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Abstract of the Dissertation !

Stochastic Version of
the Selberg Trace Formula

by

Joseph Karl Schaefer )
Doctor of Philosophy

n

Mathematics

State University of New York at Stony Brook

1997

We introduce a stochastic analog of the Selberg Trace For-
mula for compact negatively-curved Riemann surfaces. Motivated f
from natural questions surrounding Gutzwiller’s observations [8] ’i
and Takhtajan’s conjectures regarding the associated Selberg Zeta |
Function, we investigate the “local theory” of this formula. This I‘;
reduces to certain volume computations for noncontractible loops i
over a cylinder. W’

We first identify a special class of cylinders and discover a

Feynman-Kac formula for the relevant volume u(t). Employing

iii




the well-known relationship between the Kortewcg-deVries equa-
tion and the spectral theory of Hill’s equation [13} [14], we construct
volume-preserving deformations of cylinders within this class. The
collection of all such cylinders having identical volumes is shown
to be a torus of (generically) infinite dimension.

Seccond, we employ the so-called Malliavin Calculus to obtain a
general expression for the relevant volume. The equation is mod-
elled on the Feynman-Kac formula of the special case. We extend
the techniques developed by S. Watanabe in [22] and obtain an

asymptotic expansion for p(t) as t — 0; the “one-loop” term of the

series is calculated.,
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Chapter 1 i

Introduction

1.1 Brownian Motion on a Manifold

Let (M, g) be a complete Riemannian manifold. Under ordinary cir-
cumstances, M admits a fundamental solution p € C([0,00) x M x M) to

the probabilist’s diffusion eguation. Locally,

%, )

1 iy 1

W

li p(t, 7, 9)v/3(0) = 3a(0): :x!
(Unless noted otherwise, Einstein’s summation convention is understood.) If f
the Ricei curvature is bounded from below, Yau’s theorem [9] guarantees the

existence and uniqueness of this so-called heat kernel. It enjoys the following

global properties: pi(z,y) = pi(y,z), [y, 2z, y)dV(z) = 1, and it satisfies




the Chapman-Kolmogorov equation:
[ pevpests, ) vl = pus, )
“

(Locally, dV (y) = /g dy.)

The Broumian motion for (M, g) is the observation process on

(P(M), 1) € (C([0,00), M), 1),

where du = dV(x) X du, and p, is the unique probability measure on
P, (M) = {X ¢ C([0,00), M) | Xo & X(0) = =)} determined by its val-

ues on cylindrical sets:

p({ X | X, EX(t) €Uj0<ty < <l }) =

// D1 (T, 1) Prg iy (F1, T2) *+ * Pry—ty 1 (Tt Tn) dV (1) - - - dV (24).
Ul n

It turns out that p({X | £ exists for some ¢ }) = 0, which exhibits
the rather complicated nature of Brownian motion. Nevertheless, u can be
approximated by reasonably well-behaved objects. Using g we can equip
each tangent plane T, M with a centered Gaussian distribution, denoted
e lleslP/2b gy (2mt)dmM/2 We exponentiate this measure to M and define

g as its Radon-Nikodym derivative with respect to dV

exp, (71 W2 du, /2t M) = q,(w, y) dV ().




The following relationship between ¢ and p is well-known [5], [6], [19]

- X, 1) = ,
X 1 Xy et = [ g (o)

{s:} refines {t;}

def Uj, if 8; = 'L’j
o Q1 (mm—la $m) dV(£E|) Tt dV(IBm) W =

M otherwise.

It is useful to view this relationship from another viewpoint [5]. With a
bit of thought, it is not too hard to see that the general term on the right side
can be viewed as the definition of a measure on the space of piecewise geodesic
curves. Developing these broken geodesics via the Levi-Civita connection to
the space of piecewise linear paths in T,,M, Donsker’s version-of the central
limit theorem implies that the measures so-induced converge weakly to the
canonical Wiener measure on C([0,00),T,M). The optimist would hope
that this construction would also define (in the limit) a measure-theoretic
isomorphism between the canonical Wiener process and the Brownian motion
for (M, g) subject to the initial condition that Xy = z. The limiting map,
otherwise called the stochastic development map, was discovered in the early
1970’s by Eels, Elworthy and Malliavin.

If the tangent bundle is trivial, a more direct method is available.

This is the method we will employ throughout the thesis. Supposing that




{4;} form a global orthonormal framing of TM, we define the vector field
S dtA; &y J2(Apr — 37 AZ). Then the solution to the Fisk-Stratonouvitch

Stochastic Differential Equation (SDE)
dY = Ai(Y) o (dw' + o' (Y)dt)

will provide such an isomorphism. Using the Girsanouv-Cameron-Martin
(GCM) theorem [9][10}, we can shuffle the drift term a’dt into the measure
and reduce the requisite SDE to dY = A;(Y) o dw’. Then Brownian motion
on M will be the image of ZdP under Y, where dF is canonical Wiener

measure and

7 = exp / (Y )dut — 1/2 f G (YYdt).

This technique is valid under relatively mild assumptions on the coeflicients;
for our purposes the a;’s are uniformly bounded and the GCM theorem ap-
plies.

A further reduction is possible whenever > a*4; = V. In this case,

we can eliminate the stochastic integral appearing in Z via the It6 formula




and the associativity of o :

/0 ) = f A (11.1)

/A ) o duw’ ——/ d(Ai($)) - du* (1.1.2)

= ¢(Vy) — $(Y¥y) —-/ A2 (1.1.3)

Bssentially this is the theory of the Smoluchowski equation [10] in a geometric
setting. We exploit this technique in the proof of theorem 4.2 to evaluate
appropriate path integrals as iterated integrals without appeal to filtering

theory (see theorem 7).

1.2 Loop Space

We can also consider a similar program on the loop space QF (M) =
C(R/TZ, M), with some notable differences. For 0 <#, <--- <1, <7, the

measure (1) satisfies

wT{X [ Xy elUs}) =

ff pT+t1mtn(~’Bm$1)pt2—t1(331,562)"'
Ul n

v Dty 2 (T, Ty} AV (1) - dV (). (1.1.4)




In particular, note that the map X; — X;,, preserves u(7"), and

UTHET) = /;pT(m,m)dv.(@.

Decomposing £27 into connected components (i.e. free homotopy classes []

of loops in M), we have a stochastic {race formula

S w0 = [ pr(e,z)av (@), (115)
& M
Erample. Let M = R/Z; then the method of images shows that
w(T/2m)({index v = n}) = ™ /T //T.

The Fourier expansion py(z,y) = 3. e " e2E—1v=T) implies 1.1.5 is simply

the Poisson summation formula

Ze—?mz/'l“ — \/TZ&_WHQT.

ne4 nch

In contrast to the Brownian motion for M, isomorphisms between loop
spaces will exist only in exceptional cages. The aforementioned isomorphisms

arising as solutions to certain SDFE’s will not map loops to loops, not even in

approximation. Furthermore, as a subset of the full path space, u(Q") =0




which also complicates matters. To apply the theory of SDE’s to loop spaces
generally requires application of the so-called Malliavin calculus, which we
require in chapter 4. However, in certain special cases we can stick to more
" traditional techniques of probability theory, as seen in chapter 3.

