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Abstract of the Dissertation

Positive paths and length minimizing
geodesics in Hofer’s geometry

by

Jennifer Robin Slimowitz
Doctor of Philosophy
in
Mathematics
State University of New York at Stony Brook

1998

A compactly supported time dependent Hamiltonian function

defined on a symplectic manifold (M, w) induces a vector field on X

M. The flow of this vector field is a path starting at the iden- |

| tity in the group Hem®(M) of compactly supported Hamiltonian
diffeomorphisms of M.

Given a flow in Ham®(M) which is a stable geodesic, there is

a point in M, fixed by each element of the flow, around which the H

linearization of the flow is a positive path in Sp(2n). In the first

part of this dissertation, we examine the way the set of positive 3!;

loops sits inside the set of all loops in Sp(2n). For n = 1 and




B S

n = 2, we show that if two positive loops in Sp(2n) are homotopic,

they are in fact homotopic through positive loops.

In the second part of this dissertation, we consider length mini-
mizing geodesics in the space Ham®(M). We show that rotation in
one homogenecus coordinate through = radians in CP? and CP2
is a length minimizing path between its endpoints. More generally,
our main theorem states that if M has dimension four, any path in
Ham®(M) which is generated by an autonomous Hamiltonian and
which has no non-constant closed trajectory is length minimizing
among all homotopic paths. To prove this theorem, we provide an
upper bound for the Hofer-Zenhder capacity for manifolds of the

type M x D? where M has dimension four.
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Chapter 1

Introduction

Symplectic geometry is the study of a 2n dimensional manifold M en-
dowed with a closed, non-degenerate 2-form w. Using w, a cornpactly sup-
ported time dependent Hamiltonian function H; on M induces a vector field
whose flow ¢ff for 0 < ¢ < 1 is a path in the group Ham(M) of com-
pactly supported Hamiltonian symplectomorphisms of M. donversely, every
path in Ham®(M) arises in this way as the flow of some Hamiltonian func-
tion. Hemf{M) is an infinite dimensional manifold about which very little
is known. However, Hofer has constructed a bi-invariant norm on Ham®(M)
under which the size of a diffeomorphism ¢ is the infimum of the lengths of
all of the paths from the identity to ¢. The length of a path in Ham*(M) is
defined to be the integral of the total variation of its generating Hamiltonian
function [HZ94]. More precisely, given a path o for 0 < ¢ < 1 generated by

the Hamiltonian H;, the length of ¢ is the length L{H;) of H;, where

1
L(H;) = max Hy(z) — Hél& Hy(z)dt.

0 %<

Although the Hofer norm is simply defined, in practice it is very hard to




calculate. One case in which we have a possibility to calculate the Hofer norm

of ¢ is when there is a natural path from the identity to ¢, e.g. a path induced
by a circle action. Here, the Hamiltonian which generates the path is just the
moment map of the action. All of the specific paths which we will examine in
this dissertation arise from circle actions.

A geodesic in Hamn®(M) is a path in this space for which sufficiently short
segments are locally length minimizing. These geodesics give rise in a natural
way to the notion of positive paths in the linear symplectic group Sp(2n).
This thesis has two parts: one examining positive paths in Sp(2n) and one
dealing with length minimizing paths in Ham®(M) . First, we describe how
the set of positive loops based at the identity in Sp(2) and Sp{4) sits inside
of the set of all loops. Second, for M of dimension 4, we show that a path
in Ham®(M) starting at the identity which induces no non-constant closed
trajectories of points in M is length minimizing among all homotopic paths.
This includes the special cases of rotation by 7 radians in one homogeneous
coordinate in complex projective space CP? and in CP? blown up at one
point. We also provide an upper bound for the Hofer-Zehnder capacity for

gymplectic manifolds of the type M x D? where M has dimension four.

1.1 Positive Paths

A positive path in the group of real symplectic matrices Sp(2n) is a smooth

path A(t) whose derivative A’ satisfies

A'(t) = JRA()




where P is a positive definite symmetric matrix (dependent on t) and J is the

standard complex structure. It is easy to see that positive paths are exactly
those generated by negative definite time dependent quadratic Hamiltonians
on R?". The simplest example of a positive path is the counter clockwise
rotation A(t) = ¢’* where k is any positive integer; here P, = kI

The relationship between positive paths and geodesics under the Hofer
norm motivates Lalonde and McDuff’s paper [LM97]. A compactly supported
Hamiltonian H; : R*® — R generates a flow ¢ which is a geodesic under the
Hofer norm if and only if around each ty € [0, 1] there exists a short interval
I such that there exist two points z and X in R?™ so that z is a minimum
and X is a maximum of H, for all t € 7. Around =z, the linearized flow A; of
#¥ is a positive path in Sp(2n), and it is called short if 1 is not an eigenvalue
of the A, for any ¢ € [0,1]. A geodesic is said to be stable if it is a local
minimum of the length functional. In [LM95a] and [LM95b], it is shown that
if one z and one X can be chosen for H, for the entire interval [0, 1] and the
linearizations of the flow at z and X are short, then ¢} is a stable geodesic.
Lalonde and McDuff study the linearized flow and positive paths in general
in order to obtain topological information about stable geodesics in [LM97].
Their work further develops Krein’s theory by analyzing short positive paths
whose eigenvalues lie off of the unit circle. They show that any short positive
path may be extended to a short positive path whose endpoint is diagonalizable
with eigenvalues on S, and also that the space of short positive paths which

end at such a matrix is path connected [LM97].

In addition, they define the positive fundamental group 71 54, (Sp(2n)) to




be the semigroup generated by positive loops with base point at the identity,

where two loops are considered equivalent if one can be deformed to the other
via a family of positive loops. Recall that m;(Sp(2n)) = Z since the symplectic
linear group deformation retracts onto the unitary group. If v is a positive
loop in Sp(2n), then the homotopy class of « is actually in the subset N of Z.

In {LM97], Lalonde and McDuff pose the natural question: “Is the map

1 pos(SP(20)) — 7 (Sp(2n))

which sends the positive homotopy class of a positive loop to its ordinary

homotopy class injective?” Here, we prove the following two theorems:

Theorem 3.2.3 Suppose Ay, By € Sp(2) are two positive loops based at I.
Then, A; and By are homotopic if and only if they are homotopic through

positive loops. Thus, the natural map from

T1.00s(SP(2)) — 71(Sp(2))

18 tnjective and onto N.

Theorem 4.1.1 Let Ay, By : [0,2%] — Sp(4) be positive loops in Sp(4) with
base point I. Then A; and B; are homotopic if and only if they are homotopic

through positive loops. Thus, the natural map

1,908 (SP(4)) = 1 (Sp(4))

is ingective and onto N — {1}.




In Chapter 2, we examine the behavior of positive loops in Sp{2n) by
looking at the projection of these loops in the stratified space of symplectic
conjugacy classes. In Chapters 3 and 4, we characterize these projections and
construct homotopies between them, and then lift the results to Sp(2n) by
means of a lifting lemma. The main difficulty in the four dimensional case
is to show that any positive loop is positively homotopic to a loop whose
eigenvalues lie in S*'UR. Lalonde and McDuff look at generic paths and those
meeting isolated codimension two singularities; here we will occassionally need
to look at paths which cross singularities of higher codimension. The technical
lemmas are proven in Chapter 5.

The theorems about positive paths that we prove here are only for dimen-
sions 2 and 4. As the dimension increases, the space of symplectic conjugacy
classes gets more complicated. This is the impediment to proving analogous

results for larger matrix groups.

1.2 Length Minimizing Geodesics

A length minimizing geodesic ¢ for 0 < ¢t < 1 in Ham*(M) is a path
which is an absolute minimum of the length functional among all paths from
¢o to p. Classification of length minimizing geodesics is the logical extension
of the work done on general geodesics in Ham®(M) by Bialy-Polterovich in
[BP94] and Lalonde-McDuff in [LM95a]. Since general geodesics are short only

in a local sense, it makes sense next to consider those paths which are globally

length minimizing.




Lalonde and MeDuff give the first non-trivial example of a globally length

minimizing path when they show that rotation through = radians on S is a

length minimizing geodesic in Ham(S?) [LM95a]. This leads us to ask whether

rotation of CP? through = radians is length minimizing in Ham(CP?). In
fact, by following the procedure of embedding balls as outlined in [[.M95al,
we prove in Chapter 7 that rotation on CP? is indeed a length minimizing

geodesic.

Theorem 7.2.1 The path ¢f for 0 <t <1 in Ham(CP?) given by

qbf[zg 7y 2] = [emzo D7yt )

is length minimizing between the identity (¢f ) and rotation by m radians in

the first coordinate (¢1 ).

It is easy to verify that the flow from Theorem 7.2.1 is generated by the

Hamiltonian function P where

|Zo|2
Lol + 21 +H 2P

T
P[Z():Z'l:Zg]:E

Note that since P is independent of time,

. T |
L{P)= max P(zx)— min P{z)= -. i
( ) .’BgéPz (:L') mGClgz (m) 2 i

‘ The next natural path to examine is rotation on the symplectic blow up
‘ CP2 of CP2. We define (C{ﬁz,n) to be the manifold obtained by removing 4
i

from CP? an open 4-ball of radius A and collapsing its boundary S* along

the fibers of the Hopf map. If we think of CP? as a 4-ball of radius 1 with




the boundary S° collapsed along the fibers of the Hopf map, then (6]52, ™)
is an annulus {(wo,w1) | (1 — A?) < |we|? + |wi|?> < 1} with both boundaries

collapsed along the Hopf fibers,

We define (C’Fzg, 73) to be the symplectic blow up of CP? by a ball of
radius A centered at the point [1 : 0 : 0], equipped with the Fubini-Study
symplectic form. Similarly, we define (CA]FT21, 7)) to be the corresponding blow
up at the point [0 : 1: 0]. It is not hard to see that rotation on CP? in the
first homogeneous coordinate is also well defined on both Cf]?;% and Cﬁﬁzl. It
is only necessary to verify that the rotation keeps the set of removed points
for either blow up invariant and that the rotation is well defined under the
equivalence imposed on the boundary. It is important to realize, however,

that the rotation in the first homogeneous coordinate is qualitatively different

in the two different blow ups; in 6?20 each.point on the exceptional divisor

is fixed, whereas in 6521, the points on the exceptional divisor rotate.

Note that the function P is Weli defined on C‘fﬁzo and Cﬁ].;zl. When
blowing up, we collapse the boundary of the ball of radius A along orbits of an

- S* action, and P (defined on CP?) is invariant under this action. Therefore,
P, defined appropriately, is the Hamiltonian function which generates rotation
in the first homogeneous coordinate on all three manifolds CP?, Cﬁﬁzg, and
0321. Hence, we will use P to denote this Hamiltonian function on each of

them, and it will be clear from context which domain we are considering,.

Although P is well defined both on C‘?P’ZD and 6§21, its length is not the

same on both manifolds. P applied to CP2, has L(P) = 2(1—A?) whereas P




applied to éﬁzl has L(P) = %. Because L(P) decreases when blowing up from
CP? to 6]5%, it is easy to generalize Theorem 7.2.1 to Cﬂlgzg. On the other
hand, since L(P) does not decrease when it is applied to 0”1‘5’21’ Theorem 7.2.1
does not immediately generalize to Cﬂf”zl. Thus, we must develop alternative

techniques to prove the following theorem.
Theorem 7.4.5 The path ¢f for 0 <t <1 in Ham(Cﬁ]‘.z;zl) given by

Qﬁf[Zg R Zg] = [emltZ(} AT 2'2]

is length minimizing between the identity (¢f ) and rotation by 7 rodions in

the first coordinate ($f ).

Theorem -7.4.5 is a direct consequence of the next result. Before stating
it, we need some preparation. We say a path ¢ € Ham®(M) which starts

from the identity has no non-constant closed trajectory in time less than 1 if
P, (z0) = xq Tor some tg € (0,1], w9 € M = dy(m0) = zo Vi € [0, 1].

We let S%(a) denote the sphere equipped with a symplectic form ¢ which

satisfies [q2 0 = a.

Theorem 7.4.4 Let (M,w) be a symplectic manifold of dimension four. Let
¢; for 0 <t < 1 be a path in Ham*(M) generated by an eutonomous Hamil-
tontan H : M — R such that ¢ 1s the identity diffeomorphism and ¢, has no

non-constant closed trajectory in time less than 1. Then, ¢y for 0 <t <1 4s

length minimizing among all homotopic paths between the identity and ¢y.




This theorem generalizes Hofer’s parallel result for R?®. He proves that
the flow of an autonomous Hamiltonian in R?* which admits no non-constant
closed trajectory in time less than 1 is a length minmizing path in Section 5.7
of [HZ94].

For the proof of Theorems 7.4.5 and 7.4.4, we follow the criteria for length
minimizing geodesics from [LM95al, described in Chapter 6, using capacities
and quasi-cylinders. In order to complete the proofs, we need to use the Hofer-
Zehnder capacity cgz on a large class of manifolds, including CP2. However,
in [HV92], Hofer and Viterbo only prove that cyz may be used on manifolds
M which are weakly exact, and CP? is not of this type. Hence, in Chapter &,
we go back to the original proof in [HV92] and modify it using the theory of J-
holomorphic curves to show that we can use ¢y z on all M if M has dimension

four or less. The main statement we prove is the following:

Theorem 7.4.3 Suppose that the manifold (M,w) is a symplectic manifold

of dimension four. Then,

crz(M X D*(a),w & o) < a.

Remark 1.2.1 Theorem 7.4.4 as it i8 now stated has limited scope. The re-
striction to manifolds of dimension four is required in order to deal with mul-
tiply covered curves on M X S? at the end of Section 8.2. However, recent
advances by Fukaya-Ono, Li-Tian, Liu-Tian, Ruan, and Siebert in the the-

ory of J—holomorphic curves will most likely ollow us to generalize to other

dimensions. In particular, Liv and Tian have just proved that the Weinstein




conjecture holds for all manifolds using the difficult theory of Gromov-Witten
invariants [LT97]. It seems as if their methods, properly applied, might indeed

wmply that Theorem 7.4.3 and hence Theorem 7.4.4 will hold for oll manifolds.

In other related worlk, Polterovich examines a rotation similar to ¢} on the
monotone manifold (Cjﬁzg, Ti7y3)s the blow up of CP? obtained by removing
a ball of radius % centered at the point [1: 0 : 0]. He works with the coarse
Hofer norm, a variant of the original Hofer norm, and examines the path 1
where
it

Pilzo s 21 : 2] = [67 20 210 20).

