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Abstract of the Dissertation
A generalization of the Morse complex
by
Janko Latschev
Doctor of Philosophy
in
Mathematics

State University of New York at Stony Brook

1998

Let f: X — R be a Morse-Bott function on a compact man-
ifold, whose gradient-like flow ¢, satisfies a generalization of the
Smale condition and is ‘tame’ near the critical manifolds. We show
that such a flow satisfies the finite volume condition of Harvey and
Lawson (HL97b]. This implies that ¢, gives rise to deformations of
both the de Rham complex of differential forms on X and the com-
plex of smooth singular chains transverse to the unstable manifolds
of critical sets. We describe the structure of lim,__,o ¢, (T) for T
in either of the two complexes. In particular, we show how the

deformation of the singular chains yields an effectively computable
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model of the homology of X in terms of a generalized Morse com-
plex (M, 3r). The chain groups of this complex can be identified
with the (suitably shifted) groups of singular chains in the critical
sets, and the differential is explicitly given in terms of the flow.
Applications include computations of the homology of a fibration
and G-equivariant homology for manifolds with an action of a com-
pact Lie group G. The methods also give partial results about the

ring structure of H*(X).
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Chapter 1

Introduction

It is a classical result of Morse theory that a finite dimensional compact
manifold X has the homotopy type of a CW-complex with one cell for each
critical point p of a Morse function f on X (where the dimension of the cell is
equal to the index of the critical point p). In the late 1950’s Smale introduced
a simple transversality condition on the stable and unstable sets associated
to a gradient-like flow for f, which can be used to substantially enhance this
result. In fact, one can set up an algebraic chain complex (M, 8;) whose
chain groups M, are generated by the critical points of index £ and whose
boundary operétor is given by counting the flow lines between critical points
whose indices differ by one. Then it is a theorem that this chain complex
computes the homology of X. Although this result is implicit in the work of
Thom and Smale, it was only brought to broad attention in the early 1980’s
by Witten's well-known paper [Wit82].

In a recent péper [HL97b], Reese Harvey and Blaine Lawson introduce a

new point of view to the subject. They observe that for Morse-Smale functions



the total graph T in X x X of a ‘canonically flat’ gradient flow ¢, has finite

volume and gives rise to an equation of currents
T=A-P (1.1)

where A C X x X is the diagonal and P = lim,_,.graph(y.). In fact one
proves that

P= 3 [S]x[U] | (1.2)

pECT(f) '

where S, and U, are the stable and unstable sets of the critical point p and [Y]
denotes the current of integration over the locally closed submanifold Y C X.
Now one uses the fact that currents C in the product X x X give rise to
operators C : Q5(X) — D, _(X) mapping differential forms on X to currents

in such a way that the current equation (1.1) translates into a chain homotopy
Tod+doT=I-P. (1.3)

Here T and PP are the operator associated to T and P, respectively, and I is
the inclusion of twisted forms into currents associated to the diagonal A. This
equation (1.3) has several important consequences. First, we see immediately
that P commutes with exterior differentiation d. Also, PP induces a homology
isomorphism, because I does. But since

PB)= Y, ( fu ﬁ) [S5], (1.4)

peECT(S)
we see that the image of P is the finitely generated complex Sy spanned over R

by the stable manifolds of the critical points. The remarkable fact is that the




gradient flow of a Morse-Smale function gives rise to an explicit deformation of
the de Rham complex to the finite-dimensional complex Sy. One easily checks
that the boundary map in S; is given by counting flow lines as mentioned
before, and so it can be thought of as an explicit geometric realization of
the algebraic complex (M, dy). In fact the span of the stable manifolds over
the integers forms an invariant subcomplex S%, which can be viewed as the
deformation of the singular chains transverse to the unstable sets of the critical
points. This complex SZ computes the integer homology of the underlying

manifold X.

It is this explicit deformation which gives rise to interesting applications.
For example, Reese Harvey and Blaine Lawson [HL97a] use an extension of
these techniques to establish and compute canonical universal residue forms
that arise in studying the relation of characteristic classes of two vector bundles

with the singularities of a bundle map between them.

In this work, we extend the methods of Harvey and Lawson to the case of
generalized Morse functions, where the critical set is a finite disjoint union of
embedded submanifolds. These functions were first studied by Bott [Bot54],
who proved the analogue of the classical Morse inequalities in this setting and
applied them to obtain information about the topology of loop spaces. For
certain ‘tame’ gradient-like flows which satisfy an appropriate version of the
Smale transversality condition, we again prove that the total graph T of the
flow has finitc volume. Equation (1.1) holds as before and the products in

(1.2) are now replaced by fibre products over the connected components of the



critical sets:
P= Y SexpUp. (1.5)
Fiem(Cr(f))

The associated operator P no longer has finitely generated image, as it is given
by
P(B)= Y.  Resp(B)[Srl, (L.6)
Fieno(Cr(f))
where the smooth residue form Resp(B) is the pull-back to Sr of the fibre
integral of B over Ur. However, P still acts on sufficiently transverse chains,
and the geometric version of the main theorem (Theorem 4.4) asserts that the
image complex S,Z- in this> case is given by stable bundles of smooth chains
in the critical sets. As before one may interpret these results as giving an
explicit deformation of the de Rham complex (or more generally the complex of
sufficiently transverse chains) to a geometric model S}z’ of a Morse complex. In
this model the boundary map is again explicitly given in terms of the gradient
flow, so that it can be used to effectively compute the homology of X with
Z or at least Z, coefficients. By degenerating diagonals in higher products
X x X x ... x X we obtain some partial information about the ring structure
of H*(X).
The c;lass of functions to which our results are applicable is quite general.
It includes pull-backs of Morse-Smale functions from the base space of a fibra-
tion to the total space, as well as many invariant functions for the action of
a compact Lie group G on X. In fact one can use the later to obtain results

about the G-equivariant homology of X. But although a Morse function can




always be made Morse-Smale by a change of metric, the same is not true for
generalized Morse functions (cf. Example 2.3).

Some of these results for real coefficients were obtained by Austin and
Braam [AB94] using methods from Floer theory. Our approach naturally yields
results over Z and Z,, which are not at all immediate from their frame-work.

We also expect the point of view of deformations to yield new applications.

Here is a brief outline of the body of this work. In Chapter 2 we set up
. the basic notation and definitions and provide examples of generalized Morse
functions to which this theory applies. Chapter 3 contains the statement and
proof of the basic structure theorem about the total graph T of the flow ¢..
In the course of the proof we find that the closure of the stable and unstable
sets Sr and Ur of a critical manifold F' are the image of smooth families of
compact manifolds with corners under smooth maps. This observation allows
us to define the concept of a stable bundle of a smooth chain in F' in Chapter 4.
Here the main theorems about the operator P on forms and on smooth chains
transverse to the unstable bundles are proved. In Section 5.1 we give the
calculation of the integer homology groups of SO(n) as an example of how the
methods work in practice. Section 5.2 explains how to compute G-equivariant
homology from a function invariant under the action of some compact group G
on X. Section 5.3 contains results about cup product. For completeness, the
facts from geometric measure theory which are used throughout are collected
in the Appendix. It also contains a brief section on Whitney stratiﬁcationé,

as well as a proof.of the Morse Lemma for Morse-Bott functions.



Chapter 2

Mathematical Preliminaries

In this chapter we recall some standard definitions, mostly to introduce
notation that will be used throughout the rest of this work. A few new concepts

are also introduced.

In what follows, X will denote a smooth, compact, n-dimensional manifold
without boundary. A Morse function f : X — R is a smooth function on X
whose critical points are non-degenerate in the sense that the Hessian is a
non-degenerate bilinear form. A function f : X — R is called a generalized
Morse-function (or Morse-Bott function) if its critical set Cr(f) is a disjoint
union of finitely many embedded submanifolds, and again the Hessian at a
critical point p in the critical manifold F, which is now defined on T,M/T,F,
is nondegenerate. The index A, of a critical point p is defined to be the
index of the Hessian at p. Since this number only depends on the critical set
F containing p, we will often denote it by Ar. We also define the number
A = n —np — Ap, where ngp is the dimension of the critical manifold F

containing p. A vector field V on X is called a gradient-like vector field for




the function f if its zero set coincides with the set Cr(f) of critical points of
f and df(V') > 0 on the complement of Cr(f). Note that the gradient with
respect to any metric is a gradient-like vector field in this sense. To any vector
field we can associate its flow ¢, and for gradient-like fields the fixed point set

Fiz(¢p;) of the flow will coincide with the critical set Cr(f) of the function.

Definition 2.1 A flow ¢, on X is called tame if the fized point set Fiz(yp,)
consists of a finite union of disjoint smooth submanifolds {F;} and each fized
point p € F has a coordinate neighborhood (u, z,v) :U, — R x R*r x R

such that the flow in these coordinates is given by . (u,z,v) = (e~ "u, 1, €e"v).

In section 4 of the Appendix, we prove the following statement:

Theorem A.8 Let f : X — R be a generalized Morse function , and
let F' be a connected component of its critical set. Then there ezists a normal
bundle with a splitting N = N* @ N~ and e metric such that the function is
given as f(u,z,v) = f(F)+|v|?> - |ul®. In particular, the gradient flow for this

metric is locally of the form

or(u, z,v) = (e "u,z,e"v).

