On the filling volume of Riemannian manifolds

A Dissertation Presented
by

Neil Nahum Katz

to

The Graduate School
in Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy
in
Mathematics

State University of New York
at
Stony Brook

May 1998



State -University of New York
at Stony Brook

The Graduate School

Neil Nahum Katz

We, the dissertation committee for the above candidate for the Doctor of
Philosophy degree, hereby recommend acceptance of the dissertation.

bk TP,

Detlef Gromoll
Leading Professor of Mathernatics

Thesis Advisor

Michael Anderson

Professor ot: Mather
N Cha Of D 5
rorg

Marie-Louise Michelsolin
Professor of Mathematics

W olln E AT

William E. Holt
Associate Professor
Department of Geosciences
Outside Member

This dissertation is accepted by the Graduate School

ava [t

Graduate School



Abstract of the Dissertation
On the filling volume of Riemannian manifolds
by
Neil Nahum Katz
Doctor of Philosophy
in
Mathematics

State University of New York at Stony Brook

1998

In this paper, the filling volume of M. Gromov for the circle
of length 27 is found to be equal to 27 and uniquely realized by
the round, unit hemisphere. An application is a geometric in-
equality of isoperimetric type. This in turn is used to find upper
estimates for both Cheeger’s constant and the first eigenvalue of
the Laplacian assuming an upper curvature bound. The geomet-
ric inequality and both upper estimates are realized in the case of
a sphere of constant curvature. A more general problem of find-
ing metrics of minimal volume that satisfy a lower bound on the
distance function restricted to the boundary is posed, and partial

results characterizing these metrics are given.
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Chapter 1

Introduction

M. Gromov [17] showed that there is a lower bound for the volume of a
Riemannian manifold. Vol(M, g) > ¢(n)Sys”(M. g), where c¢(n) is a constant
depending only on n, the dimension of M, and Sys(M, g),the systole of (M, g),
is the length of the shortest non-contractable curve (given topological assump-
tions). To do this, he defined two Riemannian invariants: the filling radius
and the filling volume (see [4] for a summary). M.Katz [20] has calculated
the filling radius for RP" and S™ with constant curvature metrics as well as
finding lower bounds for CP*, HP™ and the Caylev plane with their standard
metrics. In this paper we show that the filling volume of S!' with length 27
is realized by the hemisphere of constant unit curvature (Theorem 3.1), as
conjectured by M. Gromov. The problem of finding the filling volume of S! is
one of minimizing the area of an orientable surface with boundary S! while
keeping the distances between points on the boundary from falling below those
of the standard metric on S'. R. Michel [23] found that fixing the distance on

the boundary of a surface leads to rigidity of the metric. This result does



not use the hypothesis of non-positive curvature unlike other results of rigid-
ity obtained by fixing distance on the boundary. Another case of rigidity of
the metric given conditions on the boundary was established by V.Bangert
in [1], where he showed that if the length of all non-constant geodesics with
end points in the boundary of a compact n-manifold is equal to 7, then the
manifold is isometric to a unit hemisphere.

Using the filling volume of the circle. we prove that
8r?
Area(M, g) — Area(B:(p).g) > — (1.1)

for a complete, orientable Riemannian surface (M.g) and B.(p), a metric ball
at p€ M of radius r < conv(p), the convexity radius at p. This inequality is used
to find an upper bound for Cheeger’s isoperimetric constant A on a compact
manifold, given an upper curvature bound (Corollary 4.2). P.Buser [7] used
Cheeger’s constant to give an upper bound of the first non-zero eigenvalue of a
complete Riemannian manifold assuming a lower curvature bound. We employ
(1.1) to find an upper estimate for the first non-zero eigenvalue of the Laplacian
of a complete, orientable Riemannian manifold of finite volume, in terms of
convexity radius and an upper curvature bound. This gives a sharp estimate
of the kind obtained by M.Berger [3] and C.B.Croke [11] with the added
assumption of an upper curvature bound. The philosophy of this approach is
similar to that used by P.Li and S.-T. Yau [22] to find sharp bounds for the first
eigenvalue of the Laplacian for compact surfaces. However, the result is very
different in nature. Other upper estimates for Ay involve either a lower bound

on curvature (sectional, Ricci or mean curvature) [3, 6, 8, 9, 10, 14, 15, 21], or




on the genus (2, 8, 12, 18, 19, 25, 26].

The strategy for finding the filling volume of the circle is to reduce con-
sideration to the simply connected case, which was solved by M. Gromov [17].
A slightly different version of this result is needed, and the statement and
proof are found in Chapter 1 (Proposition 2.8). The constructions used to
arrive at the simply connected case and to prove tiniqueness are introduced as
lemmata in Chapter 2. The third chapter contains the statemnent and proof
of the main result. Applications including a sharp, geometric inequality of
isoperimetric type, and eigenvalue estimates are given in Chapter 4. Finally,
in Chapter 5 we motivate and pose a more general problem of finding minimal
volumes for a manifold with boundary with a lower bound on the (extrinsic)
distance function restricted to the boundary. Partial results are given on the
characterization of metrics which realize minimal volume. They are in terms
of the number of geodesics through each point in the interior that realize the
lower bound on distances between points in the boundary. The notation used

is listed in Appendix A.




Chapter 2

Basic Constructions

Definition 2.1 Let (V, h) be a compact Riemannian n-manifold. We say that
(M,g,¢) fills (V,h) (or (M,g,9) is a filling of (V,h)) iff (M.g) is a Rie-
mannian (n+1)-manifold with boundary complete as a metric space of finite
volume, ¢ : V' — dM is a diffecomorphism, and g 1s such that the eztrinsic
distance, dg(p(z),¢(y)) > du(z,y) for all z,y€ V. Also, if V is orientable,

then M is required to be orientable.

In (17}, Gromov defines the filling volume of a compact Riemannian man-

ifold and shows that it is equivalent to the following.

Definition 2.2 The filling volume, of a compact Riemannian manifold (V, h),
denoted by FillVol(V, h), is the infemum of volurnes of all (M, g, ) which fill
(V. h).

In fact, Gromov shows (Proposition 2.2.A in [17]) that the infemum is the

same if we restrict to any given M and ¢ when the dimension of V is at least




two. From Theorem 3.1 and a simple construction, it follows that this result
also holds in dimension one i.e. when V = S! (see Remark 3.2).

We will use the following terminology. If (.\, d) is a length space, and
v : [a,6] - M is a rectifiable curve, then we call 7 a segment if L(y) =
d(v(a),v(b)). We say that ~ is a geodesic if (X. d) = (M,d,) for some Rie-
mannian manifold (M. g) (possibly with boundary) and 7 is a critical point of

the energy functional
b
E0) = [ @iz,
a
We will be concerned with certain segments between points in the boundary

of a filling. In a slightly more general setting we make the following

Definition 2.3 Let (.X,dx) be a length space such that for some continuous,
symmetric function p: 90X x0X - R dx(p.q) > p(p,q) for all p.q€dX. A
rectifiable curve v:[0.1] — X is called taut with respect to p (or p-taut) iff

Y(0)=p and v(1)=q for some p,q€dX and the length of v is equal to p(p, q).

If (M, g, ) fills (V. k), then the distance between any pair of points on the
boundary of M is bounded below by the distance of their preimage under @.
For this filling is to realize the filling volume of (V. h), there must be sufficiently
many taut curves. The following lemma shows that there is at least one such

curve through each point in the interior of M.

Lemma 2.4 If (M, g. ) fills (V, h) and there exists UC M an open set such
that for all p € U there is no v : [0,1] = M through p which is p-taut, then

there is @ metric § on M with Vol(M, §) < Vol(M. 9), such that (M, g, o) fills



(V. h). Thus, if the filling is of minimal volume. there must be at least one

p-taut curve through each point in the interior of M.

