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Abstract of the Dissertation

Kahler Metrics of Positive Scalar Curvature
on Ruled Surfaces

by
Myong-Hee Sung
Doctor of Philosophy
in
Mathematics
State University of New York at Stony Brook

1997

We study a way of constructing Kahler metrics of positive scalar
curvature on some blown-up ruled surfaces of any genus. These are
shown to have an explicit form on ruled surfaces blown up at most
twice successively. Our surfaces are generic in the sense that they
make up a dense set in the deformations of a given ruled surface.
For completeness we include a previous result on the existence of

Kahler metrics with positive scalar curvature on large blow-ups.
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Chapter 1

Introduction

1t has constantly been of great interest for geometers to study how a
geometric condition governs the topology of the manifold. Here, we consider
the existence of Kahler metrics with positive scalar curvature as the geometric
condition on a compact complex surface of Kahler type.

It is known that not every Kahler surface admits such a metric.

Proposition 1.1 If a Kihler manifold has a positive scalar curvature, then
the plurigenera py, = dim H® (M, O(K®™)) vanish for all m, i.e. its Kodaira
dimension limsup !ﬁ&gﬂrﬁf 8 —00.

Thus, by the surface classification theory, we are left with rational surfaces
and ruled surfaces. As a matter of fact, even if we loosen the condition by
merely requiring the existence of Riemannian metrics with positive scalar cur-

vature, the same is true by recent works of LeBrun [16](for minimal surfaces)

and Friedman-Morgan [1] using Seiberg-Witten theory.

Theorem 1.2 If there exists a Riemannian meiric of positive scalar curvature

on a Kéhler surface, then it is rational or ruled, not necessarily minimal,




Note that this metric doesn’t have to be parallel or hermitian with respect to
the complex structure as a Kihler metric is.

On the other hand, Hitchin [5] constructed Kahler metrics of positive
scalar curvature on rational surfaces obtained by blowing up a minimal model
at finitely many distinct points. Even though these don’t cover all rational
surfaces, they are generic in the sense of deformation of the complex structure.

Gathering all the pieces and evidence {3, 20, 23, 1, 16], the following was

conjectured in [16]:

Conjecture 1 Let X be a compact complex surface of Kihler type. Then the
following are equivalent:

(a) X admits a Riemannian metric of positive scalar curvature;

(b) X admits a Kihler metric of positive scalar curvature;

(c) X is either rational or ruled.

The missing implication is (c) = (b). Since every rational surface, except
for CP2, can be thought of as ruled, we only need to look at ruled surfaces.
Moreover it is known that a minimal ruled surface admits a Kéhler metric
of positive scalar curvature. [24] So it’s enough to consider blown-up ruled
surfaces.

In this paper, we will construct Kahler metrics of positive scalar curvature
on the ruled surfaces which can be obtained by blowing up at most twice
successively from a minimal model with arbitrarily many distinct blown-up
points. This means that as a smooth manifold any blown-up ruled surface

admits such a'metric. In fact, for a dense subset of complex structures on the




surface, the existence holds true. We also know from [6] that if the surface is
blown up sufficiently many times a different method leads us to the existence
of such a metric.
| The rest of the paper is structured as follows:

in Chapter 2 we set up our curvature convention and discuss metrics on min-
imal ruled surfaces. Blowing up is explained in Chapter 3 and we also study
special features of ruled surfaces in order to simplify our problems later. At
the end of this chapter we explain precisely in what sense we have genericity
of the existence of Kahler metrics of positive scalar curvature. In Chapter 4,
we introduce Hitchin’s construction of metrics on a space blown up at finitely
many points. Then in Ché,pter 5, it is shown that there exist Kihler metrics
of positive scalar curvature on a ruled surface as long as it doesn’t contain a
region which was essentially blown up more than twice from a minimal model.
Lastly, Chapter 6 deals with the somewhat complementary cases of surfaces
blown up sufficiently many times. Here the author essentially illustrates the

proof of Theorem B in [6].




Chapter 2

Minimal ruled surfaces

2.1 Curvature convention and other notations

Let’s assume {2°} is in use for local coordinates around a point p in this

section, Then we let

_of 5 ¢ 9f
O.f = s and O, f = S
Méanwhile,
T AU PR PUN:) PR A
af = B0 dz” + +azndz and Jf = 571 dz +---+62ndz

where n is the complex dimension of the manifold.

When w is a Kahler metric, we can write
w=1Y gozd2" A dZP.
g% is defined to be the inverse of g,z

9039"" = 6.




The curvature tensor R of g is
Raﬁ'yg = gETa’)‘gaﬁgngﬁ - 815590115

and in particular, B,g,;5 = —8,059,5 when all the first derivatives of the metric
vanish.

The Ricei curvature is defined by
TiC,F = gs—"’R,,gag;
the scalar curvature is defined by
3= _g‘a"‘ricag.

Tt is useful to know the direct way to compute the scalar curvature when you

don’t need the full curvature tensor.

8 = —gﬁ"’aaf_)ﬁ logdet g , or

sdvol, = —wAiddlog (w—%ﬂ)

where dvol, is the volume form of g and 7 is the coordinate volume form.
The holomorphic sectional curvature and the Ricci curvature at p in the

direction of 2z are also defined:

K(p)(z) = Rapys(p)2*22"2° [

ric(p)(z) = 'if'ic:o,g(1::)2"’25/7-2

where r? = g,5(p)2°7".