A great deal is known ab-out the behavior of u(7T') on the contractible
loops, so we instead focused attention on the noncontractible loops. We will
also restrict our analysis to surfaces of negative curvature. There are enough
interesting questions even in this setting, and this thesis just ‘scratches the
surface’. We describe here one well-known example. As pointed out by the
physicist Gutzwiller [8], one can observe some striking implications when a
formal stationary phese calculation is performed on an associéted Feynman
integral over the loop space. In the mathematical setting we will employ,
this amounts to calculating the short-time asymptotics of u(t) to first ap-
proximation. In order to explain some of the consequences of Gutzwiller’s

observations, we will use standard terminology from quantum mechanics, but

write the equations in their Wick-rotated form (i.e. replacing t by +/—1¢).
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1.3 Gutzwiller’s semiclassical approximation ;

With M a compact Riemann surface of negative curvature, Gutzwiller

[8] calculated the Wentzel-Kramers-Brillowin semiclassical approximation to x

the partition density (z,%|z,ts) = pi; (%, ) and obtained the zeroth-order

. “:
approximation for ¢ as ¢ — 0 (again labeling a free homotopy class via its y
unique shortest closed geodesic ) %

N2y ()

1
W0 ~ T P X s

Here ¢ = length , £y = primitive length and P = Poincaré return map. Fol-

lowing his lead, by writing the Feynman integral for x(t) and using the trans-

lation invariance of the ‘Lebesgue measure’ Dc , we can formally compute

crary

oS- 1/2 2S00y

u(t) () = / eSO

0 f
fluctuations

— o5 / ¢1/2 500, it
XET, M

where S{c(t)) = 1/2 [3 |é¢(t)|* d¢ is the action of the curve c(t) and &5 is

its Hessian matrix along . While the derivation is purely formal, the final 5




expression makes perfect sense. For simplicity, suppose Y| = 1. Now with
the help of a parallel orthonormal frame along ~y (say the first vector is %)

and letting K (¢) denote the curvature along v, we obiain

/ 8—1./2 525(x)DX
xel M

_ / o= 1/2 [g 3 dtaDm,/ o112 I 4 ()~ K (1 (8) APy,
w(0)=w(t) ' y{0)=y(t;

These Feynman integrals admit two interpretations. As e~/2 [3 3" dtpy,
defines a Brownian motion, by grouping the kinetic terms and the Lebesgue
measure together, the path integrals become mathematically meaningful. In
particular, the first integral can be interpreted as the volume of the homo-
topically trivial loops for the Brownian motion on R/Zy () Z. B‘y the previous
example this equals Lo(y) /2t

The second interpretation is to note that the integrands are Gaussian,

which should mean that

/ e~ 1/2 523(X)DX — ! 1 ’
XCTyM Vdet(~ &) y/det(— & — K)

T ae

where some regularization of the determinants appearing on the right is nec-
essary. The choice which keeps the consistency between the various interpre-

tations is the ¢(—function regularization {dealing with zero-modes appropri-

ately). Using this method, basic facts about Riemann’s zeta function show
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that the first factor is £y(7y)/+/2at, which agrees with the first interpretation.

Hence, the following relation

1
\/det(I — P(y))

= /ﬂ t o112 [3 K(a)y(s) ds w(t)(dy) = ldz w‘
(®) \/det(— 2 — K) |
k

(1.1.6)
!
should hold; i.e. the WKB, path-integral, and field theoretic expressions 5‘

agree. There are now many proofs of this equation; we will give a brief sketch b

of one approach. Denoting the three terms above as WKB, GAUSSIAN, and

DETERMINANT respectively, we write 1.1.6 as
WKB = GAUSSIAN = DETERMINANT.

Sketch. Without loss of generality, we may suppose t = 1. Reecall that the {—
determinant of an unbounded.self-adjoint operator A with a purely discrete I

spectrum {);} is (assuming analytic continuation is possible)

oo

detg(A) déf e_C’(U)’ where C(S) — Z ATS. h

M)
=0

When K (%) is constant, one verifies that ¢(s) & 320, (4n?n® — K)~° has :

¢'(0) = 2log(2sinh(¥55)). As /det(I — P) = 2sinh (Y5}, we have WKB

= DETERMINANT when K(t) < 0 is constant. Also, by the Feynman-Kac ‘
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formula for the harmonic oscillator,

GAUSSIAN = ¢r e/2GE+Ev) _ Y e AV E
==l

6\/—1(/2 1
1 eV"E  2sinh(y=K/2)

Hence WKB=GAUSSIAN=DETERMINANT whenever K(¢) < 0 is con-
stant. For K (t) = Const+ z¢(t), standard techniques of Sturm-Liouville the-
ory [11] and Gaussian processes [16] show that WKB™?(z), GAUSSTAN?(z)
and DETERMINANT%(z) extend to be entire functions of order 1/2 with
the same zeros (the standard argument uses Fredholm determinants) [4];

hence they are equal for all z € C by Hadamard’s theorem. [

Upon close inspection, we observe that none of these arguments make
use of Brownian motion in a nontrivial fashion. On the other hand, Gelfind
and Yaglom [7] suggest such a method for proving that WKB=GAUSSIAN,
which was first introduced by Cameron and Martin in 1945 |2] (albeit for a
different purpose}. With Itd’s formula, we give a simple description of how
it works.

Asume again that ¢t = 1.- Lift K to R and let ¢ solve —K = (¢'}? +
¢". (¢ exists whenever K < 0; we discuss the solvability of the Ricatti

equation in chapter 3.) A direct computation shows that +/det(] — P) =
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2 sinh (2 U);qﬁ(l)). Letting ¢ denote Dirac’s delta-function and taking our cue

from the Cameron-Martin Formula, we write

/ l/Zfo K(s)y?(s) ds (1)(dy)
ﬂl(R)
= /( )eful ¢ () dy()—1/2 rﬁ”(t)yz(t)dt(s(y(l) — y(0)) %
P{R

X elo #OVOIO-1/2 [y o' O Bt gy (0.
By Itd’s formula,

/¢ y(8)dy(t) —1/2f¢t)dy()—t)
— 1/206(0) — $(1)] + 120 ((1) — #(0)2(0)] — 1/2 / A

Since ¢' is periodic, we obtain

f o= 1/2 fy K(s)(s) 4 (1) (dy)
QL E)

— 1/2(3(1)-¢(0) f( )5(y(1) _ y(o))efol ¢ (y(Hdy(H)-1/2 fy qﬁ‘?(t)yz(t)dtdﬂ(y).
P(R

Recognizing the integrand as the Jacobian of the map

y > Y(t) /@5 Yyt

computing the integral above reduces to inverting this map. It is casy to

check that the inverse is given by [7]

Y ylt) = Y(t) + e*® /t e~ (5)Y (s)ds;
0
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hence
GAUSSIAN
= 200 [ 5(y(v)(1) - Y(0) du(Y)
P(R)
= gl/2 (e~ ¢(0))/]P(]R / — ?O-#(M)y + independent of y) dy dpo(Y)

el/2(¢(1)—¢(0))

— = WKB.
1— cpO-#1) det(l — P)

One can view our approach in the thesis as an extension of this method
to obtain an exact expression for u(t). The results are contained in section
4.2. Takhtajan suggests that a further extension might be used to investigate

the analog of 1.1.6 in dimension 2

1 1
\/ () TT, TI2 o 1 — e E0)st) T Jdet(— By + 51— 9))

:/ e~ V/280=) [y WPV (172 fy ANV Dy (] 17)
{4}

Here [ is a known expression involving Barnes’ double-gamma function [12].
For the first equality, see [3] [L5]. What is absent from the licerature is a good
definition of the Gaussian integral above and a proof of the second equality
(typically the Gaussian integral above is defined by this equation). Tn fact,
Takhtajan has suggested that a direct method similar to the Cameron-Martin

technique described by Gelfand and Yaglom might be possible in the region

ot i
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where the product in 1.1.7 converges. This remains a conjecture; we are

content with developing a bit of the “local theory” in this thesis.

When is the semiclassical approximation exact?

Literally speaking, the answer to this question in this context is “never”.
However, Gutzwiller noticed that for surfaces of constant negative curvature
K, the semiclassical approximation is off by a simple factor ¢X*8. (The role
and nature of this quantum correction has not been adequately explained in
the literature. We believe that the methods here paint a reasonable picture

of its origin.) Colloquially, the Gutzwiller approximation

e (1) t
U‘(t)(h’]) ~t—0 "\/HE%EK(’Y)USJ where K('y) — E(},Y_)/; K(’Y(t))d'ﬁ,

is exact for metrics of constant curvature.

