fpaa) sending a point yy € Fs) to the end point
y1 = B(1) € Fy of the unique horizontal lift 3 of § at . W g is called the
holonomy of B, or parallel transport along . The connection T is called sym-
plectic if Ug is a symplectomorphism (Fg), o)) = (Fpy, osy), for every
g.

If 7 is a 2-form compatible with the fibration, then the connection I,
is symplectic if and only if 7 is vertically closed, that is, if dr(m,7,-) = 0
for every m,ne € Vert ([12]). Such a form will be called a connection 2-

form on W. In particular, if 7 is closed then [', is symplectic. It is not




hard to prove that every symplectic connection I' has the form I';, for some
vertically closed 2-form 7 on W (see [12]}. However, 7 need not be closed.
The next theorem characterizes the fibrations for which 7 may be taken to be
closed. Cuillemin, Lerman and Sternberg in [4] constructed a closed 2-form
7 using the holonomy of a symplectic connection when the fiber is simply
connected. McDuff and Salamon [12] generalized their construction whenever

this holonomy is Hamiltonian around every contractible loop in the base.

Theorem 2.2 [4],[12] Let w : W — M be a symplectic fibration and I' be a
symplectic connection on W. Then the following are equivalent
(i) There ezist a closed connection 2-form 7 € Q2 (W), such that T =T,

(i) The holonomy of I' around any contractible loop in M is Homiltonian.

As a consequence, we see that if the base manifold (M, w) is symplectic,
then W carries a family of compatible symplectic structures given by 2, =
7+ km*w, for & sufficiently big. For this reason we shall just look at fibrations
that support closed connection 2-forms 7 and Hor will be Vert”.

The next step is to consider almost complex structures on W tamed by
0, it will be convenient to make use of almost complex structures adapted to

the fibration in the following way,

Definition 2.3 An almost complex structure J in W is called fibered if for
some symplectic connection I' on W, we have the following properties

(i) J is Q-tamed,

(11) Hor and Vert are J-invariant,

by




(111) 7w s (J, Jar)-holomorphic, for some almost compler structure Jyr on M

tamed by w.

This set is non-empty and can be constructed as follows. Vert— W is a
symplectic vector bundle. Hence it has a complex structure Jr {[12]). Define
J to be the pull-back of Jas to the horizontal distribution Hor, and to be Jp

on Vert.

Remark 2.4 Assume that Jyr and Jp are fived, ond let Hor = o(w*TM) and
Hor' = J(7*TM) be two horizontal distributions, and J and J' the correspond-
ing fibered almost complez structures on W. Then Jiver = Jp = J'|vere. We
would like to know the difference between J and J' on vectors belonging to Hor.
Since both structures are fibered, Ju = vy and J'' =Ty, Let X € #*TM.
Then o(X) = (X) + (¢ — /HX) and

JUX) = (Tu X))+ Jr(e — SWX) = o[ X) + 0(X) = Ju(X) + 8(X),

where 0(X) = Jp(e — ) — (0 — ) 18 @ (Jag, Je)-anti-linear homomorphism

from (7T M, Jas) — (Vert, Jr).

(N

Notice that with such a J, if u : (X,7) — (W, J) is (4, J)-holomorphic,
then v := 7 ow is (j, Jas)-holomorphic. Assume that v is not constant,
then if v is somewhere injective, then © has to be somewhere injective as

well. We want to study the space of J-holomorphic maps in W, therefore

we need to examine the Cauchy-Riemann operator (see Section 3 below), and




for that we need an appropriate metric on W. Namely, choose a G-invariant

metric gp on £ compatible with Jp and the metric gy (.,.) = w(Jas.,.) on
M. Define the metric g on W to be equal to m*gsr on Hor and to gr on
Vert, which makes Hor and Vert perpendicular. Since gp is G-invariant, g
is a well-defined Riemannian metric on W. Notice in addition that J is g-
invariant. Furthermore, with this metric # is a Riemannian submersion, that

is, dm(y)| wor, : (Hory, 7 gar) — (Twty) M, gar) is an isometry for every y € W.

If X € TM, X € Hor C TW will denote its horizontal lift. Let ¥ be the

Levi-Civita connection of ga and V the Levi-Civita connection of g {See 11]).

Lemma 2.5 For every X,Y ¢ TM,

B[ =

and [X,Y]"(p) only depends on X (p) and Y (p), for p € W.

Proof. 1t is enough to prove that (h, VyY) = (h,V xY) for every h € TM,
and that (v, VxY) = (v, [X,Y)), for every v € Vert. TFirst observe that

X(Y,Z) = X{Y, Z) and that dz[X,v] = 0.

Let A € TM and & its horizontal lift, then by definition of the Levi-Civita

connection in terms of the metric ([1], p. 55)
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= %(Y(X, hy+ X (b, Y} — h(Y, X)

o ([Ya h’]:X> - ([Xz h’}: Y) - ([Ya XJ: h))

= (h, VxY).

Similarly, for v € Vert,

= 1

(U! Y?) = 5<[Y7 ?],U).

To see that [X, Y] is a tensor, let f,g: W — R,

[fX,9Y] = [glX, Y]+ fX(9)Y — ¢V ()X,

by taking the vertical part of both sides we get that

[ffj g?]ﬂ = fg[y: ?]U

a

If F is a submanifold of W, then for any X, Y ¢ TF, VY = VLY +

B(X,Y), where VY is the tangential component of VxY, and B(X,Y) its

normal component (called the Second Fundamental form of #'). We say that




Fis totally geodesic if VxV = VLY, for every X, Y ¢ TF. This means that

if v is a geodesic in F' with respect to g

r, then -y is a geodesic in W with
respect to g (see [1]).
The next lemma is taken from [16] and we include the proof for the con-

venience of the reader.

Lemma 2.6 [16] The fibers of ® are totally geodesic with respect to g.

Proof. Let «v 1 {0,1] — F be a curve parameterized by arc length. We want to
prove that Ve is a vertical vector. Tet h(0) be a horizontal vector at a(0).
Let 4 :[0,1] — M be a curve in M with initial velocity 8(0) = m,A(0), then
for every s € [0, 1] we have the maps Wy, : Fpgy — Fais) or parallel transport,

-Deﬁne o(t,s) = Wgry(aft)). By construction, h(t) = £o{t,0) is a hori-
zontal vector field along . Define f(s) = fol | 2o(t,s) |1? dt, the energy of

the curve o(t, s) for fixed s. Since gr is a G-invariant metric, then Wgey (or

parallel transport) is an isometry for every s, and therefore f(s) is a constant

function in s, i.e. Z£(0) =0.