2.2 Yau’s metrics
First we need a suitable definition of a minimal ruled surface.

Definition 1 A complez surface is a minimal ruled surface if it can be written

as the total space of a CP'-bundle over a Riemann surface.

In [24], Yau proved any minimal ruled surface admits a Kahler metric with
positive scalar curvature. It can be shown that every minimal ruled surface X

is associated with a rank 2 vector bundle V over the Riemann surface C(see

for example, [4]) such that
X=PV)5C.
Then Yau’s metric is written ag
w = T*wg + €108log{v , v)

where w¢ is a Kahler metric on ' and (, -} is a hermitian metric on V\{0}. We
will see that when € (> 0) is small, w is K&hler with positive scalar curvature.

Let 2! be the local coordinate for C and 2? the inhomogeneous coordinate
for the locally trivialized fiber. From the previous séction, the scalar curvature

of w has the same sign as

—w A i001og (w :; w)

where 7 is the standard coordinate volume form. We use

wAw =2 it*wg A 8pdy loglv , v) d2* A dz® — 28dlog{v , v) A B3log(v , v)

]




to see that when ¢ is small, the dominating term from above is

wo A 50, log{v , v) dz* A d7?
n

—7*we A 10,0, log ( ) dz? A dZ?.

If 22 = v?{v! and if we make v! constant, we can write (v , v) == v o (hyy +
ho12* + h122® + hgy2?2?) where hy; are functions of 2! and
3252 log(v ) V> = 6252 log(hn + h212’2 -+ h1222 + h223222)

det h
(hax + ha12? + h1aZ? + hop2?72)?

If we = go dz' A dZ', we have

* ) 2 52
—mwe A 3'8252 log (7r we A 0as logygv , V) d= A dz ) dz2 A dz?
godet b

— s a3 i =1 2 =2
= —iggO0hlog [(hu TR T h22z222)2J dzt A dz Adz* ANdz

= 2igc8,0,log(v , ,V) dzt Adzt A d2? A d7P
det h

1 d;l d 2 2
(hir + ha12% + b1aZ® + hgpz?32)? dz' Adz" A de" A dZ,

2igc

which is a positive multiple of the volume form. This metric w will be used on

the minimal model of a ruled surface in Chapter 5.




Chapter 3

Minimal models and blowing up

3.1 Blowing up

Blowing up is a procedure of obtaining another complex manifold from a
given one. In particular, it plays a crucial role in the classification of complex
surfaces. Here, we will define the blow-up of a complex manifold at a point.

Let M be a complex manifold of dimension n and p a point on M. Then
there is an. open neighborhood U of p that is isomorphic to an open set in G”
containing the origin via some chart 1 with ¢ (p) = 0. If we identify these two
open sets via {#'}, as local coordinates and consider CP*! x U — U given
by the projection onto the second factor, let

0 = {(1, () € CP» x U | P2 = Uaf, iyj =1, ,m }

and « : U — U be the restriction of the above projection. Note that
a"l(p) = CP™" x {p} = CP"!

and a: U\ a™'(p) — U\ {p} is an isomorphism.




Now we can construct a new complex manifold

M= (M\{p} LQJ U

using o to identify U \ {p} with T\ a Y (p). Let a: U — U be extended
to #: M — M by identity elsewhere. M together with § is the blow-up of
M at p and has an ezceptional divisor ! = CP™! replacing p. If [E] is the
associated line Bundle of E, then [E]|z = O(—1), the tautological line bundle
over CP» ! since {J is isomorphic to the total space of O(—1). In particulaf,

if M is a surface then F is a curve with self infersection number

E-E:fcl([E])m—l.
E
We can equip U with n local coordinate charts that are related to those
of U, namely, U= U?zlfj,- where
U; = {([l"],{z"}) eU| I #0 } has
(zl/z", e, 2 A A z"/z’:) as its local coordinates.

Hence in each U;, E is represented by the equation (2% = 0).
We can also see that a curve C passing through p in the direction of
(2*/ z")a=1,...,g_1,,-+1,...,n on M will become a curve € on M which meets E at

the point corresponding to that direction, More precisely, the proper transform

C =BT (C \ {p}) will satisfy
CNE= {(zl/z",-- L2 A 0,4 ,z”/zi)}.

If M is a surface, the self intersection number of C is less than that of C by

1. For more account of these, see [2].




3.2 Properties of ruled surfaces

A minimal surface is a compact complex surface that has no embedded
CP! with self intersection -1. A ruled surface is obtained by blowing up a

minimal ruled surface at finitely many points possibly many times.

We will see now that this ninimal model is not unique for a ruled surface
and that there are different ways of blowing down a ruled surface to a minimal
one. This is because the proper transform of the fiber passing through the
center of blow-up gives us another rational curve with self intersection -1 and
when we blow down this curve, we get another minimal surface in general.

The following example shows a typical situation.