It is natural to ask how good this approximation is for general metrics
and whether or not a converse statement holds. Although the Gutzwiller
approgimation is very good for metrics with a certain symmetry property
(see corollary 2 and theorem 4 in chapter 3), for general metrics it is no
better than the zeroth order (semiclassical) approximation. Nevertheless, it

seems plausible that the converse might hold for these metrics as well. Since

the correction term is analytic in #, if it were exact u(¢)(Q2") would depend
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only upon the germ of the metric along 7 (see theorem 4.2) by considering
the full asymptotic series for p(¢) as t — 0. We are not aware of an argument

which completes this observation to prove the converse for the general case.

The converse for the special case is a consequence of corollary 2.




: 14
:
'
S
g
;
i
!
[
i
Chapter 2
Preliminaries ?
\ii‘
il
I
&
2.1 Trace Formula |
Let (M, ds®) be a compact Riemann surface of strictly négative curva- ‘\
L
ik
ture X' < 0. Let F be a fundamental domain for the action of G = m (M) i
on the unversal cover R?. Lifting the metric on M to R?, it is well-known [
!
that the heat kernel p, on M is ohtained from the heat kernel #; on (R?, ds”) J
via the method of images v
plz,y) = > il gF) 8
96 .
where  and % are the lifts of z,y lying in F. J
i
For fixed g € (G define the stabilizer of g by ‘
I'y def {deCG|lgd =g} 2. ‘
16 I
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We take p(g) to be the generator of Ty that satisfies p™ = g for n > 0. Since
P&, §) = Pil9Z, 99) Vg € G,

Selberg computes as follows [20] (here [g] is conjugacy class of g)

/ pi{z, 2)dV(z Zf Di(Z, gZ)dV (Z) (2.2.1)

gER

= Z Z/ (%, g2)dV (%) (2.2.2)
g'€lgl G/Tg
/f”a: £)dV (% —I—ZZ/ De(Z, p"2)dV (Z).

b n=1"Ugcarm 97:
(2.2.3)

def

We observe that F, = UG/(P) ¢F is a fundamental domain for the

action of (p} on R%. Letting {A;} = spec(—Ay), we have the trace formula

ZGAjt!QZ/.ptﬂfde +ZZ/ P&, p"E)dV(T). (2.2.4)
=0

p n=1

Recall that two closed curves on M are freely homotopic if and only
if their lifts to R? define conjugate clements in G (this is independent of all
the necessary choices). This means that precisely the same manipulations
employed in 2.2.1-2.2.3 work for computing the measure of any cylindrical

set 1.1.4. Comparing the resulting expressions, we have

Theorem 1. There is a natural isomorphism between the measure theory of

the loops on (M, ds?) in the free homotopy class defined by [p™] and the loops
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that wind n-times around the cylinder (R%/{p),ds?). Furthermore, letling B
v(p™) denote the unique closed geodesic on M whose free-homotopy class

[v(p™)] corresponds to the conjugacy class [p™], we have

[ 2210 @) = w0 (), (225 L

Notation. Throughout this thesis, v will denote a closed geodesic on M,
£(7) is its length, and #£y(v) its primitive length. In terms of p, we have
&(v(p™)) = £(v(p)).

1t is convenient to choose a covering map specifically tailored to R? /(p).

We use horocyclic coordinates for this purpose. As we do not compare dif-
ferent p’s (and this letter is already overused in this thesis) we will supress

it in the remainder.

2.2 Horocyclic coordinates

Identifying the lift of a closed geodesic v with the z-axis, the metric in

horocyclic coordinates takes the form (cf. [1])
ds? = dz? + Wy % $(0,) = 0;

|

|

j‘
the Gaussian curvature is K = —(¢2 + ¢ye). Such coordinates always exist £
|

when K < 0 and are easily constructed. As the 1-form —dr is harmonic in H'
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any set of geodesic polar coordinates, fix any geodesic on 8% and consider
the family of 1-forms on R? constructed by exponentiating —dr at each point
along the geodesic. One readily verifies that these forms converge locally
uniformly as the point along the geodesic goes to infinity. The limiting 1-
form is harmonic (hence smooth) and corresponds to dz above (of course,
dz = dz + +/—1e?dy is the underlying complex structure). The smoothness
of ¢ is immediate.

Setting ¢(0,y) = 0 fixes a scale for the horocycles {(or spheres at infin-

ity) {z = const.}, and we adopt this convention throughout.

Proposition 1. Every orientation-preserving isometry that preserves the x-

azris is of the form

(miy) = (CC - 111/)(?;))

for some l € R and v a diffeomorphism of R. Furthermore, we can express

Y in terms of ¢:

Y
Y(y) = f e dr.
0

Proof. Any isometry fixing the z-axis fixes the horocycles {z = const} as

well as the vector field A; = &/0z; hence it is determined by its effect on
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any single horocycle. This shows that the isometry is of the stated form

{z,y) = (z —1,9%(y)). As for the expression for 7, note that

dr? + 82¢($—5,¢(“J))¢’(y)2dy2 = dz? + XMW gy = P (y) = e?w)

Let ¢ = e~ and define the vector fields

8 def (9
1 2 a ay, 2B qﬁm A

Then {Ay, A2} form an orthonormal frame and 2B = A? + A2 —~ A. The
Christoffel symbols for the covariant derivative of the Levi-Civita connection
on the tangent bundle are
Tl =Ty? =T =Ty* =0
F122 = F212 = qﬁx
F221 = —Gbmeg('b,rm?' = ¢‘y-

Therefore

Va A1 =0, VaAy=¢ods, Va,As——2B. (2.2.6)
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2.3 Geometric Bounds
Taking [0, £o(y)) x R as fundamental domain, the map

Y
(:c,y) — (.B — Eﬂ(fy),/ €¢(30(7);T)d7-) (2_27)
0

is an tsometry of (B2, dz? + e dy?), and the vector fields A;, Ay, 2B remain
invariant.
Since g = e? is a positive decreasing solution t0 gz -+Kg = 0, g(0,y) =

1, the standard comparison technique leads to the following

0<a? <K< everywhere = 0<a < —¢, < b everywhere.
(2.2.8)
In particular this implies that for any positive ¢ < @, there is a constant A

with g(z,y) < Ae™*®; A is independent of y.

Proposition 2. Let 0 < ¢ < a < /=K < b. Suppose that all covariant
derivatives of K are uniformly bounded with respect to ds®. Then there exist
constants A = A(n, c) such that the following inequelity holds for z > 0,n >
0:

k23

e @) < Aln,o)e (2.2.9)
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Proof. As we have already shown this estimate for n = 0, we will prove it for
general n by induction. Assuming 2.2.9 is true for each n < N, the function

defl I .
G = e“%—N8¢ gatisfies

Gz — 2¢Gy + (¢ + K)G = F,G(0,y) = 0.

It follows from the induction hypothesis (and the uniform bounds for X and
its covariant derivatives) that I is smooth and bounded for z > 0. Suppose

for contradiction that G is unbounded; then (suppressing y)

E¥{2>0:G,/G(z) >0,(a® - A)|GE)| > |F|}

is open and nonempty. Now (z,4) € K implies (z +7,y) € F for every 7 > 0,
and lim, 0 |G(2, ¢)| = oo if F intersects the line y = ¢. Choose y; < ya such
that y; < ¢ < yp implies £ N {(z,c) | z > 0} is nonempty. This means that

Y2

lim | Gz, y) dy| = .

T—3C0
- Y1

Since this contradicts the induction hypothesis, G must be bounded for x >

0. d

Expressing the derivatives of ¢ = ¢™® in terms of e?, we easily obtain

the following corollary.
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Corollary 1. Let ¢ = e™®, 0 < ¢ < a < /=K < b. Suppose that all
covariant derivatives of K are uniformly bounded with respect to ds®. Then
there exist constants B = B{(n, c¢) such that the following inequality holds for

all x > 0,n > 0:

l a'n,
oy™

o(w,y)| < B(n, c)e=rel=ae, (2.2.10)
For f(y) satisfying y = fof W) et g7 we have from 2.2.7

o(w, () (8 [{y) = o(z — £,y). (2.2.11)

Since f'(y) = o(¥, f(y)), the following geometric bounds follow immediately

from the proposition and its corollary.