Note that ¢, is just ¢ traversed at double speed. He shows that the loop
formed by 1 for 0 < ¢ < 1 is a length minimizing representative of its ho-
motopy class in Ham(CP2) with respect to the coarse Hofer norm [Pol96].
In Chapter 9, we show that ¢, is a length minimizing representative of its

homotopy class with respect to the regular Hofer norm, as well.

Theorem 9.0.8 The loop ¥ for 0 <t <1 is length minimizing in tts homo-
topy class in Ham”(Cff”zo). In fact, it is length minimizing in its homotopy

class when considered as a loop in CP? or CP2,, as well.

10




Chapter 2

The Behavior of Positive Paths

If A; is a path in Sp(2n), we can look at the ways the eigenvalues of
the matrices along the path change with respect to time. In this chapter,
we describe the restrictions that positivity places on a path in terms of the
movement of its eigenvalues. In addition, we prove a lifting lemma which will
allow us to lift a positive homotopy from the space of symplectic conjugacy

classes to Sp(2n).

2.1 The Splitting Number

A useful tool for describing the movement of eigenvalues along a positive
path is the splitting number. The notion of splitting number arises from Krein
theory, described in [Eke86] and [Eke89], and is explained further in Lalonde
and McDuff [LM97]. They define the non-degenerate Hermitian symmetric

form 8 on C** by B(v,w) = —iw’ Ju where J is the standard 2n x 2n block

matrix with the identity in the lower left box and minus the identity in the




12

upper right box. They prove the

Lemma 2.1.1 If A € Sp(2n) has eigenvector v with eigenvalue A € S' of

multiplicity 1, then B{v,v) € R — {0}.

Hence, for any simple cigenvalue A € S' we may define the splitting
number o{A) = 1 where f(v,v) € o(A)R*t. Using properties of 3, we can

check that o()\) = —c(X). As an illustration, when n = 1, the matrix

has eigenvalues ¢ and —¢ corresponding to the eigenvectors

1 1
vy = and v_; =
—1 i
Computing, we find that f(v;, ;) = 2 so (i) = 1 and, similarly o (i) = --1.
In a more general setting, if A € S! has multiplicity > 1, we set o{\)
to be equal to the signature of # on the corresponding eigenspace. It is a
straightforward calculation to see that the symplectic conjugacy class of a
diagonalizable element in Sp(2n) with all of its eigenvalues on the circle is
determined by its spectrum and corresponding splitting numbers. Hence, for
each pair of conjugate eigenvalues {), A} € S, there exist two symplectic
conjugacy classes in Sp(2): one where A has positive splitting number (and X
has negative splitting number) and one where A has negative splitting number
(and X has positive splitting number). Note that there is no corresponding

notion for real eigenvalues or the eigenvalues on S! of a non-diagonalizable

matrix.




A natural question to ask is, “What restrictions does positivity impose
upon movement of eigenvalues?” Krein’s lemma states that under a positive
flow, simple eigenvalues on S with +1 splitting number move counter clock-
wise while those with —1 must move clockwise [Fke89]. In [LM97], Lalonde
and McDuff show that when a positive path has a pair of eigenvalues that enter
S, they must do so at a matrix which has a 2 x 2 Jordan block symplectically

conjugate to
—A
Ny =
0 A
where )\ represents the eigenvalue on S'. Similarly, when a pair leaves S, it

does so at a matrix with a Jordan block symplectically conjugate to

These restrictions are, in fact, the only ones dictated on generic paths by the

positivity condition, leaving us with the following statement:

Lemma 2.1.2 A positive path in Conj may move freely belween conjugacy
classes when its eigenvalues are away from S'. On S, the eigenvalues move
according to splitting number by Krein’s lemma, and when entering and leaving

S, they behave according to the above results of Lalonde and McDuff.
For example, there are 4 open regions in Sp(4) whose union is dense:

(i) Oc¢ , consisting of all matrices with 4 distinct eigenvalues of the form

{AX5,31eC—(RuUSY);

13




(ii) Oy , consisting of all matrices with eigenvalues on S*—{1, —1} where each
eigenvalue has multiplicity 1 or multiplicity 2 with non-zero splitting

numbers;

(iii) Ox , consisting of all matrices whose eigenvalues have multiplicity 1 and

lieon R —{0,1, -1}

(iv) Oy g , consisting of all matrices with 4 distinet eigenvalues, one pair on

St — {1, -1} and the other on R — {0, 1, —1}.

We will describe the other higher codimension regions later. Lemma 2.1.2 tells
us that positive paths may move freely in O and Og, but their behavior is

restricted when in and when entering or leaving Oy and Oy %.

2.2 A Lifting Lemma

The following basic facts about positive paths from [LM97] will be very

useful:

Lemma 2.2.1 (i) The set of positive paths is open in the C' topology.

(ii) Any piecewise positive path may be C° approzimated by a positive path.

We now begin the discussion of homotopy and develop the tools necessary
to prove the injectivity of map from 71 4,,(Sp(2n)) — 71 (Sp(2n)). Given a
homotopy whose endpoints are positive paths, we need to produce a homotopy

between those two endpoints where each path in the homotopy is a positive

14




path. We will consider the projection of the original homotopy to Conj, the

space of symplectic conjugacy classes. Let © denote this projection:
m{A) = Ux{XAX"': X ¢ Sp(2n)} € Conj.

After altering the projection of the homotopy in Cong in a specific way to make
each path in it positive, we lift it to Sp(2) or Sp(4).
Now we will state some useful definitions and two propositions which will

enable us to execute the lifting.

Definition 2.2.2 A point in Sp(2n) is called a generic point if all of its
etgenvalues have multiplicity 1. A path in Sp(2n) is called o generic path
if all of its points are generic or lie on the codimension I boundary part of
a generie region, and the codimension 1 boundary points are isolated. These

definitions also hold for points and paths in Conj.

Definition 2.2.3 A path a; in Conj is called positive if there exists a positive
path Ay € Sp(2n) such that w(A) = ap. A homotopy H(s,t) € Sp(2n) is called
positive if for every sq, H(sg,t) is a positive path. A homotopy h(s,t) €
Cong (Sp(2n)) is called positive if it is made up of positive paths in Cong, i.e.
for every sy, there is a positive path H(sy,t) € Sp(2n)} such that w(H (s, t)) =
h{so,1).

Proposition 2.2.4 Let A; € Sp(2n) be a generic positive path joining two

generic points Ay and A;. Then the set of positive paths in Sp(2n) which lift

n(As) € Cong is path connected.

15




Proof: Here is the idea of Lalonde and McDuff’s proof from [LM97]. Suppose
By and C; are two paths which lift 7(A;). We may assume that B, crosses
codimension 1 strata at finitely many times ¢;. Note that each fiber of 7 :
Sp(2n) — Cong is path connected since Sp(2n) is. Hence, using Lemma 2.2.1,
we may homotop C, around those times to X;5; X, ! for ¢ close to ¢; for some
symplectic matrix X;. Let &g be the vector field tangent to to the curve By
and define the vector field £ = XszXm-_1 over neighborhoods of each Cy,.
If we extend £¢ appropriately and take the convex combination vector fields
s€p + (1 — $)€¢g, these new positive vector fields have integral curves which
also project to w(A4;). Thus, the family of integral curves as s varies from 0 to

1 gives a path between B; and C; within the lifts of w(A;). a

Certainly, if A; and B; are positively homotopic paths in Sp(2nr), then
7w(A;) and 7(By) are positively homotopic in Conj. The next proposition shows

that when each path in the homotopy is generic, the converse is also true.

Proposition 2.2.5 Let h(s,t) be a positive homotopy of generic loops based

at the identity in Conj(Sp(2n)) where b : [0,1] x [0, 27| — Conj and

h(O,t) = O h(l,t) - bt.

Also, let Ay, By 2 [0,27] — Sp(2n) be any two positive generic loops based at
I so that w(As) = a¢ and m(By) = b. Then, there exists a positive homotopy
H(s,t) : [0,1] x [0,27] — Sp(2n) such that H(0,t) = A; and H(L,t) = B,.

Proof: The proof of this proposition mimics that of the previous one, only

here we must introduce parameters. After dealing with the technicalities of

16




locally lifting A around each codimension 1 point as in Proposition 2.2.4, we
are left with a finite sequence of Hi(s,t) : [s;, s;41] % [0, 27r] — Sp(2n), homo-
topies defined on some partition [s;, s;,1] of [0,1]. Here, m(H*(s,1)) = h(s,t)
, and each loop H*(s;,t} : [0,27] — Sp(2n) is a generic positive path. Using
Proposition 2.2.4, for each 4, we glue H(s;1,t) to H* (s;41,1) via a family
of positive loops, all of which project to h(s;11,t) in Cong, and let H be the re-
sultant homotopy. At the end of this paper, we give the full details concerning

the lifting of some specific homotopies in Sp(4). O

Hence, to prove the injectivity of the map from m; p,s — 71, We need only
construct a positive homotopy of generic paths in Conj between the projections
of the two given endpoints. This is exactly what will happen in Sp(2). It turns
out, however, that the homotopy we construct in Conj(Sp(4)) may have some
paths which are non-generic and go through points of codimension two and
higher. We will deal with this by finding specific lifts of the homotopy in
neighborhoods of these points to Sp(4). We then join these lifts to the given

homotopy using Proposition 2.2.4.
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Chapter 3

The Positive Fundamental Group of Sp(2)

We begin this chapter by describing the space Conj(Sp(2}). Then, we will

prove Theorem 3.2.3 and some related facts about positive paths.

3.1 The Structure of Conj(Sp(2))

Here is a review of the structure of the stratified space of symplectic
conjugacy classes of Sp(2) as described in {LM97], along with some additional
details.

A generic matrix in Sp(2) has two distinct eigenvalues and belongs to one

of the following regions:

(i) @y, consisting of all matrices with eigenvalues {), A} € S*

(ii) Og, consisting of all matrices with real eigenvalues {), +} where |A| > 1.

We will divide each of O and Oy naturally into two parts: OFf and Oz
for positive or negative eigenvalues and O} and O} based on the sign of the

imaginary part of the eigenvalue with positive splitting number.

18




Figure 3.1: Conj(Sp(2))

We see that the non-generic matrices are the identity matrix I and —7 and
the non-diagonalizable matrices with a double eigenvalue of 1 or -1. The space
of symplectic conjugacy classes of Sp(2) (remember this requires similarity by
a symplectic matrix) can be described by the set S* U (1,00) U (—oo, —1) in
the plane with the points 1 and -1 tripled, as depicted in Figure 3.1.

This can be seen as follows: identify A € O with its éigenvalue A whose
absolute value is greater than 1. Clearly, all such matrices are conjugate. For
A € Oy, we can distinguish between the two eigenvalues {)\,X} by the notion
of splitting number as described above. Associating A to its eigenvalue with
positive splitting number produces a well-defined equivalence class, accounting
for each element in S'. I and —I each comprise their own equivalence class;

associate I with 1 and —7I with -1. If A is non-diagonalizable with double

eigenvalue -1, then A is conjugate to either

or
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In either case, we send A to -1, and we have 3 conjugacy classes at -1:
—I,N* N7,

Similarly, if A is nondiagonalizable with double eigenvalue 1, then A is
conjugate to either NV;" or Ny , and we have three conjugacy classes at 1:
I, N{", Ny . The space of A € Sp(2) which project to either N7, N7, Ni, or
Ny is of codimension 1. By Lemma 2.1.2 , we know that positive paths in

Conj enter ST via NT, and N and leave via N~| and Ny .

3.2 The main result for Sp(2)

Definition 3.2.1 A simple path (t) in Conj(Sp(2)) has at most one local
minimum and no local mazime eech time it enters n{(Ox) , and has at most

one local mazimum and no local minima each time it enters m(OF).

Lemma 3.2.2 If v is a simple path along the real axis in Conj with bounded

ergenvalues, it 48 posilive.

Proof: By Lemma 2.2.1, it suffices to show that for all o, 8 € Rt — (0,1]
where a # (3, there is a positive path A; € Sp(2) such that the function
t — w(A4;) is an embedding of [0,1] onto [c, 8] sending 0 to « and 1 to 3.

Consider the path e’*B where

4 0
B =

1

0 3

the projection of e’tB to the real axis in Conj depends only on the trace

of the matrix, since we can recover the eigenvalues from the trace and the




determinant which we know is 1. So, by examining the movement of the trace
of e’* B, we can determine the flow of m(e’*B) on the real axis. We know that
7(e’*B) must travel counter clockwise along the circle by Krein’s Lemma, so
once we figure out what the trace is doing, we will get the trajectory of the
path in all of Conj. The derivative of the trace of e/*B at time ¢ is

1
p

which is negative for 0 < ¢ <, zero for ¢ = , and positive for = < ¢ < 2x.

~(5+

)sint

Note that at ¢ = «, e’*B = —B. Hence, n(e’*B) finishes by coming off the
circle through N{ and travelling up the real axis, past «, to 3. We can let 4,
be the reparametrization of the last portion of e’B which projects to [a, 3]

Similarly, if & > 3, we will let 4; be the first part of e/*C where

a 0
=

0

Q1=

Theorem 3.2.3 Suppose Ay, B; € Sp(2) are two positive loops based at I.

Then, A; and B, are homotopic if and only if they are homotopic through

positive loops. Thus, the natural map from

1.p0s(SP(2)) = m1(Sp(2))

is injective and onto N.

Proof: Certainly, if A; and B; are homotopic through positive loops, then

they are homotopic.
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Conversely, if 4; and B, are homotopic, then the homotopy descends to a
homotopy of the projections of the paths 7(A;) and #(B;) in Cong. Thus, the
two projections of the paths travel around S* the same number of times; this
homotopy invariant is the Maslov index. We can assume the paths only go
though I at times 0 and 1 and are generic away from these points, as positivity
is an open condition. We will show that 7 (A,) and 7(B;) are both homotopic
through positive paths in Conj to a standard path -, with appropriate Maslov
index and, thus, that they are homotopic through positive loops in Conj to
each ofher. Since any piecewise positive path may be C° approximated by a
positive path, it will suffice to do the homotopy in pieces, first considering the
parts of the paths on the circle, and then considering the parts on the real
axis.

Let «; be a loop at I in Conj which goes around S' the same number of
times as 7(A;) and w(B;). Choose -, so that it is a simple path. (Thus,
doesn’t swivel back and forth more than once along the real axis each time it
leaves the circle.)