Example

Let (' be a curve with genus greater than zero, Consider the ruled surface
X = C x CP! blown up at a point p. Think of C as a section not meeting
p and let F' be the fiber passing through p. rSinoe F . F = 0, the proper
transform F will have ' - i = —1. Now blow down F to get a new ruled
surface X, where the image of E becomes a fiber class. Indeed, X is different
from C x CP! because now there is a section C whose self intersection number
is 1. Furthermore we claim that X is minimal. To see this, supp;)se Disa
smooth rational curve in X’ with D - D = —1. Since C and F span the space
of numerical equivalence classes of divisors on X(see [4], for example), let

D = aC + bF for some a,b € Z. Usingé-F:l,F-F:O,amdé-é:1,

10
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Figure 3.1: Two exceptional curves in X. i
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we see that @ and b must satisfy H
ﬁi

~1 = (aC +bF) - (aC + bF) {

= a{a +2b), |

_ 8

i

and since D cannot be a multiple of fiber, a = D - F > 0. Thus we have :
a=1,a+2b=-1,80 b= —1. But then ¢ ~ F = D is a section whose image |
is a rational curve, which is impossible unless the base ¢’ is CP. Therefore |
X is minimal and, depending on which curve you blow down, both X and
L_

C' x CP! are minimal models for X. ] '
\

:

|




Another phenomenon we will see in a ruled surface is the fact that a
surface which is obtained by blowing up a minimal one successively many
times might be blown down to a minimal surface in one step by looking at
different exceptional curves. Since blowing up a point is a local process, this
is obviously not a problem for a surface successively blown up at the points
whose images in the original minimal surtace are distinct. So we only need
to consider the case where we blow up a point on the exceptional curve that
came from a previous blow-up. The following example should be sufficient to

illustrate when we can blow down a successive blow-up in one step.

Example

Let’s consider a minimal ruled surface with genus of the bas‘e curve greater
than zefo. quw up a point p; on it and call the exceptional curve F,. Let F
be the proper transform of the fiber passing through pi. E; will meet F at
the fiber point. Now pick any other point p; on F; and blow it up. This will
produce a new exceptional curve E; and there is also another rational curve

with self intersection -1, namely F.

Since F and FE, are disjoint, we can blow down these two in one step
and get a surface which has a curve B with self intersection zero. To show
that there is no more rational curve to blow down, set D - D = —1 where

D = aC + bF as in the previous example. Then

~1=a(a(C-C —1)+2b)

12
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Figure 3.2: This is not an essentially-successive blow-up.
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and hence a = D - F = 1,b = —££, Even if C - C is an even Integer,
D=C-— %QF would be a section whose genus is not zero by construction.

O

If we don’t consider these successive blow-ups as essentially-successive
blow-ups, a surface apparently blown up eight time., say, could have been
bloﬁn up essentially twice. As is obvious in the previous picture, the essetially-
twice blowing up happens when the fiber pbint is chosen to be the center of

the second blow-up.

3.3 Deformations of complex structures

In this section, we study how the blow-up structure of a ruled surface
behaves under small deformations of the complex structure. First we set up

the language of deformations.

Definition 2 A holomorphic family ef compact complex manifolds parametrized
by a connected complez manifold B is a complex manifold Z together with @
holomorphic map f : Z — B such that Z is a differentiable fiber bundle over

B.

By definition every fiber of the family is a complex manifold of the same
dimension. If X is biholomorphic to f~1(z) for some € B, then Z is a family
of deformations of X.




Definition 3 A holomorphic family 7 — B is semi-universal if given any
family Z' — B’ there exists a holomorphic map g : B' — B such that Z' is

isomorphic to the induced family g*Z.

By the celebrated works of Kodaira-Spencer [11, 12] and Kuranishi [13,
14], for every compact complex manifold X there exists a semi-universal (rela-
tive to local deformations) family of deformations of X.! For a rational surface,
Hitchin explicitly constructed a semi-universal family from that of a minimal
model of the given surface. We extend this result [5, Proposition 6.1] to ruled

surfaces.

Proposition 3.1 Let X be a ruled surface. Then there exists a semi-universal
(relative to local deformations) family Z — B for X such that there is an open
dense set U C B so that the fibers over U are ruled surfaces obtained by blowing

up distinct points on a minimal model,

Proof. Let W 5 Abea family of deformations of a surface. Then we can form
a family of deformations V(W) — W where the fiber over w € f~!(u) C W is
f‘i(u) with the point w blown up. In other words, V(W) is the fiber product
W x 4 W with the diagonal blown up. The projection onto W is simply the
projection onto the first factor in W x 4 W, We can check that V(W) does have

a differentiable fiber bundle structure over W' using the fact that the fibers of

1When H?(X,0) # 0 where © is the sheaf of holomorphic vector fields on X,

the parameter space could have a singularity at the point that corresponds to X

and hence our definition of holomorphic family should be weakened.

156
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f are all diffeomorphic and so are their one point blow-ups. If we iterate this

process we get a family V(W) — V™ 1(W) and any surface obtained from

a fiber of W — A by successively blowing up m points is contained in this
family. We observe that those surfaces obtained by blowing up a point on an
exceptional curve produced earlier form‘a subspace of codimension at least
one. Therefore, there is an open dense set in V™=1(W) over whicn the fibers
are obtained bf blowing up m distinct points on the fibers of W.

We apply this to our situation and take W to be a trivial deformation
for the rigid miniﬁxal models CP? and CP! x CP!, and a semi-universal
family for other minimal ruled surfaces which is known to exist in general by
Kuranishi. If X is obtained by blowing up k times from a minimal model, take
Z = V¥(W) and B = V*¥-1(W). Since the ruled structure is preserved under
small deformations, fibers of Z — B are all ruled surfaces.