Theorem 2. Let ¢ = e ¢ and suppose that 0 < a < V=K < b, that all
covariant derivatives of K are uniformly bounded with respect to ds®, and
that 2.2.7 is an isometry. Then there exist constants R(n),r(n) such that
the following inequality holds for all (z,y) € R%,n > 0:

i

|50l < Re™, (2.2.12)
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2.4 Basic Setup I

For convenience of the reader, we collect notations and minimal as- ik

sumptions necessary for the remainder of the thesis.

v  a closed geodesic of M which lifts to the x-axis,

ds* = da* + *dy®  has ¢(0,y) = 0, :
E" ;
K = —¢ue — ¢2  has uniformly bounded covariant derivatives in ds?, l[j
i
L{7) = nly(y) relates length and primitive length of -, ‘;-*3!;
Pl
vl

a = —p(Ly,0) satisfies \/ﬁ — 2sinh %,

o= e“"b,

v
(z,y) — (z — £, / e"”(ﬂ"r)dfr) is an isometry. B
0 i




Chapter 3

Special Case

3.1 Feynman—Kac- formula

In this chapter, we focus attention on the special case'% = 0. We
make no claim that nontrivial examples of such metrics arise from compact
Riemann surfaces. Rather, the results in this section should be viewed as a
detailed investigation of the volume of loop space over cylinders which posess

a special symmetry.

Theorem 3 (Feynman-Kac formula). Fort > 0, the following equation

holds:

GH)2 /2t

pe) ) = 2 sinh(na/2)v/ 27t

Lo(7) 1 :
/ E(e_;/z 5 q(m+3£{'y)+\/5uJ(S))d5) dz (3.3.1)
0

where g = T(¢/2), £o(y) is the length of the primilive geodesic generating 7,

25
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n = £(y)/l(y), and B denotes ezpectation with respect to pinned Brownian

motion w(0) = w(l) = 0.

Proof. Let pi(x1, y1; 2, ¥2) denote the symmetric fundamental solution of the

heat equation on R? generated by
1/2 - the Laplacian for the metric ds? = dz ? + 29 dy 2.

Translations in the y-direction preserve the metric and hence preserve p,. In

fact, the expression
det [
Pel(m1, 32) = / (1, 05 w2, 2)e? ) dz
— 0o

is the (non-symmetric} fundamental solution for the the one-dimensional
Smoluchowski equation [10] uy = Zugg + %’um If f(x) is a smooth bounded

function, this means

1 ’ : U5
Uy = 5 Uas %um, o =f =  ult,zy) = f Pe{m1, 20} f (2) dza.
—o0

However, it is a well-known fact [10] [16] that the fundamental solution for
the Smoluchowski equation can be expressed in terms of pinned Brownian

motion:

wo—x1)% /2%

6_(

351:(371;552) = _\/fvr;t——

g3 ($(51)=0(m2) [ o=t/2 Jo al@rts(@a—mibvius)dsy (3 3 9
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where ¢ o T{¢/2). With these facts, the rest of the proof follows from

straightforward change of variables; with n = £{~)/£(v),

8

n(@) (7)) / / pe(z, vz + £(y), ") e?® dy dz
0

0]

g

9
/ P, 052+ £(7), (™ — 1)y)e?® dy dz
0

—0

£aly
not / / iz, 0; ¢ + £(7), z)e(!’("”) dz dx
e = 0 )

1 £o(7)
- mf f pilz, 0y + £(7y), 2)e?@ 40 47 da,
_ ) -

—

The last line follows from the fact that ¢(z -+ £(v)) + na = é(z). After
substituting 3.3.2 for the z-integration, we can apply this fact once again to

obtain 3.3.1. O

Corollary 2. We have the following bounds, with equality on either side if

and only if ¢ = T(P/2) is constant:

G_B(T)z/gt £0 (ry)

1
@2 gy s
2t QSinh(na/Q)/O € dz > w([vl)
g tv)? /2t £o()

(]} = V2rt  2sinh(na;/2)

OB (3.3.3)

Proof. Both bounds follow from Jensen’s inequality. We argue only the lower
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bound as the proof for the upper bound is similar. We have

£a(7)
—1—- / o I‘E;(ei%fn1 Q(m+s£(7)+vftw(s))d3) di
EO(’}’) 0

> o st Jo RS alokst(y)+huls)) ds) dn.

Since ¢ € C*®(R/£y(v)Z), switching the order of integration gives the lower

bound because

LK)
m/o g(z)dz = -

If the lower bound is attained, we argue that this means fol g{a+sl{y)+

Vtw(s)) ds is independent of (z,w). To this, we apply Sf; 7 in different orders

and obtain

0— fo " 4 500 + i (s)wl(s) ds.

Now taking ¢ ™\, 0, that this equation holds for all w implies first that ¢"(z) =
0; but since g is periodic, this forces ¢'{(z) = 0 as well.

We complete the argument by proving f01 ¢z + sb(y) + tw(s)) ds is
independent of {z,w) whenever the lower bound is achieved. If the lower

bound is attained for g, it is also attained for ¢ — ¢ for any constant c.

In particular, by taking ¢ = ¢mes, We may assume g < 0 without loss of
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generality. Set
gor t !
aw / 4(z+ s6(x) + VEw(s)) ds > 0 (3.3.4)
0
dv d(pinned Brownian motion) x dx/&y{v). (3.3.5)

Since A is continuous, it suffices to prove A is constant ae(r). By considering

the Maclaurin expansion of exp, Holder’s inequality implies

fA"du: (/Ady)”

for every n > 0. In particular, with n = 2 we see that A is constant ae(v),

as desired. M

Another important consequence of the Feynman-Kac formula is that
we can study the invariance and asymptotics of u(t) through the right side
of 3.3.1 and in particular through ¢ (it turns out that the right side depends
on ¢ only through the spectrum of @ == —dﬁw% + g on L*(R/4(v)Z)). To
obtain short-time asymptotics, one replaces the exponential function by its
Maclaurin series and expands ¢ in a Taylor series at z + £(y)s. This reduces
the problem to computing certain moments of the pinned Brownian motion,

the result of which is contained in item (1) of the following theorem.

Theorem 4. Let K(v)=mean value of K along .
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1. ul(t) posesses an asymptotic expansion of the form

eﬁe('}’)z/Zt

= 1+ At + Ast® + ...
2sinh(7:,oz/2)\/27rt( bt At )

() ([])
with Ay = K(7)/8, Ay = K(7)?/128.

2. There 1s a (generically infinite-dimensional) torus of distinct metrics

on the cylinder R2 /{p) with the same p{t)([v"]), for all n,t.

Remark. In particular, item (1) shows that, to order #*, the short-time
asymptotics of p(t) are the same as those of the lower bound in 2 (the third-
order terms differ). In the remainder of this chapter, we focus on the proof of
item (2). We need to introduce the standard notations in the theory of Hill’s
equation, some of which conflict with our current ones. To simplify matters,
throughout the next section we will assume £3(y) = 1 and make no explicit

references to u,; nor to its associated Laplace operator.
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3.2 Hill’s equation and the isospectral flow

Throughout this section, we will use the following conventions:

¢ = ¢(z) € C*(R) S =R/Z
b(y) =1 q=T(¢/2) € C=(5")
T(¢) < ¢ + ¢ K = —T(¢} € C®(S)
of 0
$(0) =0 QE -~ 5 +a
3
a = ¢(z) — ¢(z + 1) is constant Ld:ef—ld—-l-qﬁ““l““q“q

2dx3 dz  dx
Proposition 3. Suppose ¢ € C®(R) satisfics ¢(z) = a+ ¢z +1). Let

g =e"?. Then the following diagram

Ty
ey TR oy

.gl l.g

Cfoo(sl) .0 dz Ooo(sl) LeTow

42
e

commautes.