Lemma 2.1.2 tell us that by reparametrizing w(A;), we can make it equal
to -y for the times when -y, takes values on the circle. The new parametrization
is positively homotopic to w{A;), so we need only search for a homotopy from
7(A:) to v, when these paths take values on the real line.

From Lemma 3.2.2, we know that the portion of each simple loop in Cong
on the real line is positive. If w(A;) is simple, it can be easily homotoped

through positive paths to 7, just by “stretching” through simple and therefore

positive paths. If m(A;) is not simple, then we can slightly perturb it to
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have finitely many local maxima and minima. Then, we can consider each
“bump” as a simple path, and flatten each one individually by passing through
simple and therefore positive paths. After smoothing out all the bumps in this
manner, we are left with one simple piecewise positive path in Conj positively
homotopic to 7w(A4;). We can estimate this path closely by a simple postive
path positively homotopic to #{A4;), and by moving through simple paths,
homotop it to .

Hence, m(A;) is homotopic through positive loops to 7. In the same way,
7(By) 1s also homotopic through positive loops to +;, and so 7w(A;) and = (B)
are positively homotopic in Conj.

All of these homotopies are through generic paths; hence by Proposition

2.2.5, we can lift this homotopy to Sp(2), and the proof is complete. O

Corollary 3.2.4 Let A, : [0,2x] — Sp(2) be a positive loop. Then A is

positively homotopic to e’ K where k is the Maslov index of A, and Ay = K.

Proof: Since the Maslov index completely dictates the homotopy class of
a loop, A, is homotopic to e’ K. Hence by Theorem 3.2.3, A, is positively

homotopic to e’ K. O

3.3 Other results for paths in Sp(2)

Here are a few interesting remarks concerning positive paths in Sp{2):
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Remark 3.3.1 At a point A € Sp(2),the intersection of the positive cone and

the tangent vectors pointing in the direction of the conjugacy class of A is
{JPAN(MA -~ AM)}

where P is positive definite symmetric and M € sp(2). If

A0
A= Al > 1
1
0 5
then this intersection is
0 —zA
z,z CRY Y.
§ 0

The interseclion of the positive cone and tangent vectors pointing within the

conjugacy class at BAB™' for B € Sp(2) is

)

—ZA
B B7lz,z>0

0

8

Hence, if

a b
M=
CcC —aQ

for b,c > 0, then the path v(t) = eMAe~M! is ¢ positive path staying in the

conjugacy class of A.

Theorem 3.3.2 Given any two elements in the same congugacy class in (97% €

Sp(2), there exists a positive path within the conjugacy class from one to the

other.




Proof: This is a direct result of Lobry’s Theorem which may be stated as
follows: Let M be a smooth, connected, paracompact manifold of dimension n
with a set of complete vector fields {X*|¢ € I} for some index set I. Consider
the smallest family of vector fields containing the X* which is closed under
Jacobi bracket. At each point of M, the values of the elements of this family
are vectors in the tangent space to M which generate a linear subspace S. If
dim(S) = n for all points in M, the positive orbit of a point under the vector
fields X* is the whole manifold. (See Lobry [Lob74], Sussman [Sus87]|, and
Grasse and Sussman [GS90].)

In our specific case, M is the conjugacy class of an element in O, a
smooth, connected 2 dimensional paracompact manifold. Let A represent the
diagenal element of this conjugacy class with eigenvalues A and % Qur index
set J = RT x Rt and our vector fields at BAB~* will be the ﬁositive vectors

in TBAB—lM .

o

o,z —zA .
XBAB_l == B .B .

2|8
o

At each point in M the dimension of the subspace spanned by the X** ig
2. Closure under Jacobi bracket would only add more vector fields and hence
increase the dimension of the subspace which is spanned, so the dim(S) > 2 at
all points in the manifold. But, dim(S) < dim(Tpap-1 M) = 2, so dim(S) = 2.
Lobry’s theorem applies, and we can move within the conjugacy class positively

from any one element to any other. 0
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Remark 3.3.3 There emist positive paths v=(t) € Sp(2) such that

Jim trace(y*(t)) = too.

Proof: It suffices to find v*, as then we could just set —y* = y~. Take the

path vty = e/"#A; where ;

Ag O 1 -1
AUZ ,)\0>1,P: . ";
0 - 2 -1 4

Note that y+o(0) = Ag. If we take the derivative of the trace of y*y, we find
that i

d 1
—tr(e’tAy) = Ag(cost — sint) — —(sint + cost)
dt Ao

2_ 2_
which is positive for { < tan™! (%gj&) and zero for ¢ = tan™" (23 +]1) At this

local maximum, the trace of vty is 223 + % > 273, : u
The idea for creating a positive path whose trace goes to oc involves '
gluing together successive paths of the type vty using Lemma 2.2.1. We start

at some diagonal matrix Ag as above and let the first leg of 4" be vty until

time % = tan ! (%) By Theorem 3.3.2, there exists a positive path in the . ;
LH HH

conjugacy class between yto(fg) and the diagonal element representing this i

conjugacy class, say A;. We can glue this path and v, together to get a

positive path from Ay ending at the diagonal element Ay with tr(A;) > A3.

We let the second leg of v+ be 1,1 (t) = /Tt Ay, or actually some reparametriza- §
tion of this path to obtain the part where trace increases past AJ followed
by a positive path in the conjugacy class to the diagonal element A, with

tr(As) > AJ. Continue in this manner gluing paths together, using e’ to




T i

By ol "‘
) {i
f j 4

27

increase the trace followed by a path to the diagonal element of the eonjugacy

class. We can see that the resultant path will have trace tending to oo, as with

cach step the trace not only increases, but it grows in a polynomial fashion.
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Chapter 4

Positive paths in Sp(4)

The goal of this chapter is to prove Theorem 4.1.1. First, we must carefully

analyze the space Conj(Sp(4))}.

4.1 The topology of Conj(Sp(4))

Conj(Sp(4)) is substantially more‘ complicated than Conj(Sp(2)); here we
briefly recall its topology as described in [LM97]. Remember, we have the
splitting number we can associate to simple eigenvalues on the circle which
gives us a notion of directionality, but we have no corresponding idea for other
eigenvalues.

(Generic regions:

(i) O , consisting of all matrices with 4 distinct eigenvalues in C - (RUSY);

one conjugacy class for each quadruple;

(i) Oy , consisting of all matrices with eigenvalues on 51 where each eigen-

value has multiplicity 1 (or multiplicity 2 with non-zero splitting num-
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bers); four (or two) conjugacy classes for each quadruple corresponding

to the possible splitting numbers;

(iii) Og , consisting of all matrices whose eigenvalues have multiplicity 1 and

lic on R — {0, 1, -1}; one conjugacy class for each quadruple;

(iv) Oy , consisting of all matrices with 4 distinct eigenvalues, one pair on
81— {1,—1} and the other on R — {0, 1, —1}; two conjugacy classes for
each quadruple corresponding to the possible splitting numbers of the

pair on St

Codimension 1 boundaries of these regions:

(v) By , consisting of all non-diagonalizable matrices whose spectrum con- ‘|
sists of a pair of conjugate points in S* — {1, —1} each of multiplicity 2
and splitting number 0; two conjugacy classes for each quadruple: By

containing those matrices from which positive paths enter Oz and B} ki

containing those matrices from which positive paths enfer Oy; |

(vi) B, consisting of all non-diagonalizable matrices whose spectrum is a
pair of distinct points A, 1/A € R —{0,1, -1} each of multiplicity 2; one b

conjugacy class for each quadruple; &

! (vii) By, consisting of all non-diagonalizable matrices with spectrum {\, X, £1, B
41} with A € S* — {1,—1}; two conjugacy classes for each quadruple,

corresponding to Ny (call this one By ;) and Ni™ (call this one B ;); |




(viil) Bg i, consisting of all non-diagonalizable matrices with spectrum {A, 1/,
+1,£1} with A € R—{0, 1, —1}; two conjugacy classes for each quadru-

ple, corresponding to Ny (call this one By, ;) and Ni" (call this one B . ).

It is useful to remember that generic positive paths move from Oy to O¢
through B;; and move back into Oy through B;}. Postive paths from Oy to O¢
and from Og to Og pass through Bx. Positive paths going from Oy to Oy x
pass through By ; and they return to Oy through Bj,l. Finally, positive paths
moving from Oy % to Ox pass through By |, and those returning to Oy » pass
through 5% ;.

In addition, there are two important strata of higher codimension:

(ix) Bg,p, consisting of all diagonalizable matrices with two real eigenvalues

each of multiplicity two; 1 conjugacy class for each quadruple;

(x) Byp, consisting of all diagonalizable matrices with a conjugate pair of
eigenvalues on S*, each of multiplicity two with 0 splitting number; 1

conjugacy class for each quadruple.

We now state the main theorem of this chapter:

Theorem 4.1.1 Let Ay, By : [0,2n] — Sp(4) be positive loops in Sp(4) with
base point I. Then A; and By are homotopic if and only if they are homotopic

through positive loops. Hence, the natural map

T1,p0s (SP(4)) — 71(Sp(4))

is injective and onto N — {1}.
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Certainly, if two loops are homotopic through positive loops, then they
are homotopic.

The proof of the converse will come in several steps. By Proposition 2.2.5,
it will be sufficient to produce the positive homotopy of generic loops in Conj
which can be lifted to Sp(4). We will carefully examine the stratification of
Conj to determine the behavior of a generic positive path. The idea is to first
show that w{A;) and 7w (B;) can be positively homotoped out of 7#(O¢), leaving
two loops in Conj postively homotopic to w(A4;) and #(B,) which are entirely

contained in
S = ’H‘(OL() U ’]T(O'R,) LJ 71'(0”,1{) L 'Tr(Bu,l) U TT(B'R,,]_) L TF(BU’D).

8 is the set of all open strata with eigenvalues in S* U R. along with some
boundary components to make it a connected set. Then, we view these paths
as residing in Conj (Sp(2)) x Conj(Sp(2)) C Conj(Sp(4)), allowing us to use
results about Sp(2). Finally, we show that two standard paths which have
eigenvalues traversing the circle with different speeds but with the same num-
ber of total rotations are positively homotopic. Using these lemmas we produce
the homotopy in Conj, and then lift it to Sp(4) to prove the theorem. We will

postpone the technical proofs to the last section.

4.2 Pushing positive paths out of 7(O¢)

Lemma 4.2.1 Let A; be a positive generic loop with base point I. Then, m(A;)

can be positively homotoped out of T(O¢) to a loop contained in S.
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Proof:

We can slightly perturb any path so that it enters Op only a finite number
of times, hence we assume that 7(A4;) enters 7{O¢) ounly a finite number of
times. Krein shows that the very beginning and end of positive loops based
at the identity must be in Oy. More specifically, he shows that there exist
positive € and & such that for all times ¢ where 0 < ¢t < cand 27— 6§ <t < 2w
the path is in Oy [Eke89]. Therefore we need to consider the different ways in
which 7(A4;) can leave 7(Oy), enter m(O¢), and return to (Oy), and construct
positive homotopies from each type to paths in Conj which remain in &. Then,
we can positively homotop each escape into 7(O¢) back into § individually to
result in a loop in Conj postively homotopic to w(A;) and entirely contained

in 5.

First, notice that no positive path can travel directly from Oy % to Op or
O¢ to Oyr without crossing a boundary component of codimension greater
than one. Therefore, since A; is generic, it cannot contain these transitions.
Similarly, A; cannot go directly from Oy to Og or vice versa without crossing
a higher codimengional boundary; to avoid this, it must pass through Oy % or

O¢ at an intermediate time.

If w(A;) travels directly from 7{0¢) to m(Og) and back to 7(O¢), Lalonde

and McDuff show how it can be perturbed to stay only in #(O¢) [LM97].

Taking this into account, there are four distinct ways for m(A;) to leave
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7(Oy), enter #(O¢), and return to 7 (Oy):

m(Ou} = m(Oc) = m(Ou) (1)
(O} = 7(Oc) = m(Or) = 7(Ouxr) = 7(Oy) (2)
m(Ou} = m(Oyr) = 7(Or) = 7(Oc) = m(Oy) (3)
T(Ou) = 7(Oy,r) = m(Or) = n(Oc) = 7(Or) = m(Oyr) = m(Ou) (4)

At each transition, the path crosses the appropriate codimension one
boundary. Note that in each case, when the path is in #(Og), it has ei-
ther come directly from or will go directly into #(Q¢). When passing between
7(Ox) and 7(O¢), both real eigenvalues of multiplicty two are positive, or
both are negative. It is impossible to travel in real numbers from positive
to negative without going through zero, and no symplectic matrix has 0 for
an eigenvalue. Therefore, all four eigenvalues will remain positive or all will
remain negative for the entire time that 7(A;) is in 7(Og).

Any generic positive path in Conj can be broken up into finitely many
sections which lie in 8 connected by parts of type (1), (2), (3), or (4). Note
that in between each escape into 7(O¢), while the path is in 8, there is a time
when one pair of eigenvalues is {1,1} and a time where one pair is {—1, —1}.
This is due to Lemma 2.1.2 and the fact that eigenvalues with positive and
negative splitting number must meet on S* in order for the path to cross 7 (B;)
and enter m(O). Hence, the different journeys into w(O¢) are separated by
time and will not overlap at all. If we could show how to positively homotop
any path of type (1), (2), (3), or (4) back into &, we could start with the first

diversion that occurs (with respect to time) of w(A;) into 7{O;), homotop it

back into &, continue in the same way one at a time with subsequent diversions,
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and eventually end up with a path contained entirely in & and positively
homotopic to w(A;). Thus, the proof of Lemma 4.2.1 is now reduced to showing
that any path of type (1), (2), (3), or (4) in Conj is positively homotopic to a
positive path which lies in &.

Note that (2) and (3) are opposites. If we can perturb case (3) properly
, then we can also perturb case (2) in a similar manner. Thus, we will only

work out the details for cases (1), (3), and (4).

Lemma 4.2.2 Any path a; of type (1) in Conj 18 positively homotopic to a

positive path which lies in S,

Proof: Using Lemma 2.1.2 we can see that all paths of type (1) with the
same endpoints in 7(QOy) are homotopif:. It is therefore sufficient to consider
a. model path of type (1) and produce the homotopy for this case. We assume
' the eigenvalues of a; remain on one pair of conjugate rays in 7(O¢), and that
a; simply goes out along these rays to a point where the norm of the largest
cigenvalue is & and comes back. Denote the elements of 7(B;) and 7 (B})
where a; enters and leaves 7(Oy) as m(X ) and w(X™), respectively.

