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Hardy Modules
by
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Doctor of Phil_osophy
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1998

The Hardy space is a module over the ring of bounded analytic
functions. In this fhesis, we will study the submodules and the
quotient modules of the Hardy space. Special attentions are given
to the cbmpressions of the shift operators to those submodules and

quotient modules.
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Introduction

Opérator theory has been greatly enriched after the introduction of the
Hilbert spaces of analytic functions. On one hand, the analytic function theory
makes it'possible to reformulate and solve many classical operator theoretical
problems; on the other hand, it opens many new field of studies in which
algebra, geometry and topology also play fundamental roles. A very illustrative
example is the study of the Hardy space over the unit disk, the results of which
have found essential applications not only in operator theory itself such as to
the invariant subspace problem, the BDF theory and the theory of hyponormal

operators, but also in index theory, group representation theory and statistics.

In recent years, many attempts have been made to explore the multi-
variate analogue of this study. .D_iscovered by Ronald G. Douglas, many of
these attempts can be systemized if the language of module is adopted and a
groundwork was laid down in [DP]. This module language not only properly
emphasized the key problems in the multi-variate operator theory but also
made clear its connections with algebraic geometry and commutative é.lgebra.
But operator theory has its own infinite dimensional nature which distinguish

itself from algebra and geometry. This thesis will focus on some operator
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theoretical problems in the Hardy modules even though certain algebriac aspect

will also be touched upon.
In Chapter 1 we first study some properties of the submodule of the Hardy

space over the bidisk and give an estimate of a paritular numerical invariant

of the submodule. Then we will study a specific kind of submodules defined

by linear equations and prove that under certain conditions these submodules
are all similar to the Hardy space itself.

In some respect the compression operators on the quotient module are the
multi-variate analogies of the NagynFqiaS models for completely nonunitary
contractions. In Chapter 2 we will first show how the spectral properties of
the compression operators are related to the zero varieties and then prove a so
called rigidity phenomenon for quotient modules. Results in this chapter are
the joint work with Ronald G. Douglas.

In Chapter 3 we will study the commutation problems of the compression
operators and show that the cross commutators of certain compressions are
Hilbert-Schmidt. The results can be viewed as the two-variate analogue of the
classical Berger-Shaw theorem for single hyponormal operators.

We conclude this thesis with a brief review of some results and their

prospect of applications .




Chapter 1

Preliminaries

In this chapter we will introduce the notations that we will use later on

and list some theorems related to the studies in this thesis.

Hardy space We let C" denote the cartesian product of n copies of the com-
plex field. The points of C* are thus ordered n-tuples z = (21, 23, ..., 2.) and 2°
stands for the n-tuple (27, 23%, ..., z3%) for any multi-index s = {5y, 53, ..., ) €
Z7, where Z, is the set of nonnegative integers. In the case n = 2, we shall
use z, w instead of z1, #z to denote the coordinate functions. The ring of
polynomials of z = {1, 23, ..., 2n) will be denote by R though sometimes the
standard notation Clz;, 22, ..., 2] is also used to avoid possible confussions.
The ideal generated by polynomials p1, ps, ..., pn is denoted by (p1, P2, ..., Pn)-

D" will be the unit polydisk in C* with distinguished boundary T, where
T is the unit circle. The closure of polynomials over D" under the supremum

norm will be denoted by A(D™) and called the polydisk algebra. The Hardy

space H2(D™) is the Hilbert space of holomorphic functions over D™ which




satisfy the inequality

$UPo<r<1 j;n |f{rz)*dm < oo,

where dm is the normalized Lebesgue measure on T". The norm [|f|| of a

function f € H?(D") is defined by

11 = supngrar [ 1 (re)Pdm.

The inner product induced by this norm will be denoted by < -, « >.
By Fatou's theorem, every function in H?(D") has nontangential limit
at almost every point of T™. If we let f denote the boundary function of

f € H*(D"), then

fe HY (T, dm) :=3pan{z" : 2 € T" and s € Z1},

where the closure is taken in L2(T™,dm). And it is also well known that each
function in H?(T™, dm) has an unique analytic extension to D" which belongs
in H2(D"). For convenience, we identify H?(D") with H*(T",dm) and will
use f to denote its boundary value f as well. |
For any bounded function ¢ on A(D"™), we define a so called Toeplitz

operator T, mapping H?(D") to itself such that

Ty(f) = P(ef),

where P is the orthogonal projection from L%(T™,dm) to H*(D™). The study
of Toeplitz operators has been very active in the last thirty years and many

nice results were abtained. Good references for this subject are [Do2] and

(Up].




H*(D"™) is the space of all bounded holomorphic functions in D™ with

1 llee = suplf(2)], =€ D™,

and it is easily seen that H®(D") is a Banach algebra with pointwise multipli-
" cation and addition. The collection of invertible elements in algebra H*(D")
is denoted by [H®(D™)]™!.

It is well known that the space H?(D") is an A(D®) -module with action
defined by the pointwise multiplication by A(D") functions. For any h €
H*(D™), we let

_—__._H2

| (8] = A(D™)

be the submodule generated by the function h. A function h € H?(D") is
called Helson outer(denoted outer(H)) if [h) is equal to H?(D™) and is called
inner if 1h(z)| is equal to 1 almost everywhere on T™, It is easy to see that

when h is inner,

[h] = hH2(D™).

Compressions of the shift operators If M is a proper submodule of
H?(D") and we let

p: HYD") — M, q:HD") — HXD") e M

be the orthogonal projections, then one checks that the map S : A(D") —

B(H?*(D") © M) defined by

Srg=qfg, [e€AD"), ge H}(D" e M,




e

is a homomorphism which turns H2(D") & M into a quotient A(D")-module,

where B{H) stands for the collection of all the bounded linear operators acting

on the Hilbert space H. One sees that the operators S;,, S,,, ..., 5, are ?

compressions of the Toeplitz operators T, Ty,, ..., T, onto H DY e M.
The restrictions of T,,, Ty, ..., Tz, to the submodule M will be dénoted E‘
by R,,, Re, - He,. For convenience we denote S, simply by S; and Ry
by R;, j = 1, 2, .., n. The main purpose of this thesis is to study the t‘
relation between the operator theoretical properties of S,.’s and R.,’s and the E

properties of the submodule M.

Some related results The studies of the submodules of H?(D™) were car-
ried out by many authors. Here we only list some results that are pertinent

to our studies. o |

Theorem 1.0.1 (/Ge]) If h is a polynomial in the polynomial ring Clz1, 22, - 2n), y
then y

(h] = H*(D")

if and only if h has no zero in D™,

This theorem will be used very often to exclude some trivial cases in the proof
of many of the results in the thesis.

If H, and H, are two A(D") modules, then H, is said to be uniterily
equivalent(similar) to Hy if there is a unitary(invertible) module map from H,;

to Hs. A bounded module map T from H; to Hj is called quasi-affine if it I1

is one to one and has dense range. H, and H, are said to be quasi-similar if




there are quasi-affine module maps from H; to Hy and from H; to H;. One

sees that similarity implies quasi-similarity.

Theorem 1.0.2 (JACD]/) A submodule M is unitarily equivalent to H?(D™)
if and only if

M = pH*(D")
for some inner function ¢.

Theorem 1.0.3 ([DF]) If Hy and H; are two submodules of H*(D") then
H2(D™) © Hy is unitarily equivalent to H*(D™) & H, if and only if H) = Hj.

The phenomenon described in this theorem is called the rigidity phenomenon.
We will-say more about the rigidity phenomenon in Chapter 3.
Two bounded operators A, B are said to doubly commute if A commutes

with B and its adjoint B*.

Theorem 1.0.4 (Ma]) If M is a submodule in H*(D?), then R, doubly com-

mutes with Ry, on M if and only if M is unitarily equivalent to H?(D?), i.e.
M = ¢H?*(D?)
for some inner function ¢ by Theorem 1.0.2.

In Chapter 2, we will study the conditions on M under which S, doubly

commutes with S, on HX(D™)e M.,

Theorem 1.0.5 (JCMY]) If M is a submodule of H*(D?) that is generated

by homogenuous polynomials, then RiR, — R, R} is Hilbert-Schmidt.




In Chapter 5 we will generalize this result to all the submodules generated by

polynomials. Our result settle a question raised by Curto. A corresponding

study for the cross commutator S; S, — S,,S; will also be carried out there.




Chapter 2
Submodules

In this chapter, we will mainly study the elementary properties of the
submodules of H?(D?) even though some of the results still hold for H (Dm).
We first give an estimate of the dimensibl-l of the quotient M &M, where
M is any submodule of H2(D?) and I C R is any ideal. Then will study the
conditions on M under which S, doubly commutes with S, on H*(D?)© M.
Qection 2.3 is devoted to the proof of a theorem which identifies a sbeciﬁc kind

of submodules in H*(D?) & H*(D?).

2.1 Proper Submodule

It is well known that the collection of functions in H?(D?) which vanish
at the origin (0, 0) is a closed proper subset of H 2(D?). It is also not hard to
believe that zM + wM should not be dense in M for any submodule A since

both 2 and w vanish at the origin. We begin this section by giving a proof of

this elementary fact.
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Let By = span{z*, 2w, .., zw*"!, w*} and Py be the orthogonal

projection from H?(D?) to Ey. Then

Q0
SN b =1
k=0
For f € H%(D?), we define
ord(f} = min{k : Pyf # 0}.
Lemma 2.1.1 If f € H*(D?), then there is a positive constant e such that

g € HYD?) and ||f — gl < € imply ord(f) > ord(g).

Proof. If ord(f) = m, then
f=73 Pf
k=m
and

1P = 3 1RSI,

Choose € = || P, f||, then for every ¢ € H*(D?) with ||f — gi|* < €7,

m—1 o0 .
&> If —gll* = X IPegll® + 1|1 Pnf = Pugl* + X2 |1Pef — Pigll®.
k=0 k=m+1

Therefore,

“me—'ng” <e€

and hence

|1Pngll = (1Pafll = ||Pmf — Pyl

= €= ||Pnf — Pngll >0
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This implies

ord(g) < m.

0
For any subset § € H2(D?), we denote its closure in H%(D?) by S and

define
ord(S) := min{ord(f) : f € S}.

The following corollary is a direct consequence of Lemma 2.1.1 and its proof.
Corollary 2.1.2 a. ord(S) = ord(S). b Py(S) = P(5) vk > 0.
For any submodule M C H?(D?), we let
Ey (M) = P(M).