On the other hand, we have that
9 o 1a 9
—J(0) =2 /0 (2ot 5), mra(t, )t
L9 5
=2 /0 (Vs 0(t,5), 5r0(t,5)dt

- 9
—9 /0 (Veroltys), ooty s))d

Py /O %(%a(t,s),%g@,s))dﬁu /ﬂ %a(t,s),vt%a(t,g))dt




Then there exists t1 € [0, 1} such that (h{t;), Vad(t,)) = 0. Defining a4 (t) =
Od(%), for ¢ € [0,1], and applying the same procedure, we can find ¢, € [0, %]

such that (h(t2), Vad(t2)) = 0. This procedure gives a sequence {t;} such that
e 1; converges to 0,

e (h(t;), Vair(t;)) = 0.

Therefore {h(0), Vaa(0)) = 0. Since A(0) is an arbitrary horizontal vector,

this shows that V4&(0) is a vertical vector.

Lemma 2.7 Parallel transport along vertical trajectories preserves the hori-

zontal distribution.

Proof. Let z(t) € Fy,, and h(0) a horizontal vector at z{0), then there exists a
unique vector field 4 along x such that Vih = 0. We claim that A is horizontal.
To see this, let Y be a vertical vector field along z, which is in addition parallel,

i.e. such that V;¥Y = VY'Y = 0. Then

d

Z(hY) = (Vah,Y) + (h, VoY)

= (h,V;Y) = 0.
Therefore (h,Y) is constant, and since (h(0), Y (0)) = 0, (h,Y) = 0 along .

Since we can choose a basis of vertical vector fields that in are also parallel for

the vertical vector space Vert, h has to be perpendicular to Vert.

10




Corollary 2.8 Let h € TM and h its horizontal lift to TW . Letwv be a vertical
vector field. Then
1. V,h is horizontal.

2. [v,h)(p) depends on h(p) and the extension of v in a neighborhood of p.

Proof. The first statement is immediate from previous lemma. The second
statement follows from the fact that V is torsion free, thus (Vyzv)* = —[v, A,

O




Chapter 3

Regularity

To study the space of J-holomorphic curves in W, we need to study

the Cauchy-Riemann operator. In section 3.1 we summarize some basic facts

about the moduli space of J-holomorphic curves. In section 3.2, we adapt
the previous constructions to our fibered setting, and we establish the the
existence of a long exact sequence in cohomology, induced by the short exact
sequence

0— Vert - 1T'W — #*TM — 0,

see Corollary 3.5. The main result in section 3.3 is Proposition 3.3, that states

that the set of regular fibered almost complex structures in W is dense in J.

3.1 Set Up

Let (X, J) be any almost complex manifold, £ be a closed Riemann surface

of genus g, and J (%) the space of almost complex structures on ¥. For g > 1,

denote by 7, the Teichmiiller space of ¥, which parameterizes J(X). Thus i

12




dimp7, = 6¢g — 6 and there exists a smooth mapping

J:Ty = J(X)

7= §(7).

A map u: (3, 5(7)) = (X, J) is called a (J, j{r))-holomorphic map, if

0:(w) = 5(du-t Joduo j(r)) =0.

For any homology class A ¢ Hy(X,Z), we shall denote by M, (A4, X, J) the
moduli space of pairs (u,7), where v is a (J, j())-holomorphic, somewhere
injective map that represent the homology class A, and 7 € 7,. If we denote
by Maps the set of somewhere injective maps f : ¥ — X that represent
the homology class A, then we can think of 8, as a section of a bundle £ —
Maps x Ty, where the fiber at (u,7) is the space Eury = QM (w*T X) of smooth
J-anti-linear 1-forms on X with values in uw*7TX. Then M,(A, X, J) = 5;1(0).

In order for My(A, X,J) to be a manifold, 8; needs to be transversal

to the zero section, this means that the image of the linearization of 3 7 at

(u,7) € Mg(A, X, J),
do; : Ty (Maps x Tg) — Ty né = Tury(Maps X Ty) & g,

is complementary to the tangent space of the zero section Teury(Maps x Ty),
i.e., when we project dd 7{u) onto its vertical part in E(u,ry We get a map of

maximal rank,

LIs(u,T) : C®W*TX) @ T 7y — Q" (W' T X).

13
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This map is given by

£, 7)(6,5) = Due) + 57 o du (7.(5),

where

Du: C®(u*TX) - Q¥ (u*TX)

is the linearization of the Cauchy-Riemann equation at w ([13], [14]).

3.2 Cauchy-Riemann Operator on Symplectic

Fibrations

We want to study the space of J-holomorphic curves in W for classes A

such that w*(ﬁ) # 0, and relate it with the space of Jy-holomorphic curves in
M in class A = w*(ﬁ) |

Let w: ¥ — W be an embedded J-holomorphic curve in class fl, such
that m/i =A#0andv=wou:¥ — M is an embedding. Recall that the

short exact sequence of vector bundles
0— Vert -+ TW —a"T'M -0
splits. Then the complex bundle («*T'W, J) splits as the direct sum

(u* Vert, Jp) @ (v'TM, Ju),

and consequently

QUL (' TW, J) = Q¥ (u* Vert, Jr) @ QY (0T M, Jyr).




Theorem 3.1 Let u : 2 = W be as above, then the following diagram com-

mutes

0 —— C®(*Vert) —— C®°WTW) —— C®(W*'TM) —— 0

| o o |

0 —— Q% (u*Vert) —— QUWNu*TW) —— QY *TM) —— 0,

where Dv is the linearization of the Cauchy-Riemann equation atv and Dpu —

Du|cw(u.* Vert) -

Proposition 3.2 below proves the commutativity of the second square, and

Proposition 3.4 proves the commutativity of the first square.

Proposition 3.2 Let & ¢ C®(w*TM), &, be its horizontal lift to TW and
X € TS. Then mDu(€)(X) = Dv(£)(X).