We will find a continuous family of positive paths in Sp(4) which leave
Oy at X7, go into O along the appropriate ray, return along that ray, and re-
enter Oy, at X*. These paths should travel successively less far into O¢, with
their limit not going into O¢ at all, but staying on %, and passing through
X € By p. Then, the projection of these paths to Conj gives us the homotopy
required by the lemma. Note that if we find this continuous family of positive

paths for one X, we can do so for any other ¥ € By p by multiplying by
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X~1Y. Hence, without loss of generality, we can assume that

0 0 1 0
0 0 01
X =
~1 0 00
0 =1 0 0
which has eigenvalues {i,, —%, —i}.
Consider the path in Sp(4)
0 0 k0
0 0 o0 l/k
T(r) = e’
—k 0 0 0
0 —1/k 0 0

as r varies in a neighborhood of 0. The eigenvalues of «; travel around the

circle, leaving at X~ when r is such that

(14 E2)?

to travel up the imaginary axis to the point {ki, —ki,i/k, ~i/k} = w(7x(0)).
Then, they move back down the imaginary axis to X7, and re-enter the circle.
All the while that v is in O, its eigenvalues stay on the imaginary axis.
The family -y, as we let k& — 1 is the continuous familyl of positive paths we
qeed. Note that the last path in the homotopy will go through the non-generic

stratum By p. O

Case {4) requires us to consider exactly what part of #(Og) w(A4;) en-

ters. First consider the case where both journeys into 7{Og) are in 7{0%) or




both are in 7(0%). We know from Lemma 2.1.2 that movement in 7(O¢) is
unrestricted by the positivity condition; hence we can positively collapse the
portion in w(O¢) back to either 7(OF) or x(Oy). If, instead, this part of 7(A;)
moves 7(Oy) = m(Our) = 1(OF) = n(Oc) = 7(Of) = 7(Ouxr) = m(Oy)
or its opposite, the analysis is more complicated. We will call these cases (4a)
and come back to them later.

Now let us consider case (3). Assume without loss of generality that (A;)
enters 7(OF) instead of (O}, We can describe scenario (3) by graphing the
motion of the eigenvalues in the complex plane as in Figure 4.1.

To begin, all four eigenvalues are on the circle, two conjugate pairs ap-
proaching the real axis. Then, the first pair passes through A", enters the
real axis and the path is in (O ). The second pair, still on the circle, mi-
orates to the real axis also, eventually meets the first pair, and we have two
real eigenvalues of multiplicity two. At that moment, which we assume to be
t = 1, the path breaks into 7(O¢). Eventually the eigenvalues return to the

circle as two plus/minus pairs, and continue rotating in the required direction.

Lemma 4.2.3 Any path a; of type (3) in Conj is positively homotopic to a

positive path which is contained in S.

Proof: Using Lemma 2.1.2 it is easy to see that all generic paths of type
(3) with the same end points in 7{Oy) are positively homotopic. Therefore, it
suffices to start with one path of this type and first show how to homotop it
to a certain standard path b;. b, has the same first two configurations as ay,

but, instead of the second pair entering the real axis, the first pair re-enters
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the circle and the path is in 7(Oy) again. Then, the positive eigenvalue from
the first pair meets the eigenvalue with negative gplitting number from the
second pair, and vice versa, and the path escapes into #(O¢). Finally, this
path returns directly to #(Oy). b; is depicted in Figure 4.2,

The path b, is of type (1), and we have already shown in Lemma 4.2.2
how to positively homotope such paths out of 7{O). Therefore, if we can
construct the positive homotopy from a; to b;, we will be done with case (3).

The family of positive paths af (where ¢! = @, and a} = b;) we need to
construct will all start in #{O,) and then go into 7(Oy,z). Here, s is the
homotopy variable and ¢ is the time variable. The first paths in the family will
then enter m(O}) and break away into m(Oc) at time t = %, just as a; does.
The point at which the a® enter w(O¢) will progressively get closer and closer
to and eventually hit the class of some matrix with eigenvalues {1,1,1,1}
at s = 3 in Conj. The paths subsequent to this will not enter 7(O}), but
rather will go back to m(Oy) from 7(Oy r). These paths will enter 7(O¢)
from (B;;) at time ¢ = 3 at points starting from the class of the matrix with
1 as a quadruple eigenvalue, and travel up the circle. Every path in the family
will reach 7{Q¢) and travel back to 7{Oy) ending at the same point as a, and
b;.

Since movement in 7(Q¢) is not restricted under positivity, it suffices to
find the family of positive paths a’ at the infinitesmal level. We will only

construct the path aj and its forward and backward tangent vectors to af at
2

b= %, since the rest of the construction is straightforward. We need to find

two continuous vector fields along a continuous (not necessarily positive) path
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Figure 4.2: The standard path b,




g = a% € w(Br U B;) (except when s =
through some point with eigenvalues {1,1,1,1} at s = 1, to ¢* € n(By). Here,
q° is the point in Conj where a; enters 7(O¢), and ¢! is the point in Conj where
by enters 7(O¢). We need to find one positive continuous vector field pointing
into w(O¢) at every point along ¢°, and one negative continuous vector field
pointing into w{O%) at the points on ¢* with real eigenvalues and pointing into
(O} Tor all other points on ¢*. We will explicitly find a lift Q* of such a path

and vector fields in Sp(4); their projections to Conj will satisfy the required

properties. We set,

00

0 0

The proof of Lemma 4.2.3 is now reduced to the following:

Lemma 4.2.4 There exists a path Q° : [0,1] — Br U By UNT ™ where @Q° €

Bz, Q% =N, and Q' € B;; satisfying two properties:

(i) There exists a (positive) vector field along Q° pointing into O¢ of the form

JPGQ)?® for a positive definite P.

(ii) There exists a negative vector field along Q° pointing into OF when @Q° €

Br and pointing into Oy elsewhere.

Proof: The pfoof of this lemma will be deferred to Section 5.

2} which goes from ¢° € 7(Bg),

1
0

1
1




Now, the analysis for case (3) is finished. We leave case (2) to the reader

because it is very similar to case (3), and we are left only with case {4a):
m(Oy) = 1(Oyur) = 7(OF) = n(O) = 7(0F) = 7(Oyr) = 7(Oy) or
1(Oy) = 1(Our) = 7(Og) = 7(Oc) = n(O}) = x(Our) = w(Oy). This
case is a combination of cases (2) and (3). Homotop the first part of the path
from 7(Oy) = 1(Oyr) = 7{Or) = 7{Oc) to m{(Oy) = 7(Our) = 7(Oy) =
7(O¢) exactly the same way as in case (3). Then, homotop the second part
from 7(O¢) = 7(Or) = 1(Our) = 7(Oy) to m(O¢) = 7(Oy) = 7(Our) =
7(Oy) exactly the same way as in case (2). This leaves a type (1) path in Conj
positively homotopic to = (A4;) which travels 7(Oy) = 7(Ouzr) = 7(Oy) =
m(0c) = 7(Oy) = 7(Oyr) = 7(Oy). Since type (1) cases have already been

examined, the proof of Lemma 4.2.1 is now complete. O

4.3 Constructing the positive homotopy

In this section, we construct the homotopy necessary to prove Theorem

4.1.1.

Lemma 4.3.1 If a; is o positive loop in S based at I constructed by the meth-

ods of Lemma 4.2.1, then a, is positively homotopic in Cong to

for some positive integers k, £,

:
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Proof: Note that the only time g, may go through a point with two eigenval-
ues of multiplicity two is when forced to go through By » as in Lemma 4.2.2.
However, for each double pair of eigenvalues, there is only one conjugacy class
in 7(Byp) which we can write as the class of an element in block diagonal

form. Hence, we can find positive loops X, ¥; € Sp(2) such that

X; 0
T = a; € Conj
0 Y
where X = Yy = I. The result now follows from Theorem 3.2.3 |

The next lemmma shows that the positive homotopy class of

e.fkt 0
€ Sp(4)
0 eJEt

where k, # > 0 depends only on the sum &k +¢, the same invariant as the regular

homotopy class. Let ~, mean positively homotopic.

Lemma 4.3.2 Letk,£>1,n> 3, n>k, n> £ where k,£,n are oll integers.

Then,
eJk:t 0 L Jet 0

+
0 GJ(nﬂk)i 0 eJ(nuf)t

where J € Sp(2).

Proof: The straightforward but detailed proof of this lemma is deferred to
Section 5.

Now we have all the tools to prove the main theorem.

Proof of Theorem 4.1.1:




Take A; and B; to be two homotopic positive loops in Sp(4) basged at I.
By Lemmas 4.2.1 , 4.3.1 , and 4.3.2 , w(A,) is positively homotopic to 7(B;).

Denote this homotopy in Conj by h(s,1).

The final step in the proof will be to use h(s, t) to produce a homotopy
H(s,t) € Sp(4) where H(0,1) = a; and H(1,t) = b;. If all of the loops in
h{s,t) are generic in Conj except at the base point 7, then by Proposition
2.2.5, h(s,t) can be lifted to Sp(4) and the proof of the theorem is complete.
Consider the case,. then, when some loop in A(s,t) is not generic; i.e. there
exists some sg € [0, 1] such that A(so, £) passes through a boundary component
of codimension greater than 1 or gtays in a codimension 1 boundary stratum
for more than one instant. Note that 7(A;) and 7 (B,) are generic, so one of the
steps in the construction of A(s, ¢) above must have introduced this nongeneric

behavior. There are three isolated ways in which this can happen:

(i) by the construction in Lemma 4.2.2 where a path goes through the stratum
of diagonalizable elements with 2 pairs of double eigenvalues {), X, X, X}

on the circle, 7(By p),

(ii) while being homotoped out of 7(O¢), by the construction in case {2),(3)
or (4a) of Lemma 4.2.1 where the paths are forced to go through 7 (B p)
or N7,

(iii) in the proof of Lemma 4.3.1 where loops are forced to pass through 7 or

—TI.




The proof of Proposition 2.2.5 which allows us to lift a positive homo-

topy of generic loops fails if a loop is non-generic. To connect the H*(s;,1,t)
to H*"(s;.,t) via positive loops using the Proposition 2.2.4 , we need to
know that h(s;y1,t) is a generic loop in Conj. However, the argument can be
patched rather easily for the particular homotopy h(s,t) constructed above.
It is enough to show how to produce H locally around s;41 when A(s;;1,t) has
one diversion into 7(By p) or m(Brp) or N; ' as produced in Lemma 4.2.1
and when there are finitely many points at 7 or —7 as in Lemma 4.3.1. The

final three lemmas complete our discussion.

Lemma 4.3.3 If h(s;11,t) ts non generic because it enters n(Byp) ot time

t =ty as in Lemma 4.2.2, we can construct a local lifting of h.

Proof: In the proof of Lemma 4.2.2 we actually constructed a lift of A for
s,t in some interval [s;11 — €, 841 + €] X [to — 6,10 + 8]. However, the paths
at § = s;31 € are not generic, as they still go through By p at time ¢ = &,.
It is not hard to see that one can stil patch these different local lifts by the
argument of Proposition 2.2.4. The important thing is that the fibres of 7 are

always connected and there is only one non-generic point on each path. O

Lemma 4.3.4 If h(siy1,t) is non generic because it enters m(Brp) or Ny

as in Lemma 4.2.1, we can construct a local lifting of h.

Proof: In the proof of this Lemma 4.2.1, we actually constructed a lift H (s, t)

of h{s,t) for s € [sip1 — &, 8441 + 0] for some § > 0 such that h(s;; —6,7) and

h(siz1 + 0,t) are generic loops in Conj. We can relabel the s; appopriately




and apply the remainder of the proof of Proposition 2.2.5 to lift the entire

homotopy. 0

Lemma 4.3.5 If h(s;11,1) 45 non generic because it passes through I or —1I

at times other than 0 and 27w, we can construct o local lifting of h.

Proof: By compactness, there are finitely many such times, say {¢;} |1<j<n.
"Then, for each interval [t;,t;+1], A{sit1,) i8 is a positive generic path in Cong
starting and ending at I or —I. Call this path h;(s;41,¢). By Lemma 2.2.4,
the space of positive lifts of h;(s;11,t) is path connected. Thus, we can connect
Hj(s“l,t) to H;™(s;41,1) for each 1 < j < N independently, and arrive at
a piccewise positive homotopy in Sp(4) between H*(s;.y,t) and H™* (s;,,,1).
Since piecewise positive paths can be approximated arbitrarily closely by pos-
itive paths, we can find a positive homotopy in Sp(4) between Z “(8;11,%) and
H*(s;11,t). As in the proof of Proposition 2.2.5, we patch together the

H(s;1,t) and H**(s;41,t) to obtain H(s,t). 0
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Chapter 5

Technical Proofs for Positive Paths

This chapter contains the proofs of the technical lemmas needed in Chap-

ter 4. We will restate the lemmas here for the convenience of the reader.

Lemma 4.2.4 There erists a path A® : [0,1] — B U B; UN,"™ where

A ¢ Bg, Az = N{7™, and Al € By satisfying two properties:

(i) There exists a (positive) vector field along A® pointing into O¢ of the form

JPA? for a positive definite P.

(i1} There exists a negative vector field along A® pointing into OF when A° €

Br and pointing into Oy elsewhere.

Proof:

First, we need to construct the path A®. The first part of A® will travel
within the boundary components from A® € By where 7(A%) = 69 to A€ €
Br.p.

Suppose that 6¢ = 7(A) € #(Br,p) has eigenvalues A, A, 1, x and &' €

7(B;;) has eigenvalues a + bi,a + bi,a — bi,a — bi where a® + b = 1. Let
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A?:[0,1] - Sp(4) be the path defined as

1 0 0

5 00

0 0 p 1

000 4

1 100

0100

0 011

0001
T z V1—z2 11— 22
0 T Om

—/T— 22 —/1— a2 x x
0 —/1—22 0 T

the appropriate regions.