It is not hard to see that Ei(M) is a subspace of Eix. One checks also that for

each f € H*(D?),
2Pof = Pepiaf, whef = Prpawf.
These observations and Corollary 2.1.2(b) yield the following
Lemma 2.1.3 For any submodule M C H?(D?),
By (sM +wM) = 2E(M) + wEy(M) C Boys (M), k> 0.
Corollary 2.1.4 For anv submodule M C H*(D?),

ord(zM +wM) = ord(M) + 1.

In particular 2M + wM 1is proper in M.




Proof. From the definition, ord(M) = min{k : Ex(M) # {0}}. Lemma
2.1.3 implies that Ex(M) # {0} if and only if Exy((2M + wM) # {0} and

“hence the corollary follows from Corollary 2.1.2(a). O

Similar arguments will show that (z — )M + (w — 3)M is proper in M

for any (, 8) € D?, hence thé following
Corollary 2.1.5 If I C R is an ideal whose zero Uam'ety V(I) intersects D?

nontrivially, then TM is proper in M.

Proof. Select any point, say (a, 8), in V(I) N D? Then I is contained in

the ideal generated by z — o and w — f#(denoted by (z — o, w — 3)). Hence

IM C (z -« w—,B)M=(z—~a)M+(w—ﬁ)M.

O

The following theorem gives an estimate of the dimension ofMelIM.

Theorem 2.1.6 If I C R = Clz,w] is an ideal and M C H*(D?) is a sub-

module, then

dim(M © IM) < dim(R/I)rank(M).

Proof. We assume dim(R/I} = m; < oo with a basis {vi, voy ooy bml} for
R/I and rank(M) = m, < oo with a generating set {e1, €, .., em,} for M.
If $ € M © IM, then there is a c2quence of polynomials {ff': n >0, j=

1, 2, 3,..., ma} such that

ma
. 0 _
nggojz_:lfj ej=¢

12




in H%(D?). For each f}', we write

n_ n
fi =5t

with £, € J and r} € R/I. If we let P: M — M © IM De the orthogonal

pro jection, then

¢=rp = (,}L,HgOZf 2)

j_

= ,}g{.lcz; P(f7e; +r7ej)
J:

. -
= lim Y P(rje;).
=1

n—00 4
J

Since {v1, v2, ..., Um, } is a basis for R/I, we can write

LI
no__ n o,
i =2 v
i=1

where ¢?,, n >0, 1 <4< my, 1 £j < my are constants. Then,

347

Mz My

¢ = Jim 3, ) P (vies)
j=li=t

and hence ¢ € span{P(v;e;), 1 <1< my, 1 < j < my}. Therefore,

dim(M © IM) < mymy = dim(R/Irank(M).

Corollary 2.1.7 If M C H*(D?) is a submodule, then

dz’m(M 6 (zM + wM)) < rank(M).

13




Proof. Let I = (z, w) C R, then dim(R/I)=1and IM = zM +wM. The

corollary thus follows directly from Theorem 2.1.6. a
Corollary 2.1.8 If I}, I, ..., I are ideals in R and we set
fj 21112"'Ij_1fj+1"‘fk, J= f1_+f2+"'+fk,

then
k
dim(Nt_ ;] o] H ) < dim(R/J)rank(nk 1[Ij]).

Proof. We denote ﬂle[Ij] by N. For any ¢ € N, there is a sequence of

polynomials {p} : 1< j <k, n> 0} such that {p}: n >0} C J; and

lim p} = ¢

n-—o0

foreach 1<j<k Iffjel;,j=1,2 .. k then

i, f5v}

k
(Z:l file =

LN
1=
.
=

But for each j, f;p? € [il; = I+ I, 50
k k
i fmee It

This shows JN C [[T5., I;] and hencs

dim(N © [f[ L) < dim(N & JN).

The corollary-then follows from Theorem 2.1.6. O

The equality in Corollary 2.1.8 holds in some cases.

14




Example. If I}, = I = (2, w), then J = (2, w) and hence dim(R/J) = 1.

- Tt is also easy to see that [[1[;] = [(2%, zw, w?)] and one checks that

[(z, w)] ©[(«*, 2w, w*)] = span{z, w}.

Therefore,

dim([(z, w)]©[(*, 2w, w)])=2= dim(R/J)rank([(z, w))).

By Corollary 2.1.8, if J = R then N¥_)[}] = [Hf;:l.[j]. We can improve

the result a little bit. For simplicity we state the improved result for & = 2.

Corollary 2.1.9 IfIy, I are ideals of R such that (I1+12)N(H®(D?))~! # 9,
then
(L) N (5] = [ L)

Proof. In the proof of Corollary 2.1.8, we see that (11 +12)([1]N[12]) C {11 F].
If (7, + L) N (H=(D?))~! # § then

LN [L] = (I + L)L) n (k) C [L] C [L]N{L].
Hence,
(L] N[ = [Li1).
0

Corollary 2.1.7 can be used to prove the existence of a submodule of

H?(D?) with infinite rank. A concrete example was constructed in [Rul].

Corollary 2.1.10 There is a submodule M C H?(D?) with rank(M) = co.

15




Proof. It is well known that the Bergman space L2(D) and the quotient
space H?(D?) & [z — w] are unitarily equivalent A(D.) modules(see [Ru]) and
a subspace K C H*(D?) & [z — w] is invariant for S, if and only if K =
H e |z —w] for some submodule H that contains [2 — w]. So by Corollary

5.5[BFP] and Proposition 10.1[BFP] there are submodules M and N with
[z —w]C NCMcC H*D?Y

such that

dim{M & N) = oo,

and the compression p; z = 0 on M ©N, where p, is the orthogonal projection

from H?(D?) onto M © N. This means that if f € M©N then zf L (MON).

But pyw—p12 = py(z—w) =0, so we also have wf L (M ©N). This implies

that
MoeNcC Mo (:=M+wM),
and hence,
00 = dim(M & N) < dim(M © (zM + wM)).
The corollary then follows from Corollary 2.1.7. a

2.2 Conditions for [S,, S;]=0

We recall from Chapter 1 that given a submodule M, K,, R, are restric-
tions of the Toeplitz operattors T,, T, on M and §,, S,, are the compressions

of T,, T, to the quotient space H2(D?) o M.

16




Theorem 1.0.4 says that R,, R, doubly commute on some submodule M
if and only if M = ¢H?(D?) for some inner function ¢. In this section we
will study the necessary conditions for S, to doubly commute with S,. Some

related questions will also be studied.
Proposition 2.2.1 If M is a submodule such that the commutator [S,, S| =
0on K =H*D*)©o M, then M contains a function in one variable.
Proof. By [Ya](also see Proposition 4.3.1),

(52, Sul = —(I = p)ip2, | (2.1)
where p is the orthogonal projection from H 2(D*) onto M. So for f, g in K,

0="—<[S, Silf, 9> = < -pwpzf, 9>
= < pzf, pwg>. |
One also checks that for every h € M,
< pzf, zh >=< zf, zh >=< f,' h>=0,

j.e. pz maps K into M © zM and sifnilarly pw maps K into M © wM. By

Corollary 2.1.5,
(Me:M)n(MowM)=MozM+wM # {0}.

So either pz(K) is not dense in M © zM or pw(K) is not dense in M © wM.
We assume pz(K) is not dense in M © zM; then there is a p € M&zM such

that

<zf, ¢ >=<pzf, ¢ >=0,

17




for any f € K. Therefore ¢ is orthogonal to both zM and 2K and hence is
orthogonal to zM @ 2K = z(M & K) = zH*(D*). So ¢ is a function in w only.

0

Corollary 2.2.2 M is a submodule such that K = H*(D*) & M is invariant

for multiplication by z if and only if
M = ¢H*(D?)
for some inner function ¢ depending on w only.

Proof. If K is invariant for z then by the proof of Proposition 2.2.1 every
function in M © zM depends only on w, and hence M © zM is also invariant

for the multiplication by w. By Beurling’s Theorém,
M 6 zM = ¢H*(D)
for some inner function ¢ depending on w only. Hence,
M = 82,2 (M © 2M) = ¢ B2, ZH*(D) = gHYD?).

Conversely, if M = ¢H?(D?) for some inner function ¢ depending only

on w and f is any function in X = H*(D?) & M, then obviously
< zf, puw’ >=0
for § > 0. For any ¢ > 1 and j > 0,

< zf, ¢Zwl >=< f, ¢ w? >=0.

18




In conclusion, zf € K and hence K = H?(D*) & M is invariant under the

multiplication by z.

Corollary 2.2.3 If M = [h] for some function h that is holomorphic in o
neighborhood of D% with

Z(h)ND? = Z(h) N DY,

then [S,, Si] = 0 on K = H*(D?) © M implies that either o(S,) N D or

a(Sw) N D is discrete.

Proof. If[S,, Si] = 0 on K then there is a function, say ¢, in M depending
only on one variable, say w. If {w;: 1< < NY are the zeros of ¢ in D(N

. could be 00.), then

ZWyc Dx{wj: 1<j<N}L

By [DYa)(see also Theorem 3.1.5),

C,T(Sw) = Wz(Z(h) ODQ) C {wj 1. 1 Sj < N}
O
Corollary 2.2.4 If h is a polynomial in R, then [S,, S;] = 0 on H*(D?)&[h]

if and only if
[h] = GH*(D?)

with G an inner function depending only on one variable.

19
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Proof. First of all if Z(h) N D?* = 0 then [h] = H%(D?) by Theorém 1.0.1.
So we now assume Z{h) N D? # .

If [S,, S3] =0 on H?%(D?) & [h], then by Proposition 2.2.1 [h] contains a
function, say ¢(w), of only one variable. Suppose {w; : 1< j < N < oo} are

the distinct zeros of ¢ in D, then
Z{h)N D? C UfL,D x {w,-}.‘
We assume {w;: 1< j <k} are all the zeros of ¢ such that
Z(h) N D x {w;} #0.
Since h can’t have isolated zeros, so
h(z, w;) #0, VzeD, 1<j<k.

But since his a polynomial, we must have

(w —w;) | Az, u)), 1<5< k' < 00.
If for each 7, we let

n; = maz{n: (w—w;)" | h(z,w)},

then
k

h{z,w) = [ (w —w;)"p(z, w),

j=1

for some polynomial p. From the construction above,

Zip)nD* =10
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and hence is outer(H) by Theorem 1.0.1. If we let

Gw) =G5
then ‘
k
(= (LT (w - w;)™) HY(D") = GH*(D").

Coversely, if {h] = GH*(D?) with G an inner function depending only on
one variable, say w, then H?(D?) © [h] is invariant under the multiplication
by 2z and hence |

[S:, Syl =~ — p)Wpz =0
by Equality (2.1).
| O
Corollary 2.2.5 H 2(D?%) can not be decompésed as an. orthogonal direct sum

of two proper submodules.

