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Abstract of the Dissertation
A Dimensional Reduction of the Seiberg-Witten Equations and Geometric

Quantization
by

Rukmini Dey
Doctor of PPhilosophy

in
Mathematics

State University of New York
at Stony Brook

1998

In this thesis we dimenisonally reduce the Seiberg-Witten equations and
study the resulting moduli spaces. We consider two reductions, one with a so-
called Higgs field and one without a Higgs field. The second reduction is not
new and gives us the the so-called vortex equations. The moduli space of the
vortex equations is shown to carry symplectic and almost complex structures.
We consider several moduli spaces arising out of the first reduction and show
that some of them have hyperkédhler structures. Finally, we construct a

prequantum line bundle over one of these moduli spaces.
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Chapter 1

Introduction and the main

equations

Inspired by Hitchin’s work on the dimensional reduct'}on of the Self-
Dual-Yang-Mills equations over a Riemann surface [6], we study the anal-
ogous question for the Seiberg-Witten equations. Though the main context
of Seiberg-Witten theory is in four dimensions, the 2-dimensional reduction
also seems worth exploring. Apart from the rich structure embedded in the
various moduli spaces, it also admits the possibility of geometric quantiza-
tion, which is a prerequisite to a (2 + 1) topological field theory [2], [17],
13].

In chapter 1, we describe the reduction from Seiberg-Witten equations

in R* to R? which are then defined over a compact Riemann surface M.

On R* the Seiberg-Witten equations do not have nice L?-solutions. But




when reduced to M we expect to have interesting solutions. We obtain
three equations (1.1) — (1.3) as well as two vortex equations {1lv) and (2v).
The vortex equations on C, which appear in the usual (without Higgs field)
reduction of the Seiberg-Witten equations, [10], [16] play an important
role in Taubes’ proof of the equivalence of the Seiberg-Witten invariants and
Gromov invariants for a certain class of 4-manifolds [16]. A new feature
which appears in our reduction to (1.1) — (1.3) is the so-called Higgs field ®.

In section 2.1 we describe the moduli space M, of solutions to the
vortex equations and compute its dimension. We find that under certain
conditions it is a symplectic, almost complex manifold. In section 2.2, we
realize equations (1.1) and (1.2) as moment maps on the configuration space
with respect to the action of the gauge group. Realization of equation (1.1)
as a moment map is not new and can also be found in [15]. Realization of
equation (1.2) is new but motivated by analogous structure on the dimen-
sionally reduced Yang-Mills equations in [6]. In section 2.2 we also exhibit a
hyperkéhler structure on the moduli space M of solution to (1.1) and (1.2),
analogous to [6]. Note that this hyperkéhler structure does not descend to
N, the moduli space of solutions to (1.1) — {1.3). In section 2.3 we describe
Ly, the moduli space of solutions to equations (1.1) and (1.2) for a fixed
appropriate class of spinors. We find that it is a hyperkédhler manifold of
finite dimension. We also compute the dimension of X;.

In chapter 3 we present a brief survey of the determinant line bundle

of families of elliptic operators. We follow [12] and [4]. In [12], Quillen




constructs the Hermitian metric on the determinant line bundle for the family
of Cauchy-Riemann operators on a vector bundle over a Riemann surface.
Quillen computes the curvature form induced by the metric which turns out
to be the standard Kahler form on the affine space of all Cauchy-Riemann
operators. We present a brief survey of his construction.

In chapter 4 we give a brief survey of geometric quantization. The first .
step involves the construction of a prequantum line bundle £ over a sym-
plectic manifold such that its curvature form coincides with the symplectic
form. The Hilbert space of states is given by the square integrable sections
of L. The second step in geometric quantization involves finding a polariza-
tion of the sympectic form, such that polarized sections of £ give a finite
dimensional Hilbert space. The second step works well when the manifold
in question is compact, but it might work as well for manifolds with finite
volume. In the same chapter we construct a prequantum bundle for Xy.
This construction is motivated by a similar construction for moduli space
of flat connections over a Riemann surface which is used in Chern-Simons

gauge theory [3]. The second step in the geometric quantization is beyond

the scope of this thesis.




1.1 Dimensional Reduction of the Seiberg-
Witten equations

In this section we dimensionally reduce the Seiberg - Witten equations
on R* to R? and patch them up over a compact Riemann surface M.

The Seiberg-Witten equations on R}

This is a brief description of the Seiberg-Witten equations on R*, [15],
[1], 18]

Identify R (coordinates zq, 1, 72, #3) with the quaternions H. Fix the

constant spin structure I': H = T,H — C***, given by

0
r(C) = 7(C) |
7O 0
where
o+ —C—1
o | oG Gt

G2 —iCs  Co — i)
Thus y(eo) = Id, ¥(e1) = I, y(ez) = J, y(es) = K with

sothat IJ=K,JK =1, KI=Jand I? = J? = K? = - Id.

(Note: our choice of 7 , J and K are different from [15], but it does
not make any difference).

Recall that Spin°(R') = (Spin(R*) x SY)/Zy. Since Spin(R') is a

double cover of SO(4), a spin® - connection involves a connection w on T H

4




and a connection

4
A=1iY Ajdz; € Q' (H iR)

F=1

on the characteristic line bundle H x € which arises from the S factor (see
[15], [8], [1] for more details). We set w = 0, which is equivalent to choosing
the connection on the trivial tangent bundle to be d. The curvature 2-form

of the connection A is given by
F(A) = dA € Q*(H,R).