Finally, to show that Z is semi-universal relative to small deformations,
let Y & Abea family of deformations of X = f~'(u) and suppose X has
an exceptional curve of self-intersection -1. Such a curve is stable under small
deformations and there exists a neighborhood N of u over which these excep-
tional curves can be simultaneously blown down. Hence we get Y”, a family of
deformations of X with its exceptional curve blown down. Note that N — Y,
sending v to the blown-down point in the blow-down of f~'(v), induces the
family ¥ from V(Y*) — Y’. We continue ths way and get a commutative di-
agram. Then we see that ¥ can be induced over some neighborhood N ! from
VF(Y") — Y" where Y" is a family of deformations of a minimal model. Since

we have a semi-universal family W this is induced from W and hence Y{n is

16




induced from V¥(W). ' i

So roughly speaking, the constructed semi-universal family for X is just
the semi-universal family for the minimal model of X plus the deformations

given by the configuration of blow-ups.

17




Chapter 4

Metrics on a blown-up space

Here we discuss the kind of metrics we want to put on the blown-up space
to make the scalar curvature positive following Hitchin’s ideas. These metrics
are also the ones Kodaira used for his famous Embedding Theorem. The scalar
curvature of the space blown up at a point will be computed in terms of the
various curvatures of the original space.

Let X % X be the blow-up of X at a point p. Also, let ¢ : X — [0,1] be
a smooth cut-off function such that ¢ = 1 on U” and ¢ = 0 outside U " where
peU"cU' cUC X and U has local geodesic coordinates {*} around p.
Then, if w is the given Kahler metric on X, consider the following metric on
X:

& = f'w +1i0d () log [|2]1*] - (4.1)
If # (> 0) is sufficiently small, & is a Kahler metric on X.
We'd like to show that if w has positive scalar curvature s, then & also

has positive scalar curvature § for small ¢ under some extra conditions on the

curvatures of w. Since & = f*w outside U’, § = s outside U’. On X\ ﬁ‘l(U")-

18




which is a compact set, one can make ¢ small enough so that 3 is positive
since it approaches s as t goes to zero. If we can show that § > A > 0 on
B~Y(U")\ E for some X and small ¢, then § > 0 on #~*(U") by continuity and
we are done. Using the isomorphism 8~ (U"}\ E é U"\ {p}, we need to prove
that 3 > A > 0 on U”\ {p} with all computations thought of as being done on
the deleted neighborhood of p on X.

On U"\ {p} with geodesic coordinates {2°}, we can write & as
& = w+ 1100 log || 2|}
since @ = I on U". The corresponding metric tensor is
— t (s 7920
gaﬁ—gaﬁ+;§ of = 2

where we can expand the metric g on X as a Taylor series about p relative to

the geodesic coordinates:
Jai = bap = Rapop(0)2"2 + -+ (4.2)

The rest of the coefficients are derivatives of the curvature tensor at 0, i.e. at
p and (g,5 — ba)/r® =: Cop is bounded on U". If we introduce the matrix
Pop := 32 [v%, then P is the projection onto the vector 2% and in particular,
P? = P and trace P = 1.

Using matrix notation, we rewrite the metric § as:

- t .

g = 1+r20+r—2(1—P)

2 4
r +_t | — ,tP N rC
r? ri4+t rZ 4 ¢

2 2 4 .
_ r-l-t(l tP)(l_FtrPC’_i_rC). (4.3)

r? EEE ret o r?4d

19




Since

5= —37*0,05 log det 7, (4.4)

we need to compute §~' and det §.

We use P2 = P and

184

(1 + aP)! zl—H_aP
where || < 1 to get
2 -1
() ()
Note that
e+ 2 <ol (1.6)
and ;—}:—_; < 1, =45 < 1 and therefore §~' is bounded if ré < ":mlc'_u which is

independent of {.

Using
' tP 2 r? :
det(l—r2+t)_ _r2+t:r2+t’
5 r2 3 t\"! tr:pPC rC
detg—( = ) det_1+r2+t+r2—|-t)’ (4.7)

where n is the real dimension of the space. So,

_ tr?PC 1C
Jog det § = (n —1) (log(r2 4t} — log rz) + log det (1 + :2 3 + rz n t) .

(4.8)

Let’s compute the contribution of the last term, log det (1 + *';Zi’f :’;ft) =

H.

20
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Lemma 4.1

L
r3(r? +t)

Here, € O(r") means |f| < Ar™ asr — 0 where A is independent of £.

uOsH = —8,04 ( (tR ,5.5(0)2"2° 2% + r4m'c,),5(0)z'*£'6)) + O(r?).

Proof. Let G = det (1 + Wiﬂj(tr“PC’ + rGC)). Then 8,05 H = £8,05G —
20,G0sG. From 4.6,

G = 1+ trace ( (tr4PO+r60))

1
r2(r? + 1)

tmr4mr6“a1 ambl e bn

r2{(m+tn) (,,.2 + t)m-}-n

+ terms of the form

with m -+ n > 1, where a; are entries of the matrix PC and &; of (' and hence

M pdmbn pemtdn 2 2
they are bounded. Here, SRR (2 +t)m+n < (rg o7 <7 m+in and the extra
terms are of order O(r?).

