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Abstract

We consider the problem of characterizing topologically the action of a Kleinian group on
the Riemann sphere C. We prove that certain geometrically infinite Kleinian group actions on
C can be obtained from geometrically finite ones by a semiconjugacy that is determined by the
end invariants of the geometrically infinite group. This turns out to be related to the problem of
continuous extensions of maps of hyperbolic 3-space H3 to maps of its boundary at infinity, C.
Along the way we consider the general problem of extending maps to the boundary at infinity
in Gromov-hyperbolic metric spaces. We give criteria for extending to the boundary a map
h: X — Y between hyperbolic spaces if it extends to the boundary of certain subsets of X.

1 Introduction

1.1 Kleinian Groups

If I is a Kleinian group (a discrete group of orientation-preserving isometries of H2), then the
action of I extends naturally to an action by conformal homeomorphisms (Mobius transformations)
on the boundary at infinity € of H3. A fundamental problem is to understand the topology of this
action and its interplay with the geometry of the hyperbolic manifold (or orbifold) H3/T.

The Kleinian groups for which this interplay is best understood are the geometrically finite
groups without parabolics (also known as convex cocompact groups); for these groups, each end of
the quotient manifold corresponds to a collection of components of the domain of discontinuity in
C, which are shuffled by the group action. Moreover, the limit set of such a group is naturally
homeomorphic to the Gromov boundary of the group (see [8, 18]), a purely group-theoretical
structure. If a Kleinian group I' is not geometrically finite, we may try to model its action on
¢ by the action of an isomorphic geometrically finite group I'y, via a semiconjugacy (that is, a
continuous map from C to C that is equivariant with respect to the actions of I'y and I" and a
given isomorphism i : 'y — I'). Thurston has conjectured (see [1]):

Conjecture If I' is a finitely generated Kleinian group then there exists an isomorphic geometrically
finite Kleinian group Uy and a semiconjugacy from the action of 'y on C to the action of I" on C.

We will prove this conjecture in a special case, and show that the identifications that the
semiconjugacy makes on C are completely determined by the end invariants of the quotient manifold
H3/T', which are all either Riemann surfaces or geodesic laminations called ending laminations (see
[4, 30]). This proposed model for the topology of the action has been shown by Cannon and
Thurston to be correct when the quotient manifold is the infinite cyclic cover of a compact surface



bundle that fibers over the circle (see [12]), and more generally by Minsky ([24]) for any surface
group whose quotient manifold admits a uniform lower bound on injectivity radius. We will apply
Minsky’s theorem to certain subgroups of I' to obtain maps from portions of C to C that piece
together to provide the desired semiconjugacy.

In this paper we will study finitely generated torsion-free Kleinian groups that satisfy the
following two conditions:
C1. I is freely indecomposable; that is, I' cannot be written as a non-trivial free product.
C2. There is a uniform lower bound on the injectivity radius at every point of H3/T.

If T satisfies C1 then Bonahon has shown that T' is topologically tame, that is, H3/T is the
interior of a compact manifold (see [4]). By Thurston’s geometrization theorem (see [26, 22])
there exists a geometrically finite group T'g such that the quotient manifolds H3/T'y and H3/T are
homeomorphic. It is this group 'y that we use to model the action of I' on C. We will show the
following;:

Theorem A Let I'g and I' be finitely generated, torsion-free Kleinian groups with homeomorphic
quotients, that satisfy CI1 and C2 and such that Ty is geometrically finite. Then there exists a
homeomorphism g : H3/Ty — H3/I' in the same homotopy class as the given homeomorphzsm
whose lift g : H3 — H3 to the universal covers extends to a continuous, surjective map § : (o=Ye:
that semiconjugates the action of L'y to the action of I'.

When we assume that I' satisfies C'2, the geometrically finite group 'y given by Thurston’s
geometrization theorem is in fact convex cocompact, so that I' may be regarded as a hyperbolic
group in the sense of Gromov. Let OI' denote the Gromov boundary of I, and let Ar C C denote
the limit set of I'. An immediate consequence of Theorem A is

Corollary Let I' be a finitely generated torsion-free Kleinian group that satisfies C1 and C2. Then
there is a continuous, surjective map OU' — Ar that is equivariant with respect to the action of T.

If I’y is as in Theorem A then the components of the domain of discontinuity € of [’y are
topological disks. If Q, is a component of ) that corresponds to a degenerate end of H3/T', then
Q. can be equipped with a lamination Ao that is a lift of the corresponding ending lamination of
H3/T. The semiconjugacy constructed in Theorem A identifies points in the following way:

Theorem B Let g : C — C be the map constructed in Theorem A. If © and y are in C then
g(x) = g(y) iff for some Qq, z and y lie on the closure of some leaf or complementary component

of Aa-

A similar construction appears in holomorphic dynamics; certain filled Julia sets may be ob-
tained from the unit disk by collapsing along the leaves of a lamination (see e.g. [13]).

If i : 'y — I is the isomorphism determined by the homeomorphism between H3/I'g and H3/I'



then any semiconjugacy with respect to ¢ must agree with the semiconjugacy of Theorem A on the
limit set of ['yg. Thus, when I' satisfies C'1 and C'2, Theorems A and B give an alternate description
of the ending laminations of H3/T': they are the laminations determined by the identifications any
semiconjugacy from I'y to I' makes on the limit set of I'y. This point of view is different from that
of the original definition of ending laminations by Thurston, which relies heavily on the internal
geometry of the quotient 3-manifold H3/T.

The main strategy in constructing the semiconjugacy g is as follows: in our setting, if €2, is
a component of the domain of discontinuity of I'g then the closure of €, in C is the boundary
at infinity of a topological half-space H, in H3: the half-spaces H, are the components of the
complement of the convex hull (in H3) of the limit set of I'. Using Minsky’s theorem, for each
set H, we can construct a map §o : Ho, — H? that extends continuously to the boundary and
identifies points according to the ending lamination of €, (if it has one). We piece these maps
together by “filling in” on the convex hull, to obtain a map § : H3 — H2 defined on all of H3. The
map ¢ extends continuously to the boundary of each half-space H,. However, the typical point
in the limit set of 'y will in general not lie on the boundary of a set H,, but rather will be an
accumulation point of some sequence of the sets H,; in fact, the Hausdorff dimension of the limit
set of 'y is strictly greater than the Hausdorff dimension of the portion of the limit set that lies
in the boundary of the sets H, (see [7]). The problem then is to control the map at those points
where the half-spaces accumulate.

1.2 The general extension problem in hyperbolic spaces

Given a map h : X — Y between Gromov hyperbolic spaces, we can ask what is a sufficient
condition for h to extend continuously to a map from the boundary at infinity 0, X of X to the
boundary at infinity 0,,Y of Y (see Section 3 for definitions). One such sufficient condition is that
h is a quasi-isometry (see [18]); but it is certainly not a necessary condition. In this paper we
give a more general condition, motivated by the picture in the Kleinian groups setting. A different
sufficient condition is given by Mitra in [25].