Consider the covariant derivative acting on ¥ € C*(H, C?) (the positive

spinor on R*) induced by the connection A on H x C

0
Vj\IJ = (8—373 + AJ)\II

Then according to [15], the Seiberg-Witten equations for (A4, ¥) on R

are equivalent to:

(SW1) Vol = IV, W + JV,U + K V3,
and (SW?2)
Fip+ Fa = %\p*m
= Ll 1) = om,
Fla+ Fp = %\IJ*J\I!
= i(Tmapiihy) = “12”772,

1
Fiy+Fy = §‘I’*K‘I’

= —i(Re'l/)l’ﬁzz) = ‘;“??3,

5




thy

the

Reduction

where ¥ =

We closely follow the method used in [6] for the reduction of the Self-
Dual-Yang-Mills equations. This seems to give the most general form of the
reduced equations which contain the so-called Higgs field.

Namely, impose the condition that none of the A;’s and ¥ in (SWT1)
and (SW2) depend on x5 and 24, L.e. A; = A;(z1,22), ¥ = ¥(x1, 32) and set
¢1 = —2iAz and ¢y = —26A4. The (SW2) equations reduce to the following

system on R?

1
By = M

1.0¢; 0¢p, 1
5(oe, " Bm) = 3™

1,0d1 Oy 1
G+ ) =~

2 6272 82?1 2

Introducing complex coordinates z = z1 + 4%, and Z = x| — iz the last

two equations can be rewritten as
Oy +idy) 1 Coy T
TR 5(??2 +ing) = —th1epe,

where §& = 5(;2- i3 ). Setting ¢y +-ids = ¢, we can rewrite the reduction

of (SW2) as the following two equations,

(1) F(A) = (7 ~ Wal)dz A dz,




(2) 200 = —(Yueha)dz A dz,

where ® = ¢dz — ¢dz € Q1 (R?,4R) and 1,4, € C(R% C) are spinors on
R?,

Next consider equation (SW1):

vl”!,meVQ’lp— JVg'lp—Kv;l’ipIO

which is rewritten as

%+'5'A1—?;£2'+A2 6673'1'?;-/13"'7:%_144 "/)1 —0
=\

B —iAgtig— Ay G- HiA iz Ay o

T Bas

and reduces to the following system on R?

22 +i(A; — idy) —¢ ()
¢ 245 +i(A1 +idy) (2

=0.
Introducing A = %(Al ~ iAs)dz and A = L(A; + i4,)dz where 4 =

i(Ardz + Agdy) = A + A% (and A% = — A1 ) we can finally write it as

(3) -—%&dz —(S-F Aﬁ,l) ‘1/)1 —-0
(8 + AWY) —3dz )

We call equations (1) (3) as the dimensionally reduced Seiberg-Witten

equations over C.




1.1.1 The Dimensionally Reduced Equations on a Rie-

mann surface

Let M be a compact Riemann surface of genus g > 1 with a conformal
metric ds? = hdz ® dZ and let w be its Kéhler form. Let K denote the
canonical line bundle over M. For a fixed choice of K3 we lot Wi,y €
(M, L) where I, = Kz. The metric ds® induces a Hermitian metric £/
on K7 and one can define a norm |9l € C*(M) and an inner product
< 4, e >y € C°(M) of the sections of L.

We denote by A a unitary connection on the holomorphic line bundle
K™% over M. Since the connection A is unitary, it defines a connection on
the anti-holomorphic line bundle L = K% as well. Finally let @ = ¢dz —
¢dz € QU'(M,iR). Note that @ = &0 + 3% where Y0 ¢ QM(M,C) and
(EI,O — __(1)0,1. ‘

Now we can rewrite the equations (1) — (3) in an invariant form on M

as follows:
2 2

(1.1) F(A) — 7,(11!)1 H 5 |I‘r[)2 H)w’

(1.2) 200 = — <’l,b1,'¢2 >H W,

—1gdz -V (2
Vi - '21“ Pdz 1y




Here V4 = V% + V', where V', : I'(M,L) — Q%(M,L), and V :
(M, L) = Q% (M, L), is a decomposition of the connection V4 induced
by the decomposition of T*(M) = T* (M) & T*(M).

Gauge group action

There is an action of the gauge group G = Map(M, S1) on (A, ¥, @),
(1.4) (A, W, ®) 5 (A + v du,u™ "W, ®)

which leaves the solution space invariant. This action is free since ¢ (L) =
1 — g 5 0. This is because for a fixed point necessarily W = 0, which would

imply, by equation (1.1), that ¢;(L) = 0.

1.1.2 Vortex Equations

There is the usual reduction without a Higgs field which gives rise to

the Vortex Equations:

{1v) F(A) = Z(Wﬂ%}; |¢2|§I)w?

and

(2v) 0 —Vi 1 0
Vi 0 s

Here we consider two cases. In case (a) 91,19 € ['(M, L) and A is a unitary

connection on L.




In the case (b) ¢ € ['(M,L) but v, € QY(M, L), so that V', :
(M, L) — Q"(M, L) as before, but V% : QY°(M, L) — QY M, L).

Since A is unitary, it is easy to see that (V/))t = — x (V%), where 1
stands for the adjoint operator and  : Q4'(M, L) — T'(M, L) is the Hodge-
star operator. This is because for ¥, € I'(M, L) and ¥y € QM(M, L), V4

gatisfies the equation
A<, Ty >pg=< VU, Vs >y + < T, Varhs >g

where all the terms in the equation belong to ' (M). Identifying types,

one obtains,
0 < Wy, Wy >pg=< Vh\Ifl,"I‘g >+ < ‘I’l,vgﬂf)g >H .

Integrating on M, one obtains that result.

