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Abstract of the Dissertation
Upper Bounds on the Length of the Shortest Closed Geodesic
on Simply Connected Manifolds

by

Regina Rotman

Doctor of Philosophy
in 4
Mathematics

State University of New York
at Stony Brook

1998

The gubject of the thesis is upper bounds on the length of the shortest
closed geodesic on simply connected manifolds. We will give two explicit
estimates which hold for manifolds with nontrivial second homology group.
The first estimate will depend on the diameter and on the (possibly negative)
lower bound on the sectional curvature; the second estimate will depend on
the volume and the upper bound on the sectional curvature and holds under
some additional assumptions about the homotopy type of the manifold.

The technique that we develop in order to obtain the first result will

also enable us to estimate homotopy distance between any two closed curves
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on compact simply connected manifolds with sectional curvature bounded
below and diameter bounded above. More precisely, let ¢ be a constant such
that any curve of length L can be contracted to a point through the curves
of length less than or equal to ¢L. There exists a homotopy connecting any
two closed curves such that the length of the trajectory of the points during
this homotopy has an explicit upper bound in terms of the lower bound of

the curvature, the upper bound of the diameter and c.
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Chapter 1

History of the Problem and

Techniques

1.1 Introduction

‘The study of closed geodesics was originated by Darboux, Hadamard,
Poincare and Birkhofl at the end of 19th century. It was continued among
others, by Klingenberg, Lyusternik and Fet, Gromoll and Meyer, Cheeger,
Sullivan and Vigue-Poirrier. Among the many different subjects they studied
we will distinguish three major questions:

1. Does there exist at least one closed geodesic on any compact Rie-
mannian manifold?

2. Are there infinitely many closed geodesics on any compact Rieman-

nian manifold?




3. How is the length of the shortest closed geodesic connected with the
other parameters of a Riemannian manifold, such as volume, diameter and
curvature? (There we can distinguish two subquestions: a) finding lower
bounds on the length of the shortest closed geodesic and b) finding upper
bounds on the length of the shortest closed geodesic, preferably, in terms of
the volume or the diameter.)

The first question was positively answered by Lyusternik and F@t in
1952, We will discuss their result in section 1.4. The second questi/oﬂ is
still open, but significant contribution to its solution was made by Gromoll
and Meyer, who had shown that there always exist infinitely many distinct
periodic geodesics on compact manifold under some topological condition,
namely unboundedness of the sequence of Betti numbers of the free loop
space on a manifold, and Sullivan and Vigue-Poirrier, who had shown that
this condition is satisfied if the cohomology ring of the manifold or any of
its covers is not generated by one element (see {10, 20]).

In 1970 J. Cheeger found a lower bound on the length of the short-
est closed geodesic on the Riemannian manifold with sectional curvature
bounded from below, diameter bounded from above, and volume bounded
below by a positive constant (see [5]).

'This result is particularly important due to the following Klingenberg’s

Lemma that establishes the connection between the injectivity radius of a

manifold and the length of the shortest closed geodesic.

Lemma 1.1.1. (Klingenberg) Let M be a Riemannian manifold, and for
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any p € M let ¢ € M be a point that reclizes the distance from p to its cut
locus Cp(p). Then one of the following statements has to be satisfied:

(1) q is conjugate to p along some minimizing geodesic v connecting p
and q.

(2) there ezist ezuctly two minimizing geodesics v and o from p to g

and ¥ (1) = —o'(l), where | = d(p, q).

(see [9]). /

In particular, if p is a point such that d(p, Cps(p)) is the smallest a’nd P
and g are not conjugate along a minimizing geodesic then reversing roles of
p and ¢ we see that p and ¢ lic on a smooth closed geodesic. Further recall
that if M is a compact Riemannian manifold with the sectional curvature
bounded from above by H then the distance between any pair of conjugate
points is > w/v/H. Combining these facts together we see that either there
exists a closed geodesic v in M, such that inj(M) = Li(v), where inj(M)
denotes the injectivity radius of a manifold M or inj(M) > 77 Now
Cheeger’s estimate yields a lower bound on the injectivity radius of any
manifold with curvature, diameter and volume bounded from above, and
consequently helps to establish the finitness of the number of diffeomorphism
types of n-dimensional manifolds with bounded K|, diameter and volume
hounded from below.

Qur interests lie in finding upper bounds on the length of the short-

est closed geodesic. The only simply connected manifold for which explicit

bounds of such nature were known prior to our work is S? (Croke, 1989).
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Croke has shown that I[(M) < 31v/A and (M) < 9d, where A is the area
and d is the diameter of a manifold M diffeomorphic to the 2-dimensional
sphere. However, we are not aware of any explicit upper bounds for [ (M)
valid for any metric on a simply connected manifold of dimension > 3.

For nonsimply connected compact manifolds the bound (M} < 2d is
almost obvious and well-known. For the class of essential manifolds Gromov
(see [12]) found an upper bound (M) < c(n)vol(M)'/". (Recall that a closed
manifold M is essential if there exists a map f: M — K(I1,1), suc}f’that
J«([M]) # 0, where K (I1,1) is aspherical space with the fundamental goup IT.
In particular, 1-essential manifolds are not simply connected.) That result is
a generalization of previous work by Loewner, Pu and Berger, among others.

In the thesis we have found some upper bounds for {{M) in terms of
either a lower bound of sectional curvature and upper bound of the diam-
eter of M, where M is any compact simply connected manifold such that
Hy(M) + {0} or in terms of the upper bound of the sectional curvature and
a lower bound of the volume of M, if M is a simply connected manifold sat-
isfying some topological constraints, described later. The exact statement of
our results will be given in Chapter 2.

The techniques we used in our work include Morse theory for the space
of all closed curves on a manifold, some ideas of Gromov from [12] based on
the obstruction theory, and a modification of the techniques developed by

Gromov in order to prove his theorem on the curvature, diameter and Betti

numbers, (see [11]).




In this chapter we will give a more detailed description of previous
results in this area, in particular, the ones that are going to be relevant for
our work, and describe some of the techniques that were used in the thegis.

In section 1.2 we will define the Birkhoff Curve Shortening Process,
that allows one fo obtain closed geodesics, and that is repeatedly used in
our work. In section 1.3 we will describe the previous results for nonsimply
connected manifolds, in particular, the existence of a closed geodesic on com-
pact nonsimply connected manifold, and Gromov’s estimate for 1-essgiltial
manifolds. In section 1.4 we will talk about the results of Croke, and, finally,

in section 1.5 we will discuss Gromov’s paper [11], which will be important

for our work despite it seeming irrelevance to the study of closed geodesics.

1.2 Birkhoff Curve Shortening Process

At this point we would like to discuss the following technique that is
often helpful in “finding” a closed geodesic. This technique was introduced

by Birkhoff; we will closely follow the description of it in [8].

Birkhoff Curve Shortening Process Let A® be the space of all piece-
wise differentiable closed curves parametrized proportionally to its arclength
of energy bounded from above by E, where the energy of a piecewise differ-
entiable curve () defined on the interval [a, b] is equal to f: |4 2dt. Note
that for curves that are parametrized by a parameter proportional to arc

length on the interval [0, 1] the energy of a curve is equalt to the square
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of its length. Given a curve o € AP, B.C.S.P. (Birkhoff Curve Shorten-
ing Process) will provide us with a way of assigning to it another curve of
smaller energy (length). We will proceed as follows: choose IV large enough
so that +/E/N is smaller then the injectivity radius of a manifold. Let oy
be the unique piccewise geodesic closed curve such that it agrees with o at
the points i/N for all integers 0 < 7 < N, and such that a1|[¢/N,{i+1)/N} is a
minimizing geodesic parametrized proportionally to its arclength.

y
We note that @ and «; can be joined with the following homotopy,

s€[0,1],i={0,1...,N}

(i +t)l 7 (t) ifo<t< s
g = =
N ol t1) if2<t<

H

2=

where v/ is the minimizing geodesic connecting «(i/N) and a(i/N -+ 2N)
parametrized proportionally to arclength. Since length () is less than ra-
dius of injectivity for all 4, s, it is unique.

Next we define o, to be the unique piecewise geodesic closed curve with
@y agreeing with o4 at the points (2¢ 4+ 1)/(2N), which is also parametrized
proportional to its arclength on each interval [(2i + 1)/(2N), (20 -+ 3)/(2N)].
We then note that «; and oy can also be joined by the similar homotopy.

In other words, our procedure consists of breaking our original curve «
into NV segments so that the length of each segment is less than the injectivity
radius of a manifold, and then substituting for each segment a minimizing
geodesic. We, thus, obtain a piecewise geodesic curve of N segments. Then

we repeat the procedure, by dividing each segment in half and connecting
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“the middles” of those segments with minimal geodesics.

Now we can similarly define a sequence oy,? = 2,3,..., where a;. is
obtained from «; by dividing each geodesic segment of «; in half and con-
necting "the middles” of those segments with minimal geodesics. Birkhoff
had shown that this sequence converges to a {possibly trivial) closed geodesic l

in the same free homotopy class as the original closed curve .

7

1.3 Upper bounds on the length of a shortest
closed geodesic on nonsimply connected
manifolds

It is not surprising that the results on the closed geodesics, beginning
with the existence of the closed geodesic, are much more readily obtainable
in the case of nonsimply connected compact manifolds. The existence of
a closed geodesic on nonsimply connected manifold was proven by Cartan.
Only a little additional work is required to show that the length of the
shortest closed geodesic is bounded from above by two times the diameter
of a manifold. The upper bound in terms of the volume of a manifold, as
we said before, was obtained by Gromov for nonsimply connected compact
manifold, under certain topological restrictions.

Even though, the case of simply connected manifolds is rather differ-

ent, both of those results can be generalized for simply connected manifolds




assuming additional restriction on the curvature.
By the free homotopy classes of closed curves on M we will mean ho-

motopy classes of continuous maps S = [0,1]/{0,1} —» M.

Theorem 1.3.1. (Cartan) Let M be compact nonsimply connected mani-
fold. There exists a closed geodesic in the every nonconstant free homotopy

class T', of closed curves on M, (cf. [4], Theorem 4.12).

Proof. Let m be the infimam of the lengths of piecewise differentiable curves
that belong to I'. Consider a sequence {v;},v € T" of piecewise differentiable
curves, such that length(y;) approaches m as ¢ approaches infinity. Without
loss of generality we can assume that they are broken geodesics defined on
the interval [0, 1] parametrized proportional to their arclengths. By Ascoli-
Arzela Theorem, this sequence converges uniformly to a continuos closed
curve v : [0,1] — M.