€3
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if e<3<%

if s >

[ ol

where £ =2 — a + (2a — 2)s and p = 27 (s — 2) + 1. Then 7{A*) = §* lies in

We will now look for a positive continuous vector field along A® which
points into Q¢ at every point and project it to Conj to get the needed vector
fields along &%. The original path A, gives us one positive vector, say vy,

pointing into Op at A’. We claim that JPA® is a positive vector at A®




pointing into O¢ for all € < s < 1, where

10 0 0 1
0 10 0 0
P =
0 0 10 O
1 0 0 12

Since the positive cone is open and convex, join vy to JPA® by a family of
poisitive vectors pointing into Qg along the path A® for 0 < s < e. Then, we
can continue the vector field along A* by letting the tangent vector at time
s equal JPA® for all € < s < 1. This vector field is certainly continuous and
positive, we need only prove the claim that it points into O¢ for all time.
When s > %, A* € By, and thus any positive vector points into Op. Also,
by construction, our positive vector field points into O¢ for s < . Hence, we
need only consider ¢ < § < % We check the direction of these vectors by
examining the behavior of the symmetric functions of the eigenvalues of paths
in their directions. For all matrices in Br p U Br U N[, 09 = g;li + 2 while,
on the other hand, matrices in Op satisty oy > 54% + 2 and those in Qg satisty
Tg << 5';}2- + 2.
We look at the derivatives
i lr=001 (e’ A%) = ai(s)
L, _ooa(e”FTA%) = o (s)
Since g3 = Ej— + 2 for all points on A® for s < 1, if o)(s) > (ﬂfﬁ + 2Y,

then we know that JPA® points into O¢. More generally, if

d* d* a(t)
m|r=0(02(3)):w|r=0( 1 +-2)
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for all £ <n, and

then JPA® points into Og.

Let us consider specifically the point Az = N{7. If we examine the

symmetric functions of e’“" A"~ for general symmetric

1 g2 g3 4

g2 05 g g7
Q=

g3 Gs g8 o

e v Jo dq1o

we find that o} = (%‘2- + 2¥ for all Q. Going to the second derivative, ¢f <
(Uzi 4-2)", except if gz = 0 and ¢ = ¢s, in which case of = (EE 4—2)”. Imposing
these two restrictions on Q and looking at the third derivatives, we find o} >
(%i +2)"if ¢y > 0 and g4 # g¢. Hence, e/ is a positive path pointing
into @¢, if ) is a positive definite matrix satisfying ¢ > 0, g3 = 0, ¢4 # &,
and ¢; = gs. Indeed, the aforementioned matrix P satisfies these conditions,

and we can check that

of = (% +2) = 20
oy = (% +2)" = —680
oy = —17560

(% -+ 2)" = —17600

for the path e’P"A;"” , and hence this path does travel into O¢.

|
i
E.




B

Additionally, consider the path e’*" Ay where

14y 1 0 0

o 0 =+ 0 0
J\/‘l—l-,y = 4y
0 0 14y 1

This path satisfies

oh = (% +2)

ol > (gf- + 2)"
for all y > 0.

The matrices in A® fore < 5 < % are all of the form Nf_;; for some y > 0.
Therefore, the positive vector field which we have constructed on this portion

of the path, J PN;L’; points into Q¢ and the proof of the claim is completed.

Finally, we need to construct a negative (so the reverse flow would be pos-
itive) vector field along A® which points into Og in the direction of decreasing
trace for s < 1 and into Oy for s > 5. For s > 3, A® € By UN[™, and
all negative vectors based at A® will point into Oy. Therefore, if we find any
negative continuous vector field along A® for s < %, any negative continuous
extension of it will provide us with vectors pointing into Oy for the duration

of A%, We can pick such an extension to match the tangent vector of v at the

point Al
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For e < s < 1 on A® we have block matrices of the form

<
g 1 00
500
0 0 p 1
000 5

It-would be sufficient, then, to find a negative definite 2 x 2 matrix ()2 such

that

[T
JQ2
0

==

points into O in the direction of decreasing trace for all ;2. Then, set (J4 equal
to the 4 x 4 block matrix with (O in the upper left and lower right blocks, and
vector field JQ4A® is a negative, continuous vector field pointing into O in
the direction of decreasing trace for e < s < % For s < €, we can continuously
perturb Q4 so that JQ4A® is a negative vector field pointng into Og in the
direction of decreasing trace which matches the given tangent vector to Ay
at A?. However, matrices (J; are plentiful; one can be chosen which can be

slightly perturbed along A® to match the tangent vector to A, at A, a

Lemma 4.3.2 Letk £ >1,n>3,n>k,n>{wherek,£,n are all integers.

Then,

Jkt JE 1]

~

0 et (n—k} 0 el (n—0)t

where J & Sp(2).

Proof :
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'The positive homotopy between the two paths is

eJt 0 .eJ(Icfl)t 0

H(B,t) = Py Pt
0 eJ(].-I-n-—k—E)t 0 eJ(f-—l)t

for ¢ € [0, 2n] and @ € [0, ] where

cos()] —sin(0)f
Py = ¢ Sp(4).
sin(8)I  cos(8)I
Here, I represents the 2 x 2 identity matrix. H(#,t) is certainly a homotopy, as

it is the product of symplectic matrices for all time and hence always contained

in Sp(4), and

eJk:t 0

H(0,t) =
0 BJ(n——k)t
eJﬂt 0

H(%,0) =
2 0 eJ('n,—iZ)‘.t

We must check that this is a positive homotopy, i.e. H(#,t) is a positive path

for any fixed ¢ € [0,%]. Let R be the 4 x 4 matrix such that

d
i H(0,8) = JRH(®, ).

Certainly, R depends on both & and ¢,. H(8,t) is positive if and only if R is ;
a positive definite matrix for all § and for all ;. R must be symmetric since &
JRH(0,1,) is in the tangent space of Sp(4) at the point H (0, ty), thus it will ;

be sufficient to prove that the eigenvalues of I are positive real.
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Without loss of generality, assume that & > £ and k,£ < Z. The second

eI

assumption is justified because ,

i eJkt 0 6J€t 0
~t
L 0 ekt
under the positive homotopy
BJk:t 0
G(0,t) = Py Pyt
0 6J£t

for 8 € [0,%]. G(8,1) is positive for any fixed ¢ since it is the conjugate of a

positive path, and

eJk:t 0
G0, £) =
0 elt :
‘5'1
eJEt 0 “ :
2 L i

We now compute R to determine its eigenvalues. Let J denote both the ‘

standard 2 x 2 and 4 x 4 matrix, its dimension will be clear by context. Let




r=1+4mn —k — £ to make computations easier.

Jelt 0 el k=1t 0 ,
-C%H(Q,i) = Py Pa—"l"{—
0 ¢Jelrt 0 6J(ﬁ—l)t
et 0 (k — 1)Jel -1t 0
P Pt
0 e'rt 0 (g . I)JeJ(E—l)L
I o e 0
= +Jt ‘ Pyx
0 I 0 et

(k _ 1)1]6']("’*1”
PH(G, 07 | H(0,1).
0 (£— 1) Jet 1t '

Multiplying the terms in the parentheses gives
(14 (E—1)cos?0 + (I - 1)sin® )1 cos@sin B(k — £)et1-")
cos@sin@(k — £)e’* "1 (r 4+ (k— 1)sin® 0 + (€ — 1) cos? §)]
R has two eigenvalues of multiplicity two which happen to be independent of

t:

A = %(n /(b = 02+ 2eos(20)(k — (L — 1) + (1 — 7)?)

pyp %(n B+ 2eos@0)(k— O(L— 1)+ (1 —1)?).

Certainly, since n is positive, A, is positive for all 0. To check that A, is

positive, we must show

k=02 +2cos20)(k — (1 —7) + (1 -7)2 < n.

b4




Recall the previously justified assumptions that & > £and k, £ < 3. If k= £ =

%, then r = 1 and the left hand side of the inequality is 0 which is certainly
less than n. If, on the other hand, either & or £ is less than %, then (1 —r) is

negative while (k — £) is positive. Hence,

k=02 +2c0s@0)(k — (1 —7)+ (1 =) < (J(k—£2 =20k —£)(L—r) + (L —7)?
= (k8- (1-7))

= k—4—1+r
= n—2
< T

and thus A\, is positive for all . Hence, R is a positive definite matrix, and

H(f,1) is a positive homotopy. [




Chapter 6

The space Ham (M) and criteria for length

minimizing paths

In this chapter, we review the relevant material about paths in Ham®(M).
In addition, we describe the techniques of Lalonde and McDufl for showing a

path is length minimizing.

6.1 Background

If (M,w) is a 2n dimensional symplectic manifold, any compactly sup-
ported time dependent Hamiltonian function H; on M induces a vector field

Xg on M defined by the equation
—dH (v) = w(Xyg,v) for all v € TM.

The flow ¢f of Xy for 0 < t < 1 is a path starting at the identity in the
group Ham®(M) of compactly supported Hamiltonian symplectomorphisms

of M. Recall that any path ¢, € Ham®(M)) is actually the time ¢ flow of

b6




some Hamiltonian f,, and the length L(¢;) of the path ¢; is defined to be
L($) = L(H,) = / mave Hy() — min Hy(z)di.
Given some element ¢ € Ham®(M), consider the set of paths
{v:10,1] = Ham(M)|~v(0) = identity and y(1) = ¢}.

Hofer has constructed a norm on Ham®(M) which defines the size || ¢ || of

¢ € Ham®(M) to be the infimum of the lengths of all such paths .

Consider the Hamiltonian P : CP? — R given in Chapter 1:

|£50|2
2P H 2P H 2P

T
P[Zglzli.Zz]:—
2
P induces the rotation ¢! in the first homogeneous coordinate in Ham“(CP?)
given by
¢ (20 : 21 2] = [e™ 2 21 ¢ 2.
If we restrict to the time interval 0 < ¢t < 1, the path ¢ travels from the

identity to rotation by 7« radians. In this thesis, we will show that ¢, is in fact

the shortest path between its two endpoints, i.e. that || ¢7 ||= L(P).

Lemma 6.1.1 The Hamiltonian P defined on CP? has L(P) = £.

Proof: Since P is independent of time,

T
L(P)= max P(x)— min P(z) = -—.
(F) zcCP2 (x) £cCP2 (=) 2
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6.2 Sufficient conditions for a path to be length
minimizing

We now briefly describe the theory that Lalonde and McDuff use to de-
velop their criteria for length minimizing geodesics. In [LMO95a], they first
derive a geometric way of detecting that, for two Hamiltonians H,; and K, on
M, L(H;) < L(K;). Then, they determine sufficient conditions involving sym-
plectic capacities for these geometric requirements to be satisfied. To begin,
we must make a few definitions and set some notation.

Suppose we bhave H, a compactly supported time dependent Hamiltonian
function on the symplectic manifold (M?*,w). We may assume, by adding a

constant, that

min H;(z) = 0.

zeM te[0,1]

We write for the graph of H
I'g= {(SE,Ht(IE),ﬁ)} CMxRx [0, l]

Now, let

= H,
fico wCMACH,1] 7u(w)

and suppose £(t) : [0,1] - [-4,0] is a function which is negative and close to

zero. A thickening of the area under Iy is

Ri(3) = {(,5,8) |€(t) < s < Hifa)} € M x [£(8), hoo) x [0, 1]

where [} —£(t)dt = £. Similarly, we can define Rj;(%) to be a slight thickening
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of the area above H:

BH(5) = {(z,8,0)| Hule) < s < pul®)} © M x [0, p (1)) x [0, 1]

where pgr(t) is a function dependent on H and t such that

tu (L)>néath and/ (eg(t) — b )dtz%.

We define

RII(V):RH(Z)UR+( CMXRX[O 1]

2)

For example, if we consider the P defined above on CP?,

_ 1] 9 T
I'(P)= {([z 2 72] 2Tl + | + ] )} C CP* x [0’5] x [0,1]
R;(g) = {([zo D7 1 Z9), 8, 1) ’ Lt) < s <= AP :::Z T |z2|2}

c CP? x [¢(t), g] x [0,1]
R;(%) = {([ZO N4 N ZZ]’S?t) ’ 2 |ZO|2 + :jiig + lzz|? S 8 < Ju'P(t)}

¢ CP? x [0, 5p(8)] X [0, 1]

and

Ro(0) = {([z0: 21 : 2], 5,8) | £(8) <5 < up()} € CP2? x R x [0, 1].

Note that we can equip Ry(%), Rj(%), and Rpg(v) with the product
symplectic form 2 = w & ds A dt. We need the following definition from
[LM95a] which describes manifolds such as (Ry(v), (2):

59




Definition 6.2.1 Let (M, w) be a symplectic manifold and D a set diffeomor-
phic to a disc in (R? ds A dt). Then, the manifold Q = (M x D,Q) endowed

with the symplectic form ) is called ¢ quasi-cylinder if

(i) © restricts Lo w on each fibre M x {pt};

(ii) Q is the product w @ (ds A dt) near the boundary M x 8D, and, in the
case where M is non-compact, outside a set of the form X x D for some

compact subset X in M.

Note that (Rg (), Q) is a quasi-cylinder symplectomorphic to M x D(L(H }+v)
where D(«) denotes the disk with area a. Since Q = w @ ds A di everywhere,
not just near the boundary, Ry (v) is called a split quasi-cylinder. We define
the area of a compact quasi-cylinder (M x D(a),£2) to be the number A such

that

vol (M x D{a),Q) = A- vol (M,w).

The area of Rp(v), therefore, is v + 7.

Now, suppose H; and K; are two Hamiltonians on M such that ¢ff = ¢¥
and the path ¢f for 0 <t <1 is homotopic (with fixed endpoints) to the path

¥ in Ham®(M). We may join T'x to Ty via the map
-1
9w, 8,8) = ($7 0 ¢{(z), s — K(w) + H(py 0 8 (2)), ).

This map g extends to a symplectomorphism of R (%), and we define

(Rax(v),9) = Ra(5) U RE(S):
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Because the loop ¢ 0 ¢X " is contractable in Hame(M), Lalonde and McDuff

are able to show that (By x(v),2) is a quasi-cylinder diffeomorphic to
M x {s,t CR?|At) < s < pa(t)} =M x D(L{H) +v).

Note that Ry x(v) is not necessarily a split quasi-cylinder, and thus the area

of Ry x(v) is not necessarily L(H) + v.

The key to the analysis in [LM95a] is the following lemma, whose proof

we include for the convenience of the reader.