For each p € Cr(f) we can define its stable set S, and its unstable set U,

as usual by
Sp = {z € X :lim,q ¢-(z) = p} and

Up ={z € X :limry_oo.(z) = p}



For tame gradient-like flows of generalized Morse functions these sets are dif-
feomorphically embedded open disks of dimension A, and A, respectively. We
define the stable (resp. unstable) set of a critical manifold F to be the union
of the stable (resp. unstable) sets of its points and denote it by Sr (resp. Ur).
Recall that the gradient flow of a Morse function f on X is said to satisfy the
Smale condition if for all critical points p,q € Cr(f) the stable manifold S,
is transverse to the unstable manifold U,. In order to generalize the results
of [HLI7b] to the case of generalized Morse functions, we need an appropriate

version of the Smale condition.

Definition 2.2 A flow ¢, is said to satisfy the generalized Smale condi-
tion if its fized point set Fiz(yp,) consists of a finite disjoint union of embedded
submanifolds and for any two fized points p,q € Fiz(yp,) we have that U, is
transverse to S, ana S, is transverse to Ug,, where F; denotes the connected

component of Fiz(p,) containing .

A generalized Morse function f is said to be generalized Morse-Smale if

there is a gradient flow for f satisfying the generalized Smale condition.

We say p < ¢ if there is a (possibly piecewise) flow line from p to gq.
Similarly we have a relation F' < F' between critical manifolds.

For a generalized Morse-Smale function F < F', F # F' implies the
inequalities

Ar < Apr and Ap > A%,

These are of course equivalent in the case np = ng = 0.



Remark 2.3 Even though it is true that a (regular) Morse function can be
made Morse-Smale by a change of metric, the same is not true for generalized

~ Morse functions.

For example, take the torus in R® as pictured below with the height func-
tion. In coordinates (¢, %) € [0,2x) x [0, 27) on the torus one could take it to

be h(p, V) = (2 + cos2p)(1 + cosy).

Figure 2.1: A certain embedding of the torus in R3

It has the 'bottom circle’ {¢ = 7} as absolute minimum and on the ’top
circle’ it has two saddle points, (¥,0) and (3£,0), and two maxima, (0,0) and
(m,0) . Notice that the fibres of the unstable bundle of the bottom circle have
dimension 1, as do the stable manifolds of the saddle points. However, for any
metric, there will be some fibre(s) that intersect(s) these stable manifolds in

flow lines, i.c. with dimension 1, which contradicts transversality.

On the other hand, we do have the following important examples.

Example 2.4 If f is a Morse-Smale function on X and Y is any compact
manifold, then the pull-back of f to the product X xY is a generalized Morse-
Smale function in this sense. More generally, if P — X is a fibre bundle (and
a Riemannian submersion) with compact fibre Y, and f is a Morse-Smale

function on X, its pull-back to P is generalized Morse-Smale in our sense.



To see that, e.g., U, is transverse to Sr just note that they project to
transverse objects on X and the tangent space to the fibre is contained in
TSF.

As an illustration one can take the function f : S — R given by
f(20,21) = |z1]* — |2/?. Here the function is pulled back from S$2 via the
Hopf fibration.

The same argument as for Example 2.4 shows that the set of generalized
Morse-Smale functions is closed under pull-backs to the total space of a sub-
mersion. It is also not hard to see that if f : X - Rand g : Y — R are

generalized Morse-Smale, thensois f+g: X xY 2 R

Example 2.5 Another family of ezamples where the generalized Morse-Smale
condition can often be easily verified arises in the context of compact Kéhler
manifolds with a C*-action with fized points. Here one can construct an asso-
ciated Morse function with critical set precisely the fized point set of the action

[Fra59].
As an illustration, take the action of C* on P" given by

T-[20: o tzn) =[20: 7211 .. 1 T24]
The fixed point set consists of the point {1 : 0 : ... : 0] and the hyperplane
{20 = 0} and the associated function is

1 n
f(l2) = 2F S lal?

=1 .
One of the central concepts of [HL97b], which will also play an important

role here, is a finite volume flow.

10



Definition 2.6 A flow @, on X is called a finite volume flow if the pull-
back by the total flow map ®(z,7) = ¢,(z) of any (and therefore every) metric
on X to (X \ Fiz(p,;)) x (0,00) has finite volume.

For gradient-like flows this condition is equivalent to the requirement that

the total graph of the flow
T={(z,0:(z)) : 0<T<00}CXxX

has finite volume. Both conditions are independent of the choice of metric on

X.

11



Chapter 3

The Geometry of the Gradient Flow

In this chapter f will be a generalized Morse function with tame gradient-
like flow ,. We will investigate the geometry of ¢, assuming that it satisfies
the generalized Smale condition. In particular, we want to prove that the sets
Sr and Ur are images of certain families of compact manifolds with corners
over F' under well-behaved maps. This will enable us to prove an important

structure theorem.

Theorem 3.1 Let f be a generalized Morse function on X and let ¢, be a
tame gradient-like flow for f satisfying the generalized Smale condition. Then

there is an equation of currents
or=A-P (3.1)

where T = {(z,p-(z)) € X x X | 7 € (0,00)} is the total graph of the flow, A
is the diagonal and P = lim,_,o graph(p.). The current P is given by

. P= ) [SixpUl,
Fiema(Cr([))

12



where S; xp, U; C X x X denotes the fibre product of the stable and unstable
bundles of F;.

This theorem generalizes Theorem 6.2 of [HL97b), and some elements of
the proof are very similar. The main technical tool is a lemma that describes
what happens to the image of a smooth manifold with corners transverse to the
stable manifolds as it ‘flows through’ a critical level (for precise statements see
Lemma 3.3). Using this information we will deduce that ¢, is a finite-volume
flow, which then allows us to obtain the current equation (3.1). The final step

is the identification of the current P.

We will often make statements about both stable and unstable sets of
critical manifolds and points in them. Since the generalized Smale condition
is symmetric with respect to time reversal, it is enough to prove the assertion

Jjust for one of them, which we choose to be the stable sets.

Without loss of generality we will assume that different connected critical
manifolds correspond to different critical values. This is easy to achieve: if
F} and F;, happened to be two critical manifolds with the same value of f,
we could add a tiny bump function to f which is supported in some small
neighborhood of F), is constant in a smaller neighborhood of F}, and has
sufficiently small derivative so as to not create new critical points. In any
case, this will change none of the essential features of f and is only done to
simplify the language in the following presentation.

Our first aim is to prove that the closure of the stable bundle Sg over a

critical set F is the image of a smooth manifold with corners Sy which again

13



fibers over F, such that each fiber is>also a smooth manifold with comers.
Recall that a manifold with corners of dimension & is a Hausdorff topological
space Y such that every point has a neighborhood homeomorphic to an open
subset of R = {z € R* : z; > 0foralli = 1,...,k}. It is called smooth if
for any two such charts ¥, : Uy — R% and 4, : U, — RX the composition
Yroys ! : Yo (U NUR) — (U NU,) extends to a smooth map between open
sets of R*. Y is naturally stratified by the sets {Y:}o<r<k, where p belongs to
Y; if for some (and hence every) chart exactly r coordinates of p are 0. It is
clear that the set Y; is a smooth manifold of dimension k — r. Y} is the open
and dense set of interior points of Y, Y is the set of regular boundary points
and the union of the other Y; is the set of corners. A map o from a manifold
with corners Y to a manifold X is called smooth if for any (and hence every)
coordinate chart ¢ : U — R the composition o o %~! extends to a smooth
map of some neighborhood of ¥(U) in R*. Such a map is called completely
transverse to a submanifold L of the range if its restriction to all the sets Y;
is transverse in the usual sense that o,(T,Y;) + To(y) L = To(y) X

Let p: Y — X be a smooth map from a smooth manifold with corners
Y to a smooth manifold X which is completely transverse to the submanifold
L C X. We define the oriented blow-up Y of the manifold with corners Y
along o~!(L) as follows: First, for any smooth vector bundle E — B we
define the oriented blow-up of the zero section as E := S(E) x [0,00) with
the smooth projection map w(b,0,r) = (b,r8), where b is a point in B and
@ is a point in the fibre of the sphere bundle S(E) of E over b. The sphere

bundle S(E) is defined using any metric on E, but it is easily seen that two

14



different choices of metric give smoothly equivalent bundles. Then to obtain
Y, we construct the normal bundle to p~Y(L) in Y in such a way that its fibre
at y € Y, is tangent to ¥;. The oriented blow-up Y of Y along p~'(L)
is then defined to be the oriented blow-up of the zero section in this normal
bundle.

More generally, given a smooth manifold with corners Y and a smooth
manifold Z, consider a smooth projection 7 : Y — Z which is completely

transverse to all points z € Z. We will call such a creature a smooth family

of manifolds with corners over Z. With this notation we have

Lemma 3.2 Let 7 : Y — Z be a smooth family of compact manifolds with
corners over Z, and let p : Y — X be a smooth map whose restriction to
7~ (z) is completely transverse to L C X for all z € Z. Then we can construct
an oriented blow-up Y along p~'(L) which again is a smooth family of compact

manifolds with corners over Z.

Proof: First assume 7 : Y — Z is actually a smooth fibration such that
p is transverse to L when restricted to any fibre. Then the codimension of
L' = p~1(L) in each fibre of 7 is the same as the codimension of L’ in Y.
Let V C TY be the vertical tangent bundle, whose fibre at the point y €
771(z) is T,(r~1(2)). Let Vo C V| be the subbundle whose fibre at y €
7~Y(z) is T,(r~'(z) N L'). Choosing a metric on Y, we define a normal bundle
structure for L' as v = Vi C V|... By construction it has the property that
its restriction to any L, = 7~!(z) N L' gives a normal bundle structure for L/

as a submanifold of 7~1(z).