Now we construct a new curve v and show that it is a closed geodesic.
The curve v is defined as follows: we use the partion 0 = 45 < ¢ < ... <

t; = 1 to subdivide the unit interval [0, 1], so that ~,

it_1,t;] 18 contained in
a totally normal neighborhood. Then we define v to be a unique piecewise
geodesic curve that agrees with v at the points vo(¢;), where i is the integer
between 0 and %. In order to show that -y is a geodesic it is sufficient to show
that the length of v is exactly m, (otherwise we could shorten it and obtain
a contradiction). To show that the length of v i3 m we assume that it is
strictly greater then m then let € = % There exists integer j such that

I(v;) —m < e and d(v;(t), 10(t)) < e for all ¢ € [0,1]. Denote % = ;1,45
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and | by 7 1 (0(0)+2€) = 1(7;)+2¢k < 1(y) = 1 1(¥"). Therefore,
there exists 4 such that 1 < ¢ < & and I{v}) + 2¢ < [(¥*), which contradicts

the fact that 4 is minimizing. 0
The following simple fact is well-known.

Proposition 1.3.2. The length of the shortest closed geodesic on a nonsim-
ply connected compact Riemannion manifold is always less then or equal to
/
twice the diameter of a manifold. ,
Proof. Consider homotopically nontrivial closed curve «(¢) parametrized pro-
portionally to its arclength. Use the partition 0 = £y < ¢ < ... < = 1 fo

subdivide the interval [0, 1] so that the length(vy|y, .,,,1) < 8, for any positive

Lit1]
5. Now let p € M be any point p ¢ v(t). Consider closed curves 7; formed
by @i U ¥ip, 0600 U —0i41, where ofs are minimizing geodesics that connect p
with v(¢;). At least one of the above curves is homotopically nontrivial.
Now let us use the above procedure repeatedly for § = %, where 1 18 a
positive integer, thus obtaining a sequence {T% } of homotopically nontrivial
curves, such that the length of a curve T% is less than or equal to 2d + %,
where d is a diameter of a manifold. Therefore, the length {(T 1 ) converges
to 2d. We parametrize these curves proportionally to their arclength, By
Ascoli-Arzela Theorem there exists a subsequence of the sequence which

converges to Tp, which will also be homotopically nontrivial. Now let us

construct a new curve T' as follows: use a partition 0 =ty <& < ... <t; =1

to subdivide the unit interval [0, 1] so that Ty|p,,

141} 18 contained in a totally




normal neighborhood, and then let 7" be the closed piecewise geodesic curve
that agrees with Ty at the points Ty(t;) and minimizes distances between
To(t;) and Tp(tir1). T is homotopic to Ty, thus it is also homotopically
nontrivial. Moreover, the length of 1" is less than or equal to 2d. We can
now apply B.C.S.P. and since 7' is homotopically nontrivial we must obtain

a closed geodesic of length < 2d. [

Another natural question is whether it is possible to find an ypper
bound for the length of the shortest closed geodesic in terms of the volume
of a manifold. The major contribution to this problem was done by Gromov

in [12], who had established this result for the following class of manifolds.

Definition 1.3.3. (1-essential manifold) 1-essential manifold is a compact
manifold that admits a map f : M — K(II,1), such that f,[M] # 0,
where [M] is the fundamental homology class of M, f, is the induced homo-
morphism, and K(I1,1) denotes the aspherical space with the fundamental
group IT, i.e. the space K that has the following properties: 7 (K) = I, and
To{K) =0, for n # 1.

In [12] Gromov had proven the following theorem:

Theorem 1.3.4. Let M be a compact, 1-essential Riemannian manifold of
dimension n. Then U(M) < consty(vol)w, where 1{M) is a length of a
shortest closed geodesic on M, vol(M) is a volume of M, and const, <

6(n+ Dn"/(n+ 1)!

The theorem was proved by establishing the following two inequalities:

10




1. Fill Rad M < const’,(volM)=,

2. Ii{M) < 6Fill Rad M, where const!, < (n+ 1)n"/(n+ 1)!, and Fill

Rad M is a filling radius of a manifold, defined below.

Definition 1.3.5. (Filling Radius of n-dimensional Manifold M Topologi-
cally Imbedded into X)) Filling radius, denoted by Fill Rad (M C X), where
X is an arbitrary metric space, is the infimum of € > 0, such that M bounds
in the e-neighborhood N.(M), i.e. homomorphism H, (M} — .HM(NE?M ))

induced by the inclusion map vanishes, where n is the dimension of a mani-

fold M.

Definition 1.3.6. (Filling Radius of an abstract manifold M) Filling radius,
denoted Fill Rad M, of an abstract manifold M is Fill Rad (M C X), where
X = L™(M), and the embedding of M into X is a function that to each

point p of M assigns a distance function p — f, = d(p, g).

We will present a proof of the second inequality (Lemma 1.2.B in [12]).

Similar ideas are used in a proof of one of our results.

Lemma 1.3.7. Let M be a compact, I-essentiol manyfold of dimension n,

then (M) < 6F4ll Rad M.

Proof. M is l-essential, thus there exists f : M —— K(II,1), such that
f+«[M] # {0}. For any positive §, M bounds in its Fill Rad (M) -+ §-
neighborhood in L*(M). Let M = 0W, where W is a compact {n + 1)-

dimensional polyhedron in Neiypadaan+s(M). We will try to extend a map

11
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to W in the following way: first, by extending f to O-skeleton of W and then
to l-skeleton. Had we been able to extend this map to 2-skeleton we would
have been able to extend it to the whole of W, but that shouldn’t be pos-
sible, since M is l-essential. (Here we somewhat oversimplify by assuming
that W can be triangulated. In case it cannot, we can still approximate 1t
by a simplicial complex.)

Extending to 0-skeleton: Subdivide W, so that all simplices o have
diameter diam(o) < § for some § > 0. Map vertices w; € W to ve;-tices
of triangulation m; € M for which d{w;,m;) < d{w;, M) + 5. Suppose
ms, my; come from vertices w;, w; of some simplex in W. Then d(m;, m,) <
d(mi, w;) + d{w;, w;) + d(w;, m;) < 2Fill Rad M + 53, Thus, m;, m; can be
joined by a geodesic of length less then or equal to 2IFill Rad M + 54.

Extending to 1-skeleton: Now send the 1-simplices [w;, w;] C W\ M
to the above geodesics joining m; and m,. (In addition, we can assume all
1-simplices in M to be already short). We can see that the boundary of each
2-simplex in W is sent to a curve of length < 6Fill Rad M + 156 in M (and
then to K(II,1) by f). As it was stated before, it is impossible to extend
f to the 2-skeleton of W. Thus, one of those curves must be homotopically
nontrivial, and of length < 6Fill Rad M + 154, which shows that there is a
closed geodesic of length that is less then 6 Fill Rad M + 15§ and letting ¢
go to zero we obtain a closed geodesic of length that is less than 6 Fill Rad

M. U
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1.4 The length of the shortest closed geodesic
on simply connected manifolds

As we have said in the introduction the proof of the existence of a closed '

geodesic on compact simply connected manifold was given by Lyusternik and

Fet. Their proof uses Morse theory on the space of closed curves, (see [1, 17]

for more details).
7

Theorem 1.4.1. Let M be compact simply connected Riemannian manifold.

Then there exists ol least one closed geodesic on M.

'
I
r
t
L
:
i

In order to briefly state the proof of this theorem we will need several

} facts: :

1. Let AM = Map(S", M) denote the space of continuous maps from S’

to M and let &M be the space of fixed point loops. Then :
T (AM) = my (M) ® 7, (QM);

and
Tor1(M) = 7, (QM). |

Therefore, there exists ¢ > 0 such that m;(AM) # {0}.

|
|
2. Given ¢ > 0 let A°M denote the closed subset ([0, c]), where F is i

the energy defined on piecewise differentiable curves. |

13




Let Py M be the set of all geodesic polygons consisting of N segments.
For any fixed m there exists N,, such that m,(PyM) = 7, (A°M) for
all &k <m, N > N,,.

3. Let us also recall that closed geodesics are critical points of the energy

function (or equivalently of the length function) on Py M.

Proof. Consider the smallest ¢ such that m;(AM) # {0}, (or, equivalently
it (M) # 0 and 7 (M) = 0) and m;(M) = 0. Let v € m({AM) a,nd/’u £
0. It is easy to see that v can be represented by a continuous map of S*
into the space A*M made of piecewise differentiable closed curves. Let ¢ =
sUp,egi (E(v(z))). Consider A%. For any fixed m there exists N, such that
for all £ <1, N > Ny, 7 (P¥M) = m,(A%*M). Moreover, v can be deformed
into P¥M without increase of energy in the process of homotopy. Thus,
m(PiM) £ 0.

Suppose PZ*M has no closed geodesics. Then the energy function F
on P2M has no critical points on PiM other than constant paths. Let
us define a vector field X on P#¥M by the formula — < X,V >= dE(Y).
The vector field X does not vanish on Pa*M \ M. Therefore we can deform
P¥M into the tubular neighborhood of M, which can be retracted to M.
But that would mean that m(P3M) = m;(M), which is a contradiction,

since m;(M) = 0. O

Suppose now, that we want to estimate the length of the closed geodesic

on compact simply connected manifold. In light of the above proof, we can

14




see that if we would actually construct a nontrivial element 2(g, ¢) ¢ m;(AM)
such that the length of each curve h{g, ) is bounded from above by some
constant, that would imply the existence of the closed geodesic, which length
is going to be bounded by the same constant. That is exactly what Croke

has done in [8] and what we are going to do later on.

Theorem 1.4.2. (Croke) For any metric on S? the length of the shortest

closed geodesic 1(S?) satisfies the following two inequalities: /;
1. 1(S*) < 9D
2. 1(9%) < 31V A, where D is the diameter and A is the area of a manifold.

The proof of (1) uses two lemmas {(Lemma 1.4.5 and Berger’s lemma,

which we will not prove here). But first, we need the following definition:

Definition 1.4.3. (Convexity to a Domain) Let v be a simple (no self inter-
sectioﬁs) closed curve on a surface M, which divides M into two components.
Let A be one of those components. Then we will say that -y is convex to A
if there is an € > 0 such that for all z,y € -y, with d(z,%) < ¢ the minimizing

geodesic 7 from x to y satisfies 7 € A,

Lemma 1.4.4. (Berger) Let M be a compact Riemannian manifold and
T,y € M be such that d(z,y) = D, where D is a diameter of M. Then
for all V € Ty M there exists a minimizing geodesic v from x = v(0) to y
with {(v'(0),V) >0, (¢f. [15], Lemma 1.1).

15




Lemma 1.4.5. (Croke) Let oy and o be two piecewise smooth curves from
z to y such that oy U —am forms a stmple closed curve which is convex to
an open disc A. Assume that for every z € A, dx(w,z) < D, where dg
represents distance as measured in A, and D is some real number. Then
either there is a nontrivial closed geodesic lying in A of length less than or
equal to L = l{a1 U —an) or oy is homotopic to ay through curves from x to
y lying in A\ of length less than or equal to 3L + 2D.
y

Proof of Theorem 1.4.2(1). Let us choose two points z,y € M that are
within distance D from each other, where D) is the diameter of a manifold
and apply Berger’'s lemma. Then for every V € T, M there exists a minimal
geodesic o that connects x and y, such that (V,0'(0)} > 0. Let U = {oy}%,
be a finite set of minimal geodesics from z to y satisfying the same property.
We can assume that n > 2. (Since if n=2 then o1 U —0o3 is a closed geodesic
of length 2D.) Let us order this set, so that o;, is a curve immediately to
the right of o;. Note that o; No; = {z,y} for ¢ # j, and that we can order
als so that Z(o}(0),0!,4(0)) < « and similarly Z{—o{(D), —0i,;(D)) < 7.
(That is ¢; U —oj41 is a simple closed curve which is convex to the domain
A; lying between them.)