The proof that the map § : H® — H3 constructed in the Kleinian groups problem extends
to the boundary uses ounly coarse properties of hyperbolic space, and can be generalized to the
setting of Gromov hyperbolic spaces. Consider a pair (A, {S,}) where A is a proper, geodesic
Gromov-hyperbolic space and {S,} is a collection of closed, disjoint, path-connected subsets of A.
If we have a map h from A to another hyperbolic space whose restriction to each set S, extends
continuously to the boundary, we may ask whether the map extends continuously to all of 0, A.
To ensure that such a map will extend to the boundary we must mimic some of the regularity that
the Kleinian group actions on H? give to the geometry and arrangement of the collections {H,}
and {§(H,)} in H3. We will consider the following conditions, each of which holds in the Kleinian



groups setting:
(1) The complement C of the sets S, is open and path connected.
(*2) There is some real number ¢ > 0 for which the sets S, are all g-quasiconvex.
(*3) There exists a real number ¢ > 0 such that d(Sq,Sg) > ¢ for all « and S.

It is useful to consider the space Ea obtained from A by identifying each set S, to a point;
after Farb ([15]), we will call this space the electric space of A. The metric on A induces an electric
metric on En. We will show that the space Ea, although generally not a proper metric space, is
hyperbolic in the sense of Gromov; thus, it can be equipped with a natural boundary at infinity.
We will show that the boundary of Ea can be identified with the subset of 0, A consisting of those
points that do not lie on the boundary of any of the sets S,.

If h: X — Y is a map between proper, geodesic Gromov-hyperbolic spaces and there is a
collection of subsets H, of X such that the pairs (X,{H,}) and (Y,{h(H,)}) satisfy (*1) — (x3),
then h induces a map hg : Ex — Ey on the electric spaces. If hy is a quasi-isometry (which we
can arrange to be true in the Kleinian groups setting) then it will extend continuously to a map
from O Ex — OooEy (see e.g. [17]); this will give us information about the extendibility of h at
those points of 0, X that do not lie on the boundary of any set H,. This will enable us to show:

Theorem C Let X and Y be proper, geodesic Gromov-hyperbolic spaces, {Hy,} a collection of
closed, disjoint path-connected subsets of X, and h : X — Y a quasi-Lipschitz map such that for
every Hy, hlm, extends continuously to a continuous map h : OsoHy — 0xY . If (X,{Hy}) and
(Y,{h(Hy)}) satisfy (x1) — (x3) and the induced map hg : Ex — Ey is a quasi-isometry then h
extends continuously to a continuous map h : 0o X — 0xY .

(Note that in this context, where maps are not usually assumed to be continuous, we say that
amap f: X — Y extends continuously to a map from 0, X to 0, Y if for every £ € 00X, if (z,,)
is a sequence in X that converges to &, then f(x,) converges to a point 7 € J,,Y that is uniquely
determined by £.)

Since hg : Ex — Ey is a quasi-isometry its extension to the boundary is in fact injective (see
[18]). This leads to the following result about where h can be non-injective, which will be used to
prove Theorem B:

Theorem D Let h: 050X — OxY be the extension map constructed in Theorem C. If € and p are
points in O X such that h(§) = h(p) then for some a and 8, & € O Hy and p € OsoHp.

If we make the stronger assumption that hy : Ex — Ey is a bi-Lipschitz homeomorphism (this
is true in the Kleinian groups setting) then we can say the following about the identifications of
the map h : 050X — OxY:

Theorem E Let X, Y, {Hy} and h: X — Y be as in Theorem C, and suppose that the induced
map hg : Ex — By on electric spaces is a bi-Lipschitz homeomorphism. If & and p are points in



O0co X such that h(§) = h(p) then there is a finite chain of electric sets {Hy,...Hy,} such that
(1) £ € OsoHy and p € OsoHypy.
(2) Fori=0,...,m — 1 there is a point p; € OscH; N OsxcHjt+1 such that h(p;) = h(€) = h(p).

In the Kleinian groups setting, we will see that such a chain cannot consist of more than one
set Hy; thus two points on C can only be identified by the semiconjugacy if they lie in the closure
of the same component of the domain of discontinuity of I'yg. This gives us Theorem B.

In Section 2 we review background material on Kleinian groups, and discuss the history of
Thurston’s conjecture on semiconjugacies. We use a theorem of Minsky and the structure of
geometrically finite Kleinian groups satisfying C1 to show that Theorem A is a special case of
Theorem C. Section 3 consists of a review of the basic ideas of Gromov-hyperbolic spaces. Section
4 consists of the proof of Theorem C. In Section 5 we study the boundary of the space Ea,
and prove Theorems D and E; we use Theorem E and some additional information about ending
laminations to prove Theorem B.
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2 Kleinian Groups

A Kleinian group is a discrete subgroup Iy of the group of orientation-preserving isometries of
H3. If [y has no torsion (elliptic elements) then Ny = H3/T is a complete, orientable hyperbolic
3-manifold, and I'y = II;(Ny). The group I'y acts by conformal homeomorphisms (Mdbius trans-
formations) on the Riemann sphere C, the boundary at infinity of H3. This action partitions C
into two I'g-invariant sets: the limit set Ap,, which is the set of accumulation points of any orbit
under I'y, and its complement €y, the domain of discontinuity, an open subset of C. Ty acts
freely and properly discontinuously on H3 U Qp; the quotient space Ny = (H3 U Qp,)/I is a
manifold-with-boundary.

2.1 The ends of a hyperbolic manifold

Let X be a Hausdorff locally compact topological space. If K C X is compact, define

e(K) = {E : E a connected component of X \ K, E not compact}.

If there is a compact set K C X such that for every compact set K’ D K the inclusion induces a
bijection ¢(K') — ¢(K) then we call each element of ¢(K) an end of X; this definition is essentially
independent of K, since if K and K' are two such compact sets then there is a natural bijection
between €(K) and e(K'). Heuristically, the ends of X are those parts of X that go off to infinity.



If for some such compact set K the open set F is a connected component of X \ K, we say that
is a neighborhood of the corresponding end.

Geometrically finite ends. Let Ny = H3/F0 be a manifold that satisfies C'l and that has no
cusps (that is, T’y has no parabolic elements), and let CC(Ny) denote the convex core of Ny, which
is the smallest closed convex submanifold of Ny whose inclusion is a homotopy equivalence. The
convex core may be obtained as the quotient by I'y of the convex hull CH (I'g) in H3 of the limit set
of I'y (see [14]). An end of Ny is called geometrically finite if it has a neighborhood that is disjoint
from CC(Ny). And end that is not geometrically finite is called degenerate, or geometrically infinite.
We say that Ny is geometrically finite if all of its ends are geometrically finite; equivalently, Ny is
geometrically finite if its convex core is compact. If Ny has cusps, we say that Ny is geometrically
finite if its convex core has finite volume.

For geometrically finite groups without cusps (that is, convex cocompact groups), Theorem
A has long been known: if Ny = H3/Ty and N = H3/T' are homeomorphic geometrically finite
manifolds without cusps then there is a homeomorphism ¢ : Ny — N whose lift §: H® — H3 is a
quasi-isometry, which (necessarily) extends to a quasiconformal homeomorphism ¢ : C — C that
conjugates the action of I'y to the action of I'.