(Proof)

Without loss of generality, we may assume that U C M \OM. Take peU,
7 >0 and A compact so that B,(p) CACU. Let ©: M — [n,0] be a smooth
function with support supp ¢ C B,(p) and inf¢ = n < 0. Define a new metric
on M, g =e*¥g. We clearly have that Vol(M, §) < Vol(M, g). Also, § =g on
M\B,(p). Set

R =inf{dy(p(z).q) +dy(g, ¢(y)) —dn(z,y) g€ Aand z,y € V}.

Now, A and V' are compact, A C U and there arc no taut curves through U.
Therefore R > 0 by the continuity of the distance function. We are free to
choose r < R/2.

Take any smooth curve a : [0,1] — M with «(0) = p(z), a(1) = o(y) for
z,y € V. If a does not enter B,(p), then clearly Li(a) = Ly(a). Otherwise,

let
a=inf{t€[0,1] | «(t)€ B,(p)} and b=sup{te(0,1]|a(t)e B.(p)}.
Since § = g on M\ B.(p) and ¢ is distance nondecreasing, we have that

L(c)

v

Ly(ali,a)) + Lg(clpp,1)
2 dg(a(0), a(a)) + dg(ala), a(l)) — dy(a(a), a(b))

2 dn(p(z),0(y)) + R —2r.

Thus, distances between points in ¢(V) are bounded below as desired.



Now to conclude the proof we will show the set of points p without p-taut
curve passing through them is open. Suppose that there is a sequence {pi}ien

converging to p and a sequence of pairs {(=%,¥))}en CV x V with
dy(z;, ;) +dg(pj,y;) < dale,95),

where z; = o(z) and y; = v(y;)- By the triangle inequality,
dy(z;, p;) + dy(pj, y;) = dal(r), ).

As V' is compact, so is V x V and so we may pass to a subsequence of pairs
{(z}, ) }jez convergent to (z',4') € V x V. By the triangle inequality, we

have that

dy(p.x) < dg(p,pj) + dg(pj, z,) + dy(z;, 7)
dg(p.y) < do(p.p;) + dg(p;. y,) + dy(y;. y),

where z = ¢(z') and y = ¢(y'). Therefore

de(P,z) +dy(p,y) < 2dy(p.p;) +dy(a;, ) + dy(y;, y) + dalz). y))

< 2dg(p, pj) + dg(zj, z) + dg(y;,y)
+du(z', ') + du(z}, 2') + du(y}, ¥)
< 2dy(p, pj) + 2dg(z, ) + 2dy(y;, y) + da(z, y).

Now, for any € > 0, there exists an N so that for all I>N
max{dg(p, pj)1 dg(l'jv z), dg(yj7 y) } < €/6 ’
so we have that for anv € > 0

dg(p,z) + dg(p,y) < du(z’.y') +€.




Therefore,
dg(P: z) + dg(p’ y) < dh(l": y')
= dg(l’: .Z') +d_q(p7 y) 2 dg(l" y) Z dh(xlv y’)

so, by the triangle irequality,

dg(p7 1‘) + dg(p: y) = dh(r,- !/’) .
This implies the existence of a taut curve through p, a contradiction.

O

Note that the change of metric in Lemma 2.4 is a conformal one. Consider
a conformal change of metric § = f*g on an n-dimensional manifold M. Then

for any C' curve v:[a.b] = M,
Ly = [ VR = [ 1,
Also, det g = f" det g. so
Vol(M, 3) = /M Vdetg = / ety =1l

The following lemma shows that in each class of conformally equivalent
metrics there is a weak solution to the minimal filling problem. Suppose that

(M™, g,0) (n>2) is fills (V, h) and denote
P = {760‘([0, 1, M) | 7(0),7(1)661\4} :

Let F be the set of all conformal factors f for which (M, f3g, ) fills
(V. h):

1
F={fec>(MR")| V’VGP,/O f)Alldt > (lv(sO‘l(7(0))&"(7(1))}-




Lemma 2.5 If there ezists a function fy in the L™-closure of F such that

n — i f n.
Il follc flgfllflln

then this function is unique and so each class of conformally equivalent metrics
on M has at most one weak solution to the problem of finding the metric of

minimal volume which fills (V, h) via .

This is a special case of Lemma 3.3 which is proved in Chapter 5.
Next we state a technical lemma used to show the compactness of certain

sets of curves.

Lemma 2.6 Let (M.y) be a smooth, compact Ricrnannian manifold with
smooth (possibly empty) boundary and {cx:[0,1] — M} on a sequence of piece-

wise C'-curves in M. If

sup sup |[Jak(t)]| < oc.
keN teglo,1]

then there exists a uniformly convergent subsequence. In particular, the dis-

tance between any given pair of points in M is realized by a segment.

(Proof)

Since the speed of these curves is bounded above, they form an equicon-
tinuous set and M is compact, so {ax(t)} has compact closure for all ¢ € [0, 1].
The Arzela-Ascoli Theorem [13] then applies to show that {ax} has compact
closure in the compact-open topology on C°([0, 1]. M) and is equicontinuous.
Therefore we can pass to a subsequence {a;} which converges to a continuous

curve a. k> N.



To show the existence of a segment, we take a sequence of C! curves joining
a pair of points whose lengths converge monotonically to the distance. There
must then be a continuous curve joining these two points whose length is equal
to the distance. Because the curve is locally minimal for the length functional,
it must be a g-geodesic in the interior of M and C!. Also, if it stays in OM
for time of non-zero measure, it must be a geodesic in the induced metric on

OM. Therefore, it is C' and piecewise C*.

O

The next lemma is key in proving the main result. Applying it a finite
number of times to a filling of (S',2pi) by a compact manifold results in a

filling of (S'.2r) by a disc of smaller area. Let
A = {a€Q(M) |« is simple and not contractable in W = M/~ },
where z ~ y iff z,y € M, and Q(M) is the set of all piecewise C! loops in M.

Lemma 2.7 Let (M.g,¢) fill (S',27), with M compact, and assume that
there exits a € A which does not intersect OM anid realizes the infimum of the
lengths of curves in A. Then there is a manifold of strictly smaller area than

(M, g) which fills (S*, 27).

(Proof)

Parametrize a: R — M to have constant speed, period one and so that
aljo,1 is injective. It follows that a7 |- 11 is a geodesic and minimizing for any

o and furthermore that there are exactly two minimal connections from a(o)

10



to a(o+3), specifically a|[‘m+%] and al[ﬁ_%yﬂl]. To see this, suppose that there
exists a minimal curve v :[o, 7] = M from a(0) to a(r), with c <7< o + 3
Without loss of generality we may assume that Yl(s.r) does not intersect a. Let
B =alp*7and B = v * a|(r.q+1); where ¥(t) =v(T + o — t). Note that 3;
are simple. If either g; is not contractable in W (defined above), then there
is a C! curve homotopic to B3; of strictly shorter length. To find such a curve.

let T be such that

p = Bi(T) = afr) = ~(7).

Since both a and ~ are geodesics, they meet transversally at p. Hence, by
strong local convexity of Riemannian manifolds. for € > 0 sufficiently small
there is a unique, minimal geodesic from Bi(T - ¢€) to B;(T + €) which is
shorter than the path between these two points along B;. This gives a new
curve Bj which is simple and homotopic to B; for e sufficiently small. Therefore

Bj €A and,

Le(B;) < Ly(Bs) = Lg(a).

This contradicts the minimality of the length of o in A. If both 3, and 3, are
contractable in W, then so is a, contradicting a € A. Therefore, « is a simple,

periodic geodesic.

Consider N = M\« a manifold with boundary ON =90M e, as,, where
@1, & are disjoint components of NV and are diffeomorphic to a (see figure).
We have a natural map f: N — M which identifies a; and o, with o, i.e.
fai(t)) = f(aa(t)) = a(t). This map is a local diffeomorphism on N\(a,Uay)

and is surjective. Let g:S! — N be the unique map such that fogy =

11



and let go = f*g. Then Area(N, go) = Area(M, g). Also, ¢, is distance non-
decreasing because the set of possible curves from ,5(S!) to ¢o(S!) can be seen
as a subset of those from M to M. Since a is minimal in A, and in particular
is a geodesic, the only taut curves through points on « are transversal to it

with exactly one point of intersection.

|88
Ne s

C sy

(.\[.f])< f (.'\".g()) (.‘\".gl)

Figure 2.1: Construction of (V, g;) and (N, g;)

Therefore, no point on a; can have a @o-taut go-segment passing through it.
Whence there exists a neighbourhood U of a;Ua, such that for all p € U there
Is no taut go-segment passing through p.

