
Semiconjugacies between Kleinian Group Actionson the Riemann SphereErica KlarreichAbstractWe consider the problem of characterizing topologically the action of a Kleinian group onthe Riemann sphere Ĉ. We prove that certain geometrically in�nite Kleinian group actions onĈ can be obtained from geometrically �nite ones by a semiconjugacy that is determined by theend invariants of the geometrically in�nite group. This turns out to be related to the problem ofcontinuous extensions of maps of hyperbolic 3-space H3 to maps of its boundary at in�nity, Ĉ.Along the way we consider the general problem of extending maps to the boundary at in�nityin Gromov-hyperbolic metric spaces. We give criteria for extending to the boundary a maph : X ! Y between hyperbolic spaces if it extends to the boundary of certain subsets of X .1 Introduction1.1 Kleinian GroupsIf � is a Kleinian group (a discrete group of orientation-preserving isometries ofH3), then theaction of � extends naturally to an action by conformal homeomorphisms (M�obius transformations)on the boundary at in�nity Ĉ of H3. A fundamental problem is to understand the topology of thisaction and its interplay with the geometry of the hyperbolic manifold (or orbifold) H3=�.The Kleinian groups for which this interplay is best understood are the geometrically �nitegroups without parabolics (also known as convex cocompact groups); for these groups, each end ofthe quotient manifold corresponds to a collection of components of the domain of discontinuity inĈ, which are shu�ed by the group action. Moreover, the limit set of such a group is naturallyhomeomorphic to the Gromov boundary of the group (see [8, 18]), a purely group-theoreticalstructure. If a Kleinian group � is not geometrically �nite, we may try to model its action onĈ by the action of an isomorphic geometrically �nite group �0, via a semiconjugacy (that is, acontinuous map from Ĉ to Ĉ that is equivariant with respect to the actions of �0 and � and agiven isomorphism i : �0 ! �). Thurston has conjectured (see [1]):Conjecture If � is a �nitely generated Kleinian group then there exists an isomorphic geometrically�nite Kleinian group �0 and a semiconjugacy from the action of �0 on Ĉ to the action of � on Ĉ.We will prove this conjecture in a special case, and show that the identi�cations that thesemiconjugacy makes on Ĉ are completely determined by the end invariants of the quotient manifoldH3=�, which are all either Riemann surfaces or geodesic laminations called ending laminations (see[4, 30]). This proposed model for the topology of the action has been shown by Cannon andThurston to be correct when the quotient manifold is the in�nite cyclic cover of a compact surface1



bundle that �bers over the circle (see [12]), and more generally by Minsky ([24]) for any surfacegroup whose quotient manifold admits a uniform lower bound on injectivity radius. We will applyMinsky's theorem to certain subgroups of � to obtain maps from portions of Ĉ to Ĉ that piecetogether to provide the desired semiconjugacy.In this paper we will study �nitely generated torsion-free Kleinian groups that satisfy thefollowing two conditions:C1. � is freely indecomposable; that is, � cannot be written as a non-trivial free product.C2. There is a uniform lower bound on the injectivity radius at every point of H3=�.If � satis�es C1 then Bonahon has shown that � is topologically tame, that is, H3=� is theinterior of a compact manifold (see [4]). By Thurston's geometrization theorem (see [26, 22])there exists a geometrically �nite group �0 such that the quotient manifolds H3=�0 and H3=� arehomeomorphic. It is this group �0 that we use to model the action of � on Ĉ. We will show thefollowing:Theorem A Let �0 and � be �nitely generated, torsion-free Kleinian groups with homeomorphicquotients, that satisfy C1 and C2 and such that �0 is geometrically �nite. Then there exists ahomeomorphism g : H3=�0 ! H3=� in the same homotopy class as the given homeomorphism,whose lift ~g : H3 ! H3 to the universal covers extends to a continuous, surjective map ~g : Ĉ! Ĉthat semiconjugates the action of �0 to the action of �.When we assume that � satis�es C2, the geometrically �nite group �0 given by Thurston'sgeometrization theorem is in fact convex cocompact, so that � may be regarded as a hyperbolicgroup in the sense of Gromov. Let @� denote the Gromov boundary of �, and let �� � Ĉ denotethe limit set of �. An immediate consequence of Theorem A isCorollary Let � be a �nitely generated torsion-free Kleinian group that satis�es C1 and C2. Thenthere is a continuous, surjective map @�! �� that is equivariant with respect to the action of �.If �0 is as in Theorem A then the components of the domain of discontinuity 
 of �0 aretopological disks. If 
� is a component of 
 that corresponds to a degenerate end of H3=�, then
� can be equipped with a lamination ~�� that is a lift of the corresponding ending lamination ofH3=�. The semiconjugacy constructed in Theorem A identi�es points in the following way:Theorem B Let ~g : Ĉ ! Ĉ be the map constructed in Theorem A. If x and y are in Ĉ then~g(x) = ~g(y) i� for some 
�, x and y lie on the closure of some leaf or complementary componentof ~��.A similar construction appears in holomorphic dynamics; certain �lled Julia sets may be ob-tained from the unit disk by collapsing along the leaves of a lamination (see e.g. [13]).If i : �0 ! � is the isomorphism determined by the homeomorphism between H3=�0 and H3=�2



then any semiconjugacy with respect to i must agree with the semiconjugacy of Theorem A on thelimit set of �0. Thus, when � satis�es C1 and C2, Theorems A and B give an alternate descriptionof the ending laminations of H3=�: they are the laminations determined by the identi�cations anysemiconjugacy from �0 to � makes on the limit set of �0. This point of view is di�erent from thatof the original de�nition of ending laminations by Thurston, which relies heavily on the internalgeometry of the quotient 3-manifold H3=�.The main strategy in constructing the semiconjugacy ~g is as follows: in our setting, if 
� isa component of the domain of discontinuity of �0 then the closure of 
� in Ĉ is the boundaryat in�nity of a topological half-space H� in H3; the half-spaces H� are the components of thecomplement of the convex hull (in H3) of the limit set of �0. Using Minsky's theorem, for eachset H� we can construct a map ~g� : H� ! H3 that extends continuously to the boundary andidenti�es points according to the ending lamination of 
� (if it has one). We piece these mapstogether by \�lling in" on the convex hull, to obtain a map ~g : H3 ! H3 de�ned on all of H3. Themap ~g extends continuously to the boundary of each half-space H�. However, the typical pointin the limit set of �0 will in general not lie on the boundary of a set H�, but rather will be anaccumulation point of some sequence of the sets H�; in fact, the Hausdor� dimension of the limitset of �0 is strictly greater than the Hausdor� dimension of the portion of the limit set that liesin the boundary of the sets H� (see [7]). The problem then is to control the map at those pointswhere the half-spaces accumulate.1.2 The general extension problem in hyperbolic spacesGiven a map h : X ! Y between Gromov hyperbolic spaces, we can ask what is a su�cientcondition for h to extend continuously to a map from the boundary at in�nity @1X of X to theboundary at in�nity @1Y of Y (see Section 3 for de�nitions). One such su�cient condition is thath is a quasi-isometry (see [18]); but it is certainly not a necessary condition. In this paper wegive a more general condition, motivated by the picture in the Kleinian groups setting. A di�erentsu�cient condition is given by Mitra in [25].The proof that the map ~g : H3 ! H3 constructed in the Kleinian groups problem extendsto the boundary uses only coarse properties of hyperbolic space, and can be generalized to thesetting of Gromov hyperbolic spaces. Consider a pair (�; fS�g) where � is a proper, geodesicGromov-hyperbolic space and fS�g is a collection of closed, disjoint, path-connected subsets of �.If we have a map h from � to another hyperbolic space whose restriction to each set S� extendscontinuously to the boundary, we may ask whether the map extends continuously to all of @1�.To ensure that such a map will extend to the boundary we must mimic some of the regularity thatthe Kleinian group actions on H3 give to the geometry and arrangement of the collections fH�gand f~g(H�)g in H3. We will consider the following conditions, each of which holds in the Kleinian3



groups setting:(�1) The complement C of the sets S� is open and path connected.(�2) There is some real number q � 0 for which the sets S� are all q-quasiconvex.(�3) There exists a real number c > 0 such that d(S�; S�) > c for all � and �.It is useful to consider the space E� obtained from � by identifying each set S� to a point;after Farb ([15]), we will call this space the electric space of �. The metric on � induces an electricmetric on E�. We will show that the space E�, although generally not a proper metric space, ishyperbolic in the sense of Gromov; thus, it can be equipped with a natural boundary at in�nity.We will show that the boundary of E� can be identi�ed with the subset of @1� consisting of thosepoints that do not lie on the boundary of any of the sets S�.If h : X ! Y is a map between proper, geodesic Gromov-hyperbolic spaces and there is acollection of subsets H� of X such that the pairs (X; fH�g) and (Y; fh(H�)g) satisfy (�1) � (�3),then h induces a map hE : EX ! EY on the electric spaces. If hE is a quasi-isometry (which wecan arrange to be true in the Kleinian groups setting) then it will extend continuously to a mapfrom @1EX ! @1EY (see e.g. [17]); this will give us information about the extendibility of h atthose points of @1X that do not lie on the boundary of any set H�. This will enable us to show:Theorem C Let X and Y be proper, geodesic Gromov-hyperbolic spaces, fH�g a collection ofclosed, disjoint path-connected subsets of X, and h : X ! Y a quasi-Lipschitz map such that forevery H�, hjH� extends continuously to a continuous map h : @1H� ! @1Y . If (X; fH�g) and(Y; fh(H�)g) satisfy (�1) � (�3) and the induced map hE : EX ! EY is a quasi-isometry then hextends continuously to a continuous map h : @1X ! @1Y .(Note that in this context, where maps are not usually assumed to be continuous, we say thata map f : X ! Y extends continuously to a map from @1X to @1Y if for every � 2 @1X, if (xn)is a sequence in X that converges to �, then f(xn) converges to a point � 2 @1Y that is uniquelydetermined by �.)Since hE : EX ! EY is a quasi-isometry its extension to the boundary is in fact injective (see[18]). This leads to the following result about where h can be non-injective, which will be used toprove Theorem B:Theorem D Let h : @1X ! @1Y be the extension map constructed in Theorem C. If � and � arepoints in @1X such that h(�) = h(�) then for some � and �, � 2 @1H� and � 2 @1H�.If we make the stronger assumption that hE : EX ! EY is a bi-Lipschitz homeomorphism (thisis true in the Kleinian groups setting) then we can say the following about the identi�cations ofthe map h : @1X ! @1Y :Theorem E Let X, Y , fH�g and h : X ! Y be as in Theorem C, and suppose that the inducedmap hE : EX ! EY on electric spaces is a bi-Lipschitz homeomorphism. If � and � are points in4



@1X such that h(�) = h(�) then there is a �nite chain of electric sets fH0; :::Hmg such that(1) � 2 @1H0 and � 2 @1Hm.(2) For i = 0; :::;m � 1 there is a point pi 2 @1Hi \ @1Hi+1 such that h(pi) = h(�) = h(�).In the Kleinian groups setting, we will see that such a chain cannot consist of more than oneset H�; thus two points on Ĉ can only be identi�ed by the semiconjugacy if they lie in the closureof the same component of the domain of discontinuity of �0. This gives us Theorem B.In Section 2 we review background material on Kleinian groups, and discuss the history ofThurston's conjecture on semiconjugacies. We use a theorem of Minsky and the structure ofgeometrically �nite Kleinian groups satisfying C1 to show that Theorem A is a special case ofTheorem C. Section 3 consists of a review of the basic ideas of Gromov-hyperbolic spaces. Section4 consists of the proof of Theorem C. In Section 5 we study the boundary of the space E�,and prove Theorems D and E; we use Theorem E and some additional information about endinglaminations to prove Theorem B.Acknowledgments. I would like to thank my advisor, Dr. Yair Minsky, for many helpful andenjoyable discussions. I would also like to thank the State University of New York at Stony Brook,where most of this work was completed, for its hospitality.2 Kleinian GroupsA Kleinian group is a discrete subgroup �0 of the group of orientation-preserving isometries ofH3. If �0 has no torsion (elliptic elements) then N0 = H3=�0 is a complete, orientable hyperbolic3-manifold, and �0 �= �1(N0). The group �0 acts by conformal homeomorphisms (M�obius trans-formations) on the Riemann sphere Ĉ, the boundary at in�nity of H3. This action partitions Ĉinto two �0-invariant sets: the limit set ��0 , which is the set of accumulation points of any orbitunder �0, and its complement 
�0 , the domain of discontinuity, an open subset of Ĉ. �0 actsfreely and properly discontinuously on H3 [ 
�0 ; the quotient space N0 = (H3 [ 
�0)=�0 is amanifold-with-boundary.2.1 The ends of a hyperbolic manifoldLet X be a Hausdor� locally compact topological space. If K � X is compact, de�ne"(K) = fE : E a connected component of X nK, E not compactg.If there is a compact set K � X such that for every compact set K 0 � K the inclusion induces abijection "(K 0)! "(K) then we call each element of "(K) an end of X; this de�nition is essentiallyindependent of K, since if K and K 0 are two such compact sets then there is a natural bijectionbetween "(K) and "(K 0). Heuristically, the ends of X are those parts of X that go o� to in�nity.5