2.2 Parabolic Pinching

The question of modelling the action of a Kleinian group on C by the action of a convex cocompact
group has largely been answered for geometrically finite groups with parabolics. One class of groups
that has been extensively studied are the regular b-groups, that is, geometrically finite groups that
preserve a simply connected component of the domain of discontinuity (see [3, 20, 2] for discussions
of regular b-groups). If I is a regular b-group then it is a surface group, that is, it is isomorphic to
the fundamental group of a surface; if I' is isomorphic to the fundamental group of a closed surface,
we may try to model its action on ¢ by the action of an isomorphic Fuchsian group (a Fuchsian
group is a geometrically finite Kleinian surface group whose limit set is a round circle). Concretely,
let A be the invariant component of the domain of discontinuity of I', and let ¢ : D — A be a
conformal homeomorphism, where D is the unit disk in C. The group g = ¢ Lol o ¢ is a convex
cocompact Fuchsian group, and we may ask whether the map ¢ extends to an equivariant map
defined on all of C. In contrast to the situation considered in the previous subsection when I’
had no parabolic elements and was geometrically finite, we cannot expect to construct an actual
conjugacy between the actions of I'y and I" on C; certain loxodromic elements of I'y correspond to
parabolic elements of T" (called accidental parabolics), and if x and y are the two fixed points in C
of such an element of ['y then any semiconjugacy must map both = and y to the single fixed point
of the corresponding parabolic element of I'.

Abikoff has shown (see [2]) that the limit set of I' (= 0A) is locally connected, hence by classical
complex analysis the map ¢ : D — A extends continuously to a map D — A. Let D’ denote the



component ¢ \ D of the domain of discontinuity of I'g; equip D’ with a Poincaré metric. Work of
Floyd ([16]) shows that we may define an extension of ¢ to all of C to obtain a semiconjugacy from
the action of 'y to the action of I', with the following properties:

(1) If 9 € Ty corresponds to a parabolic element v € T and [ is the axis of v in D’
then ¢ maps all of [ (including endpoints) onto the fixed point of v (see Figure 1).

(2) The collapsings in (1) are the only identifications that ¢ induces.

For more general geometrically finite Kleinian groups with parabolics, it is generally accepted
that a similar pinching picture exists; it seems probable that the techniques used in the proofs of
Theorems A and C of this paper would also work in the setting of geometrically finite groups with
parabolics.

2.3 The Cannon-Thurston theorems

The first progress towards proving Thurston’s semiconjugacy conjecture for geometrically infinite
groups was made by Cannon and Thurston, who studied the following class of examples of Kleinian
surface groups: let S be a closed surface of genus > 2, and let ¢ : S — S be a homeomorphism.
Let M be the manifold obtained from S x [0, 1] by the identification (z,0) ~ (¢(x),1). M is called
the mapping torus of ¢, and it fibers over the circle S'. Thurston has shown that if ¢ is pseudo-
Anosov then M admits a hyperbolic structure (see [31]). Let N be the infinite cyclic cover of M
corresponding to the fiber group IT;(S). N is a hyperbolic manifold homeomorphic to S x R, and
both of its ends are geometrically infinite. If I'y is an isomorphic Fuchsian group, Cannon and
Thurston ([12]) have shown that there is a homeomorphism from Ny = H3/Ty to N whose lift
to H3 extends continuously to ¢ to give a semiconjugacy from the action of I'y to the action of
I'. Such a map must send the limit set of 'y onto the limit set of I'; in this case, the limit set of
[y is a circle and the limit set of I' is the entire Riemann sphere, so we obtain an equivariantly
parametrized Peano curve.

Cannon and Thurston show the existence of a semiconjugacy by constructing a model man-
ifold Ny,0q that is homeomorphic and quasi-isometric to N, and whose geometry is completely
determined by the isotopy type of the pseudo-Anosov homeomorphism ¢. Given a pseudo-Anosov
homeomorphism ¢ : S — S we can associate to S a pair of measured singular foliations (®,,dx)
and (®y,dy), called the stable and unstable foliations of ¢ that satisfy the following properties (see
110]):

(1) ¢(®;) = @, and ¢(<I>y) =0,

(2) There is some multiplier k£ > 1 such that ¢(dx) = kdz and ¢(dy) = %dy.

Thus, in the fibred manifold M, each time we go around S' we have scaled in the z-direction by k
and in the y-direction by % The metric on the model manifold N,,,q = S x R is defined by

ds® = k*'dz? + k=t dy? + (log k)% dt*



Figure 1: If the curve ¢ corresponds to a cusp in H3 /T then each lift of ¢ to C is pinched by ¢ to a point.



where dt? is the metric on R. Let H? x R be the universal cover of N,,,4. The homeomorphism
from N,,0q0 = S xR to N = S x R is a quasi-isometry, and its lift g : H?2 x R — H3 to the universal
covers is also a quasi-isometry (see [12]).

Let I'y be a Fuchsian group isomorphic to I'. Iy preserves a geodesic plane in H3, giving a
homeomorphism of H® with H? x R; the action of I'y preserves the product structure of H? x R,
giving a product structure to Ny = H3/I'y (that is, giving a specific homeomorphism of Ny with
S x R). The induced map from Ny to N,,.q lifts to a homeomorphism f : H® — H? x R.

Let F = gof : H> — H3; Cannon and Thurston have shown that F extends continuously to C.
Since F' is the lift of a homeomorphism from Ny to N, it is equivariant with respect to the actions
of Ty and T, and its extension to C gives a surjective semiconjugacy from the action of I'g on C to
the action of I'. The proof that F' extends to Cis fairly involved; however, it is not hard to show
that, in analogy to the situation in the case of accidental parabolics in b-groups, ¥ collapses certain
portions of C that correspond to the foliations ®, and ®,. Lift ®, and @, to foliations &, and <I>
on the universal cover H2 of S. Let L be a leaf of elther d, or <I>y, say @x, then the topologlcal
disk L x R is totally geodesic in H? x R (see e.g. [24]). The metric ds? restricted to L x R has
the form

E~2%tdy + (log k)%dt?;

this is a hyperbolic metric, in which curves of the form L x {t} correspond to horoballs with a
common boundary point. The topological disk P = f (L x R) meets C=0-H%ina topological
circle and its intrinsic geometry is that of the hyperbolic plane. The map f restricted to P takes
the geodesic f (L) x {0} and its equidistant curves to nested horocycles in L x R (see Figure 2).
Thus the extension of f to the boundary circle of P collapses the entire upper semicircle to a point,

P xR

Figure 2: The restriction of f to P takes the geodesic t = 0 and its equidistant curves to nested horocycles
in L x R.



and stretches the lower semicircle around the boundary circle of L x R. The map g restricted to
L xR is a quasi-isometry so it extends continuously to an injective map of the boundary at infinity
Oso(L x R) (see e.g. [18]); hence the map F' = g o f identifies points in J, P in the same way as
the map f. If L is a leaf of éy then we get a similar picture, but with the lower semicircle being
collapsed, rather than the upper semicircle.

Thus, the semiconjugacy F' : ¢ — € identifies points in the following way: Let 2, and
Q_ denote the two components of the domain of discontinuity of Iy (with 4 corresponding to
H2 x {co} and ©_ corresponding to H2 x {— oo} with respect to our chosen identification of H3
with H2 x R). We can pull back the foliations @, and <I>y, via the map f, to foliations '1>+ and <I>
on Q and Q_, respectively. The semiconjugacy F : C — C will collapse each leaf of @if and each
leaf of éyj to a point; Cannon and Thurston have shown that these are the only identifications that

occur. Thus, we have a complete topological description of the semiconjugacy F' : c-C.