Take Fermi coordinates given by the distance to a; U as on a subset of
U. Let & be the coordinate field chosen so that f+&ala, =c for j=1,2. Take
&, normal to & chosen to agree with the orientation on N induced by f. The
frame {£),&;} is everywhere gg-orthogonal. Define a new metric on NV which

stretches go along & and shrinks it along &, (see figure). In particular, let

<‘Y7 Y)gl = (1 + 771/)) <X7 Y)go - 2U¢(<\'- §2>go (Y', f?)gos

12



where O<n<land ¥ =¢o f, y: M — [0, 1] is a smooth cutoff function with
supp ¥ C B;s(c). We take 1 to be constant on level sets of the g-distance to
@ so that ¥(a(t)) = 1 for all t. If we choose 6 > 0 sufficiently small this is
well-defined. We will show that in this new metric. a; are both shorter, further
from M, and are still geodesics so that « is minimal in A in the metric g on

M defined by
<‘Y, Y>§ = (1 + nTZ’)(X, Y)go - 27”‘;(‘Y7 ft€2>go ()/y ftzi'Z)go'

Note that g = f *§. For § > 0 sufficiently small the support of ¥ does
not intersect wo(S') and any curve realizing the go-distance from a point in
N \ supp% to a; is tangent to & whenever it is inside the support of v.
Also, {&;} is g;-orthogonal, and ¥ is constant on level sets of the go-distance
to a; U a;. Therefore any curve realizing the ¢,-distance from a point in

N \ supp ¥ to a; is also tangent to £, when it is inside the support of ¥, so
dg, (aj, N\ supp ) > dgy, (a, NV \ supp¢) .
Also, go and g, are equal outside of supp v therefore,
dg, (@j, 9o(S")) > dgo (), 2o(S1)). (2.1)

In the metric §, o will be a periodic geodesic and be minimal in A as

follows. For any other piecewise C!-curve 3:[0,1] — M in A,

Li(8) = [+ adBes - 2nbip ez
1 .
> [Va-dnseige

13
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> /0 VI=nllA0)ldt
2 \V/ 1- nLg(a)

since o is minimal in A. Now &, is tangent to o and Yoo = 7, SO
Lj(a) = /1 —nLy(a).
and it follows that
Lg(B) 2 V1= 1 Ly(e) = L;(a).

Therefore in the metric §, a is minimal in A and so, in the metric g1, a; are

geodesics. For j=1,2,

—
!\3
N

N

Ly () = V1 =1 Lgg() < Lyy(e).
Now we will show that if 7 is chosen sufficiently small,
po:(S',2m) = (N, g91)
is distance non-decreasing. Define a sequence of metrics §x on N by the formula
(Xo¥)ae = (L4 G)(X, Y ) g0 — 20k(N. &) 4o (' €2}
where ¥ = 2%y, so gk = go in C*=. Since {¢;} is go-orthonormal,
det(ge) = (1 + wi)(1 — Px)det(go) = (1 - c})det(go) < det(go),

with strict inequality inside supp 1. Therefore,

Area(N, gx) < Area(N, gy). (2.3)




Suppose now that for all &, ¢g: (S, 27) — (N, §) fails to be distance non-
decreasing. Then, there exists a sequence of pairs {(z},y.)} C S! x S! such
that if zx = o(z}) and yx = po(yL),
dg, (Zk, yk) < dsr(zh, yi) < dgo(e, yi)- (2.4)
Since (N, gi) is a compact manifold with boundary, we can apply Lemma 2.6
to obtain v;:{0,1] — V a gi-segment from z to y;. We have that
Ly (k) = dg (zks yk) < ds1 (zhs i) < dgo (6, %) < Lo (%),

and so v, must enter suppvy. Therefore, v, enters N \ON and is locally §-
minimizing there so if v;(t) € N\@N, then v, is a ji-geodesic on (t — ¢, t + €)
for some € > 0. Also. 7 is C!, piecewise smooth and {7} have bounded
speed in the gy metric. Therefore, we can apply Lemma 2.6 once more to
get a uniformly convergent subsequence v, — 7. In particular we have that
%(0) = 7 = 7¥(0) = z, and %(1) = yx — (1) = y. From the triangle
inequality,

dgo(Z,y) < €+ dgq (zk, y1),

for any € > 0 as long as k is sufficiently large. Therefore,
dgo(z,y) < limkinfdgo (zk,yx) < limkinngo('yk).
Also by the triangle inequality and by (2.4),
dgo(z,y) > dg (zk, yr) — €
for k£ sufficiently large. This is true for all € > 0. so we have that

dgo(z,y) > lirnksupdgk (Zk,yk) = limksup Lo (&)



because gx — go uniformly. Therefore,
limksup Loy () = limkinngo('yk) =dgo(z,y)

and also,
kllglo Lgo(v) = Lgy(7)

again, because ; — v uniformly. Therefore,

dgo(z,y) = Lgy(7)

i.e. v is a go-segment, so it is C! and piecewise smooth. Also, it is a go-
geodesic inside N\ ON. Now, every v, intersects the compact set suppvw C U.
Therefore, so does ~.

Furthermore, (2.4) along with continuity of the distance function and the

fact that,
kli,n;dék (zk, Yk) = kllglc Lﬁk () = Lgo("/) = klg{.lo dyo(xk?-‘/k)f

imply that Ly (v) = ds: (2, y’') where @o(z’) = + and wo(¥') = y. so v is 2o-
taut. This is a contradiction because v enters {". Therefore, we can choose
k sufficiently large so that if g; = g, ¢p: (S%,27) = (N, g1) is distance non-
decreasing.

We proceed inductively and obtain a sequence of metrics {gr} on N, where
9gk+1 stretches g, along &, and shrinks along &, inside Bjs(a;Uay). In particular.

we have

(-\” Y)gk = (1 + nwk)(‘Y’ Y)go - 27711[)/6(-\’7 £2>go (}/1 EZ)go:

16



where {1} CC*®(N,[0,1)) is a sequence of functions with the following prop-

erties:

(i) They are constant on level sets of the distance to a, U o attaining their

suprema on ¢ U as.
(ii) supp ¥ C Bs(ay U ay)
(iii) ¥k (z) is non-decreasing with k for all ze ¥V

(iv) V& > 0 3 ks such that ¢;(z) = wj(z) for all i.j > ks and for all x with

dgo (l', alLJag) > 4.

(v) o is distance non-decreasing into (V, gi).

We have that dg, (v0(S'), o), Ly, (a;), and Area(N, gx) are all strictly
decreasing with k, by (2.1), (2.2), and (2.3), respectively. For all these met-
rics {@;} are geodesics in A. If limg_qo L, (@;) >0, then since Ly, (o) =
V1 =1L, (), we have that ¢ converges to a continuous function Yo Which
by (iv) is smooth on N\ (@, U a;). For § >0, take a smooth approximation
'([35 2 % constant on level sets of the distance to a,Ua, with SUp |¥oo —1,/;,5[ <9,
so that 15 o f~! is well-defined and smooth, and ¢5(z) = tu (z) for all z with

either dg,(z, ay Uas) > 4, or 7€ U ap. Define a metric Js by.
(X5 = € (1456 (X, ¥ gy = 205X, & (¥ 2}

where A € C*(N) is a non-negative function constant on level sets of the
distance to o Ua;, with supp A = supp ¥\ (@1 Uw), Ao f~! well-defined and

smooth and || f|[,: sufficiently small so that Arca(N,e*g,,) < Area(M,g).