If for some such compact set K the open set E is a connected component of X nK, we say that Eis a neighborhood of the corresponding end.Geometrically �nite ends. Let N0 = H3=�0 be a manifold that satis�es C1 and that has nocusps (that is, �0 has no parabolic elements), and let CC(N0) denote the convex core of N0, whichis the smallest closed convex submanifold of N0 whose inclusion is a homotopy equivalence. Theconvex core may be obtained as the quotient by �0 of the convex hull CH(�0) inH3 of the limit setof �0 (see [14]). An end of N0 is called geometrically �nite if it has a neighborhood that is disjointfrom CC(N0). And end that is not geometrically �nite is called degenerate, or geometrically in�nite.We say that N0 is geometrically �nite if all of its ends are geometrically �nite; equivalently, N0 isgeometrically �nite if its convex core is compact. If N0 has cusps, we say that N0 is geometrically�nite if its convex core has �nite volume.For geometrically �nite groups without cusps (that is, convex cocompact groups), TheoremA has long been known: if N0 = H3=�0 and N = H3=� are homeomorphic geometrically �nitemanifolds without cusps then there is a homeomorphism g : N0 ! N whose lift ~g : H3 ! H3 is aquasi-isometry, which (necessarily) extends to a quasiconformal homeomorphism ~g : Ĉ ! Ĉ thatconjugates the action of �0 to the action of �.2.2 Parabolic PinchingThe question of modelling the action of a Kleinian group on Ĉ by the action of a convex cocompactgroup has largely been answered for geometrically �nite groups with parabolics. One class of groupsthat has been extensively studied are the regular b-groups, that is, geometrically �nite groups thatpreserve a simply connected component of the domain of discontinuity (see [3, 20, 2] for discussionsof regular b-groups). If � is a regular b-group then it is a surface group, that is, it is isomorphic tothe fundamental group of a surface; if � is isomorphic to the fundamental group of a closed surface,we may try to model its action on Ĉ by the action of an isomorphic Fuchsian group (a Fuchsiangroup is a geometrically �nite Kleinian surface group whose limit set is a round circle). Concretely,let � be the invariant component of the domain of discontinuity of �, and let � : D ! � be aconformal homeomorphism, where D is the unit disk in Ĉ. The group �0 = ��1 �� � � is a convexcocompact Fuchsian group, and we may ask whether the map � extends to an equivariant mapde�ned on all of Ĉ. In contrast to the situation considered in the previous subsection when �had no parabolic elements and was geometrically �nite, we cannot expect to construct an actualconjugacy between the actions of �0 and � on Ĉ; certain loxodromic elements of �0 correspond toparabolic elements of � (called accidental parabolics), and if x and y are the two �xed points in Ĉof such an element of �0 then any semiconjugacy must map both x and y to the single �xed pointof the corresponding parabolic element of �.Abiko� has shown (see [2]) that the limit set of � (= @�) is locally connected, hence by classicalcomplex analysis the map � : D ! � extends continuously to a map D ! �. Let D0 denote the6



component Ĉ nD of the domain of discontinuity of �0; equip D0 with a Poincar�e metric. Work ofFloyd ([16]) shows that we may de�ne an extension of � to all of Ĉ to obtain a semiconjugacy fromthe action of �0 to the action of �, with the following properties:(1) If 
0 2 �0 corresponds to a parabolic element 
 2 � and l is the axis of 
0 in D0then � maps all of l (including endpoints) onto the �xed point of 
 (see Figure 1).(2) The collapsings in (1) are the only identi�cations that � induces.For more general geometrically �nite Kleinian groups with parabolics, it is generally acceptedthat a similar pinching picture exists; it seems probable that the techniques used in the proofs ofTheorems A and C of this paper would also work in the setting of geometrically �nite groups withparabolics.2.3 The Cannon-Thurston theoremsThe �rst progress towards proving Thurston's semiconjugacy conjecture for geometrically in�nitegroups was made by Cannon and Thurston, who studied the following class of examples of Kleiniansurface groups: let S be a closed surface of genus � 2, and let � : S ! S be a homeomorphism.Let M be the manifold obtained from S � [0; 1] by the identi�cation (x; 0) � (�(x); 1). M is calledthe mapping torus of �, and it �bers over the circle S1. Thurston has shown that if � is pseudo-Anosov then M admits a hyperbolic structure (see [31]). Let N be the in�nite cyclic cover of Mcorresponding to the �ber group �1(S). N is a hyperbolic manifold homeomorphic to S �R, andboth of its ends are geometrically in�nite. If �0 is an isomorphic Fuchsian group, Cannon andThurston ([12]) have shown that there is a homeomorphism from N0 = H3=�0 to N whose liftto H3 extends continuously to Ĉ to give a semiconjugacy from the action of �0 to the action of�. Such a map must send the limit set of �0 onto the limit set of �; in this case, the limit set of�0 is a circle and the limit set of � is the entire Riemann sphere, so we obtain an equivariantlyparametrized Peano curve.Cannon and Thurston show the existence of a semiconjugacy by constructing a model man-ifold Nmod that is homeomorphic and quasi-isometric to N , and whose geometry is completelydetermined by the isotopy type of the pseudo-Anosov homeomorphism �. Given a pseudo-Anosovhomeomorphism � : S ! S we can associate to S a pair of measured singular foliations (�x; dx)and (�y; dy), called the stable and unstable foliations of � that satisfy the following properties (see[10]):(1) �(�x) = �x and �(�y) = �y.(2) There is some multiplier k > 1 such that �(dx) = kdx and �(dy) = 1kdy.Thus, in the �bred manifold M , each time we go around S1 we have scaled in the x-direction by kand in the y-direction by 1k . The metric on the model manifold Nmod �= S �R is de�ned byds2 = k2tdx2 + k�2tdy2 + (log k)2dt27
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Figure 1: If the curve c corresponds to a cusp in H3=� then each lift of c to Ĉ is pinched by � to a point.8



where dt2 is the metric on R. Let H2 �R be the universal cover of Nmod. The homeomorphismfrom Nmod = S�R to N = S�R is a quasi-isometry, and its lift g : H2�R! H3 to the universalcovers is also a quasi-isometry (see [12]).Let �0 be a Fuchsian group isomorphic to �. �0 preserves a geodesic plane in H3, giving ahomeomorphism of H3 with H2 �R; the action of �0 preserves the product structure of H2 �R,giving a product structure to N0 = H3=�0 (that is, giving a speci�c homeomorphism of N0 withS �R). The induced map from N0 to Nmod lifts to a homeomorphism f : H3 ! H2 �R.Let F = g �f : H3 ! H3; Cannon and Thurston have shown that F extends continuously to Ĉ.Since F is the lift of a homeomorphism from N0 to N , it is equivariant with respect to the actionsof �0 and �, and its extension to Ĉ gives a surjective semiconjugacy from the action of �0 on Ĉ tothe action of �. The proof that F extends to Ĉ is fairly involved; however, it is not hard to showthat, in analogy to the situation in the case of accidental parabolics in b-groups, F collapses certainportions of Ĉ that correspond to the foliations �x and �y. Lift �x and �y to foliations ~�x and ~�yon the universal cover H2 of S. Let L be a leaf of either ~�x or ~�y, say ~�x; then the topologicaldisk L �R is totally geodesic in H2 �R (see e.g. [24]). The metric ds2 restricted to L �R hasthe form k�2tdy + (log k)2dt2;this is a hyperbolic metric, in which curves of the form L � ftg correspond to horoballs with acommon boundary point. The topological disk P = f�1(L�R) meets Ĉ = @1H3 in a topologicalcircle and its intrinsic geometry is that of the hyperbolic plane. The map f restricted to P takesthe geodesic f�1(L)�f0g and its equidistant curves to nested horocycles in L�R (see Figure 2).Thus the extension of f to the boundary circle of P collapses the entire upper semicircle to a point,
ƒ
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L×RFigure 2: The restriction of f to P takes the geodesic t = 0 and its equidistant curves to nested horocyclesin L�R. 9



and stretches the lower semicircle around the boundary circle of L �R. The map g restricted toL�R is a quasi-isometry so it extends continuously to an injective map of the boundary at in�nity@1(L �R) (see e.g. [18]); hence the map F = g � f identi�es points in @1P in the same way asthe map f . If L is a leaf of ~�y then we get a similar picture, but with the lower semicircle beingcollapsed, rather than the upper semicircle.Thus, the semiconjugacy F : Ĉ ! Ĉ identi�es points in the following way: Let 
+ and
� denote the two components of the domain of discontinuity of �0 (with 
+ corresponding toH2 � f1g and 
� corresponding to H2 � f�1g with respect to our chosen identi�cation of H3with H2�R). We can pull back the foliations ~�x and ~�y, via the map f , to foliations ~�+x and ~��yon 
+ and 
�, respectively. The semiconjugacy F : Ĉ! Ĉ will collapse each leaf of ~�+x and eachleaf of ~��y to a point; Cannon and Thurston have shown that these are the only identi�cations thatoccur. Thus, we have a complete topological description of the semiconjugacy F : Ĉ! Ĉ.Cannon and Thurston also studied a second class of Kleinian groups: closed surface groups � forwhich the quotient manifold, again homeomorphic to S �R, has one geometrically �nite end andone end that is quasi-isometric to an end of the manifold we have just discussed, the in�nite cycliccover of a pseudo-Anosov mapping torus. For such a group, the domain of discontinuity consists ofa single topological disk, and the limit set is a dendrite. Again, the existence of a semiconjugacyfrom a Fuchsian group action on Ĉ is proved using a model manifold, homeomorphic to S�R; themetric on S�R models the geometry of a geometrically �nite end on, say, S�(�1; 0] and is similarto the metric ds2 on S � [0;1). If 
+ and 
� are the components of the domain of discontinuityof the Fuchsian group and ~�+x is the lift of the stable foliation to 
+ then the semiconjugacy fromĈ to Ĉ maps 
� homeomorphically onto the domain of discontinuity of � and maps 
+ onto thelimit set of �, collapsing each leaf of ~�+x to a single point (see Figure 3). In particular, the existenceof a semiconjugacy implies that the limit set of such a group � is locally connected, since it is thecontinuous image of a circle.2.4 Ending laminations and foliations, and semiconjugacies for surface groupswith lower bounds on injectivity radiusIn constructing semiconjugacies for more general Kleinian groups, the correct generalization bothof the simple closed curves that control the collapsing in the accidental parabolics case and of thestable and unstable foliations in the Cannon-Thurston examples is the ending lamination or endingfoliation (these are equivalent constructions). Let S be a closed surface and let � be a hyperbolicmetric on S. A geodesic lamination on (S; �) is a closed disjoint union of simple geodesics in S,called the leaves of the lamination. We will also think of laminations as topological objects: alamination is an equivalence class whose members are closed subsets of S that are ambient isotopicto a geodesic lamination; the equivalence is under isotopy of S. Let GL(S) denote the spaceof geodesic laminations on (S; �). Let ML(S), the measured lamination space, be the space of10
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Figure 3: When there is only one degenerate end, the semiconjugacy F : Ĉ ! Ĉ collapses each leaf of thefoliation ~�+x to a point in the limit set of �. F sends the limit set ��0 of �0 onto the limit set �� of �, andmaps the bottom hemisphere homeomorphically onto the domain of discontinuity of �.geodesic laminations on (S; �) equipped with transverse measures. ML(S) has a natural topology(see [9, 10, 30]), such that if � and � are two di�erent metrics on S then there is a canonicalhomeomorphism between the measured lamination spaces of (S; �) and (S; �). If � is a measuredlamination then the support of � is the lamination on which the transverse measure of � is supported.Denote by MF(S) the space of equivalence classes of topological foliations on S with three- ormore-pronged saddle singularities, that support transverse measures; two foliations are equivalentif they are isotopic up to collapsing segments joining singularities (Whitehead moves). There isa natural homeomorphism between MF(S) and ML(S), obtained by straightening leaves of afoliation to their geodesic representatives.Let N = H3=� be a hyperbolic 3-manifold that satis�es C1 and that has no cusps. Thurstonand Bonahon have shown that a manifold that satis�es C1 is topologically tame, that is, it is theinterior of a compact manifold (see [4, 30]); so for each end e of N a boundary surface Se maybe associated to e. We will see that if e is geometrically �nite, Se will have a canonical Riemannsurface structure, induced by the conformal structure of the domain of discontinuity of �. If e is11