We can now apply the above Lemma to curves o; U —0;11. We see that
either there is a closed geodesic of length < 2D or —o; is homotopic to —oyq
through curves of length < 8D lying in A,. We now describe a homotopy

from the point curve {#} to the point curve {y}:

{2} ~ (01U —01) ~ (01 U —=a3) ~ ... ~ (01 U —0y) ~ (0y U —0y) ~ {x},

16




where the homotopy from —o; to —o;4 is through the curves in A;. We
have, thus, constructed a closed curve in the space of closed curves, such
that the length of each of those cureves is bounded from above by 9D. It is
not, difficult to see that this curve is not contractible. Therefore, the length

of the shortest closed geodesic is < 9. (I

The proof of (2} follows from (1) and the following corollary to the

coarea formula: /
/b L(S(z,t))}dt < A,
a
where S(z,t) are circles of radius ¢ centered at z.

Under certain assumptions this formula will allow one to partition a
sphere into 3 or 4 domains, such that the length of the boundary of each
domain is < const.v/A, where const. is an absolute constant. We then apply
Birkhoff curve shortening process to the boundary of each domain. If each
of the boundary converges to a point, we can then construct a homotopy in
the same style as a homotopy in Lemma 1.4.5, which will be a nontrivial

closed curve in the space of closed curves. (See [8] for details.)

1.5 Diameter, curvature and critical points
of the distance function

Now we would like to discuss the results that are seemingly unrelated

to closed geodesics. They are mostly based on the paper by Gromov [11]

17




in which he gives an estimate of the sum of Betti numbers in terms of the
diameter and the curvature of a manifold obtaining the following inequality
that holds for a manifold M with curvature K > —H, H > 0, > 0'(M"™) < :
c(n)VEH1, '
One of the eclements of Gromov’s proof is the theory of critical points
of distance function.
Grove and Shiohama observed in {15] that it is possible to define crit- ‘}:
ical point of a distance function p,(z) = d{z,p) on a complete Riemarinian ' :

manifold M™, so that the following Isotopy Lemma holds (see [6] for more

details).

Definition 1.5.1. (Critical Points of Distance Function) The point y will
be called a critical point of py if for all V' € T, M there is a minimal geodesic

v from p to y, such that the angle Z(V,+'(0)) £ Z.

Lemma 1.5.2. (Isotopy Lemma) Let 1 < ro < o0, and let By, (p) = {z/d(z,p) <
7} be a metric ball on a complete Riemannian manifold M™. Suppose that

B,,(p)/B,,(p) is free of critical points of pp, then
1. this region is homeomorphic to 0By, (p) X [r1,Ta]. i
2. 0B, (p) is a topological submanifold.

Proof. If = is noncritical with respect to p, then there exists V € T, M such
that Z(V,+'(0)) < % for all minimal geodesics v from z to p. V' can be

extended to a vector field V,, on a neighborhood U, of z, satisfying the same
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condition, i.e. Z(¥'(0), Va(y)) < I, where y € U, and vy is a minimal geodesic
from p to y. Take a finite {or locally finite, in case r; = 00) open cover {U,}
of B,,(p)/B,(p) and consider a smooth partition of unity {f;}, subordinate
to that cover. Let V = 3" f;V,... Normalize V, so that |V| = 1. By the first

variation formula, the integral curve W of V gatisfies the following:

pa(W(t2)) ~ pp(W(t1)) < (11 — t2) cos(5 — )

for small e. The first statement follows.
Now let ¢ € 0B,, (p), and let ¢ be a minimal geodesic from g to p and let
S be a piece of the totally geodesic hypersurface at g, normal to . Then for
z € S sufficiently close to ¢, each integral curve through z intersects 85,, (p)

in exactly one point, 2’ € 8B, (p). Thus, the map z — 2’ gives us a local

chart for 8B, (p) at ¢. ' O
The proof of Gromov is based on the following ideas.

1. First idea is that a certain sequence of critical points has a bounded
number of elements. The upper bound is given in terms of the diameter

and a lower bound on the curvature of the manifold.

2. Second idea is that to each metric ball one can assign a number, which
we will call a rank of a ball. Correspoinding to each metric ball we can
then construct a sequence of critical points, as in (1), such that the

number of elements in the sequence equals to the rank of the ball, and
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thus obtain and inequality that bounds the rank of the whole manifold

regarded as a metric ball in terms of its curvature and diameter,

3. One can then show that the sum of Betti numbers is bounded above by
the rank of a manifold. The way it is done is the following. Let b¢(A, B)
denote a rank of the map f*: H{(B) —+ H*(A), which is the map in-
duced by f: A — B. Then one introduces the notion of the content
of a ball, B,(p) denoted coni(r, p), which is equal to 3_ b*(r, p), where
b*(r,p) is defined to be b*(B,(p), Bs-(p)). Note that if 7 > diamkM )
then ¥ (r, p) = b*(M), thus, in this case, cont(r,p) = 3 b*(M). There-
fore, the sum of Betti numbers can be estimated from above by es-
timating the content of a ball of radius greater than diameter of the
manifold. The generalized Mayer-Vietoris sequence allows one to esti-
mate the content of a ball in terms of contents of smaler ‘balls, which in
turn allows one to establish connection between the content of a ball

and its rank.

Now we would like to describe some details of Gromov’s proof relevant

to our work.

Definition 1.5.3. (Compression) We will say that a metric ball B,(p) com-
presses to a metric ball By(¢) and write B,(p) > Bs{gq} if the following

conditions are satisfied:

1. 5s+d(p,q) < br.
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2. There exists a homotopy F, : B.(p) — B,(q) with Fy being the
identity and Fy : B.(p) C B,(q).

Definition 1.5.4. (Rank) Rank(r,p):=0, if B.(p) — B.(g), with B,(q)

contractible.
Rank (r,p):=j, if rank(xr,p) is not < j — 1 and if B, (p) — B;(q), such that

for all ¢ € B,(q) and s’ < 5/10, we have rank(s’,¢') < 7 — 1.

7/
Informally speaking, rank of a ball can be described as the number of
steps it takes to get from this ball to the contractible ball, where each step
consists of moving a ball of a radius r to a ball of a smaller radius s and then

subdividing the ball into balls of radius s/10 as described in the definition.

Definition 1.5.5. (Incompressible Ball) A ball, B,(p), will be called incom-

pressible if B.(p) — B,(g) implies s > r/2.

We remark that any ball can be compressed either to a contractible ball

or to an incompressible ball.
Definition 1.5.6. (Modified Rank)
1. rank’(r,p} := 0 if B,(p) -+ By(q), with B;(g) contractible.

2. ronk'(r,p) := § if rank'{r,p) # j — 1 and B,{p) — B,{q) such that
B,(q) is incompressible and for all ¢’ ¢ B;(g) and §' < s/10, we have
rank(q’, s}y <j—1.

Note that rank(r,p) < rank'(r,p).
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Lemma 1.5.7. Let g be critical with respect to p and g2 satisfy d(p,q,) >
vd(p,q1) for some v > 1. Let v1,7,, be minimal geodesics from p to q, g

respectively and let 8 = Z(v1(0),v4(0)). Then
1. If Ky > 0,0 > cos™!(2).

2. If Ky > H,(H <0) and d(p,¢2) < d, then

. tanh(¥Hd
6'2005*1(—_—6m ( v ))

tanh(v/Hd)

Proof. The proof is an application of Toponogov’s theorem together with the
law of cosines in the first case and hyperbolic law of cosines in the second

case. (See [6, 11} for more details.) O

The Corollary to this Lemma will allow us to estimate the number of
critical points to p in the sequence g1, gz, ..., g, where d(p, gir1) > vd(p, ¢;),

v > 1.

Corollary 1.5.8. Let ¢1,...qn be a sequence of critical points of p, with

d(p, gi-1) = vd(p,qi). Then N < I—E;,Ez—riﬂ;:_z——z%, where 8 is a function of the
4]

dimension of & manifold and v, when curvature of the manifold is bounded

from below by 0, and 6 is a function of the dimension of a manifold, v and

the diameter when curvature is bounded from below by —1.

Proof. Consider minimal geodesics -y; that connect p and g;. Consider also
the set of the unit tangent vectors {;(0)} that can be viewed as a subset of

the unit sphere in the tangent space of a manifold M at p. Let §; be the angle
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between p and ¢;. Then the balls of radius 8;/2 about the v(0) are mutually

vol§h—1

digjoint. Thus, the number of points in the sequence is < T BT

where B(p, #;/2) denote balls in S**, Take # = min6; then the result will

follow. |l

We will also need the following lemma that will allow us to establish a

connection between rank of a metric ball and critical points.

Lemma 1.5.9. Let M™ be a complete Riemannian manifold, and let Brfp) C
M™ be a metric ball on M™. Assume 5s-1-d(p,y) < br; d(p,y) < 2r. Then if
B.(p) does not compress to B,(y), there exists a critical point, x, of y, such

that s < d(z,y) <r+d(p,y).
Proof. The proof is an application of the Isotopy Lemma. ]
We will now give an informal proof of the key Proposition.

Proposition 1.5.10. Let M™ be ¢ Riemannian manifold with diameter d
and curvature K > H, H < 0 then for anyp € M and any r rank(r,p) < C,
where C' is a function of a dimension of manifold if H = 0, and C is a
function of the dimension of e manifold, diameler and the lower bound H

on curvature, if H is negalive.

Proof. We will show that rank'(r, p} is bounded by C, and since rank(r,p) <
rank'(r, p) the result will follow. Given a ball B,(p) of rank'(r,p) = j we
construct a sequence {z,.,z;} of points critical to a point y using the

following strategy:
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1. First, we construct a sequence of incompressible balls I3,, (p;) with de-

creasing radii. Without loss of generality we assume that B,.(p) to i

be incompressible and let B, (p;} = B,(p). By definition of rank'(r, p) f

there exists a point f;_, € B,(p) and #;_; < r;/10 such that rank’(F;_1, 9, 1) =
J — 1. That ball compresses to an incompressible ball B,,_, (p;—1) of
rank'(rj-1,pj—1) = 7 — 1. If we continue in the above fasion we obtain

our sequence.
i

2. We let y = pg. Since B, (p;) is incompressible, in particular, it does
not compress to B,,/2(y). One can also check that B, (p;) and By, /s(y)
satisty the conditions of Lemma 1.5.9 Thus, there exists a critical point '

%; as in Lemma, 1.5.9

3. Omne can check that a sequence of points we obtain this way satisfies

the condition d(y, z;11) = vd(y, z;) with v = 5/4.