Proof. 1t is not hard to prove that for every X € TE and & € C®{u*T'M),

there exist vector fields £, X and 5X in M that extend &, dv (X) and dv(5X),
respectively, in a neighborhood of v(Z) C M, with the property that [£,, X] =
[€,,7X] = 0 (see [11]). By slight abuse of notation we write &, dv(X) and

du(jX) for the extensions to M. Then a formula for the operator
Do C®(*TM) = QUL (v T M),

is given by

Du(6)(X) = 3 (Ve du(X) + Ve, (Jadu(i X))

1 .
= §(Vdv(x)§1 + Ju Vi + (Ve Ju) (do(j X)),




whose horizontal lift to TW is

Dv(6)(X) = %(de(x)& + IuVauix 6 + (Ve Jar) (dv(§ X)),

On the other hand,

Du(&,)(X) =

=R

(Vgrdu(X) + Vi (Jdu(j X))).

Define X* = du(X) -- dv(X), then

Du(E)(X) = 3 (VX + Vedo(X) + Ve (J(GX)") + Vo (JBGX)).

Since V is torsion-free,

Du(€)(X) = %(7}@51 + Vigxwéy + [, X+ €, JGX)]

+ va!u(}()a + Jvmjgi + (vgl J)(dv(1 X))

+ (&, dv(X)] + Ty, do(§ X))

Now we use Lemma 2.5 (2.1) and the fact that Vy.&, + Vigxpés =0,

DuENX) = 5 (Vari + T Vargms + (Ve )@ GX)
+ [gln XU] + [El: J(JX)U] + [g]‘n dU(X)] + J[El: d‘U(jX)]
+ @07 + LIdGX)EL),

and also

(Ve, ) @GX)) = (Va D) G0) + 36, TudsGRI — L, i)
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T'hen

L\D[H

Du(€)(X) = (Vaxybr + IuVag & + (Ve J)(dv(7X))

+ 56 TGV — I B, BOX)P

]

£, X+ [, G X)) + 6, B0(X)) + Iy, de(iX)
SJBCOED + ST (X, E)

= D@ + 6 X1+ 51, X)),

_]_

—_—

+

the last equality follows from the fact that we assumed that [, dv(X)] =0 =
&1, dv(5 X)),

Remark 3.3 [£;, X") depends on &, (u(z)) and the extension of X" along &,.
It is, therefore, an operator of order 0. Analogously, [€,, J(5.X)"] is an operator

of order 0.

Proposition 3.4 Let & € C®w*V) and X € T, Then Du(&)(X) €
C%° (u* Vert).

Proof.

Duty(X) = & (Ve,du(X) + Ve, (JAu(iX))),

as before, let X = du(X) — dv(X),

Du§2(X) = %(vﬁzXU + vfz(J(.?X)u) + szdv(X) + v&(JdU(JX))):




18

using that V is torsion free, then

1 - “ v LS
Dufg(X) = —Q—(VXugz + JV(jx)vfz -+ (V&J)(jX) + meg

+V jmgmybe + 6, XP] + J&, (X)) + [&, du(X)] + [&, Jdu(§ X))

_ %(W@ +JIVixpbs + (Ve ) GX) + 16, X7 + T, (GX)7]).

By Lemma 2.7, Vxv&s, Viixpés and (Vg J)(5X)? are vertical vectors. There-
fore Du&y( X} € C®(u*V).

Therefore Du(£) = Dpyu(€) + Dpu(y), where
Dyu = D'U;|GOO(U*TM) : COO('U*TM) — Qo’l (‘U.*TW)

and

Dpu = Dufgoo(ur versy : C°(u* Vert) — QO (" Véf't).

By Proposition 3.2, Dyu = D¥u + DY, where DYu(é)) = Du(&) and
DY C°(0*T'M) — C(u* Vert) is compact of order 0.

Theorem 3.1 implies the following

Corollary 3.5 Letu: X — W be a J-holomorphic map representing the class

A such that m, (/?1) # 0, then we have the following long exact sequence

0 — HO(Z, u* Vert) — HO(S,w'TW) — HO(S, v*T'M) -5

HY(Z, w' Vert) — HNE, W' TW) = H'(Z, v*TM) — 0,

where § = Dju.




O

In this langnage, H'(3,w*TW) = 0 is equivalent to the surjectivity of
L£3;(u,7) = Du+ 1J o duo j,. Then the statement £d(u,7) is surjective if
and only if D+ §Jyroduo j, and DYu-+ Dpu+ 2(Joduo ) are surjective is
equivalent to H* (%, w*TW) = 0 if and only if HY(Z,v*TM)=0 and § is onto.
For example, if ¢;(Vert) - A > 2g — 1, then Dy is automatically surjective
([5]), ie. HYX,u*Vert) = 0. Then £8;(u,7) is surjective if and only if

Dy + %JModuoj* is.

3.3 Regularity of Fibered Almost Complex
Structures

As above, we denote by Mg(fi,W, J) the moduli space of pairs (u,7),
where v is a somewhere injective (j(7), J)-holomorphic map ¥ — W, such
that [u(E)] =Aand 7 € Ty, and by My(A, M, Jur) the corresponding moduli
space of Jy-holomorphic maps in M representing the class A, and 7 € 7,. We

say that a class A is simple, if is not a multiple of any other class.

Definition 3.6 Let (u,'r). e My (A, W, ), we say that {u,7,J) is regular if

L3(u,T) is onto.

Let

Treg(A) = {J|LD;(u,7) is onto for every (u,7) ¢ M, (A, W, J)},




Treg = M3 Trey(A),

and denote by M, (A, W, T:) the set

{{u,7,J) € Maps X Ty x Tpip | uis J-holomorphic).

Proposition 3.7 Let A ¢ Hy(W, Z) be a simple class such that meA £ 0, then
Mg(}i, W, Tea) is a smooth Banach manifold. Furthermore, the regular fibered

almost complex structures on W form a sct of the second calegory in Jy|.

Proof. This proof is a modification of the one of Proposition 3.4.1 in [13].
Let J € Jgp. The tangent space Ty Jp consists of sections of the bundle
End(TW,J), whose fiber at any point p € W is the space of linear maps
Y T,W — T,W of the form Y = Y, +Y340, where Y1 : (7*T' M), — (m*TM),,
Yy Vert, — Verty, 0 : (m*T M), — Verty, and JY +YJ = 0 (this happens
if and -only if, J;Y; + Y;J; = 0, for ¢ = 1,2 and 4 is a (Ju, Jp)-anti-linear
homomorphism, see Remark 2.4).