0 ““‘V”
'This enables us to interpret 41 as a Dirac operator.
Ve 0
X
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Chapter 2

The Moduli Spaces

2.1 The moduli space of the Vortex Equa-
tions

The Vortex Equations in the last section can be rewritten as follows:

: i ;

(1v) p=F(A) — *2“(|%01|ir — [¢aliw =0 !

1

|

0 - |

(20) D, = Al 0. !
vy 0 ¥y

Recall that we have two cases. u

Case (a): We let 94,4 € I'(M, L) and A be a unitary connection on

L. Let 8 denote the solution space. The gauge group G acts as (4, ¥) — i‘

11 1'j




(A+u~tdu, w W) and leaves & invariant. It acts freely on & since g £ 1. We
denote by M, =8 /G the moduli space of solutions to the vortex equations
for case (a).

Case (b): We let ¢y € (M, L),¢, € Q“°(M,L). We denote by S
the corresponding solution space and by M, = S/G the moduli space of
solutions.

In this thesis we make an assumption that the moduli spaces A, and
M,, are non-empty. The proof of this result is beyond the scope of this thesis
and we plan to address this question later. In [11] it has been shown that
solutions to the vortex equations arising from a slightly different dimensional

reduction do exist.
Proposition 2.1.1. The moduli space M, has virtual dimension 2g — 2.

Note: The tangent space is given by linearization of equations (1v)
and (2v), and can be seen to be zero set of a Fredholm operator. Its virtual

dimension is the index of this operator.

Proof: The techniques used in this proof are standard [8], [6]. Con-
sider the tangent space T, S at a point p = (A, ) € S, which is defined by

the linearization of equations (lv) and (2v). Let X = (o, 3) € T, S, where

a € QU (MiR) and 8 = g € I'(M,S), where S = L & (I, ® K), satisfy
P

the equations

(L) do = a"'/—ﬁ[(wlﬁl +Bidh) = 3 (o + Bl

12




0 -Vi fh 0 —a” ¥
(2L) + = 0.
V'A 0 ﬂg CEI’U 0 ’gbg

Taking into account the quotient by the gauge group G, we arrive at

the following sequence C
0 — Q°(M,iR) & Q' (M,iR) & I'(M, S) B Q*(M,iR) & T'(M, S') -+ 0,

where recall that S = L@ (L® K), and &' = (L ® K) & (L ® K), and
dif = (df, — f¥),

doa, By, Ba) =  ((da — “é%(@blﬁl + Buth) — )‘,1;(1/)252 + Bat)]w),
o1
D, B + o
B2 o Pay

Clearly, dim H'(C) = dim T, M,. The sequence C is a complex, since

dE(df: _fl:[;? 0) =

(d®f + “i—[(fif)ﬂ& + Y1 f) — %(f%?ﬁ—z + 9o fha)Jw,

Wwh
D, =i N Of 1, ) =0,
= [1ba -~ [

where we have used equation (2v) and the fact that f = —f.

Clearly, H°(C) = 0, because if f € ker(dy), then df =0 and f¥ =0,
which implies f = 0 since ¥ = 0 would contradict, by equation (1), that
ci(L) #0.

Therefore the virtual dimT, M, = —ind(C).

13




To calculate the index of C , we consider the family of complexes (C*, d*),

0 <t <1, where d} = (df, ~tf¥) and

dy(e, Br, B2) = ((dex (161 + Butpr) — — (W22 + Barfn)|w),

it 1
2/h h
B —@0’1¢2

+t
B al’olbl

Clearly, ind(C") does not depend on ¢. The complex Cy is

Da

0 — QO(M,iR) B Q' (M,iR) ® I'(M, 5) 3 Q2(M, iR) @ T(M, §") — 0,

where d| f = (df,0) and di(a, ) = (do, Daf), and decomposes into a direct

sum of two complexes

(a) 0 — Q°(X,iR) 5 Q'(M,iR) % Q*(M,iR) — 0,
and
(%) 0 D(M,S) 2 T(M,8) 0.

The index of the complex (a) is 2 — 2g.
0 ~-Vi
The index of complex (b) is 0 since the operator Dy =
vy 0
is self-adjoint with (V%)! = =V, so that ind(V',) = —ind(V’). (See section
(1.1.2) case (b) for a proof).
Since the index of direct sum of complexes is the sum of the indices,

the result follows. [J]

Note: This last part of the proof does not immediately work for M,

14




2.1.1.  Symplectic and almost complex structures

In the next theorem we describe symplectic and complex structures on
M,. The results are valid for M, as well.

Let A be the affine space over Q1{M,iR) of unitary connections on
Land S = L@ L in case (a) and S = L & (L ® K) in case (b), and set
B=AxT(M,S).

First, we construct an obvious symplectic structure on the affine space
B = A x T'(M,S), which becomes degenerate when restricted to S, the
solution space to equations (1v) and (2v). However, the leaves of the char-
acteristic foliation are the gauge orbits so that taking the quotient by the

gauge group produces symplectic structures on the moduli spaces M, and

M.
Second, we show that the standard complex structure on B descends to

an almost complex structure on M,,.

Specifically, let p = (A, ¥) € B, X = (01, 3), Y = (02,7n) € TpB. Let

g(X,Y):/ *al/\ag—l-f Re < g,n>pw, (2.1)
M M

be a Riemannian metric on B and let

Q(X,Y):—/ al/\ag—i—/ Re <I8,n>pw (2.2)
M M
* 0 0
be a symplectic form on B. Let Z, = | 0 i 0 : TpB — TpB, where
0 0 —4
L

15




1 0
T, B) = (*a, IB) be a complex structure on B. Here [ = and
0 —3

#: Y — 0 is the Hodge star operator on M. Then, the symplectic form €}

is compatible with the complex structure Z, and with the metric g,
g(1, X, V) =Q(X,Y).
Moreover, we have the following

Proposition 2.1.2. The metric g, the symplectic form § and the complex

structure I, are invariant under the gauge group action.