Cannon and Thurston also studied a second class of Kleinian groups: closed surface groups I for
which the quotient manifold, again homeomorphic to S x R, has one geometrically finite end and
one end that is quasi-isometric to an end of the manifold we have just discussed, the infinite cyclic
cover of a pseudo-Anosov mapping torus. For such a group, the domain of discontinuity consists of
a single topological disk, and the limit set is a dendrite. Again, the existence of a semiconjugacy
from a Fuchsian group action on Cis proved using a model manifold, homeomorphic to § x R; the
metric on S x R models the geometry of a geometrically finite end on, say, S x (—o0, 0] and is similar
to the metric ds? on S x [0,00). If Q, and _ are the components of the domain of discontinuity
of the Fuchsian group and é’; is the lift of the stable foliation to €2, then the semiconjugacy from
C to € maps Q_ homeomorphically onto the domain of discontinuity of I' and maps Q. onto the
limit set of I', collapsing each leaf of é;’; to a single point (see Figure 3). In particular, the existence
of a semiconjugacy implies that the limit set of such a group I is locally connected, since it is the
continuous image of a circle.

2.4 Ending laminations and foliations, and semiconjugacies for surface groups
with lower bounds on injectivity radius

In constructing semiconjugacies for more general Kleinian groups, the correct generalization both
of the simple closed curves that control the collapsing in the accidental parabolics case and of the
stable and unstable foliations in the Cannon-Thurston examples is the ending lamination or ending
foliation (these are equivalent constructions). Let S be a closed surface and let o be a hyperbolic
metric on S. A geodesic lamination on (S,0) is a closed disjoint union of simple geodesics in S,
called the leaves of the lamination. We will also think of laminations as topological objects: a
lamination is an equivalence class whose members are closed subsets of .S that are ambient isotopic
to a geodesic lamination; the equivalence is under isotopy of S. Let GL(S) denote the space
of geodesic laminations on (S,0). Let ML(S), the measured lamination space, be the space of
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Figure 3: When there is only one degenerate end, the semiconjugacy F' : c->C collapses each leaf of the
foliation @2‘ to a point in the limit set of I'. F sends the limit set Ar, of I'g onto the limit set Ar of I, and
maps the bottom hemisphere homeomorphically onto the domain of discontinuity of T.

geodesic laminations on (S, 0) equipped with transverse measures. ML(S) has a natural topology
(see [9, 10, 30]), such that if 0 and 7 are two different metrics on S then there is a canonical
homeomorphism between the measured lamination spaces of (S,o) and (S, 7). If 1 is a measured
lamination then the support of i is the lamination on which the transverse measure of 4 is supported.

Denote by MF(S) the space of equivalence classes of topological foliations on S with three- or
more-pronged saddle singularities, that support transverse measures; two foliations are equivalent
if they are isotopic up to collapsing segments joining singularities (Whitehead moves). There is
a natural homeomorphism between MF(S) and ML(S), obtained by straightening leaves of a
foliation to their geodesic representatives.

Let N = H3/I' be a hyperbolic 3-manifold that satisfies C'1 and that has no cusps. Thurston
and Bonahon have shown that a manifold that satisfies C'1 is topologically tame, that is, it is the
interior of a compact manifold (see [4, 30]); so for each end e of N a boundary surface S, may
be associated to e. We will see that if e is geometrically finite, S, will have a canonical Riemann
surface structure, induced by the conformal structure of the domain of discontinuity of I'. If e is
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degenerate then S, will not have a canonical Riemann surface structure; instead, Thurston has
defined an ending invariant for e that is a lamination on S.

Definition 2.1 An end e of a manifold N that satisfies C1 and has no cusps is called simply
degenerate if there is a sequence {7;} of closed curves on S, whose geodesic representatives v} in
N are eventually contained in any neighborhood of e. We say that the curves v} exit the end.

Bonahon ([4]) has shown that if N satisfies C'1 then all of its ends are either geometrically finite
or simply degenerate. Thurston has shown the following (see [4, 5] for a proof):

Proposition 2.2 Let e be a simply degenerate end of a hyperbolic 3-manifold without cusps, that
satisfies C1. There is a unique Ao € GL(S,), called the ending lamination of e, such that any
sequence (7y;) of simple closed curves in S, whose geodesic representatives () exit the end e will
accumulate in ML(S) onto a set of measured laminations with support Ae.

The ending lamination A, satisfies the following properties (see e.g. [24]), which will be used in
the proof of Theorem B:

(1) A is maximal (i.e. there is no lamination A € GL(S.) such that Ac C X and A\, # A).

(2) Every half-leaf of A, is dense in A.

(3) Ae contains no closed geodesics.

For closed surface groups that satisfy C'2, Minsky has shown (see [24]) that the ending lamina-
tions (or foliations) of the group control the geometry of the quotient manifold, as did the stable
and unstable foliations in the Cannon-Thurston examples (in fact, for these examples the stable
and unstable foliations are the ending foliations). Let G be a Kleinian group that satisfies C2 and
that is isomorphic to the fundamental group of a closed surface S, and let Gy be an isomorphic
Fuchsian or quasi-Fuchsian group (note that a surface group automatically satisfies C1). The quo-
tient manifolds H3/G and H®/Gy are both homeomorphic to S x R (see [4, 30]). A surface group
without parabolics must fall into one of the following categories (this classification is due to Bers,
Marden, Maskit, Bonahon and Thurston (see [3, 20, 4, 30])):

(1) The group is geometrically finite, its limit set is a Jordan curve (so that its domain of
discontinuity is the union of two topological disks), and the convex core of the quotient
manifold is homeomorphic to S x [—1,1] (unless the group is Fuchsian, in which case
the convex core is homeomorphic to S x {0}). Such groups where the limit set is not a
round circle are called quasi-Fuchsian.

(2) The quotient manifold has one degenerate end, the domain of discontinuity consists
of a single topological disk, and the convex core of the quotient manifold is homeomor-
phic to S x [0, 00).

(3) The quotient manifold has two degenerate ends, the limit set of the group is all of

~

C, and the convex core of the quotient manifold is the entire manifold.
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If Gy and G are as above, let e, and e_ denote the two ends of § x R, and S; and §_ denote
the surfaces S x {oo} and S x {—o0}. Let Q4 and Q_ denote the two components of the domain
of discontinuity of G, which cover S and S_, respectively. If G has one degenerate end (say e ),
let A4 denote the ending lamination of G. If G has two degenerate ends, let Ay and A_ denote
the ending laminations. We can lift AL to laminations AL on Q. Using techniques similar to
those of Cannon and Thurston, Minsky has shown that for surface groups satisfying C'2, the ending
laminations determine the geometry of the degenerate ends and the topology of the action on C
(see [24]). The idea is as follows: represent A, and A_ as measured foliations (®,,dx) and (®,, dy),
and again construct a model manifold N,,,q = S x R, with the following metric:

ds? = e?!dz? + e 2dy® + dt*.

If (77) is a sequence of simple closed geodesics in N = H3/G that exit the end ey, say, we may
construct a sequence of pleated surfaces o; in N, each containing the curve v, that also exit the
end e;. In [23], Minsky uses the lower bound on injectivity radius in N and the fact that the
curves (7)) converge to A; to show that the surfaces o; have similar geometry to the level surfaces
S x {i} in Npoq. These techniques can be used to show that N,,,; and N are quasi-isometric;
then techniques similar to those used in the Cannon-Thurston examples give the following result,
showing the existence and describing the collapsing of semiconjugacies on C (formulated here in
terms of laminations, not foliations); we will use this result in the proofs of Theorems A and B.