17



Thus, L (a;) = L, and lim;_,q lvllss > [lvllg.. with strict inequality for v
based at a point in the support of A. The conformal factor 2 will serve to
stretch out lengths of curves so that for § > 0 sufficiently small, ¢q: (S}, 27) —
(N, gs5) will be distance non-decreasing, yet Area(.V, ;) < Area(M, g). Also.
a; will be geodesics, minimal in A, and will not intersect vo(S'). We can
proceed to apply a change of metric once more so that for any [ > 0, we
have Lj(a;) <! for some metric § such that wo:(S',27) = (N, §) is distance
nondecreasing.

Since a; are totally geodesic, we may glue in two discs, each with area
less than twice that of the round hemisphere of radius [ so that the map given
by inclusion composed with g is distance non-decreasing. The area of the
two discs can be made arbitrarily small by taking [ sufficiently small, so that
the resulting manifold (V, §) will have Area(N. ) < Area(M, g). Therefore,
(N, §) is a Riemannian manifold, complete as a metric space with strictly

smaller area than (M.g) and ¢,:S' —» N, the map induced by ¢ is distance

non-decreasing, as desired. 0

Proposition 2.8 (M. Gromov [17] pg. 59) Let (M. g) be a Riemannian man-
ifold with boundary, diffeomorphic to a 2-disc such that (M, g,¢) fills (S*, 27).
Themn,

Area(M) > 2

with equality if and only if (M, g) is isometric to the hemisphere of constant

curvature one.

(Proof)
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Let N = M/~ where z; ~ z, if and only if rj = ¢(z}) with T; € St and
dsi(z},23) = 7. If N is isomorphic to (RP? with the canonical metric. we are
done. Otherwise, take a sequence of smooth metrics {gc} on M so that the
induced metric g, on .V is smooth, and so that 9x — g smoothly on compact

subsets of M\OM with ||v]lg, > ||v|l, for all y€ T V. Then we have,
Area(N, g;) = Area(M, g) — Area(M, g),

and since any non-contractable curve in N must come from a curve in M which

hits some antipodal pair, the systole
Sys(N. gx) 2 Sys(N, ¢') = inf{dy(z. y)|z ~ y} > 7.
Then by the isosystolic inequality of P. M. Pu [24].
o~ 2 2
Area(M. gi) = Area(N, g;) > ;Sys(N, 9:)° > 27

Since all metrics on the disc are conformally equivalent, there is bv Lemma 2.5
below, a unique metric of minimal area which fills S! via . This must be the
metric of constant curvature one. Thus equality is only attained in this case
and there is strict inequality if we take k sufficiently large. Therefore, in the

limit as £ — oo, we have the desired result. ]
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Chapter 3

Filling volume of the circle

In this section, all surfaces are assumed to be orientable. The proof is
accomplished by direct construction. It is shown, using Lemma 2.4, that given
a filling of S' by a non-compact manifold there is a filling by a compact
one with strictly smaller area. Then, given a filling that is compact, but
not simply connected, a manifold of strictly smaller area is constructed using
Lemma 2.7. This construction, if repeated finitely many times provides a
simply connected filling (i.e. a disc) with strictly smaller area. M. Gromov’s
proposition (Proposition 2.8) is then applied to show that the ob ject of minimal

area is in fact the round hemisphere.

Theorem 3.1 If (M. g, ) fills (S, ®2) then, Area(M, g) > 2x. with equality

if and only if (M, g) is isomorphic to the hemisphere of constant curvature one.

(Proof)

Suppose first that M is not compact. Let

A={pe M|d,(p,0M) > 7/2}.




By Sard’s theorem, there exists 7 >7/2 a regular value of the distance to M ,
and

A={pe M|dy(p,0M > r}.
We have that .
A>4a=J4,
j=1
a disjoint union of connected components with 9 A diffeomorphic to &' > k&
copies of S'. For € > 0. take v.: M — (0, 1] a smooth function in LY(M) such
that ¥.(z) = 1 for r€ M\ A and ¥,.(z) < € for z € A;, where
As ={r € A|dy(z, M\ 4) > 6}
for 6 > 0 chosen sufficiently small so that dA; is diffeomorphic to a disjoint
union of k' copies of S!'. Let
ge = ¥2g.
We have that (M, g, ) fills (S',27) because anyv curve from M to M en-
tering {z | g.(z) # g(z)} must have length at least m. Also, it is clear that
Area(M, g.) < Area(M. g)
with
Zi_r)%Area(N[, ge) < Area(M\ Az, g) < Area(M, g),
and
li_‘,% L, (04;) =0.
For € > 0 sufficiently small, M'\ A can be capped off with discs of area small

enough to make a new compact manifold (M, ¢') with

Area(M’, ¢') < Area(M. g)




which fills (S*, 27) via ¢’ the map induced by ¢.
Now we assume without loss of generality that (M, g) is compact. If
M is simply connected, then apply Proposition 2.8. Otherwise, consider the

following set of curves
A = {a€Q(M) | a is simple and not contractable in W = M/~},

where z ~ y iff z,y€ OM, and (M) is the set of all piecewise C' loops in M.
If M is not simply connected, then A is not empty as it contains the generator
of the free homotopy group of any handle. Now apply Lemma 2.6 to obtain
@:[0,1] — M realizing the minimal length of all curves in A. Assuming that
a does not intersect M, then it must be a simple curve as follows.

There is a sequence {c;};en C A uniformly convergent to ce. Suppose that
@ is not simple and has a self-intersection inside M \OM. We may choose a

parametrization of & so that it has constant speed and,
a(0) = a(l) = a(r) = p¢ oM

with 0 <7 <1. Since {a;},cn are all simple, and curves locally separate sets
in dimension two, « is not only self-intersecting at p, but also self-tangent i.e.
@(0) = +a(r). By uniqueness of geodesics, this contradicts the minimality of
a. Therefore, o cannot have any self-intersections in the interior of M.

If & does not intersect M, we may apply Lemma 2.7 along o to get a
manifold (N, g;) and a distance non-decreasing map ¢, : (S, 27) — (N}, g1)

(i.e. a filling of (S',27)) with

Area(Ny, g1) < Area(M. g).

N
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If every curve realizing the g-minimal length in A intersects M . fix one such
curve a with a parametrization of constant speed such that a(0) =a(1) ¢oM
and let

Ts={t | dy(a(t),0M) < 5}

Since a must be C!, J; is, by continuity of the distance to 9.\/ ., a disjoint
union of open, non-empty sub-intervals of [0, 1]. Take a;s:[0.1] = M such that
as(t) = af(t) for all t ¢ J5, and so that dg(a;(t).dM) = 6 for all t € J;. For
d > 0 sufficiently small. a5 can be parametrized to be piecewise smooth and so
that ||as(¢)l| = lla(t)ll = ¢, if t¢ T5, and ||d4(t)|| = cs otherwise. where cs >0

is a constant. Also, d,(a;), 0M) > 6, and
a = lim ay,
§—0+

converges uniformly. Therefore, a5 € A for § > 0 sufficiently small and fur-
thermore,

Ly(a) = Jim Ly(as).
In particular.

|Lg(a) — Lg(as)| < A6, (3.1)

for some A > 0 as follows. Let X(t) be a C!, piecewise smooth unit vector

field along o with (X.d)g, = 0. For all § > 0 sufficiently small,

a;5(t) = expay (f5(£)X (1))

where f; is a Lipschitz and piecewise smooth function. By construction,

fs(t) = 0 for all t ¢ T, and |f5(¢)] < & for all ¢t € [0,1]. Therefore, for




some A > 0 we have that
llasllg = lla(t)ly < Ao

for almost every t and for § > 0 sufficiently small and for ¢ ¢ 0J; (i.e. almost
everywhere). Equation (3.1) follows after integrating.

Define v5: M —[0.7] by

vs(z) =nf (% dg(z, aM))

where f is a smooth, non-increasing function with f(¢) =1 for t€[0, 1/3], and
f(t) =0 for t>1/2. Then ;5 is smooth, has support in B;/2(0M), and vs = 7

for all z€ Bj/3(0M), where n = sup ¢ will be chosen shortly. Let
gs = 621&5 g.