Proof: Let p= (A, ¥) € Band v € G, where u-p = (A+u 'du, u™1¥).
Then u, : T8 — T,p83 is given by the mapping (/d,u~") and it is now easy

to check that g and Q are invariant and Z, commutes with ..

Proposition 2.1.3. The first vortex eguation con be realised as o moment

map (= 0 with respect to the action of the gauge group and the symplectic
Jorm £2.

Note The realization of the first vortex equation as a moment map is
not new (see [15]).

Proof: Let ¢ € Q(M,:R) - Lie algebra of the gauge group; it generates
a vector field X on B as follows :

Xc(A, W) = (d(, () e T,B, p= (A, V) € 5.

We show next that X, is Hamiltonian. Namely, define H, : B — C as

follows:

H(p) = /M ¢ (Fa

16




Then, we need to show that

Let X = (a, 8) € T,B. We have

dH(X) = fM Cdor— fM CRe(fr %wzﬂ—z)-\—/l—gw
=/ (~dC) A o — / re<tc| U [P | sue
M M Py B2
= Q(XCa X)a
where we use that { = —(.

Thus we can define the moment map 4 : B — Q*(M,iR) = G* ( the

dual of the Lie algebra of the gauge group) to be

.U'(A: \If) . (F(A) - Z(hﬁl'?z ; ‘¢2|i)w)

Thus equation (1v) is g = 0.
0.

Lemma 2.1.4. Let X ¢ 1,5, p € S. Then T,X € T,5 if and only if X is

orthogonal to the gauge orbit Op = G - p.

Proof Let X, € 1,0,, where { € Q°(M,iR). Then we have

g(X, X¢) = QL X, X¢) = — [, ¢ du(Z,X), and therefore 7, X satis-
fies the equation (1L) iff du(Z,X) = 0, i.e., iff g(X, X,) = 0 for all .

Second, it is easy to check that Z,X satisfies equation (2L) whenever
X does.

(I

17

i




Theorem 2.1.5. M, has a natural symplectic structure and an almost com-

plex structure compatible with the symplectic form Q and the meiric g.

Proof

First we show that the almost complex structure descends to AM,. Then
using this and the symplectic quotient construction we will show that Q gives
a. symplectic structure on M,,.

(a) To show that Z, descends as an almost complex structure we use
standard technique in [6]. Let 7 : § = 8/G = M, be the projection map
and set [p] = 7(p). Then we can naturally identify T}, M, with the quotient
space 1,8/ 1,0,, where Op = G - p is the gauge orbit. Using the metric
g on S we can realize Tj, M, as a subspace in 7,8 orthogonal to 7,0,.
Then by lemma 2.1.4, this subspace is invariant under Z, . Thus Iy =
IyITp(OP)L7 gives the desired almost complex structure. This construction
does not depend on the choice of p since Z,, is G-invariant.

(b) The symplectic structure §2 descends to 1*(0)/G, (by proposition
2.1.3 and by the symplectic quotient construction, since the leaves of the
characteristic foliation are the gauge orbits). Now, as a 2-form € descends
to M, due to proposition 2.1.2 so does the metric g. To show that equation
(2v) does not give rise to new degeneracy of 2, we use the fact that both
the metric g and Z, descend to M. Since they are compatible with £2, the

latter is symplectic.

18




2.2 Hyperkahler Quotient

In this section we show that equations (1.1) and (1.2) can be realised
as moment maps of the action of the gauge group & on the “configuration”
space:

E=AxD(M,S) xH

where S = L & L and H = Q'(M,iR).

Note: Realization of the first equation as a moment tmap is not new
and can be found in [15]. The moment for the sccond equation and the
hyperkihler quotient construction are new. We have been motivated by
similar constructions for the dimensional reduction of the Self-Dual Yang-

Mills equations in [6].

2.2.1 First equation as a moment map

Just as before, define a symplectic form on £ as follows:

UX,Y) = — alAa2+fRe<ml,ﬁ2>Hw
M

- YA

J
Jo

where X = (a',#',7") and Y = (a2, #%,9%) € T,€, p = (4, ¥, @) and

I =




4

Clearly, the gauge group G acts on £ by symplectomorphisms. ;

I

Let ¢ € (M, iR); as before it generates a vector field on £ as follows : H

;‘r

X (A, ¥,9) = (d(,—(V,0) € T,E. i

I

i

Proposition 2.2.1. The vector field X, is Hamiltonian. 1?}2
Proof: The proof is exactly the same as proposition 2.1.3. I|‘
Define Hy : £ — C as before |

2 2

a4, 0,8 = [ ¢ (py -l 1l l

M 2 i’

Then, {
P g |

dH(X) =~/(d§)/\a—/Re<IC B O é-

M M " B i

= Q(X¢, X), j

|

!

exactly as before, where X = (o, 8,7) € T,€, (and we use that ( is purely 115;5
imaginary). J'
Thus we can define the moment map p: & — Q2(X,iR) = G* (the dual :"

of the Lie algebra of the gauge group) of the action to be !
i

2 _ 4|2 b

i

so that equation(1.1) can be written as p = 0. }i
0. |

-

i

20
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2.2.2 Second equation as a moment map

To realise the equation (1.2} as a moment map we need to define another

symplectic form @ on &, which is complex-valued,

QX Y)= =2 [ attant+2 [ ol aqd
M M
|2 = 1
_ 132 _ g2gly
| 68 - )=
where X = (a1, B1,11), Y = (03, B2, 12) € T,E.