4, We then apply Corollary 1.5.8 that gives us a bound on the number of

elements in the sequence, which is exactly the same as rank’(r,p) = j.

|
[] J
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Chapter 2

New Bounds for the Length of
the Shortest Closed Geodesic
on a Compact Simply

Connected Manifold

2.1 Introduction

In the thesis we will prove two theorems relating the length of the short-
est closed geodesic on simply connected Riemannian manifold either to the
diameter or to the volume of the manifold. That work was motivated by the
paper [12] of Gromov, in which he asks whether it is always possible fo find a

constant c{n), such that the length of the shortest closed geodesic is bounded
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from above by c(n)vol(M)*/™ where n is the dimension of the manifold. (See
also [3, 13] for the related topics.) Gromov himself had solved this problem
for essential manifolds in {12]. (In particular, all compact surfaces with the
exception of a sphere are essential, and so are all the manifolds that admit
Riemannian metric of nonpositive sectional curvature.) Combined with the
result of Croke [8] it finished the problem for the compact surfaces. The only
known to us results for the simply connected manifolds of higher dimension
are those of Ballman, Thorbergsson and Ziller (2], who, in pa,rticular,/ha,ve
investigated the case of spheres endowed with a %—pinched metric of positive
sectional curvature, and the results of Croke [8] and Treibergs [18] for convex
hypersurfaces.

In the thesis we will find two upper bounds on the length of the shortest
closed geodesic on a simply connected Riemannian manifold with nontrivial
second homology group. Our first estimate will be in terms of the lower

bound on the sectional curvature and an upper bound on the diameter of

the manifold.

Theorem 2.1.1. Let ¥ be a class of simply connected compact Riemannian
mamnifolds with non-trivial second homology group and sectionol curveture
K > —1, diameter < D. Then the length of the shortest closed geodesic (1)

on any manifold M™ € ¥ is bounded from above by

ee(n)(D+1)

f(D,n)=e ;

where c¢(n) = 250(n + 1).
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Corollary 2.1.2. Let W be a class of simply connected compact Riemannian
manifolds with non-triviel second homology group ond sectional curvaeture
K > 0, diameter < D. Then the length of the shortest closed geodesic y(t)

on any manifold M™ € W is bounded from above by et D,
Proof. follows from the Theorem 2.1.1 by a rescaling argument. 0

Our second result requires an additional assumption on the topology of
the manifold. Namely, the manifolds in question should be 2-essential, Some
of the examples of which are manifolds that are homotopically equivalent to

Kéhler manifolds, in particular CP".

Theorem 2.1.3. Let T be o class of 2-essential simply connected compact
Riemannian manifolds with sectionel curvature K < 1 and volume < V.
Then the length of the shortest closed geodesic (L) on any manifold M™ € T

i8 bounded from above by
g(V,n) = ci(n) + (cz(n)V)ca(ﬂ)(V”“H),

where c1(n) = 103(n + D)n/nl, ea(n) = 103(n + Dn(n!)?, c3{n) = 10°(n +
Dn{/nl.

Let us now recall a definition of 2-essential manifolds:

Definition 2.1.4. We will say that a compact and orientable manifold M of
dimension 7 is 2-essential if there exists f : M™ — CP* such that f,.([M]) #

{0}, where [M] is the fundamental homology class of M.
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Let. AM denote a free loop space over M, and let 4 > 0 be such that
i AM) £ 0, but m(M) = 0. Let us once again recall the result of Lyusternik
and Fet, and the idea that in order to estimate the length of the closed
geodesic on compact simply connected manifold it is enough to construct
a nontrivial element h{g,¢) € m;(AM), such that the length of cach curve
h(g,*) is bounded from above by some constant, which would imply the
existence of the closed geodesic with length bounded from above byr the
same constant. /

When manifolds has a nontrivial second homology group me(M) # 0

and 7 (M) = 0. It follows that
7T1(AM) = 7T1(M) @’ﬂ'l(QM) jad ?TI(QM) ~ ’]TQ(M) ?é 0.

Therefore, the problem can be reduced to constructing a nontrivial element
H,(t) of =1 (AM), such that for all 7 length H, < f(D,n) in the first case or
g(V.n) in the second case. We will be using the notions of the width of the

homotopy and homotopy distance introduced in [19] as follows:

Definition 2.1.5. (Width of the Homotopy) Let F;(¢) be a homotopy that
connects two closed curves parametrized by ¢ € [0, 1] on a Riemannian mani-
fold M. We say that W is the width of the homotopy £, (t) if Wr = maxep 1
length of the curve F,(t). That is Wr is the maximal length of the trajectory
described by a point of one of the original closed curves during the homo-
topy. More generally if X,Y are metric spaces and F': X x[0,1] — Y isa

homotopy then Wy is defined as sup, ylength F'{z, x).
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Definition 2.1.6. (Homotopy Distance) Let o4 (£), an(t) be two curves then |
homotopy distance dy{ay, az}=inf g Wg, where H is any homotopy between H

oy and as.

The constructions of H,(f) in proofs of Theorems 2.1.1 and 2.1.3 are
somewhat different. We will summarize the proof of Theorem 2.1.1 and then
indicate the points where the proof of Theorem 2.1.3 will deviate from the
proof of Theorem 2.1.1. /

There are several essential ideas in this proof that we want fo emphasize.

1. In order to construct a nontrivial element H.(¢) of m1 (AM) such that
length H, < f(D,n) we will have to learn how to construct a homotopy ‘
of any closed curve y(t) of length < 3d to a point, and that homotopy
has to have some special properties. What we have in mind is the
following: there are two parameters of the homotopy that we need to
control at the same time, i.e. the length of curves in the homotopy
and homotopy width (by controling we will mean providing an upper
bound). We will, actually be satisfied if we have only “partial” control
of the width, that is at least two selected points on y(¢) do not “travel
for too long” until they reach p, i.e. H,(t;) is bounded, where ¢ = 1, 2.
The attempt at using Birkhoff curve shortening process fails for the
reason that even though we have absolute control of the length of the
curves in the homotopy, each point on «(¢) can travel a long distance

till it gets to p. ‘
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9. Such a homotopy as in the previous paragraph can be Constructed by
first producing a different homotopy from which we demangq only that
ite width should be bounded. The assumption that {(M) > 3d wiy 1,
used, where [(M) denotes the length of the shortest closed geodesic,
We can then construct a new homotopy based on the previous one that

will satisfy the necessary conditions, (see Figure 11.)

3. Tn order to accomplish Step 2 we will need to use notions very similarx to
those used by Gromov in {11}, i.e. rank and compressibility, that will
be substituted by effective rank and effective compressibility. These
notions will be defined in section 2.3. We will be able to show that
effective rank is bounded through the curvature and diameter of the

manifold.

4 The result of the various estimates will be that (assuming (M) > 3d)
for every curve y(t) of length < 3d there exists a homotopy of this curve

to a point, such that the length of curves in the homotopy is bounded

by eI g1 that we can insure that for some two points on the
curve, the distance they travel is bounded by the same function. At i
that point we will be able to construct a nontrivial 2-cycle with some ’5
special properties. The argument that we will use in order to come up |
with it is the following: we will triangulate M, so that the diameter of '
cach simplex is less than injectivity radius of M, we will then consider

H,(M) and select cycle o composed of simplices of the triangulation
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and representing a nontrivial element in Hy(M), next we will attempt
to “fill” o using the following procedure. First we will pick any point
p in M. Then we will join the point p with all the vertices of o by
minimal geodesics. After that we will consider all the closed curves
composed of two geodesic segments that join p and vertices v, and v,
of o and an edge of o that joins v, and ve. We will then use the “nice”
homotopy to connect those closed curves with some points. Thus, we
will obtain some cycles of m of a specific shape, at least one of v:fhich

should be nontrivial, in order for ¢ not to bound. Finally, we will

construct a nontrivial element of m (AM) with the desired properties.

Let us now somewhat extrapolate on Step 3 since most of the thesis will
be dedicated to it. That work was mainly inspired by [11]. We will establish
the connection between effective rank of the ball and the hombtopy distance
between any closed curve inside that ball and some point. That is, we will
find an upper bound on the homotopy distance between a curve and a point
in terms of the effective rank. The proof of this uses the induction procedure
on the effective rank of a ball containing the curve, that we will denote as
rank!. For the curve y(¢) that lies inside the ball, which radius is less than
an injectivity radius there exists an cbvious homotopy of bounded width to
the center of the ball. It is only slightly harder to construct a homotopy
of bounded width for the curve inside the ball of rank! = 0, (but perhaps,
with radius greater then the injectivity radius.) The above will be the base

of induction. Now let us roughly describe how we can construct a homotopy
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of bounded width for the curve that lies inside the ball B,.(p) of rank!, =1,
since that will make the induction step clear.

We will begin by showing that there exists a finite sequence of closed
piecewise geodesic curves that starts at our given curve and ends with some
constant curve, such that two consecutive curves in the sequence are suf-
ficiently close to each other. We will then construct a homotopy between
two neighboring curves by reducing the problem to finding a homotopy of .a
closed curve that lies totally inside the ball B,/o(p’), which is a subs/e"t of
our original ball. That will be accomplished by first “bringing” the curve to
a ball of rank], = 0 and then by homotoping it to the point, (see Figure 1

below, and also Figures 3-6.)

Ball ol rartky &

B{q}

Figure 2.1: A homotopy between two neighboring curves

Note that the procedure that we develop in Steps 2 and 3 in order to
construct a homotopy of width bounded in terms of the lower bound on the
sectional curvature and the diameter can also be used to prove the following

theorem.
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Theorem 2.1.7. Let M™ be compact Riemannian manifold with the sec-
tional curvature K > —1 and diameter < D. Suppose also that for any
closed curve w(t) there exists a homotopy H,(t) of this curve to a point such
that the length of the curves H,, (t) in the homotopy is bounded from above
by c - length(w(t)) for all T.. Then there exists a homotopy Z.(t) of w(t) to
a point such that

W < egﬁ-(ﬂ.+1)(D+1)c

H

where £ is an absolute constant that can be explicitly colculaled.

To prove Theoremn 2.1.3 we will first assume that injectivity radius of
M is not too small, otherwise Klingenberg’s lemma together with Berger
injectivity radius estimate will give an estimate on the length of the shortest
closed geodesic and we would be done. But now, having the lower bound
on the injectivity radius it will be much simpler to construct the required
homotopy with special properties that we discussed above. We can then use
some obstruction theory used by Gromov in [12] to construct a homotopy
nontrivial map of the boundary of 3-simplex into M with the following special
properties: denote the images of the vertices a, b, ¢, d, images of 1-simplices
will be geodesics joining a, b, ¢ and d, and its faces will be formed by surfaces
generated by the homotopies with the “nice” properties described in Step 1
and proceed as in the first case.