Proof. Direct computation. ]

Lemma 1. The Ricatti Transform T is injective when viewed as a map
T:{¢€CR)|$(0) =0, ¢(z) = a+ p(z + 1)} — C=(5").

Proof. Suppose T(f) = T(g) and consider h Cfrege C°(SY). Then

h' solves the differential equation (h') = (f' + ¢')h/, and therefore A’ =
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Cexp (f -+ g). Integrating over a period gives C' = 0 and proves the lemma.

[

We need a convenient characterization of the image. The main point
is that ¢ = e?/? satisfies g(z + 1) = e~ %?g(z), ¢" = T(¢/2)g. The spectral

theory of Hill’s equation has much to say about this situation.

3.2.1 The Discriminant A

For g € C(SY), let ¢ = dg/dw, Q € — L5 + ¢, and L L L& 4
gL+ Lg With A € C, consider a complex basis (y1,%) in C®(R,C) for

ker(¢) — A} such that the matrix
o | V1@ A) pafz, A)

Mz, \) &
yi(e,A) a{z, A)

satisfies M(0,A) = I. Notice that this forces det(M(z, A)) = 1. Define the

discriminant A(X\) L M1, 2) =5 (1L, A +25(1, 0.

Lemma 2. y,y2 and A are entire functions of A of order 1/2.

Proof. If 8 denotes the Cauchy-Riemann operator (with repspect to A}, then
QOM = MOM. Since OM (0, A) = 0, by uniqueness we must have M (z, ) =

0. The proof that the order of these functions is 1/2 comes from the Picard

iteration scheme [11] and is omitted.

i
i
I
t
f
113
i

!
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Lemma 3. Fiz a € R. There ezists a solution to Qg = Ag with g(x) =

e*g(z + 1) if and only if A(A) = 2cosha.

Proof. If g is a solution and g(z) = e*g(z + 1), writing g as a linear combina-
tion of 4, and y, and evaluating at z = 0,1 gives det(M(1,A) —e¢™%) =0 &
A(AY = 2cosha. To get the converse, reading this argument in reverse will
produce a g # 0 that solves Qg = Ag with g(1) = ¢%g(0) and ¢'(1) = ¢%¢'(0).
By the periodicity of ¢, e*¢(z + 1) € ker(Q) — A\) and has the same initial

conditions as does g. O

Theorem 5. The solutions of A(X) = 2 form the spectrum of @ acting on

L2(SY). If Ao is the least of these, then

1. X 2 Gin = miﬂogmgl Q(m)

2. A(X) > 2 whenever A < X

3. if A < Ag, then Qg = Ag admits a positive solution.
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Proof. Since fol F(@)Q — Gmin) f(Z) dz is nonnegative and @Q is essentially

self-adjoint on C*°(S1), (1) is immediate. Now
A < Qrmin = 'yl(m, )\) z 1:y2(1) /\) > 1:

thus A(A) > 2. Since the least root of A — 2 ig g, this proves (2).

Suppose A < Ag, then by (2) and 3 we have a basis for ker(@ — A) of
the form (e®® fy(z), e~ f_(z)), where f,, f_ &€ C°(8").

Claim. g = cie® fi(z) + c_e ™ f_(z) is positive for some choice of
Ct, C— iff both fi, f— are root free.

The converse is trivial; to argue the contrapositive, for definiteness say
a > 0, f; has roots, and f_ is positive. (If both had roots, any g would
have roots also by examining fhe asymptotics.) The roots are simple by
uniqueness of solutions for ODE; since f, is periodic, it must have at least
one root where f is negative and another where f{ is positive. But the
Wronskian W of our basis evaluated at a root v of fy is —f{ (r)f_(r). The
existence of these two roots contradicts the fact that W’ = 0; this proves the
claim.

Let S = {A < A | Qg = Ag admits a positive solution }; we have

already seen that (—o0, ¢min] C S, in particular 5 # @. For A, € S we may

assume the positive solution is of the form g = e®f.(z) for f. € C°°(S1)
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with f(1} = 1. Since Ay < Ag, @, 7 0 by (2). The implicit function theorem
allows us to express a = a()) and hence f = f{)) as continuous (in fact
analytic) functions for A near Ag. Because f, has no roots, neither will f())
for A sufficiently close to A.. This proves that S is open; we will now argue
that S U { )¢} is closed.

It is easy to see from this argument that any limit point A of .S must
admit a nonnegative solution g of Qg = Ag with ¢(0) = 1 and g(z) =
eg(x + 1), 2cosha = A(X). If z is a root of g, then g(z) = ¢'(z) = 0, and
by uniqueness of solutions g = 0. As this contradicts the fact that ¢(0) = 1,
we see that ¢ > 0 and S is closed. Therefore S = (—o0, Ag] and the proof of
the theorem is complete.

1

Corollary 3. Fiz o > 0. The map ¢ — T(¢/2) is a diffeomorphism between
{6 € C2(R) | $(0) = 0, $(e) = o+ ¢z + 1)} and

{g € C®(S) | A(0) = 2cosher/2, Ay >0}

Proof. Since [, f - Qf(z)ds = [} (f' = L/ f)2dz > 0 for 0 # f € C=(SY)
and ¢ = T(¢/2), by 1 we need only check that the range of this map is as

advertised. (The smoothness of T' is obvious from its definition; it will follow

from the implicit function theorem -using suitable Sobolev norms- that its
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inverse is smooth as well. We omit the standard argument.)
Suppose Ag(g) > 0. Then by theorem 5 we have a positive solution g =
e?/? satisfying Qg = 0, 9(0) = 1, g{z) = e*/2g(x+1) with A(0) = 2cosh ar/2.

In terms of ¢, this writes as ¢ = T(¢/2) , #(0) =0, ¢(z) =a+¢(z+1). O

Corollary 4. X is a sitmple etgenvalue with a corresponding positive eigen-

function.

Proof. The cone of solutions to Qg = Aqg that are positive on [0, 1] contains
a unique ray of periodic solutions interior to the cone (take oo = (¥ in the
previous corollary.} As any line parallel to the ray must meet this cone, the

line through any periodic solution must contain this ray. ‘ 1

ALR)

\

Figure 3.1: sketch of A — A(X) for a typical ¢ = T'(¢/2)
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Let M = M(q) ¥ {§| Afq) = A(§) } denote the isospectral torus of g.

Let us briefly justify this terminology. {A;} denotes the periodic spectrum of

@, i.c.
{N} LY | Qf = Af admits a periodic solution } = { A | A?(\) —4 =0}

The roots of A(g) — 2 form the spectrum of @ on L2(S'), and
Algg=C [] 1- A
q - l )\J
=03
d4

since A(g) is of order 1/2 (C is determined by A ~ 2cosv/A as A = —o0).
Therefore Aq) = A(§) iff Q and Q have the same spectrum on LZ(SG).

(b, )4 |
~ ’ /J‘\ (1 A 4 ~ (1, AR 4)

N [
Ay Mz ?"U4 A‘Ma hihg Mm %Mm
(1, A )-4) ( us,—\/&(uS)-zl )

Figure 3.2: parametrization of the isospectral torus for above g = T'(¢/2)

'The parametrization of M as in [14], [13] is presented here. Let {u;}

denote the spectrum of the Dirichlet problem for (), i.e.

{15} 0| Qf = uf admits a solution with fl0)=f(1)=0}

={u|y(l,p) =0}
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With a bit of linear algebra, one can show that Ay;_q < fi < Mgy

Moreover, Ap;) = y3(1, ti5) + 1/y5(1, p;) can be solved for g4 = 1/2(A £
A? —4).

The ambiguity in the sign of the radical turns out to play a decisive
role. Borg essentially showed that g > (LA g, 54/ A%(ps) — D)}) with
y5(L, ug) = 1/2(A(y) £5 /A%(iy) — 4) is injective. By fixing the periodic
spectrum {A;}, we get a parametrization of M. Tn [14], [13] the authors prove
that this map is a homeomorphism between M and the torus of figure 3.2.