Theorem 2.3 (Minsky, [24]) Let f : H3/Gy — H3/G be a homeomorphism, where G is quasi-
Fuchsian and G satisfies C2. Then there is a homotopic map g : H3/Gy — H3/G such that the
lift § : H3 — H3 to the universal covers is quasi-Lipschitz and extends continuously to a map
g: C - C that collapses leaves and complementary components of Ay to points. That s, if G has
one degenerate end then for z and y in C, g(z) = g(y) if and only if = and y lie on the closure of the
same leaf or complementary component of Ay. If both ends of G are degenerate then () = §(y)
also if x and y lie on tlie clo§ure of the same leaf or complementary component of A If G s

quasi-Fuchsian then g : C — C is a homeomorphism.

By work of Lott, the map g may be chosen to be a homeomorphism such that g is Lipschitz on
H3 (see [19]).

2.5 Construction of the homeomorphism ¢ of Theorem A

We return to the setting of Theorem A: Let I'y be a geometrically finite Kleinian group that satisfies
C1 and C2, and let Ng = H3/T. Let f : Ny — N be a homeomorphism, where N = H3/T" is a
hyperbolic manifold that satisfies C2. The homeomorphism f induces an isomorphism f, : I'g — I'.
We wish to replace f by a homotopic map g whose lift to the universal covers extends continuously
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to the boundary and identifies boundary points according to the ending laminations of IV; to do
this, we will modify f on each end of Ny to obtain a map g : Ny — N whose restriction to each
end of Ny looks like the map constructed by Minsky in Theorem 2.3.

If Ny has finite volume then Mostow’s rigidity theorem says that f is homotopic to an isometry,
whose lift necessarily extends to a Mobius transformation on C (see [27, 28]); so in this case there is
nothing to prove. Otherwise, Ny has at least one end; let e be an end of Ny, and let K, C Ny be the
corresponding component of the boundary of the convex core. Since Iy is freely indecomposable K,
is incompressible in Ny (see [4]). So K lifts to a union of disks in H3, each of which is a boundary
component of CH(I'y). If Xa is one of these disks then Ka bounds a topological half-space H,,
on its nonconvex side that meets C in the closure of a component Q, of Q (see Figure 4). Let
' C I'y be the stabilizer of ,; 'y, is called the component subgroup of I'y with respect to 2.
Orthogonal projection from int(Hgy) U Qg to Ko induces a foliation of int(Hg) U Q, which gives a
homeomorphism of int(Hg) U Q, with K, x (0,00]; this foliation is invariant under the action of
[y so it descends to the corresponding component of Ng \ CC(Np), which is then homeomorphic
to K¢ x (0,00]. Write Se = K, x {c0}, so that €, covers S..

Given a component {2, of the domain of discontinuity €2 of ['y, the stabilizer I',, C I'g of §2, is
a surface group since €, is a topological disk. The map f lifts to the intermediate cover H3 /T,
to give a homeomorphism f, : H3 /To — H3/f.(I'y). We may apply Minsky’s theorem to this
homeomorphism, for the group I'y is geometrically finite; this is a consequence of a theorem of
Thurston, that any finitely generated subgroup of an infinite-covolume geometrically finite group
is geometrically finite (see e.g. [26]). Thus, by Minsky’s theorem the map fa is homotopic to a
map §o whose lift g, to the universal cover extends continuously to the boundary.

For an end e, let n, denote the corresponding component of the complement of C'C(Np), so that
the boundary of n. in Ny is K. Lifting K, and n. to the intermediate cover H3/T',, = S, x (—00, c0)
gives sets K, and i, such that K, = K’a/Fa and n, = H,/T'y. Since for every v € T'y \ [y,
v(Hy) N H, = 0, we have H,/T'y, = H,/T'; hence K, and 7, project homeomorphically to K,
and ne, respectively. If G, : Se x R = S, x R is the map given by Minsky’s theorem then we
may adjust g, by a homotopy on a compact set so that g, is still a homeomorphism, and so that
Ga(Ne) = fa(ﬁe) and g, and fa agree on K,; this does not change the behavior at infinity of the
lift g, : H® — H3 of §,.

With this adjustment g, descends to a homeomorphism ¢, from n, to a subset of N, and g,
agrees with f on K,.. Note that if I', and ['g are two component subgroups of I'y that correspond
to the same end e then the maps they induce on n, are the same (if we have adjusted g, and gg in
the same way), since their lifts §, and gg are related by a Mobius transformation that conjugates
I'y to I'g; thus the map g, did not depend on our choice of component subgroup. We will piece
together the maps g, by “filling in” on the convex core, to obtain the map ¢ : Ny — N of Theorem
A.

14



Figure 4: The convex hull of Ty is the closure of the complement in H2 of the topological half-spaces H, .
The quotient of H, by Ty (equivalently, by T'y) is the complementary component of the convex core of Ny
whose boundary surface is K.
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Define a map ¢ : Ny — N in the following way:

(1) gleevy) = flec(ng; and
(2) If e is an end of Ny, g|n, = ge|n. -

The maps given by Minsky’s theorem are Lipschitz, so by standard arguments we can adjust
g by a homotopy supported on a compact set so that g is a homeomorphism that is Lipschitz on
each piece ne and is a bi-Lipschitz map from CC(Np) to g(CC(Ny)), with respect to their intrinsic
path metrics. Note that this is not the same as saying that the restriction of g to CC(Ny) is
a bi-Lipschitz map; since g(C'C(Np)) is generally not convex, its intrinsic path metric is strictly
larger than the hyperbolic metric that g(CC(Np)) inherits from N. If we adjust g in this way
then the lift of ¢ to the universal covers is a Lipschitz homeomorphism § : H® — H3 such that
dlcm(ry) is a bi-Lipschitz homeomorphism with respect to the intrinsic path metrics of CH(I'o)
and g(CH(I'y)); another way of saying this last statement is that the induced map on the electric
spaces of (H3 {H,}) and (H3,{j(H,)}) is a bi-Lipschitz homeomorphism, where the sets H, are
the closures in H® of the complementary components of the convex hull of 'y (recall that the electric
spaces of (H3, {H,}) and (H3,{§(H,)}) are the spaces we get from H3 by collapsing the sets H,
and §(H,), respectively, to points; the metric on the electric spaces is the inherited path metric
from H3). Since we have only adjusted g by a homotopy on a compact set we have not changed
the behavior at infinity of its lift § : H3® — H3. We will show that this lift extends continuously to
the boundary.

2.6 Reduction of Theorem A to Theorem C

Let I'y, be a component subgroup of I'y. Write N = H3/T', and N® = H3/f,([',), so that N is
a covering space of N. We will begin by showing that when the covering N© — N is finite-to-one,
Theorem A is a simple extension of Minsky’s result, Theorem 2.3. When the covering N® - N is
infinite-to-one, we will show that Theorem A is a result of Theorem C. We need the following:

Lemma 2.4 Let Iy be a geometrically finite Kleinian group that satisfies C'1 and C2, and such
that the domain of discontinuity does not have 0 or 2 components. Then if Qq is a component of
the domain of discontinuity, Qq has infinitely many translates in C.

Proof:

The domain of discontinuity 2 cannot have exactly one component, since then I'y would be a
surface group and by the classification of surface groups that satisfy C2 it would have a degenerate
end.