Sectiong 2.2-2.5 will be dedicated to estimating the homotopy distance
between closed p.w.g. curve and a point for class ¥. In section 2.2 we

will define the notions of g-effective compressibility and a-effective rank. In
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section 2.3 we will prove the lemma that will be essential in estimating a-
effective rank. It will establish that the number of elements in the sequence
of e-almost critical points is finite for some ¢ under some conditions. In
section 2.4 we will establish the connection between the effective rank and
the homotopy distance, and in section 2.5 we will show that rank], is bounded
from above by ™+ for some a. Combining results of sections 2.4
and 2.5 we will obtain Theorem 2.1.7.

In section 2.6 we will construct the required homotopy for any M /E 0.
We will deal with class T in section 2.7. Finally in section 2.8 we will prove
Theorem 2.1.1 and use some ideas from the paper [12] of Gromov to finish

proof of Theorem 2.1.3. In sections 2.2, 2.3, and 2.5 we will closely follow

the proof of the main theorem from [11] of Gromov as it was done in [6].

2.2 Basic Definitions

Definition 2.2.1. (a-Effective Compressibility) Let a be a positive number.
We will say that B, (p) a-effectively compresses to B,(g) and write B,(p) —,

B, (qg) if the following conditions are satisfied:
1. 3s+d(p,q)<br.

2. There exists a homotopy F : B,(p) - B;(q) with Fj being the identity
and Fy : B.(p) C Bs(q).

3. WF S ar.
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Definition 2.2.2. (g-Effective Rank)

1. rank,(r,p):=0, if B.(p) —, B;(q) with B;(q) a -effectively contractible.

2. rank, (r,p):=j if rank, (r,p) is not < j-1 and if B, (p) ——, B,{(g) such

that for all ¢' € B;,(g) with ' < 8/10, we have rank.(s',¢") <j-1.

Definition 2.2.3. (a-Effectively Incompressible Ball) A ball B, (p) is called

a-effectively incompressible if B,.(p) —, B;(g) implies that s > r/2. )

Lemma 2.2.4. Any ball B.(p) can be Ja-effectively compressed either to an

a-effectively contractible ball or to e ball that s incompressible a-effectively.
Proof. Suppose B(p) —4 Bs,(g1). Then there are three possibilities:

1. By, {q1) 18 a-contractible.

2. By, (1) is incompressible a-effectively.

3. B, (q1) is compressible a-effectively, but not a-effectively contractible.

In case of 1 or 2 we are done, since a-effective compressibility implies 3a-
effective compressibility. In the third case, By, ——+, B, such that s, < s,/2
by definition of a-effective compressibility. Once again we have three pos-
gibilities for Bg,(ge). It can be either a-effectively contractible, a-effectively
incompressible, or a-effectively compressible. Consider the last case and
obtain B,, —, B, such that s3 < s3/2, and so on. The above pro-
cess will have to terminate by our arriving either at a-effectively compress-

ible ball, or the ball that is incompressible a-effectively. We, thus,obtain
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a sequence:Ft, F2 B3, F™ of homotopies such that W < ar, Wy <
as1 < ar,Wps < a8y < as1/2 < ar/2, .,.Wm < (ar)/20D. Thus, we
can get to a-effectively contractible or a-effectively incompressible ball ap-
plying one homotopy after the other and the width Wr of final homotopy
will be < ar + ar +ar/2+ - +ar/20-D < 3ar. []

2.3 Modified Gromov’s Lemma

In this section we will prove a slightly generalized version of the well-
known Gromov lemma about sequence of critical points, (see [6, 11] for the

proof of the original lemma).

Definition 2.3.1. (e-Almost Critical Point) We will say that a point q on
a manifold M is e-almost critical with respect to p, if for all vectors v in the
tangent space M,, there exists a minimal geodesic v from q to p with the

absolute value of the angle Zv,v(0) < n/2+e.

Lemma 2.3.2. (Modified Gromov’s Lemma) Let q; be e-almost critical point
with respect to p and let g satisfy d(p,¢z) > vd(p, q1) for some v > 1. Let
Y1, Y2 be minimal geodesics from p to qi,qe respectively, and let 8 be the
angle between vi(0) and v4(0). If sectional curvature Ky of the manifold M
is bounded below by -1 and d(p, ¢) < d then

d
v

tan
cosf < : (sine+ 1) + sine.

anh d
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Proof. Let a = d(p,¢1),b = d(g1,q2),¢ = d(p, q2). Also let vz be a minimal
geodesic from ¢y to gu. Since ¢y is e-almost critical point to p, there exists a,
minimal geodesic o(t) from ¢, to p such that the angle Za'(0), 74(0) < 7/24¢,
(see Figure 2.) We will apply the Toponogov comparison theorem twice to
hinges o(t), vs(t) and v1(t), v2(t), which in combination with hyperbolic law

of cosines will yield inequalities (1) and (2) respectively.

Figure 2.2: Two hinges i

cosh ¢ < cosh a cosh b — sinh a sinh b cos(7/2 + €) ' (2.1

cosh b < cosh a cosh ¢ — sinh asinh ¢ cos . (2.2)

Let us substitute the inequality (2.2) into (2.12) to obtain:

cosh ¢ < cosh a{cosh a cosh ¢ — sinh asinh ccos 0) + sinh asinh bsin e.

|
Now, let us use the triangle inequality to see that ;1
|

cosh ¢ < cosh? a cosh ¢ — cosh a sinh a sinh ¢ cos @ + sinh a sinh(a + ¢) sine.
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Therefore, using hyperbolic functions identities we obtain:

0 < sinh? a(sin € + 1) — cosh asinh a tanh c(cos # — sin ¢);

cosh a tanh c(cos @ — sin¢) < sinha(sine + 1)

tanha , _ tanh({d/v)
) L Sl A4
PP (sine -+ 1) +sine < b d

cosfd < (sine-+ 1) 4+ sine,

i

It is clear that unless the expression on the right is strictly less than 1,
our lemma will not provide any additional information. Thus, we need to
find such an e that

tanh(d/v)

ol d (sine + 1) +sine=z < 1.

We will use Lemma 2.3.2. in the situation when v=5/4. In this case let

o tanh(4d/5)

tanhd ’
and let
zécd-l—l
2

It is clear that both ¢4 and z are strictly less then 1. Take e such that

gineg = - 1—c
2(Cd+1)
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After some caleulation we see that

1 _ 2(69d/5 _ e~9d/5)

= < 186845,
sine ed/s — g—d/5 =

Lemma 2.3.2 implies that cos§ < {cg+1)/2. After some calculation we

see

o—84/5

(cat+1)/2<1-
and hence
o> o—4a/5

Corollary 2.3.3. Let q1,¢a,...,qn be a sequence of e-almost critical points
of p, where sine satisfies the above condition. Suppose also that d(p, giy1) >

(5/4)d(p,q;). Then N < {n — 1)a"leln=1d/5,

Proof. Consider minimal geodesics «y; that join p and ¢;. Next consider the
set of the unit tangent vectors {7;(0)} that can be viewed as a subset of the
unit sphere in the tangent space of M at p. Let #; be the angle between p, ¢;.
Then the balls of radius 6;/2 about the }(0) are mutually disjoint. Thus the

number of points in the sequence N < a%’ where B(p, 6;/2) denote

balls in $™* and
vol §™ 1 _ Jy sins)"?ds
min vol B(p, 6;/2) fogfz(sin S)R*st’
for & = min #;. Since sin s > 2s/7, on the interval (0, 7/2) we estimate:
7"~ 1)
gn—1

N<

Now substitute the lower bound for 8 and obtain the result. ]
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2.4 Homotopy Distance and a-Effective Rank
of a Ball

Throughout this section we will be working with simply connected com-
pact manifolds. In addition we will also assume that the manifold M doesn’t

have any geodesics of length < 3d, where d is the diameter of the mani-

fold. In that case we will examine how homotopy distance between a curve
a(t) € B,(p) of a-effective rank m and a center of a ball, depends 0;1'the i
rank m and a diameter d of a manifold M. (Note that the only reason we
need an assumption /(M) > 3d is to establish the connectedness of the space

of all parametrized curves of length bounded from above by 3d. Indeed, in

that case any curve of length < 3d can be contracted to a point without any

length increase. However, we can weaken our hypothesis by assuming that
any curve of length I, < 3d can be contracted to a point through the curves
of length < el for some constant ¢ in order to show that in that case a curve
of any length can be contracted to a point in such a way that the width of

the homotopy will be bounded in terms of the rank of the ball in which that

curve lies and the constant c.) . i
Definition 2.4.1. (Modified a-Effective Rank)
L. rank’ (p,r) := 0 if B.(p) —3q B;s(g) where B,(g) is a-contractible.

2. rankl(p,r) = j if rank’ (p,r) # j — 1 and B,(p) 3, B,(q) such that

B,(q) is a-incompressible and for all ¢' € B;(g) with s' < s/10, we have

40




rank,(g',s') < j-1.

Lemma 2.4.2. Let y(7) € B.(p) with rank](p,7) = 0 be a closed curve.

There exists a homotopy F, of v(t) to a point with Wy, < dar < 4ad.

Proof. Since rank,(p,r) = 0 there exists an a-effectively contractible B,(q)
such that B,(p) —, B,(g), implying the existence of a homotopy F2? with
Wrz < 3ar, such that FE(y(t)) = y(t) and F2(v(t)) C B,(q). But a-cflective

contractibility of B,(g) implies the existence of a homotopy F.' such that
1. We < ar;
2. Fy(FP(v(1)) = FY(v(1));
3. F(FE(v(t)) =,

where ¢’ € B;(q).
Take the composition of the above homotopies and obtain F. with

Wg, < 4dar. |

We are now ready to show that for every closed curve inside the ball
of a'-effective rank m the homotopy distance between the curve and any

point on M is bounded by the function that depends exponentially on the

a'-effective rank of the ball and the diameter of the manifold, where o/ = 1~

ging?
and where ¢ = 2(11—;”0%) as it was defined in section 2.2. (Thus, - < 18¢54/%),

More precisely, we will show that there exists a homotopy F™ of that curve
to a point, such that Wem < eA@+1{m+D) where A = 2.10%(n + 1), n is the

dimension of the manifold.
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Our proof will be by induction on the rank of the ball and will be done
in five steps.

Let us first note that the above statement is true, when m = 0. Since
for any closed curve inside that ball B.(p) of rank 0, there exists homotopy
PP such that Wgo < 4a'r,(by Lemma 2.4.2), thus, Wyo < E:LTTG < At

Let us assume now that the above statment is true for the curve lying in
the ball of @'-effective rank m, that is there exists a point ¢, and homofaopy
F™, such that Wpn < f(m) = MDD We want to show tha,,t for
any closed curve lying inside that ball of o'-effective rank m + 1 there exists
a homotopy F™! to a point gmyy, such that Wems < eA@HDimt2) - The
homotopy F™'! will be a product of several homotopies. We will proceed

as follows.

Step 1 Given oy we will show that there exists a homotopy that we will
call A! that connects our curve ; with the curve ay inside a ball B,(g),
such that the width of A! will be bounded by 3a'r(< 3a’d) and for every
q' € B(g) and ¢ < 5/10 the ball By (¢') has rank m.