15



In general, this procedure can be applied inductively to the strata Y, of
Y to obtain a normal bundle which is tangent to the fibres of 7. Again this
has the effect that the normal bundle of p~!(L) in each fibre is t.htua restriction
of the normal bundle of p~!(L) in Y. Now it is easy to see that the blow-up
Y of Y is fibered by the blow-ups of the fibres of 7. O

Denote by Sg(e) the e-sphere bundle in Sr. Then there exists a smooth
projection ¢ from Sr(g) x [f(F) — ¢, f(F)] onto the e-disk bundle of Sp. In
fact o can be extended to Sr(g) x [c + &, f(F)], where ¢ < f(F) is the next
critical value and § > 0 is arbitrary.

We will show how to alter Sg(g) by a finite sequence of oriented blow-ups
(one for each critical value ¢ < f(F)) such that at the final stage we can extend

o to a map of §;~ = Sr(€) x [min f, f(F)] onto the closure of Sr.

In general, let us make the following

Inductive Assumption: There exist a manifold with corners Y and a critical

value ¢ < f(F) with the following properties:

(1) 7 : Y — F is a smooth family of compact manifolds with corners over

F, i.e. w is completely transverse to all p € F.

(2) For any 6 > 0 there exists a surjective smooth map ¢ : Y x [c +
8, f(F)] — Senf~Y([c+9, f(F)]) !, whose restriction to 7~!(p) x {c+d}

for any p € F' is completely transverse to all unstable bundles of critical

'We will see below that the smooth structure on Y x [c + 4, f(F)] has to be

adjusted slightly to make this map smooth.

16



manifolds. Furthermore, the restriction of the map o to the subset Yj of

interior points of its domain is a diffeomorphism onto its image.

This assumption is clearly satisfied by Y = Sg(e) for the first critical
value ¢ < f(F). _

Let us denote the restriction of o to Y x {c + &} by gc4s. If F' is the
critical manifold with critical value c, the intersection of Uz with f~1(c + )
is a smoothly embedded sphere bundle over F", so in particular it is a smboth
submanifold of X. By part (2) of the assumption the oriented blow-up Y of
Y along o, +1,,(Up:) exists, and by Lemma 3.2 we may assume that it satisfies

part (1) of the assumption.

We want to prove that ¥ satisfies part (2) of the assumption for the next

critical value ¢’ < c. In particular, we want to show how to map Y x [c—8,c+46]
onto the closure of Sp N f~'([c ~ 6, c + 8]). The further extension of the map
as required by (2) is then easily constructed by using the product structure
on f~}([¢ + 8,c — d]) given by the flow. Thus the main technical assertion is

contained in

Lemma 3.3 Let p: W — Z be a smooth femily of compact k-dimensional
manifolds with corners over some smooth manifold Z and let 0.5 : W —
f~Y(c+8) be a smooth map whose restriction to each fibre p~}(z) is completely
transverse to all unstable bundles of critical manifolds. Let F' be the critical
manifold with critical value c and let 7 : W — W be the oriented blow-up
of W along 0-}(Up). Then there ezists a family of maps &, of W into X,

parametrized by t € [c — 6, c + &] and having the following properties:

17



(1) Geys(W) = Ters(m(@)) for dll @ € W, i.e. Ocis 15 just the lift of .45 to

w.

(2) The image of G parametrizes the closure of the backward time image of
dc+5(W) under the flow ¢, in X by the value of f, i.e. E’,(W)) C f1(¢)
and T € E(W X [c — &,¢+4]) if and only if z € Sg N f~([c — 6,¢c + &]).
In particular, ,(w) € f~'(c —d) if and only if t =c — 6.

(3) The restriction of the map Go—s5 : W —» f~Yc — &) to each fibre of
p: W — Zis completely transverse to all unstable bundles of critical

manifolds.

(4) There is a canonical smooth structure on W x [c—6, c+4] with respect to
which the family 6, becomes a smooth map S It agrees with the product
structure W x [c — 6,¢ + 8] away from W x {0} and has the effect of

introducing new corners in the domain along the preimage of F'.

Before proving Lemma 3.3 we observe that, starting from Sr(€), we can
perform a sequence of blow-ups, one for each critical level ¢ < f(F), to con-
struct the promised set Sk ~ g;(_s/) x [min f, f(F)] which fibres over F and
parametrizes the closure of Sr in the sense that the map is injective on an
open dense subset. Here we write ~ to remind the reader of the fact that the
smoothness structure has been altered at the pre-images of the various critical
set F' < F. We summarize this result in the following theorem, which will

play a central part in this and the following chapter.
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Theorem 3.4 The closure Sk of the stable manifold of any critical manifold F
is the image of a smooth family of compact manifolds with corners §;~ — F
under a smooth map ‘{5,. whose restriction to the interior points of Sk is a
diffeomorphism onto an open dense set of Sr. .

Similarly, the closure Ug of the unstable manifold of any critical manifold
F is the image of a smooth family of compact manifolds with corners (71; — F
under a smooth map ?U,,. whose restriction to the interior points of Ur is a

diffeomorphism onto an open dense set of Ur.

Note that the second assertion simply follows from the observation that
the generalized Smale condition is invariant under time-reversal, which inter-

changes the réles of stable and unstable manifolds.’

Later in this chapter we will have occasion to make use of the following

observation.

Remark 3.5 Let K be a smooth compact submanifold of dimension k, con-
tained in some level set of f, which is transverse to all stable (resp. unstable)
manifolds of critical sets. Our inductive argument shows that its forward (resp.
backward) time image under the flow is the image of a smooth compact mani-

fold with corners of dimension k + 1, and so in particular has finite volume.

Let us now complete the proof of Theorem 3.4 by giving the proof for the
key technical assertion that was post-poned before.
Proof: (of Lemma 3.3) We will first reduce the proof to more local consid-

crations. As an initial step, observe that outside any neighborhood of the
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blow-up locus the extension can be constructed from the gradient flow, since
on the complement of the critical set F’ the gradiént-like flow provides us with
a canonical product structure.

Now let us covér F' with a finite number of coordinate charts U,, such
that a neighborhood of F' is a given as a union UV, where each V is of the

form
V. = D' x U, x D¥ (3.2)
and on it the gradient-like flow has the special form
er(u,z,v) = (e "u, z,e"v)

For some § > 0 sufficiently small, the union of these coordinate blocks contains
the sphere bundles Up:N f~1(c+4) and SN f~1(c—4). In fact without loss of
generality we may assume that these spheres bound the disks {0} x U, x D*#
and D*# x U, x {0} in (3.2).

We will construct the family of maps 6, on the blow-up of the piece of W
that gets mapped into one of the V] under ¢ = o.45. Since the construction
uses the flow in a natural way, it will be easy to check that the pieces fit
together to form a globally defined family &, : W x [c=dc+d — X.
Abusing notation, we will continue to refer to the piece we are considering as
w. |

For simplicity of language, we will also assume that ¢ = 0 and that the
function f is given on V] by f(u,z,v) = |[v|?> — |[u[%. Inside V. consider the

region V, determined by the equations

|f(u,z,v)| < § and |ul|v] < ¢
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for some small &' > 0 (the size of this cut-off is not really essential, since we
are only interested in what happens near F'). Note that V, has ‘incoming’ and
‘outgoing’ boundaries with respect to the forward time flow, which we denote

by A and B respectively. Formally, these are given by
A= {(u.z,v): f(u,z,v) = =0} and B = {(u,z,v) : f(u,z,v) =5}

The special subsets Si»N A and Ug»N B are denoted by Ag and By respectively

and are given in our coordinates by

Ao = {(u,7,0) : [u| =6} and By = {(0,z,v) : [v| = 4}

Figure 3.1: A slice of V, for fixed z, drawn in the (Ju|, |v|)-plane

Now we will give a proof of the assertions in the case where Z is just a
point.

First let us define a map ¥ : [0, '] x [—4,5] — R? as

(q,t)h»(r(q,t),s<q,t))=(\/ t”’;"z“,\/ V‘”;"z“) (33

Observe that ¥ is continuous everywhere and smooth except at (0,0). It

also has the property that r(q,t)s(q,t) = q and r*(q,t) — s%(q,t) = t. That

21



means one can think of ¥ as a parametrization of the gradient flow lines of

the function 72 — s? on R? (characterized by q being constant) by the value ¢

of the function f.

it

Figure 3.2: Coordinate lines for q and ¢ in the domain and range of ¥

Now consider the oriented blow-up V,, := S*# -1 x[0, 1]xUsxS*+~1 %[0, 1]
of V, along the set D C V, defined by |z|lu]| = 0. We have an obvious

projection from 170 to V, given by
(&, 8,z,9,7) = (is, , 9r).
Notice that the lift of the gradient-like flow to V, is given as
o-(T, 8, z,9,7) = (@,se”",z,9,re").

Inside ‘7; we have the lifts A and B of A and B characterized by r2—s?= -4
and r2? — s2 = § respectively. Within them, we have A, and B, given by r =0
and s = 0, respectively.

Recall that by the assumption of the lemma, we are given 6.5 = 0;

mapping (a piece of ) W into B. Clearly, we can lift o5 to a map 65 that
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makes the following diagram commute:
W%, BcV,
wl | l,r
W —=3BcCV,
Since o5 is completely transverse to By, the lift 65 will be completely
transverse to By. Now we extend &5 to W x [—4, 8] by using ¥ in the s and r

coordinates, i.e.