Let f = Then

.,,2 +t)

72+ 1)

r4(r? + t)?
- bap(2r? 41 27%2°
Oalpf = - rf(rz T t)2) + T t)3(3r" + 3r%t + t*) and
2
r3(r? 4+ 1)

2 2 16

e R T AU AU A &

Ouf =

0 fll <

Haaéﬁf”

So one differentiation reduces the order in r by 1. Hence, G = 1 + O(r?),
8.G € O(r) and 8,05G is bounded independént of .

Using these estimates,

DadpH = 8205 ( trace (tr'PC +1°C) [r*("* + 1)) + O(r?).




From 4.2,
Cro = — By 0)75 72 + O(r), (19)
80
trace (r1PC) = —R,55(0)2°2° 272 + O(r°)
and
trace (r*C) = —ric,5(0)272° + O(r).
Keeping track of order in r, we obtain the lemma. |

Going back to 4.8, we have

A ~ 6a,6 Pl (5,_,,,@ 7P
6?3310gdetg =(n—1) ('r2 TRl o sl S e
A 1 ‘ = _ry=6 : 50
— Baaﬁ (T—zm(tRpﬁg(O)z"z 272" + ?‘47‘30,.’3(0)‘272 ))
+ O(r?). (4.10)

From 4.5 we estimate

(L P ) 10 w4PC | tr'CP | #riPCP
To\r?t 4t (r24+1)2 " (r24t)2 0 (P24t (P24 1)?
+ O(@r?). (4.11)

Also, notice that we can safely replace Cog in 4.11 by Bug = —Ro,5(0)272° [r?
from 4.9. |
If we multiply 4.11 and 4.10 and take the trace according to 4.4, then

i= 8g -|- 8y —+ 0(7‘2) (412)

where sy is independent of curvatures of ¢ and s is a linear combination of

various curvatures of ¢ at p.

22




Lemma 4.2
50 = (n — 1)(n — 2)t/(r* +1)?

and hence is zero for surfaces.

Proof.
r? tP 1 riP 1 P
- — t, aCe — — = - -
%0 race (r2+t+r2+t) (r2+t (r24¢)2  r? +r2) (r=1)
2 4
= —(n — 1) trace 27‘ — rr 1 + P + tP
(r24+8)2  (P24+1)? 24t 24t (P24t)
tr2P
CEDE

t + 2tP
GEDEMCENE

nt 2t
:m"”(w+nf%ﬁ+m)
= (n—1)(n - 2t/ (r? + 1)°.

= —(n — 1) trace (_

Lemma 4.3

1
(r?+1)°
+ t(—dnrt — (20 +3)r’ + ) K(0)(2)]

8 = [r(r® + 1)3(0) + 2tr* ((n + 2)r* + 4t) ric(0)(2)

Proof. In 4.11, terms that produce curvature expressions are

1
(7 + 1)

(TGB + PB4 triBP + t*r? PBP) .

23




This contributes one term a; to s; and the two curvature expressions in 4.10

contribute ay and ajy:

1
rZ 4+ ¢

1
4 = mﬁ~—-umm(ﬁB+¢MPB+¢MBP+#MPBP)(

(1.2 + t)2
rip 1 P)

(r2+t)2—r2+;_2

Tere, trace B = —ric(0)(z) where ric(0)(2) := ric,z(0)2°Z" /72,

and trace BP = trace PB = trace PBP = trace BP? = trace PBP?

= —R,z5(0)2°2° 272 [r* = —K(0)(2).

So,
o = (%3_)3 {ric((})(z) (— S r4)
r® . ot 9ty t2r? tir
+K(0)(z)((r 0 - _,«2_|_t+(r2+75)2—T2+t+-(7'2+t)2)}
n—1 4 r2(9p?
= G (o)) - e +OKO)2)
Now,

4 = r26aﬁ + tz“:?ﬁ P 5 tu
SRR CED) A IR
where u = R,;,5(0)2"2 277 = r*K(0)(#). We need the following derivatives:
Oxte = Raa.q,g(O) s -|-Rpamg(0) P5T gt (Raaﬂrg_(ﬂ) +R-y&a§(0)) gazw‘gs,
Gou = (Ryp,5(0) + Bopp(0) 2277,

8:dpu = (Rapys(0) + Rosyp(0) + Rygas(0) + Ro5o(0)) 272,

Together with the derivatives of f in Lemma 4.1, we have

B,05(fu) = udyBpf + 0o fOpu + Duubf + [OaBpu
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Sap(2r% 4+ t) 27% 2P
= K(0 -

e (-
2?1t s
- M(r? + 1) (Rpﬁ«yﬁ(o) + R,,g.yg(O)) 27275

_ Wt 4+t

r4(r? 4 t)?

1
* r2(r2 4 t)

(3r* 4 3r%t + tﬂ))

( 0!0“'}'5(0) -+ R’yo’aé‘(o)) 'GZUZ’YZ
(Rupng(0) + Rasap(0) + Boas(0) + Roso(0)) 272",

After some computation we get

4r? tK(0)(2)

a = T i ————7ic(0)(z) -+ (2—~+-t—)3 (—nr2(2r2 +1) 27t —dr¥ 4 tz) .

Next,

24t r3(r?4+t)

where v = rtric 5(0)272° = r®ic(0)(2). Proceeding as above,

2 oo _
o= (L2 4 5 ) 0,0 )

Bov = 2ric,5(0)2°2"F + riric,s(0)2,
Bgv = 2rlric,5(0)2°277 + riric,5(0)27,
BuOgv = 2ricz(0)2*2"2%

+ 2r? (éagric,yg(ﬂ)z"'f‘s + ric,z(0)2%2" + Ticag(o)zﬁ§5) + riricys(0).