degenerate then Se will not have a canonical Riemann surface structure; instead, Thurston hasde�ned an ending invariant for e that is a lamination on Se.De�nition 2.1 An end e of a manifold N that satis�es C1 and has no cusps is called simplydegenerate if there is a sequence f
ig of closed curves on Se whose geodesic representatives 
�i inN are eventually contained in any neighborhood of e. We say that the curves 
�i exit the end.Bonahon ([4]) has shown that if N satis�es C1 then all of its ends are either geometrically �niteor simply degenerate. Thurston has shown the following (see [4, 5] for a proof):Proposition 2.2 Let e be a simply degenerate end of a hyperbolic 3-manifold without cusps, thatsatis�es C1. There is a unique �e 2 GL(Se), called the ending lamination of e, such that anysequence (
i) of simple closed curves in Se whose geodesic representatives (
�i ) exit the end e willaccumulate in ML(S) onto a set of measured laminations with support �e.The ending lamination �e satis�es the following properties (see e.g. [24]), which will be used inthe proof of Theorem B:(1) �e is maximal (i.e. there is no lamination � 2 GL(Se) such that �e � � and �e 6= �).(2) Every half-leaf of �e is dense in �e.(3) �e contains no closed geodesics.For closed surface groups that satisfy C2, Minsky has shown (see [24]) that the ending lamina-tions (or foliations) of the group control the geometry of the quotient manifold, as did the stableand unstable foliations in the Cannon-Thurston examples (in fact, for these examples the stableand unstable foliations are the ending foliations). Let G be a Kleinian group that satis�es C2 andthat is isomorphic to the fundamental group of a closed surface S, and let G0 be an isomorphicFuchsian or quasi-Fuchsian group (note that a surface group automatically satis�es C1). The quo-tient manifolds H3=G and H3=G0 are both homeomorphic to S �R (see [4, 30]). A surface groupwithout parabolics must fall into one of the following categories (this classi�cation is due to Bers,Marden, Maskit, Bonahon and Thurston (see [3, 20, 4, 30])):(1) The group is geometrically �nite, its limit set is a Jordan curve (so that its domain ofdiscontinuity is the union of two topological disks), and the convex core of the quotientmanifold is homeomorphic to S � [�1; 1] (unless the group is Fuchsian, in which casethe convex core is homeomorphic to S � f0g). Such groups where the limit set is not around circle are called quasi-Fuchsian.(2) The quotient manifold has one degenerate end, the domain of discontinuity consistsof a single topological disk, and the convex core of the quotient manifold is homeomor-phic to S � [0;1).(3) The quotient manifold has two degenerate ends, the limit set of the group is all ofĈ, and the convex core of the quotient manifold is the entire manifold.12



If G0 and G are as above, let e+ and e� denote the two ends of S �R, and S+ and S� denotethe surfaces S � f1g and S � f�1g. Let 
+ and 
� denote the two components of the domainof discontinuity of G0, which cover S+ and S�, respectively. If G has one degenerate end (say e+),let �+ denote the ending lamination of G. If G has two degenerate ends, let �+ and �� denotethe ending laminations. We can lift �� to laminations ~�� on 
�. Using techniques similar tothose of Cannon and Thurston, Minsky has shown that for surface groups satisfying C2, the endinglaminations determine the geometry of the degenerate ends and the topology of the action on Ĉ(see [24]). The idea is as follows: represent �+ and �� as measured foliations (�x; dx) and (�y; dy),and again construct a model manifold Nmod �= S �R, with the following metric:ds2 = e2tdx2 + e�2tdy2 + dt2:If (
�i ) is a sequence of simple closed geodesics in N = H3=G that exit the end e+, say, we mayconstruct a sequence of pleated surfaces �i in N , each containing the curve 
�i , that also exit theend e+. In [23], Minsky uses the lower bound on injectivity radius in N and the fact that thecurves (
�i ) converge to �+ to show that the surfaces �i have similar geometry to the level surfacesS � fig in Nmod. These techniques can be used to show that Nmod and N are quasi-isometric;then techniques similar to those used in the Cannon-Thurston examples give the following result,showing the existence and describing the collapsing of semiconjugacies on Ĉ (formulated here interms of laminations, not foliations); we will use this result in the proofs of Theorems A and B.Theorem 2.3 (Minsky, [24]) Let f : H3=G0 ! H3=G be a homeomorphism, where G0 is quasi-Fuchsian and G satis�es C2. Then there is a homotopic map g : H3=G0 ! H3=G such that thelift ~g : H3 ! H3 to the universal covers is quasi-Lipschitz and extends continuously to a map~g : Ĉ! Ĉ that collapses leaves and complementary components of ~�� to points. That is, if G hasone degenerate end then for x and y in Ĉ, ~g(x) = ~g(y) if and only if x and y lie on the closure of thesame leaf or complementary component of ~�+. If both ends of G are degenerate then ~g(x) = ~g(y)also if x and y lie on the closure of the same leaf or complementary component of ~��. If G isquasi-Fuchsian then ~g : Ĉ! Ĉ is a homeomorphism.By work of Lott, the map g may be chosen to be a homeomorphism such that ~g is Lipschitz onH3 (see [19]).2.5 Construction of the homeomorphism g of Theorem AWe return to the setting of Theorem A: Let �0 be a geometrically �nite Kleinian group that satis�esC1 and C2, and let N0 = H3=�0. Let f : N0 ! N be a homeomorphism, where N = H3=� is ahyperbolic manifold that satis�es C2. The homeomorphism f induces an isomorphism f� : �0 ! �.We wish to replace f by a homotopic map g whose lift to the universal covers extends continuously13



to the boundary and identi�es boundary points according to the ending laminations of N ; to dothis, we will modify f on each end of N0 to obtain a map g : N0 ! N whose restriction to eachend of N0 looks like the map constructed by Minsky in Theorem 2.3.If N0 has �nite volume then Mostow's rigidity theorem says that f is homotopic to an isometry,whose lift necessarily extends to a M�obius transformation on Ĉ (see [27, 28]); so in this case there isnothing to prove. Otherwise, N0 has at least one end; let e be an end of N0, and let Ke � N0 be thecorresponding component of the boundary of the convex core. Since �0 is freely indecomposableKeis incompressible in N0 (see [4]). So Ke lifts to a union of disks in H3, each of which is a boundarycomponent of CH(�0). If ~K� is one of these disks then ~K� bounds a topological half-space H�on its nonconvex side that meets Ĉ in the closure of a component 
� of 
 (see Figure 4). Let�� � �0 be the stabilizer of 
�; �� is called the component subgroup of �0 with respect to 
�.Orthogonal projection from int(H�) [
� to ~K� induces a foliation of int(H�) [
� which gives ahomeomorphism of int(H�) [ 
� with ~K� � (0;1]; this foliation is invariant under the action of�� so it descends to the corresponding component of N0 n CC(N0), which is then homeomorphicto Ke � (0;1]. Write Se = Ke � f1g, so that 
� covers Se.Given a component 
� of the domain of discontinuity 
 of �0, the stabilizer �� � �0 of 
� isa surface group since 
� is a topological disk. The map f lifts to the intermediate cover H3=��to give a homeomorphism f̂� : H3=�� ! H3=f�(��). We may apply Minsky's theorem to thishomeomorphism, for the group �� is geometrically �nite; this is a consequence of a theorem ofThurston, that any �nitely generated subgroup of an in�nite-covolume geometrically �nite groupis geometrically �nite (see e.g. [26]). Thus, by Minsky's theorem the map f̂� is homotopic to amap ĝ� whose lift ~g� to the universal cover extends continuously to the boundary.For an end e, let ne denote the corresponding component of the complement of CC(N0), so thatthe boundary of ne in N0 isKe. LiftingKe and ne to the intermediate cover H3=�� = Se�(�1;1)gives sets K̂e and n̂e, such that K̂e = ~K�=�� and n̂e = H�=��. Since for every 
 2 �0 n ��,
(H�) \ H� = ;, we have H�=�� = H�=�; hence K̂e and n̂e project homeomorphically to Keand ne, respectively. If ĝ� : Se � R ! Se � R is the map given by Minsky's theorem then wemay adjust ĝ� by a homotopy on a compact set so that ĝ� is still a homeomorphism, and so thatĝ�(n̂e) = f̂�(n̂e) and ĝ� and f̂� agree on K̂e; this does not change the behavior at in�nity of thelift ~g� : H3 ! H3 of ĝ�.With this adjustment ĝ�jn̂e descends to a homeomorphism ge from ne to a subset of N , and geagrees with f on Ke. Note that if �� and �� are two component subgroups of �0 that correspondto the same end e then the maps they induce on ne are the same (if we have adjusted ĝ� and ĝ� inthe same way), since their lifts ~g� and ~g� are related by a M�obius transformation that conjugates�� to ��; thus the map ge did not depend on our choice of component subgroup. We will piecetogether the maps ge by \�lling in" on the convex core, to obtain the map g : N0 ! N of TheoremA. 14
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Figure 4: The convex hull of �0 is the closure of the complement in H3 of the topological half-spaces H�.The quotient of H� by �� (equivalently, by �0) is the complementary component of the convex core of N0whose boundary surface is Ke. 15



De�ne a map g : N0 ! N in the following way:(1) gjCC(N0) = f jCC(N0); and(2) If e is an end of N0, gjne = gejne .The maps given by Minsky's theorem are Lipschitz, so by standard arguments we can adjustg by a homotopy supported on a compact set so that g is a homeomorphism that is Lipschitz oneach piece ne and is a bi-Lipschitz map from CC(N0) to g(CC(N0)), with respect to their intrinsicpath metrics. Note that this is not the same as saying that the restriction of g to CC(N0) isa bi-Lipschitz map; since g(CC(N0)) is generally not convex, its intrinsic path metric is strictlylarger than the hyperbolic metric that g(CC(N0)) inherits from N . If we adjust g in this waythen the lift of g to the universal covers is a Lipschitz homeomorphism ~g : H3 ! H3 such that~gjCH(�0) is a bi-Lipschitz homeomorphism with respect to the intrinsic path metrics of CH(�0)and ~g(CH(�0)); another way of saying this last statement is that the induced map on the electricspaces of (H3; fH�g) and (H3; f~g(H�)g) is a bi-Lipschitz homeomorphism, where the sets H� arethe closures inH3 of the complementary components of the convex hull of �0 (recall that the electricspaces of (H3; fH�g) and (H3; f~g(H�)g) are the spaces we get from H3 by collapsing the sets H�and ~g(H�), respectively, to points; the metric on the electric spaces is the inherited path metricfrom H3). Since we have only adjusted g by a homotopy on a compact set we have not changedthe behavior at in�nity of its lift ~g : H3 ! H3. We will show that this lift extends continuously tothe boundary.2.6 Reduction of Theorem A to Theorem CLet �� be a component subgroup of �0. Write N̂�0 = H3=�� and N̂� = H3=f�(��), so that N̂� isa covering space of N . We will begin by showing that when the covering N̂� ! N is �nite-to-one,Theorem A is a simple extension of Minsky's result, Theorem 2.3. When the covering N̂� ! N isin�nite-to-one, we will show that Theorem A is a result of Theorem C. We need the following:Lemma 2.4 Let �0 be a geometrically �nite Kleinian group that satis�es C1 and C2, and suchthat the domain of discontinuity does not have 0 or 2 components. Then if 
� is a component ofthe domain of discontinuity, 
� has in�nitely many translates in Ĉ.Proof:The domain of discontinuity 
 cannot have exactly one component, since then �0 would be asurface group and by the classi�cation of surface groups that satisfy C2 it would have a degenerateend.Suppose 
 has more than two components. Let 
1, 
2 and 
3 be components of 
 and let �1,�2 and �3 be their component subgroups. We will show that 
1 has in�nitely many translates.The limit sets of �1, �2 and �3 are all Jordan curves so no two can be the same. Hence, there is16



a (loxodromic) element of �2 whose attracting �xed point does not lie in the limit set of �1. Thesets 
n(
1) for n 2 Z are all distinct, and each is a component of 
. 2Now, to reduce the proof of Theorem A to that of Theorem C, we will consider two cases:Case 1: the covering N̂� ! N is �nite-to-one. As previously stated, for this case we will showthat the result of Theorem A is essentially already known; that is, it is an easy extension of Minsky'sresult. If the covering is �nite-to-one then the corresponding cover N̂�0 ! N0 is also �nite-to-one,and so �� has �nite index in �0. Then the component 
� of the domain of discontinuity of �0stabilized by �� must have only �nitely many translates in Ĉ; hence by Lemma 2.4, the domain ofdiscontinuity of �0 has either 0 or 2 components. If 
 is empty then N0 is compact; in this settingwe have seen that Theorem A is a consequence of Mostow's rigidity theorem, which tells us thatthe map ~g extends to a M�obius transformation of Ĉ (and Theorem B just turns into the fact thata M�obius transformation from Ĉ to Ĉ is injective). If 
 has two components then there are twopossibilities for �0 and N0:(1) If �0 preserves the two components of 
 then �0 is a quasi-Fuchsian group, andN0 �= S �R; this is the case of Theorems A and B that has already been proved byMinsky.(2) Otherwise, �0 contains an index two subgroup G0 that is quasi-Fuchsian (namelythe subgroup of �0 that preserves the components of 
). Maskit calls �0 an extendedquasi-Fuchsian group (see [21]). In this case, N0 has one end and is doubly covered by themanifold H3= G0. The map g : N0 ! N we have constructed lifts to a homeomorphismg0 : H3=G0 ! H3=f�(G0), and it is easily checked that the map g0 agrees with Minsky'smap up to a homotopy on a compact set; thus its lift to H3 extends to the boundaryin the same way as Minsky's map.Case 2: the covering N̂� ! N is in�nite-to-one. We will show that in this case, Theorem Ais a result of Theorem C; that is, that the map ~g : H3 ! H3 constructed in Section 2.5 satis�es thehypotheses of Theorem C. So, let ~g� : H3 ! H3 be the map given by Minsky's result (Theorem2.3), for the groups �� and f�(��). Let e0+ and e0� denote the two ends of N̂� = H3=f�(��);according to Minsky's theorem, the identi�cations ~g� makes on Ĉ are determined by the geometryof e0+ and e0�. Let e0 denote the end of N corresponding to e in N0. One of the two ends of N̂�,say e0+, has a neighborhood that covers a neighborhood of e0 homeomorphically and isometrically(see Figure 5); we must understand the geometry of the other end, e0�. We have assumed that aneighborhood of e0� covers N in an in�nite-to-one manner; a theorem of Thurston (see [6] for aproof) tells us that in this case, e0� is geometrically �nite. Hence N̂� has at most one degenerateend. If the end e0+ is degenerate then its ending lamination agrees with the ending lamination ��of e0. Minsky's theorem then gives us the following about the identi�cations of ~g� on Ĉ:17