Step 2 We will use our induction assumption to show that for any two
curves ay(t), az(t) C Bs(g) such that d(ai(t), aa(t)) < s/20 there exists a
homotopy h? with the width < 4f(m)+4s/10(< 4f(m)+4d/10.) (see Figures
3-6).
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Step 3 Using our assumptions that there is no closed geodesic of length
< 3d, (thus, no closed geodesic of length < 3s) we can show that any curve
of length bounded from above by 3s in the ball B,{¢) can be homotoped to

a point q by a homotopy h® with the width < (9607eX®—D)14417y,,,

Step 4 For any curve as, regardless of its length, in a ball B,(g) there
exists a homotopy A* to a point q such that the width of the homotopy is
bounded by 2s 4 4Wja(< 2d + 4Wps). ’

Step b Take the composition of ' and h* to get the required homotopy
and estimate its width.

We will now proceed with the proofs.

Step 1 Immediately follows from the definition of the a-effective rank
of the ball.

Step 2 will be the result of

Lemma 2.4.8. Let oy (t), ca(t) be two closed curves in o ball B;(g) with the
distance d{oq(t), aa(t)) < s/20 for all t. Suppose also that B.(q) has the
property that for every ¢',s' oll balls By(q') C Bs(q) have ranks < m. Then
there exists a homotopy h* between those two curves with Wy < 4f(m) +

45/10 (< 4f(m) + 4d/10),

Proof. Take ay(t), aq(t), such that d {ay(f), aa(t)) < s/20. W.L.O.G. we
can assume that a;:[0,1] — M, @3:[0,1] — M are broken geodesics. We

will partition the interval [0,1] into segments, such that each quadrangle
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with vertices o (f:), or(ti1), aa(tiy1), () and edges oy, 1:,.1.0=1,2, 04(s),
where o;(s) is minimal geodesic joining o (#;) and os(%;), lies inside a metric
ball of radius s/10. This can be done by requiring that the length of the
curve (oy41)) < 8/30.

We will describe the homotopy, by providing the description of the

images of the curve ay(t) under the homotopy. Let of = o|p,.) and

it1]

o = Qa|[g; 4,4,]- Then we claim:
r3

1. o4(t) is homotopic to the curve v = |J,_, @} U oy U —oy, (see Figure
3.) Moreover, W, < s/10, where ¢' is the homotopy between «; and

Y1

Figure 2.3: Homotopy of Lemma 2.4.3.

2. The curve 7, (¢) will be homotopic to the curve v2(t) = J,_; of Ug; U

—ab U b U —o; with W2 < (3s)/10, (see Figure 4.)

3. The curve ,(t) will be homotopic to the curve v3(¢), where v3(t) =
Ui GSUFT 0ty o UFT(OU—F7 (s (tier)) and Wys < 2 (m),

(see Figure 5.)
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Figure 2.4: Homotopy of Lemma 2.4.3 (second stage).

4. The curve 3 (t) is homotopic to the curve 4 (¢}, where 14(t) = {J,_, eV

F'(om(tip)) U —F™(as(tizr)) and Wy < 2f(m), (see Figure 6}.

s
Finally, we observe that v4(¢) is homotopic to as(¢) and notice that
Wh2 < 4f(m) + 4s/10 as required. O

Em(h]w.u -k I,(mho.u

Figure 2.6: Homotopy of Lemma 2.4.3(final stage).

Step 3 will require proofs of several lemmas.
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Lemma 2.4.4. Let ®(B,(p)) be the space of piecewise differentioble closed
curves of length < L parametrized proportionally to their arclength in B,(p)
, a ball of radius r in a manifold M and let N be the upper bound on the
number of elements in some cover {Bea(p;)} of the ball B,(p) for some e.
There exists an €/4-net on the 6-neighborhood Ny(P(B,(p})) with the number

of elements

Q < N24L/e+l

,
where § is some positive number and the length of every closed curve in this

e/4-net is < 3L.

Proof. Given the cover {B.jo(p;)} of B,(p) we will construct an ¢/4-net in
the §-neighborhood of ®(B,(p)) as follows. We will consider the set I of ;(¢),
where each ;(¢) will be a curve composed of the geodesic segments, that join
points py and p; if and only if d{pg, p;} < ¢/8 with the additional condition
that length 4; < 3L. The number of such curves will be < N#E/6H1 Tf we
will impose the additional condition of all curves being closed then our set
J of such curves will be a subset of [ and the number of elements of J will
also be < N24L/tl We claim that J is our ¢/4-net.

For let v(t) C B,(p) be any curve parametrized proportionally to its
arclength, in particular, v : [0,{] — B.(p),! < L. Let us partition [0,]] into
segments [t;,%,,1] such that ¢;4, — t; = ¢/24. For each ¢; we will select
p; such that y(t;) € Beaulp;). Note that d(p;1,p;) < €/8 by triangle
inequality. We will then construct a curve o{t} by joining centers of the balls

by minimal geodesics. Note: o(t) will not be parametrized proportionally
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by its arclength, but d{a(t), y(t)) < €/8. 4

Lemma 2.4.5. Let B,(p) C M™, where M is as in the Lemma 2.4.4 and the
length of the shortest closed geodesic (M) > L. Let o(t) C ®(B,(p})), where
B.(p) C M. There ezists a finite sequence {o;}5_, of closed broken geodesics,
such that d(oy(t), a(t)) < /4 for all t; oy, = p; length({o;) < 3L, d{oy, 011) <
e and the number k of elements in this sequence is < @, where () is as in the

Lemma 2.4.4.

P
Proof. Let «(t) be any curve parametrized proportionally to its arclength of
length < I. There exists a path P in a space of all curves of length bounded
from above by L and parametrized proportionally to the arclength connecting
a(t) and a constant curve p. (Just use Birkhoff curve shortening process.)
By the above Lemma we can construct an ¢/4-net in the §-neighborhood
of ®(B,{p)), that is the space of curves of length < L and parametrized
proportionally to their arclength. Now consider the sequence: P, ..., P such
that d(F;, Pip1) < €¢/4, Py = aq, Py = p. We know that for all p; there exists
g; € Ns(®(B,.(p))) such that d(F;,0;) < €/4. Thus we obtain sequence o;
such that o, = p and d(o;,0;41) < €. But we still have to estimate the
number of elements in that sequence. So far, the way our sequence was
constructed it is possible that there exist 7, 7 such that ¢ # j, but o, = o;.
To avoid that we can delete all the subsequences between all the repetitive
elements from the sequence without changing the essential properties of the
sequgnce, S0 our new sequgnce obtained in this way will be nonrepetitive

and the number of elements will be less than or equal to . O
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Let us now apply these Lemmas to the compact fnanifold M with the
sectional curvature K' > —1 and where L = 3r. We estimate the number
of points in the ¢/24 net on B, (p} using Bishop-Gromov volume comparison
theorem, {see [9]). Consider the maximal number of pairwise disjoint balls
in B,(p) of radius ¢/48. Then the set of balls {Ba4(p;)}{ will cover B, (p),
where NV can be estimated to be

vol (B, (p)) vol(B,(p'))
NS ol Baas) = vol(BL ()’ ‘

where BL.(p"), B, ,44(p}) ave balls of radii r, e/48respectively on a manifold of

constant curvature —1. Calculation shows that
fy sinh™ " tdt
S sinh™ "t ¢t
Since the balls {B./s(pi)} cover B.(p), the set {p;} will be ¢/24-net. Let

N <

¢ =7/20. Then () < (960edn—1))1441,

We are now ready to complete Step 3. Let y(t) € B,(p) be a curve of
length < 3r and let ¢ = r/20. There exists a sequence of p.w. geodesics
parametrized proportionally to their arclength of length < 3r and having
properties 1-3. Thus, we can obtain the required homotopy by taking a
composition of homotopies between the consecutive curves. It is easy to see
that. the upper bound on the width of the final homotopy is what has been
required.

Step 4 will require the lemma below.

Lemma 2.4.6. Let v(t) € B.(p) be a p.w. geodesic curve of any length in

B, (p) parametrized proportionally to its arclength. Then there is a homoiopy
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H,(t) of v(t) to a point such that Wy, < 2d + 4Wys, where h3(t) is the

homotopy connecting a curve of length < 3r to & point, (see Step 3).

Proof. Let v(t) have length {. Partition the interval |0,] into the subintervals
its, ti01] such that £, — ¢; < r. Algo let o; be minimal geodesic joining the
points: y{t;} and the center of the ball. Let v* = «|[t;, t;+1] then we claim that
¥(t) is homotopic to the curve ¥* = | J~ ' U o; U —0; and Wi < 2r(< 2d),

where h! is the homotopy, (see Figures 7 and 8) /

Figure 2.7: Homotopy of Lemma 2.4.6

Let T* be a geodesic triangle with vertices at (%), y(ti+1), p and edges:
04, V', 0341. By Step 3, for each T; there exists a homotopy that conects it to
some point p;. Let us call this homotopy H™ . Consider a curve H™1¢(p)
joining p and p;, and denote H™ |1 by H™ 4 Then we claim that +*
is homotopic to 2 = (J HMthi(p) U HY(T) U —H 4 (p) with the width
of the homotopy bounded by 2d + 2Wpm+1:, (see Figure 9.)

We can see that 2 is homotopic to v = | J H*U—H*, which is homotopic

to a point, (see Figure 10.)
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Figure 2.9: Homotopy of Lemma 2.4.6 (third stage).

Step 5 We combine the results of Steps 1-4 and get the desired result:

d A(d+1 2
Wp‘m+1 —<_ e ( + )(m'l' ),

where A =2-105(n + 1).
As it was stated at the beginning of the section, we can now prove the

next lemma by following Steps 1-5.

Lemma 2.4.7. Let M™ be o compact manifold with the sectional curvature
K > —1 and diameter d. Suppese that for any curve w(t) there exists a
homotopy connecting this curve with a point, such that the length of curves
in the homotopy 1s bounded from above by length(w) - c. Then there exists

a {possibly different) homotopy connecting the above curve to a point, such

50




Figure 2.10: Homotopy of Lemma, 2.4.6 (final stage).

that the width of this homotopy is bounded from above by

ePlem){@ 1) m2)

where m is the modified a-cffective rank of the ball in which the curve lies,

and where p(c,n) = const. - (n+ 1) - ¢ and const. can be estimated.

2.5 An Upper Bound on the Effective Rank

In this section we will establish an upper bound for the giz—effective
rank of the ball.

Once again the proof of the following proposition is a modification of the
similar proof in [11]. We will need to use an effective version of the lsotopy

Lemma [6] that was proved by Grove and Peterson in [14], (Theorem 1.6,
page 199).

Lemma 2.5.1. Let B, (p) and B,,(p) be two metric balls on a manifold
M with o < ry. Suppose that there is no e-almost critical points to p on

the complement of B,,(p) in the By, (p). Then there exists a homotopy thot

51




deforms By, (p), so that it lies inside B,,(p) and the width of this homotopy

is bounded from above by 1.