&:(w) = (&(w), s(q(w), ), z, 5(w), r(g(@), £)) ,

where ¢(w) = r(65(w))s(65(w)) and we think of i@, z and ¥ as the components
of 65. Finally, let o,(w) := 7(6:(@)). Then (1) is satisfied by definition, and
(2) follows from the fact that the lift of f to V, looks like 72— s. It remains to
explain (3) and (4). Notice first that o_s(w) € Ay if and only if o5(w) € By.
Since on the complement of any neighborhood of B, the flow provides a smooth
product structure for the backward image under the flow, and transversality to
the unstable manifolds is preserved under the flow, we see that for all points in
the image of G_; contained in A\ Ay the transversality assertion still holds. So
us let fix wg € W, C W such that o5(wq) = (0, zg, vg) € By. Here recall that
W, is the stratum of ‘corners of order r’ in W. Then its preimage 7~!(w) in
I/T/: consists of a whole sphere S*~~! mapping diffeomorphically onto the set
{(2,0,70,%.6) : i€ S} C B under 5. Now observe that this sets gets
mapped onto {(2,9,zq,%,0) : 4 € S**-1} C A under 6_5. Since the kernel
of the differential of the projection from A to A is transverse to this set, we

arrive at the conclusion that for any point in W—, mapping into Ay under o_;,
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the image of TzW, under the differential of 0 contains the tangent space to
the sphere in the stable set of the critical point z € F' corresponding to it.
Since this sphere is transverse to all unstable bundles by the assumption that

the flow satisfies the generalized Smale condition, we have proven (3).

The only problem for smoothness of the family &, stems from the fact that
the map ¥ defined in (3.3) is not smooth at the origin. The trick to fix this is to
change the domain of the map to be the graph I" C [0, &"] x [-4, 6] x [0, 1] x [0, 1]
of ¥, formally given as

[:={(g.t,5,7) : P -’ =t,rs=q,0<¢< ¥, -6 <t<6b}

Notice that I is a smooth manifold with a corner at (0, 0,0, 0), because it is
also the graph of ¥~!, which is a well-defined and smooth map on the part of
the first quadrant in R? which is the image of ¥. In this smooth structure on
the domain, the map V¥ is trivially smooth, since it is just projection on the
last two coordinates. Thus we have replaced the singularity of the map by a
corner in the domain. We claim that the same idea works in our slightly more

general situation. Namely, consider the set G C W x [—6,9] x l7, defined by
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the conditions

-

rs = r(6(w))s(65(w)) }
Here we recall that (i, 7, z, 9, s) are coordinates on V, = S*-1 x [0,1] x
U, x S*~1 x [0,1], and 65 : W — B C V, is the lift of our original map
05 : W — B. This set G is homeomorphic to W x [—4, 4], because it is
the graph of the family &, that extends &5 to W x [—4.48]. If we can prove
that it aquires the structure of a smooth manifold with corners from this
embedding, then &, will be a smooth map in this setting, because it is just
the projection onto V, followed by projection to V,. The only points where
there is a question about smoothness are points p = (w, t, 1, s, T, ¥,7) where
the component w € W of p is contained in the blow-up locus.
If wy € Wisa point in the blow-up locus, then it is mapped under 65 into
B,. We claim that the function q = r(65(w))s(65(w)) is smooth with non-zero
derivative in some neighborhood of g in W. The smoothness is clear from
the smoothness of 5. The derivative of q at wy is D(r o 65 - s o G5)(We) =
D(r o 65)(wo) - s(65(wo)) + 7(65(Wo)) - D(s o 6;) (i), where the first term is 0
because s(65(wp)) = 0 and the second term is non-zero because g; is transverse

to By. Therefore we can use q as one component of a local coordinate system
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(w',q) : D! x [0,6) — W'(i5ip) for a neighborhood W’ of i, in W. Over
W' x [—6,8] we can now consider two sets. The first one is the graph of the

three smooth functions %, z and 9, namely
X := {(v',q,t.%,z,9) C D*"'x[0,€) x [-4,8] x S** ! x U, x §*~! :
i=io,g)
b = i(g5(w', q))
£=i(6s(w',q) }
The second set is just the smooth manifold with corners
IM:={(w,qtsr)eDF'xI : 0<g<e}.

With all this notation, the part G' of G that projects onto the neighbor-
hood W' & D*=! x[0,€) C W is the fibre product of X and I over W"’. Hence
G is a smooth manifold with corners as claimed.

This completes the proof of Lemma 3.3 in the case when Z is a point. The
definition of the map &, in the general case works exactly as in this special case.
The proof of (3) also goes through as before, because both the hypothesis and
the conclusion involve only one fibre of p anyway. The proof of (4) requires a
little more care, and here we have to make use of the fact that the blow-up 77
of W is fibered by the blow-ups of the fibres 7~!(z), where z € Z. O

Let us make another observation, which will become useful in the next

chapter.

Remark 3.6 [t is not strictly necessary for this argument that the image of

the initial map o0 : W — X be contained in one level set f~'(c + 4).



Instead of being defined on all of W x [c = d,c + 4], in this case the map

o is defined on the smaller closed subset of the form
{(@,t) : WeW,t< flo(r(®))} C W x [c - & c+4d]

Notice that this is just the region below the graph of foo o : W — R,
which is essentially a smooth submanifold with corners in W x [c—d,c+ 4]

(even with the new differential structure).

Let us give an example to illustrate the sets Sr that arise in the construc-

tion described in Lemma 3.3.

Example 3.7 We will consider the function on the sphere S® C R* given by
f(z1, 22,23, 24) = 22 + 3 + 323

It has five critical manifolds, namely FF = +(1,0,0,0), F§¥ = £(0,0,0,1)
as well as F| = {22 + z2 = 1}. Notice that the function is self-indexing in
the sense that Ar, = f(F;) = ¢. Let us study the various stable sets S; and
their ‘blow-ups’ S;. Of course at the minimum points, we have S = Fj.
The stable set S, for a point p € F} is an open segment connecting Fy~ and
Fy (ahd not containing the end points). S is an open cylinder, and S is
the 2-sphere of points whose last coordinate are 0. Since there are no critical
manifolds between F, and the minimum, nd blow-up is necessary, and §1' is
the union of two closed cylinders (S} U S!) x [0, 1)

Next, we look at Fy (1_;he case of F; is completely analogous). Here

S N f71(2) is a 2-sphere, and its intersection with U; is a circle S' € S2.
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The blow-up yields a disjoint union of two closed disks D+ LI D™, so that after
the blow-up process we have a map from §§' = (Dt u D7) x [0, 3] onto Ef,
which is a closed 3-ball. Notice that part of the boundary of 5‘} consists of
the disjoint union of two cylinders ((S*)* u (S')~) x [0, 3], and in the altered
smoothness structure two circles of corners appear at ((S')* U (S')™) x {1},
which is precisely the set mapped onto F}. Also, the interior of D¥ x [0, 3]
is mapped onto the set of points whose forward time limit is F; and whose
backward time limit is Fg°, respectively.

Notice that in this example the stable manifolds form a Whitney strati-
fication of the underlying manifold (for the definition, see the third secticn of

the appendix). This is a completely general phenomenon.

Proposition 3.8 Let f be a generalized Morse function with tame gradient-
like flow ¢, satisfying the generalized Smale condition. Then the stable sets
{S:} form a Whitney stratification of X.

Proof: This follows more or less immediately from our description of the
closure of a stable manifold Sr as the image of a smooth manifold with corners
under a smooth map. To verify the Whitney conditions, we lift the sequence
of points p, € Sr approaching some point p € Sr to a sequence of points g,
in Sp. By compactness of Sr, we can extract a subsequence converging to gq.
In Sr the Whitney conditions are trivially satisfied for any such sequence, and
so the result follows if we can prove that the differential 75,.. at points q in the
boundary that get mapped to S \ Sr is sufficiently non-degencrate. This is

done in essentially the same way as the proof of Lemma 3.3, part (3). O
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Recall that one of the goals in this chapter was to prove Theorem 3.1. As

a next step towards this goal, we prove

Proposition 3.9 Let ¢, be a teame gradient-like flow for some generalized
Morse function f. If ¢, satisfies the generalized Smale condition, then it is a

finite volume flow.

Proof: This argument, adapted from §11 of [HL97b], is included here for
completeness. The idea is to find a new Morse function g on R x X x X and
a set 7" whose projection onto X x X is equal to the total graph T of the
flow ¢, and show that 77 is a set of the form described in Remark 3.5. More

precisely, we consider the generalized Morse function
1,
g(s,z.y) = 35" = f(y)

defined on R x X x X with the standard product metric, so that the gradient

flow is given by
¥r(5,2,y) = (€75, 2, 0-,(y)).

The critical sets of g are of the form
Pr = {0} x X x {F}

where F' ranges over the critical manifolds of f. The stable and unstable

manifolds are given by

S[:"—‘OX.\'XUF and UF=RXXXSF.
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The first thing to notice is that g is a generalized Morse-Smale function, be-

cause f is. Now define the set
T={(e"z,0:(z)) ERX X xX| —0c0o<T<o0and € X}

and notice that it is just the union of all the flow lines of v, passing through
A ={(l,z,z) | z € X} CRx X x X. Next observe that T is contained
in the image of 7' = T N g~'((—b + 1, b]) under projection onto the last two
factors, where b = max|f| + }. Therefore it is enough to show that 7" has
finite (n+1);volume. In order to use Remark 3.5 we need to know first that
T is transverse to all the Ug, where F ranges over the critical manifolds of
f. Clearly T N Up is invariant under the flow, so it is enough to check the
transversality at all intersection points contained in A. But here TUr contains
the tangent spaces to both R and the first X-factor, which together with the
tangent space to the diagonal TA C T7 span T(R x X x X )..

Finally we observe that the intersection T(b) = 7 N g~'(b) is compact.