Proof. If M and K = H*(D?) © M are both submodules then by Corollary
9.2.2,
M = (D) = b H(D),
for some inner functions ¢;, ¢ in different variables. This is possible only
when #; and ¢, are both scalars, hence M = H?(D?). m]
Actually no two submodules can even have positive angle. It is a easy

consequence of the following lemma.

Lemma 2.2.6 If M ¢ H%(D?) is a nontrivial submodule, then the minimal
unitary dilation of M is L*(T?, dm), where dm is the normalized Lebesgue

measure on the torus T2.




Proof. We let

M:={zwif: fEM, i, j: integers},

where the closure is taken in L%(T?, dm). Then M is an closed subspace of
L%(T?, dm) jointly invariant for the multiplications by z, w and %, . Then
by Lemma 3 in [GM],

M =1gIL%,

for some measurable subset E C T2. But M contains M and it is well known
that nonzero functions in H2(D?) can’t vanish on a subset of 72 with positive

measure. So £ = 7% and

M= L2

Corollary 2.2.7 No two submodules of H*(D?} can have positive angle.

Proof. If M, N are two nontrivial submodules, then it suffices to show that
ol <fig>1: feM ge, Iil=lal=1} =1
Let f € M, g € N be any two nénzero functions, then by Lemma 2.2.6,
=6 =%

So for any small positive number € we can find polynomials p; and p, in four

variables z, w, Z, W such that

e fIl = llp2gll =1
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and

1—pifll<e, |1 —pagl e

Then,

|<1l4+pmf=1, 1+pg—-1>|

il

| <p1f, P2g > |

v

1= lpof — 1| = |lp2g = 1[} = llorf — 1l|l|lp2g — 1

> 1— 2 — €

K

We now choose a sufficiently large integer K such that 2ZKwKp,, 2KwKpy are

polynomials in z, w only. Then 2ZKuw¥p f € M and z2X¥w¥pyg € N and

| < 2Xw¥pif, eXw¥pag > | =1 <pif pag > 121 -2~ €.
O
2.3 Equation p1fi +paf2 =0
If p1, p, are two polynomials in R, we consider the equation
nfi+pfa=0 ' (2.2)

The solutions of Equation (2.2) in H%(D?) & H*(D?) will be denoted by
Ker(pi,ps). If we equip H?(D?) @ H?(D?) with a module action of A(D?)
defined by

g-(fuf2) = (9f1.9f2),

then Ker(py,p;) is a submodule of H*(D?) @ H?(D?). Since Ker(pi,pz) =

Ker(gpy, qpe) for any ¢ € H®(D?), we will always assume that the greatest




common divisor of p;, po{denoted by GCD(py,p2)) is 1. In this section will

show that Ker(p;,ps) is similar to H%(D?} if p;, ps have no common zero on

the boundary of D,

Theorem 2.3.1 If p1, py are two polynomials that have no common zeros
on the boundary of D?, then Ker(py,p2) is similar to H*(D?) as an A(D?)

module.

Proof. If GCD(py,p:) = 1 then the quotient R/(p1,p;) is finite dimensional

by [Yaj(also see Lemma 4.7.1); hence py,ps have a finite number of common

zeros. We denote these zeros by
{(z,wi): 1<i<1}cCE

Without loss of generality, we assume (z;,w;) € D? for 1 <4 < kand (2, w) €
C2\ D? for k+1< i<, and set |

k ;

m(z,w) = [[(z — 2)(w —w), r(z,w) = I (z—2)(w—w).

i=1 fek41
Then by Nullstellensatz, a suitable power of m(z, w)r(z,w) is in the ideal
(p:, p2). Without loss.of generality(which will be clear from the proof) we
assume m({z, w)r(z,w) € (p1, p2). So there are two polynomials ¢1, ¢ such

that

m(zv w)r(zn w) = 11 + 2D

By the assumption, (2, w) has no zero in D2, 50 r~1 € H®(D%) and

m = r-tqp + 1 geps.
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Welet ¢; =r71q;, i=1, 2.
If (f1, f2) € Ker(p,pa), then

mfL +p2(dife — ¢2fi) = (0~ dapa) fr + S1p2fo

= duphi + 2o,

hence
mfy + pa(drfa — @2 f1) = ¢1(prfi + paf2) = 0. (2.3)
If we let |
1 0
T= )
~¢2

then by Equation (2.3) , T'is a bounded module map from H?*(D?) & H?*(D?)
to H*(D?) @ H*(D?) which maps Ker(pi, p2) into Ker(m, p,).

It is easy to check that T is injective; in what follows we will show that
T also maps Ker{p;, p:) onto Ker(m, ps).

First.c}f all, if GCD(m, p;) = s(z,w) then

Ker(m, pa2) = Ker(m/s, p2/3),-

so again we assume that GCD(m, p.) = 1.

If (hy, hy) € Ker(m, p,) then
mhy = —pahs.

But since GCD(m, pz) = 1, 2 must be holomorphic. If we set

ha
m
k
Hl—zt Y1 - mmw)h,
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then 9, € H*(D?) and i, is an inner function. Therefore,

| 2 P du 2du

mi/im

fw ol o P

< mllGolipall® < oo,

i

i.e. 22 ¢ HY(D?).
If we set

fi=hy, fo=piha/m,

then

p1f1+102f2 = pihi + poprha/m

mhy + pah
= pl(_l—m) 0,
™

ie. (fi, fa) € Ker(p;, p2). Furthermore,

( )

f : fi
T = |
fa \ —oaf1 + ¢1fo ) '
( \
hy
—gamhi+g1p1he
\ ™ /
1
hq hy
(eoptinlte hy

\




This shows that T maps Ker(p1, pe) onto Ker(m, p,); hence Ker{(p1, p2) and
Ker(m, pp) are similar modules.

Moreover from the discussions which lead to Equation (2.3),
Ker(m, ps) = {(~pahf/m, b) : he mHADY)},

and hence is similar to mH?(D?) = m, H2(D?). But mym H?(D?) is unitarily

equivalent to H?(D?) because myy, is inner. - 0
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Chapter 3

Quotient Modules

We recall from Chapter 1 that the quotient H?(D") © [h] is an A(D")
module and the coordinate functions z, 22, ..., 2z, act on H*(D") & [h] as
bounded linear operators. In this chapter, we first make a study of the spectral
properties of these operators and reveal how these properties are related to the
function A. Then we will have a look at the analytic continuatiqn problem.
At last, we will show a rigidity phenomenon of quotient Hardy modules.

Let us also recall that H*(D") is the space of all bounded holomorphic

functions in D™ with

| fllo = sup|f(2)], z€ D™

The collection of invertible elements in algebra H>(D") is denoted by [H*(D")] .
The H® spaces over other domains are similarly defined. Buppose € is any
open set that contains D*. For any natural number j less than or.equal to n
and any u € D, we set

St = {2 € Qlz; = u},
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which is called the slice of  at z; = p. In many places of this chapter, we
will assume some functions to be holomorphic in a neighborhood of D*. The
slice sets will be useful in the discussions there. For any ~ holomorphic in a
domain, Z(h) will denotes the set of zeros of £ in that domain.

In Section 3.1, we make a study of the spectra of the operatofs St, Sy ey Sp
as well as the joint spectrum of the n-tuple (51, Sﬁ, vey ). Section 3.2 is de-
voted to the study of some functional properties of certain functions in H* (D").

In Section 3.3, we establish a rigidity phenomenon of quotient modules.

3.1 Spectra

We recall from Chapter 1 that Sy, Sa, ..., Sp denote the compressions
of the Toeplitz operators Ty,, Ty, ..., 15, onto some quotient module, say
H*(D* e [h] Cowen and Rubel made a study of the joint spectrum of the
tuple (S, Sy ..., Sn) and showed a close relation to the zero set of h. In this
section we will show that under some conditions the spectrum of S; is exactly
the projection of the zero set to the jth coordinate.

We proceed by proving the following

Lemma 3.1.1 If h is holomorphic in a neighborhood of D" and h()\,?) €
[H=(S3)] 7Y, then X € p(Sy), the resolvent set of Si. '

Proof. Co;lsider the function

1 — Az, 2)h (A, 2")

F(z,2') =

Zl—)\-
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By the Weierstrass Preparation Theorem{Kr, Thm. 6.4.5], the numerator of R
F has z; — A as a factor, and hence F' is a bounded holomorphic function over g

D". So Sp is a bounded operator on H%(D") & [h].

For every f € H*(D") © [h],

($1=NSpf = qg(u—NFf _
= g1 = h(, DA o
!
= qf = gh(, RTINS
: , i
= gf =/, i
where g is the orthogonal projection from H?(D") to H?(D")&|[h]. This shows ;l:
that
(S1— NSk =1 | |
%
Since §; commutes with Sr, we also have that f
I
Sp(S1—A) =1 l
i
ycél
ie. A€ p(S). _ o i
|
Similar statements are true for the operators Sy, ..., S, with the corre- f:!;
sponding assumptions on A. '5

In essence, if X is not the j-th coordinate of any of the zeros of & in D,
then A is in the resolvent set of S;. It is actually possible to give a complete 1

description of the spectra of these compression operators when Z(h) satisfies

certain conditions, but it is convenient to have a look at their joint spectrum i

first. ‘-‘-1




Let us first give the definition of the joint spectrum. A good reference of
this subject is Chapter III in [H&).

Suppose B is a commutative Banach algebra with unit e, and
a - (ala az; .oy an)

is a tuple of elements in B. We say that a is non-singular if there are elements

bl, bz, veny ‘bn € B with

. The tuple a is called singular if it is not non-singular. The joint spectrum of

the tuple a is defined as
o(a) = {z € C": a— ze is singular.}

Here a — ze denotes the tuple (a; — 21, ag — 23, ..., Gy — 2y).
Now we state two more lemmas which are special cases of the results in

[CR)]. The proofs here are only slightly different.

Lemma 3.1.2 Suppose h is holomorphic in a neighborhood of D" and

D

is not empty, then the joint spectrum

a(S1, 82, ..., Sn) C Z(h) N D™,

Proof. Without loss of generality we may assume that h is holomorphic in

a pseudoconvex neighborhood U of D", Then, for any A = (A1, Azyeeey M) €
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D™\ Z(h) N D%, we can write h as
' h(zl;zg, oy Zn) = By Agy een An) + il(zj' - i,-)gj
j= _
for some functions g; that are also holomorphic in U [Kr, Thm.7.2.9]. since
h(z)h“(A) =1+ h“‘(}\) ith — Xj) gy
=1 .

it follows for any f € H?(D") © [h] that

RN 3NS5 - S F = ~ah () 3o - A
j=1 J=1
= oL - AW )

This implies that _
Z(SJ - )\,-)ng = .[,
. i=1
and hence X € p(Sy, Ss,..., Sy) for any A € D"\ Z(k) N D%, or equivalently

O'(Sl, Sg, ey Sn) C Z(h.) n D",

0

Here we note that Z(h) N D™ not empty doesn’t imply that [A] is proper.