Lemma 6.2.2 (Lalonde-McDuff,[LM95a], Part II, Lemma 2.1) Suppose that
L{K:} < L(Hy) = A. Then, for sufficiently small v > 0, at least one of the

quasi-cylinders (Re i (v), Q) and (Bx,a(v), Q) has area < A.
Proof: Choose v > 0 so that
L(K3) + 2v < L(H),

and suppose first that M is compact. Evidently,

VOl(RH,K(T/)) + VOI(RI(’H(V)) = VOl(RH(I/)) + VOl(RK(]/))

< 2(volM) - L(Hy)

where Ry(v) = Ry(%) U Rj(%). If M is non-compact, we may restrict to a

large compact piece X of M and then take the volume. a

Lemma 6.2.2 tells us that if the area of both quasi-cylinders (Rg x(v), )

and Ry g(v),Q) is greater than or equal to L(H,), then L(H,) < L{K;). To ]




develop their criteria for length minimizing paths, Lalonde and McDuff use
the theory of symplectic capacities to estimate the area of quasi-cylinders.
A symplectic capacity is a function from the set of symplectic manifolds to
RU{oo} satisfying certain properties; in particular, it is a symplectic invariant.
For more information on symplectic capacities, see [HZ94]. Suppose we have
chosen a particular capacity ¢ and symplectic manifold (M,w). We say the

capacity-area inequality holds for ¢ on M if
(M x B*(r)) < wr?

holds for all quasi-cylinders M x B*(r) where B?(r) is the closed 2-ball of radius
r. In the next section, we will give examples of manifolds and capacities that
satisfy this condition. Although capacities are applied to symplectic manifolds,

we may define the capacity of a Hamiltonian in the following way.

Definition 6.2.3 The capacity ¢(H) of a Hamiltonian function Hy is defined

as

e(H) = min{int (R (2), inf (R (5))}.

Now, take a manifold M and a capacity ¢ such that the capacity-area
inequality holds for ¢ on M, and suppose that we have a Hamiltonian H; :
M — R for which

c(H) = L(Hy).

Then, for any Hamiltonian K, generating a flow ¢& which is homotopic with

fixed end points to ¢f (and thus has ¢f = ¢{7), we can embed Ry (%) into
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with the last inequality in both lines holding by the monotonicity property
of capacities. Since capacity-area inequality holds, we know that the areas
of both quasi-cylinders Ry x(v) and Rg x(v) must be greater than or equal
to L(H;) and, hence by Lemma 6.2.2, that L(K;) > L(H;}. This proves the

proposition from [LM95a):

Proposition 6.2.4 (Lalonde-McDuff, [LM95a], Part II, Proposition 2.2) Let
M be any symplectic manifold and Hyepp ) a Hamiltonian generating an iso-
topy ¢ from the identity to ¢f. Suppose there exists a capacity ¢ such that

the following two conditioﬁs hold:
(i) ¢(H) > L(H;) and

(ii) there exists a class S of Hamiltonian isotopies homotopic rel endpoints
to ¢ff , t € {0,1], which is such that the capacity-area inequality holds
(with respect to the given capacity c) for all quasi-cylinders Ry x (v) and

Ry n(v) corresponding to Hamiltonians K, € S.

Then, the length of the path ¢ is minimal among all paths in 8.

Hence, to show that H; generates a length minimizing geodesic ¢ for
t € [0,1] among all paths homotopic rel endpoints, we need only produce a

capacity c that satisfies the above conditions (i) and (ii). In fact, Lalonde

63




and McDuff show that if the capacity-area inequality holds for all split quasi-
cylinders of the form M x B*(r), then it also holds for all Ry x in Proposition
4.4 of [LM95a]. Therefore, it will be enough to find a capacity that satisfies
(i) and satisfies (ii) for all split quasi-cylinders, M x B2%(r). Our & will be the
set of all Hamiltonians K; where ¢ = ¢ and ¢ is homotopic rel endpoints

to ¢f |
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Chapter 7

Rotation in CP? and CP2

In this chapter, we describe the two symplectic capacities we will use and

explain their relevance to CP?, C/—].S’ZO, and CP2,.

7.1 Capacities

The symplectic capacities we will work with in this paper are the Gromov
capacity, ¢, and the Hofer-Zehnder capacity, cpz. We recall their definitions

for the convenience of the reader.

Definition 7.1.1 Let (N,w) be a symplectic manifold of dimension 2n.

(i) The Gromov capacity

3 a symplectic embedding
ca(N,w) = sup { 7r?

¢ (B*™(r),wy) — (N, w)

where (B (r),wo) is the open 2n-dimensional ball with redius r endowed

with the standard symplectic form.
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(ii}) The Hofer-Zehnder capacity

caz{N,w) = sup{max(H) | H € H,a(N,w)}

where Hqq(N,w) consists of all of the autonomous Hamiltonians on N

satisfying the properties

(a) There exists a compact set &k C N \ ON depending on H so that

H|(N\ k) = max(H) is constant.

(b) There is a nonempty open set U depending on H such that H|U = “
i
0. |

(¢) 0 < H(z) < max(H) for allz € N.

(d) All T-periodic solutions of the Hamiltonion system & = Xg(z) on ;'
|

N with 0 <T <1 are constant.

To check that the capacity-area inequality holds on split quasi-cylinders L4

\
for either of these capacities is a non-trivial procedure. By using J-holomorphic ‘
curve techniques, Lalonde and McDuff show in [LM95a] that it holds for ¢¢ on

manifolds M, compact at oo, which are of 4 dimensions or fewer or which are

semi-monotone. Recently, they have shown that it holds for all M in [LM96] .

7.2 Rotation in CP? is length minimizing

Hence, condition {ii) from Proposition 6.2.4 is satisfied for ¢g on any

manifold, and in particular on CP2. In the proof of the next theorem, we




construct specific embeddings of 6-balls to show that rotation through = ra-
dians around the second coordinate in CP? is length minimizing among all

homotopic paths.
Theorem 7.2.1 The path ¢ for 0 <t <1 in Ham(CP2) given by
O [20 1 21 1 2] = [z 1 21 1 29)

is length mindmizing between the identity (¢f) and rotation by 7 radians in

the first coordinate (¢7 ).

Proof: To prove this theorem, we will use Gromov capacity ¢g and the
criteria from Proposition 6.2.4. Note that this criteria only tells us if ¢ will be
length minimizing within its homotopy class. However, i (Ham(CP?)) = Zs,
generated by rotation through 27 radians in one coordinate [Gro85]. We can
use the arguments of Chapter 9 to show that any non-null homotopic loop
has length greater than or equal to 7. By Lemma 6.1.1 the path ¢; has
L(¢f) = L(P) = Z. Hence, if the hypotheses from Proposition 6.2.4 are
satisfied, ¢f will actually be length minimizing among non-homotopic paths
as well as homotopic ones.

The Hamiltonian function P : CP? — R which generates our path ¢! is

T |20 *
Pllon: 21z 2]) = 2 |22 + |21 )% + |22

By Lemma 6.1.1, L(P) = §. Hence, we need only show cg(P) = 7. Recall
that the capacity of P is the minimum of the capacities of Ry and R}, the

regions below and above the graph

I'p ={z,st|P(x)=s}
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of P in the six dimensional compact manifold
cP? x [0, g] % [0, 1]

endowed with the product symplectic form 74 & ds A dt.
Since Ry and R} are quasi cylinders with area L(P) = % and the capacity
area inequality holds on CP? for ¢, we know that
v
ca(P) £ L(P) = 5
To show that cg(P) > %, we show both ¢g(Rp) > % and cg(Rf) = & by

symplectically embedding a 6-ball of radius 1/4/2 — ¢ into each region.

We explicitly construct a symplectic embedding of B%(J5 — ¢) into Rp

and R}. First, we consider

- T | 2o
Ry =<z 2 :2)],8t|0<t<1LL)<s <~
= {la sl st <o <GB

C CP2 x [0, %] x [0, 1]

where £(t) is some negative function close to 0. In fact, we will embed
Bﬁ(vl—,i — €) in the subset of Ry where s > 0. The embedding will be done in
two steps: first, we embed a 4-ball in CP? and then embed a 2-ball in the two

extra graph dimensions.

To understand what is happening geometrically, we identify CP? with its

image under the moment map of the 7% action

(00,0)([20 : 21 1 23]) = [€™ 2y 1 €™ 21 : 29




with 0 < 8, ¢ < 1. The moment map for this action p: CP? — R2 is given

by

( ) i 7 7T |21
Zoi x4t z)) == y =
PRS2\ 2Tl H P HaP 2P +H 212 2

and the image of CP? under p is the right triangle pictured in Figure 7.1.
The Hamiltonian P ig projection onto the horizontal axis and its image is the

interval [0, 7].

(0, w/2)

>
(n/2, 0)

Figure 7.1: Image of CP? under p

Let i~ : C2 — CP? be the map

i (21, 2) = [\/1 ~ |z |? - |2a|? 21t 2).

Note that i~ restricted to B*(s) = {(z1,22) | |21]* + |22]* < $?} is a symplectic

embedding for s < 1. The image of ¢~ composed with p is the shaded triangle

in Figure 7.2.




(0, ©/2)

(r/2(1-s2), 0) (r/2, 0)

Figure 7.2: Image of B*(s) under poi~

Choose an r < 1/\/5 For any ¢ > 0, we can symplectically embed
B2(r —¢) (the closed 2-ball of radius r — ¢) into the smaller rectangle in Figure
7.3 because the area of the ball is 7(r — €)? and the area of the rectangle is
(%’r)(%w) = mr?. Denote this mapping by ¢,. Let R = % —e¢. It is possible
to choose the family of maps 4 so that they fit together to form a smooth

map ¥y on B?(R) such that for r < R,

Yala2ey = ¥y

In particular, this means the images of nested circles under 4. are disjoint

and nested inside the larger rectangle in Figure 7.3.

We define the map ¥~ : B®(—5 —¢) — Ry by

Wi

U (21, 20,4, 0) = (1 (21, 22), ¥R (1, 1))

70




71

1/2 + (1A2)r

1/2 - (AA2)r

/4 + (®2)r - (RA2)r A+ W22 w2 : |

Figure 7.3: Image of B*(r) under ¢,

where the domain coordinates lie in C x C x R x R and satisfy |z1|* + |zs|* + |
w? +v? < (1/4/2 — €)% ¥~ will be the required embedding. We must show ]
that ¥~ is well defined, i.e. the image of ¥~ does actually lie in Rz. Once this l
has been demonstrated, it is eagsy to see that ¥~ is symplectic since it is the
product of two symplectic maps into a symplectic manifold given the product

symplectic structure.

Since the map i~ obviously is a well defined embedding, we must only
check that for a given point (21,22, u,v) € B%(J5 — ¢), the image of 15 (u, )
is contained in [0, Z(1 — |21|% — [2|%)] x [0,1] € R%. We let w* +v® = r? and

use the fact that

Vrlp2) = ;-




The height of the rectangle (the second coordinate of the image of ©;) covers

the region
1 11 + 1
- — ——r, =+ —=r
2 272 2
which is contained in the required interval [0,1] for all » € [0, ﬁ] For any

given 7, the width of the rectangle (the first coordinate of the image of ¥, )

covers the region

As is required, the function 7 + %’!‘2 — %’r is greater than zero and decreasing
for all values of r & [0, %] For the final check, we must examine the upper
endpoint of the first coordinate of the image of ¥, 5 + '%7“2, to ascertain that
it is less than or equal to Z(1 — |z1|? — [22}%) = P o4~ (21, z2) for u,v such that
(21, 23, 1,0) € B“(% —¢€). This is a simple calculation hinged on the fact that

P applied to the image under ¢~ of any 3-sphere is constant:

ENE

__|__

[SIE]

r? o= T4 Z(u? +0?)
< 450l - =)
= (L —laf — |zl
Hence, the map ¥~ is a well defined symplectic embedding of BG(M—\}E —¢) into
Rp.
Tn a similar manner we can define an embedding ¥ of BG(% — ¢) into
R}, the region above I'p. We do this in two parts, as before, but now we want

to center our ball in the CP? portion away from [1: 0: 0].

Let i+ : C2 — CP? be the map

%'+(Zl,2‘2) = [Z] . \/1 — |21P — |Z2L2 : Zgjl.




Note that i+ restricted to B(s) = {z1, 22 | |21|* + |2|> < 5%} is a symplectic
embedding for s < 1. The image of it composed with p is the shaded triangle

in Figure 7.4.

(0, w/2)

| (0, 1/2(1-s2))

e
(w/2, 0)

Figure 7.4: Image of B*(s) under poi"

The map i will be the first part of Ut

Next, note that we can symplectically embed B*(r — €) into the smaller
rectangle in Figure 7.5 because the area of the ball is 7#(r — €)? and the area
of this rectangle is 77,

We denote this mapping by ¢;". As in the previous set up, we may assurne

that for r < R, TPELB%T) = 4. Then, we define T : BS(VL,- —¢) — R} by

‘I’+(Z1, Z2, U, 'U.) = (7:+(21: ZZ)= 'QDE('U‘: U))

where the domain coordinates lie in C x C x R x R. and satisfy |2:]* + {zo|* -+

u? +v? < (1/4/2 —€)?. Just as we checked that ¥ is a well defined symplectic
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12+ Lo

1/2 - (1H2)r

w4 - (n/2)r? T4 - () & (mN2)r w2

Figure 7.5: Image of B*(r) under

embedding, we may verify that U™ is also a well defined symplectic embedding.

O

7.3 Blowing up CP? at [1:0: 0]

Here we begin our treatment of P applied to various blow ups of CP?2.
Note that P picks out the norm of the first homogeneous coordinate of a point.
Hence, if we blow up at the point [1 : 0 : 0] by removing a 4-ball of radius A
to get CAP/%, the rotation ¢f for 0 < ¢ < 1 fixes the exceptional divisor. In
addition, in moving from CP? to C’_l;%, we have altered the domain of P in

a consequential way.

Lemma 7.3.1 The Hamiltonian P defined on CP2 has L(P) = Z(1 — A2).




Proof: Written out in homogeneous coordinates,

C’—f)’ZO = {[\/1 — |2.“1|2 — |Zg|2 A Zz]|)\2 < ‘2’1'2 + |Zg|2 < 1}

with the appropriate equivalence relation on the exceptional divisor. Hence,

it is eagy to see that

L(P)= max P(z)— min Pz)==(1-X%)—0=—(1 -
zcCP2, 2eCP2, 2 2

d

The image of C’f;% under the map p is the quadrilateral in Figure 7.6.
Since the map P is projection onto the horizontal axis, with this quadrilateral

as its domain, P has image [0, £(1 — A*)]. This verifies Lemma 7.3.1.

A

(0, n/2)

w2192, 0) 20

Figure 7.6: Image of CP2?, under p

Theorem 7.3.2 The path ¢f for 0 <t <1 in Ham(éﬁzo) given by

it . .
Zo s 21 - Zg]

¢f[zg 7t 2] = e




is length minsmizing belween the identity (¢f ) and rotation by = radians in

the first coordinate (¢7 ).

Proof:

By using the embeddings from the CP? case adjusted appropriately, we
can show that ce(P) = %Z(1 — A*). By Proposition 6.2.4 and Lemma 7.3.1,
this will tell us that ¢! is length minimizing in its homotopy class. The
results of Chapter 9 can be applied to show that ¢! is actually globally length
minimizing.