For otherwise there would exist a sequence {(s;, z;)} satisfying

gle™, z;, vs:(:)) = %6—23,- = flpsi(zi)) =0

and having no convergent subsequence. Clearly in such a sequence we would
have s; — oo, and so f(@;s (z:)) — b, which is impossible by the definition
of b. Thus Remark 3.5, together with the fact that ¢ has only finitely many
critical values in the interval (-b + 1,b), proves that 77 is the image of a
smooth compact manifold with corners under a smooth map. In particular, it

has finite volume, and so the same is true for T as well. O
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Now we can start to prove Theorem 3.1. Notice that the total graph T of

the flow is the mass limit as ¢ — oo of the pieces
T, :={(z,p-(z)) € X x X | t € (0,c]}.

Since we now know that the volume of these is bounded (by the volume of T'),
the equation of currents 8T = A — P in Theorem 3.1 follows from the fact
that 3T, = A — graph(y.) and the continuity of the boundary operator. It
remains to prove the claim about the structure of P. For a critical point p,
let U, be the set of all points in X that are connected to p by a backward,

possibly broken, flow line.

Lemma 3.10 With the notation as in Theorem 3.1 , the current P has support
in{JS: xg, Z:l'i, where

S; XF, U := {(z,y) CX x X :3p € F, such that z € S, and y € U, }.
Proof: Lemma 2.10 in [HL97b]. O

Lemma 3.11 Let ¢, be a tame gradient-like flow for some generalized Morse
function f, which satisfies the generalized Smale condition. Then for all p €
Cr(f) we have dim(lU, \ Uy) < A;.

Proof: First note that

U\, = |J @t nUs),
p=<F

so it is enough to show that dim(2f, N Ur) < A%, for each F >~ p. Recall that

the critical manifolds have a natural partial ordering, given by F' < F’ if there
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is a (possibly piecewise) flow line from F' to F'. Let F' be a minimal element
in the set § := {F|F, < F, F, # F}. In this case there exist only proper flow
lines from F, to F and therefore U, N F' = (U, N Sgr). By the generalized

Morse-Smale condition we have that
dim(U,, n Spr) = /\; + AF’ +np —n.

U, meets fibres of the projection mg : Sp» — F' in flow lines, hence
dimU, N F') = dimnp (Up N Spr)

< A;+Apl+npl—n

On the other hand,
dimU, NUp) < dimU,NF') + Ap*
< l\;"f‘/\pl + npr —n-{v—AFr.

= A+0
as claimed.

Now continue inductively, picking a minimal element F” of the remaining
set S’ =S\ {F'} and so on. At stage k the piece of 4, intersecting Sru) can
consist of part of U, (to which the above argument applies directly) and pieces
of the form U, NUgy for 0 < I < k. From the previous inductive steps we know
that the latter are families of fibres of Upq of total dimension less than Ap

Each of these fibres is (by an argument analogous to the above) replaced by



a (sub)family of total dimension smaller than its own, thus further decreasing

the total dimension of the family. O

It follows from the two lemmas and Federer’s flat support theorem (Propo-
sition A.1) that supp P C |JS; xr, U;. Since the pieces on the right are
locally closed and of the same dimension as P, we conclude that in fact
P =Y n;S; xp, Ui. The local multiplicity is computed as in §2 of [HL97D],

and this completes the proof of Theorem 3.1. O
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Chapter 4

The Operator P

In this chapter we will make use of currents C on the product X x X as
kernels for operators C : Q*(X) — D,(X). Some basic facts on currents and

the kernel calculus are collected in the appendix.

We proceed to state the first version of the main theorem of this chapter.

Theorem 4.1 Under the assumptions of Theorem 3.1, the operator T asso-
ciated to the current T gives a chain-homotopy between the inclusion I of

differential forms into currents and the operator P associated with P, that is
Tod+doT=I-P, (4.1)
Moreover, the action of the operator P on differential forms is given by

P(a) = ) _ w5, (mu,.(a A UL))[S]. (4.2)

Proof: The chain homotopy (4.1) is a direct translation of the current equa-
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tion (3.1). To verify the formula for P, consider the diagram
§ xe U, = 0
”‘1 lwv;
Ss —9F
where :9", and (7, are the smooth families of compact manifolds with corners
described in Theorem 3.4, and the map S: x F. U:— X x X given by the
fibre product of the maps is, and iy, is smooth onto S: X, U;. Since all the
maps in the diagram have compact fibres, both pull-back and push-forward
of currents make sense (cf. Appendix A), and the claim now follows from the

commutativity of the diagram. O

Now assume that X, all the F; as well as the bundles U; and S; carry
R-orientations, where R is either Z or Z, for some prime p. As usual, a k-
dimensional R-chain on X is a finite formal sum of smooth maps o : A¥ — X
of the k-simplex into X with coefficients in R. Recall that such a map is
completely transverse to a locally closed embedded submanifold ¥ C X if its
restriction to each face of each simplex is transverse in the usual way.

Denote by C¥(X; R) the set of smooth chains o transverse to all the U;.
We saw in Proposition 3.8 that the U; form a Whitney stratification of X, so
that Proposition A.7 implies that C¥"(X; R) is an open and dense subset of
all smooth R-chains. In fact standard transversality arguments show that any
smooth R-chain can be moved into C(X; R) by composing it with a small
diffeomorphism of X. Since C!"(X; R) is by definition invariant under 9, it can
be used to compute the homology of X with coefficients in R. These chains

are also nice in another respect.
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Proposition 4.2 The domain of the operator P extends to include C*(X; R).

Before we give a proof of this proposition, let us introduce the notion of
the ‘stable bundle of a chain’. Recall again from Chapter 3 that the closure of
the stable bundle of a critical manifold F is the image of a smooth family of

manifolds with corners Sr over F under a smooth map is, (cf. Theorem 3.4).

Definition 4.3 Let 0 : C — F be a smooth R-chain in a critical manifold
F. Here we think of C as a finite formal sum of standard simplices with
coefficients in R. Then we define the stable bundle S, of the R-chain o to
be the tmage of the fibre product Sc = {(e,s) e C x Sr : o(c) =m(s)} under
the obvious map into X (projection onto the second factor, followed by 73,. )-

S, defines an integral R-current.

Proof: (of Proposition 4.2) The proof will rely on the description of the back-
ward flow image of a chain as in Lemma 3.3 and Remark 3.6. For simplicity,
we will work with only one singular simplex ¢ : A* —+ X transverse to all the
U;. The operator PP can be written as a sum P = }_P;, where P; is the part
corresponding to P; = S; x g, U;. We will argue that the ‘push-pull’ description
of the operator for forms as in formula (4.2) of Theorem 4.1 can be extended
to such a simplex as follows.

Let F be a maximal element in the partially ordered set of critical man-
ifolds F; such that the image of o intersects U;. Since o(AF) is compact and
misses Ur \ UF, the intersection is contained in some compact subset of Ug.

On any such subset the projection 7y, to F given by the backward flow is
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smooth. Because of the transversality, o(A¥) N Ur is itself a smooth chain,
so that the pushforward my,,(o(A*) N Ur) is a well-defined chain of on F.
The pull-back map 75, applied to the current of integration over o yields the
stable bundle of this chain as described above. This is the image 6f o under
Pg.

Recall that in Lemma 3.3 we described how to construct a new domain
A* and a new map 6.5 which parametrizes the closure of the intersection of
some regular level set past F' with the backward flow image of o(A*). The map
Oc—s is still transverse to all U;, but its image does not meet Uf, so that we
can repeat the procedure finitely many times to get an inductive description

of the image of the simplex o : A¥F — X under P as

P(o) = Z Sag,s

where o, is a map from some submanifold D; of a blow-up of A* to F;. Notice
that D; can be thought of as the proper transform of the closure of o=!(U;)

under the blow-up procedure. O

Now we are ready for the geometric version of the main theorem of this

chapter.

Theorem 4.4 Let f be a generalized Morse function and let ¢, be a tame
gradient-like flow for f which satisfies the generalized Smale condition. Then
the operator P associated to the degeneration P of the diagonal in X x X by

¢r and acting on a map o : AF — X inC"(X;R) by

P(o) =) Sor, (4.3)
F;
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is chain homotopic to the inclusion of C" (X; R) into integral R-currents.
Furthermore, the image of the operator P when applied to C"(X; R) is
precisely given by the set S(f; R) of stable bundles of smooth R-chains in the

various critical manifolds F; of the function f.

Proof: It remains to prove the lasi: statement. In the proof of the previous
proposition we saw that the image of P, when applied to C¥ (X; R), is contained
in the set of stable bundles of smooth R-chains in the various critical manifolds.
On the other hand, the stable e-disk bundle of any chain in some critical
manifold F is a chain in C"(X; R), and its image is just the stable bundle of

this chain, so that every stable bundle occurs as an image. O

Remark 4.5 Since P commutes with d, S(f; R) forms a subcomplez of the

complez of integral R-currents.

In what follows, we will mostly work with the geometric picture and the
action of the operator P on C"(X; R). From the description of the image of P

we immediately get a representation of H,.(X; R).

Corollary 4.6 The differential 8; on the complez S(f;R) of stable bundles

over chains in the critical sets is given by

8(S,) = zwi(sc(e)),

where S, (€) is the boundary of the stable e-disk bundle of o.
Furthermore, H.(S(f; R),0;) = H.(X; R).
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Notice that there is a filtration 0 = F_, c Ffrc Fy, C .. C F, = &;
of this complex, where F; is defined to be the subset of stable bundles of
chains contained in critical manifolds of index < i. This is a special case of
the filtration already considered by Bott [Bot54]. We can form the spectral
sequence associated to this filtration, which by general principles converges
to the associated graded group of H.(X). In particular, the E!-term of the

sequence has entries

E;,q = p+q(fp7 }-p—l)

= @ Hy+o(SF.. SE)

Ai=p

= @ H.,(F,-),
Ai=p

where S¢. is the set of non-zero vectors in the bundle Sg, and the last equality
follows from the fact that the S; are R-oriented bundles. From the existence
of this spectral sequence one immediately recovers the well-known Morse in-
equalities, which state that there exists a polynomial Q(t) with non-negative

integer coefficients such that
My k(t) — Pui(t) = (1 +t)Q(t)

Here K is a field of characteristic p or 0 depending on R, Py i is the Poincare
polynomial of M for this field and M 1,k is the Morse polynomial of f over K
defined as

A/If']\'(t) = Z tAFPp'K(t)
Femo(Cr(/f))

The new element in our approach is the explicit geometric picture for the
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boundary maps. This can be used to make explicit calculations, as is shown
in examples in the next chapter.