Given a component 
� of the domain of discontinuity of �0, if the end e0 of N corre-sponding to 
� is geometrically �nite then the map ~g� : Ĉ! Ĉ is a homeomorphism.If e0 is degenerate then for x and y in Ĉ, ~g�(x) = ~g�(y) if and only if x and y lie on theclosure of the same leaf or complementary component of ~��.
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Figure 5: The intermediate covers N̂�0 and N̂�.We have now constructed a homeomorphism ~g : H3 ! H3 that satis�es the following:(1) ~g is Lipschitz.(2) On the electric level (with respect to (H3; fH�g) and (H3; f~g(H�)g)), ~g is a quasi-isometry (seeSection 3 for de�nitions); in fact, it is bi-Lipschitz.(3) For each set H�, ~gjH� extends continuously to the boundary 
�, and either is a homeomorphismon 
� or identi�es points on 
� according to the ending lamination ~��.Thus, if we can show that the systems (H3; fH�g) and (H3; f~g(H�)g) satisfy conditions (�1)�(�3) then we will have shown that the map ~g : H3 ! H3 satis�es the hypotheses of Theorem C.We haveTheorem 2.5 Let �0 and � be as in Theorem A, and suppose that the domain of discontinuity of�0 consists of more than two components. Then the map ~g : H3 ! H3 de�ned above satis�es theconditions of Theorem C. 18



Proof:We must show that (�1)� (�3) hold for the systems (H3; fH�g) and (H3; f~g(H�)g).For (�1), simply note that H3 n [�H� is the interior of the convex hull of ��0 , the limit set of�0, so it is open and path-connected. Since ~g is a homeomorphism H3 n [�~g(H�) is also open andpath-connected.For (�2), we must show that there exists some q such that the sets H� and ~g(H�) are all q-quasiconvex (see Section 3 for a de�nition of quasiconvexity). If we can show that the sets are allquasiconvex then the uniformity of the quasiconvexity constant follows immediately: two such setsthat correspond to the same end of N0 or N have the same quasiconvexity constant since one isthe image of the other by a M�obius transformation, and there are only �nitely many ends. Fix �;we will show that ~g(H�) is quasiconvex (the proof we give also works for H�).Let N̂� be the intermediate cover of N corresponding to ��. We have seen that N̂� is homeo-morphic to Se �R. As in the previous subsection, let e0+ and e0� denote the two ends of N̂�, ande0 the end of N corresponding to ��. We have seen that one end, e0+, has a neighborhood thatprojects homeomorphically to a neighborhood of e0, and that the other end, e0�, is geometrically�nite. Since e0� is geometrically �nite, it has a neighborhood that is disjoint from the convex coreC� of N̂� (see Figure 6). The lift ~C� of C� to H3 is a convex set. The projections of ~C� and ~g(H�)to N̂� are both neighborhoods of e0+, and their boundaries are homotopic. If we choose a homotopyH : Se � [0; 1] ! N̂� between the boundaries of the projections of ~C� and ~g(H�), the lengths ofthe paths Hx : [0; 1] ! N̂� de�ned by Hx(t) = H(x; t) are uniformly bounded, by compactness ofSe; so lifting to H3 we have a homotopy ~H : ~Se � [0; 1] ! H3 between the boundaries of ~C� and~g(H�), such that there is a uniform bound of the length of each path ~H~x : [0; 1] ! H3. Hence theboundaries of ~g(H�) and ~C� are within a bounded Hausdor� distance of each other. So since ~C�is convex, ~g(H�) must be quasiconvex.For (�3) we must show that there is a constant c such that the sets H� (resp. ~g(H�)) are allseparated from each other by at least c. Let H� and H� be distinct half-spaces; we will show thatthere is a lower bound (independent of � and �) on the length of any path from H� to H�. Solet p be a path from x to y, where x 2 H� and y 2 H�; without loss of generality we may assumethat x 2 @H� and y 2 @H�. Now the path p descends (via the projection H3 ! H3=�0) to a pathproj(p) in N0 =H3=�0 whose endpoints a and b lie on the boundary of the convex core of N0.Suppose �rst that a and b lie on di�erent boundary components of the convex core. The convexcore of N0 has �nitely many boundary components, and each is an embedded surface; so there isa lower bound on the distance in N0 between any two of these components. Hence there is a lowerbound on the length of proj(p), which is the same as the length of p.Otherwise a and b lie on the same boundary component K of the convex core; then since H�and H� are distinct, proj(p) is not homotopic relative endpoints to a path in K. K is an embeddedsurface in N0, so if u 2 K then for every � > 0 there is a �(u; �) > 0 such that if v 2 K and19
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d(u; v) � �(u; �) then u and v are within � of each other in the intrinsic metric on K; since Ke iscompact, one �(�) may be chosen for all u 2 K. Let �0 denote the injectivity radius of the convexcore of N0. Suppose that l(p) � �(�0). Then there is a path r in Ke from a to b whose length is atmost �0. But the path r � (proj(p)) is a homotopically nontrivial loop, so its length is at least 2�0.So the length of p is at least �0.So we have shown that (H3; fH�g) satis�es (�3). The only thing we used in the proof was thetopological structure of the convex core of N0, so since ~g is a homeomorphism the same proof worksfor (H3; f~g(H�)g). 2To summarize, we have shown the following:Theorem 2.6 Let �0 and � be as in Theorem A. If the domain of discontinuity of �0 has 0 or twocomponents then Theorem A holds for �0 and �. In all other cases, Theorem A is a special case ofTheorem C.3 Gromov-hyperbolic spacesIn this section we will present an overview of some of the basic theory of Gromov-hyperbolic spaces.References for the material in this section are [17], [18], [11] and [8].Let (�; d) be a metric space. If � is equipped with a basepoint 0, de�ne the Gromov product(xjy) of the points x and y in � to be(xjy) = (xjy)0 = 12(d(x; 0) + d(y; 0) � d(x; y)):De�nition 3.1 Let � � 0 be a real number. The metric space � is �-hyperbolic if(xjy) �min((xjz); (yjz)) � �for every x; y; z 2 � and for every choice of basepoint.We say that � is hyperbolic in the sense of Gromov if � is �-hyperbolic for some �.For example:1. Every bounded metric space is hyperbolic.2. Every real tree is 0-hyperbolic (a real tree is a space � such that for any two points x andy in � there is a unique topological segment joining x and y, and the length of that segment isd(x; y).)3. Hyperbolic space Hn is �-hyperbolic with � = log 3.21



A metric space � is geodesic if any two points in � can be joined by a geodesic segment (notnecessarily unique). If x and y are in � we write [x; y], ambiguously, to denote some geodesic fromx to y.Heuristically, a �-hyperbolic space is \tree-like"; more precisely, if we de�ne an �-narrow geodesicpolygon to be one such that every point on each side of the polygon is at distance � � from a pointin the union of the other sides, then we haveProposition 3.2 In a geodesic �-hyperbolic metric space, every n-sided polygon (n � 3) is 4(n �2)�-narrow.If S � � is a set and x 2 �, then the projection of x to S is the subset projSx of S consistingof all points y 2 S such that d(x; y) is minimal over all points in S. If T � � then the projectionof T to S is the union of all sets projSx where x 2 T . The following is an easy consequence of theabove proposition:Lemma 3.3 For every positive integer N , there exists a constant K(N; �) > 0 such that the fol-lowing holds:Let l be a geodesic segment. Let g be a path in � that is the union of at most N geodesic segments[a0; a1]; [a1; a2]; :::; [aN�1; aN ], and assume that g lies outside of the K-neighborhood of l. Then thediameter of the projection of g to l is bounded above by 32�.In a geodesic hyperbolic space, the Gromov product of two points x and y is roughly the distancefrom 0 to [x; y]; we haveProposition 3.4 Let � be a geodesic, �-hyperbolic space and let x; y 2 �. Thend(0; [x; y]) � 4� � (xjy) � d(0; [x; y])for every geodesic segment [x; y].3.1 The boundary of a hyperbolic spaceIf � is a hyperbolic space, � can be equipped with a boundary in a natural way. We say that asequence (xn) of points in � converges at in�nity if we have limm;n!1(xmjxn) =1; note that thisde�nition is independent of the choice of basepoint, by Proposition 3.4. Given two sequences (xm)and (yn) that converge at in�nity, say that (xm) and (yn) are equivalent if limm;n!1(xmjyn) =1.Since � is hyperbolic, it is easily checked that this is an equivalence relation. De�ne the boundaryat in�nity @1� of � to be the set of equivalence classes of sequences that converge at in�nity. If22



� 2 @1� then we say that a sequence of points in � converges to � if the sequence belongs to theequivalence class �. Write � = � [ @1�.If r : [0;1) ! � is a geodesic ray then there exists a point � 2 @1� such that r(tn) ! � forevery sequence (tn) of positive real numbers such that tn ! 1. Write � = r(1). The followingstatements are easily proved:Proposition 3.5 Let � be a geodesic �-hyperbolic space.(a) Let (xn) and (yn) be sequences of points in �. Suppose that (xn) converges to a point� 2 @1� and there is a real number B such that d(xn; yn) � B for every n. Then (yn) alsoconverges to �.(b) Let r1; r2 : [0;1) ! � be geodesic rays such that r1(1) = r2(1). Then every point on r1is at distance � d(r1(0); r2(0)) + 8� from r2, and there exists a real number T � 0 such that forevery t � T , r1(t) is at distance � 8� from r2.The Gromov product can be naturally extended to ���, by(ajb) = inf[lim infi;j!1 (aijbj)]where the in�mum is taken over all sequences (ai), (bj) in � such that (ai) converges to a and (bj)converges to b. We have (ajb) =1 i� a = b 2 @1�, and(xjy) �min((xjz); (yjz)) � �for all x, y and z in �.3.2 The visual metric on �Let � be a proper geodesic �-hyperbolic space equipped with a basepoint 0 (a metric space is properif its closed metric balls are all compact). Gromov constructs a \visual metric" on � by scaling themetric on � in the following way: Let w > 1 be a real number. Let fw : � ! R be the functionf(x) = w�d(0;x). If � is a path in �, de�ne lw(�) to be the integral of f along �. If x and y arepoints of �, de�ne jx� yjw = inf(lw(�))where the in�mum is taken over all continuous paths � from x to y. j � jw gives a metric on �, suchthat the induced topology is the same as the original topology on �.Gromov has shown that there is a constant w0(�) > 1 such that for every real number w strictlybetween 1 and w0, the following hold: 23