This conformal change of metric will serve to push the minimal curves in A

off of 9M with an easily estimated (and small) increase in area. Note that,
Lys(as) = Ly(as). (3.2)
Equation (3.1) implies that
Ly(a) + Ad > Ly(as) (3.3)

Choose 7 so that

9
A< ée" < 24.

By Lemma 2.6, there exists 3 € A such that

Ly (B) = inf{Ly(7) | y€ A} (3.4)




Suppose that 3N dM is not empty. Then (3.2), (3.3), the choice of 1, and the

g-minimality of « give that,

Lul8) = Ly()+2 (er3)
> Ly(a)+ Ad
> L)
= Ly (as)

This is a contradiction of (3.4), so 8 does not intersect dM. Denote by G5 a
gs-minimal curve in A. It is a closed, gs-geodesic not freely homotopic to OM
which does not intersect M and therefore (by an argument analogous to the
one above for a g-minimal curve of A which does not intersect 9.\ ) is simple.

Clearly, Area(M. g5) > Area(M, g). Also, by choice of n and 4,

Area(M. g5) = / e*¥du,
M

< Area(M, g) + e*"Area(B;(dM), g)

< Area(M, g) + Cée*"

< Area(M,g) +9C A%

for some constant C' > 0. Thus, Area(M, g5) can be made arbitrarily close to
Area(M, g).

Furthermore, because for allve TM, [vllgs > lvllg, we have that (M, g5, ©)
fills (S',27). Apply Lemma 2.7 along 5 to obtain a manifold with boundary
(N4, g}) which fills (S, 27) so that

Area(N?, g§) < Area(M. gs).




For any given € > 0,
Area(M, g) > Area(M, g5) — e, (3.5)

if we take 6 > O sufficiently small. We may make an a priori lower estimate

¢t > 0 so that for all § > 0 sufficiently small,
Area(M, g5s) > Area(N°, g§) + .. (3.6)

Using this estimate we choose ¢ sufficiently small so that (3.5) holds for € < .
Therefore, if we choose (M, g,) = (N%,gj) for & > 0 sufficiently small, (3.3)
and (3.6) give that Area(M, g;) < Area(M, g).

If the above argument is applied once for each handle in M. the resulting
manifold (Mn, gn) is simply connected. If Area(M,g) < 27 and M is not
simply connected, then Area(My,,gn) < Area(1/.g) < 27. This contradicts
Proposition 2.8. It follows that Area(M,g) > 27 with equality if and only if
(M, g) is isomorphic to the hemisphere of constant curvature one.

The proof of the existence of the positive lower estimate (3.6) is obtained
by cutting out 85 to obtain a manifold with boundary as before. but this time
shrinking only in a small compact set near the boundary. It goes as follows:

By the compactness of both M and [0, 1], and the fact that

Ly(Bs5) < Lg;(85) < Lgg(a) < Lg(a),

we can apply Lemma 2.6 and can take a sequence

{Bi = Bs;}jen C {Bs}sso




which converges uniformly to 3, such that §; — 0 monotonically. Since {§;}
A and converge uniformly, 3 is not trivial in W. Thus there exists 7 € [0, 1] such
that 8(r), 8;(t) ¢ OM for all j€N. For any curve v, we have by construction

that,

Ly(v) < Ly, (7) < Ly (7). (3.7)
for j > k (we denote g; = gs;)- In particular,

Lg;(B5) < Lg,(Bx) < Ly, (),
by the g;-minimality of §; in .A. Furthermore,

lim Ly (8;) < lim Ly (as,)

Jj—o0 Jj—roo

lim Ly(as))
j—oo

= Lg (a)t
by (3.1). Also, (3.7) and the g-minimality of o in A imply that for all 7
ng (ﬁJ) 2 Lg(ﬂj) 2 Lg(”)-

Therefore, lim;_, Ly (8;) = limj_ o Ly(Bj) = L,(«x), and the uniform conver-
gence 3; — [ gives that, L,(8) = Lg(a). Thus. 8 is a g-minimal element
of A so it is C', piecewise smooth and is a g-geodesic outside M. If § has
self-intersections, they must be in M. By assumption, 3 intersects OM.

As in the proof of Lemma 2.7, construct manifolds,

Nj = M\ﬂj’




with boundary
ON; =M 11 3; 11 §,.

where OM, 3; and §; are disjoint components of ON;. Let f;: N; - M be
the map identifying 3; and Bj with 3; C M. Let g; = f;g9; and g; = f;g be
metrics on V;. Let ¢, : S' — N; be such that - = f; 0 ;. Without loss of

generality, we may assume that
dg, (8;,0M) < dg, (8,,0)M).

We will shrink in a neighbourhood of a point near §; to obtain the desired
estimate. The proof of Lemma 2.7 shows that since (M, gi, ) is a filling of
(S1,27), g, is distance non-decreasing. Also, there are no wj-taut g;-segments
through any point on 3J~. By (3.7) this holds for §; as well. In particular, it
holds for 7 such that 3;() does not converge to a point in M. Furthermore,
there is a neighbourhood of Bj (7) which no ¢;-taut g;-segment enters. Thus we
can take p; > 0 sufficiently small so that forallp € U;={q € Nj|dg, (g, Bj(r))}
there is no p;-taut g;-segment through p. Now, suppose that p = inf{p;} =

0. If v is p;-taut in g; for some j, then fjovis o-taut in g; and
Lg,(v) = Lg(f;(7)) £ Ly, (£5(7)) = dsi(zj,y;).

The inequality is strict because fj o v enters suppy; = Bs, 2(0M). Since
(M, g, ¢) fills S', this is impossible, therefore, po. > 0.

Construct a metric space

V= (M\B) I [p(S) N 6] L3113




as a disjoint union. The boundary of V is a union gV = OM\pB) 1511 B
where (OM\3) 11 3 and § are the connected components of the boundary. Let

f:V — M be the natural map with
FB(®)) = F(B(2) = B(1)

for all £ €[0.1]. The distance on V is that of the length space induced by f
and is denoted by dy. The map ®:S! — V such that ¢ = f o ® is distance
non-decreasing. There is an open neighbourhood U of B(r), diffeomorphic to
R2 N B,(0) which is a Riemannian manifold with boundary U = 3N U, and
metric h = f*|yg. Since 8 does not lie entirely inside M and is a geodesic
in M\OM, 3(t) is a geodesic of the Riemannian manifold (U, k) for all ¢ near
7. Therefore, there can be no ®-taut curve ~: [0.1] =V through G(r). This

implies that there is a neighbourhood
U' = {q € U|dx(q,B(7)) < p'}
with no ®-taut curves through U’. Let
A = {qeM|d,(q,8;(7)) < P, dg,(g,0M) > d,(8;(r), OM)}.
Take
1 . ., ..

p =5 min{p’, ps,inj(4;, g,)} (3-8)
where the minimum, taken over all J, is non-zero because the A; are compact
and all are a bounded distance from M. Let

ry = inf {dfh (@](I): q) + dg_,‘ (Q7 (IQJ(y)) - dsl(xa !/)

|45, (0.80) < . €8} (3.9)




We claim that
r = liminfr; > 0. (3.10)
Suppose that r = 0. Then for all j there exists a C'-curve 5, :[0, 1] — N
parametrized to have constant speed with
7(0) = @j(z)).
7)) = oi(y;).
and %;(s;) = g,
for z;,y,€S", dy, (g5, 3(7)) < p, s;,€(0,1), %; a g,-segment and
Jlim [L5,(%;) = ds(z;,3;)] =0.
If we let v; = f; 0%;:[0,1] = M, then

lim [ng (7)) — dsi(z;, y5)] =0.