Proposition 2.5.2. Let M be a compact manifold of diemeter d such that

its curvature K > —1. Then modified o -effective rank of any ball in M,

I—cg
2(1+Cd)

where ' = 1/sine, € = as in section 2.2, will be bounded by (n —

l)ﬁn_164(n_1)d/5.

f/
In order to prove this proposition, we will first have to prove the fol-

lowing

Lemma 2.5.3. Let B.(p) be o ball of radius r in a complete Riemannian
manifold M. Assume bs + d(p,y) < br;d(p,y) < 2r . Then if B.{p) doesn’t
L _effectively compress to B,(y) there exists an e-almost criticel point z of

sin e

y with s < d(z,y) <r +dp,y).

Proof. Let us assume that there are no e-almost critical points in the comple-
ment of the B,(y) in Buygpy)+r(y). Then the bigger ball can be ——-effectively
deformed into a smaller one (this follows from the effective version of the Iso-
topy Lemma}, but B,(p) C Bypy)+r(y) C Bse(p),which is a contradiction.

Therefore, there exists and e-almosi critical point z in the complement of

B,(y) in Bupy)4r(¥)- L]

The next Lemma will be a slight modification of the Lemma in [11],

where the term “——-effectively” will be added in appropriate places (see

also [6] for the proof of the original Lemma).
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Lemma 2.5.4. Let M™ be Riemannian manifold and let rank’, (r,p) = j.

Bl e

Then there exists y € By, (p) and z;, .5, € Bs,(p) such that for all i < j, z;

is €-almost critical with respect to y and d(z;,y) > (5/4)d(z;-1, ).

Proof. We begin by considering the metric ball B,(p) of rank’, (r,p) = j.

B e

By the definition of the - —-effective rank’ B,(p) — _s_ By, (p,), such that

81 sine

the following conditions are satisfied:

L. By, {p;) is 5-effectively incompressible;

gine

2. there exists p)_; € B,,(p,) and rj ; <r;/10 such that

rank'y (ri 4,0 1) =7~ 1.

gine

Similarly, the ball By (pj_1) —_a_ By, (pj—1) such that

Bin e

1. By, ,(pj—1} is s—-effectively incompressible;
2. there exists p}_, € By,_,(p; 1) and r}_, <r;1/10, such that

rankly_ (1} 50} 5) = j— 2.

sine

ele.

Note: Bs,,s2(p) D Beyr,, (2)1)-
By proceeding in the above fashion we obtain the sequence of balls

B, (p:),i = 0,1,...,5. such that for 1 < i < jB,,(p;) is Zt--incompressible

and Bsyje O Bsy_, (pic1),ricy < /10, Let y = pp. Then y € Bay, 12(ps)

for all 1 < 4 < j. In particular, d(p;,y) + 5r;/2 < 4r; < 5r; and d(p;, y) <
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3ri/2 < 2r;. Since B, (p;) is g--incompressible it doesn’t L -effectively
compress to By, /2(y). Therefore, by Lemma 2.5.1 there exists an e-almost

critical point z; with
T,;/Q < d(:r;z-,y) < i +2- (3/2)7‘7, = 4’)"1'.
Then d{z;,y) > /2 > 5riy > (5/4) - dryy > 5d(wi—1, y) /4. .

Corollary 2.5.5. rank’, (r,p) < (n—1)g" tetn~1d/5 < ML) yhich

gine

proves Proposition 2.5.2.

Corollary 2.5.6. Let M be compact manifold with K > —1 and d < D.
Assume aolso thal there is no closed geodesics of length < 3d on M. Then
for any closed curve «(t) there exists o point p € M and a homotopy H,

contracting «(t) to the point such that

B(d+1)
Wy, <e° ;

where B = 100(n + 1).

The slight change in the hypothesis will also lead to the

Proof of Theorem 2.1.7. Indeed, let us assume that for any closed curve
w(t) C© M™ there exists a homotopy connecting this curve with a point,
such that the length of curves in the homotopy is bounded from above by
length(w) - ¢ (instead of the assumption (M) > 3d), where M™ is a compact

manifold with X > —1 and d < D. Then there exists a homotopy connecting
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the above curve to a point, such that the width of this homotopy is bounded

from above by

ep(c,n) (D+1)(m+2) ,

where m is the modified a-effective rank of the ball in which the curve lies,
and where p(c, n) = const.- (n+ 1)¢, (see Lemma 2.4.7). Now substitute the
estimate for the modified a-effective rank for m from Corollary 2.5.5. and

we will obtain the result. |

s

We are now ready to construct a homotopy with the following proper-

ties:
1. the length of the curves in the homotopy is bounded,;

2. there exists a point p for which the length of the curve H,(p) is
bounded. |

2.6 Construction of a Homotopy with Curves

of Bounded Length

In this section we will prove the following proposition:

Proposition 2.6.1. Let M™ C VU, and (t) a closed curve in M™. Then

there emists a homotopy H(t) satisfying the following properties:

1. Hpo () = y(8);




|

4. length HM(t) < ee”“™

'H\T’(ﬂ ) Ie, 1.‘1 ) _HT q 'H)
H’!(l"')l“- .}

Ht(O)
H ( t|
HO

2. Hpe(t) = p, where p € M™;

3. sup,, lengthH?*(t) < length(v) + e where A = 200(n +1);

, where ¥(t;),1 = 1,2 are two selected points

on the curve y(t), B=100(n+1).

Proof. Let us begin by observing that for any two curves a4(t), aa(¢) such
that d(c(t), a2(t)) < inj/3 for any ¢ a function that for any ¢ € (0,1) assigns

the minimal geodesic that joins a4 (t) and ag(t) is continuous,

Heltoo by 1.

Hd ko

Figure 2.11: Homotopy of Proposition 2.6.1.

Let () be a closed curve as above, and let H.(#) be the homotopy
from Corollory 2.5.6. For any 7 we will partition the unit interval into
n subintervals [t;,%;y1],t0 = tn so that d(H.(t;), H;{tit1)) < inj/3. That

partition is possible to achieve because of the continuity of H,. Let o;.(s)
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be the minimal geodesic that joins points H,(t;) and H,(t;.1). We are now

ready to describe our new homotopy, (see also Figure 11.) We claim:

1. 4(t) is homotopic to the curve Ay = ]jg.4,_ 1)U Hr (tn1)|jo,] YT 1) U ’§|
—H,(0)|[0,.]- Moreover, the length of curves in the homotopy is bounded
| by I{(v} + 4Wy, (see Figure 11A.)

2. A1 is homotopic to Az = ([0, tn_1] U H(ty—1) U —H,(0), (see Figure
11B.) ,

3. Ay is homotopic to Ay = Y|jp,_s) U Hy(tno2) U —H (lam) U H, (Bp1) U
—1,.(0). The length of curves in the homotopy is bounded by {(v) -+

Wi < I(y) + e D (see Figures 11C and D.)

4. Az is homotopic to A = ¥|[0, tp_o] U H (tn—2) U —H,(0), (see Figure
11E.)

5. A4 is homotopic to As = ][0, t1] U H,(¢1) U —H, (0), (see Figure 11F.)

6. As is homotopic to Ag = H (t1) U —H, (1) U —H,(0) U H,(0) which i

is homotopic to a point p, (see Figures 11G and H.) Note also that

for points {t;}, [(H™*(t;)) < 4Wg, < ™™™ and that we can

partition the unit interval in such a way that some selected points on

the curve y are among y(¢;).
C .

In section 2.7 we will establish a similar result for a compact 2-essential

manifolds with & <1 and vol(M) <V, where k is the sectional curvature.
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2.7 Manifolds with bounded from above cur-
vature

Our result will be based on two inequalities:

1. Croke’s isoperimetric inequality: vol(B) > const.,r™, where B(r,p) is
any metric ball of radius r centered at p € M and r < inj(M)/2. We

can take const., = %, (see [7, 4]). p

2. Berger’s inequality: wol(M) > ep{inj(M)/n)" where M is compact

manifold of dimension n, and ¢, can be estimated to be Z;, (see [4]).

n!?

We will also need the following corollary to Klingenberg’s lemma:

Lemma 2.7.1. Let M™ be compact manifold with the sectional curvature
bounded from above, i.e. K < 1. Then inj(M) > min(m, [(M)/2), where
[(M) is the length of the shortest simple closed geodesic, (see [9].)

Suppose {(M) = 2inj(M). Then we are done, because by Berger’s in-
equality [(M) = 2inj(M) < ¢, vol(M)¥". Therefore, from now on we will
assume that (M) > 2inj(M) > 2m. Our approach will be similar to that of
Section 2.3, but instead of first constructing a homotopy of bounded width
we will right away construct a homotopy similar to the one of Section 2.6.
We will show that it is possible to construct such a homotopy if the distance
between two curves d( (t), az(t)) < n/9. Then we will construct a sequence

of curves {c;(¢)}7, such that
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1. o,(t) = aft);
2. o, = p, where p is a point on a manifold.

3. d(O’@, G'g'_}.]_) < 7T/9 and

4. m < (WPvelM)y2160/m+1

Lemma 2.7.2. Let $ (M) be the space of piecewise differentiable closed
curves of length < L parametrized proportionally to their arclength. There
exists m/36-net on the §-neighborhood Ns(®r(M)) of such curves and the
number of elements in 7/36-net will be < (%@)216‘5/”1.

Proof. First, we will have to construct 7/216-net on M and estimate the
number of elements in it. It will be done using Croke’s inequality. Let

us consider the maximal number of pairwise disjoint balls in M of radius

7w/432. The number of such balls will be < maxw;’;’gﬂfi G < ;fll(fgn —
o 2871 —W

const.pvol(M). The set (By/ais(pi))i, is a cover of M, thus the set of points
{p;} will be 7 /216-net on M. We will construct the required net on Ns{(® (M)
by joining p; and p; with minimal geodesics if and only if d(p;, p;) < 7/72 and
considering its subset consisting of closed curves. The number of elements

in that set can be estimated to be

| 2ol |
< [const.! vol(M))6L/m! = ((n ;"ZZQZ&M) Y2I6L/m+]

(n))2vol(M) .
< ( T )216L/ +1

Let us now apply Lemma 2.4.4, substituting 7 /9 for €. d
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Lemma 2.7.3. Let M™ be compact simply-connected manifold with K > 1,
vol(M) <V, and (M) > 7. Let v(t) € ®,(M). There erists a finite
sequence a; of broken geodesics such that d(o.(t),v(t)) < /36, 0, = p;
length({o;) < 3w; d(0s,001) < 7/9 and the number n of elements in this

sequence is < N, where N = (const. yol(M))¥6L/m+1,
Proof. as in Lemma 2.4.5. 1
We are now ready to construct a homotopy with the required properisies.