26,,,;; 2P
r2 4t 1"2 r? 4+ t)

r?8ap(2r® + 1) pt 2 2
[mc ( T +(3+t)3(3 +3rt+t))
(2r
- -(———_'%)) (2mc(0)(z)z + ric, (O)z"')
ZP(2r? + 1)

- 2O (i) @)z 4 ric(0)7)

(ric(O)(z) (Eazﬁ + 60,,37'2) + ric,5(0)2%27 + ricagzﬁéé) +

r? 41 r? 41

r¥ric,s(0)

|
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r*s(0)
g

triric(0)(z)
(7‘2 + t)3

((n 4+ r* + 4t) +
Finally,

81 = a1 + a6z as

(12 + 1)s(0) + 2t ((n + 2)r? + 42) ric(0)(z)

S
(T2 + t)3
+ t(—dnrt — (204 8t + ) K(0)(2)]

as stated. |

Corollary 4.4 If X is a complex surface, then

[r43(0) + 8trPric(0)(z) -+ ¢(—8r% + t)K(U)(Z)] '

§1 =

(?’2 + t)2

Proof. Set n = 2 in the lemma. i |i;

Now that we have § = s; + O(r?) for surfaces, if s; > At > 0 for some 2
Ay, there is a & which is independent of ¢ such that r? < § implies § > A > 0 :

for some \. Taking U” = {z € Ulr? < 6} in the construction of g, we have

§> A >0on U”\ {p}, which is exactly what we aimed for in the beginning.

So we need to show s; > A; > 0 to prove that & > 0 on the entire X. We will

use this method to obtain the main result in the following chapter.




Chapter 5

Curvature of ruled surfaces

5.1 Blowing up at distinct points

If X is a ruled surface obtained from a minimal model X = P(V) 5 (
by blowing up finitely many distinct points, then we will consider the met-
ric & constructed in Chapter 4 with a cut-off function centered around each
blown-up point. Here, we use Yau’s metric for the minimal model. Since the
construction of § is local, we can take cut-off functions such that they don’t
overlap with each other. Therefore, the local computation around each blown-
up point will be the same as that of the case of blowing up at one point and
we might as well consider X blown up at one point, p.

Then with the same notation as before,
&= prw+1idd [(Be)logr?] , (5.1)

where w = T*wg + €1081og(,) is Yau’s metric from Chapter 2.
We are going to make w more specific by requiring the following:

Choose w¢ such that regardless of the genus of C' the metric around p locally




looks like the standard Fubini-Study metric on CP!. We can achieve this for
example by deforming the uniform metric on C' conformally around p until it
is the Fubini-Study metric on a neighborhood U of p. We also take a local
trivialization of V on a neighborhood of 7(p) and let {,) be the standard inner
product on the fiber.

If we call the local inhomogeneous coordinates for C' and the fiber 2! and
z2, respectively, then by making U smaller if necessary, we ca,n.ex_press this

metric as

w = 100 [log(L + [2'?) + clog(1 + [2*)]

on {/. Notice that this is just the product metric on CP! x CP! with the
fiber-shrinking parameter ¢. We can use this simple local expression for w in
the cornputation of 5 from the last chapter if the support of the cut-off function

is chosen to le in U.

Proposition 5.1 The scelar curvature of X with the above & is positive.

Proof. From the last paragraph of the previous chapter, all we need to show
is 8; > A; > 0 for some constant \y. Let’s compute the full curvature of w to

see the various curvatures that appear in ;.

First, we have w = i (g7 d2* A d2' + go3 d2* A dz?) where

1
T TP
€

f

S (Y
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and their derivatives are as follows:

. 25!
16hi = ““(‘l—_i‘_—lz'fl*z“jga
= 221
i = AR
= 2(1 — 2]z
AOgii _W,

and similarly for gy with additional factor of €. All other derivatives are zero.
Since we only need the curvature at p (2! = 2% = 0), the first derivatives

all vanish and

Rﬁli({}) = *3151911(0)22a

R2§2§(0) = 26)

=1

T [

o

—

=

L

1l

fh]l—‘ u!---‘

Now we get the curvatures at p:

KO)(2) = (21 + el 1) where * = |21 + ¢l

Ticli(o) = gilRmi(O) = 2,

. 3 1
TZCzﬁ(O) =] 922R2§2§(0) = -g e = 2,

ric(0)(z) = %uzll2 +122P2),
1

3(0) = gilric:ﬂ(ﬂ) + gmriCﬁ((}) =2 (1 + .g) i

Using the above,

A
(7 r oy

F 2 (a0 + 1) (52)

1
81 {2 (1 + -g) r 168|212 + |24P)




Let ¢ = |2'|? and ¥ = |2%|?, then +2 — z + ey in the following:

'r'4(r2 4 t)z(sl — M) =2 (1 + }-) r® 4+ 16tr4(\zl|2 + lzz\z)
4 2t(—8r% + t)(lzll4 + ¢ 2 — )\11”4(1' + 1)
= 2 (1 + %) ri(z + ey)” + 16t 2+ ey)(e+y) T+ 9t(—8r® + 1) (z? + ey”)