J—00

By compactness of M. S', and [0, 1], and the fact that
limsup Ly(v;) < diam(S') + €

for some € > 0, applying Lemma 2.6, we may pass to a subsequence {7itien
which converges uniformly to v with. v(0) = o(z). v(0) = ¢(y), and v(s) = gq,
where z; = z, y; > y€S', s; 5 s€[0,1], and ¢, - g€ M with dy(g,8(7)) <
p- Then, since g; = g in measure, lvllg; = llvllg for ve€ T, M where pe M\OM
and ||v|lg, is bounded for pe OM,

lim L, (v;) = lim L, ()

Jj—o0 Jj—oc

= Lg('Y)‘
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Therefore, Ly(v) = dsi(z,y). Since v; — ~ uniformly and 7, lifts to a con-
tinuous curve ¥; in Nj, (i.e. v; = f; 0 %;), v must lift to a continuous curve
¥ in V with Lv(§) = Ly(y) = dsi(z,y) because v cannot be transversal to
B when no v; intersects 8. This contradicts the choice of p in (3.8), showing
that r > 0.

Now we consider the sequence of Riemannian manifolds with boundary

{M g eomp s}
and obtain new metrics §; on N; as in Lemma 2.7. but only changing g; inside
{g € N, |d;(q,B;(r)) < R} with
R= %min{p, r/2}.
As in the proof of Lemma 2.7, we have that ¢, : S' — (Nj, g;) is distance

non-decreasing and

Area(N;, i) < Area(N;, ;).

Let

tj = Area(N;, §;) — Area(.V,. §}).

Since 3;(r) — B(7), and r > 0, we can choose g; so that
L=3 liminf(:;) > 0.
Take j sufficiently large so that
Area(M, g;) < Area(M, g) + ¢.

This gives the desired a priori estimate and proves the theorem. 0
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Remark 3.2

If we take the round hemisphere of unit radius, embed (S!,27) as the equator,
and stretch the metric slightly at the dome so that there is a compact set K
of non-zero measure with d(K,9M) > 7/2, then we can attach anv number of
handles or spikes to A’. so that the total area is arbitrarily close to 2. This
construction shows that for any manifold M with boundary diffeomorphic
to S', there is a sequence {g;} of smooth Riemannian metrics on M and a
smooth, distance non-decreasing map ¢:(S', 27) — (M, g;) such that (M, 9)

is complete as a metric space and
lim Area(M, g;) = 2.
k— o0

Therefore, the infimum of the areas of (M, g, @) which fill (S!, 27) is the same
regardless of the topology of M. This extends a result Gromov proved for

dimensions two and higher (Proposition 2.2.A in [17]).
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Chapter 4

Applications

Theorem 4.1 If (M. g) is any orientable, Riemannian 2-manifold. pe M and

r < conv(p) then,
8r2
Area(M, g) — Area(B,(p), g) > —

with equality for all p if and only if (M, g) is isometric to a sphere of constant

curvature k and r = 7/2\/k.

(Proof)

If r < convy, then B,(p) is strictly convex and the length of its boundary
is at least 4r. Fix a diffeomorphism ¢ : S' — OB, (p) with constant speed
lllg = Lg(0B:(p)). If N =M\B.(p), then (N, g.) fills the circle of length
4r as follows. Fix z.y € S! and apply Lemma 2.6 to obtain 3 : 0,1 » N
realizing the distance between y(z) and (y) in V. If the image of 3 is not
in N, then there exist 21,2, € S! and 0< ¢, < #» < 1 with o(z,) = B(t,) so
that 8|, ) C N\ON. By the strict convexity of B,(p) C M, 3(e1,e) is not

minimal in M and therefore not minimal in N. Whence there is a curve in N
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of strictly shorter length from §(t,) to 5(t,). This contradicts the minimality
of 3. Therefore, all minimal curves in V between points on dN lie in N and

so (N, g, ¢) must be a filling of (S, 47). It follows that

Area(M, g) — Area(B;(p),g) = Area(.V,g)
> FillVol(S!, 4r)

= FillVol(S!, 27)(2r/x)?.

By continuity the inequality holds for r = conv(p). We have equality if and
only if M\B, (p) is isomorphic to the hemisphere of constant curvature (w/2r)>.
If equality holds for every pe M, then M must be a sphere of constant curva-

ture. 0

Using the Bishop-Gunther volume comparison theorem [16]. we immedi-

ately have the following

Corollary 4.2 If (M.g) is a compact, orientable 2-manifold, r<conv(p) for
some p€ M, and the curvature is bounded above by K on B, (p), then Cheeger’s

constant
L(0B)
~ min{v(r, ), 8r2/%}

where v(r, k) is the volume of the ball of radius r in the simply connected

surface of constant curvature k.

Theorem 4.3 If M is a compact Riemannian surface, r=conv(M), and the

curvature of (M, g) is bounded above by K, then the first non-zero eigenvalue
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of the Laplacian, A, satisfies

7% [Area(M) — 7(k,1)] — 8712
4r2r(k,r) ’

where 7(k,r) = / cos® (md,(z, q)/2r) djic(z)
B(r)

AL

¢

72(1 — cos(ry/K))k~! — 2r? k>0

T
T T _grz) (72 -4)r¥y2 k=0

72(1 —cosh(rv/—r))k™' —=2r2 k<0

\
and B(r) is any ball of radius v in the simply connected space of constant
curvature Kk with canonical measure du,..

Equality is satisfied if M is a sphere of constant curvature x.

Remark 4.4

In the case that M is complete but not necessarily compact, if one can find
two points p; and two radii r; with B, (p;) convex and disjoint such that
Y(p1,71) = ¥(p2, m2) (see (4.1) below for a definition of ©), then the estimate
(4.3) below is possibly sharper than the one in the theorem. In particular,
if (M, g) has a nontrivial isometry group, or even has disjoint open subsets
isometric to one another, then one can choose convex, isometric metric balls

and apply (4.3).

(Proof of Theorem 4.3)




Let pi,p2 be any distinct points in M and
v(p.r) = F (d(z,p), r) diy(z), (4.1)
B:(p)

where F'(¢,7) = cos(wt/2r). Take r; <conv(p;) such that B, (p;) and B, (p2)
are disjoint. Without loss of generality, we can assume that ¥(py, ) <
¥(p2,m2). Now, for r < inj(p), ¥(p,r) is continuous and strictly decreasing
as a function of r, and ¥(p,r) — 0 as r — 0. Therefore, we can take r, >0
sufficiently small so that ¢¥(pi,7;) = ¥(ps,72). As in [3, 11], it is natural to
use a test function that approximates an eigenfunction (with lowest non-zero

eigenvalue) of the Laplacian on spheres of constant curvature. Let

f(z) = F(d(z,p1), 1) x(p1,71) — F (d(x. p2), 72) (P2, 2),

where x(p;,r;) is the characteristic function of B; (pj). We have that jM f=0

and
2 i 2
dfI*(z) = F[I—F’(d(z,pl)-rl)] x(p1,71)
1
2 )
+ ;1—5[1—1‘_' (d(z, p2)- r2)] x(p2, T2).
L
Therefore,
w2 [ ” -
Jiait < 5 [aeaBao) - [ Fp).rdugte)
M | Br\ (p1) ]
- :
T2 )
+ gz [ArealBae) = [ P p), )i (2)
2 L Brg(p'l) i

IN

16 1 1
) Area(M) — == r—zr(fc, ) — r—z‘r(n, 7'2)] .

l 2

w2 1 N
4 r?

-
NN' Lo
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The last inequality uses (Theorem 4.1) as well as the following fact. If we
let d. be the distance function on Q2 (the simply connected, two dimensional
space of constant curvature &), then, using the comparison of the volume form
as expressed in normal coordinates (Lemma 4.5) we have that,

/ F*(d(z,p), r)dpy(z) > / F*(du(z.p). r)dpg(z) = 7(k.7),  (4.2)

Br(p) B(r.x)

where B(r, k) = B, (p') C Q2 and p’ € Q2. Furthermore,

/f2 = / F*(d(z,p1), r1)dpg(z) + / F*(d(z, pa), ry)dpg(z)
M Br (p1) Bry(p2)
> 1(k, 7)) + 7(K,T2),
also by (4.2). Since f is Lipshitz and has compact support, it is in HL(M),
and by the minimax principle we have that

72(r? + r2)Area(M) — 167r2r: — w2r3r(k.r)) - m2rir(k, o)
Arir3[r(r, 1) + (K, 1) '

A < (4.3)

Let 7 <conv(M) and p,q € M be points satisfving d(p, q) > 2r such that
Y(p,r) = v(qg,r). If two such points exist, then we can apply (4.3) with
ri=ry=r and the result follows immediately.