To show that cg(Rp) > Z(1—A?) requires no additional work; we may use
the embedding ¥t from the CP? case. .However, to prove
ca(Rp) > Z(1 — A?) takes some manipulation. We must produce a new em-
bedding T~ : Bs(\/l—_T)‘—g — ¢) = Ry because the old embedding, ¥, has in its
image some points that were removed under the blow up. |

Consider the open shaded triangle in Figure 7.7 for some s where s* €
[0,1 — X?*]. By Delzant’s theorem, the preimage of this set under the map p is

a symplectic submanifold. This preimage is equal to the set U, C Cﬂf’% where
U, = {[zg D2 2o | = (1= -7, | <0< 7 < 32} :

We will prove that there exists a symplectic embedding 77 of B(s — ¢)

into U,. U, is symplectomorphic to the set V, ¢ R* where

Vo= { (o0, BY/1 = ¥ = al?)

V, is just a set of 2-balls fibered over an annulus. If we cut this annulus to

Zoec,l_)\z-"82<|Z0|2<1—}\2}.

make it a rectangle (this does not change the symplectic capacity), we arrive




77

/2

T/2(1-)2-5%) m2(1-%) w2

Figure 7.7: Image of B*(s) under po j~

at the set

T, = {(ﬂf,:tf,ff(\/s2 —y*) ‘0 <z<mws,0<y< S} CR%

T, is a generalized trapezoid, that is it consists of balls fibered over a rectangle.
It is not hard to show that the capacity of T is the same as the capacity of

the more standard trapezoid

T4(rs?) = {(z,y,B2(1132 - %)‘0 <zr<1,0<y< 7T82}.

In Lemma 3.6 of [LM95a], it is shown that the capacity of 7%(ms?) is equal to

the capacity of B*(s). Hence, 3 .

ca(U,) = ca(Ty) = co(TH(m5%)) = ca(B*(s)) = ns? i




and we can embed B*(s — €) into U, for any ¢ > 0. Call this embedding j; .
Consider the family of maps j7 : B*(s —€) — U, for all 0 < 5 < +/1 — )% Let

1— 3

S = 5

— E.
Without loss of generality, we may assume that the family of maps j, satisfies
Jslpas) = ds

for s < 8, so that 3-spheres of constant radius appear as vertical lines in the
moment map picture. To be precise, if (w,,w1) € C? and |wy|? + |wy|?* = 52,
then pojg (wg, wn) lies on the vertical line through the point (% (1—A*—5?),0).
Thus, P applied to the image of 3-spheres under jg is constant.

Now, we have an embedding jg from Bﬂ@ —¢€) into CP2,. Our next
task is to work with the other two dimensions and construct T=.

Fix an r < \/@ We can symplectically embed B2(r) into the smaller
rectangle in Figure 7.8 because the area of the ball is 772 and the area of the

rectangle is

(2 /=) (_2(_13_)) I

Denote this embedding by v,”. As before, we assume that for r < S,

vglpey = vy, and define T~ : B%(S) — Rp by
Tﬁ(‘wﬂawla u,v) = (jﬁ(wﬁawl): UE(’”’&’”)) :

Using the fact that P is constant along the image under 5~ of 3-spheres, it is

routine to check that in fact T~ is well defined. O
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12+(IN(2-20))r

12-(1N@E2 ) |

0 . .
m’4(1-12)+(1c/2)r2-(nN2)(1—7€)r TA(1 -2 {(mi2)r 2 m2(1-%)

Figure 7.8: Image of B?(r) under v,
7.4 Blowing up CP? at [0:1: (]

Now, suppose instead that we consider CP? blown up at the point

[0:1:0] by removing a 4-ball of radius A. We call this manifold Cfﬁzl.

m

Lemma 7.4.1 The Hamiltonian P defined on CP2; has L(P)=Z.

Proof: Written out in homogeneous coordinates,

CP2, = {[z: /1 — |22 — |22 : ,zz}|/\2 < |z + |2 < 1}

with the appropriate equivalence relation on the exceptional divisor. Hence,
it is easy to see that
il

L(P)= max P(z)- min P(z)=
rcCP2, 2&CP24 2




O

The image of p applied to Cﬁﬁzl is the quadrilateral depicted in Figure
7.9. The map P defined on C,le is again projection onto the horizontal axis

and has image [0, 7], verifying Lemma 7.4.1.

A

(0, 1/2)

0, 12 (1-32) )

-
(m/2, 0)

Figure 7.9: Image of CP2, under Ji

In Chﬁzl, the exceptional divisor is not fixed under the rotation ¢ When
we blow up CP2 in this way, Lemma 7.4.1 tells us that L(P) = %,7 i.e. the
length of P has not decreased. However, the volume of the manifold has
decreased, and there is not a straight forward way to embed large enough 6-
balls to show that co(P) = 7. It is not certain that cq(P) < %, if is only that

we cannot show equality by using the methods from the other cases.

These two blow ups, Crﬁzo and ('3521, are essentially the only two different

types of blow ups of CP? on which the rotation ¢f will be well defined. In




order for the rotation to descend properly, we must blow up at a fixed point

of the rotation in CP2, There is an isolated fixed point at [1: 0 : 0] and a
fixed sphere consisting of the points of the form [0 : z; : 22] C CP?%. From
blowing up at the isolated fixed point, we obtain (5}520, and from blowing up
at a point on the fixed sphere we obtain CP2,.

Because L{P) does not decrease when moving from CP? to (CP2,, 1),
we cannot use the Gromov capacity to show that the rotation induced by P on
CP2, is length minimizing. The natural alternative is to use Hofer-Zehnder
capacity, since ¢y z, unlike ¢g, will not necessarily decrease after blow up. Thus
we need to examine the conditions under which the capacity-area inequality
holds for cgz. Recall that a symplectic manifold (M, w) is weakly exact if w
restricted to ma(M) is zero. The following theorem from [HV92] is quoted as

Theorem 1.17 in [LM95a):

Theorem 7.4.2 (Hofer-Viterbo) Suppose that (M,w) is weakly ezact. Then
for all a >0,

caz{M x D*(a),w ® o) < a.

However, CP2 is not weakly exact, as the Hurewicz homomorphism is
an isomorphism between HQ(CFEZ,Z) and Wg(C?Z). In order to eventually
applsr Proposition 6.2.4 to CPp? using cpz, in Chapter 8 we will go back to
the original proof of Theorem 7.4.2 and show that the restriction that M is

weakly exact can be changed to M has dimension 4. Hence, in Chapter 9 we

arrive at




e REESR -t

Theorem 7.4.3 Suppose that (M,w) is a symplectic manifold of dimension

Jour. Then for all a > 0,
cuz(M x D*(a),w @ o) < a.
Theorem 7.4.3 enables us to prove the following main result.

Theorem 7.4.4 Let (M,w) be a symplectic manifold of dimension four. Let
¢y for 0 < t <1 be a path in Ham®(M) generated by an autonomous Hamil-
tonian H : M — R such that ¢y is the identity diffeornorphism and ¢, has no
non-constant closed trajectory in time less than 1. Then, ¢ for 0 < ¢ <1 4s

length minimizing among all homotopic paths between the identity and ¢;.
Finally, as a consequence of Theorem 7.4.4 we show

Theorem 7.4.5 The path ¢f for 0 <t < 1in Ham(éﬁzl) given by

Sl 21 ] = [ 2, ¢ 2)

is length minimizing between the identity (¢f ) and rotation by m radians in

the first coordinate (¢F ).




Chapter 8

The capacity-area inequality for cyz

In the first section of this chapter, we analyze the proof of Theorem 7.4.2
which states sufficient conditions on M for ciz to satisfy the capacity-area
inequality on M. Then, in the second section, we show that the weakly exact

hypothesis in this theorem can be changed to dimension four.

8.1 Hofer and Viterbo’s proof of Theorem

7.4.2

We now examine Hofer and Viterbo’s proof of Theorem 7.4.2 to determine
~ why they need the weakly exact condition [HV92]. Unfortunately, their nota-
tion is different from the notation in [LM95al, so we will first need to provide

some sort of dictionary to explain the theorem as they have stated it.

Let [S2,V] be the set of homotopy classes of maps from 5? to V. We

apply w to such a class a € [S?, V] by evaluating w on the representative of o
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in Hy(V, Z). Define

m(M,w) = inf{{w, o) |a € [$%, V], 0 < {w, 0}

Note that if M is weakly exact, m{M,w) = oco. If for some particular
class o € Hy(V) we have {w, o) = m(M,w), then « is called w-minimal. The

theorem of Hofer and Viterbo which is equivalent to Theorem 7.4.2 is

Theorem 8.1.1 (Hofer-Viterbo, [HV92], Theorem 1.12) Let (M, w) be a com-
pact symplectic manifold and let o be a volume form for S* such that fe: 0 = a
and

0 <a<m(Muw).

Suppose K : M x S*(a) — R is a smooth (time independent) Hamiltonian
such that

K |u(*) = ]ﬂo and K |u(M><{oo}) = koo
Jor suitable neighborhoods of M x {oco} and some point x ¢ M x {oo}. Suppose
ko < koo and kg < K < koo

Then, the Hamiltonion system & = Xg(x) on the symplectic manifold

(M x S*(a),w ® o) possesses a non-constant T-periodic solution with
0 < (koo — k)T < a.

The task now at hand is to see why Theorem 8.1.1 is equivalent to The-

orem 7.4.2. Remember that

cuz(N,w) = sup{max(H) | H € Huoa(N,w)}




where Hgq(V,w) consists of all of the autonomous Hamiltonians on N satis-

fying the properties:

(a) There exists a compact set 5 C N \ OV depending on H so that H | (N\

k) = max(H) is constant.
(b) There is a nonempty open set U depending on H such that H|U = 0.
(c¢) 0 < H(z) <max(H) forallz € N.

(d) All T-periodic solutions of the Hamiltonian system & = X5(z) on N with

0 <T <1 are constant.

Clearly, proving Theorem 7.4.2 is the same as showing that any properly
normalized Hamiltonian K on M x D?*(a) with max(K) > a has a non-constant
orbit with period T' £ 1. In Theorem 8.1.1, Hofer and Viterbo consider the
completion M x S%(a) of M x D?*(a). For simplicity, we will also denote
the symplectic form on 5%(a) by o. The neighborhood U(M X oo} € M x
S%(a) corresponds to a neighborhood of 8(M x D?*(a)) in Theorem 7.4.2. The
hypotheses concerning the values kg and ko in Theorem 8.1.1 correspond to the
conditions (a) (b), and (c) describing the requirements for X to be a member
of Haq. The hypothesis 0 < @ < m(M,w) in Theorem 8.1.1 is satisfied for all
a if and only if M is weakly exact. Finally, the quantity ke — ko corresponds
to max{K’). Hence, to show the equivalence of the two theorems we need to

suppose in Theorem 8.1.1 that £, — ky > ¢ and show that we get a closed

non-constant orbit of period T' < 1. In fact, the conclusion of Theorem 8.1.1




tells us exactly that we get a non-constant orbit of period

koo — ko’
so that if ko — kyp = a then T < 1.

We eventually want to prove Theorem 8.1.1 without the hypothesis a <
m{M,w). For the symplectic manifold (M x S* w & o), let J be the set of
all compatible smooth almost complex structures J on 3 x S%. The original
proof of Theorem 8.1.1 uses J—holomorphic curves with a split compatible
almost complex structure J € J on M x §2 that is regular for the class A in
the sense of Theorem 3.1.2 of [MS94]. Hofer and Viterbo use a split ./ so that
they can easily verify the condition & < m(M,w) in certain settings. Since
this condition is exactly the hypothesis we will remove, in this discussion we
do not need to restrict ourselves to a split /. We will, however, ﬁeed to impose
more regularity conditions on J later.

After a J is fixed, the proof of Theorem 8.1.1 proceeds by determining the
S'-cobordism class of a certain moduli space of J-holomorphic spheres whose
image is in M x S%(a). This moduli space H(J) consists of the set of maps

n € C®(8% M x 5%(a)) that satisfy

[u] = [{pt} % S*(a)] = A € Hy(M x S*(a), Z)
/Du*w = %(w,A) where D = {z||z| < 1}
u(0) = {*}, u(co0) € M x {0}

BJu =,
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Hofer and Viterbo show the S'-cobordism class of H{J) is not zero and
hence a related family C of perturbed J-holomorphic spheres is not compact.
Specifically,

C = {(Au) € [0,00) X B|Fyu+ Me(u) =0}

where k(u) is basically a scaling of the gradient of K and B is the set of maps
u € H?2({5% M x S*(a)) that satisfy

] = A € Hy(M x S*(a), Z)

/;Ju*w = —;—(w,A) where D = {z||#| < 1}
u(0) = {*}, u{o0) € M x {o0}.

We can see that the map u for (A, u) € C is almost fixed. Since J is regular,
the dimension of the moduli space of perturbed J—holomorphic épheres of class
A s 2¢1(A) + dim(M) + 2 = 6 + dim{M) ([MS94], Theorem 3.12). However,
C does not consist of all of these spheres; the restrictions placed upon the
elements in B reduce the dimension of C greatly. The first normalization
condition on the area imposes a loss of 1 dimension. The next restriction,
fixing the image of {0}, imposes a loss of dim(M) -+ 2 dimensions. Finally,
réstriction the image of {co} results in a loss of 2 dimensions. Hence, the set
of spheres we are considering in the second factor of C will have dimension
6 + dim(M) — 1 — (dim(M) +2) — 2 = 1. This degree of freedom corresponds
to rotation by S* of S?. Note, then, that C is a two dimensional space: one

dimension for the A coordinate and one dimension which corresponds to this

S1 rotation.

87




Hofer and Viterbo analyze the noncompactness of € and show that it
cannot be due to a bubbling off of perturbed J-holomorphic curves. Since
there are no bubbles, there are uniform bounds on the derivatives of the u.
They view the u not as maps from the sphere, but rather as maps from the
non-compact cylinder S* x R. Hence, C consists of maps with finite energy
whose domain is an infinitely long cylinder. In the same manner as in Floer
theory, Hofer and Viterbo show the noncompactness of € produces a sequence
of maps that converge to a closed non-constant orbit x which is a solution of
the equation = Xk(z).

When we remove the restriction a < m(M,w), each of the steps in the
proof of Theorem 8.1.1 goes through with only minor adjustments, except for
the proof of the statement that there are no bubbles. It turns out, however,
that this difficulty can be overcome. In the next section, we give a new proof
that shows when we remove the above area condition in the case where M
has dimension 4, it is still true that generically, no sequence of elements in C

converges to a bubble.