In particular, M is compact and bounded in every Sobolev norm on C*°(S1).

Geometry of the isospectral torus Q

It is helpful to view A = A(X, ¢) as a family of functionals (=functions
of g) parametrized by A. For any two functionals F' and G, the Poisson-

Gardner bracket is

L SsF o d G
F,G} & "
6 o 0q(x) dz dg(z)

where the variational derivatives are defined by

dax,

jt o F(g+1ig) = /0 %q(w} dz. (3.3.6)




Figure 3.3: d/dx carries N to T
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Among other things, we will show A is a commuting family of Hamiltonians,

whose flow is confined to the isospectral tori M which partition C>°(Sh).

Lemma 4. Let py(x,y) denote the fundamental solution for uw, = —Qu on

LYR). With L 18 144 4 4 qondney,

32

_Q%M(m:z +n) = Lpy(x,z +n)

Proof. Define

P(@,%) — g, n=0,

m(z,z +n), otherwise.

(3.3.7)
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It suffices to check the equation for f,(¢). Note that f,(t,2) — 0 as t — 0;
hence, after applying the Laplace transform to both sides and integrating by
parts, we need to verify that following equation is true for all n:

d
2/\5%(:19, T +n) = Lgy(z,z +n).

Here gy is the Green’s function for @ — A, the standard construction of
which shows that gx(z, 2 -+ n) is a quadratic polynomial in ¥, (\), y2()). Tt is
straightforward to check the following

Fact.

d
[L — ZAEE] (cry1yn + Ciatits + Caayaya) = 0. (3.3.8)

£l

3.2.2 Some calculus

Eixtend the pinned Brownian motion to C(R) by declaring w(s) to be
periodic. Now observe that the map w — w(- + ¢) — w(e) is a measure-
theoretic isomorphism for all values of o. (This is easily checked by comput-

ing the covariance C(s,t) = (1 —t)s,0 < s < £ < 1.) Hence

E(e-'r fol g(z+ns+/Tw(s)) ds) — E(e~'r fol g(e+ns+v7lw(sto)—wie)]) dS) (339)
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Proposition 4.
-1
] / E(eﬁq- JFOI g{z+ns+/Tw(s)) ds) do = —TE(eiT fol g(z4nst/Tw(s)) d.s)
og(z) Jo
Proof.
Ll L HS( ) = (3.3.10)
T dt |, = h

= E(/Dl fol §(z + no + VTw(o)) do e alEtastvioids goy (33 11)
= I( /0 1 /0 1 4@ + 10 1 V/Tw(o))e TR AT d g 45y (3.3.12)
— /1 /Ald(g;)]E(e'r fy q(m+n(s~0)+\/?[w(s)—w{cr)])dS) dz do. (3.3.13)

0 v
(3.3.14)

Since the integrand in the exponential is periodic in 5, we may change s to

s+ o without affecting the result. The proposition follows immediately from

3.3.6, 3.3.9. -
The following proposition is from [13].
Proposition 5.
= a1, A) — w1, Nz, Nyalz, A) +
— (L Ny (2, A) +2(1, Nyi(z, A) (3.3.15)

This is precisely ya(1, A) computed for the function q(- + z) .
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Remark. *5) lies in the kernel of L — 2)d/d by 3.2.1.
PI‘OpOSitiOI’l 6. Let Fn (T, q) d:cf ]E(e*'r fgl a{ztns+/Tw(s)) ds).
{Fm(0), ()} = 0 (3.3.16)
{A(A), A}t =0 (3.3.17)
{Fu(r), AN} =0 (3.3.18)

Proof. The relevant variational derivatives are smooth periodic functions,
and I, = —%% +q % + % g is skew-symmetric on C*(S!). We exploit this
fact now.

Now {Fn(o), F,(7)} is proportional to foi Jmloy )L ful7,2) do (see

3.3.7). This expression is 0 if 7 = 0 or ¢ = 0, and otherwise satisfies

i [ d L 0fmdfs . O
a“f Jalo + ey gphn(rte) do= | S~ g e do
Lo, 8,
") doan 't mngrags &
1
- f Lfs fa+ I Lfs do by 337
0

= 0 by the skew-symmetry of L.
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Taking € \, — min(c, 7) proves 3.3.16.
2{A(A), Aw)} = 2 01 (;‘28)) %iﬁ((;) dx
'
- e e
[ -
= —2M{A(p), AN}
= 20{A(), A}
Hence {A()), A(z)} = 0 and 3.3.17 is verified. Similar methods show
diifol fs?((:j)) —;—mfn('r +€) dz = —% /01 %%(%l Lfa(T +‘e) dz
- /0 1 ‘;j‘(%% o+ 6) do.
Taking € \, —7 proves 3.3.18. O

Theorem 6 (McKean-Trubowitz). The Hamiltonian vector field

d SA(N)
dx 6q(z)

induces a smooth flow in C°(S*); this flow preserves M.

Corollary 5 (McKean-Trubowitz). The (ron-Hamiltonian) vector field

g LA

dz 6q(z) |\,
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induces a smooth flow in C(SY); this flow preserves M. Under this Jlow,
Wy satisfies

d VA ;) — 4 for i = 7,

Zlat) =

0 otherwise .
Remark. Note that the vector field is not a symplectic gradient since iy

depends on ¢. Explicitly,

OApy) _ OA | 04
da(z) — dq(z)|, = OA dqla)

We deduce that Bexp[—7 [ ¢(z + ns -+ v/7w(s))] ds) is constant on

3.3 Proof of theorem 4

We can now complete the proof of theorem 4. Fix ¢, and compute
g = T(¢/2), Alg). Since we have characterized both the range of 7' and
the isospectral manifold M{g) in terms of A, we conclude that M lies in the

image of T and every point in the preimage of M equips every loop space

over the cylinder with the same total volume.
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3.4 Zeta function_

We conclude this chapter with some remarks on an associated (Selberg-
type) local zeta function. To simplify the formulas, we fix ¢, « as above and
suppose £y(y) = £(y) = 1.

For ®A < X put v(3) ¥ 1/2(A(N) — \/A7(N) Z4) < 1 and define

0]

2 E 1 - w(n)eetri,
k=0

Then 2’/ Z is the Laplace transform of > om0 O[],

Proof.
2 dr & ekt 3.3.19
Z dx = 1- ve—a(k+1/2) (3.3.19)
dv o
_ d_]/ Z Z Vneﬂa(n+1)(’0+1/2) (33-20)
k=0 n=0
_ g_; Z yn—t Z e—an(k—l-l/z) (3321)
n=1 k=0
du 0 yn—le—anf2
=D T (8322
n=1
00 ~1
o dv
_ v o (3.3.23
;2Sinhna/2d)\ ( )

The n-th summand is the Laplace transform of u(t)([y"]); for details see

[18]. O




Chapter 4

General Case

In this chapter we develop the general formula for u(¢)([y]) from the
viewpoint acquired in the previous chapter. Namely, we seek an expression
of the form

NP2 plon)

p(@) ([ = 7t o E(F (vt z,w")) du

where once again [ denotes expectation with respect to pinned Brownian
motion. As in the special case, we expect, F' to be adapted, smooth in (w!, z),
and it should result from integrating out the w? dependence. Our goal in
this chapter is to obtain an explicit representation for . In preparation, we

construct a ‘pathwise’ solution to the SDE dY;(w?) = o (-, Yi{w?))dw?.

46
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4.1 Pathwise solution

Theorem 7. Let K, denote expectation with respect to the canonical Wiener

2

rocess w?, with w? independent of w'. For every z wt, there exists a
p i 3 ’

unique strong solution ¥ C-l—ifY(t,x, y, wl,w?) to the SDE
dYy =o(z + l+w, Yi)duw], Y=y (4.4.1)
on (W, PQ,,B;) which has the following additional properties:

1. For fed z,y, Y : [0,1] x Wi x Wy — R is B(R) x BOW,) x B(W;)
measurable and adapted to B, x B,. The overbar denotes the completion

with respect to P, x Py.