(1) The identity map of � extends to a bijection from � to the completion of � withrespect to j � jw, so that j � jw induces a metric on �, which we will call the visual metricof � with respect to w. The visual metrics all induce the same topology on �, and �is compact. If � 2 @1� then a sequence (xn) of points in � converges to � in the senseof the previous subsection i� it converges to � in the metric topology.(2) Let � and � be in � and let [�; �] be a geodesic from � to �. Thenj� � �jw � �w�d(0;[�;�]);where � � 1 is a constant that depends on � and w. Furthermore, if � and � are in@1� and � 6= � then 1�w�d(0;[�;�]) � j� � �jw:Note that the diameter of � in the metric j � jw is at most 2log(w) .Example: if � = Hn then � is homeomorphic to the closed unit ball in Rn, and the topologyinduced by the visual metrics agree with the topology inherited from Rn.3.3 Quasiconvex sets and their visual diameterIf S is a subset of a geodesic metric space � and q > 0 is a real number, writeSq = fx 2 � : d(x; S) � qg:De�nition 3.6 A subset S of a geodesic metric space is q-quasiconvex if whenever x and y arepoints in S, every geodesic segment [x; y] is contained in Sq.For the remainder of this subsection � will be a proper, geodesic �-hyperbolic space. If S � �,we will write @1S for the subset of @1� consisting of those points that are accumulation pointsof elements of S (to be distinguished from the boundary of S in �). We haveProposition 3.7 Let S � � be q-quasiconvex. If x 2 S and � 2 @1S, then any geodesic rayg : [0;1)! � from x to � is contained in Sq+8�.Proof:Let (xn) be a sequence of points in S that converges to �, and let rn : [0;1) ! � be the mapthat sends the interval [0; d(x; xn)] isometrically onto a geodesic [x; xn] and maps [d(x; xn);1) ontothe point xn. Since � is proper, by Ascoli's theorem (rn) has a subsequence (which we will continueto call (rn)) that converges to a map r : [0;1) ! �, in the topology of uniform convergence on24
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•Figure 7compact sets (see Figure 7). The map r is a geodesic ray from x to �, so by Proposition 3.5 (b),every point on g is at distance � 8� from r. At the same time, every point on r is at distance � qfrom S; hence each point on g is within q + 8� of a point of S. 2We will also need the following simple fact:Proposition 3.8 Let S � � be closed and q-quasiconvex and let T be a subset of � that satis�esS � T � SR, where R is a real number. Then T is Q-quasiconvex, where Q = q +R+ 8�.Quasiconvex sets that are far from the basepoint 0 of � have small diameters in the visualmetrics on �. We have the following, which will be crucial for controlling the behavior of the setsH� of Theorem C:Proposition 3.9 Let S � � be q-quasiconvex. Then the diameter of S in the metric j � jw isbounded above by �w�(d(0;S)�q).Proof:Let x and y be in S. Every point on [x; y] is within q of a point in S, so d(0; [x; y]) � d(0; S)�q.Hence jx� yjw � �w�d(0;[x;y]) � �w�(d(0;S)�q). 23.4 Quasi-isometries and quasi-geodesicsLet �0 and � be two metric spaces. Let k � 1 and � � 0 be real numbers. We say that a mapf : �0 ! � is (k; �)-quasi-Lipschitz if d(f(x1); f(x2)) � k � d(x1; x2) + � for all x1 and x2 in �0.25



A map f : �0 ! � is a (k; �)-quasi-isometry if1kd(x1; x2)� � � d(f(x1); f(x2)) � kd(x1; x2) + �for all x1 and x2 in �0.A quasi-isometry between two �-hyperbolic spaces extends continuously to the boundary, in thefollowing sense:Theorem 3.10 Let �0 and � be Gromov-hyperbolic, and let h : �0 ! � be a quasi-isometry.For every sequence (xn) of points in �0 that converges to a point � in @1�0, the sequence (h(xn))converges to a point in @1� that depends only on �, so that h de�nes a continuous map from @1�0to @1�. The map h : @1�0 ! @1� is injective.Note that Theorems C andD of this paper can be thought of as a generalization of this theorem,since if there are no electric sets then Theorems C and D together reduce to this statement. Theproof of the above statement is, among other things, an important step in the proof of Mostow'srigidity theorem.If � is a metric space, a (k; �)-quasigeodesic is a recti�able path p : I ! �, where I is aninterval in R, such that for all s and t in I,1k l(pj[s;t])� � � d(p(s); p(t)) � k � l(pj[s;t]) + �:Note that if a path p : I ! � is parametrized by arc length then it is a quasigeodesic if and onlyif it is a quasi-isometry. The following theorem tells us that in a hyperbolic space (the image of) aquasigeodesic is quasiconvex.Theorem 3.11 Let � be a geodesic, �-hyperbolic space.(a) Let I = [a; b] be a closed interval in R, and let p : I ! � be a (k; �)-quasigeodesic. Letl be a geodesic segment in � whose endpoints are p(a) and p(b). Then there is a constant H thatdepends only on �, k and �, such that the Hausdor� distance between the images of p and l is atmost H.(b) Suppose that � is proper. Let p : I ! � be a (k; �)-quasigeodesic, where I = [0;1) orI = (�1;1). Then there exists, respectively, a geodesic ray or an in�nite geodesic l, such that theHausdor� distance between the images of p and l is at most H, where again H is a constant thatdepends only on �, k and �.A consequence of the preceding theorem is the following key property of quasigeodesics, whichmakes them useful tools for showing that quasi-isometries extend continuously to the boundary:26



Proposition 3.12 Let � be a proper geodesic �-hyperbolic space and let p : [0;1) ! � be aquasigeodesic ray. Then p terminates at a unique point � in @1�; that is, as t!1, p(t)! �.Proposition 3.12 is the �rst step in showing that a quasi-isometry of hyperbolic spaces extendscontinuously to the boundary: if the spaces in question are proper and geodesic, it shows that therestriction of the quasi-isometry to any geodesic ray extends continuously to the boundary point ofthe ray, since the image of the ray under the quasi-isometry is a quasigeodesic. We will use a similarstrategy to show that a map satisfying the conditions of Theorem C extends to the endpoints ofgeodesic rays.4 Continuity of the ExtensionIn this section we will prove Theorem C. If h : X ! Y is a map that satis�es the hypotheses ofTheorem C, we want to show that h extends continuously to a map from @1X to @1Y . We knowthat on each set H�, h extends to the boundary. Moreover, h is assumed to be a quasi-isometryaway from the sets H�; so since quasi-isometries extend to the boundary, it is not di�cult to showthat h extends to those points of @1X that have a neighborhood that is disjoint from all of thesets H�. Thus, the main problem will be to control h where the sets H� accumulate. Suppose � isa point in @1X that is the limit of a sequence of sets (Hn). A �rst step in showing that h extendsto � is to show that the sets h(Hn) converge to a unique point in @1Y . To do this, we must beable to show in particular that the visual diameters of the sets h(Hn) approach 0 as n approachesin�nity (in all of what follows we will assume that we have �xed a basepoint 0 in X and Y suchthat h(0) = 0, and a visual metric dvis on X and Y , where dvis = j � jw for some constant w > 1,as in Section 3). Since the sets h(Hn) are uniformly quasiconvex, we can get an upper bound ontheir visual diameters if we know how far they are from 0, by Proposition 3.9. Our main tool forshowing that a set h(Hn) is far from 0 is theelectric metric (using terminology coined by Farb in[15]):De�nition 4.1 If (�; fS�g) is a pair satisfying (�1)� (�3), and C denotes the complement in � ofthe sets S�, then the electric length lel of a recti�able path p in � is de�ned by lel(p) = l(p \ C).The electric distance del on � is the path metric induced by lel. We will call the sets S� electricsets, and the space E� obtained from � by collapsing each set S� to a point, the electric spaceof �.Note that del is not an actual distance function, since if x and y are distinct points in one ofthe electric sets S� then del(x; y) = 0. However, the electric distance descends to a genuine metricon E�; we will use del to denote this metric as well as the electric metric on �.In the setting of Theorem C, the electric distance enables us to show that certain sets h(Hn)in Y are far from 0 because of the following: one hypothesis of Theorem C is that the map27



hE : EX ! EY is an (L; �)-quasi-isometry, for some constants L and �. This hypothesis translatesupstairs (that is, in X and Y ) to the condition that1Ldel(x; y)� � � del(h(x); h(y)) � L � del(x; y) + �for all x and y in X. The electric distance is bounded above by the standard distance, so oneconsequence of the above inequality is that for all x and y in X,1Ldel(x; y)� � � d(h(x); h(y)):Thus, if two points in X are far apart in the electric metric then their images under h are far apartin the standard metric on Y .We will begin by studying electric quasigeodesics, which will play a similar role in the proof ofTheorem C as quasigeodesics play in the proof that a quasi-isometry of hyperbolic spaces extendscontinuously to the boundary. We will prove a generalization of Theorem 3.11 that gives us somecontrol over the distance between an electric quasigeodesic and a standard geodesic with the sameendpoints. We will show that a (standard) geodesic ray is an electric quasigeodesic ray exactlywhen its endpoint at in�nity does not lie on the boundary of any electric set. This will enable usto extend the map h to the endpoints of such rays, and then to the entire boundary.4.1 Electric quasigeodesicsIf (�; fS�g) satis�es (�1) � (�3), let �� : � ! E� denote the projection map. If e : I ! � is arecti�able path, we say that e is an electric (k; �)-quasigeodesic if1k lel(ej[s;t])� � � del(e(s); e(t)) � k � lel(ej[s;t]) + �for all s; t 2 I with s < t. Note that a path e : I ! � is an electric (k; �)-quasigeodesic if and onlyif �X � e : I ! E� is a quasigeodesic in the electric metric.Since del is a path metric, if e : I ! � is any path from a to b then we have del(a; b) � lel(e);so for e to be a (k; �)-quasigeodesic it is in fact su�cient for e to satisfy1k lel(ej[s;t])� � � del(e(s); e(t))for all s and t in I.We have the following relationship between standard quasigeodesics and electric quasigeodesics:28



Proposition 4.2 Let e : I ! � be an electric (k; �)-quasigeodesic and let J be a subinterval of Isuch that e(J) � C. Then ejJ is a (non-electric) (k; �)-quasigeodesic.Proof:For s; t 2 J we have lel(ej[s;t]) = l(ej[s;t]), and del(e(s); e(t)) � d(e(s); e(t)). Hence1k l(ej[s;t])� � � del(e(s); e(t)) � d(e(s); e(t)):So ejJ is a (k; �)-quasigeodesic. 2We have not yet shown that electric quasigeodesics actually exist; but since del is de�ned asan in�mum of path lengths, given any � > 0 and points x and y in �, we can �nd a path pfrom x to y such that lel(p�) � � � del(x; y). It is easily checked that such a path is an electric(1; �)-quasigeodesic.Since the electric sets are separated from each other by at least c, every time a path p in �travels from one electric set to another, at least c is contributed to the electric length of p. Saythat p does not backtrack if it passes through each electric set at most once. Thus, if p does notbacktrack and it enters electric sets n times then the electric length of p is at least c(n� 1).If e : I ! � is an electric (k; �)-quasigeodesic then it can be modi�ed so that it does notbacktrack, as follows: choose some � such that e passes through S�, and let s and t be the �rst andlast points of I, respectively, that are mapped by e into S�. Replace e on [s; t] by a path from e(s)to e(t) entirely contained in S�. Since e has �nite electric length it jumps from one electric set toanother a �nite number of times, so after a �nite number of modi�cations we will have produced apath that does not backtrack. In the process, we have if anything reduced the electric length of e,so the new path is again an electric (k; �)-quasigeodesic. Note that we have not changed e on theendpoints of I.We will begin by examining the relationship between electric quasigeodesics and standard geo-desics in �. If S � �, let EN0(S) denote the 0-neighborhood of S in the electric metric, that is,the union of S with those electric sets that S intersects. We can make the following generalizationof Theorem 3.11 (Farb has proved a similar statement in [15] when the electric sets are horoballs):Proposition 4.3 Let e be an electric (k, �)-quasigeodesic in �, with endpoints x and y. Then forevery point z in [x; y] there is a point in EN0(e) that is within (non-electric) distance D of z, whereD = D(�; k; �) depends only on k, � and the hyperbolicity constant � of �. Moreover, for everypoint z0 in e there is a point in [x; y] that is within electric distance D of z0.Proof:Choose R > 0, and suppose z is a point in [x; y] for which no point of EN0(e) comes within Rof z. Let (a; b) be the maximal subinterval of [x; y] containing z and such that no point of EN0(e)29



comes within R of (a; b). We will show that if R is chosen su�ciently large then there is an upperbound m on the length of all such intervals (a; b). Then we have that d(z;EN0(e)) � R+m, andthe �rst statement is proved. The idea of the argument is as follows: if (a; b) is \too long" thenby Lemma 3.3 the portion of e that lies outside the R-neighborhood of [x; y] must travel throughmany electric sets; but each time e travels from one electric set to another a de�nite amount iscontributed to its electric length, making it ine�cient, which contradicts the fact that it is anelectric quasigeodesic.So, let a0 and b0 be points in EN0(e) such that d(a; a0) � R and d(b; b0) � R. We can assumethat a0 and b0 actually lie on e; let e0 be a subsegment of e whose endpoints are a0 and b0. As perthe discussion preceding this proposition, we can assume, after removing some portion of e0, thate0 does not backtrack.Let e0str be the path obtained by straightening the portions of e0 that pass through the setsS� and those that pass through C; that is, if a component of e0 \ S� or e0 \ C has endpoints sand t, replace that component with [s; t]. Then since the sets S� are all q-quasiconvex and thecomponents of e0 \ C are all (k; �)-quasigeodesics, it is easy to see that e0str lies outside of the(R� q �H)-neighborhood of (a; b), where H = H(�; k; �) is the constant from Theorem 3.11.Choose N 2 Z+ such that cN2 > 32�k (where c is the minimum separation between any two ofthe electric sets). Let R be su�ciently large that R� q�H > K(N), where K(N) is the constantfrom Lemma 3.3.Let j = [ l([a;b])32� ]; by Lemma 3.3, e0str must consist of at least N �j geodesic arcs, so e0 must travelthrough at least N �j2 of the electric sets S�. Every time e0 passes from one electric set to another,at least c is added to its electric length; so we havelel(e0) � (N � j2 � 1)c � [N2 � ( l([a; b])32� � 1)� 1]c:But since e0 is an electric (k; �)-quasigeodesic we also have thatlel(e0) � k � del(a0; b0) + � � k(l([a; b]) + 2R) + �:Combining these two inequalities and simplifying, we have( Nc2(32�) � k)l([a; b]) � 2Rk + (N2 + 1)c+ �:By our choice of N , ( Nc2(32�) �k) is positive, so the above inequality gives an upper bound on l([a; b])and proves the �rst statement of the proposition.To prove the second statement, assume that z0 is a point on e such that EN0(z0) does not comewithin hyperbolic distance R of [x; y]. Let e0 now be the maximal subsegment of e containing z0such that EN0(e0) does not come within R of [x; y]. Let a0 and b0 be the endpoints of e0. There is30