Suppose 2 has more than two components. Let €21, {22 and {23 be components of €2 and let I'y,
['s and I's be their component subgroups. We will show that €2y has infinitely many translates.
The limit sets of I'y, I'y and I's are all Jordan curves so no two can be the same. Hence, there is
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a (loxodromic) element of I'y whose attracting fixed point does not lie in the limit set of I'y. The
sets y"(€q) for n € Z are all distinct, and each is a component of . O

Now, to reduce the proof of Theorem A to that of Theorem C, we will consider two cases:

Case 1: the covering N® — N is finite-to-one. As previously stated, for this case we will show
that the result of Theorem A is essentially already known; that is, it is an easy extension of Minsky’s
result. If the covering is finite-to-one then the corresponding cover ]\75“ — Ny is also finite-to-one,
and so 'y, has finite index in I'y. Then the component €2, of the domain of discontinuity of I'y
stabilized by I', must have only finitely many translates in C; hence by Lemma 2.4, the domain of
discontinuity of 'y has either 0 or 2 components. If Q is empty then Ny is compact; in this setting
we have seen that Theorem A is a consequence of Mostow’s rigidity theorem, which tells us that
the map § extends to a Mdbius transformation of C (and Theorem B just turns into the fact that
a Mobius transformation from € to € is injective). If 2 has two components then there are two
possibilities for I'g and Njy:

(1) If 'y preserves the two components of € then I'y is a quasi-Fuchsian group, and
Ny =2 § x R; this is the case of Theorems A and B that has already been proved by
Minsky.

(2) Otherwise, I'y contains an index two subgroup Gy that is quasi-Fuchsian (namely
the subgroup of I'y that preserves the components of ). Maskit calls Ty an extended
quasi-Fuchsian group (see [21]). In this case, Ny has one end and is doubly covered by the
manifold H3/ G¢. The map g : Ny — N we have constructed lifts to a homeomorphism
go : H3/Gy — H3/f.(Gy), and it is easily checked that the map go agrees with Minsky’s
map up to a homotopy on a compact set; thus its lift to H2 extends to the boundary
in the same way as Minsky’s map.

Case 2: the covering N* — N is infinite-to-one. We will show that in this case, Theorem A
is a result of Theorem C; that is, that the map § : H® — H3 constructed in Section 2.5 satisfies the
hypotheses of Theorem C. So, let g, : H> — H? be the map given by Minsky’s result (Theorem
2.3), for the groups I'y and f.(I'y). Let €/, and ¢’ denote the two ends of N = H3/f,(Ly);
according to Minsky’s theorem, the identifications g, makes on € are determined by the geometry
of €/, and e’_. Let ¢’ denote the end of N corresponding to e in Ny. One of the two ends of Ne,
say €, , has a neighborhood that covers a neighborhood of ¢’ homeomorphically and isometrically
(see Figure 5); we must understand the geometry of the other end, ¢/ . We have assumed that a
neighborhood of € covers N in an infinite-to-one manner; a theorem of Thurston (see [6] for a
proof) tells us that in this case, €/ is geometrically finite. Hence N has at most one degenerate
end. If the end €/, is degenerate then its ending lamination agrees with the ending lamination A\,
of €. Minsky’s theorem then gives us the following about the identifications of g, on C:
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Given a component , of the domain of discontinuity of Iy, if the end e’ of N corre-
sponding to Q is geometrically finite then the map g, : € — € is a homeomorphism.
If ¢’ is degenerate then for z and y in €, §o(x) = ja(y) if and only if 2 and y lie on the
closure of the same leaf or complementary component of Aa.

Figure 5: The intermediate covers Ng* and N,

We have now constructed a homeomorphism § : H3 — H3 that satisfies the following:
(1) g is Lipschitz.
(2) On the electric level (with respect to (H3,{H,}) and (H3,{§(H,)})), § is a quasi-isometry (see
Section 3 for definitions); in fact, it is bi-Lipschitz.
(3) For each set H,, §|g, extends continuously to the boundary ,, and either is a homeomorphism
on ), or identifies points on €2, according to the ending lamination 5\&.

Thus, if we can show that the systems (H3, {H,}) and (H3, {g(H,)}) satisfy conditions () —
(¥3) then we will have shown that the map § : H® — H3 satisfies the hypotheses of Theorem C.
We have

Theorem 2.5 Let Iy and I' be as in Theorem A, and suppose that the domain of discontinuity of
Lo consists of more than two components. Then the map § : H3 — H3 defined above satisfies the
conditions of Theorem C.
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Proof:

We must show that (1) — (*3) hold for the systems (H3, {H,}) and (H3,{§(H,)}).

For (x1), simply note that H3 \ U, H,, is the interior of the convex hull of Ap,, the limit set of
[, so it is open and path-connected. Since § is a homeomorphism H? \ U,g(H,) is also open and
path-connected.

For (x2), we must show that there exists some ¢ such that the sets H, and g(H,) are all g¢-
quasiconvex (see Section 3 for a definition of quasiconvexity). If we can show that the sets are all
quasiconvex then the uniformity of the quasiconvexity constant follows immediately: two such sets
that correspond to the same end of Ny or N have the same quasiconvexity constant since one is
the image of the other by a Mobius transformation, and there are only finitely many ends. Fix «;
we will show that §(H,) is quasiconvex (the proof we give also works for H,,).

Let N® be the intermediate cover of N corresponding to [',. We have seen that N? is homeo-
morphic to Se X R. As in the previous subsection, let e/, and e’ denote the two ends of N @ and
¢’ the end of N corresponding to I',. We have seen that one end, €, , has a neighborhood that
projects homeomorphically to a neighborhood of €/, and that the other end, €', is geometrically
finite. Since ¢’ is geometrically finite, it has a neighborhood that is disjoint from the convex core
C, of N© (see Figure 6). The lift C, of C, to H3 is a convex set. The projections of C,, and g(Hy)
to N are both neighborhoods of €, , and their boundaries are homotopic. If we choose a homotopy
H:S, x[0,1] —» N® between the boundaries of the projections of Cy and g(H,), the lengths of
the paths Hy : [0,1] — N defined by H,(t) = H(z,t) are uniformly bounded, by compactness of
Se; so lifting to H3 we have a homotopy H : S, x [0,1] — H3? between the boundaries of C, and
G(H,), such that there is a uniform bound of the length of each path H; : [0,1] — H3. Hence the
boundaries of §(H,) and C’~a are within a bounded Hausdorff distance of each other. So since C~’a
is convex, g(H,) must be quasiconvex.

For (*3) we must show that there is a constant ¢ such that the sets H, (resp. g(H,)) are all
separated from each other by at least c¢. Let H, and Hg be distinct half-spaces; we will show that
there is a lower bound (independent of « and ) on the length of any path from H, to Hg. So
let p be a path from z to y, where z € H, and y € Hg; without loss of generality we may assume
that z € 0H, and y € OHg. Now the path p descends (via the projection H*> — H3/T'y) to a path
proj(p) in Ny = H3/I'y whose endpoints a and b lie on the boundary of the convex core of Nj.

Suppose first that a and b lie on different boundary components of the convex core. The convex
core of Ny has finitely many boundary components, and each is an embedded surface; so there is
a lower bound on the distance in Ny between any two of these components. Hence there is a lower
bound on the length of proj(p), which is the same as the length of p.