2. I |10, lwt|] < r, then
B (p Y:(6,1,0) = (o, w0)P) < K0 +6) — (! + )]
Jor constants A, B, K depending only on o.

8. 1= Y s a uniformly bounded continuous curve in L*(P; x P,).

4. Y 1 [0,1] x Wi x Wy — R is the strong solution of the SDE 4.4.1 on

B, x By, P x P;.

5. Ba({y = Yalz,y, w',w?) is a diffeomorphism ¥t < 1}) = 1.
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6. (z,y,w') = Yy(a,y,w',-) € C°(R2 x W, D®(W)) is uniformly nonde-

generate.

Proof. On the space of progressively measurable functions F : [0,1] x Wy X

Wo = R, set

def .
17l (8 = sup (Ex(sup F7)'2. (4.4.2)
[l (| < <5<t

We will construct ¥ using the Picard method on W;. The key estimate,

acquired from Doob’s martingale theory and Itd’s formula, is the following

t
Z(F), =/ o(x + wk, F)dw? —
0

70 = ZG)I0) < asuploy(wa)l [ 17 =Gl ds (443)

(This is also a trivial application of Burkholder’s inequality with p = 2.)

Upon iteration, with M = 4sup, .y |oy (2, y)|?
M
n!

1Z(F) = T(@)I7 () <

I - a2, (4.4.4)

This shows that for fixed w!, the Picard iteration scheme Y™ on W, starting

with ¥! = y is a Cauchy sequence in every || - ||,. Let

E = {(w'w?) | Y*(w!, w?) converges uniformly on [0,1]}

—
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and define

of llmﬂ—>00 Y;ﬁn (wh wQ): (w1> ,w2) el
iﬁ(unaﬂa)::

0, ~ otherwise.

From 4.4.4, the Borel-Cantelli theorem shows that Py(E(w!,+)) = 1 for every
w! € W, and hence F has full measure on the product by the Fubini theorem.
As the interates constructed above constitute a version of the usual Picard
iterates on Wi X Wa, Y constitutes a strong solution [9] to the SDE 4.4.1 as
viewed on either W, with w' fixed, or on the full product Wy x W,

From our geometric bounds of chapter 1, it follows that there exist
positive constants satisfying me™ < o,(x + £,y) < Mef®, Observe that by

applying Burkholder’s inequality once again, we get the following estimate

T, (sup |Ya(v') — Yi(w")H)V? < Kt eﬂinrwwc(!lvl(s)ll,\iwlII)”fU1 —w'|| +

0<s<t

Ml/z(f (sup [¥,(v") = Yy(w")[2) ds) 2 (4.45)

0<s<t

Squaring both sides and using (a + 5)? < 2(a® + %) , Gronwall’s inequality

implies that for 0 < ¢ <1

Ez( SUp ‘Yg('b'l) _ Ys(wl)|2) < 2K2H’b'1 _ ,w‘J.HzezAma,x(Hul\|,\|w1||)+2M1;_ (4.4.6)

0<s<t

In particular, ¥ : [0,1] x Wy - L?*(W,, P,) is continuous with at worst
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exponential growth in w!. By Fernique’s theorem, we conclude that

By By ( sup ¥7) < oc. (4.4.7)

0<t<1
As o0y is uniformly bounded, we may appeal to the unigueness theorem for
strong solutions of SDE’s with Lipschitz coeffecients to see that any other
solution must agree in probability with ¥ at first on {{|w*|] < r} and then
a.e. by taking r — oo. We have now established (1)-(4) completely.

As to the remaining items, (5) is a restatement of the diffeomorphism
theorem in this setting [9]. That Yi(y,w') € D®°(W,) is a well-known (see
22],[21]) consequence of the uniform bounds on the derivatives of o in any
strip {|z| < r}. That this map is C* is an immediate consequence of the ap-
proximation theorem for solutions to SDE’s, together with (2). The standard
method of variation of parameters shows that the derivatives, if they existed,
would constitute solutions to linear SDE’s. The coeflicients are of lower order
and satisfy uniform Lipschitz estimates in a neighborhood of y, w?.

For induction, we assume that this is so for directional derivatives of
order < n. Let F be an n-th order derivative, and formally differentiate
the SDE satisfied by F' to obtain G. The approximation theorem [9] says

that the polygonal approximations to SDE’s with Lipschitz coeffecients will

converge to the solution in every ||+ ||, norm. The polygonal approximations
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Fy to F are easily seen to be differentiable, and their derivatives constitute
polygonal approximations to . Now F,, —+ F and 6F, — @ implies F is
differentiable with derivative G, whenever the F,’s are uniformly Lipschitz.
"The induction hypothesis shows that this is precisely the sitation. Together

with the standard estimate (again via Gronwall’s inequality) [17]

Ez( sup [Y,(y1, w") — Y;(ye, wh)|?) < const - [y — ya?,
0<s<t

(2) shows that the induction hypothesis is satisfied for n = 0.

[t remains to prove the uniform nondegencracy of Y;. Suppressing for

the moment v, w!, recall that the derivative DY, : W, —+ H satisfies

77— lim Yi(w -+ ah) — Yi{w)

a—0 a

= (DY}, hY Vh € H.

Letting =7 denote this directional derivative of ¥, with respect to h, we can

write down as SDE for =
A2} = o, Bldw? + ohdt. (4.4.8)
Since Zf = 0, by uniqueness of solutions we must have

%
[ t .
EQ:/ efsa'ydw2—1f2£o‘§d1'o_hds
0

1
:/ h(s) Xqegy oel W 2L g5 (4.4.9)
0
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Hence, as an element of H the gradient of ¥; should be given by the curve
ruin(s,t) + t
DY,(s) = / o exp (f oydw? — 1/2[ oadu)dr, (4.4.10)
0 3 -8

and in fact it is so. The proof again employs the polygonal approximations
[21]; the key difference between the argument above and the argument needed
to complete the induction step here is that no Lipschitz estimate is possible.
Indeed, Y; is not even continuous in w;. One instead needs to prove exactly
that the gradient D (or equivalently the so-called number operator) is closed.
For full details, see e.g.[21].

The Malliavin covariance matrix is easily computed to be

4
¢, ¥ (DY, DY)y, ;f PPl vt f oyt (4.4.11)

0

To check nondegeneracy, recall from the geometric bounds of chapter 2 that

o, and ¢ are bounded uniformly whenever z lies in a bounded set. Therefore
B ((Cy)7?) < RPPerell, (4.4.12)

for some geometric constants r, R. This expression is Pj-integrable by Fer-

nique’s theorem. U

4
B
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By judicious placement of € in the theorem and its proof, we can simi-

larly construct the solution Y¢ to the equation

Y 14
Yi(z, y,w', w?) = f e dr 4 / oz + sl + ewy, e¥) dw?.  (4.4.13)
0 0

Corollary 6. For ¢ € R, define Y€ as the solution to 4.4.18 constructed via
Picard iteration as in theorem 7. In addition o the conclusions of theorem

7, we also have
1L oe Yi(z,y,w') € C°R;D®) Vt,z,y,w'.
2. Y is nondegenerate in the sense of 4.4.12 uniformly on |e| < R.
3. P({Y (9, w', w?) = =Y (z, —y, ~w!, —w?) Vil = 1.
Proof.

t
Cf = (DY, DY)y = f o2eels oviw=<t [l ofdt g
v

4.2 Formula for F(e, z,w!)

Let § be Dirac’s delta function on R, define Y/ as in corollary 6 and

put

. 1 1
Xi(z,wh) = 2 + 0 + ew}, V= "2‘(%:.; + 00,,) + Z(qbg +02).
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Main Theorem. Define I < C*®(R xR x W) by
Fle,z,w") ‘Ef/m eﬁb(f?,ey)/?]@z(ed& oy (X5,e¥E)dwl— 5 [} VIXSX s 50y YEY) dy.
(4.4.14)

Then we have

et /2t plo(v)

v 2t 0

ut) () = E(F(V1,z,w")) dx.
Moreover, B(F(¢,z)) = B(F(—¢,z)) and I(F(e, z)) posesses an asymptotic

2

expansion in € as ¢ — 0. Erplicitly

2 64

It a(e)g @+ o)

B(F(c,@)) ~ 2sinh(na/2 4!

where the a;’s are expressible as certain integrals of the germ of o along the

z-azis. In particular,

1 1
a1(z) = ¢y + 01/ o?(zx + £, 0)ds + 02/ ooy(z + £s,0)ds +
0 0
1

1
+ c3 / ol(z + £s,0)ds + 04/ ooy (2 + £5,0)ds, (4.4.15)
Jo 0

and constants ¢; are given by

2
1. Cozig—y+%+‘fg—§:'ﬁ

g2
2. ¢ = m@@% + ¢yy)
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8 ¢y = (Ti%)i(g,%ew — By + (3¢, — 1)e? + 24y, -+ 1)

o2
4=+

5. c4 = gy (€® —6e? +1)
Here ¢ and its derivatives are evaluated at (£,0).