We conclude this chapter with a few special cases. One of them arises
when all of the pieces P, = S; xf, U; are closed as currents. The following
theorem shows that this can be taken as the definition of a perfect (gener-
alized) Morse function. It has the advantage over the usual definition of

being intrinsic in the sense that it does not depend on knowing the homology

of X.

Theorem 4.7 If OP; = 0 for all the pieces P, = S; xp, U;, then H,(X;R) =
@H--.\.- (F‘I; R)'

Proof: Since 9P; = 3S; x g, U;+S; X r,0U; and these two currents have disjoint
supports, they both vanish individually. This means that for almost all p € F;
0S, = U, = 0 as currents. It follows from the continuity that in fact this is
true for all p € F;. This now implies that all higher differentials in the spectral

sequence are zero. [J

Remark 4.8 Notice that one way to guarantee that all the P; are closed as
currents is to impose the condition that if F < F', then Ap+np < Apr—=1. In
this case Federer’s flat support theorem (Theorem A.1) shows that the stable
bundle of F is too small in dimension to support a boundary even for e fibre

of Sgr. Thus we recover Cor. 6.5 of [HL97b].

There are other cases when the complex S; is particularly nice, and we

get an immensely simplified model of the homology of X. Call two critical
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manifolds F and F' adjacent, if there are flow lines between them, but no

. broken flow lines.

Theorem 4.9 Let f : X — R be a generalized Morse function with tame
gradient-like flow p, satisfying the generalized Smale condition. Suppose that
X, the F; as well as all stable and unstable bundles are orientable for some
coefficient ring R as before. Assume also that \; + n; < M\ — 1 whenever
F; < F; < Fi. Then

H,(X;R) = H.(M.(f),8y)

where Mi(f) = @Hi-),(F;) and the piece of the boundary map (Of)ji :

H._»;(F;) — H._»,~1(F}) is given for adjacent critical sets F; < F; by

f(F) + f(F;)

(01);i(le]) := 7, (Ui S0 f7Y( 5 )

and is zero otherwise.

Proof: In this case all possible boundary currents are supported in stable
manifolds of adjacent critical manifolds. That implies that all higher boundary
maps in the spectral sequence can be collected into one boundary map on a
complex whose chain groups are the groups in the E'-term of the spectral

sequence. [J

Example 4.10 Let us return to the function on S® Cc R* from Ezample 3.7,

given by

f(x1, 22,23, 74) = 73 + 75 + 323
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In this case, the assumptions of Theorem 4.9 are satisfied, because \q +

ng =040 < 2= A3 — 1. The complex M;(f) has the form
Ho(F) @ Ho(Fy) =2 Hi(F) -5 Ho(Fy) <2 Hy(Fy) © Ho(Fy),

where the middle boundary map is trivially 0. From our description of the
stable sets of the various critical manifolds in chapter 3 we see that the gener-
ators of both Hy(F;") get mapped onto the generator of H,(F}), and similarly
the generator of Ho(F}) gets mapped to the sum (or difference, depending on
the choice of orientations) of the generators of Ho(F3t), so that the homology

of the complex yields the homology of S? as expected.
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Chapter 5

Applications and Examples

In this chapter I will outline a few examples of how the techniques of the
previous chapters might be employed to obtain actual information in specific

cases. Some general statements about equivariant (co)homology are also given.

5.1 Fibrations

The first interesting example to mention are fibre bundles F — X —
B. We can choose an arbitrary connection (i.e. a collection of horizontal
spaces at each poiht; in the total space) and produce a metric on X such that
the projection to B is a Riemannian submersion. We assume that the function
f : X — R is the pull-back of a Morse-Smale function on the base B. Then
the critical set for f is just the inverse image under projection of the critical set
in B, and the gradient flows of the functions on X and B will be intertwined by
the projection. Furthermore we may assume that the metric on B is chosen so

that the gradient flow is tame, which ensures that the gradient flow on X will

43



also be tame. Since all the normal bundles to the critical sets are trivial (and
assuming that the fibre F' carries an orientation), the coefficient ring R can
be chosen to be the integers Z, and the spectral sequence of the last chapter

is easily seen to a be geometric version of the Leray-Serre spectral sequence of

the fibration.

Example 5.1 We want to apply Theorem 4.9 to the fibration SO(n) —
SO(n+1) — S™ and inductively compute the integer homology of SO(n +1)
from the homology of SO(n).

To fix notation, let the embedding of SO(n) into SO(n + 1) be the one
compatible with the inclusion R* C R**! = R* @ R, and let the action of
SO(n) on SO(n + 1) be given by right multiplication. Then the projection to
S™ can be taken to be the map which assigns to a matrix its last row. Pulling
back the standard height function on S™, h(z) = z,41, to the fibration, we
obtain the generalized Morse-Smale function given by f(A) = @n41,n+1- It has
two critical manifolds diffeomorphic to SO(n), and building the complex as in

Theorem 4.9, we need to compute the boundary maps
8- : H.(SO(n)max) — Hrin—1(SO(1)min)-

We will start with 8. Notice that on the sphere S® the flow lines for the
standard round metric are (reparameterized) geodesics. Hence the same will
be true for the lifts to SO(n + 1), because the gradient vector field here is
horizontal and the bundle projection is a Riemannian submersion. One checks

that the lift with end point Id € SO(n + 1) of the flow line on S™ through
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(0,0,---,0,1.0) is given by

e 0
010 o0 0
18 =y g g=r* g g™ 5

0 0 O «cos(t) sin(t)

\0 0 0 —sin(t) cos(t))

where 7 < t < 27. Similarly the lift of the flow line through (0,0,---,0,—1,0)
Is given by (¢), # > t > 0. In particular, these two flow lines together
form a closed geodesic in SO(n + 1), so they have the same starting point
in SO(n)min- Now we observe that conjugation by an element in SO(n) acts
transitively on the flow lines to Jd € SO(n + 1), so that certainly all pairs of
antipodal points are identified at the boundary of the stable n-cell at Id. By a
short calculation one checks that these are the only identifications, hence the
closure of this stable fibre is homeomorphic to RP*. It turns out that it is
precisely the translation of the image of the canonical embedding of RP™ by a
fixed reflection, say diag(1,1,---, 1, —1). Recall that the canonical embedding
of RP™ into SO(n + 1) is given by assigning to a line in R**! the reflection
through its orthogonal hyperplane. Notice that in particular when n =2k -1

is odd, we find that the boundary of one and hence all stable fibres is zero as



a current, and so
H.(SO(2k)) = H.(SO(2k — 1)min) ® Hu_gze1)(SO(2k — 1)max),

at least as additive groups. The case when n = 2k is more interesting. Here
the image of & is a (twice covered) copy of RP%*~! C SO(2k)min, given by
intersecting the translated canonmical embedding of RP?* c SO(2k + 1) as
above with SO(2k)min. To complete the description of the boundary maps,
we denote the generators of H.(SO(2k — 1)) by ay, ..., a. Then by induction
H,.(SO(2k)) is generated by ay, ..., ar, £, ..., Br, where we think of a; as the
image of the corresponding generator of H,(SO(2k —1)) under the embedding
as SO(2k — )i and B; = o x RP%*-1 as the stable bundle inside SO(2k) of
a} C SO(2k — 1)max. Notice that if a; denotes the generator of Ho(SO(2k —
1)min) & Ho(SO(2k)), what we have shown so far is that Gyan = 26,. More

generally it is true that

da; = 26; € H.(SO(Zk)min')

06; =0

For the first relation observe that the boundaries of all the fibres for points in
SO(2k —1)min € SO(2k)max are disjoint. For the second relation it is sufficient
to show that 8, = 0. The stable bundle of 3, is the image of RP?*-! x RP%,
so it's boundary is (twice) the image of RP?~! x RP%*-! which we claim is
zero. First notice that the image is just the set of all elements in SO(2k)min
which are products of 2 reflections in hyperplanes. These are rotations about

a codimension 2 plane, and for any such rotation there is a 1-parameter family

46



47

of pairs of reflections with the required product. (This is a simple exercise in

planar geometry.)

'To summarize our results for n = 2k, let us denote by Ker, (2k — 1) the
kernel of multiplication by 2 in H.(SO(2k — 1)), and let CoKer,(2k — 1) be

the cokernel. Then

H.(SO(2k + 1)) =H.(SO(2k —~ 1)) @
Coker.__1)(SO(2 — 1)) ®
Ker._q(SO2k - 1)) ®
H._(4-1)(SO(2k - 1))

Example 5.2 The first two non-trivial cases are SO(4) aend SO(5). Here we
have
Z ifk=10,6

ZoZ ifk=3
H(SO(4)) = J

Z, fk=1,4

0 otherunse




and

.
Z ifk=0,7,10
ZoZ, ifk=3

H(S0(5)) = ﬁ

Z, ifk=1,4,56,8
0 | otherwise

\

5.2 Equivariant Morse theory

In this section, let X be a compact manifold acted on by a compact
Lie group G. We will call a generalized Morse function that is G-invariant
an equivariant Morse function. If the Hessian is non-degenerate in the
normal directions at each critical orbit, we will refer to the function as strong
equivariant Morse function. A strong equivariant Morse function has a discrete
set of critical orbits, hence a finite number of them. The following result is

due to Wasserman [Was69].