For example, [z2+w+2] is equal to H 2(D?) [Ge]. In Lemma 3.1.2 we excluded

the trivial case [h] = H%(D?). In case Z(h) N D™ is not empty, we have an

inclusion in the other direction.

Lemma 3.1.3 If h is holomorphic in a neighborhood of D" and Z(h) N D" is

not empty, then

Z(h) ﬂD" C O'(Sl,Sg, ,Sn)




Proof. Suppose A = (A1, Ag,..., Aa) € Z(h)N D" It is easy to see that

SO(S; — M) (HA(D™) © [A]) + [A] € S0z = A + [l

=1 =1

but ) is a common zero of the functions z; ~ A1, 25 — Az,...; 2n — A, and h, s0

o_1lz; — Aj] + [h] is a proper subset of H 2(D™). This implies that

$(S; = A)(HA(D™) @ [W]) # HA(D") © [A]

j=1

ie. A€ o(Si, Sz, Sn)- . O
Using module resolution and tensor product one can prove the inclusion

in this lemma for other submodules. But the statement here is good enough

for our purpose. .
Combining Lemmas 3.1.2 and 3.1.3 , we have the following
Theorem 3.1.4 If k is holomorphic in a neighborhood of D" such that

Z(RyNnD* = Z(k) N D", (3.1)

then
a(S1, Sz, . Sp) = Z(h) N Dx.

Forj=1, 2, 3, .., nand any z € D%, we let
T2 = &4
be the projection to the j-th coordinate of z. It is well known that,

m;0(S1, S2,...y Sn) C o(S;)-

Combining Lemma 3.1.1 and the above theorem, we have
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Theorem 3.1.5 If h is holomorphic in a neighborhood of D" that satisfies

Condition (3.1) in Theorem 3.1.4, then for j =1, 2, ..., n,

o(S;) = 7(Z(h) N D").

Proof. It suffices to show that
a(S;) C m;(Z{h) N Dry.

In fact, ifl,u, is inside the complement of m;(Z(h) N D"), then fixing 2z; =
u, h doesn’t vanish on the closure of Sf;. Lemma 3.1.1 then concludes that
p e p(S5). - - O
Theorem 3.1.5 will be used in Section 3.2 to make a study of the analytic

_continuation problem.

3.2 Analytic continuation

In [AC], Ahern and Clark made a study of the analytic continuation of
functions in certain quotient Hardy modules. In this section, we are going to
use a result from their work and the results obtained in Section 3.1 to study
the analytic continuation problem. Again we find that the zero set plays an

important role.

Corollary 3.2.1 If h is holomorphic in a neighborhood of D" and h is in
[H°(S1)]"! setting 2z; = A with |A| =1, then every function in H*(D") & [A]

has an analytic continuation to a neighborhood of DI=1 x {A} x D",
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Proof. We prove the assertion for j = 1.

Every function of H*(D") © [h] has the property that
f(’\la AQ) erey )\n) =< f’ (I ,,,,, X‘Sl)—l(-[ - A_‘ZSZ)—l e (I - 'X;;Sn)_lq]- >,

where g is the projection from H2(D") onto H?*(D") & [h]([AC]). If we replace

A1 by A, then we have
FOM Ay oa Aa) = X< £y (A = S (I = TaSo)™ o+ (1 = RaS,) gl >

But from Lemma 3.1.1, if A is in the resolvent set of S, then the right side
extends analytically in the first variable to a fixed neighborhood of A and the
corollary follows. - ' ]

In essence, this corollary means that if a A € T is not the j-th coordinate
of uny of the zeros of k in A(D"), then every function of H 2‘(D") & {h] has an

analytic continuation to a fixed neighborhood of D7=1 x {A} x D",

Example : If A(z, w) = z — pw for some nonzero p € D, then h(), w) is

holomorphic in a neighborhood of D for every A € T and h(},) is invertible

in H(D). Then by the corollary, all the functions of H*(D?) € [z — uw)] are

analytic in a neighborhood of the unit disk in the first variable.

When n = 1, it is well known that every function of H*(D), the Hardy
space over the unit disk, has an inner-outer(H) factorization. But that is far

from the case even when n = 2. Functions like 2; + 2; don’t even factorize as

the product of two H'(D?) functions([Ru, pp 63]). (Here we alert the reader




that the notion of outer function considered in {Ru] is not the same as that
used here even though they are the same when n = 1. We refer the reader to

[Ru] for a detailed discussion.) Equipped with Corollary 3.2.1 and a theorem

from [AC|, we find a simple way to determine that certain functions have no

inner-outer(H) factorization.

Theorem 3.2.2 Su;r‘)poée h s holomorphic ina nez’ghborhood of D™ éatz’sfying
the condition 8.1 in theorem 3.1.4 such that :

1. Z(h) N D" is not a subset of a countable union of slices of D", and

2. there is an integer j < n such that wjm doesn’t contain the unit
circle T'.

Then h has no inner-outer(H) factorization.

We note that condition 1.demands in particular that Z(h) N D™ is not empty.

The proof uses the following theorem of P.Ahern and D.Clark[AC).

Theorem 3.2.3 Suppose M = gH*(D") where g is inner, A = (A1, Ag, ... M) €
8D™ with |\;| = 1, and there is a neighborhood B of A such that every function
in H2(D™Yo M has an analytic continuation into B. Then g is a function of z;
alone. In particular , if more than one of the \; has modulus 1, g is a constant

and M+ =0,

We now come to the proof of Theorem 3.2.2.
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Proof. Suppose h is a function with the properties mentioned in the theorem.

If h has the inner-outer(H) factorization GF, then
ZhynD" = Z{(G)n D"

and [h] = GH?(D™).
If u € T\ m{Z(h)ND") , then y € p(S;) from Theorem 3.1.5. Let

B(u) C p(S;) be a ﬁeighborhodd of p. C.o_'riqulary 3.2.1 shows that each f of
' 'HZ(D”) 6 GH2(D") has an analytic continuation into D7~! x B(u) x D",
Then the theorem of Ahern and Clark implies that ' depends on z; only.
Therefore Z(h)' N D" must be a subset of a countable union of slices of D"
which contradicts the assumption. O

In view of the results in [ACD], Theorem 3.2.2 enables one to contruct

many examples of submodules that are not equivalent to H#(D™).

3.3 Rigidity

Submodules with thin zero sets exhibit the so called rigidity phenomenon
[DY][Pa]. Things are much different when the zero sets are hyper-surfaces.
For example, it is well known that M is equivalent to gM for any submodule
if ¢ is inner. But the zero sets of M and gM can be quite different. In this
section, we prove a theorera which shows that for quotient modules this is by
far not the case.

Let us first recall some definitions. If H, and H, are two A{D") mod-

ules, then H; is said to be unitarily equivalent(similar) to Hy if there is a
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unitary(invertible) module map from H, to H,. A bounded module map T

from H; to Hj is called quasi-affine if it is one to one and has dense range. H,

and H, are said to be guasi-similar if there are quasi-affine module maps from

H, to H, and from H; to Hy. One sees that similarity implies quasi-gimilarity.

In [DF], R. G. Douglas and C. Foias have shown that if A, and Hj
are two submodules of H*(D") then H?(D") & H, is unitarily equivalent to
H?(D") © H, if and only if Hy = H;. In [DC], R. G. Douglas and Xjiaoman
Chen were able to prove that if cither J; or J; is principal in R, then H Yo
[J1] is quasi-similar to H*(Q) © [Jy] if and only if J; = J3, where {2 can any
bounded domain. They proved the result through a detailed analysis of the
zero varieties of the two ideals. We refer the reader to [FS] and [Wo] for

definitions of Hardy spaces over general domains.

Recently we discovered a direct approach which generalize the results in
[DC]. This approach was also suggested by Keren Yan in a less general context

some vears ago. We state our result in the polydisk case.

Proposition 3.3.1 If M, and M, are submodules of H*(D™) such that there
is a quasi-affine module map from H*(D™) & M, to H*(D")© My, then every
bounded function in My is also contained in My,

Proof. Suppose

™ H2(Dn) — M]_, q : H2(Dn)_ — Hz(Dn) &) Ml,

py  HA(D") — My, qo: HA(D") — HYD")© M,




are projections and let the operator T : H2(D") & M; — H*(D"} & M, be

the quasi-affine module map. Then
¢fT =Tqf, for any f € A(D").

As multiplication operators acting on H (D), H®(D™) is the weak opérator

closure of A(D"), so the equality |
2fT=Tqaf

holds for every f € H*®(D"). In particular, for any bounded function g € M,

it follows

gyl =Tq19=0,
and hence the operator gog = 0 since T has dense range. If we choose ¢;1 €
H*(D") & M,, then

0 = g29(g21) = qa(9)

This shows that g € M. _ -
This proposition leads to the following theorem which shows the rigidity

phenomenon of quotient Hardy modules.

Theorem 3.3.2 If M, and M, are submodules both generated by bounded
holomorphic functions , then H*(D™)O M, and H*(D")© M, are quasi-similar
A(D"™) modules if and only if My = M.

Proof. Sufficiency is obvious.
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From the above theorem every bounded function of M; also belongs in Ms.

Since M, is generated by bounded functions and M, is a closed submodule,

we have that

M, Cc M,.

Similarly we also have the inclusion
M, C M,

and hence
M, = M.
O
Here we note th_at the above theorem in the casé of the Hardy space over
the unit disk is also implied by the Livsic-Moeller theorem[Ni]. We also point
out that the proofs work for other A(D") modules, such as the weighted Hardy

modules and even the Bergman modules,

We end this chapter by a conjecture suggested by Theorem 3.3.2.

Conjécture. If M1 and My are submodules of H2(D"), then H*(D™) &

M, is similar to H*(D™) © My if and only if M, = M,.




Chapter 4
"Cross Commutators

Let us recall that if (k) C A(D?) is the pr_incipal ideal generated by a
polynomial A, then its closure [h)(c H*(D?)) and the quotient H%(D?) & [h]
are both A(D?) modules. As in Chapter 1, we let R,, R, be the actions of the

" coordinate functions z and w on [h], and let S,, S, be the actions of z and w
on H*(D?* ©[h]. In this chapter, we will show that R, and R,, as well as S,
and Sy, essentially doubly commute. Moreover, both [RY, R,] and [S, S.]

are actually Hilbert-Schmidt.