~A1(r2 + 1) (= + ey)®

= o {(2 (1 + l) - )\1) A oart (2 Al)tz}

4+ 2zy {(2(1 + 6) - 6)\1) T'4 + (8(1 + E) — 2€A1) 1"2t — ﬁ/\1t2}

4y { (21 + €)= M 1) — 2hrt 4 (26— hie 212}

—: Eg*+2Fzy+ Gy’ (5.3)

We will show that for sufficiently small Ay, we have E.G>0, F?-EG <0

. and therefore prove $1 > A;. Notice that E, F, and G are all quadratic

expressions in 2 and t, and that their first coefficients are positive if M <

2 (1+2).
The digcriminant of E is

—(2(1+}-)mxl)(z—xl)—_—.—ax(u-l;)+2(2+%),\1

2 1+- §o E > 0for small Ay.
2+ €)M —4c*(14¢) and G > 0

and is negative if M <
Similarly, G has negatwe discriminant 2€

it <2(1+12)/@+e)
inant is (4(1+€)— M) +en (@l +e) ehr) =

But for F, the discrim
2(1 +e)(8(1+e€) —3¢)) and it’s positive if M < 8/3 (1 + %) Since the first two

Fis negative if

coefficients are positive,

2/t is small enough and ¥ > —emt?
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Where 2/t is large and F' > 0, every term in 5.3 is positive and we’re done.
Thus, let’s assume 0 > I' > —e);t2.

Now we should compute the minimum values of £ and G.

)\2
el M

if Ay < min{l, k(¢)} for some constant k which depends on ¢.

Similarly,

2.2
G >t (—2 (1 :1:) 3 + 2¢ — 62)\1) > tH(—€® + 2¢~ €8A1) > 0
<) =AM

if Ay < min{2 —1,k(¢)} where we can assume 2 — 1> 0 if € is small enough.

Therefore,
F? - EG <t (62)\% — (A = I{EM+ €~ 26)) = t*(2e\ + €€~ 26) < 0

if Ay < 1—¢/2, as desired. ‘ |

Corollary 5.2 There exist Kihler metrics of positive scalar curvature on a
ruled surface which is obtained from a minimal model by blowing up at distinct

points.

5.2 Successive blow-ups

Next, we extend the construction over to a essentially-twice-successively-

blown-up ruled surface. As shown in Chapter 3, this case has to do with

blowing up the fiber point on an exceptional curve.




We start with ¥ from the previous section and take local coordinates

w' = 242wt =2 around the fiber point on the exceptional curve. Then we

blow up % at 0 and consider the metric
& +1i09(plog r*)

on the blown-up space as constructed in Chapter 4 . 9o X is equipped with

the metric expressed as

& = i90 [1og(1 4 |2H?) + elog(1 + 1221%) + tlog(|2'* + elzglz)]

08 [log(1 + |w'w*?) + elog(1 + [w?}?) + tlog(lw'|” + ¢)|

on A7L(U").

We proceed as in

the previous section and compute various curvatures of

& at the point to blow up (w! = w? = 0). First we compute the components

of the metric & = & 1. gop 4™ A dwP:
. = [ + _te
91 = [Tk i) (WP e
wrw? L
Gz = —(-W = Ga1»

w'|?

€
95 = TywwPy | @+ WP

We also need the following:
detg(0) = 1,

g 0) = e/t

J2(0) = 0=g"(0),

gﬁz(o) = 1/61
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214
A T | |w?] te
G =~ ((1+tw1w2|2)3+(|w1|2+e)3)’
212
7 _ 1322 ]w |
61921 - —2('(.() ) w (1+|w1w2|2)37

. 1 — lewZI2

8191§ - uw (1+|w1w2|2)3}

|0

14
5 9.2 ‘ €
Oogai = 2w ((1+lew2|2)3+(1+Iw2|2)3)’

and these derivatives all vanish at 0. Thus, we have

Rli“ﬂ(o) = —31519‘11(0) = 2f/€2:

Rini(0) = —0102011(0) =0,
Riz3(0) = —810:413(0) = 0,
Rigz3(0) = ~0,0,95(0) = ~1,
Ry303(0) = —88592(0) = 0,

Ry323(0) = —8,02923(0) = 2,

and the rest of the components can be obtained by symmetry of the tensor

and the metric.

Now we compute the various curvatures:

i

| o4
K(w)(0) (E§|w1‘4 — 4wt + 2e|w2|4) [t

t t
where r? = Elwl|2 + clw?? =: T +ey,

ric;i(0) = g™ Rini(0) + ¢”Rams(0) = 2/e —1/e = 1/¢,

7‘3'012(0) = Qiszili(O) =0,

i

ricy;(0) gilRligi(O) + gﬁszgﬁ(O) = —¢ft+ 2,

rie()(©) = (Hw'f+ (2= 5) W) /2,
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s(0) = 2fe

Here, by the way, we cat check that the answers for s(0) from above and from

5.2 are consistent.