Now we show the existence of such p,ge M. Let Vo = M\ Bs.(p). Since
r < conv(M), it follows that 2r < inj(M) and therefore V, has non-empty
interior for all p€ M. Suppose that for all p, w(p.r) g w(Vp, r). Consider the

sets

Ur = {peM|y(pr)>vV,r)},

R
1

{pe M|v(pr) < vV},

Uo = {peM|3q,qdeV,st.9(qr) < wpr) <. M}
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These sets are disjoint and their union is M. They are also open. as follows.
Fix p€ M and let {p;} be a sequence converging to p. Take q in the interior
of V. Then for some ¢ > 0, d(p,q) = 2r + 24, and for all j sufficiently large,
d(p;,q) > 2r + 4. Also. if ¥(q,r) > ¥(p,r), and we take j large enough, then
by the continuity of w. ¥(g,7) > %(p;, 7). Similarly, if ¥(q,r) < v(p,r), then
¥(q,r) < ¥(p;,r) for j sufficiently large. It follows that the sets U,, U_ and
Uy are open, which contradicts the connectedness of M.

Therefore, the estimate holds for all r < conv(M). By continuity the
result then holds for r = conv(M). One can easily see that the first eigenvalue

for the sphere of constant curvature &, A\; = 2x, realizes equality. 0

Theorem 4.3 appeals to a volume comparison lemma. The proof follows
that of the Bishop-Gunther comparison theorem given in [16]. Let (M™, g) be a
Riemannian manifold with sectional curvature bounded above by «. Consider

spherical normal coordinates at p€ M. Denote by
J(u,t)dz, A --- ANdz, = (exp;) uditg

the volume form in these coordinates and by .J that for p € Q. the simply

connected, n-dimensional space of constant curvature x.
Lemma 4.5 With the notation given above,
J(u, t) > J(a,t).
for all unit vectors ue T,M, 4€T;Q" and all t < min{inj(p), inj(p)}.

(Proof)
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Fix p€ M and take r < min{inj(p), inj(p)}. Fix an orthonormal basis
{e1,...,ey} of T,M and a point ¢ = exp,(ru) with u = e, a unit vector. Let
a(t) = exp,(tu), a normal geodesic from p to g. and {E,,..., E,} a parallel
frame along o with E;(0) = e;. Let &, and {E,.. .., E,} be given by similar
constructions in Q. Fix Jacobi fields {Y1,...,},} along a with ¥; = y,E,,

yj(0) = 0, and y;(r) = 1. Then we have that
|
(ezpp).(tu)(e;) = Z'Yj(t)

for j=2,....n, and
(exp,).(tu)(e1) = a'(t).

Therefore, in these coordinates,

J) \/det<tly,(0): KO e ”>g

_(ﬂnn¢&qya (1),
where ¢ = [y5(0) - - - y;,(0)]. Let D = det(Y;,Y;), = %222,

dD 2 2n—-3 12 2, 90n—2 d-]
@ 2 — )23 g2 4 2pn-2g g OY
o c“(2n - 2) +c 2Jdt

— 2pm-2 2 2n -2 + 27

t J
2n -2 2J
=P [ £ 7] ’

therefore, since at t = r, D(r) = 1,

m—2 2J(r)

Di(r) = — + 7] (4.4)
The same calculation can be repeated in Q" and so
- 2n—2 2J'(r)
D'(r) = + = 4.5
===+ (45)

39



40

Furthermore. at t = r. (Y;(r), Y;(r)), = L,_, so,
T = ), (rtrace [(40), K S (507), 100,
= e [ S04 ()

= QZ(} (r), Y'(T))g
= 3 [ - RE

- S1my) (46)
j=2

Also, let {Y"[,...,f’n} be the Jacobi fields along G with 17}(7') = E’j(r) and

Y;(0) = 0. Then a similar calculation shows that
e -~ -
=) 1.V (4.7)
Jj=2

Now if we consider the vector fields X;(t) = y;(t)E;(t) along &. we see that

forj=1,....n
Iy}, Y;) = /(Y,Y’)H—Ra },.d.Y))

0

> / (v;)? — vk

0
= /O(yﬁEj,y}Ej)n—ny
= I(] i Xj)

> I(Y;,Y;) (4.8)

u..;\'

by the index theorem (see [16] Lemma 3.103) since X;(0) = Y;(0) = 0,

X(r) = )7]-(9") = Ej(r) and }71 is a Jacobi field along &. Finally, we apply




(4.8),(4.4),(4.4),(4.6), (4.7) and obtain

J'(r) > Jj(r)
J(r) = J(r)’

(4.9)

Since this is true for all r < min{inj(p), inj(p)}. we may integrate 4.9 and

obtain the desired result. 0
Finally, we have the following result which is a corollary of Lemma 2.4.

Corollary 4.6 Let (V' h) be a compact, Riemannian n-manifold. Then unless
(V. k) is null cobordant, there does not erist a smooth filling (M. g, p) of (V. h)
with

Vol(M, g) = FillVol(V. h).

(Proof)
If (M, g) is complete but not compact, there exists an open set U C M
with

dg(U,0M) > %diam(V. h).

Apply Lemma 2.4 to this set U. This implies that no such (M, g) can minimally

fill (V,h).
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Chapter 5

Generalized filling problems

The problem of finding a minimal filling can be generalized to the following

question. Given a manifold X with boundary and a continuous function
p:0X x 90X —»R
what is the minimal volume of all smooth metrics g on X such that
dg(z,y) > p(z,y) forallz.yedX,

and how can one characterize the minimizing metric.

One motivation for asking such a question is to consider (M, g.¢), afilling
of (V, h) a compact Riemannian n-manifold, and take U ¢ M open with smooth

boundary. Define a function p on U x 8U by
p(p,q) = sup{dn(z,y) — dy(z,p) — dy(y.q) | 2,y € M}

The constraint that (1, g, ) be a filling for (1. 4) induces a more general

filling problem on X = U.
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Claim 5.1 For any metric § on M such that
o = glane
and d;(p,q) > p(p.q)

forallp,q € OU, (M. g) also fills V.

(Proof)
Take any o : [0, 1] & M piecewise smooth with a(0) = z,a(1) =y € M.
Let
to = inf{t|la(t) e U}.

t, = sup{tla(t) e U}.

and p=a(ty), g=a(t,) € OU. We have that
Li(a) = Lg(a|[0.to]) + Lé(al[to,tli) + Lg(al[“,l])
2 dy(z,p) + dsz(p, q) +dy(q.y)

> du(z,y) — p(p,q) +dz(p-q)

2 d’l (Z’, y) ’
as desired. 0
Claim 5.2 If we take p as above, then for any p. v,q,q € dU,

L. p(p,q) = p(q,p)

o

p(p,q) < dy(p,q)

and 3. |p(p,q) ~ p(p',q')| < dg(p. p') + dy(q.q")




(Proof)
1. This is clear from the definition of p.
2. By the triangle inequality,

dg(z.p) +dg(p, q) + dg(g.y) = dy(z,y) > di(z,y).

Therefore, for every z,y € OM,

d!](pv Q) Z dh(:z: y) - dg(Iv [)) —dg(y, Q)

as claimed.
3. Since OM is compact, we can choose z, y € OM such that
p(P,q) = da(z. y) — dg(z. p) - dy(y. q)
Then,

p(p'.q") —p(p.q) > du(z,y) —dg(z.p') —dy(y,q)

—dp(z,y) + dg(x. p) + d,y(y, q)

2 —dy(z,p') +dg(x.p) — dy(y,q') + dg(y, q)
> —dg(p,p') ~dy(g.¢)
Similarly,
p(p,g) — p(p',q') 2> — [dy(p, V) + dy(q, ¢)] -
Also,

p(p.q) —p(P'.q') < dul(z,y) = dy(z,p') — dg(v,¢')

—du(z,y) + dg(z,p) + dy(y. q)

IN

dg(p,p') + d,(q,q")
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and the claim follows.