Lemma 2.7.4. Let M™ be as in Lemma 2.7.8, and let ¥(t) C M be any
closed curve. Then there exists a homotopy H-(t) of a curve to a point p,

such that

1. sup{ length H. (t)/t € [0,1]} < 2L+ m;

2. length H,(t:), 7 € [0, 1] < eonskavd@OPPIL o (et yol(M)) 260/ +

for at least two selected points t;,1 = 1, 2.
Proof. First we will show that any two curves o4 (t), aqx(t) such that
daq(t), aa(t)) < 7/9
can be connected by a homotopy H.(¢) for which
1. sup,{lengthH. (t)/t € [0,1]} < 2L 4.

2. lengthH (t;),t € [0,1] < /9.
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Then we will apply Lemma 2.7.3 to get a desired homotopy.

Let us subdivide the interval {0,1} into subintervals [£;, ¢;1,],50 that the
figure with vertices: ci(ty), cts), oaltivr), and an(tiv1) and edges ayf, ., il
and o;(s), where o;(s) is a minimal geodesic joining o (t;) and ao(t;) lies
inside the ball of radius 7/3. That is possible to achieve by demanding that

max length o), 4., < 7/9. The function that for each s assigns the minimal

i+1
geodesic Fi(t) that joins points o;(s) and oy,1(s) is continuous. W.L.O.G.

assume that a;|p; . is a geodesic. Let us call it ¢t. Then we claim:

1. o, is homotopic to 71 = @il o U oty (8)]fo,s) U B U —0(s).
Moreover, the length of curves in the homotopy is bounded by 4w /9 +
5(051).

9. 7. is homotopic to ¥ = o jot,_1] U Tt s Y 02|11, U —0c. Length of

curves in the homotopy bounded by 27/9 + I{c) + l{aa).

3. 7y, is homotopic to 3 = a1jo,tna] U Tta_s 0, U B2 U =, [0 U
oy, U a2|[tnm110] U —oy. Length of curves in the homotopy is < 27 /3 +
Hag) + ).

4. ~s is homotopic to 74 = oo a_s] U Otn o Y @2lltncstnos] U~ Ttuey Tty U

an[tn.—l,U] U —ag.
5. #y4 is homotopic t0 5 = @1ljota_s) U Ttz U @2 lft,—s,01 Y —00.

6. s is homotopic to v = o[, U 0, U 02,0 U —00.
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i
I

7. 7 18 homotopic to 9y = gy U aee U —0, which is homotopic to ay. Note
that the maximal length of curves in the resulting homotopy is bounded
from above by o + 2L. Note also that for all ¢; length H(t;) < /9,
(see Figure 12.)

Figure 2.12: Homotopy of Lemma 2.7.4.

Now let us apply Lemma 2.7.3, i.e. take a sequence of broken geodesics
oi. We know that o; is homotopic to o0;,.1, where the homotopy H* has
the desired properties. Take the compaosition of those homotopies to obtain

H,(t). It is clear that it will satisfy (1) and (2) of the Lemma. d
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|
2.8 Construction of a closed path in the space
of closed curves i

Before we attempt to prove our main theorems we will need the follow-

ing two definitions from [12]:

Definition 2.8.1. (Filling Radius of n-dimensional Manifold M Topologi-

cally Imbedded into X) Filling radius, denoted by Fill Rad(M C X)), where

X is an arbitrary metric space, is the infimum of ¢ > 0, such that M bounds
in the e-neighborhood N.(M), i.e. homomorphism H,(M) — H,(N.(M))

induced by the inclusion map vanishes.

Definition 2.8.2. (Filling Radius of an Abstract Manifold) Filling radius il
Fill Rad M of an abstract manifold M is Fill Rad (M C X), where X =
L>(M), i.e. the Banach space of bounded Borel functions f on M, and the )
embedding of M into X that to each point p of M assigns a distance function

P fp=dp,q).

The idea of filling radius will be used in as much as we will need the

\
|

following result proved by Gromov in [12]. b
I

Theorem 2.8.3. Let M be a closed connected Riemannian manifold of di-

mension n. Then Fill Rad M < (n -+ 1)n/nl(vol M)'/".

We are now ready to prove the following proposition: il
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Proposition 2.8.4. Let M" be compact 2-essential manifold of dimension
n, with the property that for every closed curve y(t) of length < 6 FillRadM,
there exists a homotopy H,(t) of that curve to a point p, such that length
of curves in the homotopy is bounded by Ly and for two selected points on
y(t) : y(t:), % = 1,2 the length H.(t;) < Ly. Then there exists o closed path
in the space A(M™) of closed curves on a manifold with the property that the
length of each curve is bounded by f(Ly, Ls) = 3L, + 6Ly and such that this

path represents a non-trivial element of T (AM™).

Proof. The proof will be done in two steps: The idea of Step 1 is to obtain a
nontrivial element of Hy(M) with some special properties described below.
'This will be done the following way: we will consider the filling of M that we
will call W, and then try to extand the map f: M — CP*® to W. We will
then obtain that element as an obstruction. This part of the pfoof will be a
modification of Lemma 1.2 B and the Proposition of Gromov in [12] {page

136). In Step 2 we will construct the path.

Step 1 Let W be a filling of M. Since M is 2-essential there exists a function
f i M - CP* such that f,[M] # 0. We will try to extend f to W. Let us
proceed as follows: first, extend f to O-skeleton of W, then to 1-skeleton of
W, etc. This process will have to be interrupted at the 4th stage since we

know that f cannot be extended to W.
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Extending to O-skeleton Subdivide W, so that all simplices have diam{o)
< 4. Send vertices w; € W to vertices of triangulation m; € M for which
d(w;, m;) < d(w;, M) -+ 6 < Fill Rad M +4. Suppose m;, m; come from ver-
tices w;, w; of some simplex in W. Then d(m;, m;) < d(ms, w;) +d(w;, m;) <
d(mi, w) + d(wi, wy) + d{w;, m;) < 2Fill Rad M+348. Thus, m;, m; can be
joined by geodesic of length < 2Fill Rad M +34.

Extending to l-skeleton Send the 1-simplices [w;,w;] € W/M to the
above geodesics joining m; and m;. (In addition, we assume all 1-simplices
in M to be already short.) So we can see that the boundary of each 2-simplex
in W is sent to a curve of length < 6Fill Rad M +94, (note, that it is also

< 3d).

Extending to 2-skeleton let o be a 2-simplex of W. Consider its bound-
ary do and the image of do under f. 1t will be a closed curve consisting of
broken geodesics. Let us call it v(¢). By our hypothesis we know that there
exists a special homotopy H(¢) of that curve to a p oint. We will then map
o to the surface determined by this homotopy.

We have thus succeeded in extending our map to the 2-skeleton. Ex-
tending the map to 3-skeleton would have been equivalent to extending it to
the whole of W, but that is impossible, gince it would contradict f,[M™] # 0.
Therefore, there exists a 3-simplex in W, such that the image of its boundary

w represents a nontrivial element of Hy(M).
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Figure 2.13: Nontrivial element of Hy(M) from Proposition 2.8.4.

Step 2 Consider w. Let’s denote its vertices a,b,c,d. (Here, we will call
vertices of w the images of vertices a*, b*, ¢*, d* of Q.) Let x,y,2,s be images of
faces of Q. (They are obtained by contracting closed curves [a,b,d], [b,d,c],
[a,b,c], [d,a,c] in M by the homotopies from the hypothesis of this proposi-
tion, which we will call H?, HY, H?, Hj respectively.) Let us examine the

face ¢ of w. We will claim that

1. a, regarded as a constant curve, is homotopic to [a, B|U[b, a], (see Figure

14.A.) and the length of curves in this homotopy < L.

2. [a,b] U [b, a] is homotopic to [a, b] U H#(b) U —H?(a) and the length of

curves in the homotopy is < 2Ly + 2L,. Figure 14.B. and C.
3. |a,b]UH?(b)U—HF(a) is homotopic to [a, )| UHT [jp, (b)) U HE ([a, b]) U

—H¥{jo,r,)(@). Figure 14.D. The length of curves in the homotopy is

bounded from above by 2L, + 2L,.

4. [a,b]U H|jo,r,(0) UHE (¢) U —HZ|o,5,1(a) is homotopic to [a, 5] U[b, d]U
[d, a], and the length of the curves in the homotopy is . < 2L, + 2L,.

Figure 14F.

By the same type of constructions we have

66




5. [a, b]U[b, djU[d, a] homotopic to [a, 2] U [z, U b, 1] Ulw, d1U[d, s]U[s, a]
homotopic to [a,c] U [¢,b] U [b,¢] U fe,d] U id, ¢] U [e, a] homotopic to
la, ¢] U [¢,a] homotopic to a, where the length of the curves in the

homotopy is < 3L + 6L,. See Figure 14F and G.

Figure 2.14: Nontrivial element of H,(AM).

Now we can prove the main theorems. The proof of Theorem 2.1.1 will
be a combination of application of results of Sections 2.2-2.6 and Step 2 of ;

Proposition 2.8.4.

Proof of Theorem 2.1.1. Let us triangulate M™ so that diameter of any sim-
plex 7 is less than the injectivity radius of M™. Select any cycle o composed

of the simplices of the triangulation and representing a nontrivial element
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in Hy(M™). Since any simplex 7 is located in the ball with radius smaller
then the injectivity radius, we can assume that 2-faces of simplices of ¢ are
surfaces generated by contracting the boundary to the center of that ball.
(Note that the width of the homotopy in that case is < d.) Pick a point
p € M™ Now join p with all vertices of ¢ by minimal geodesics. Now con-
sider all the closed curves that are formed by three segments: [p, vi],[p, v2],
fv1, vo] where [p, v1], [p, v2] are minimal geodesics joning point p with vertices
U1, Ug, and [vy,vy] 18 an edge of o. The length of such closed curves W;II be
< 3d. So we can contract each of them to the point using the homotopy
of Proposition 2.6.1. We thus obtain 2-cycles, at least one of which should
represent a nontrivial element of Hy(M) in order for o not to bound. This
cycle hag the shape of the one in figure 13, i.e. its vertices are p, vy, vq, v,
where v1,v9,v3 € o, its edges are curves of length < d, and its faces are
surfaces generated by the homotopies of Proposition 2.6.1 (except for the
face that lies in ¢, which is generated by the homotopy that is even nicer
since it lies inside the ball of radius that is less than the injectivity radius of
M™.) We can now denote this cycle w and follow Step 2 of Proposition 2.8.4
where L; < e and Ly < ™Y where Iy and Ly are as in
Proposition 2.8.4. Therefore, by Step 2 of Proposition 2.8.4 there exists a

closed nontrivial curve in the space of all closed curves such that the length

£250{n+2)(d+1) < 66250(n+2)(p+1), O

of each curve is bounded by 374 + 6L, < e

Proof of Theorem 2.1.8. Tf I(M) = 2inj(M) then I(M) < 24/nlwol(M)Y/" <

/niV® and we are done. Otherwise, the proof is similar to that of Theo-
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rem 2.1.1 and is an application of Lemma 2.7.4, Theorem 2.8.3, and Propo-

gition 2.8.4. Note that in this case

Iy = 12Fill RadM + ,

nWY2vol(M il Radi 4
I, = (( )an—g ))2161" i RadM A1

Obvious substitutions and calculations imply the result. 0
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