Proof. First we will assume %’%a is bounded for each n > 0. Now the
Brownian motion on (R?, dz? + e?dy?) is the image of dP; x dP, under the

solution (p(w!, w?), p{w!,w?)) of the SDE

i
dyy = dwi’ + 5%(&; ) dt
(4.4.16)

1 .
dye = o (x, i) [dw; + E%(Zﬂn ne)dt].
Equivalently, by the Girsanov-Cameron-Martin theorem, it is the image of

ZdP, x dP, under the solution of the SDE

dXt = d'wtl
(4.4.17)
dY; = o(X,, Y;)dw?.

where

t i
% = expl1/2 / bo( X, ¥,)dwl +1/2 / 0y (X o, Vi)duo?
0 ) i]

—1/8 /Dt $2(X,,Y.) + 02(X,, Ys) ds].  (4.4.18)




Once again, we can rewrite this using Itd ’s formula to obtain

£
Zt:exp(;—[qﬁ(Xt,Y;) (Ko, Yo)] + / 0y (X,, V) du?
0

1 t
;5/0 V(X,,Y)ds). (4.4.19)

'To solve 4.4.17, we may take X; = z + w} and Y, as constructed in
theorem 7; thus Z, admits a “pathwise” version {with respect to w!) just
as Y; does. Therefore, the heat kernel 7 for (R?, dz® + ¢*%dy?) admits the

following representation:

Be(1, 913 T2, Y)Y = By (8(1 — 33 + ) B [Z0(Yi (1, 1, ", w®) — 1))
(4.4.20)
We wish to compute [% pi(z, [f e? &7 dr; 2+, y)e?@ ¥idy, Rescaling
by y v ey gives
foo Pe(z, /ﬂy e’ dr m 1 0, et N gy —
[ B - iz, VIS e [ it w) i)y

o0 0

(4.4.21)

Now the standard scaling techniques [22] with ¢ == ¢? allow us to rewrite this
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as

o0 Y
/ De2 (m,/ eMEN gz 4 £, y)ef vl gy —
0

—00

/ By (0(€ — ewy) B[ 21 (X<, Y EJ3(Yy (x, / e, w?) — )} dy

—o0 0
(4.4.22)
where X°, Y¢ are as defined above. This leads directly to 4.4.14; the usual

large deviation estimates justify the fact that the Taylor series for F' may
be integrated over w! to obtain the short-time asymptotic expansion for
i. The remaining statements of the theorem follow naturally, save for the
computation of ay.

We can dispense with the unnecessary boundedness assumption on

o

g by using the geometric bounds of chapter 2. The suspect point in the

argument above is the application of the Girsanov-Cameron-Martin theorem;
however by restricting attention to sample paths of the Brownian motion for
(R?, ds*) which remain in a strip {|z| < r}, the theorem applies as above.
Since every Borel set in ([0, 00), R?) can be written as the union of sets
of this form (we have implicitly used Yau’s result here), the boundedness
assumption is superfluous.

The calculation of a; is based on the integration-by-parts formulas

standard in the Malliavin calculus. As the calculation is rather involved, we
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provide only a recipe for producing a;. First we obtain the following formulas

for the derivatives of Y€ at ¢ = (-

Y, = e#é0y 4 fot odu? (4.4.23)
%};/ = ¢, (¢, o)eﬂbfﬂ"”%2 + /0 t[amw; + 0, Yy lduw?, (4.4.24)
and
O = e, 0) + 68, 0RO L
¢
+ /0. [0ws(wi)? + 20,0,wY, + oy (Ye)? + 201,%] dw?. (4.4.25)
Next, we compute derivatives of Z at ¢ = 0
7, = (HE0)/2 (4.4.26)
532; = [%(53 O)y + fﬂt a,dw?]e? @02, (4.4.27)
and
a;gt = {(%(5’ 9y 4 /Ot oydw)* + %’%2 +

t t
+2 f [Coyw! + oy Ys]dw? — / Vids|e?®0/2 (4.4,28)
0 0

Finally, let D, F' denote the derivative of F in the direction of f, ods €

H (H is the Cameron-Martin subspace of W;). Let D; denote it’s adjoint




with respect to the Wiener measure P,. Integrating by parts, we have for

c=10

B[P 2 5(¥; — )] -

e R N CRED

The usefulness of this equation comes from writing F%% as a polynomial
in y. If we integrate over y first, this effectively kills the constant term (this

eliminates roughly 20 terms!) and puts y = (1 — e#&0)-1 fol odw?. A long

calculation using these facts will produce the desired expression for a;. U
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Common Notation

Brownian MoTioN

Wi = ({w; € C([0,00),R) | wo = 0}, B, Py(dw*),E;)  Wiener process

Wa = ({wy € C([0,00),R) | wo = 0}, By, Pa(dw?),Eq)  is independent of Wy
E(F{w)) = B (F(w) | ﬁ:l =0) expectation w.r.t. pinned Brownian motion

/0 t as(w)dw, Itd integral of noﬁa,nticipa,ting a with Py ({ /(; t a?(’éﬁ)ds <oo})=1
/0 t as(w)odws Fisk-Stratonovitch integral for semimartingale

P(M) &f C'([0,00), M) path space

P, (M) = { X € C([0,00), M) | Xo % X(0) = 2}

QM) = C(R/tZ,M) loop space

i a measure on path space

p(t) a measure ol loop space
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SURFACE GEOMETRY

(M,ds?)  compact Riemann surface with metric ds?

v  closed geodesic of M

¢ fundamental group of M
p  primitive element of G

K Gaussian curvature of ds®
V  Levi Civita connection
ds? = dz? + e*Pdy?

2,49 length, primitive length

= *"Qb(ﬂﬂao)

-9

g=¢&




HItL’s Equarron

T(8) = -+ 4

K =-T(¢)
=T(¢/2)
d2
Q:_Eg+q
I 14 d d
T Tgdm Tl T
o= —¢(1)

Y1,¥2  basis for ker(@ — A) in C°(R)
M(A) Monodromy matrix for () — A

AAy=tr M(X) = g (1) + 95(1)  the discziminant

v eigenvalue of M(A)

66




67

Maruiavin CarcuLus (following Watanabe [22])

H=({hewW| /0 1(%?% < 0o}, (b, k)p = /0 1 hdt) Cameron-Martin space
— ¢ the Ornstein-Uhlenbeck operator on L2(Wa, )

1F |p,s = E1(]|(1 + #)5/217“2) 1r whete F1 W — € = auxiliary Hilbert space
Dyp,s(€) = {F | || Fllp,s < 00}

D=(&) = ([ Pps(€)

p>l s

DF  for F € D™ satisfies | F(w + k) — F(w) = (DF, kYpi|lpo = of||llz¢)
D*  the adjoint of D : D®(£) > D®(£ @ M)

# = D*D

DyF = (DF,h)y

1
DF = j hdw, — DyF (€ =R)
0

[Dh, Dm = .(h, k‘)fH