Proposition 2.2.2. The vector field X, is Hamiltonian with respect to the

symplectic form Q.
Proof : Define the Hamiltonian to be
He(A ) = [ 208+ iy
M

where ¢ € Q(M,iR).

L)
v

We need to show that dH; = @ X¢. Indeed for X = (a, Ba,y) € T),€,

1
i)
9 /M T fM (CAM + Cun 2

dH¢(X) :/AJC(257+(55¢2+¢1§§)
)iw
vh

- ~0 — B N
_Q/M 8CA'}/+/M( ﬂ2C¢z+(C¢1)ﬁz)\/ﬁw
:Q(Xg,X)

where X, = (d(, —¢(V,0). Thus we can define the moment map of the action

with respect to the form @ to be:
pig = 20®-+ < 1,9 >p w.
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Thus equation (1.2) is precisely uo = 0.
L.

2.2.3 Hyperkahler quotient

Proposition 2.2.3. The configuration space £ has e Riemannian metric g
and three compler structures L, J, K which satisfyZT =K , TK =T , and

KI =7, and three symplectic structures

wi(X,Y) = ¢(ZX)Y),
u)z(X,Y) = Q(JX,Y),

w3(X: Y) = g(]CX: Y)
such that wi = 82, and wy + iws = Q.
Proof We define the Riemannian metric g as follows:

g(X,)Y) = / *Qy A Oy
M

+/ Re<ﬁ;,_ﬁz>gw+/ L TANG TN
M M

Bt B3
where X = (ai, r= | |, mh Y =(00fh=| " |,%) € TE
ity 83
x 0 0 0 0 =
i 0
Next let T = 0 7 0 )I: 1-.7: OJO}JT:
0 —1
0 0 —= - « 00
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0 0 -1
0 i
yandK=10 K 0 |, K= , where * : Q1(M) —
-1 0 i 0
1 0 0

(M) is the Hodge-star operator. One verifies that .7 = K, 7K =7 and
KZI = J. Then, clearly,

g(IX,Y) i-—/ C\!1/\O£2+/ RB<I)81,/32>H0)+/ Y1 A Y
M M M

=Q(X,Y).
Finally,
wo(X,Y) = g(TX,Y)
Z/M A fMﬂfl Ava+ /M Re (6755 — ﬁllﬂ—%)-_\/lﬁw
and

wi(X,Y) = ¢g(KX,Y)

:f —*fyl/\oz2~|~/ R6<Kﬁ1,ﬁz>ﬂ+/ ko A
M M M

~ [ —snneat [ Retiptfh+ipd
M M

“|“‘/ *011/\’}’2
M

1
)ﬁw
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so that indeed

(s +iw)(X,Y) = fM (o — %) A
+ [ Re(6ifl - i)
M
+ iRe(ﬂ‘ﬂf@%“ﬁ%ﬁ%)]%Ld
+/(—a1 +ik o) Ay
= =2 " nl - [ (81 - o
2 fM (01)%4 A L0
= g(X\Y).

1
—=
vh

.

Let S = p~1(0) N u”él([]) C & be the solution space to the equations
(1.1) and (1.2), and denote by M = §/G the corresponding moduli space.

We assume M to be non-empty and to be a smooth manifold.

Theorem 2.2.4. Let M be a compact Riemann surface of g > 1. Let M be
the moduli space of solutions to equations (1.1) and (1.2). We assume it to
be a smooth manifold {possibly infinite dimensional), Then the Riemannian

metric g induced by the metric on £ is hyperkahlerian, and M is hyperkihler.

Proof: Since Z, 7, K, g and € , Q are G-invariant, and M comes from
a symplectic reduction, it follows that the symplectic forms wy, ¢ = 1,2, 3,

descend to M as symplectic forms . Also, from the proof of theorem 2.1.5
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and proposition 2.2.3 it follows that Z, 7, K are well defined almost complex
structures on M. To show that they are integrable, we use the following

lemma by Hitchin (see [6]).

Lemma 2.2.5. Let g be an olmost hyperkihler metric, with 2-forms ws,
wa, Wy corresponding to almost complex structures T,J and K. Then g s

hyperkdhler if each w; is closed.

2.3 The moduli space Xy

'The moduli space M of solutions to the first two equations (1.1) and
(1.2) will be in general cumbersome to handle though it is hyperkéhler, since
the equations have only zero-th order terms in the spinors.

We define a new moduli space ¥y as follows. Choose an appropriate
W such that < 91,9y >p w is d-exact and let W = A x {G- U} xH C £.
Let S; = WN S, where S is the solution space to equations (1.1) and (1.2)
on &.

Define ¥g) = 8§1/G. Any point p € Yiqq is given by p = ([(4, T, @))
where ¥ is now fixed, [+, -, -] denotes the gauge equivalence class and (A, ¥, ®)
satisfy equations (1.1) and (1.2).

Note: S; essentially consists of (4, ®) € A x H such that dA = & fiw
and 200 = fow, where fi = |1} — [ol} and fo = — < P19 > €
C*(M). We will see that if (4, ®) € Eyy), then if one changes A — A’ =

A + o such that da = 0, o unique upto exact forms, and %' — §01 =
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®%! + %! such that dn®' = 0 then, the (A', ®') € Zry;. Thus Sy is an affine

space.