Ag in Section 3.1, let £ — Maps X T, x J be the bundle whose fiber at
(u,, J) is the space gy = QM (u*TW). Then we can define a section F of

this bundle by F(u, 7, J) = 8;(u). We need to prove that
DF(u, 7, J) : C® (W TW) x T, T, x End(TW, J) — QL (w*TW)

DF(u,7, )€, 3,Y) = Du(€) + %J o du o ju(s) + %Y(u) o duo ()

is onto for all J € Jpyp and for all (u,7) € M(A, W, J), where DF is the

linearization of F composed with the projection onto &£y 5. Since Du is

20




Fredholm we only need to prove that the image of DF(u, 7, J) is dense, i.e.
that for every n € Q% (uw*I'W) there exist Y € End(TW,J) and 2z € S? such
that (V(u(z)) o du(z) o j,n(2)) # 0.

Let z € 52 be such that du(z) # 0 and v*u(z) = {z}. Such a point
exists since we are considering somewhere injective maps.

Observe that if Du is not surjective, then there exists 5 € Q%! (u*TW)
such that (Du(€),n) = 0. Since n = n* + 7", we can consider each part
separately. If n € QU (w*n*TM), it is easy to find Yi(u(2)) : (7T M)y —

(T M)y for which (Yi(u(z)) o dv, o §,n(2)) #£ 0. If n € QO (w* Vert),
(Y (u) o duoj,m) = (Ya(u) o (du — dv) o j,m) + {§ o dv o j, 7).

Then we have two cases. First, suppose that du(X) — dv(X) # 0, then it is
casy to see that there exists Y3 : Vertyn) — Verly(s, such that (Ya(u(z)) o
(du, — dv,) o §,m(2)) # 0. Second, if for all z’s as above, duz(X) —dv,(X) =0
for every X € T2, that is, if du is tangent to the horizontal distribution.
Then we can perturb the horizontal distribution to destroy the tangency at
some point, this is equivalent to find 8 : (7*T'M)y,) — Verty,) such that
{8 o du, o §,n(u(z))) # 0 (see Remark 2.4).

As in [13], Theorem 3.1.2(ii), we can consider the projection
My (AW, Tp) — Tpan.

A regular value J of this projection is an almost complex structure such that
L£3;(u,7) is onto for every (u,7) € My(A, W, J). By the Sard-Smale theo-

rem, the set of regular and fibered almost complex structures is of the second

category (i.e. countable intersection of open and dense sets).
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Now let Jy be a generic almost complex structure on M, v : £ — M be

a Jar holomorphic curve, and C' = v(%). Let X == HC) ¢ W.

Definition 3.8 Let Jy and C' be as above. The set of J € Ty such that
Tod = Jyme will be denoted by Tpip,g,,. We say that J € Tpin gy 1N Trey 43

super regular for C, if J|x, is also reqular.

Then we have the following

Lemma 3.9 Given Jyr regular and C as above, the set of super regular almost

complex structures for C in T, 5,, i3 of the second category in Jpp. g, -

Proof. First of all, Jgip sy, N ;ﬂeQ is a set of the second category. To see this
one can apply the same argument as in the proof of Proposition 3.7. In fact, if
Jas is regular, then D% 4+ %(Jod’MOJ*)h = Duv+ %—JMOCZ’UOJ'* is surjective and
then we can cover Q% (u* Vert) with variations in J of the form ¥ = Y, + 0
(see Proposition 3.7).

Second, X¢ := 7 }(C) C W is a symplectic fibration over C' with fiber
(I, o). As above, the set of regular fibered almost complex structures on X¢

is a set of the second category. Note also that we have a map

given by
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This map is onto, since we can extend any symplectic connection on X to
a symplectic connection on W, which implies that we canroxtend any fibered
almost complex structures on X¢ to a fibered almost complex structure on W
{see Remark 2.4). Therefore the set of super regular almost complex structures
for C'is the interesection of Ji, 5,, N Jreg With the inverse image of 7 f);f ﬂ@fg }
O

Notice, that this lemma does not imply that there exist J € Ty O Freg
such that for every Jy-holomorphic curve C, J|x, is regular. In fact, it is
possible for a J € Jpip N Frey to admit a J-holomorphic curve ¢ C W such
that & represents a class in X that would not be represented for generic

almost complex structure in X¢ (see Example 2 at the end of Chapter 4).

If J is generic then M, (A, W, J) is a smooth manifold of dimension
2n+1—3)(1 - g) + 2, (W) - A+ dim G,
and

dim My(A, M, Iy} = 2(n — 3)(1 — g) + 2¢1 (M) - A+ dim G,

where G, is the reparameterization group. Thus Gy = PSL(2,C), G: is the

extension of SL(2,7Z) by the torus T2, and for ¢ > 2, G, is the mapping class
group. There is an obvious map pr : M,(A, W, J) — Mg (A, M, Ju), given

by pr{u) = 7o u.

Proposition 3.10 Assume A is a simple class. If J € Jreqg N Tpap then Jy €

Freg(A). Furthermore, If ¢, ( Vert) A = g—1 then pr is orientation preserving.




Proof. The first statement is an obvious consequence of Corollary 3.5. The

-

hypothesis ¢;( Vert) - A = g — 1 implies that
dim My (A, W, J) = dim M, (A, M, Jy).

Recall that an orientation of M,(A, W, J) is just a nowhere vanishing section
of the complex line bundle det(Du) = A™* Ker Du (up to multiplication by

positive functions). We let
y 1
Du’ = w2~(D'u, — JDuJ),

that is a J-linear operator between Banach spaces ([14]). Given the decompo-
sition of Du into its vertical and horizontal parts, Du’ = (D}u)’ +(D¥u)” +

Dpu?. Moreover, Du = Du’ + 7, where 7, is a O-th order term. Let
Dut = (DY) + Dpu? + H{DYw)” + 12,

Then det(Duf) =det(Du®) for every . On the other hand, KerD%u and
KerDpu are complex vector spaces and their complex structure induce the
complex structure on Ker(Dwu). Therefore the canonical orientations of

det{ D% u) and det(Dpu) induce the canonical orientation of det(Dwu).