Finally, from 4.4,
o = _ {21-4/6 + 81 (llw‘P +(2- e/t)\wzlg)
(r* + 1) €

i - (2
+ ;Z(“"Srz 4 1) (—g\wl\’* — 4wl + Ze\wz\‘*)} :
We consider the positivity of the following:

2 4t > oraft
rA(r? + 1Y3(sy — A1) = pu ('-’ﬂ + 6?;) + 8ir” (—37 + f?)‘) (zfe+(2— e/t)y)
2
+ i~ —8r? + 1) (—-—a: - 4my + 2ey ) M(r® + (% (iw + Gy)
2t 8 oy 2t
+ 2my{ Ay g+ tfarT -2l = il %')2}

8
+ ¥ {261‘ - —%—rzt 426 — M (r 5)2}

il

{ —(2fe— M)t - —-(4 4+ M+ -—(2 Ait)t }
21y {t(?/e — M)t 2(8 +4tfe— At)rit - 2+ M)t }

{ e(2fe— M)t — —-—-(4 pEnpPE e 2(2fe— A )

=4

4

fx? +2Fzy + Gy.

Ag in the previous gection, we'll show E,G > 0and F? — EG < 0 for

suitable values of t/e. First, we make the first coefficients positive by making

M < 2/6.




| F has discriminant (4 + Mt)® —#(4/e— I (te+1) + 1) = 20t e+
5t) +4(4—t /€) which is negative if M < %1"7/—:—_:% where we need to impose the

condition t/e > 4. So £ > 0.
(1 is also positive since its discriminant is €(4/t + M) — 44 dhe— M\ =

A(e+2e2[8) + 4(4e*ft? — 1) which is negative if Ay is small enough in terms

© of e and L.

F has discriminant A(16+ 17t/ e+A8 €?) —6t(tfe+3) M which is positive if
A, is small in terms of € and t. For the same reason as in the previous section,
we assume I < 0. We will use this inequality in the following computation.

We compute F? — EG directly:
F? — EG = 2Atfe+3) [St(z/e — A)r® + (2(15t/e +16) ~ 15th) 't
_ o4+ 30| + T (40 -t/ + t(t/e+3)A1)
< 2B [(tfe+3)(-%6~ 348/ + tha)r + 2(t/e + 3)(4 4+ th)rE

+(2(1 —tfe) it/ e+ 3)_)\1)?:2]
This is again a quadratic expression in 2 and ¥ with negative first coefficient
for small A;. Also for Ay small enough in terms of t and ¢, the discriminant
2 (1782 ) €2 + 104t/e + 155) — 4(17t* /€’ + 97t /e ~ 60) is negative under our
condition t/e > 4 that was imposed to ensure the positivity of £ and G.

Therefore, F* — EG < 0 for sufficiently large t/e and sufficiently small A; .

Thus, sy > A1 >0 and we have the following results.

Proposition 5.3 There exists Kahler metrics of positive scalar curvature on
a ruled surface that i essentially~3uccessively-blown—up at most twice from a

minimal surface.
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Chapter 6

Other blown-up surfaces

If one allows blowing up many times, a totally different method produces
surfaces with a Kahler metric of positive scalar curvature. We'll show that a
ruled surface admits such metrics if it is blown up sufficiently many times in
an appropriate way.

Given a ruled surface, first we aim for the existence of a Kahler metric
of zero scalar curvature (scalar-flat Kahler, in short). Our strategy is then to
deform the metric to achieve positive scalar curvature. To be precise, we use

the following result [6, Theorem 3] for the existence of a scalar-flat metric:

Theorem 6.1 Let (X, J) be a ruled surface. Then (X, J) has blow-ups (X,

J) which admit scalar-flat Kihler metrics.

Take one of these blow-ups X. We'd like to use the following [17, Corollary
1]:

Theorem 6.2 Let (M,J,w) be a compact Kéhler manifold which is scalur-flat

but not Ricci-flat. Suppose, morcover, that every global holomorphic vector
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field on (M,J) is covariantly constant with respect to w. Then for every real

constant ¢ € R, there is @ Kihler metric on M with scalar curvature 8 = ¢

To satisfy the condition on holomorphic vector fields, we need:

Lemma 6.3 Let M be a complex manifold with a nontrivial holomorphic vec-
tor field €. Then M which is obtained by blowing up M al a nonzero point
of £ doesn't admit a vector field that agrees with & on the complement of the

ezceptional divisor.

Proof. For simplicity, let’s work with surfaces. Say £(p) # 0. Tna local
coordinate chart {z} around p on M, we can assume £ = 5%; without loss of
generality. Blow up M at p to get M. As usual, {z} gives rise to coordinate
charts around the exceptional divisor £ on M: {w =2 / 2y, W2 = 73} and

{w) = =1, wh = zaf 71} If M inherits £ on the complement of E, it must look

like
e 1 0 i) 2’2_ 0

9z, wz 0wy ol Wi owl

Thus, in each coordinate chart, the vector field cannot be extended onto ol |

So we gét rid of the vector field each time we blow up at a nonzero

point of it. Our scalar-flat X may have t0 be blown up more to have all i

holomorphic vector ficlds vanish and now this surface certainly satisfies the
vector field assumption in Theorem 6.2. But we also have to have a scalar-flat

Kahler metric on this new non—minimal surface, so we invoke the result of

Kim-Pontecorvo {7, Theorem 5.2] adapted to our situation :
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Theorem 6.4 Let M be a compact non-minimal scalar-flat Kihler surface |

with ¢®(M) # 0. Then the blow-up of M at any collection of points (distinct 1'

or not) admits scalar-flat Kéhler metrics.

Now we have a blown-up ruled surface which is scalar-flat and has no
nontrivial holomorphic vectc . fields. Theorem 6.2 says there is a Kéhler metric

on it with any given positive constant as its scalar curvature, which is more

than we wanted.
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