Otherwise a and b lie on the same boundary component K of the convex core; then since H,,
and Hpg are distinct, proj(p) is not homotopic relative endpoints to a path in K. K is an embedded
surface in Ny, so if u € K then for every € > 0 there is a d(u,e) > 0 such that if v € K and
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Figure 6: The boundaries of Cy and g(Hy) are within finite Hausdorff distance of each other, so since Co
is convex, §(H,) must be quasiconver.
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d(u,v) < §(u,€) then v and v are within e of each other in the intrinsic metric on K; since K, is
compact, one 0(e) may be chosen for all u € K. Let ¢y denote the injectivity radius of the convex
core of Ny. Suppose that I(p) < d(ep). Then there is a path r in K, from a to b whose length is at
most €y. But the path r - (proj(p)) is a homotopically nontrivial loop, so its length is at least 2¢.
So the length of p is at least €.

So we have shown that (H3, {H,}) satisfies (¥3). The only thing we used in the proof was the

topological structure of the convex core of Ny, so since g is a homeomorphism the same proof works
for (H3,{§(Ha)}). O

To summarize, we have shown the following:

Theorem 2.6 Let 'y and I" be as in Theorem A. If the domain of discontinuity of L'y has 0 or two
components then Theorem A holds for Iy and T'. In aoll other cases, Theorem A is a special case of
Theorem C.

3 Gromov-hyperbolic spaces

In this section we will present an overview of some of the basic theory of Gromov-hyperbolic spaces.
References for the material in this section are [17], [18], [L1] and [8].

Let (A, d) be a metric space. If A is equipped with a basepoint 0, define the Gromov product
(z]y) of the points z and y in A to be

1
(2ly) = (2ly)o = 5(d(z,0) + d(y,0) — d(,y)).
Definition 3.1 Let 0 > 0 be a real number. The metric space A is o-hyperbolic if

(zly) = min((z]2), (y|2)) — 6
for every x,y,z € A and for every choice of basepoint.

We say that A is hyperbolic in the sense of Gromov if A is §-hyperbolic for some 4.

For example:

1. Every bounded metric space is hyperbolic.

2. Every real tree is 0-hyperbolic (a real tree is a space A such that for any two points z and
y in A there is a unique topological segment joining z and y, and the length of that segment is

d(z,y).)
3. Hyperbolic space H™ is §-hyperbolic with § = log 3.
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A metric space A is geodesic if any two points in A can be joined by a geodesic segment (not
necessarily unique). If z and y are in A we write [z, y|, ambiguously, to denote some geodesic from
z to y.

Heuristically, a d-hyperbolic space is “tree-like”; more precisely, if we define an e-narrow geodesic
polygon to be one such that every point on each side of the polygon is at distance < e from a point
in the union of the other sides, then we have

Proposition 3.2 In a geodesic §-hyperbolic metric space, every n-sided polygon (n > 3) is 4(n —
2)0-narrow.

If S C Aisaset and z € A, then the projection of x to S is the subset projsx of S consisting
of all points y € S such that d(z,y) is minimal over all points in S. If T C A then the projection
of T' to S is the union of all sets projsx where x € T. The following is an easy consequence of the
above proposition:

Lemma 3.3 For every positive integer N, there exists a constant K(N,d) > 0 such that the fol-
lowing holds:

Let | be a geodesic segment. Let g be a path in A that is the union of at most N geodesic segments
[ag,a1], [a1,a2],....,[an—1,an], and assume that g lies outside of the K-neighborhood of I. Then the
diameter of the projection of g to l is bounded above by 326.

In a geodesic hyperbolic space, the Gromov product of two points x and y is roughly the distance
from 0 to [z, y]; we have

Proposition 3.4 Let A be a geodesic, 6-hyperbolic space and let x,y € A. Then

for every geodesic segment [z,y].

3.1 The boundary of a hyperbolic space

If A is a hyperbolic space, A can be equipped with a boundary in a natural way. We say that a
sequence (z,) of points in A converges at infinity if we have limy,, y,—s o0 (T |2n) = 00; note that this
definition is independent of the choice of basepoint, by Proposition 3.4. Given two sequences ()
and (y,) that converge at infinity, say that (z,,) and (y,) are equivalent if limy, 5500 (2 |yn) = o0.
Since A is hyperbolic, it is easily checked that this is an equivalence relation. Define the boundary
at infinity 0o A of A to be the set of equivalence classes of sequences that converge at infinity. If
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& € 0 A then we say that a sequence of points in A converges to & if the sequence belongs to the
equivalence class €. Write A = A U 05A.

If r: [0,00) — A is a geodesic ray then there exists a point £ € 0, A such that r(t,) — & for
every sequence (t,) of positive real numbers such that ¢, — co. Write £ = r(co0). The following
statements are easily proved:

Proposition 3.5 Let A be a geodesic d-hyperbolic space.

(a) Let (zy) and (y,) be sequences of points in A. Suppose that (r,) converges to a point
& € 0xA and there is a real number B such that d(zn,y,) < B for every n. Then (y,) also
converges to £.

(b) Let ri,r3 : [0,00) — A be geodesic rays such that ri(oco) = ro(00). Then every point on Ty
is at distance < d(r1(0),72(0)) + 80 from ro, and there exists a real number T > 0 such that for
every t > T, ri(t) is at distance < 89 from ro.

The Gromov product can be naturally extended to A x A, by
(alb) = inflim inf (ai[b;)]
,j—00

where the infimum is taken over all sequences (a;), (bj) in A such that (a;) converges to a and (b;)
converges to b. We have (a|b) = o0 iff a = b € 0o A, and

(zly) = min((x|2), (y]z)) — 0

for all z, y and 7 in A.

3.2 The visual metric on A

Let A be a proper geodesic §-hyperbolic space equipped with a basepoint 0 (a metric space is proper
if its closed metric balls are all compact). Gromov constructs a “visual metric” on A by scaling the
metric on A in the following way: Let w > 1 be a real number. Let f,, : A — R be the function
f(z) = w02 If 5 is a path in A, define [,,(0) to be the integral of f along o. If z and y are
points of A, define

|z = ylw = inf(ly(0))

where the infimum is taken over all continuous paths o from z to y. |- |, gives a metric on A, such
that the induced topology is the same as the original topology on A.

Gromov has shown that there is a constant wg(d) > 1 such that for every real number w strictly
between 1 and wy, the following hold:
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(1) The identity map of A extends to a bijection from A to the completion of A with
respect to | - |, so that |- |, induces a metric on A, which we will call the visual metric
of A with respect to w. The visual metrics all induce the same topology on A, and A
is compact. If £ € O A then a sequence (z,) of points in A converges to £ in the sense
of the previous subsection iff it converges to ¢ in the metric topology.

(2) Let € and n be in A and let [¢, 7] be a geodesic from £ to 7. Then
|§ — 77|’LU S wad(or[frm)’

where v > 1 is a constant that depends on A and w. Furthermore, if £ and 7 are in
OsoA and & # 7 then

Note that the diameter of A in the metric | - |,, is at most @.

Example: if A = H® then A is homeomorphic to the closed unit ball in R", and the topology
induced by the visual metrics agree with the topology inherited from R™.

3.3 Quasiconvex sets and their visual diameter

If S is a subset of a geodesic metric space A and g > 0 is a real number, write
Sl={reA:d(x,S) <q}.

Definition 3.6 A subset S of a geodesic metric space is ¢-quasiconvex if whenever x and y are
points in S, every geodesic segment [z,y] is contained in S9.