Chapter 4

Gromov Invariants

In this section we prove the main theorem of this paper, Theorem 4.2.

We say that A € Ho(M,Z) is a simple clags if it is not a multiple of any other

class. Theorem 4.2 implies that if there are non-zero Gromov invariants on M
in the simple class A, then we can find non-zero Gromov invariants on W in

the class A, provided that T, A = A and cr(Vert) - A> g— 1. We shall use the

language of [13] throughout this section.

4.1 Main Theorem

Let us recall the definition of Gromov invariants for a symplectic manifold
(X, w) of dimension 2n. Let J be an almost complex structure on X tamed by
w, and let A € Ho(X,Z) be a simple class. (X,w, J) is called weakly monotone !

if for every spherical homology class B € Hay(X, Z) §

w(B) > 0and 1(X)-B >3 —nimply (X)) - B > 0. [
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The Gromov invariants of (X, w) are a collection of homomorphisms
Gug: Hi(XP,Z)/Tor — %

defined as follows. First of all, observe that the reparameterization group G,
acts on My(A, X,J) X 5P, by ¢ (u,21,...,2) = (vod™,d(z),...,9(%)),
¢ € G, Since uo ¢! has the same image as u, let us divide by this action.

Let
ety x : Mg(A, X, J) xg, (X)F — X
be the evaluation map given by,
evp x([u, 21, ..., 2]) = (u(z1),. .., ulz)).
If (X,w) is weakly monotone and A is a simple class, then
evy, x (My(A, X, J) xg, (X))

can be compactified by adding spaces of cusp curves of codimension less or

equal to 2. In this case ev, x defines a pseudo-cycle of dimengion
2n — 3)(1 - g) + 2a(X) - A + 2p,

and therefore a homology class in X?. Let oo € Hy(X?, Z)/Tor be represented

by a pseudo-cycle f: D' = XP transverse to ev, x. Then we set

evpx - f ifd=2np- dimM{A, X, J) xq (E)pa
cI)A’g(a) e (4'1)

0 otherwige.
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If o = ay X -+ X o, With o € H, (X, Z), then we write ®4(vy, - ,a,) for
P a{c).

Given the fact that we can compactify ev, x(M,(A, X, J) xg, (£)7) with
spaces of codimension greater or equal to 2, then one can prove that ®4 ,(c)
is independent of the choice of generic J and of the pseudo-cycle representing
«. Turthermore, ®,4 () is an invariant of the deformation class of w. If A
is not a simple clags, i.e. if A = mB with m > 1 and ¢ (X)- B > 0, then
multiply covered curves representing B form a space of codimension > 2 in
evp,x (My(A, X, J) xg, (¥)?) and so do not contribute to &, . However, if
i (X)- B = 0, the moduli spaces My(A, X, J) and M, (B, X, J) have the same
virtual dimension and multiple covers of B may contribute to ®4 ,. In dimen-
gion 4, the classes B with this property are the ones that can be represented
by embedded curves of genus ¢ = 1 and with self intersection B - B = 0 ([9],
[13])-

The next Proposition is taken from [14], and expresses some basic prop-

erties of these invariants.

Proposition 4.1 {Ruan-Tian) Let (X,w) be a weakly monotone symplectic
manifold, if A is a simple class, then
1. Paglon, - ,ap) =0, if dim oy = 2n.

2. Paglon, -, ap) = (0 AYPy g, -+ 0p1), if dim oy =2n — 2.

|

In what follows, M will denote a symplectic 4-manifold and F' = S%

therefore W will be a 6-dimensional manifeld. From the dimensional condition
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(4.1), if A € Hy(W,Z) is a simple class, then 4 (&, ..., d,) # 0 only if

P
d=> dim & = 4p— 26 (W) - A. (4.2)

i=1

Similarly, if A is a simple class in M, then ®,4 (o, ..., o) # 0 only if

d:idima4:2p—2(g—1)—201(M)~A. (4.3)

i=1
Notice that, by Proposition 4.1, the relevant Gromov invariants of M occur
when «; = [pt] € Hy(M,Z), i = 1,...p. Let {z1,...1,} be a set of generic

points in M, then according with (4.3},

Bag(me,...,2p) FOonlyifp={g—1)+c (M)A,

that is, when evy 5 is a pseudo-cycle of the same dimension as MP.
Let py = ¢ (M)-A+(g—1) and py = ¢, Vert)- A—(g—1). Notice that if A
is a class in W, such that m,(A) = A, then ¢,(W) A = ¢;(M) - A4¢;(Vert) - A,
thus dim M(A, W, J)/Gy = 2¢,(W) - A = 2p; + 2p,. Observe that to have
some relation between the invariants in M and the invariants in W there is an
obvious numerical constraint: from (4.2) we see that
1.2
p = Z(Z dim &; + 2p; + 2p2)
i=1
and from (4.3)

L~
p= 5(2 dim 7.é; + 2p).

i=1
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Therefore

P
> " dim & — 2dim m.d; = 2p; — 2ps. (4.4)

i=1

Let By € Hy(M,7) and By € Hy(W,Z), for j = 1,...n be such that
?T*(éj) = B;, for every j. Take m generic points y; in W, for i = 1,...m,
I generic fibers Fy, for k = 1,...,1, and let z; = w(y;), for ¢ = 1,...m and

Topar = w(Fy), for k=1,... 1

Theorem 4.2 Let A € Hy(M,Z) be a simple class, and let A e Hy(W,Z) be

a class such that T, A = A and er{ Vert) - A> g—1. Then

(I);'i,g(yla wo-Ymy Fl: e :F‘hBlJ e JBTL) - 29(:[)A,g(w1: v :$m+hB17 e :-B'n.):
(4.5)
provided that 2m +n 41 = cl(W)-fl andm-+1>p. Ifm+1>p, then both

sides are equal to Q.

Proof. We choose n pseudo-cycles (D;, f;) to represent B’,;, where f; : Dy = W,
[f;(D;)] = Bj, and [ pseudo-cycles (£, gi) to represent F', where gy, : Fy — W,

[9x(Fy)] = F and 7(ge(Ex)) = pt. Then we can represent

Iipt x [1B; x T1F,

(.D = [y, % HDJ,, x [MTEg, R = Hfj X Hgk,),

and

pri X HBJ
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(H’Li X HBJ'_.,‘T‘ = 7 OR).