Theorem 2.3.1. Let M be a Riemann surface of genus g > 1. Iz the
equivalence class of W such that 1, and i» are each not identically zere and
such that < 1, e >pg w is O-exact. Assume that Yy 18 a smooth non-emply

manifold. Then, Xy is hyperkihler of dimension 4g.

Proof: On W one defines the same symplectic forms €, wy and ws as
in the previous section. On Xy these forms restrict to

Qup = = fyrot AP+ [ vt A9

wope] = — [ymAee— [0 Ay

ware) = — [y ¥ Ao+ [, ko0 Ay

which are, by arguments same as in the previous section, hyperkihlerian

* 0 0 =
with respect to the complex structures 7; = s, = and
0 —=x x 0
0 —1 .
Ky = and to the Riemannian metric
1 0

gX,Y) = [ xa Aag + [+ Ay

where X = (a1, 71) and Y = (ag,72) € T, 5.

To calculate the dimension of Xjg), we linearize equations {1.1) and
(1.2) to obtain:
l_

(D) dar= 5P+ = B = ) e

(1 on'? = —%(20152 + ﬁ1152)—\}—ﬁw,
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where (&, 3,7) € T,W and = p'° + 7%, Now we note that 3 = —(W¥ €

Ty{G - T} so that these two equations simplify to

(I) da=0,

(1) 8y =0,

Taking into account the gauge group action, we get

dim {& € Q'(M,iR)|de = 0}/{a = df} = 2¢. Algo, dim {n €
QY(M,C)|dn = 0} = 2g. Thus the dim T, = 4g.

.
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Chapter 3

Determinant Line Bundles

Here we give a survey of the determinant line bundle construction for
the families of Cauchy-Riemann operators, following the papers [12], [4],

[14].

3.0.1 Determinants of Cauchy-Riemann operators

Let M be a compact Riemann surface and E be a C° vector bundle
over M and let 2"4(E) be the space of differential (p, q)-forms on M with
values in E.

A Cauchy-Riemann operator in F is a linear mapping D : Q°(M, E) —
QY (M, E) that satisfies the property D(fs) = 0f ® s -+ fDs, where f €
C*(M) and s € Q°(M, E). Locally, it looks like D = 8 + «(2), where a(z)
is a local (0, 1)-form with values in End(E).

Let A be the space of all Cauchy-Riemann operators in E. It is an
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affine space over the vector space B = Q¥ (End(E)).

To motivate the construction of the determinant line bundle we first
consider the finite-dimensional case. Let 7' : V0 — V! be a linear map
between two complex vector spaces of the same finite dimension. Then 7
induces a map from A*?V0 to AV and determines an element o of the
line AP (VO)* ® At"(V1), where * stands for the dual vector space. Upon
choosing a generator for this line, o can be identified with a function det(7T')
which is holomorphic in 7" and is non-zero exactly when the operator 7' is
invertible.

In the infinite-dimensional case of the Cauchy-Riemann operators the
above line is replaced by Lp = AP(KerD)* @ AP(Coker D) where KerD
and CokerD are finite-dimensional vector spaces. The family of £p forms a
holomorphic line bundle £ over A, called the determinant line bundle.

In the next section, following [12] and [4], we give a rigorous definition
of £. We also describe a Hermitian metric on £, known as the Quillen
metrie, using the zeta-function determinant of the Laplacian.This is the idea
of “analytic torsion” [14]. The inner product and the holomorphic structure
determine a connection on £, whose curvature remarkably turns out to be
the standard Kéahler form on 4. This is the part we would be interested for

the purposes of geometric quantization of our moduli spaces.
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3.1 Explicit Construction

Let F be a Hermitian vector bundle over M. For every A € A let
D4 : I'(M, £ — Q" (M, E) be the corresponding Cauchy-Riemann operator
and let DY : QM| E) — T'(M, E) be its adjoint.

Let Ay = DLD 4 be the Laplacian of 4. Then A, has real, discrete
spectrum. Fora > 0,set U® = {A € Ala €Spec (A4)} and denote by K4 {A4),
A € A, the direct sum of eigenspaces of A, of eigenvalues < @. Then from
general elliptic theory it follows that over the open set UU®, K¢(A) form a
smooth finite dimensional subbundle K¢ of I'(M, E) (i.e. its dimension does
not jump).

Similarly, denote by K (A} the direct sum of eigenspaces of the operator
DD, of cigenvalues < a. Over U® they form a finite dimensional subbundle
Keof Q% (M, E).

Set A* = (NPK%)* ® APK®. This is a smooth line bundle over U%.
Now recall that the determinant line bundle A hag the fiber over A € U®

Aa = AP (KerDa)* @ AP(CokerD4). The following exact sequence
0— KerDy — K%(A) 28 K*(A) — KerD% - 0

allows us to identify A with A% over U“.

Transition functions

For a,b ¢ SpecAy, 0 < a < b, define Kf’b}(A) and K" (A) as the
direct sum of eigenspaces of DLD 4 and DADL corresponding to eigenvalues

4 with @ < < b. The vector spaces K'""(A4) and K" (A) form smooth
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subbundles &% and K of (M1, ) and QU (M, E) over U*NU®. Define
Net) = (ptor oy g plor g lod)

and let DS be the restriction of Dy to K%, so that D, : K — K@,

Clearly, over U N U?,
Ab = A% @ A(@b)
and the identification of A* and A* over U® N U? is given by the mapping
5 €A — s ®detD{" € A,

Clearly, the line bundle A over A is holomorphic.