O

Now we return to the more general question. Let M be an (n + 1)-
dimensional manifold-with-boundary, p a symmetric, continuous function on
OM x9M, and we consider metrics g on M such that

dy(p. q) 2 p(p. q).
What is the minimal volume of such metrics? As before, we will denote
P = {vec!(0, 1], M) | 7(0), (1) coM}.

Define

1
F, = {f c e )| vreP, [ elilar > p(v(O),v(l))}

Lemma 5.3 If there ezists a function f, € Fg such that

ollee = jnf 11/l

then this function is unique and so each conjugacy class of M has at most one

weak solution to the minimal volume problem.

(Proof)

First we will show that F, as defined above is convex.
Let fo,fi € Fy, and f, = tfi + (1 — t) fo. Clearly f, is C* and positive.
Also, if v € C'([0, 1], M) with v(0),v(1) € M, then,
! ! 1
| et = ¢ [ aeie+ o -y [ falisias
0 0
> tp(7(0),v(1)) + (1 = t)p(v(0), ¥(1))

= p(v(0),7(1)),




so F, is convex.
Now take two sequences {f;}, {f;} C F which have decreasing L™-norm.
Let
fi=tfi+1-t)f.
We have that f; — f and f~] — fin L™ Suppose that both sequences are
minimizing, i.e.
1fller = Ifllen = inLliF]|cr = a.

Given € > 0, we have that for j sufficiently large

Ifllen < tlfillen + (L= Ol fille < a+e.

Also, because ff € F. ||f}ll~ > a. Therefore, in the limit as j — oo, for all

0<t<],
lim 7513 = [ (¢ + (1~ 0y "avel, = o,
which implies that f = f a.e. O

The following lemma uses a non-conformal change of metric to show that
either at each point in the interior of M every tangent vector is tangent to a
taut curve, or else there is a metric of smaller volume which satisfies the con-
dition on the distance between points of the boundary. This is a strengthening

of Lemma 2.4.

Theorem 5.4 If there ezists p € M \ OM and v, € T,M a unit vector such
that there are no taut curves through p tangent to t'g, then there exists a metric

g under which M is complete as a metric space with

Vol(M, §) < Vol(M, g)
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for which

dg(l', ?j) 2 p(xr y)

is distance non-decreasing.

(Proof)

The proof is by direct construction of the new metric. Note that we may
assume that (M, g) is compact as otherwise, there is a point with no minimal
geodesics through it that go from M to OM.

We will denote by 7 < C([0,1], M) the subset of all C! curves with
constant speed whose endpoints are in M.

If such a v exists. then there exists an open set U ¢ M \ @M with a unit
coordinate field £ on U such that for any g € U there is some 6 € (0, 1) such

that if yeT. v(7) = ¢ and,
A7), E)gal > OlIl,

then,
Lg(v) > p(v(0),~(1))

Take K C U compact with nonempty interior. Then there exists 6o € (0,1)
such that for any y€ T with y(7) € K and [{(¥(7)-E)5] > bollvlly then Ly(v) >

p(7(0),v(1)). By the compactness of K, if
R = inf {L,(7) = p(+(0).7(1)) | y€ T: 3r€ (0. 1) s.0. (7). )d > Boll I} (5.1)
then R > 0. Construct a new metric g. defined byv

(X:¥)5 = (L +ay)(X,Y)g — (X §)go(Y, E)ge (5.2)
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Here ¥ €C*(M, [0, 1]) is a cutoff function with suppy = B.(q) C K (€ will be

determined shortly), and a, b are positive constants satisfying

b < l+a (5.3)
b < aff? (5.4)
b > l+a—(1+4a)'™ (5.5)
b > a. (5.6)

The existence of such an a, b is proved as follows. Fora > 0,0 < (1+a)l™"< 1.
Therefore 1 +a ~ (1 +a)'™ > a and so (5.6) follows from (5.5). We want to
show that (5.4) and (5.5) are compatible (as the others clearly are). This is

possible if we have

2

l+a-(1+a) "< a/H}

which is certainly true if

l+a<a/bl
This holds for a sufficiently large because 0 < 6, < 1. We then take
l+a—(1+a)'™" <b<1l+4a<a/6?

and all desired conditions on a and b will be satisfied.

[t is easily seen that equations (5.3)-(5.6) arc equivalent to

l+a—b > 0 (5.7)
1+a)* ' (1+a-b) < 1 (5.8)

1>a/b > 62 (5.9)



Let @ = \/a/b so that 1 > 0 > 6. The new metric § is positive definite

by (5.7). Condition (5.8) implies that det §(z) < det g(z) at points z where

1 /1+a—-05
0 -/ ———R
<6<2 l1+a

so that supp ¥ N OM is empty and suppv C K. Take v so that 4~'(1) has

¥(z) =1. Fix

sufficiently large measure in supp ¢ to insure Vol( M/, §) < Vol(M. g). We take
condition (5.9) so that § shrinks in directions close to £ so that distances
between points in the boundary under § will still be bounded below by p, as
follows.

Take any v €T which realizes the §-distance between its endpoints. We

will show that

Li(v) 2 p(+(0), 7(1)). (5.10)

7(0)

Figure 5.1: A curve 7 realizing the -distance hetween two points in dM

Let

to = inf{t €[0,1]| v(¢) € supp ¥}

and t; = sup{t€[0,1]| v(t) € suppv}.
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Since g and g agree on M\ supp v, (5.10) follows unless 0 < to < t, < 1 as ~

would not even enter supp . Also, if for all ¢ such that v(t) € K.

[{(7(£), £) g0l < 6,

then it follows from (5.2) that ||%(¢)||; > ||%(¢)||, for all ¢, and so in this case

(5.10) also holds. Finally, if for some ¢t with v(¢) € K we have that
[(¥(6), ) gl > 6,
Then (5.9) and (5.1) together give that
Lg(v) 2 p(7(0),¥(1)) + R (5.11)

Furthermore. if 3 is a curve realizing the g-distance between v(¢;) and v(t1),

then (5.2) and the fact that 7y realizes the § distance between ~(¢;) and v(t),

give that
1
Lg(A/I[to,n]) < \/TT—[)L;’(’YI[M'“])
1
< ———=L;(8
S Urasp o)
< Y-Te vlita L,(3)
vVi+a-b
< i 2e
- V l+a-56
< R (5.12)
Therefore by (5.1) and (5.11),
Li(7) = Li(vlow)) + Li(Vieoe) + La(¥lew)

> Lg(vluo)) + Lg(Yler,y)




= Lg(7) = Ly(7lgo,ea))

2 p(v(0),7(1)) + R = Ly(~lieo 1))

and (5.10) follows immediately from (5.12).
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Appendix A

Notation

B, (p)

B, (4)

Lg(a)

dg(p, (I)

dg(A, B)

supp ¢

(W]

open metric ball of radius r at p

U B-(p)

pEA

length of the curve « in the metric g

distance between points p and ¢ in the metric g

The subscript g will be omitted when the meaning is clear.

distance between sets A and B in the metric g

i.e. inf{dy(a,b) |a € A, b € B}

support of function v

closure of the set U




a*p

Sys(M. g)

Vol(A4)

Area(A)

(S", can)

(sh1)

diam(V g)

inj(p, g)

conv(p, g)

conv(g)

usual product of curves o and J

systole of Riemannian manifold (M, g) i.e. the

infimum of lengths of all non-contractable curve in M.

Riemannian measure of metric g

volume of a set A in this measure

area of a set A in the measure 1, for a surface

sphere of dimension n with the standard metric

circle of length [

diameter of the set V' in the metric g

i.e. sup{d,(p,q) |p.ge V}

Injectivity radius at p in the metric g

convexity radius (strict convexity) at p in the metric ¢

convexity radius of the metric ¢ on a compact manifold