Recall that there is a map pr : M(A, J, W) = M(A, Ju, M). We can

extend it to a map M{A, J, W) xg ¥P — M(A, Jar, M) xg ¥P and obtain '

the following commutative diagram: }

M(A, W) xgzr Z2% we !

wl iwp |

MIUA, Jyr, M) %o 57 222, pqp,

We can apply Lemma 4.3 below with e = ev, w and f = R. Then we can

assume that ev,w and I are transverse, as well as ev, sy and r = #? o It, and i
that in M intersection with B, ..., B, oeccurs away from B; N B;. .
If m+{>ci(M)- A+ (g —1) = p1, then we can perturb r and R such

that

BUP,M(M(A, JM, M) Xa Ep) M h(D) = @

Therefore both sides of (4.5) are equal to 0.

For the rest of the proof we shall assume that py = ¢, (M} - A+ (g—1) =
m + [, Notice that by hypothesis, ¢;(W) ‘A =p +p;=2m+n+I Then

pe = m + {. In this case

et (M4, M, J3)) (D)

consists of a finite collection of points,

[v, 21, , 23] € M{A, M, Jyr) xg 2P "




such that v(z) = =i, i = 1,...m, v(2my) € 7(f5(0;), 7 = 1,...,n, and
V(Zmanar) € T(9e(F)), & =1,..., 1. Since these intersections occur away from
B;N By, then we can assume that all points zy, . .. z, are distinet. Let C = v(X)
and Xz = 7n~!(C). By Lemma 3.9 we can assume that J is super regular for
these C’s. Ifu : 3 — W is a J-holomorphic map, with u(3) = C such that C' is
its projection onto M, then (' lies in the ruled surface 7~ HC) = X¢. Tt follows
that ¢ is a representative of the section class A. Therefore, roughly speaking,
to prove the theorem it is enough to count the number of J-holomorphic curves
representing Ain Xg.

The inverse image of [v,z, -,z under pr is the set of points
[, wy, - wp| € My(A, W, J) xg ¥P, such that 7 o wo ¢ = v and d(w;) = z,
for some ¢ € G, forevery ¢ = 1,...p. Up to reparameterization, this is the set
of sections of the bundle X¢ — € that represent the clags A. We know that

its virtual dimension is
9A-A+2(1— g) = 2¢(Vert) - A+ 2(1 — g) = 2ps.

Therefore

proi({v} x TF) = M(4, X¢, J|x,) e, TF

has dimension 2ps + 2p.
On the other hand,

(n?)HC?) = XE S WP,

and so

eV, |pr—1 () ) - M(A, Xe, J|x,) %o BF — X,




Observe that, Xo N f;(Dy) is a set of points, j = 1,...,n, and X¢ Mg {Ey) =

gr(Ey), k=1,...,l. Hence
R(D)N X} = Iy, x (XN f;(D;)) x I{Xe 0 gu(Er)),

has dimension 21. Therefore, ev,w(pr~"({v} x £*)) and B|g-1rpynxz) are

pseudo-cycles of complementary dimension in X%, and
evp,w (pr ™' ({v} x 7)) N (R(D) N XZ,)

congist of finitely many points.

By Proposition 6.7 in [9], if d(A) = 2(1 — g) + 24 - A > 0, then Gr(A) =
29- that is, for generic py points in X there are holomorphic curves such
that ), v(u) = 29, where v(u) = 1 if evp, x,,(u) preserves orientation and
v(u) = —1if ev,, x,,,(u) reverses orientation. Any of these curves belong to a
section class of X¢ and by the choice of J the {ibers are also J-holomorphic,
then by positivity of intersections, they will intersect any representative of I
transversally in one point. Hence ev,w(pr—'({v} x £?)) - (R(D) N XE) = 29,

The proof of Proposition 3.10 implies that the canonical orientation of
M (A, W, J) is determined by the canonical orientation of det(Dpu) and the

canonical orientation of My(A4, M, Jyr). Therefore we have that
evpw * = 2%, 4 o 7.

d

To complete the proof of Theorem 4.2, we need to prove the following

lemma. Let 7 : X — Z be a locally trivial fiber bundle. Define Diff (X, 7) C




Diff (X) to be the set of diffeomorphisms of X that descend to Z, ie., ¢ €

Diff (X, ) if there exists ¢ € Diff (%), such that mo ¢ = po .

Lemma 4.3 Lete: U — X and f 'V — X two pseudo-cycles of complemen-
tary dimensions. Then there exists a set of the second category in Diff (X, )
such that e and wo f, and woe and mo ¢ o [ are transverse, for every ¢ in

this set.

Proof. This is proved using standard arguments in differential topology (see
[13] Lemma 7.1.2). For ¢ ¢ Diff (X, x), Ty Diff (X, ) consists of vector fields
v € T'X such that drx o v = w o 7 for some vector field w € TZ.

Consider the following diagram

UxVxDiff(X,r) " X xX

| -

UxV xDiff(2) —%= Zx 2,
where F(u,v,¢) = (e(u), $(f(v))), and G(u,v,9) = (w(e(w)), p(n(f(v)))). Tt
is easy to see that F' is transverse to Ax and G is transverse to Az, Then
F~'(Ax) is a submanifold of U x V x Diff (X, 7}, and G~(Az) a submanifold
of U x V x Diff (7). Consider the projections F~'(Ax) — Diff (X, ) and
GYAz) — Diff(Z), then the regnlar values of this projections Ry, Rz,
respectively, are sets of the second category in Diff (X, TI") and in Diff (Z), resp.
Note that pr: Diff (X, 7) — Diff (Z) is a submersion, therefore pr—*(Rz) is a

set of the second category in Diff (X, w), and so is pr"l(Rz) N Ry.
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Corollary 4.4 Assume A is @ simple class such that ®ag{my,. .. @) # 0.

Then there ezist m and A such that T A= A, and
@fl,g(ylp-"7ym:Fl7"'}F£7B17---Bn)#Oz ii !‘
for some l and n determined by m and A.