Qnuillen’s metric on A

As subbundles of ['(M, E) and Q*'(M, E) , the bundles K% and K
over U* are Hermitian. The bundles A% A(® are then naturally endowed
with metrics | [* and | |(®b),

Over U* N U?®, the vector spaces K%(A) and K®(A) are orthogonal to
K9 (A) and K™D (A) so that for s € X,

|s ® deth"b) |b = |Sl“|detD£f'b)|(“'b),

When identifying A with A* or A* , the metrics | |* and | |® are related
to each other by
[P = | [*ldetDE™ |,

and in general do not define a metric on A.
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To correct this discrepancy, one uses a zeta function regularized deter-
minant of Ay (see [12]).

Let ((s) be the zeta-function of the elliptic operator A4. It is a mero-
morphic function of s which is defined to be 31~ for Re s > 1, where 7
runs over all non-zero eigenvalues of Ay, The zeta-function {(s) is regular
at § = 0 and depends smoothly on A.

Similarly, let ((s)s, = > 5* for Bes > 1, where the sum is taken over
all eigenvalues 1 of A4 such that > a, and for 0 < a < b, also define

¢@0(s) as ¢2(s) = (¥ (s) 4+ ¢*(s). One has the relation

) 1(a 1 §¢lad)
|dezﬁDE4 )|( b = exp 5 e 0)t,
which suggests the following definition of the metric || - ||* on A®

a a
I8 = Wean(— = (0)}

where | € I'(U?, A%).

Theorem 3.1.1. Under the canonicael identification of the determinant line
bundle A with A* over U® | the metrics || ||* patch into a smooth metric |- ||

on A over A, called Quillen’s metric.

The proof follows eagily from the definitions.

Quillen curvature
Quillen’s remarkable discovery is the computation of the curvature form

of the canonical unitary connection Vg in the determinant line bundle A.
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Namely, recall that the afline space A is an infinite-dimensional Kahler
manifold; for every A € A, T} (A) = Q¥ (M, EndF) and the corresponding
Kahler form is given by

X, Y) = % /MTT(X A+Y),
where X,V € Q¥ M, EndE), and * : Q%(M, EndE) — Q°(M, EndE) is
the Hodge-star operator and T'r : I'(E, EndE) — C*(M) is the trace map.

Then one has the following theorem of Quillen

Theorem 3.1.2.

For a proof see [12].
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Chapter 4

Prequantization

4.1 Survey of Geometric Quantization

Let (M,w) be a symplectic manifold.

Step 1: Prequantization. Thisg is a construction of a Hilbert space
‘H and a correspondence between classical observables - functions on M - and
operators on A such that the Poisson bracket of the functions corresponds
to the commutator of the operators.

If w is integral in H*(M), a natural way to construct such a Hilbert
space wotuld be to define H as the space of square integrable sections of a
line bundle L which has a connection with curvature given by 7w [17]. Then
to each f € C°°(M) one assigns an operator Oy acting on a section s of L
defined by Oy : s = iVx,5+ fs, where Xy = (w) ' (-df) is the Hamiltonian

vector field.
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Proposition 4.1.1. [17] This satisfies the following conditions :
1. The mapping [ — Oy is linear.

2. If f =1, then Oy = Id, where Id is the identity operator.
3. If {fl,fz} = fg, then [Ofl,sz] = —’iOfa.

Step 2: Geometric Quantization

Assuming that M is compact and the symplectic form w has a real
or Kéhler polarization, one defines a subspace Hy ¢ H consisting of the
sections which are parallel along the polarization. If M is compact the
Hilbert space Hj is finite dimensional. This construction is useful in the
context of topological field theories [3].

Note: This second step will be beyond the scope of this thesis.

4.1.1 Examples

1. Geometric Quantization of the Cotangent Bundle [17].
Let M = T*() of an n dimensional manifold (2. The canonical symplec-
tic form on M is given by

w =df,

where 8 is the canonical 1-form on M, the so-called Liouville form.

The prequantum line bundle L over M is a trivial line bundle M x C
with the connection V = d — 4. For instance, when @@ = R* with coordi-
nate functions ¢*, coordinate functions for M will be p;, ¢*,i = 1,..,n. They

correspond to the following operators on H = L*(M) :
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Qp; = —izs and Qg = i+ =11

For the geometric quantization we consider 12-functions which are con-
gstant along the fibres of M = T*Q, i.e. Ho = I2(Q). Thus we arrive at
canomnical quantization in quantum mechanics:

A . 8 A .
P = —ipg and G = gi, 1= 1,..,n.

2. Geometric quantization of the moduli space of flat connec-
tions in the context of Chern-Simons Theory (A sketch).

The moduli space of flat connections of a principal G-bundle on a Rie-
mann surface has been quantized in the following way 3], [4], 17], (12}, {191,
Consider the determinant line bundle £ = det{K erdy)* ® det(Cokerda). It
carries the Quillen metric such that the canonical unitary connection hag a
curvature form which coincides with the natural Kihler form on the mod-
uli space of flat vector bundles over M of a given rank. This provides 2

geometric quantization of the moduli space.

4.2 Prequantization of Yy

Step 1 : Definition of the prequantum line bundle L over W.

(a) Over the affine space A x H consider the family of Cauchy-Riemann
operators Deagy : (M, L) — Q%1(M, L), given by Daa) = V4 + 0% where
V4 = V), + V¥, and %! is the (0,1)-part of @ € H.

We consider the determinant line bundle R of the family of these op-

erators, which is holomorphic with respect to the complex structure given
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0
by Zy = on the affine space A x H, where * is the Hodge star

operator.

Then, it follows from theorem 3.1.2 that the Quillen curvature 2-form

of R is given by

F(1) Fr(X,Y) = _%/ 95 p 10
M

where X = (a,m),Y = (a,70) € Tus)(A X H), and 7 = o) + 71, & =
oy + e € QY{M,iR).