8.2 Noncompactness in C cannot be due to

bubbling

We will show that for generic J € J, the space of bubbles which are
limits of sequences of elements in C is empty. We first show that for generic

J, the space of cusp curves which have two components in empty. There are
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two distinct cases we must consider. The first case is when the point where
the derivitave blows up in 52 is {0} or {co} and the second case is when the

point where the derviative blows up lies elsewhere. We exarine in detail the

first case, as the second is similar but more simple.
‘ We can represent the Ak(u) perturbed component of the cusp curve by
} the class A — Y and the J-holomorphic bubble by the class X. Let us for g
now assume that X =Y, and therefore that the homological sum of the two
component classes is A. Note that this need not be the case: since we only
congider simple cusp curves as limiting elements, we may have had to reduce
a multiply covered curve and thus have lost some homology. We will discuss
this later on and see that, since we assumed M has dimension four, it poses
no obstacle.

We define the universal moduli spaces
A=Y, T) = {(u, ) |u: S? = MxS%a), [Im(u)] = A~Y, drut+Ark{u) = 0}

and

; w¥, T) = {(v,J)|v: 5% = M x $*(a), Im(v)l = Y, dv =0}

We will write pMA =Y, J) or u(Y,J) when we wish to refer to the moduli
siaace consisting of curves corresponding to a single J.

‘We must show that for a generic J, the subset of elements in
uMA =Y, J) x u(Y,J) which satisfy the restrictions imposed by C and which
are bubbles is empty. Assume that the point where the derivative blows up

to form the bubble is {0}; the case where it is {co} is handled similarly. A \

picture of the cusp curve is shown in Figure 8.1. i
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U(eo)e M X {o}

Wzo) = vivg )

Figure 8.1: Bubbling at {0}

Let 4> be the space
U = | pMA— Y, T) Xy S X u(Y, J) Xgy 52
; Jeg
The four dimensional reparametrization group G of S? that fixes {oo} acts
on the first 52 and the four dimensional reparametrization group G that fixes
{0} acts on the second S%. (Note that for different types of bubbles we will be

able to quotient by different symmetry groups.) Define the space
U={NUMxe 0,2}

where Ay is some constant that depends on A and M. We let U; be the
restriction of U to a particular J € 7.

Consider the evaluation map ev where

ev:U — (M x §%)*

ev(, J,u, 20, v, wo) = (u(0o), u(z), v(we), v(0)) .




Let,

D =evH (({oo} x M), A, {x})

where A stands for the diagonal in (M x S%) x (M x S?). We let Dy be
the restriction of D to a particular J € J . Our aim is to prove that for a
generic J, Dy is empty. Note here that we have not included in D the area

normalization condition

o —
/IZI<1u w= Q(w,A)

that is included in C. We omit it to make the analysis more sitnple. Clearly,
if D is empty when we do not require that u satisfy this condition, Dy will

be empty if we do insist it satisfies this restriction.

Lemma 8.2.1 There exists a set of compler structures Jo C T of second

category such that for J € Jy, Dy is emply.

Proof: First, we show that D is a manifold by proving that ev is transver-
sal onto the set ({oo} x M,A,{*}) in (M x §%)* Then, to calculate the
codimension of Dy, we apply the theory in the proof of Theorem 6.3.2 from
[MS94]. These results tell us that since the projection map from If onto J is a
Fredholm operator, there will be a set J,e, of second category in J such that
for J € Jpeq, the manifold D; C Uy has its expected codimension. The final
step will be to show this codimension is greater than the dimension of if;, and

hence D; is empty.

Lemma 8.2.2 The map ev is transversal onto ({00} x M, A, {*}).
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Proof: Choose some (A, J,u,v) € [0, Aoo] X T X p* (A~ ¥, J) x u(Y, J). Note
that u and v have no restrictions placed on them except for their homology
class. IFirst, suppose that if their images do touch in M x % as a limit
of curves in C, the point in M x 5% at which they meet is neither {x} nor
u(o0) € {oo}xM. Therefore, the preimages of the sets ({oc}x M}, A, and {+}
are all separated in S%. Since transversality is a local condition, it is enough

to show that
71 © ev is transversal to {oo} X M C M x §°

T X 73 0 ev is transversal to A C (M x §%)*

and

w4 © ev i8 transversal to {x} € M x S*

where 7; denotes projection onto the ith copy of M x §?% in the image of ev.
By Lemma 6.1.2 in [MS94], since we have no restrictions on u and w», these
maps are indeed transversal onto the necessary regions.

Now, suppose the point in M x §? at which they meet is the image of {0}
or {oco} under u. Even though » would be restricted near the meeting point, v
would not. Hénce, since the normal bundle to A at the point (p, p) is spanned

by the vectors 0 X T{M x 5?), we would still have transversality. O

Lemma 8.2.3 There exists a set of second category Jreg C T, so that the

codimension of Dy in Uy is 4n + 6 for all J © Frey.

Proof: By Lemma 8.2.2, we can use the Fredholm theory from Theorem

6.3.2 of [MS94]. This tells us that for a set of almost complex structures Jyeq




of second category, J € Jrey implies

codimension of D; = codimension of {({oo} x M), A, {*})
= 24+(2n+2) +(2n+2)
= 4n +6.

Finally, we calculate the dimension of i4;.

Lemma 8.2.4 There ezists a set of second category Treg © T so that for

J € Tjeys the dimension of Uy is 4n + 5.

Proof: Theorem 3.1.2 from [MS94] states that for a set of second category
Jles(B) C J, the dimension of the moduli space u(B,J) = 2¢1(B) + 2n + 2
where B is a 2-homology class in M x S2. If we let our class be A—Y and Y,

we see that for J € J/ (A-Y)N T, (Y) =T,

reg’

dimU; = 1+2c(A-Y)+2n+2+2c:(Y)+2n+2+2-4+2-4
= 4n 45,

X

For J € J,.egﬂj,fcg = Jo, Uy has dimension 4n+5 and D; has codimension
4n+6. Hence, for these J, Dy will be empty. Note that 7, is of second category
since it is the intersection of two second category sets . Thus, we have proven

Lemma 8.2.1. O

Proposition 8.2.5 Suppose (M,w) is a symplectic manifold of dimension

four. Then, there exists a set of second category of regular almost complex




structures on M x S? for which the space of bubbles which are limits of se-

quences of elements in C will be empty.

Proof: Lemma 8.2.1 tells us that for generic J, the space of such bubbles
that are cusp curves with two components, neither of which is multiply covered,
where the bubble is formed by the derivative blowing up at {0}, is empty. To
deal with other types of bubbling in a two component cusp curve is similar. We

must be careful, though to quotient out by the appropriate symmetry groups.

To show that multiple bubbles would not occur, the argument from the
proof of Lemma 8.2.1 can be modified. For each additional bubble, we would
increase the number of homology classes used to form 4, by 1 and increase
the number of 52 used by 2. (See Theorem 6.3.2 from [MS94]). This adds
In+ 2 +4 = 9n + 6 to the dimension of I/;, and we may reduce by the six
dimensional reparametrization group PSL(2, C) to get 2n added dimensions.
The transversality results would carry through. The codimension of D; with
one added bubble would increase by 2n + 2. Hence, again, the codimension of

D7 would be greater than the dimension Uy, so Dy will be empty.

Finally, we must deal with the possibility of multiply covered curves.

Without loss of generality, assume that the cusp curve has two components:
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the Ak(w) perturbed J—holomorphic component of class A—Y and the J—holomorphic

bubble component of class X. Suppose that X has been reduced from the mul-
tiply covered dX where dX +Y = 0 in homology for some positive integer d.

Since M has dimension four, M x S? has dimension six. Therefore, all classes

representable by a J—holomorphic or perturbed J—holomorphic curve give a




nonnegative integer when paired with the first Chern class. In particular, dX

is representable so

et (X) = é et (dX) > 0.

This gives us
Cl(A) = Cl(A-— Y) -+ d- CI(X) 2 Cl(A — Y) + Cl(X).

When we imitate the proof of Lemma 8.2.4, we see that the space we would

consider as the domain of the evaluation map is
Uy = (A —=Y) xg 8% x (4(X) xpsrz0) 5°)-

We calculate

dimy, = 2m+242c(A-Y)+2—-4+2n+2+2c1(X)+2~6
= —2+2c;(A-Y +X)+4n
< —2+42¢1(A) +4n

Note, however, that the codimension of D; is the same. Hence, again, gener-

ically D; will be empty. We could deal with the case when A — Y has been

reduced from a multiply covered component in a similar manner. m
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Chapter 9

Proofs of main theorems about length

minimizing paths

We will restate the theorems here as we prove them.

Theorem 7.4.3 Suppose (M,w) is o symplectic manifold of dimension four.

Then,

crz(M x D*(a),w® o) < a.

Proof: Fix an almost complex structure J € J on M x 5? so that Proposition
8.2.5 holds. Note that Proposition 8.2.5 implies that Theorem 8.1.1 and hence

Theorem 7.4.2 hold for M, if M has dimension four. This completes the proof.
0

Theorem 7.4.4 Let (M,w) be o symplectic manifold of dimension four. Let
by for0<t <1l bea path in Ham®(M) generated by an autonomous Hamil-
tonian H : M — R such that ¢y is the identily diffeomorphism and ¢y has no
non-constant closed trajectory in time less than 1. Then, ¢ for 0 <t <1 is

length minimizing among all homotopic paths between the identity and ¢..
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Proof: Theorem 7.4.3 implies that the capacity-area inequality holds for ¢y
for all split quasi-cylinders. We can repeat the proof from Proposition 4.4 of
[LM95a] to show that it holds for all quasi-cylinders. Thus, cyz satisfies con-
dition (ii} of Theorem 6.2.4 for any Hamiltonian H on M if M has dimension
four. Now, we choose an antonomous H that generates a flow ¢7 which has
no non-constant closed trajectories for 0 < £ < 1. In order to show that H
generates a length minimizing geodesic among all homotopic paths, we must
show that cyz(H) > L(H) verifying condition (i) of Theorem 6.2.4. We now

invoke Proposition 3.1 from [LM95a):

Proposition 9.0.6 (Lalonde-McDuff) Let M be any symplectic manifold and
H: M — R be any compactly supported Hamiltonian with no non-constant

closed trajectory in time less than 1. Then
CHz(H) 2 L(H)

Proof: We give here a sketch of the proof. Using H, we can construct a
specific Hamiltonian H on Ry (%) and show that H € Haa(Ry(%)). Then, it is
easy to show that m(H) > m(H) = L(H), so cyz(Rz(%)) > L(H) and hence
enz(H) > L(H). |

It follows that ¢ff for 0 < ¢ < 1 is a length minimizing geodesic among
all p&ths homotopic with fixed endpoints from the identity to ¢, and we are

finished with the proof of Theorem 7.4.4. )

Theorem 7.4.5 The path ¢f for0 <t <1 in Ham((ﬁgzl) given by

(20 2 ) = [€2 1 2y : 2]
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is length minimizing between the identily (¢F) and rotation by 7 radians in

the first coordinate ($7 ).

Proof: We must show that the path induced by rotation is actually length
minimizing among all paths. We define the functional L : m(Hem®(M}) - R
by

L([y]) = inf L(7)

e[|
and let

ri (M) = inf({Tm I, : m; (Ham?(M) - R} N (0, 00)) I

if this set is not empty, and co otherwise.

Now we use the result from [LM95a}:

Proposition 9.0.7 (Lalonde-McDuff) Suppose we have a manifold M and a

capacity ¢ which satisfies condition (#) of Proposition 6.2.{. The path pf !
is length minimizing amongst all paths with the same endpoints if c(H) =

L{H) < .

2

For the P given above, we know cgz(P) = L(P;) = 3. Hence, we only |
need prove that r(CP2) < x. In their preprint [AM97], Abreu and McDuff
éxa;ctly calculate that m (H. am®(CP2)) = Z. A generator for this group is
the class of the loop ¥ for 0 < ¢ < 1 where

Pylag 121t 2] = (€52 1 21 ¢ 2a).

Certainly, L(s)) = 7. Note that the loop ¥ is just the loop traced by ¢f ;

traversed twice as fast. To show rl(éﬁzo) = qr, we must show L([¢]) = 7, i.e.

1) is length minimizing in its homotopy class.




Theorem 9.0.8 The loop v for 0 <t <1 s length minimizing in its homo-
topy class in H am%éﬁ%). In fact, it is length minimizing in its homotopy

class when considered as a loop in CP?2 or CF15’21, as well.

Proof: We cannot use Theorem 7.4.4 to prove this directly, because 1 is a
loop based at the identity and therefore has non-constant closed trajectories.
However, Theorem 7.4.4 does tell us that 1o, will be length minimizing in
its homotopy class for any #, < 1 on CP2, CP2;, or CP2,. The following

lemma, then, completes the proof of Theorem 9.0.8 and Theorem 7.4.5.

Lemma 9.0.9 Suppose we have a path v : [0,1] = Ham*(M) and that for all
to < 1, the path o) is length minimizing in its homotopy class among paths
with fized endpoints v and y,. Then, v for 0 < ¢ < 1 is length minimizing

in its homotopy class among paths with fized endpoints vy and 1.

Proof: Suppose there is another path, 2, homotopic with fixed endpoints fo
7, such that L(3) < L{7y). Choose € > 0 such that

Fix ty € (0,1) so that L(+{o.)) has length L(y) — § = L(8) + %. Then, since
the composition loop 87! o 7 is null homotopic, we have two homotopic paths

from ~p to v,

Tlo,to] 2nd ¥ o0 8

with lengths L(8) + 5 and L(f) + § respectively. Since our hypothesis states

that 4o,z 18 length minimizing in its homotopy class, we have a contradiction.

m
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with fizved endpoints vy and y,. Then, v for 0 <t < 1 is length minimizing

in its homotopy class among paths with fized endpoints vy and V.

Proof: Suppose there is another path, 8, homotopic with fixed endpoints to
7, such that L(#) < L{v). Choose e > 0 such that

L(B) + = L().

Fix to ¢ (0,1) so that L{vjo,,) has length L(y) — £ = L(f) + . Then, since
the composition loop 87! o «y is nuil homotopic, we have two homotopic paths

from ~p t0 yg:
(}’i[oaio] and ’Yilktosl] of

with lengths L{8) + % and L(8} + § respectively. Since our hypothesis states

that Yo,¢ is length minimizing in its homotopy class, we have a contradiction.

W
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