Proof. Let A be any class in W with m.A = A such that c,( Vert) - A>g-1,
i.e. with p» > 0. Then we can choose suitable integers [, m, n with p; = m41

and p; = m -+ n by taking any m, 0 < m = min{p1,pa}, and then defining

| = p,—m, n = py—m. Note also that the possible values of p, are constrained 3

by the bundle. {

4.2 Examples

i. Tet M = CP2 and W = P(E ® C) the projectivization of the complex il
vector bundle B @ C, where E is a line bundle over M with first Chern class i
c1(E) = 3p. This bundle has two obvious sections Z, = P(0® C) and Z_ =

P(E @ 0). Let L be the class of the line in CP?, and Ly be the class on

W that is represented by a line in Z,, then ci( Vert) - L = 3. In this case, ;
po=c(M)-L+(g—1) =2 and py = ci(Vert)-Ly+1—g=4. fm=0, then
we need two fibers Fy, Fy, and 4 two dimensional homology classes in W, say J

By=lg,i=1,...,4 }

(bﬁg,ﬂ(fqa IA“S) -EB, fis, Fl, FZ)
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If m = 1, then we need one fiber F' and 3 two homology classes,

@Lg,ﬂ(ptﬂ ‘f}37 fJS; iS, F).
Finally, if m = 2, then we just need 2 two homology classes,
(]:)£3’0 (pt'ipt) IA"S, -ff[}).

In all these cases, the hypothesis of theorem 4.2 are satisfied and therefore all

the invariants are equal to

Oy o(pt, pt) = 1. |

Nevertheless, it is not hard to find examples where the equality in 4.5

does not hold. Consider the following case, i

(I)Eug,ﬂ(ptipt: -E?n IA_J3:4 Z-l-) = S(PL:;,U(pt?pti -E’S) IAIS) : 3’
since Z_|_ ' LA3 = 3. But
@L,U(pt, pt, L, L, W(Z+)) =0,

because 7(Z..) = M.

O

2. If we are in the situation when ¢i( Vert)- A < g—1 and ¢;(TW)-A > 0, then
we could still have holomorphic curves in W representing the clags A. Notice |
that these curves would have to be non-regular on X¢. In [10], Le and Ono i
consider the following case, let M = S% x 5%, and W = P(E), where F is a

complex vector bundle of rank 2 over M with characteristic classes ¢, (E) = 0




and co(F) = 0109, where [oy] € H?(S? Z) is a generator, for 1 = 1,2, Let
A = [S? x pt] € Hy(M,Z). Since F is trivial over 5% x pi, there exist a class
A_y € Ho(W,Z) such that ¢;{ Vert)- A_, = —2. Observe that et (WY(A_s) =0,
S0 Mg(fl_g, W, J) consists of isolated curves for generic J. They prove that if

Xp = 7" pt x §?) then the LHS of (4.5) is
(I)/i_.g,ﬂ(XB) = 17

while the RHES of (4.5),
Ba0(lpt x S7) =0,

since equality in (4.3) does not hold.
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Chapter 5

Classification of S?-bundles over 4-manifolds.

In this section we recall the classification, up to fiberwise homeomorphism,
of S2-bundles over 4-manifolds. All the results are taken from {2].

Let M be an oriented compact A-manifold. Orientable S*-bundles over M
are in 1-1 correspondence with homotopy classes [M, BDiff *(S?)] of mappings
of M into the classifying space BDiff +(5%) = BSO(3) (the last equality follows
from the fact that Diff t(S?) deformation retracts onto SO(3)). Therefore
every (orientable) S2_bundle can be seen as the sphere bundle of a rank 3
(orientable) vector bundle, or, alternatively, as a principal SO(3)-bundle.

Let B -+ M be a principal S0(3)-bundle and W = B Xgo@ S° its
associated S%-bundle. We define wz(W) € H*(M, Z) to be equal to wq{B), the
Jecond Stiefel-Whitney class of the principal bundle B, and p1 (W) € H*(M,Z)
to be equal to pi(B), the first Pontrjagin class of B.

Let By and Bg be two principal SO(3)-bundles over M, and by - M —
BSO(3) be a classifying mapping for By, 4 = 1,2. If wp(B1) = wo(Ba) = wa,

then Bi|ye is equivalent t0 Ba|a, where M® ig the three skeleton of M,
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therefore we can assume that hy|pee = ho|p. In this case, we can define
the difference cocycle as follows: without lost of generality we can assume that
the cell decomposition of M has a unique 4-cell, e. Then Al : ¢ — BSO(3)
with the property that A |s. = ha|se, then hy — ks can be considered as a map
from S* = e Ug, ¢ — BSO(3) and its homotopy class [k — he] as an element

of m(BSO(3)) = m3(S0O(3)) & Z. Define the 4-cochain A(hq, hy) @ Z{e} —

w41(BSO(3)) by A(hi, ho)(ne) := n[(hy — hy)]. It is a closed cochain and it -

is called difference cocycle. Its cohomology class d(hi, hs) = [A(hy, ho)] €
HY M, 7 (BSO(3))) = HYM,Z).

Then we have the following two theorems
Theorem 5.1 (Dold-Whitney) If By and By are as above, then
pl(Bl) — pz(Bg) = *4d(h1, hg).

It is not hard to see that for any wy € H*(M,Zs), and d € H*(M,Z),
there exist Ay, hy : M — BSO(3), such that the corresponding bundles have
w, as its second Stiefel-Whitney class, and d(hy, he) = d. Therefore not every
pair (w,p) € H?(M, 7)) x H*(M, Z) can be realized as the characteristic classes

of an S%-bundle over M.

Theorem 5.2 (Dold-Whitney) If By and By are as above, they are equiva-
lent if and only if there exist a cohomology class ¢ € HYM,Z,) such that
d(hi,hs} = Bz U Bz + Bz U wy), where § is the Bockstein homomorphism

8 HY(M, 7)) — HY(M,7Z), associated to the exact sequence 0 — Z — Z —

Zin — 0.




The next theorem characterizes the S*-bundles whose structure groups
can be reduced to S' = SO(2). Recall that these bundles are exactly those

that admit sections.

Theorem 5.3 (Massey) Let W be an S*-bundle over M. Then W admits a
section if and only if there ewist v € H*(M,Z) such that
1 wo(W) = v mod(2),

2. p (W) =vyUr.