a point in EN0(a0) and a point in EN0(b0) that come within R of points a and b, respectively, of[x; y]; without loss of generality we may assume that a0 and b0 themselves satisfy d(a0; a) = R andd(b0; b) = R. By the same reasoning as above, there is an upper bound m on l([a; b]) that dependsonly on �, k and �. Now we havelel(e0) � k � del(a0; b0) + � � k(l([a; b]) + 2R) + � � k(m+ 2R) + �:Hence del(z0; [x; y]) � del(z0; a0) + del(a0; a) � lel(e0) +R � k(m+ 2R) + �+R:24.2 Extension of h to the endpoints of raysReturning to the setting of Theorem C, if r : [0;1) ! X is a geodesic ray whose endpoint � atin�nity lies on one of the sets @1H� then it is fairly easy to see that the restriction of h to theray r extends continuously to �. It is more di�cult to extend h along a ray whose endpoint doesnot lie on the boundary of any electric set. We will use the following terminology, given a system(�; fS�g):De�nition 4.4 If � 2 @1� does not lie on the boundary of any set S� then we call � a residualpoint. We denote by @1�res the set of residual points in @1�.The following result shows in particular that if r : [0;1)! � is a geodesic ray whose endpointat in�nity is a residual point then r is an electric quasigeodesic.Theorem 4.5 There exist constants a, b, a0 and A such that if r is a geodesic segment or ray in� starting at 0 then there exists a sequence (�n) of sets that are either electric sets or single pointson r, such that the following hold:(1) [n�An covers r;(2) an� b � de(0; �n) � a0n; and(3) ajm� nj � b � de(�m; �n) � a0jm� nj:The sequence (�n) is in�nite if the endpoint at in�nity of r is a residual point, and is �niteotherwise.Proof:Note �rst that up to some adjustment of constants, (2) is a consequence of (3); thus we needonly show that (1) and (3) hold. 31



We will build our sequence (�n) out of electric sets that remain close to r for a long time;wherever there is no such electric set, we will instead include a point on the ray r. If we make surethat these electric sets and points appear at regular intervals (that is, that any two adjacent onesare not too far apart) then it is easy to show the right-hand side of the inequality in (3). To seethat the left-hand side of the inequality holds, we show that because of the way we have chosenthe members of the sequence, any electric quasigeodesic from �n to �m must either travel throughmany electric sets or it must spend a long time in the complement of the electric sets; in eithercase, we get a lower bound on its electric length.So, set x0 = 0 and consider the set �0 of those S� that come withinD of x0, whereD = D(�; 1; 1)is the constant from Proposition 4.3. If �0 is empty then take �0 = fx0g. If �0 is nonempty thenit is a �nite set since the electric sets are all separated from each other by at least c. So ifk� = maxft : d(r(t); S�) � Dg then there is an electric set S�0 in �0 for which k�0 is maximal overall elements of �0 (note that k�0 may be in�nity). Take �0 = S�0 . Let y0 denote the last pointin fp 2 r : d(p; S�0) � Dg when traveling away from 0, that is, y0 = r(k�0) (note that there willbe such a point y0 except when the endpoint at in�nity of r is in S�0 or perhaps when r is a �nitesegment, in which cases the sequence (�n) terminates here). If �0 is empty then set y0 = x0.We wish to construct a sequence (�n) of sets that are close enough together that for some A theunion of their A-neighborhoods covers r, but far enough apart that each �n contributes a de�niteamount to the electric length of any path connecting two of the sets �j and �k such that j < n < k.Accordingly, let x1 be the point 2D + 2c units farther along r than y0 (again traveling awayfrom 0). Let �1 be the (at most �nite) set of those electric sets that come within D of x1. Notethat �0 and �1 are disjoint. If �1 is empty then take �1 = fx1g. Otherwise, let S�1 be an elementof �1 for which k�1 is maximal over all elements of �1. Take �1 = S�1 . Let y1 be the last point infp 2 r : d(p; S�1) � Dg (again, there will be such a last point except when the endpoint of r is inS�1 or perhaps when r is �nite, in which cases the sequence terminates here). If �1 is empty thentake y1 = x1. Let x2 be the point 2D+2c units farther along r than y1. Continue constructing thesequences (�n), (xn) and (yn) in this manner (see Figure 8). Note that the sets �n are all disjoint.To show that the sequence (�n) satis�es (1), observe �rst that �D+q+8�n contains the interval[xn; yn]. This is trivial if �n = xn = yn. If �n is an electric set then by construction there arepoints an and bn in �n such that d(xn; an) � D and d(yn; bn) � D. This implies that the segment[xn; yn] lies withinD+8� of the geodesic segment [an; bn], since the quadrilateral [xn; yn][ [xn; an][[an; bn][ [bn; yn] is 8�-narrow; also, every point in [an; bn] lies within q of a point on �n, since �n isq-quasiconvex. Thus the sets �D+q+8�n cover all of r except possibly the intervals [yn; xn+1]; theseintervals all have length 2D + 2c, so if we set A = 3D + q + 8� + 2c then [n�An covers r.So it remains to show that the left-hand inequality in (3) holds, that is, there exist constantsa and b such that for all n and m, ajm � nj � b � del(�m; �n). We will show that there is aconstant a such that del(xm; xn) � ajm � nj � a � 1; the triangle inequality then gives us that32
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Figure 8: A possible con�guration of some of the sets in the sequence (�n).del(�m; �n) � ajm� nj � a� 1� 2D.Let emn be an electric (1; 1)-quasigeodesic path from xm to xn, so that del(xm; xn) � lel(emn)�1.For each i strictly between m and n we will construct a segment of emn of a de�nite electric length;if we can control the extent to which these segments overlap then we can get a lower bound onlel(emn) in terms of jm� nj.By Proposition 4.3, for every i strictly between m and n there is a point x0i in EN0(emn) suchthat d(xi; x0i) � D. If x0i is in the complement of the sets S� then it lies on a segment of emn \ Cwhose length is at least c. Choose a subsegment si such that si contains x0i and l(si) = c. Settinga = 12c, each such segment si contributes 2a to lel(emn), and if j 6= k then sj \ sk is at most a pointsince by our construction d(x0j ; x0i) � 2c.If x0i lies in some electric set Si then there is a segment of emn of length at least c between Siand the next electric set emn enters; choose ti to be the subsegment of that segment that abuts Si,and whose length is c. Each segment ti contributes 2a to lel(emn), and if j 6= k then tj \ tk = ;since by construction Sj 6= Sk (since Sj 2 �j and Sk 2 �k, and �k \�j = ;).Thus, we have constructed n�m� 1 segments of emn, each of which contributes 2a to lel(emn).It is possible for sj and tk to overlap, but by counting all the lengths of the segments sj and tk wehave at worst counted some pieces twice, so we havelel(emn) � 12[Xj l(sj) +Xk l(tk)] = 12(2a(jn�mj � 1)) = a(jn�mj)� aand hence del(xm; xn) � a(jn�mj)� a� 1. 2Returning to the setting of Theorem C, if two points x and y in X are far from each other inthe electric metric on X then we have seen that h(x) and h(y) are far apart in the standard metricon Y . If r : [0;1) ! X is a geodesic ray whose endpoint at in�nity is a residual point then the33



previous result gives us a sequence (�n) of sets close to r whose electric distance from 0 is gettinglarge linearly with respect to n; thus, the sets h(�n) are also getting far from 0 linearly with respectto n. The sets h(�n) are uniformly quasiconvex, so by Proposition 3.9 their visual diameters aregetting small exponentially fast with respect to n; hence the sum of their diameters is �nite. Thisenables us to show the following:Theorem 4.6 Let r : [0;1)! X be a geodesic ray from 0 to a point � on @1X. Then hjr extendscontinuously to �.Proof:Let L and � denote the quasi-Lipschitz constants of h and the quasi-isometry constants of hE .If � lies on the boundary of some electric set H� then since H� is quasiconvex, by Propositions3.5(b) and 3.7 for large values of t there are points pt in H� such that each pt is within a boundeddistance of r(t). As t ! 1, the points h(pt) converge to a unique point � in @1Y , since hjH�extends continuously to the boundary; so since h is quasi-Lipschitz, h(r(t)) must also tend towards� as t!1.Otherwise � is a residual point. In this case Theorem 4.5 gives an in�nite sequence (�n) of setssuch that [n�An covers r and del(0; �An ) � a � n� b�A; so d(0; h(�An )) � 1L(a � n� b�A)� �. Thesets h(�n) are all q-quasiconvex (since each �n is either a point or one of the sets H�), and sinceh is (L; �)-quasi-Lipschitz we have h(�An ) � (h(�n))LA+�; hence by Proposition 3.8 the sets h(�An )are all Q-quasiconvex where Q = q + LA+ �+ 8�. Thus we have for every n,diamvis(h(�An )) � �w�[ 1L (a�n�b�A)��]+Q;by Proposition 3.9 (where diamvis denotes the diameter in the visual metric j � jw on Y ). Thus theseries Xn diamvis(h(�An ))is dominated by the series Xn �w�[ 1L (a�n�b�A)��]+Q;which converges since w > 1. Therefore, by going out far enough in the sequence (�An ) we canmake the tail end of the �rst series as small as we want. As we travel along r towards � we moveout farther and farther in the sequence (�An ) (see Figure 9); so if we choose T large enough we canmake the visual diameter of the set fh(r(t)) : t � Tg as small as we want. Hence h(r(t)) mustconverge to a unique point as t!1. 2 34
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Figure 9: The path h(r) must terminate at a unique point in @1Y .4.3 Extension of h to the boundaryIn order to extend h to the endpoint of a geodesic ray r, we showed that for the sequence of sets(�n) associated to r by Theorem 4.5, the series1Xn=1 diamvis(h(�An ))is convergent. The estimates we used to show that the series is convergent involve constants thatdo not depend of the choice of ray r. This observation enables us to prove the following uniformityproperty of these series: we can make the tail end of such a series as small as we like by going outpast those sets �n such that h(�An ) intersects a �xed ball in Y around 0; the radius of this ball isindependent of the choice of ray r and associated sequence (�n). This is the main fact that we willneed in order to show that h extends to all of @1X.Lemma 4.7 For every � > 0, there is an N 2 Z+ such that the following holds:Let r be a geodesic ray in X starting at 0, and let (�n) be the sequence of sets associated to r byTheorem 4.5. Then Xj:d(0;h(�Aj ))�N diamvis(h(�Aj )) < �2 :Sketch of proof: 35



Let �k = f�Aj : k < d(0; h(�Aj )) � k + 1g. The idea of the proof is as follows: if �Aj is in �kthen by Proposition 3.9 we have that diamvis(h(�Aj )) � �w�k+Q, where Q is the quasiconvexityconstant of the sets h(�Aj ). Note that the series in the statement of the lemma is the same as theseries 1Xk=N[ X�Aj 2�k diamvis(h(�Aj ))];hence it is dominated by the series 1Xk=N j�kj�w�k+Q:Because the sets �m and �n are at least a � jn�mj � b apart in the electric metric, their images arealso far apart, and we get an upper bound on the number of sets �An in each �k, roughly proportionalto k; concretely, it is easy to show that there exist constants c1 and c2, independent of the choiceof ray r and sequence (�n), such that j�kj � c1k + c2. Thus each term of the series1Xk=0X�k diamvis(h(�Aj ))is bounded above by the corresponding term of the convergent series1Xk=0(c1k + c2)�w�k+Q:So by going out far enough in the �rst series (where \far enough" is independent of r and (�n)) wecan make its tail end as small as we like. 2We are now able to proveTheorem C Let X and Y be proper, geodesic �-hyperbolic spaces, fH�g a collection of closed,disjoint path-connected subsets of X, and h : X ! Y a quasi-Lipschitz map such that for every H�,hjH� extends continuously to a continuous map h : @1H� ! @1Y . If (X; fH�g) and (Y; fh(H�)g)satisfy (�1)� (�3) and the induced map hE : EX ! EY is a quasi-isometry then h extends contin-uously to a continuous map h : @1X ! @1Y .Proof:Let � 2 @1X. By Theorem 4.6, if r : [0;1) ! X is a geodesic ray from 0 to � then the imageunder h of r approaches a unique point � in @1Y . The Hausdor� distance between any two raysfrom 0 to � is �nite by Proposition 3.5(b), so since h is quasi-Lipschitz the images of these raysunder h must both approach the same point as t ! 1, by Proposition 3.5(a); thus, � does notdepend on the choice of r. 36