4.1 General Questions

The Berger-Shaw theorem says that the self-commutator of a multicyclic
hyponormal operator is trace class[BS]. It is interesting to study the mul-
tivariate analogue of this theorem. In [DY1], the authors reformulated the
theorem in an algebraic language and showed that if the spectrum of a finite

rank hyponormal module is contained in an algebraic curve then the module is
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reductive which means that the module actions are all essentially normal. They
also gave examples showing that it is generally notrthe case if the spectrum
“of the module is of higher dimension. However, many examples show that
the cross commutators don’t seem to have a close relation with the spectra
of modules but are generally ‘small’. This suggests that the following general

questions may have positive answers.

Questions: Suppose T, Ty are two doubly commuting operators acting
on a separable Hilbert space H and Ry, Ry are the restrictions of them to a
jointly invarient subspace that is finitely generated by T\, Ts.
1. Is the cross commutator [R}, Rp] in some Schatten p-class?
2. Is the product [R}, Ri][R3, R:) also small?
3. What about the cmﬁpressions of T1, 15 to the orthogonal Cémpiement of M?

A special case of the first question was studied by Curto, Muhly and Yan
in [CMY]. The second question was raised by R. Douglas. The third one
appears naturally from the study of essentially reductive quotient modules.
Note that when T = T the first two questions are ansWered positively by the
Berger-Shaw theorem. | | |

In this chapter we will make a study of these questions in the case H =
H*(D?), the Hardy space over the bidisk, and T}, T3 are the multiplications

by the two coordinate functions z and w. Then a closed subspace of H*(D?) is
jointly invariant for Ty and Ty if and only if it is an A(D?} submodule. We will

have a lock at the third question first because it turns out to be the easiest.

42




43

The answer to the second question is a consequence of the answer to the first i
one. Some related questions will also be studied in this-chapter. _ \
We now do some preparations.

We let E', E be two separable Hilbert spaces of infinite dimension and

{5; i >0} {6:52 0} are orthonormal bases for £’ and E respectively. We

let H%(E) denote the E-valued Hardy space, i.e. .

I

HY(E) = {f: ;¢ || = 1§ 51 < oo}

It is well known that every function in H?(E) has an analytic continuation

to the whole unit disc D. For our convenience, we will not distinquish the

functions of H*(E) from their extensions to D. We let T, be the Toeplitz

operator on H2(E) such that for any f € H*(E), _ _ E

One sees that T, is a shift operator of infinite multiplicity.

A B(E', E)-valued analytic function 6(z) on D is called left-inner(inner)

if its boundary values on the unit circle T' are almost everywhere isome-

tries(unitaries) from E into E. Therefore, multiplication by a left-inner ¢
defines an isometry from H?(E') into H?(E). | l

A closed subspace M C H?(E) is called invariant if ‘ !

.M CM.

The Lax-Halmos theorem([INi}]) gives a complete description of invariant sub- i

spaces in terms of left-inner functions.




Theorem 4.1.1 (Lax-Halmos) M is a nontrivial invariant subspace of H*(E)

if and only if there is a closed subspace E CcEanda B(E', -E)-valued left-

inner function 8 such that

M = 0H*(E'). (4.1)

The representalion is unique in the sense that

I

OHYE)=0H*(E' )<= 0=0V,
where V. is a unitary from E' onto E".

In order to make a study of the Hardy modules over the bidisc, we identify
the space E with another copy of the Hardy space. Then H?(E) = H?*(D) ®E

will be identified with H2(D) ® H*(D) = H*(D?). We do this in the following

way.

Let u be the unitary map from E to H?(D) such that

Then U = I ® u is a unitary from H*(D) ® E to H*(D) ® H*(D) such that
U(26;) = 2w?, 4, § > 0.

Tt is not hard to see that M C H2(E) is invariant if and only if UM C H?(D?)
is invariant under multiplication by the coordinate function z. This identifica-
tion enables us to use the Lax-Halmos theorem to study certain properties of
sub-Hardy modules over the bidisk which we will do in Section 4.2. Through-

out this chapter, we will let d|z| denote the normalized Lebesgue measure on

the unit circle T and d|z|d|w| be the product measure on the torus 7%,




4.2 Hilbert-Schmidt operators

In this section we prove two technical lemmas and an important corollary.
Suppose 6 is left inner with values in B(E', E) and § is any fixed element
of E . We now define an operator N from #E' to the Hardy space H?(D) over

the unit disc as the following:

2) Y 0y8y) =< 8(2) 3 ;65,6 >, (4.2)
j=0

i=0

where 3772, aJJ is any element in ',

Lemma 4.2.1 N is Hilbert-Schmidt and
* —_ 9* 2 ' . .
tr(N*N) / 16 (2)8]| 5 d| 2] (4.3)

Proof. Since # is left inner, {953: : j > 0} is an orthonormal basis for £
To prove the lemma, it sufﬁces to show that 372, < N*N 85’ ,96; >gapris finite.

In fact ,

2 g ' o ! ! ’

> < N'NOB, 08 >0m = > < N6t N6G; i

= j=

7 - ) f
= z/|<e(z)a,.,5 > d2|
- Zf|<<5 6"(2)8 > [*d|z|
- [Z|<a 6*(2)8 > [2dl2]
= [ 1 (2)6l(%dlzl
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So in genéral

ir(N*N) < |,

and the equality holds when  is inner.

- Back to the H%(D?) case, this lemma has an important corollary. Let us
first introduce some operators. |
For any bounded function f we let Ty := P f be the Toeplitz operator on
H*(D?), where P is the projection from L*(T?) to H*(D?). For every non-
negative integer j and A € b, we let operators Nj. and N from H?*(D?) to

H?(D) be such that for any f(z,w) = X, fi(2)w* € H*(D?)
Nif(2) = fi(2), Naf(2) = f(z, A).

Then one verifies that N; is a contraction for each j and || Nx|| = (1—[A[>)71/2,

Furthermore,

S TNy =1 on H(D?), Ny = 3~ X*N;. (4.4)

k=0 k=0

In what follows we will be mainly interested in the restrictions of Vg, N, to

certain subspaces and will use the same notations to denote these restrictions.

Corollary 4.2.2 For any A(D?)-submodule M C H*(D?), N; and N, are
Hilbert-Schmidt operators restricting on M © zM for each j > 0 and A € D,

and

tT(N;Nj) <1,

1 . -
lpr—=I7 <#r(NiNy) < (- AP

1- A w
where p) is the projection from H2(D?) onto M & zM.
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Proof. Because M is invariant under the multiplication by 2z, U*M is in-
variant under 7}, where U is defined in the last paragraph of Section 4.1, and
hence |

U*M = 0H?(E')

for some Hilbert space E' and a left inner function §. Then

U'(M e z2M) = OH?*(E') © 20H*(E') = #(H*(F') o zH*(E")) = 6E'.
Let us first deal with the operator Ny.
In Lemma 4.2.1, if we choose § = 3°72, 3\763- € E, then for any f(z, w) =

T2, fi(z)w? inside M © 2M, U*f = 132, f;(2)9; is in OF', and

NU*f(z) = N(ifj(z)f%) z<§%fj(z)6j,6>
= S HEN = M)

So N, = NU*, hence is Hilbert-Schmidt by Lemma 4.2.1, and
tr(N;N,) = tr(U*N*NU) = tr(N*N).

The inequality
tr(NxN,) < (1~ A9~

comes from the remarks following the proof of Lemma 4.2.1. We now show

the inequality

1

[F2
If {go, g1, g2, -} is an orthonormal basis for M © zM. Then

o) g,

Nigi(2) = gi(z,A) = 1=
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and therefore

kaw

djwl [*dlz]

tr(NINY) = Z / | |
> 5:|f/9*“” fwldlz] |

= Zl <9k7(1"xw)_1 >
k=0
!I2

= IIm
For operators Nj, j =0, 1, 2, ..., we choose § to be 8;, 3=0,1, 2, ... cor-
respondingly in Lemma 4.2.1. Similar calculations will establish the assertion

and the inequalities.

O
If £2 denotes the collection of all the Hilbert-Schmidt operators acting on

some Hilbert space K, then for any a, b of L,
< a,b >:= trace(b*a)

defines an inner product which turns (£2, < -, >) into a Hilbert space. If | - |

is the norm induced from this inner product, then

|zay| < {izllllylal, (4.5)

for any @ € £? and bounded operators x and y|GK,pp79], where || - || is the

operator norm,

Lemma 4.2.3 Suppose A, B are two contractions such that [A,B]=AB-BA

is Hilbert-Schmidt and f(z) = 170 c;z' s any holomorphic function over the
unit disc such that Y32, jlc;| converges, then [f(A), B] is also Hilbert-Schmidt.
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Proof. We observe that for any positive interger n,

(A", B] . i
= A"B — BA"

— A"B — A™'BA+ A" 'BA— BA™

= A"'[A,B]+[4"", BJA

= A"VA,B]+ A"YA,BJA+- - + A4, BJA? 4[4, BJAY,

hence !
4™, B]| < nll, B] :
: i
. . - ‘Il:
by inequality (1-5). If we let fu(z) = ¥_pcj2’ then [f,(A), B] is in £* and 3{::
.
an(A)aB] - [f(A)’B” = l[ Z CjAJ:B” >i|
jen+l L
o i
< X lelli4, B I
j=n+1 '
< Y lellia,B) - ;
j=n+1 I ;
i
From the assumption on f,
- fi
lim > jlell4, Bl =0, '-‘15
j=n+l .
hence [f(A), B] is also in £?, i.e. Hilbert-Schmidt. D ',
i
Corollary 4.2.2 is crucial for the rest of the sections and Lemma 4.2.3 will 1
enable us to get around some technical difficulties. ' lt
Hf
|
i




4.3 Decomposition of Cross Commutators

In this section we will define the compression operators and decompose
their cross commutators. We begin by recalling some notations from Chapter
1.

For any h € Hz(D;“’), we let
) =AD"
denote the submodule generated bly h. Here we note that h is called inner if
|h(z,w)| =1 a.e on T

It is not hard to see that

[h] = hRH*(D?)
when h is inner. h is called outer in the sense of Helson(H) if
[h] = H*(D?).
Given any submodule M, we can decompose H?(D?) as
H*D?* = (H*(DY) 6o M)a M,
and let
p - H¥D? — M,
g :HYD)) — H¥D oM

be the projections. Forany f € H *(D?), we let Sy and Ry be the compfessions

of the operator Ty to H?{(D?) © M and M respectively, i.e.

Sy =qfq, Rf=pfp.