(b) Next consider the antiholomorphic bundle R which is the deter-
minant line bundle of the adjoint Dg A = Vit 10 of Dy g), where
DIy 5y 1 Q%(M, L) —» QN (M, ).

The determinant line bundle of the family DE‘ A,8) 18 anti-holomorphic

with respect to the complex structure Zy and the Quillen curvature is given

by

1 )
F(2) Fa(X, V)= - / O A RO
M

™

(¢) Similarly as in (a) we construct the determinant line bundle 7 for
the the family of Cauchy-Riemann operators Ci4 6y = V/j —®%!. The Quillen

curvature is given by

1
F(3) .FT(X, Y) = —; ‘/M 7'0’1 A fﬁ)l’o,

where T = a; — 1, & = ay — Y2 € QY (M,iR).
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(d) Similarly as in (b) we construct the determinant line bundle 7 of
the operator C‘(T 4,8) and find its Quillen curvature to be
0 Rk v =L [ ponm,
where 7 = a1 — 1, £ = ay — Yo, € QH{M,R).
Set
L=RORBRTDT.

This is a well defined line bundle over A x H.
We now compute the curvature of £ which is given by F(1) +F(2)

+F(3) +F(4). One easily calculates this curvature to be

2

QX,Y) = —;/ () A g+ v Aya),
M

where X = (a1, 1), Y = (00, v2) € Tp(A x H).

Step 2: Definition of the prequantum line bundle over ¥y).

We show that R descends to the quotient by the gauge group.

Let v € G act on A X #H. Then it is easy to check that if (4,®) — (A+
wldu, ®) = (A-u,®) , then Disy,ayu™"s = u" D448, where s € ['(M, L)
and DgAlu'q,)u“lt = u“lDErA’q,)t, where t € Q»'(M, L). Thus for every u € G
there is an isomorphism of the eigenspaces of the operators A = Dzr A,@)D( A,8)
and A, = DErA-u,:Ia)D(A-H,CI’) given by s — v !ls.

It follows from this that there is a smooth isomorphism of the fibers
of R over (A4,®) and (A - u,®). Namely, over (4,®) € U® the fiber of

R is (A*PK%)* @ (APK®). By the previous remark, the fiber of R over
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(A+u,®) € U%is then (APK2 )* @ (AP K2 _) where K2, is the direct sum
of eigenspaces of eigenvalues < a of A,. These fibers are isomorphic by the
canonical isomorphism of K§ and K§, which takes s € K¢ — u™'s € K2,

Now the gauge group action on I'(M, L) induces the action s — u™!s,
where s € K{. Thus we can identify the fibers in canonical way when we
take quotient by the gauge group. Thus R is well defined over the quotient

space.

Same result holds for R, 7 and 7 and we have the following proposition:

Proposition 4.2.1. The line bundle L is well defined over (AxG-¥xH)/G.
When restricted to Yiw) C (A x G-V x H)/G it has the following curvature

2-form

2
F(X,Y):~;fM(x/\n—%/M'y/\6,

where X = (o,7) € TNw and Y = (1,6) € TpXpw.
Step 3 The curvature form is a symplectic form.

Theorem 4.2.2. The form Y = ZF is a symplectic form on Lw) compatible

* 0
with the almost complex structure T' = and the metric g
0 =%
g(X, Y} :/ *a/\n—l—/ *7y A 0.
M M

Proof: The proof goes along the same lines as the proof of theorem

2.1.5. On the affine space W define a new symplectic form

(X, Y) = —/

O:/\?]‘—l-/ Re < I3, 35 >H—f v A,
M M M
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* 0 0
where X = (O{, 161)7)3 Y = (n;ﬁZ;a) € TPW Let 1-2 = 0 10 be a

D0 =

i
complex structure on W, where I = . The symplectic form €y is
0 —i

compatible with 7, and the following meftric on W

g(X,Y):/ *oanrf Re < i, >H+/ *7 A 8.
M M M

The two equations we are considering are, for an appropriate gauge-

equivalence class of W,

(1) F(4) = Sy ~ ol

= 1
(1.2) 3@=—§<¢1,¢2 > w.

Once again, it is easy to see that equation (1.1) can be realised as a moment
map pg, = = 0, where y is as in proposition 2.1.3 and is now considered
as a moment map with respect to £2s.

Now on W, the linearization of (1.1) and (1.2) is

(17} da = 0,

(20) 8y =0,

where (o, 8) = (—{W¥,v) € T,W and ¢ € Q°(M,R).
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It is easy to check that if X ¢ T,W satislies equation (21) then I, X

satisfies it as well. Now the proof of theorem 2.1.5 gives the result for Xifw]
with {2, descending to a symplectic form §.

1.

'Thus, we have the following

Theorem 4.2.3. £ is o prequantum line bundle over Xy

Note: Since Y] is an affine space, this construction by itself maynot
be useful. But we have been able to show a similar construction on /'\711,

which we donot include here.

4.3 Concluding Remarks

We are planning to prove that the moduli spaces afe non-empty ,
smooth and M,, M, and A are of finite volume. We also want to ad-
dress the question of what topology we would like to impose on these moduli
spaces.

We have constructed the prequantum bundle on M., by incorporating
the spinors in the determinant line bundie construction and are planning to
extend this construction to A, the moduli space of solutions to (1.1) — (1.3).
Next, we wish to adapt the second step of geometric quantization for mani-
folds of finite volume and thus hope to complete the geometric quantization

of the moduli spaces.
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