Given � > 0, let V� denote the open ball of radius � around � in the visual metric on Y . We willshow that for every � > 0 there is a neighborhood of � in X that is mapped by h into V�.To construct this neighborhood, we will start with a certain open set W in X that is mappedby h into V �2 , and consider the set S consisting of all points x in X such that some geodesic segment[0; x] intersects W . We will see that W can be chosen so that S will contain a neighborhood of �in X (see Figure 10). If x is a point in S then let qx be a point of W \ [0; x]. The point h(qx) is in
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Figure 10V �2 , so if we could show that h(x) and h(qx) are within �2 of each other in the visual metric then wewould have that h(x) 2 V�, which is what we would like. In order to make this true we will have tomodify S, in such a way that the resulting set still contains a neighborhood of �.If (�n) is the sequence of sets associated to [0; x] by Theorem 4.5, consider the subsequence(�nk) consisting of those sets that come within A of [qx; x]; note that the sets (�Ank) cover [qx; x].Let N be the constant from Lemma 4.7. If for all nk we were to have h(�Ank) \B(0Y ; N) = ; thenthe sum of the visual diameters of the sets h(�Ank) would be at most �2 ; so since h([qx; x]) is containedin the union of these sets, we would have dvis(h(x); h(qx)) � �2 . But we cannot guarantee that thiswill be the case; there is no reason to expect that the sets h(�Ank) will not intersect B(0Y ; N). Toprevent this from occurring, we will carve out of S as much as possible of those sets HA� for whichh(HA� ) intersects B(0Y ; N), and, since some of the sets �n may consist of single points in C (thecomplement of the sets H�), we will also remove some parts of C whose image under h intersectsB(0Y ; N). 37



So, let � denote the collection of those sets HA� such that h(HA� ) intersects B(0; N) in Y . Ifh(HA� ) intersects B(0; N) then h(H�) must intersect B(0; N + LA + �); this is a compact set, sosince the sets h(H�) are all separated from each other by at least c, only �nitely many of them canintersect B(0; N + LA + �). Hence � is a �nite collection. If � does not lie in HA� for any of theHA� in �, let U1 be a neighborhood of � that is disjoint from the sets HA� in �. Otherwise, let U1be a neighborhood of � su�ciently small that if U1 \ HA� 6= ; (where HA� 2 �) then h(U1 \ HA� )is contained in V �2 (we can choose such a neighborhood since hjHA� extends continuously to theboundary).Let U2 be a neighborhood of � in X such that h(U2) does not intersect B(0; N) in Y . If r is ageodesic ray from 0 to � then by the previous theorem we can choose a point pr on r\U1\U2 suchthat h(pr) 2 V �2 . The map h is not assumed to be continuous, but since h is (L; �)-quasi-Lipschitz,if we choose pr far enough out on r then we can �nd a neighborhood Wr of pr in U1 \ U2 that ismapped by h into V �2 : concretely, choose pr far enough along on r so that the ball in Y aroundh(pr) of radius 1 + � is contained in V �2 ; then the ball around pr of radius 1L is mapped by h intoV �2 . Let W = [rWr, where the union is taken over all geodesic rays from 0 to � (with only onepoint pr being associated to each ray r). As before, let S be the set of all x 2 X for which [0; x]intersects W .Claim: U1 \ U2 \ S contains a neighborhood of �. U1 and U2 are open neighborhoods of �, sowe need only show that there is a neighborhood of � contained in S; we will show that for anysequence (xi) tending towards �, eventually all terms of the sequence are in S. Suppose insteadthat (xi) has an in�nite subsequence (which we will again call (xi)) that is disjoint from S. ByAscoli's theorem, some subsequence of the geodesic rays [0; xi] converges to a path in X , which isnecessarily a geodesic ray from 0 to �. But then eventually the rays [0; xi] must intersect W , whichgives a contradiction.So to show that h extends continuously to � we need only show that U = U1\U2\S is mappedby h into V�.Let x be a point in U . If x lies in one of the sets HA� in � then by construction h(x) 2 V �2 � V�and we are done. Otherwise, let s be a geodesic segment (or ray) from 0 to x. Let s0 be the maximalsubsegment of s that terminates at x, that lies completely in U , and that is disjoint from the setsHA� in �. Note that if p is the initial endpoint of s0 then h(p) 2 V �2 , since either p is in W or it isin the portion of one of the sets HA� that is mapped into V �2 . We will show that the diameter ofh(s0) in the visual metric is less than �2 , so that h(x) is in V�.Let (�n) be the sequence of sets associated to s by Theorem 4.5. By accepting only those �nsuch that �An \ s0 6= ; we get a subsequence (�nk) such that [�Ank covers s0, and such that for allnk, h(�Ank) does not intersect B(0Y ; N) (this is true because if �nk is an electric set H� then HA�is not in �, by construction; and if �nk is a single point on s0 then that point is in U2, hence itsimage under h is not in B(0Y ; N)). 38



Now by Lemma 4.7, Xnk diamvis(h(�Ank)) < �2 :Hence dvis(h(p); h(x)) < �2 , and h(x) 2 V�. 25 The boundary of the electric spaceIf � is a proper, geodesic, �-hyperbolic space and fS�g is a collection of closed, disjoint, path-connected subsets of �, we have de�ned the electric space E� to be the space obtained from � bycollapsing each set S� to a point; E� inherits an electric distance from the distance function on �.In this section we will show that if (�; fS�g) satis�es (�1)� (�3) then the space E� is hyperbolicin the sense of Gromov. As we have seen, a hyperbolic space can be equipped with a boundaryat in�nity in a natural way; we will show that the boundary of E� is homeomorphic to the set@1�res of residual points of @1� (recall that a point in @1� is called residual if it does not lieon the boundary of any set S�). The homeomorphism from @1�res to @1E� is obtained as theextension to @1�res of the natural projection �� : �! E�.If h : X ! Y is as in Theorems C and D then the induced map hE : EX ! EY on the electricspaces is a quasi-isometry, so by Theorem 3.10 it extends to an injective map hE : @1EX ! @1EY .If �X : X [ @1Xres ! EX and �Y : Y [ @1Yres ! EY are the projection maps then we havethat hj@1Xres = ��1Y � hE � �X j@1Xres . So the injectivity of hE on @1EX tells us that hj@1Xres isinjective; in fact, it tells us more: we will see that if � 2 @1Xres then for all � 2 @1X, h(�) 6= h(�).This is the statement of Theorem D.5.1 Hyperbolicity of the electric spaceSuppose (�; fS�g) satis�es (�1)� (�3). We will begin by proving the following narrowness propertyfor electric quasigeodesic \triangles" in �:Proposition 5.1 Let (�; fS�g) satisfy (�1)� (�3). Let a, b and c be points in � and let p, q andr be electric (k; �)-quasigeodesics between a and b, b and c, and a and c, respectively. Then everypoint on p lies within electric distance 4� + 2D(�; k; �) of some point of q or r.Proof:Let u be a point on p. By Proposition 4.3 there is a point u0 on [a; b] within electric distance Dof u. Since � is �-hyperbolic, there is a point v0 on either [b; c] or [a; c] within hyperbolic distance 4�of u0. Again by Proposition 4.3, there is a point v on either q or r within hyperbolic distance D ofv0. Since electric distance is less than or equal to hyperbolic distance, we have del(u; v) � 4�+2D.2 39



E� is not necessarily a geodesic space, so the above proposition is as close as we can get to ananalog of Proposition 3.2. However, it is su�cient to show that E� is hyperbolic in the sense ofGromov. Let 0 denote the point in E� that corresponds to the basepoint 0 in �. We will denotean electric Gromov product on both � and E� by(ajb)el = 12[del(a; 0) + del(b; 0) � del(a; b)]:A consequence of the previous proposition is the following, which will enable us to prove hyperbol-icity:Proposition 5.2 Let x and y be points in E�, and let p be a (1,1)-quasigeodesic whose endpointsare x and y. Then there exists a constant S that depends only on the hyperbolicity constant of �,such that del(p; 0) � S � (xjy)el � del(p; 0) + S:The proof of the above is analogous to the proof when the space in question is geodesic and pis a geodesic rather than a quasigeodesic (see e.g. [17]). This gives usTheorem 5.3 Let (�; fS�g) satisfy (�1)� (�3). The space E� is Gromov-hyperbolic.Proof:Let a, b and c be points in E�, and let p, q and r be (1; 1)-quasigeodesics between a and b, band c, and a and c, respectively. Let u 2 p be such that d(0; u) = d(0; p). By Proposition 5.1 thereis a point v in q or r (say q) such that del(u; v) � 4� + 2D(�; 1; 1). We have(ajb)el � d(p; 0) � S = d(u; 0) � S � d(v; 0) � (4� + 2D)� S � d(q; 0) � (4� + 2D + S)� (bjc)el � (4� + 2D + 2S):Thus (ajb)el � minf(bjc)el; (ajc)elg � (4� + 2D + 2S): 25.2 The boundary of the electric spaceWe can now prove that the boundary at in�nity of E� is naturally homeomorphic to the space ofresidual points in @1�. We will need the following simple lemma:Lemma 5.4 Let (vn) be a sequence in � that converges to a residual point � in @1�. Thendel(0; vn)!1 as n!1. 40



Proof:Let rn : [0;1] ! � be the map that sends the interval [0; d(0; vn)] isometrically onto thegeodesic segment [0; vn], and sends the interval [d(0; vn);1] onto vn. By Ascoli's theorem, a sub-sequence of (rn), which we will again call (rn), converges to a geodesic ray r from 0 to �, in thetopology of uniform convergence on compact sets.Suppose that del(0; vn) does not tend to in�nity as n ! 1; then there is a constant B < 1and a subsequence of (vn), which we will again call (vn), such that del(0; vn) � B for all n.Claim: there is a constant � such that if w is a point in the image of any ray ri then del(0; w) < �.This follows from the fact the del is roughly monotonic on any geodesic segment. More precisely,let (�k) be the sequence of sets associated to ri in Theorem 4.5, and let n be such that vi (theendpoint of ri) is contained in �An . Then del(0; �n) � B+A, so since del(0; �n) � a �n� b, we havethat n � B+A+ba . The point w, being before vi as we travel along ri away from 0, is contained in �Amfor some m � n. By Theorem 4.5 we have del(0; �m) � a0(B+A+ba ), and del(0; w) � a0(B+A+ba ) +A.So if we assume that del(0; vn) does not tend to in�nity as n!1 then we must have a sequenceof rays (rn) converging to a ray r from 0 to �, and for all n we have that every point on rn is withina uniformly bounded electric distance of 0. But then every point on r must be within a boundedelectric distance of 0; this is impossible by Theorem 4.5, since � is a residual point in @1�. 2We are now able to proveTheorem 5.5 Let (�; fS�g) satisfy (�1) � (�3). Then a sequence (xn) in � converges to a pointin @1�res if and only if the sequence (��(xn)) converges to a point in @1E�, so that �� extendsto a homeomorphism of @1�res with @1E�.Proof:First let (xn) be a sequence of points in � that tend toward a point � in @1�res. Since (xn) isa convergent sequence, we have that limm;n!1(xmjxn) =1. We wish to show that the sequence(��(xn)) converges to a unique point in @1E�.Suppose instead that (xn) contains two subsequences (yi) and (zj) such that the sequences(��(yi)) and (��(zj)) do not converge to the same point in @1E�, or do not even tend towardsthe boundary. Then for some constant M we havelim infi;j!1 (��(yi)j��(zj))el =M <1:For every i and j let eij be an electric (1; 1)-quasigeodesic from yi to zj . Then we havelim infi;j!1 del(0; eij) �M + S;where S is the constant from Proposition 5.2. So there exist in�nitely many pairs (i; j), withi; j !1, for which there exists a point uij on eij such that del(0; uij) �M + S + 1.41