In sections 4.4 and 4.5 we will prove that when M = [h] with h a polyno-

mial, the cross commutators (S}, S.] and [R;,, R.| are both Hilbert-Schmidt.
To avoid the technical difficulties, we prove the assertion for the operatofs

[Sy,, S:] and (R

t., R,] first, where g (w) = 22 withr some A € D such that

h(z,\) # 0 for all z € T, and then apply Lemma 4.2.3.
First we need to have a better understanding of the two cross commutators

[S*, S,] and [R;, R.}. In view of the decomposition
HY(D*) = (H*(D)e M) & M,

we can decompose the Toeplitz operators on H?(D?) correspondingly.

If we regard o, as a multiplication operator on H*(D?), then

g¥ag 0
Ty, = )
poad | p@L\p
: q2q 0
T, = ,
p=q pzp
and
T{;ATz - Tsz,\
§Prq2q + qP\p2q — qzqP,q qPA\P2P — qZ2qP,P

PP\DEG — PZAPq PP\DZP — PZGEAP — PEZPP\D
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It is well known that 7, doubly commutes with T3, on H?(D?)(see Theorem

1.0.4). Because @, is a function of w only, it is then not hard to verify that

T, T, -T.T, =0,
so we have that
0P1924 + qPAP2q — 424Pxq = 0,
and
PP\PZp — P2qPAP — p2pTp = 0,
i.e.

_q'@qzq —q2qP\g = —4qpP,p2q,

PO\DIP — PEPD\D = PqP,p.

Thus we have a following

Proposition 4.3.1

SerSz = 525, = —aPp2q,

R, R, — R.R, = pzq@,p.




4.4 Essential commutat_ivity of 5;, and S,

In this section we will prove the essential commutativity of S, and S, on
H%(D?) & [h] when h is a polynomial. As we noted in the last section, we first
prove the assertion for S and S,.

We first observe that for any f € H2(D?) & [h] and any g € [A],

< pzf,zg >pe=< zf, 29 >g2=< f,g >p2= 0.

So pz actually maps H?(D?) © [h] into [h] © 2[h]. Therefore, S} S, — S5,

can be decomposed as
HYDY) o[ B [Wedn B H(D)elh. (49
This observation has an interesting corollary when A is inner.

Corollary 4.4.1 If h is inner, then StS, — S,S., is at most of rank I on

H*(D* o [hl.
Proof, First we note that when \ = 0, pa(w) = w. If h is inner, then
(k] = RH*(D?),

and {w"h{n = 0,1,2,...} is an orthonormal basis for [h]©z[h]. For any function

Flz,w) = T2 ¢;wih inside [h] © 2[h],

[e0]
qof = qweoh + ¢ cyw’ "Th) = coqwh.
=

53




This shows that ¢® is at most of rank one and hence S5, — 5,5, = —qpz
is at most of rank one. ' O

This corollary enables us to give an operator theoretical proof of an inter-

esting fact first noticed by W. Rudin in a slightly different context[Ru,pp123]. ’

Corollary 4.4.2 h(z,w) = z — w has no inner-outer(H) factorization.

Proof. - As before, we let S,, S, be the compressions of T}, T, to H*(D?)&[h]

and set

1
&= \/n+1(

One verifies that {e,|n = 0,1,2,...} is an orthonormal basis for H*(D?) & [z -

by ), n=0,1,2, ...

w]. Experts will know that H?(D?) & [z — w] is actually the Bergman space -

over the unit disk. One then easily checks that

S, = Su
Syen = ﬁle"“l’ n21,
Therefore,
(S, Sulen = %fﬁ-)- n=012.

If z — w had an inner-outer factorization, then [z — w] = gH?*(D?) for

some inner function g and

(S Sul = [S4, 5]

94




would be at most a rank one operator which conflicts with the above compu-
tation. ' 0l
Similar methods can be used to show that functions like z — pw"®, for

|| < 1 and n a nonnegative integer, have no inner-outer(H) factorization.

We now come to the main theorem of this section.

Theorem 4.4.3 If h € H®(D?) and there is a fized A\ € D and a positive
constant L such that

L < |h(z M) | (4.9)

for almost every z € T then S35, — 5,55, on H*(D?) ©[h] is Hilbert-Schmidt.

Proof. We first show that S, S, — 5.57, is Hilbert-Schmidt. By (4.7), it

will be sufficient to show that
- @@y B o2k — HX(D*) o[k

is Hilbert-Schmidt.

~ Let us recall that the operator N from [h] & z[h] to H*(D) is defined by
Nxg = g(:, A),
and it is Hilbert-Schmidt by Corollary 4.2.2. Suppose

h'f[): hfl: hf?)

is an orthonormal basis for [h] © 2{h].
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We first show that Az, w)fi(z, A) € [h] for every k. In fact,

[ 0Pdzt <172 [ Itz 2) fiz 2Pl

= L2 Na(hfi)|l” < o0,

ie. filz,A) € H*D) and hence h(z,w)fi(z,A) € [h] since h is bounded.

Furthermore,
(O T AT /1A F AP (4.10)
< MBI INGRIE (41
Next, we obsefye that |
qPrhfi = q%h(ﬂ = Fe( A} + @@ Ak (5 A)- (4.12)

Since fi(z,w) — fr(z, A) vanishes at w = ) for every z € D, it has ¢, (w) as a

L]

factor, and hence
@hfe = i N)=0. (413)

Combining (4.10), (4.11) and {4.12),

i @ felliz ey = Z ||Q‘@h(fk = fi(, N)) + @R Si (-, Ml oy

k=0

- Z ”q%hfk( A) ||H2(m)

kO

Z ([AC, ) fe s Moy

IA

1A

|IAlfe L™ Z (> M) £y Moy

= {hlfeL th(N,\N:\)-

This shows that qP\, and hence [Sy , 5,), is Hilbert-Schmidt.




Assuming @y (w) = @\ (W), one verifies that

The fact that

and an application of Lemma 4.2.3 with f = @, then imply that [S}, 5,] is
Hilbert-Schmidt. d

In Theorem 4.4.3, if h is continuous to the boundary of D x D, then the

'~ inequality (4.8) will hold once there is a A € D such that h(z, A) has no zero
on T. This idea leads to the assertion that S.S, — S,S;, is Hilbert-Schmidt
on H*(D?) © [h] for any pelynomial % in two complex variables. But we need

to recall some krnowlege from complex analysis before we can prove it.

Suppose G is a bounded open set in the complex plane C. We let A(G)
denote the collection of all the functions that are holomorphicr on (G and are
continuous to the boundary of G and Z(f) denote the zeros of f.

To make a study of zero sets of polynomials, we need a classical theorem

in several complex variables.
Theorem 4.4.4 Let
h(z,w) = 2" + ar(w)2" ™ + -+ Gn(w)

be a pseudopolynomial without multiple factors, where the a;(w)’s are all in

A(G). Further let

Dy, = {w € G|Ax{w) = 0},
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where Ap(w) is the discriminant of h. Then for any we € G — Dy there
exists an open neighborhood of U(wg) C G — Dy and holomorphic functions

fiy Fay ey fn on U with fi(w) # fi(w) fori # j and w € U, such that
Mz, w) = (z = f(w))(z — fa(w)) - (z = fa(w))
for all w € U and all complex number z.

This theorem is taken from [GF], but similar theorems can be found in other
standard books on several complex variables.
This theorem reveals some information on the zero sets of polynomials

which we state as

Corollary 4.4.5 For any polynomial p(z,w) not having z — A with M =1 as

a factor, the set
Y, = {w € Clp(z,w) =0 for some z € T}

has no interior.

Proof. We first assume that p is irreducible and write p(z, w) as
p(z,w) = ag(w)2" + a1 (W)2" " + -+ + an(2)

with a,(w) polynomials of one variable and ag (w) not identically zero. Then

on C\ Z(ap), we have
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Let A, be the discriminant(See [GF] for the definition.) of p. If p is irreducible,

A, is not identically zero, and so neither is the discriminant of

gz, w) =z +a0'(w) Ct .+ag(w)'

This implies that the pseudopolynomial ¢(z,w) has no multiple factor either.

We now.prove the cqrollary for the irreducible polynomial p. We do it by
showing that given any open disk B C C, there is a w € B which is not in Y.
Given any small open disc B and a point wp in B\ {Z(A,) U Z(aq)}, the
above theorem shows the existence of an open neighborhood U C B of wp and
holomorphic functions fi, fa, ..., fa on U with filw) # fi(w) for i # j and
w € U such that
p(z,w) = ag(w)(z = fr(w))(z = fo(w)} - (z = fu(w)), (4.14)
for all z € .C. Then fi(w) can not be a constant A of modulus 1 because p
doesn’t have factors of the form z — A from the assumption. So we can choose
a smaller open disc _Bl C U such that f1(B;) N 7T is empty. Carrying the same
argument out for f; on By, we have an open disc By C B, such that fg(B2) NT
is efnpty. Continuing this brocedure, we have disc_s By, Bs, ..., By such that
B;CBj_forj=2,3, .., n Then for any w € By, p(z, w) will have no zero

on 7' and hence w is not in ¥,

If p is an arbitary polynomial not having z — A with |A] = 1 as a factor,

we factorize p into a product of irreducible polynomials as

p(z,w) = p{'pg?

dm
-.pm .




If we let

Y; = {w € Clp;(2,w) =0 for some z € T},

then Y, C U, Y}, hence it has no interior. O
We feel it may be interesting to have a closer look at the set Y}, but that
is not the purpose of this paper. The result in Corollary 4.4.5 is good enough

for us to state

Theorem 4.4.6 For any polynomial h, S,5; — S;5, is Hilbert-Schmidt on
HY(D?) o). "

Proof. Suppose h is any polynomial. If & is of the form (z ~ )\.)g for some
polynomial g and some X of modulus 1, then [h] = [g] because z— A is outer(H).
- So withoﬁt.loss of generality, we assume that h doesn’t have this kind of
factor. Then from the above coroﬂary, h(z, ) has no zeros on T for aﬁy
4 € D —Y,. Theorem 4.4.3 and the observations immediately after it then

imply that [S}, S;] is Hilbert-Schmidt. | O

We recall that in Chapter 1 we defined an operator Sy by
Stz = qfz

for any function f € A(D?) and any z € H*(D?) © [h], where ¢ is the pro-
jection from H2(D?) onto H?(D?) © [h] and this turns H*(D?) © [h] into
a Hilbert A(D?) quotient module. The module is called essentially reduc-
tive if Sy is essentially normal for every f € A(D?). It is easy to see that

H2(D%) @ [h} is essentially reductive if and only if both [$}, 5, and [S;,Sw]




are compact. Currently we don’t know how to characterize those functions A
for which H2(D?)©/h] is essentially reductive, even though some partial results
are available. [Do] and [DP] are good references o_ri this topic. However, if
we consider H2(D?)©[h] as a module over the the subalgebra A(D) C A(D?),

Theorem 4.4.6 yields the following

Corollary 4.4.7 Assume h is a polynomial. If there is a g € A(D) and a
f e [A]n H®(D?), such that |

z = glw) + f(z,w),

then H2(D?)©[h)] is an essentially reductive module over A(D) with the action

defined by
frx:= f(Sz)x

for all f € A(D) and all z € H*(D?) & [h].