Proposition 5.3 Fquivariant Morse functions always ezist and are dense in
the set of smooth G-invariant functions in the Whitney topology induced from

smooth functions.

Although the generalized Smale condition can be shown to hold for the
gradient flow (associated to some G-invariant metric) of many equivariant

Morse functions, simple examples show that it cannot always be satisfied.
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Example 5.4 Consider G = SO(n) acting on S™ x S' by rotation on S™.
Let g : S* — R be the standard height function which is invarient under the
action of SO(n), shifted by some constant to make it strictly positive. Let h
be the .étandar"d height function on the circle, and define f : S® x S' - R as

the product of g and h.

It is smooth and has non-degenerate critical points of orders 0, 1, n and .+ 1.
They are all contained in the fixed point set, which is a union of two circles.
The gradient flow of f for any G-invariant metric will have to leave this fixed
point set invariant, and in particular will have flow lines from the critical point

of index n to the critical point of index 1, clearly contradicting transversality.

As an illustration, consider the case n = 1. Here of course we will have
to use G = O(1) to get a non-trivial action. Choose coordinates (ps%) €
[0,27) x [0,27) on the torus and let the function be defined as fle,w) =
cosp(2 + siny). It corresponds to the height function in the embedding of
the torus into R® pictured below. Clearly the function is invariant under the
reflection (i, ¢) = (@, —9), which in the picture corresponds to a reflection in
the yz-planc. The two critical points of index 1 are joined by two segments of
fixed points. Since these have to be invariant under the gradient flow for any
invariant metric, the stable manifold of one of them will intersect the unstable

manifold of the other.

Assuming that a given equivariant function is strong generalized Morse-
Smale, we can use the standard Borel construction to obtain information about

the equivariant homology of X, which proceeds as follows.
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Figure 5.1: Another embedding of the torus in R?

Let EG be a model for the universal contractible simply-connected space
with free G-action. It is unique up to homotopy and will in general be infinite
dimensional. Let EG, C EG, C EG;3; C ... be an increasing filtration of
EG by k-connected, finite-dimensional free G-spaces. Denote the quotients
EG/G and EGy/G by BG and BG; respectively. These are models for the
classifying space of the group G and its approximations. Now starting from
X, we can form the free G-space X = X x EG with the diagonal action, and

one definition of the equivariant homology of X amounts to setting
HE(X):= H.(X/G)

It is a well known fact [AB82| that an equivariant Morse function f on X
pulls back to X and also descends (because it is equivariant) to a generalized
Morse function on X /G, and the same is true for all approximation spaces
5(: = X x EG\ and their quotients. The only additional observation necessary
to apply our theory is that, if the original function f on X was generalized
Morse-Smale, then the same will hold for the functions f; defined on )A(;,

provided we use a product metric. The critical manifolds of f~k are of the
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form O; x EG,, where O; = G/H; is one of the isolated critical orbits of
f. If we also insist that the product metric on :\"; be G-invariant, then f;
descends to a generalized Morse-Smale function ( with respect to the pushed
down metric) on X; = :\;;/G'. Here the critical manifolds of f; are of the
form (O; x EGy)/G = (G/H; x EG)/G = EG/H;. Since the construction
is natural with respect to the inclusions EGy — EGg,,, we can take the limit
of the spectral sequences as £ — co. In particular, we obtain a version of our
spectral sequence with E}-term

(Es),, = €D HE(Os R)

Ai=p

= @ H,(BH; R)

Ai=

Here J; is the index of the critical orbit @; = G/H;, and as before the co-
efficient ring R is chosen so that all critical orbits as well as the stable and
unstable bundles carry R-orientations. Computations can usually be car.ied
out in the finite-dimensional approximations. There are also more immediate

consequences of the existence of our spectral sequence.

Corollary 5.5 Let G be any compact connected Lie group, and let f : X - R
be a generalized G-equivariant Morse function for some G-invariant metric
on X such that its gradient flow is tame and satisfies the generalized Smale
condition. If the critical points of f are isolated and of even indez, then the
G-_equivan'ant homology of X is a free H.(BG)-module with one generator of

degree A for each critical point of f with index \.
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Example 5.6 Let S' act on CP™ by
t-lzo:zi:.izp) =[z0: 821 1 o 1 E72,])

Then the function f([2]) := ﬁf 3" k|z|? is an invariant function with isolated
critical points and the above corollary applies to compute the S'-equivariant
homology of CP™ as a free module over H,(CP™®) with generators in all even

dimensions between 0 and 2n.

More generally, Corollary 5.5 applies to arbitrary torus actions on flag mani-
folds with isolated critical points (the moment map of a suitably chosen S! ¢ T

will be the required Morse function).

5.3 Cup product

In this section we will discuss how the degeneration of higher diagonals
gives rise to operator representations for cup products on X. This is not
strictly an application of the results of earlier chapters, but rather a natural
extension. For an approach to this question using more than one function
compare [BC94].

The kernel of the cup product on a manifold is given by the triple diagonal
in X x X x X. We can use the gradient flow to deform this into a sum of (fibre
products) of currents as before. The main point is that the flow on X x X x X
given by

@, (z,y, z) = (z, ‘P‘r(y)u par(2))

has finite volume, which gives us the following
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Proposition 5.7 Let f be a generalized Morse-Smale function on a Rieman-
nian manifold X, and let ¢, be its gradient flow for some canonically flat

metric. Then there is an equation of currents

oT = A3 -P
where T = {(x.(p,.(x),'(pz,-(z)) € X x X x X|t € (0,00)} is the total graph of
the flow, A3 is the triple diagonal and P is the current given by

P= Y [S]xg[U:nSj] xg Ui
FuFjema(Cr(f))

In particular, when f is actually a Morse-Smale function, this simplifies to

P= Z (Sl x [Up 0 Sg] x [Ug]-
PYECT(f)

As an immediate corollary, we get an estimate for the cup-length of a manifold

X from the maximal number of break points of a flow line:

Corollary 5.8 Let f be a Morse-Smale function on a Riemannian manifold

X. Consider the number c defined as

c= #{ break points in v }

max
{ broken flow lines v}

Then the cup-length of X is at most c + 1.

Proof: The Corollary follows from the proposition once we observe that we

can compose P with itself and the kernel of the composition is given by

P = Prizas.(priyu(P) N pris(P))

= Y [S]x[U,n5,)x[U,nS]x[U]
Pq,reCr(/) :
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in the quadruple product of X with itself. This can then again be composed
with P and so on. All of the intersections as well as the last unstable mani-
fold will have to be positive dimensional to realize a maximal cup product of

cohomology classes of positive degree. The result follows. O



Bibliography

[ABS2]
[AB94]
[BC94]
[Bir17]
[Bot54]

[Fed69]

[Fras9]

[Hir76]

M. Atiyah and R. Bott, The Yang-Mills equations over a Riemann
surface, Phil. Trans. Royal Soc. London A 308 (1982), 523-615.

D. Austin and P.J. Braam, Morse-Bott theory and equiveriant coho-
mology, The Floer Memorial Volume, Birkhiuser, 1994.

M. Betz and R. Cohen, Graph flow and cohomology operations, Turk-
ish Jour. of Math. 18 (1994), no. 1, 23-41.

G.D. Birkhoff, Dynamical systems with two degrees of freedom, Trans.
of the AMS 18 (1917), 199-300.

R. Bott, Nondegenerate critical manifolds, Ann. Math. 60 (1954),
248-261.

H. Federer, Geometric Measure Theory, Springer, 1969.

T.T. Frankel, Fized points and torsion on Kdhler manifolds, Ann. of
Math. 70 (1959), 1-8.

M. Hirsch, Differential topology, Springer, 1976, Graduate Text in
Math.

55



[HL97a]

[HL9T7Y]

[HP79]

[Lau92]

[Mey67]

[Mil63]

[Mil65]

[Mor25]

[Mor34]

[Sch66]

F.R. Harvey and H.B. Lawson, The local MacPherson formula,

preprint.

F.R. Harvey and H.B. Lawson, Morse Theory and Stokes’ Theorem,

preprint.

F.R. Harvey and J. Polking, Fundamental solutions in complez anal-

ysis, part I, Duke Math. J. 40 (1979), 253-300.

F. Laudenbach, On the Thom-Smale complez, appendix of An exten-
sion of a theorem by Cheeger and Miller by J.M. Bismut and W.
Zhang, 1992, Asterisque no. 205.

W. Meyer, Kritische Mannigfaltigkeiten in Hilbertmannigfaltigkeiten,
Math. Annalen 170 (1967), 45-66.

J. Milnor, Morse Theory, Princeton University Press, 1963.

J. Milnor, Lectures on the h-cobordism theorem, Princeton University

Press, 1965.

M. Morse, Relations between the critical points of e real function of

n independent variables, Trans. of the AMS 27 (1925), 345-396.

M. Morse, The calculus of variations in the large, 1934, AMS Coll.
Publ. vol. 18.

L. Schwartz, Théorie des Distributions, Herman, 1966.

56



[Sma60] S. Smale, Morse inequalities for a dynamical system, Bull. AMS
(1960), 43-49.

[Smaﬁl] S. Smale, On gradient dynamical systems, Ann. of Math. (1961), 199
206.

[Tho49] R. Thom, Sur une partition en cellules associeés & une fonction sur

une variété, Comp. Rend. Acad. Sc. 228 (1949), 973-975.

[Was69] A.G. Wasserman, Equivariant differential topology, Topology 8
(1969), 127-150.