By Proposition 4.3, for every such point uij there is a point vij on [yi; zj ] such that d(uij ; vij) �D(�; 1; 1); hence del(0; vij) �M + S + 1 +D.The sequences (yi) and (zj) both tend towards �, so (vij) also tends towards � as i; j !1 (seeFigure 11). But this gives a contradiction, by the previous lemma. Thus, such subsequences (yi)
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Case (1) cannot occur, since if � 2 � then �� is de�ned and continuous at � and maps � to apoint in E�, not to � in @1E�.Suppose case (2) occurs. We will show that lim infi;j!1(��(yi)j��(yj))el < M <1 for someM , which will give a contradiction since (yi) is a subsequence of (xn). In fact, we will show thatthere exists a constant M <1 such that for every i 2 Z+, there are in�nitely many j 2 Z+ suchthat (��(yi)j��(yj))el < M .Choose some point w in S� , and let r be a geodesic ray from w to �. S� is q-quasiconvex, sosince � 2 @1S�, by Proposition 3.7 every point on r is within q + 8� of a point on S�. Fix i, andfor each j, let sj be a geodesic segment from yi to yj. By Ascoli's theorem, a subsequence (sjk) of(sj) converges to a geodesic ray s : [0;1) ! � from yi to �. By Proposition 3.5(b), there exists areal number T � 0 such that d(s(t); r) � 8� for all t � T . So there is some N 2 Z+ such that forall indices jk > N there is a point zjk on sjk that is within 8�+1 of r, and hence within 16�+1+ qof S� .Let ejk be an electric (1; 1)-quasigeodesic from yi to yjk . By proposition 4.3 there is a point z0jkin EN0(ejk) that is within a (non-electric) distance D(�; 1; 1) of zjk (see Figure 12).
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del(S�; 0) is some �nite number, so (��(yi)j��(yjk))el is bounded above by a constant that isindependent of i and jk. This gives a contradiction.Suppose case (3) occurs. Since � 6= � we have lim supi;j!1(yijzj) < M < 1 for some M . Wewill show that lim supi;j!1(��(yi)j��(zj))el is �nite; this will give a contradiction since (yi) and(zj) are subsequences of (xn). Let sij be a geodesic segment from yi to zj; by Proposition 3.4,d(0; sij) � (yijzj) + 4�.Let i and j be su�ciently large that (yijzj) < M + 1, so that d(0; sij) < M + 1 + 4�; let aij bea point on sij such that d(0; aij) < M + 1+ 4�. If eij be an electric (1; 1)-quasigeodesic from yi tozj then there is a point a0ij in EN0(eij) that is within hyperbolic distance D of aij. We have(��(yi)j��(zj))el � del(eij ; 0) + S � del(a0ij ; 0) + S� del(a0ij ; aij) + del(aij ; 0) + S � d(a0ij ; aij) + d(aij ; 0) + S � D +M + 1 + 4� + S:This again gives a contradiction.Thus cases (1)-(3) cannot occur; so if the sequence (��(xn)) converges to a point � 2 @1E�then (xn) converges to a unique point � that lies in @1�res. 25.3 The identi�cations of the map h : @1X ! @1YWe can now prove Theorem D, which can be written as:Theorem D Let h : @1X ! @1Y be the map constructed in Theorem C. If � and � are points in@1X such that h(�) = h(�) then � and � are not residual points.Proof:Let h(�) = h(�), and suppose that � is a residual point. Write � = h(�) = h(�). Let (xn) and(yn) be sequences in X that converge to � and �, respectively. The sequences (h(xn)) and (h(yn))both converge to �. We will show �rst that � must lie in @1Yres.Since � 2 @1Xres, by the preceding theorem we have that the sequence (�X(xn)) convergesto a point �X(�) in @1EX . The map hE : EX ! EY induced by h extends continuously toa map hE : @1EX ! @1EY by proposition 3.10, so the sequence hE(�X(xn)) converges to apoint hE(�X(�)) in @1EY . For all x 2 X [ @1Xres, we have hE � �X = �Y � h. So for alln, hE(�X(xn)) = �Y (h(xn)). So �Y (h(xn)) converges to a point in @1EY , and by the previoustheorem the limit � of the sequence (h(xn)) must be in @1Yres.Now since � 2 @1Yres we have that the sequences (�Y (h(xn))) and (�Y (h(yn))) both convergeto a point �Y (�) in @1EY .Since hE : EX ! EY is a quasi-isometry, it has a quasi-inverse, that is, a quasi-isometrygE : hE(EX) ! EX such that for some constant A, del(a; gE � hE(a)) � A for all a 2 EX . Since44



gE is a quasi-isometry it extends continuously to a map from the boundary of hE(EX) to @1EX .We have then that the sequences (gE(�Y (h(xn)))) and (gE(�Y (h(yn)))) both converge to the pointgE(�Y (�)) in @1EX .Now since �Y (h(xn)) = hE(�X(xn)), we have for all nd(�X(xn); gE(�Y (h(xn)))) = d(�X(xn); gE � hE(�X(xn)) � A;and likewise d(�X(yn); gE(�Y (h(yn)))) � A:So the sequences (�X(xn)) and (�X(yn)) also converge to gE(�Y (�)) by Proposition 3.5(a).But then by the previous theorem the sequences (xn) and (yn) must converge to the same pointin @1Xres. This is a contradiction, since � 6= �. 2In the Kleinian groups problem, we know that the semiconjugacy ~g : Ĉ ! Ĉ from the actionof �0 to the action of � identi�es points on the closure of each component 
� of the domain ofdiscontinuity of �0 according to the ending lamination ~��; we wish to show that these are theonly identi�cations that occur. Since the sets 
� can intersect in their boundaries, one obstacle toproving this is the possibility that the intersection of two sets 
� and 
� might contain a pointthat is on the closure of a leaf of ~�� and also on a leaf of ~��; then all the points on these twoleaves will be identi�ed by ~g. Points on di�erent sets 
� and 
� would clearly also be identi�edif there were a chain of components of the domain of discontinuity 
0; :::;
m, with 
0 = 
� and
m = 
� , and leaves l0; :::; lm of the ending laminations of 
0; :::;
m, respectively, such that foreach i, one endpoint of li is an endpoint of li�1 and the other endpoint of li is an endpoint ofli+1, as in Figure 13 (we will show later in this section that in fact this cannot occur). Our next
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Theorem E Let X, Y , fH�g and h : X ! Y be as in Theorem C, and suppose that the inducedmap hE : EX ! EY on electric spaces is a bi-Lipschitz homeomorphism. If � and � are points in@1X such that h(�) = h(�) then there is a �nite chain of electric sets fH0; :::Hmg such that(1) � 2 @1H0 and � 2 @1Hm.(2) For i = 0; :::;m � 1 there is a point pi 2 @1Hi \ @1Hi+1 such that h(pi) = h(�) = h(�).Proof:Write � = h(�) = h(�). Since h(�) = h(�), by Theorem D there exist electric sets H� and H�such that � 2 @1H� and � 2 @1H�. Choose a point u 2 h(H�) and a point v 2 h(H�); the rays[u; �) and [v; �) terminate at the same point on @1Y , so by Proposition 3.5(b) there are sequences(x0n) on [u; �) and (y0n) on [v; �) that tend towards � and such that d(x0n; y0n) � 8�. The sets h(H�)and h(H�) are q-quasiconvex, so every point on [u; �) or [v; �) is within q+8� of a point on h(H�)or h(H�), respectively, by Proposition 3.7; hence there are sequences (xn) and (yn) on h(H�) andh(H�), respectively, that tend towards � and such that d(xn; yn) � q+16�. Let sn be the geodesicsegment from xn to yn. Let an be a point in H� that is mapped by h to xn, and bn a point inH� that is mapped to yn; we will construct a �nite chain of points fan0; bn0; an1; bn1; :::; anM ; bnMgfrom an to bn whose behavior we can control.Set an0 = an. If H� 6= H�, let sn1 be the component of sn \ h(C) that begins at the last pointin sn \ h(H�), traveling towards yn (recall that C is the complement in X of the electric sets).The map h restricted to C is a homeomorphism, so we may pull sn1 to obtain a path h�1(sn1)in C whose initial endpoint lies in H� and whose terminal endpoint lies in some other electric setHn1; let bn0 denote the initial endpoint and an1 the terminal endpoint of h�1(sn1) (see Figure 14).If Hn1 6= H�, let sn2 be the component of sn \ h(C) that begins at the last point in sn \ h(Hn1,
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length at least c (the minimum separation between any two electric sets), so it follows that there isa uniform upper bound on the number of paths sni, for each n. So since the map hE : EX ! EYis a bi-Lipschitz homeomorphism, we have the following:(1) There is some constant M such that for all n, the above construction terminates afterproducing at most M points ani and M points bni.(2) There is an upper bound B (independent of n and i) on d(bni; an(i+1)).We wish to produce collections fan0; bn0; an1; bn1; :::; ank; bnkg for each n that all have the samenumber of elements; so if k < M , set an(k+1) = bn(k+1) = an(k+2) = ::: = anM = bnM = bn.Choose some subsequence fnkg of Z+ such that for all i between 0 and M , the sequences(anki) and (bnki) converge in X to points pai and pbi , respectively. By our construction we haveh(pai ) = h(pbi) = � for all i = 0; 1; :::;M , so that in particular the points pai and pbi all lie in @1Xand, by Theorem D, are not residual points.For each i and each nk, we have that d(bnki; ank(i+1)) < B; hence by Proposition 3.5(a) thesequences (bnki) and (ank(i+1)) converge to the same point in @1X as nk !1, that is, pbi�1 = pai .Set pi = pai ; we will be done if we can show that for i� 0; :::;M , pi and pi+1 lie in the boundary ofthe same electric set, since we already know by construction that p0 lies in @1H� and pM lies inH�.Fix i; we know that pi = limnk!1 anki and pi+1 = limnk!1 bnki. For each nk, anki and bnki lieon the same electric set Hnki. There are two possibilities for the sequence (Hnki): either in�nitelymany of the sets Hnki are the same, or there is some in�nite subsequence of (Hnki) whose elementsare all distinct. Suppose �rst that in�nitely many of the sets Hnki are the same; call this electricset Hi. Then pi and pi+1 both lie on Hi, and we are done. Otherwise there is some subsequence of(Hnki), which we will again call (Hnki, whose elements are all distinct. Since there is a minimumseparation between any two electric sets, for every N <1 there is an upper bound on the numberof electric sets that intersect B(0; N) in X; hence as nk ! 1, d(0;Hnk) ! 1. The electric setsare uniformly quasiconvex, so by Proposition 3.9 we have diamvis(Hnk) ! 0 as nk ! 1. Thusdvis(anki; bnki)! 0 as n!1; so in this case the sequences (anki) and (bnki) converge to the samepoint in @X, that is, pi = pi+1. So since pi = pi+1 is not a residual point, we certainly have againthat pi and pi+1 lie in the boundary of the same electric set. 2This enables us to proveTheorem B Let ~g : Ĉ ! Ĉ be the map constructed in Theorem A. If x and y are in Ĉ then~g(x) = ~g(y) i� for some 
�, x and y lie on the closure of some leaf or complementary componentof ~��.Proof:If the domain of discontinuity 
 of �0 is empty or has two components, we have already seen47



that the statement of the theorem holds. For the remainder of the proof, we assume that 
 hasin�nitely many components (the only remaining possibility, by Lemma 2.4). In this case we haveseen that the map ~g : (H3; fH�g)! (H3; f~g(H�)g) satis�es the conditions of Theorems C, D andE (recall that the sets H� are the components of the complement of the convex hull of �0, andeach set H� meets the boundary Ĉ of H3 in the closure of a component 
� of 
).We wish to show that is x 2 
� and y 2 
� where 
� and 
� are distinct components of 
,then ~g(x) 6= ~g(y). In view of Theorem E and the discussion immediately preceding it, it will su�ceto show that if � 2 
� \
� then � is not an endpoint of any leaf of the ending laminations ~�� and~��. So let � 2 
� \ 
�; we will show that � is not an endpoint of a leaf of ~��. Let �� � �0 and�� � �0 be the stabilizer subgroups of 
� and 
�, respectively, so that the boundary circle of
� is the limit set of ��; likewise for 
�. Write ��� = �� \ ��. By work of Susskind (see [29]),the intersection ��� \ ��� of the limit sets of �� and �� is the limit set ���� of ���, and ��� isgeometrically �nite.Equip 
� with a Poincar�e metric and realize the leaves of ~�� as geodesics. Let CH(���� )denote the convex hull in 
� of ���� . Since ��� is geometrically �nite, CH(���� )=��� is acompact surface. We will show that the quotient of CH(���� ) by �� is the same as its quotientby ��� , so that CH(����)=�� is a compact subsurface of Se = 
�=��.Let 
 2 ��. If 
 2 ��� then 
(CH(���� )) = CH(���� ). If 
 is not in ��� then we claimthat 
(CH(���� ))\CH(���� ) = ;. If 
(CH(���� ))\CH(���� ) is nonempty then there must bepoints a and b in ���� and c and d in 
(���� ) such that c and d separate a and b on the boundarycircle of 
�. But then since a and b lie on the boundary of 
� and c and d lie on the boundaryof 
(
�), the sets 
� and 
(
�) must intersect (see Figure 15); this is impossible since 
 is not in��, the stabilizer of 
�.Thus the quotient of CH(���� ) by �� is the same as its quotient by ���, so that CH(���� )=��is a compact subsurface of Se with geodesic boundary. Hence the boundary of CH(����)=��� inSe consists of a �nite collection of simple closed geodesics.Now suppose � 2 
� \ 
� and � lies on the closure of a leaf of ~��; then � is the endpoint of ageodesic half-leaf ~l of ~��. Let l denote the projection of ~l to Se; l is a half-leaf of �e.Since � is in ���� , either:(1) ~l is asymptotic to a boundary component of CH(���� ); or(2) ~l is eventually contained in CH(���� ). (see Figure 16).In either case, if c is a simple closed curve in the boundary of CH(���� )=��, c intersects ltransversely at most once; so since l is dense in �e, in fact �e cannot ever intersect c transversely.But then either c is contained in �e, which is impossible since �e contains no closed curves, or c isdisjoint from �e, which is also impossible since �e is maximal. So we have arrived at a contradiction.2 48
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