Proof. It suffices to show that S, is essentially normal. From the assumption

on f, Sy is equal to 0. Since z — g(w) = f(z,w), we have that

Suppose {p,} is a sequence of polynomials which converges to g in supremum .

norm, fheu from Lemma 4.2.3, [S}, pn{Sw)] is compact for each n and it is also
not hard to see that {5}, pn(Sw)] éonverges to [S2, 9(Sw)] inl the operator norm,
and hence [8?,S;] = [S}, 9(Sw)] is compact. _ O

This corollary shows in particular that H?(D?) © [h] is essentially reduc-

tive over A(D?) when h is linear.
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4.5 Essential commutativity of R}, and R,

in Section 4.4 we proved that the module actions of the two coodinaﬁe
 functions z, w on the quotient module H 2(D?} & [h] essentially doubly com-
mute when h is a polynomial. It is then natural to ask if there is a similar
phenomenon in the case of submodules. A result due to Curto, Muhly and
Yan[CMY] answered the question affirmatively in a special case and Curto
asked if it is true for any polynomially genérated submodule[Cu}. Since C[z, )
is Noetherian, one only needs to look at the submodules generated by a finite
number of polynomials. In this section we will answer Curto’s question par-

tially and a complete answer will be given in Section 4.7.

One might think that the submodule case should be easier to deal with
than the quotient module case because z, w act as isometries on submodules.
But it turns out that the submodule case is more subtle and needs a finer

analysis.
Let us now get down to the details.

Suppose M is a submodule and R,, and R, are the module actions by co-
ordinate functions z and w. Itj, is obvious R, and R, are commuting isometries.
In [CMY], Curto, Muhly and Yan made a study of the essential commutativ-
ity of operators R},, R, in the case that M is generated by a finite number of
homogeneous polynomials. They were actually able to show that [R}, R,] is
Hilbert-Schmidt. In this section we will show that this is also true when M is

generated by an arbitrary polynomial. The same result for the case that M is

generated by a finite number of polynomials is a corollary of this result and




will be treated in Section 4.6.

We suppose h is a polynomial that doesn’t have a factor z — u with
|u] = 1. Then from Corollary 4.4.5 there is a A € D such that h(z,}) is
bounded away from 0 on 7. As in Section 4.4, we will see that this is crucial

in the development of the proofs.
For a bounded analytic function f(z, w) over the unit bidisk, we recall that

Ry is the restriction of the Toeplitz operator Ty onto th] and by Proposition

43.1,
R, R, — R, R, = pzqosp.

We let
s HA(D?) — oa[h], @ : HY(D?) — (K] © glH)

be the projections, then p = py + ¢1. It is not hard to see that
(Ry, R: — R.Ry, )p1 = p2qnpr = 0.
Moreover, by the remarks preceding Proposition 4.3.1,
T.Te =TT, =T, T, = TﬁTz,

and hence,

R, R.— R.R,, p2qPx(p1 + q1)

= PP

= pz(P - p)Trq

= pLTHma0 — p2posq

= plmTq — p2pTrg1

= PPNZJL — PIPPAqL,




where P is the projection from L*(T?) to H*(D?). For any f € [h] © py(R]
and g € [h],

<pﬁf1g >=< f:(PAg >= 0:

i.e.

PPrg1 =0, (4.15)

So we have that

R, R, ~ R.R, = pﬁqu.

Furthermore, (4.14) also implies that

POz = PEa(pL+ qi)zq

= PPamqL T POxq12q1 = POAP1Zq).
Since pP> acts on p,[h] as an isometry, the above observations then yield

Proposition 4.5.1 [R%,, R,] is Hilbert-Schmidt on [h] if and only if p12q) is

@)

Hilbert-Schmidt and
(RS, B[Ry, Bal) = tr{(mn20)* (Br20:))
We further observe that, for any f € [h] © @.[h] and g € p,[h],
<pzf,zg >=< f, g >=0.

So the range of operator pizq; is a subspace of @,[h] © zipa{h]. If we let p, be

the projection from ¢y[h] onto wa[h} © z@alhj then

P12q1 = PLq1. (4.16)
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We will prove that p, zg; is Hilbert-Schmidt after some preparation.

Suppose
h=Y_ aj{z)w’
=0
is a polynomial and that
|h.(Z, A)' Z €,

for some fixed positive ¢ and all 2 € T. Assume H to be the L?-closure of

span{h(z, w)z?|j > 0}, then H C [h] and we have the following
Lemma 4.5.2 H = {h(z,w)f(2) : f € H*(D)} = hH*(D).

Proof. It is not hard to check that AH?*(D) C H.

For the other direction, we assume hf is any function in H and need to
show that f € H?(D). In fact, if p,(2), n > 1 is a sequence of polynomials
such that h(z, w)pn(2), n > 1, converges to h(z,w)f(z,w}) in L*(T?), then
h(z, Npn(2), n > 1, converges to h{z, A)f(z,A) in L*(T) by the boundedness
of Ny. Our assumption on h then implies that p,(z), n > 1, converges to.
f(z,A) in L*(T), and in particular, f(2,)) € -H2(D). This in turn impliés
that h(z, w)pa(z), n > 1, converges to h(z,w)f(z,}) in L*(T?) since h is a

bounded function. Hence by the uniqueness of the limit,
h’(z: "U)f(z1 'UJ) = h’(‘za 'UJ)f(Z, /\)a

and therefore

flz,w) = f(z,A).




O
It is interesting to see from this lemma and Corollary 4.4.5 that AH*(D)
is actually closed in H 2(D?) for any polynomial h not having a factor z — p

with |p| = 1.

Lemma 4.5.3- The operator V : [h] — H defined by
V(i) = hzw)f (2 \)

is bounded.

Proof. First of all h(z,\)f(z, ) = Ny(hf) is in H*(D) and hence so is
f(z, A) since |h(z,A)] = € on T. So V is indeed a map from [h] to H.

Next we choose a number M sufficiently large such that
[ 10 w)Pdluw) < Me* < Mz, 2)

for all z € T. Then for any h(z,w)f(z, w) € [h},

VAR = [, 1z w)f(z, 3)Pdzldul

' /T (/T |h(zaw)|2-d|w|) |£(z, A)|2d|2]
M [ 18z N (2 V) Pl
M(1 = PRSP

IA

IA

This lemma enables us to reduce the problem further.

For any h(z,w)f(z,w) € {h] © palh],

pizhf =p1zV(hf) +prz(hf — VAf).
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But

2z, w) f(z,w) — 2V (Rf)(z, w) = 2h(z, w)(f(z,w) - f(z,N)),
and since f(z, w)— f(2, A) vanishes at w = A for every z, it has ¢, as a factor;
hence z(hf — V(hf)) € z¢,[h]. Therefore by the definition of p,,
przhf = p12V(hf) + przorshg = p2V(h]). (4.17)

To prove that p, zq; is Hilbert-Schmidt, it then suffices to show that
p.iz restricted on H is Hilbert-Schmidt. Before proving it, we make another
observation and state a lemma.

Since h(z,w) is a polynomial and

[ Iz, w)Pdlw] = 3" lax(2)P,

T k=0

the Riesz-Fejér theorem implies that there is a polynomial @Q(z) such that
QAR = [ Ih(z, w)fdfw]

on T. If @ vanishes at some p € T, then ax(1) = 0 for each k, and hence A
has a factor (2 — ). But this contradicts our assumption on 4. So we can find

a positive constant, say 7, such that

Q)| Z 0, (4.18)

forallzeT.

Sﬁppose {h(z,w) fo(2)|n > 0} is an orthonormal basis for #, then -

b = [, bz w) @R W)@ dw)
= [ ([ w)|2d|w|) 1) F (Nl
= [ Q@4HRHEEdlz,
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So {Q(2)fx(z)|k = 0} is orthonormal in H?(D), but of course it may not be

complete.

Lemma 4.5.4 The linear operator J : span{Qfilk > 0} — H*(D) defined

by
J(ka)sz: kZOa '

18 bounded.

Proof. By Inequality (4.17), for any function @Qf € span{Qfi k > 0},

[ 1@z <07 [ 10 () dlel

Now we are in the position to prove
Proposition 4.5.5 p, z restricted to H is Hilbert-Schmidt.

Proof. Assume {gi]k > 0} C [h] © 2[h] is an orthonormal basis and, as
above, {h(z,w)fn(2)|n > 0} is an orthonormal basis for H. Since , is inner,
{¢a(w)gr(z, w)|k > 0} is an orthonormal basis for w,[h] © zpa[h]. Therefore,

by the first identity of (4.4) and the expression of h,

o0
pizhfn = Y < zhfn, 020k > ©rGk

=
il
=3

m o0
< > 2o’ fryon Y Tus Nige > Page-
i=0 J=0

I
ML

=
il
=}




Note that a;’s and f, are functions of z only, so 1%, za;w' fy 18 orthogonal to

Liemtl wp, N, g because the latter has the factor w™*!. It then follows that

™ o0
przhf, = Z < EmiwtanPAZijNjgk > ©xGk
k=0 i=0 i=0
= 3 <D zaiw'fa, ) s Nigy > orgx
k=0 =0 JzO
[s.+] m
= 3 % o (2 Naateralel) (| wiertommiael )
k=01,j=0
o0
= Z Z Cij < fna rai V3 9k >H2(D)) Padk:
k=0 \i,j=0
where

Cij :/Tw‘cp,\(w)wi‘d|w|.

If ¢ := maz{|ci;| : 0 < 4,7 < m}, then the Cauchy inequality yields

2
lpaehfall = 353 e < fun TouNigi >m2(o)
k=0 [i,j=0

< (me)* Z | < s Ta, Nigk >m2y |°
k= 013*0

= S S| <T@ T Nigr >m2(p) |*
_..Oz,J—'O

= (mc) Z Z |< Qfnr J* T.:a. 39k > H3(D) | ]
k=01,7=0

where J is the operator defined in Lemma 4.5.4. Therefore, by the fact that
{Qfn : n > 0} is orthogonal in H*(D) and the fact that N; is Hilbert-Schmidt

on [h] © z[h] for each j,
o0 0o 00 . Mm
2 lpszhfal® < (M) 3 20 | < Qs I T Nigh >y
n=0_ ’

o0 m o0
= ¢)? Z Z 2o < Qfn I'Ty Nigr > p2(p) ?
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oo m

< (me)? Y. S NI T, Nigkll e oy
k=01i,5=0
= (me)* 3 |57 Z”N;gk”m{m
- =
= Z I J* T, ||Per (N} N)
1,j=0

Theorem 4.5.6 [R:, R,] is Hilbert-Schmidt on [k] for any polynomial k.