An important class of examples comes from the projectivization of rank
two complex vector bundles P(E); the relation between the characteristic

classes of £, and those of P(F) as an S%-bundle is the following;

wo(P(E)) = ¢1(E) mod(2)
n(P(E)) = (L) — 4ex(F).
Conversely, if W — M is a given S%-bundle, it is equivalent to P(FE), for
some complex vector bundle £ — M, if there exist v € H (M, 7), such that
v = we(W) mod(2).
For example, if II3(M,Z) is torsion free, then 8 = 0, where 3 is the

Bockstein homomorphism

s HA(M, ) — HY (M, Zo) 2 H(M,Z) — -,

and therefore, any S*-bundle will be the projectivization of a complex bundle.
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Chapter 6

Non-deformation equivalent symplectic forms.

Let M = E(n) be the simply connected minimal elliptic surface with
fiber class T, and first Chern class ei(B(n)) = (2 — nyPD(T). Let W be
an SZ-bundle over E(n). Since Hy(E(n),7Z) is torsion free, then W is the
projectivization of a rank 2 complex vector bundle I (see section 5, [2]).

Let 7 be the first Chern class of the tautological line bundle in P(L). It is
4 class that restricts to the generator of the cohomology of the fiber, therefore
there exist a symplectic form 2, on W that represents the class n + & {w),
for k >> 0, that is compatible with the fibration. We fix one such x and write
Q = Q,.. Notice, in addition, that e, (TW) = m*c1 (TM) + 2n — e (L)

Our main result in this section is the following

Theorem 6.1 Wy has infinitely many deformation classes of symplectic

structures in the same cohomology class [Q] € H*(Wgm), R).

Its proof uses the construction of Fintushel and Stern in [3] that gives

rise to an infinite family of smooth symplectic manifolds homeomorphic but
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not diffeomorphic to E(n). Let K C 5% be a fibered knot, i.e. there exists a
fibration $3-K — S with fiber a Riemann surface Xy € S5* whose boundary
is equal to K in S°. We say that K has genus g if the genus of Xj is equal to
g. 1f we perform a O-surgery on S3 along K, then we get a fibration Zp — St
with fiber equal to X = X Usx=s1 D?, a closed Riemann surface of genus g.
The meridional loop m to K < S® defines a section of the bundle Zx — St
One can prove that Zx has the same homology as 5% x St

Now define Xy = Zg % S*. It projects onto 72 = S' x §* with fiber equal
to X, and has the homology as 52 x T2, Xy has a well defined section class
S € Hy(Xg, 72}, namely the section represented by the embedded torus mxS 1
Furthermore, we can construct a symplectic form on Xg, such that the fiber
X and the section class S are represented by symplectic submanifolds.

The fiber class of E(n) is a symplectically embedded torus T with trivial
normal bundle. Since the normal bundle of S is also trivial, then we can con-
struct the fiber sum of E(n) with X along T and S, E(n, K) = E(n)#r-sXk.

By theorem 5.2 of [6],

GTE(H’K) = Grg(n) ~ (tracefx,) = 2 —n — (trace(fx)«),

where fx : X — X is the monodromy of the knot X, and fr, is the induced
homomorphism on Hi(X,Z). In [6], the authors use the invariants defined
by Ruan and Tian in [15], where they use the moduli space My g alA) of
connected, perturbed holomorphic maps representing A with genus ¢ and d

marked points. To define the invariants in Section 4 we used a different moduli

space and therefore a different compactification. Nevertheless, Theorem 4.5 in
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[7] asserts that both invariants are equal.

By Proposition 5.6 in [6], there exists a homeomorphism ¢ : E{n, K) =
E{n, K') that preserves the class T', the periods of w, and the Stiefel- Whitney
class wy. T K and K’ have the same genus, then ¢*ei(E(n, KN)) = ey (E(n, K)).
It also preserves the first Pontrjagin class.

Up to equivalence of S$2-bundles, that is fiberwise homeomorphisms, We
can specily two cohomology classes al(l) € Hy(E(n),Z) and c(L) €
Hy(E(n),Z), and consider the corresponding S2-bundle 7x : Wi — E(n, K).

The following theorem is going to be useful in the proof of Lemma 6.3

Theorem 6.2 (8] If X and Y are closed, simply connected 6-manifolds with
torsion free homology, then there crist a diffeomorphism, ¢ : X — Y, if and
only if there exists an isomorphism T H*(X,Z) = HXY,Z) which preserves
the cup product structure, Wy and p1. Moreover, ¢ 13 or'éeﬁtatz'on preserving

and ¢* =T.

Lemma 6.3 If K and K' are two fibered knots, then there exist o diffeomor-
phism Wig = Wg that preserves [Q]. If K and K' have the same genus, then

the diffeomorphism also preserves the homotopy closs of J.

Proof. et ¢ : B{n,K) = B{n, K " be the homeomorphism mentioned above.

As S? bundles Wy and ¢*Wi are isomorphic, since they have the same charac-

teristic classes. Therefore there exist a bundle homeomorphism 1 : Wk = Wi
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covering ¢ such that Pruwn(Wie) = wa(Wi), P*p (W) = P (W), 9*{Qk) =
[Qk], and if g = g, Pra(Wi) =& (Wx).

Then we can use Theoremm 6.2 to get a diffeomorphism ¢ : Wi — Wi
that induces the same map in cohomology as .

By Wall’s Theorem, [17], if W 1s any almost complex 6-manifold, there is
just one homotopy class of almost complex structures for each ¢ € H*(W,R)
whose mod 2 reduction 18 wy(W). Therefore the homotopy class of J is pre-
served if g =4

O

To complete the proof of Theorem 6.1, let B € Ho(B(n, K ), Z) such that
B.T #0,and let B € Ho(Wi, %) bea class in Wi such that (7x).3 = B. In
this case p1 = m+l=0andpz = cl(Vc'rt) T Then choose a class T with the
property that ¢y Vert) 7> 0. With such a choice, we need p2 = ¢ ( Vert) A
copies of B to get a non-zero Gromov invariant in Wy By Theorem 4.2 we
have,

OB, B) = 202%(B, .., B)
D2

P2

~ o1 - By e

=9(T-By*(2-n— trace(fx )x)-

Therefore, if trace(fx)s o trace(fxr)« then o:(Wi) 7# 2 (W),
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