(Whi65] H. Whitney, Local Properties of Analytic Varieties, Differential and
Combinatorial Topology, Princeton University Press, 1965, pp. 205~
244.

[Wit82] E. Witten, Supersymmetry and Morse theory, J. Diff. Geom. (1982),
661-692.

57



Appendix A

Background Material

In this appendix we collect some background material on currents, the
kernel calculus and Whitney stratifications. It is included mainly for com-
pleteness and to set up notation. References for the first two sections are
[Fed69, Sch66, HP79]; a reference for the third section is [Whi65], and a more

general statement then Theorem A.8 is proven in [Mey67].

A.1 Basics on currents

Let O(X) denote the orientation bundle of the manifold X, a principal
Za-bundle that is trivial if and only if X is orientable. A twisted differential
form on X is a section of the bundle A*TX ®z,0(X). Twisted forms of degree
n are usually called densities and can be integrated over X without the need
for an orientation. In general, a twisted form of degree k£ can be integrated over
a (non-oriented) locally closed submanifold of dimension & with finite volume.

We will denote the space of twisted k-forms by $(X). The space Di(X) of
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currents of degree k is defined to be the topological dual space of -k (X).
Notice that currents of degree k are a natural generalization of differential
forms of degree k, as for every a € Q¥(X) we can define the current C, by
CalB) = / anf  forall § € DPK(X).

x

Since [, da A B = (—1)desa+l JxaA B, the natural extension of the exterior

derivative on differential forms to currents is given by
(dC)(B) = (~1)**'C(dB)  for all C € Di(X).

Let S™* be a locally closed submanifold of X which has finite volume and
suppose Os = Oxs, so that the pull-back of a twisted form from X yields
a twisted form on S. Then we can associate a current [S] € Di(X) to the
submanifold defined as
(SIB) == [ +(B)

where ¢ : § — X is the inclusion map. More generally, instead of an inclu-
sion, 7 could just be any smooth map from a compact manifold (potentially
with boundary and corners) of dimension n — k into X which pulls back the
orientation bundle. This suggests to define the dimension of a current of de-

gree k as n—k. The boundary map 8 on currents is given, in a way compatible

to Stokes’ theorem, by (8C)(8) := C(dB).

Recall that the support of a differential form (twisted or not) is the closure
of the set where it does not vanish. The support supp C of a current C is
by definition the complement of the largest open set U C X which has the

property that T(E) =0 for all g with support contained in U.
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A k-dimensional rectifiable set is a subset S C X with finite k-dimensional
Hausdorff measure #,(S) such that there exists a countable union of Lipschitz
maps from R* to X whose images contain #;-almost every point of S. (in
fact one may replace Lipschitz by C! in this statement). These sets still define
currehts by integration, and the space of rectifiable currents is the span over
the positive integers of currents of integration over rectifiable sets. A current
C such that both C and 8C are rectifiable is called an integral current. Our
examples of such creatures arise as closed submanifolds or images of manifolds
with boundary under smooth maps. Integral currents are a special class of
locally flat currents, for which we have the following two important facts (cf

[Fed69)).

Proposition A.1 (Flat support Theorem) Let C be a locally flat current
of dimension k supported in some locally closed submanifold S of X of dimen-

sionl < k. Then C =0.

Proposition A.2 (Constancy Theorem) Let C be a locally flat current of
dimension k with 8C = 0 and support in some locally closed submanifold S of

X of dimension k. Then C = a - [S] for some real constant a.

Given a current C and a differential form a € Q*(X), their wedge product

is defined as a current by

(C A)(B) :=C(a A B).
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Let 3 : X" — Y™ be a map between compact manifolds. Then the
push-forward %.(C) € Di(Y) of a current C € Diyn-m(X) is defined by
duality with the pull-back of a form, namely

$(C)(B) =C(¥*(B)  for f € Q™ *(Y)

If the map ¥ is a Riemannian submersion, we can also define the push-forward

(or integral over the fibre) %.(8) € Q*"*™(Y) of a form 8 € Q*(X) by
@ = [wv-Bavel()

where V' is 2 unit (n — m)-vector field tangent to the fibres of ¥, dVol(z) is
a volume form in the fibres of ¥ and 1, on the right stands for the map on
forms induced by the identification of the horizontal space at z € X with the
tangent space at ¥(z). The pull-back ¥*(C) € Di(X) of a current C € Di(Y)

is then given as

¥"(C)(B) =C(¥.(B))  for B € Q™ k(X)

A.2 Kernel calculus

There is a general correspondence between currents C on a product X xY
and operators C : Q*(X) — D, (Y) which was developed in detail in [HP79).

Here we just collect some basic definitions and facts needed in our special case.

Definition A.3 Given a current C € D,(X x X), we can associate to it

an operator C : ﬁ‘(X ) — D.(X) so that, given any smooth (untwisted)
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differential form a € Q*(X), the resulting current C(a) acts on a twisted form
B e (X) by

C(e) (B) :=C(x}(a) Am3(B))
= 12.(C Am}(a))(B)
If the degree of C is n — d (and therefore it's dimension is n + d), the

associated operator C will take forms of degree p to currents of degree p — d.

The cases of most interest to us willbed =0and d = 1.

Example A.4 The operator associated to the diagonal A C X x X is given
by the inclusion map L : Q¥(X) — Di(X) of forms into currents as described

above.

Example A.5 More generally, the graph of ¢ map ¢ : X — X induces the
pull-back operator C,(a) = ¢*(a).

Proposition A.6 Given a current equation 8C = A — B in D.(X x X), the

corresponding operators are related by Cod + (.—l)deg C+ldoC=A -B.
Proof: A calculation using the definitions yields
(8C)(x; () Am5(B)) = C(dni(a) A w3(B))
= C(rj(da) A 73(B)) + (~1)*%2(C A7} (a))(r3(dB))
= C(da)(B)) + (—1)*se+4eCr)+1dC(a) ()
= (Co d)(@)(B) + (~1)*=°*'dC(a)(B)



A.3 Whitney stratifications

A stratification S of a subset ¥ contained in some manifold X consists of
a collection of smooth manifolds {S;}, indexed by dimension, such that X is
the disjoint of the Sk and J,, S is a closed subset of Y for each k.

A Whitney stratification satisfies the following additional conditions for
any two strata such that S, N Sy, # 0 (the statements are local and assume

that we have identified some open subset of the ambient manifold with RV ).

(W1) Given any sequence {p,} C Sk, with limp, = p € Sy, if limT,, Sk,

exists, it contains TSk, .

(W2) Given any sequence {p,} C Sk, with limp, = p € S, limpp C
lim T, Sk, whenever both limits exist (here 7,7 is the line spanned by p,

and p).

Proposition A.7 The set of smooth maps from a manifold M into X trans-
verse to some Whitney stratified subset Y € X is open and dense in the Whit-

ney topolagy.

Proof: The argument is by induction on the dimension of the strata. The
lowest dimensional stratum is a closed submanifold, so the usual argument
(see e.g. [Hir76]) assures us that maps transverse to it are open and dense.
Assume that maps transverse to UyS; are open and dense. By the first
Whitney condition, any such map is also transverse to S in a neighborhood
of its boundary. But the complement S of that neighborhood is a compact

submanifold of X, and so maps transverse to it are also open and dense. O
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A.4 The Morse Lemma for generalized Morse
functions

Theorem A.8 Let f : X — R be a generalized Morse function , and let F
be a connected component of its critical set. Then there ezists a normal bundle
with a splitting N = N* @& N~ and a metric such that the function is given as
flu,z,v) = f(F) + |[v]* — |u|?. In particular, the gradient flow for this metric

is locally of the form

o+ (u,z,v) = (e™"u,z,e"v).

Remark A.9 A proof of this fact in the setting of Hilbert manifolds can be

found in [Mey67].
Proof: Choose any normal bundle structure # : N — F. Then we can write
f(z,n) = n‘Q(z, v)n,

where Q(z,n) is a symmetric bilinear form on T(z )Nz = N; gotten by the
usual trick of using Taylor’s formula in the fibre coordinates. Since f is as-
sumed to be non-degenerate along F, we can arrange for Q along the zero
section to be equal to the diagonal matrix I, x; with Ar entries being —1 and
the remaining A% being 1 by a fibrewise linear transformation.

Now consider the following diagram:

7*(GL(N)/Oxp 23 (N)) —== 7*(S2(N))

l l

N _“, N
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Here S?(N) denotes the bundle of symmetric bilinear forms on the fibres
of N, and both bundles are pulled back by the projection # : N — F. We
write =~ to express the fact that there is a local diffeomorphism taking some
neighborhood U of the section I- Oy, ;. (N) of 7*(GL(N)/Ox, s (N)) onto a
-neighborhood U’ of the section Iy »: in 7°(S?(N)). This map is given by

9 Orpaz P< Dipazg(c), 9(-) >,

where < -,- > denotes the metric on N. Notice that Q defined above is a sec-
tion of 7*(S%(N)) which for v € N contained in some small neighborhood N (¢)
of the zero section is contained in U’. We can use the local diffeomorphism to
lift Q|we) to a section Q of 7*(GL(N)/Ox; ;. (N))In(e)- We can lift Q further
to a section G : N(e) — n*(GL(N))|n(,), because over any sufficiently small
set in U’ the bundle 7*(GL(N)) — n*(GL(N)/Oa, ;) can be trivialized.

Finally, consider the map I' : N(¢) — N defined as
w=TI(n) :=G(z,n)-v

and observe that for £ small enough it is a diffeomorphism onto its image.

Tracing back the construction, we find that

f(w) = w‘I,\F,,\;_w,

and now it is easy to construct the required metric to complete the proof of

the statement. O

65