Proof. If h = (z— A)hy for some polynomial hrl and A € T, then [A] = [Ay].

If Ay is a nonzero constant then [hy] = H2(D?) and hence

R,=T, R,=T,

Therefore [RY,, R,] = 0. So without loss of generality, we may assume h doesn’t

| have a factor z — A for some A € T. Propositions 4.5.1, 4.5.5 and Equality

(4.15) together imply that [RY, , R;] is Hilbert-Schmidt. An argument similar O

to that in the end of the proof of Theorem 4.4.3 establishes our assertion. [

4.6 Operator [R:, R,|[R), R,] on [h]

In this section we are going use the result of Section 4.5 to prove the

following ‘ -;;ﬂw

Theorem 4.6.1 The operator [R:, R.I[R%, Ru] is Hilbert-Schmidt on [h)

when h s a polynomial. i




Proof. For the same reason as in the proof of Theorem 4.5.6, we assume
that A doesn’t have a factor z — p for u € T. Then by Corollary 4.4.5, h(z, A)
is bounded away from zero on T' for some A € D. To make our computations
clearer, we assume that h(z,0) is bounded away from 0 on T'. Then one sees

that for any hf € [h], A(f — F(-, 0)) is a function in w(h]. Therefore,

(B, Rulhf = hf - RoRUAS
| = Bf = RoRLA(S = £, O)+ £(, 0))
= hf = h(f — f( 0)) = RuRLAS(, 0)
= Rf(, 0) = RuRLASC, 0),
hence
[R., Rulhf = [Ry, Rulh(-, )f(-, 0). (4.19)
Similarly, |
(R:, RJRS(, 0) = hf(, 0) = R.RIAS(, 0)
= hf(, 0) = RRLK(I(, 0) = (0, 0)+ £(0, 0))
= Rf(, 0) = h(f(-, 0) = (0, 0)) — R.R;hf(0, 0)
— hF(0, 0)— £(0, O)R.EZh, |
hence
[R;, RJAf(, 0) = f(0,0)[R;, Rilh. (4.20)
By the essential commutativity of R and R,(Theorem 4.5.6), and Equality

(4.18), Equality (4.19),

(R, R.](Ry, Rulhf




= [R::a RZ][R::! R’w]h(s ')f('a 0)
= [R;n Rw][R;i Rz]h’(s )f(v 0)+Kh'f('1 O)

= 70, OB, RIRS, Rolh+Khi(, 0),

where K a Hilbert-Schmidt operator from Theorem 4.5.6. If we let A, B be

operators from [h] to itself such that for any hf € [A]

Akf = f(0, 00h;  Bhf=h(, )f(, 0),
then the above computation shows that |
[R;: R.]lRys Bu] = [R:;,-, R,)[R;, RJA+KB.
We observe.that A is a rank one operator with kernel 2[h] + w[h] and
dim((h) & GIF ) =1

by Corollary 2.1.4 and Corollary 2.1.7, hence A is a bounded. Thﬁs to prove
that [R}, R,|[R, Ru]is Hilbert-Schmidt, it suffices to check that B is bounded,

but this is clear from our assumption on h and Lemma 4.5.3.

If h{z, A) is bounded away from zero on T" for some non-zero A € D, then
similar computations will show that [R}, R.][R},, R;,A] is Hilbert-Schmidt.
Then applying Lemma 4.2.3 twice will establish the assertion. _ ]

One sees that the proof of Theorem 4.6.1 depends heavily on the fact that

R,, R, are isometries. A corresponding study for the product [S}, S;][S5, Sw]

is thus expected to be harder and we plan to return to that at a later time.
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4.7 An Improvement

In this section we will generalize the major theorems obtained so far to
the case when [h] is replaced by submodules genéra.ted by a finite number of
polynomials. Here we need a fact from commutative algebra which we state
in a form that fits into our work. Readers may find more information in [Ke].

We thank Professor C. Sah for showing us his proof of the following statement.

Lemma 4.7.1 Suppose p1, P2, ..., Px are polynomials in Clz, w} such that the

greatest common divisor GCD(py, pa, .. pr) = 1, then the quotient

C[Z,'Iﬂ]/(pl, P2y ooy pk)

is finite dimensional.

Proof. First of all, R is a Unique Factorization Domain{UFD) of Krull di-

mension 2.

We denote the ideal (py, pe, ..., Px) by I and suppose
I=n}1,

is the irredundant primary representation of I. If we let J, = /I, be the
radical of I,, s =1, 2, ..., n, then each J, is prime and it is either maximal or
minimal since the Krull dimension of R is 2. In an UFD, every minimal prime
ideal is principal [ZS, p 238]. Since GCD(py, ps, ..., pe) = 1, the associated

prime ideals Jy, Jo, ..., J, must all be maximal and hence each J; must h&ve

the form (z — z,, w—w,) with (z;, w;) € C?, s =1, 2, ..., n, mutually different.
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Therefore, we can choose an integer, say m, sufficiently large such that

J™ = (2 - 2w — wy)™ C I,

.8

for each s. Then,

and therefore,

dim(R/T) < dim(R/(M JT)).
By the Nullstellensatz, one easily checks that
Jr+J =R, i 7.
The Chinese Remainder Theorem then implies that
R/ (MeerI3) = H R/,

and hence

dim(R/I) < H m(R/T™) =(m(ﬂzﬂ)”

O
It would be interesting to generalize this lemma to polynomial rings of

higher Krull dimensions.

If hy, hg, ..., hy are polynomials and we set
G= GCD(h,l, hz, eny h,k-) and fj = hj/G, (421)

=1, 2,..., k, then

GCD(fl: fﬁ? ooy fk) =
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If {e;, €2, ..., €m} is a basis for
C[Z,’U)]/(fl, f?a crey fk)-;

then for any polynomial g(z, w),

g(z,w) = Em: cieiz, w) + r{z,w)

i=1

with » € (f1, fa» - fx) and some constants ¢;, =1, 2, ..., m. Therefore,
G(z,w)g zc,, z,w)ei(z, w) + Gz, w)r(z, w). (4.22)

It is easy to see that G(z,w)r(z,w) € (h1, ha, ..., h) and hence (G)/(h1, ha, ..., h) g

is also finite dimensional. ‘ i

Corollary 4.7.2 If M is o submodule of H*(D?) generated by a finite number
of polynomials, then | |
(a) [S:, Sw) is Hilbert-Schmidt on H2(D?) & M;
(b) [R:, Ry is Hilbert-Schmidt on M; ;
(c) [R:, R)[R., R is Hilbert-Schmidt on M. ' ' :
!

Proof. Suppose hi, ha, ..., hx are polynomials and M = {h;, ha, ..., Ayl
is the closed submodule generated by hi, h.g; vey hg. We assume G, f;, 1=
1, 2,.., k,and e;, 7 =1, 2,..,, m to be as in (4.20) and (421) Consider the i
space

K :=span{e;: j =1, ,2,.., m} + M. |

It is closed because span{e; 1 j =1, ,2,.., m} is finite dimensional. For any

polynomial g, Identity (4.21) implies that Gg € K, and hence 3] ¢ K. The ;




inclusion

[GleMcKeM

then forces [G] © M to be finite dimensional. We let

pe : HD?) — [G], ¢g: H*(D*) — H*(D*) 6 (G},
pu t HA(DY — M, qu: H}(D?) — H*(D*) e M,

pL: H}(D*) — [Gle M,
be the projections. Then p; is of finite rank and
PG = Ppum + DL, | qc = M — Pi-
One verifies that

Peibe = DPmAPM +DPMEPL + PLzpym +PLEpL,

gg2qc = qQmMZayM — qMZPL — PLZqM + PLZPL,

and consequently, pgzpc — pPmzpm and gezqe — qarzqy are of finite rank.
Similarly, gewge — IMWaM and gowgge — quqM are also of finite rank. The

assertion in this corollary then follows easily from Theorem 4.4.6, 4.5.6 and

4.6.1. : 0

We conclude this chapter by a conjecture suggested by Corollary 4.7.2.

Conjecture. The assertions in Corollary 4.7.2 still hold if M is replaced

by any finitely generated submodule.

76




Concluding remarks

1. As we mentioned in the beginning of Section 2,1, the collection of functioﬁs
in H%(D?) which vanish at the origin (0, 0) is a closed proper subset of H*(D?)
and it well known that this subspace has the form zH*(D?) + wH2(D?). In
particular, zH*(D?) + wH?*(D?) is a closed subspace of H*(D?). If M is an
arbitrary submodule of finite rank, then Theorem 2.1.7 says that dim(M &
(zM +-wM)) is finite and we wonder if 2M +wM is still closed. If this is true

then many studies on submodules will be simplified.

2. In Section 2.3, we considered the solution space of the equation p:fi +
pa f2 = 0. But the techniques there don’t generalize to more general equations
like

mfitpfot o Fofr=0 k>2.

The case that py, p have common zeros on the boundary seems much harder.

We feel the singular measures may play some roles in this case.

3. Theorem 3.2.2 says that if a function A has an inner-outer(H) factorization,
then its zero set can't be arbitrary. Corollary 4.4.5 seems to give us a useful

picture of those zeros of polynomials that lie on the boundary. It therefore
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fnay be possible to characterize those polynomials which have inner-outer(H)

factorizations.

4. By the classical Berger-Shaw theorem, the traces of the selfcommutators
of hyponormal operators are related to the Lebesgué measure of the spectra.
Now we see from Theorem 4.4.6 that if & is a pélynomial, then the cross
commutator 3,55 — 5% S, is Hilbert-Schmidt on H2(D?)&{h]. And by Theorem
3.1.4 the joinﬁ épectrum o(S;, Sy) is the closure of Z(h) in D2. One is then led
natu.rally to think about the possible relations between the Hilbert-Schmidt
norm of S, S, — 559, and the mass of Z({h). Some examples were calcuiated,

but the relationship is still very far from clear.

5. The proof of Propbsition 4.5.5 actually provides an estimate of the Hilbert-

Schmidt norm of R, R}, — Ry R, in terms of the coefficients of the polynomial |

h. But this estimate doesn’t seem to give any interesting implications since

R.R* — R: R, can be zero on very nontrivial submodules. Then what is the

Hilbert-Schmidt norm of R, R}, — Ry, R, related to? There isn't even a guess.
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