For the remainder of this subsection A will be a proper, geodesic d-hyperbolic space. If S C A,
we will write 0,05 for the subset of 0, A consisting of those points that are accumulation points
of elements of S (to be distinguished from the boundary of S in A). We have

Proposition 3.7 Let S C A be g-quasiconver. If x € S and £ € 05S, then any geodesic ray
g:[0,00) = A from x to ¢ is contained in ST,

Proof:

Let (z,,) be a sequence of points in S that converges to ¢, and let 7, : [0,00) — A be the map
that sends the interval [0, d(z, z, )] isometrically onto a geodesic [z, z,] and maps [d(z, z,,), c0) onto
the point z,,. Since A is proper, by Ascoli’s theorem (r,,) has a subsequence (which we will continue
to call (r,,)) that converges to a map r : [0,00) — A, in the topology of uniform convergence on
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Figure 7

compact sets (see Figure 7). The map r is a geodesic ray from z to £, so by Proposition 3.5 (b),
every point on g is at distance < 89 from r. At the same time, every point on r is at distance < ¢
from S; hence each point on ¢ is within ¢ + 89 of a point of §. O

We will also need the following simple fact:

Proposition 3.8 Let S C A be closed and q-quasiconvexr and let T be a subset of A that satisfies
S C T C S®, where R is a real number. Then T is Q-quasiconves, where Q =g+ R+ 86.

Quasiconvex sets that are far from the basepoint 0 of A have small diameters in the visual
metrics on A. We have the following, which will be crucial for controlling the behavior of the sets
H,, of Theorem C:

Proposition 3.9 Let S C A be g-quasiconver. Then the diameter of S in the metric | - |y is

bounded above by vw(40:5)—0)

Proof:
Let z and y be in S. Every point on [z, y] is within g of a point in S, so d(0, [z,y]) > d(0,S) —q.
Hence |z — yl, < v~ 408 < pey=(@05)-0) o

3.4 Quasi-isometries and quasi-geodesics

Let Ag and A be two metric spaces. Let k > 1 and g > 0 be real numbers. We say that a map
f:Ag — Ais (k,u)-quasi-Lipschitz if d(f(z1), f(z2)) < k-d(z1,2z2) + p for all 1 and z9 in Ay.
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A map f: Ay — Ais a (k, pu)-quasi-isometry if

L, 0) — < d(f (1), £ (@) < ko1, 22) +

for all z1 and z5 in Ay.

A quasi-isometry between two §-hyperbolic spaces extends continuously to the boundary, in the
following sense:

Theorem 3.10 Let Ay and A be Gromov-hyperbolic, and let h : Ay — A be a quasi-isometry.
For every sequence (1) of points in Ay that converges to a point £ in 05y, the sequence (h(xy))
converges to a point in OxA that depends only on &, so that h defines a continuous map from Oselg
to OxoA. The map h : 0xAp — OsA is injective.

Note that Theorems C and D of this paper can be thought of as a generalization of this theorem,
since if there are no electric sets then Theorems C' and D together reduce to this statement. The
proof of the above statement is, among other things, an important step in the proof of Mostow’s
rigidity theorem.

If A is a metric space, a (k, u)-quasigeodesic is a rectifiable path p : I — A, where [ is an
interval in R, such that for all s and ¢ in I,

1
-1
? (p

s,) — 1 < d(p(s),p(t) < k- U(plisg) + p

Note that if a path p : I — A is parametrized by arc length then it is a quasigeodesic if and only
if it is a quasi-isometry. The following theorem tells us that in a hyperbolic space (the image of) a
quasigeodesic is quasiconvex.

Theorem 3.11 Let A be a geodesic, d-hyperbolic space.

(a) Let I = [a,b] be a closed interval in R, and let p : I — A be a (k,p)-quasigeodesic. Let
[ be a geodesic segment in A whose endpoints are p(a) and p(b). Then there is a constant H that
depends only on §, k and p, such that the Hausdorff distance between the images of p and [ is at
most H.

(b) Suppose that A is proper. Let p : I — A be a (k,u)-quasigeodesic, where I = [0,00) or
I = (—00,00). Then there exists, respectively, a geodesic ray or an infinite geodesic I, such that the
Hausdorff distance between the images of p and | is at most H, where again H is a constant that
depends only on §, k and p.

A consequence of the preceding theorem is the following key property of quasigeodesics, which
makes them useful tools for showing that quasi-isometries extend continuously to the boundary:
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Proposition 3.12 Let A be a proper geodesic §-hyperbolic space and let p : [0,00) — A be a
quasigeodesic ray. Then p terminates at a unique point £ in OxA; that is, as t — oo, p(t) — &.

Proposition 3.12 is the first step in showing that a quasi-isometry of hyperbolic spaces extends
continuously to the boundary: if the spaces in question are proper and geodesic, it shows that the
restriction of the quasi-isometry to any geodesic ray extends continuously to the boundary point of
the ray, since the image of the ray under the quasi-isometry is a quasigeodesic. We will use a similar
strategy to show that a map satisfying the conditions of Theorem C extends to the endpoints of
geodesic rays.

4 Continuity of the Extension

In this section we will prove Theorem C. If h : X — Y is a map that satisfies the hypotheses of
Theorem C, we want to show that h extends continuously to a map from 0, X to 05Y. We know
that on each set H,, h extends to the boundary. Moreover, h is assumed to be a quasi-isometry
away from the sets H; so since quasi-isometries extend to the boundary, it is not difficult to show
that h extends to those points of J,X that have a neighborhood that is disjoint from all of the
sets Hy. Thus, the main problem will be to control h where the sets H, accumulate. Suppose € is
a point in 05X that is the limit of a sequence of sets (H,,). A first step in showing that h extends
to & is to show that the sets h(H,) converge to a unique point in 0 Y. To do this, we must be
able to show in particular that the visual diameters of the sets h(H,,) approach 0 as n approaches
infinity (in all of what follows we will assume that we have fixed a basepoint 0 in X and Y such
that h(0) = 0, and a visual metric d,;s on X and Y, where dy;s = | - |, for some constant w > 1,
as in Section 3). Since the sets h(H),) are uniformly quasiconvex, we can get an upper bound on
their visual diameters if we know how far they are from 0, by Proposition 3.9. Our main tool for
showing that a set h(H,,) is far from 0 is theelectric metric (using terminology coined by Farb in

[15]):

Definition 4.1 If (A,{S.}) is a pair satisfying (*1) — (x3), and C denotes the complement in A of
the sets S, then the electric length l.; of a rectifiable path p in A is defined by lg(p) = (pNC).
The electric distance d.; on A is the path metric induced by lo;. We will call the sets S, electric

sets, and the space Ea obtained from A by collapsing each set S, to a point, the electric space
of A.

Note that dg; is not an actual distance function, since if x and y are distinct points in one of
the electric sets S, then dg;(x,y) = 0. However, the electric distance descends to a genuine metric
on Ea; we will use d,; to denote this metric as well as the electric metric on A.

In the setting of Theorem C, the electric distance enables us to show that certain sets h(Hy,)
in Y are far from 0 because of the following: one hypothesis of Theorem C is that the map
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hg : Ex — Ey is an (L, k)-quasi-isometry, for some constants L and x. This hypothesis translates
upstairs (that is, in X and Y) to the condition that

Fa(@,9) = 1 < du(h(e), b)) < L-dae,y) + 5

for all x and y in X. The electric distance is bounded above by the standard distance, so one
consequence of the above inequality is that for all z and y in X,

%del(xay) — k< d(h($)7 h(y))

Thus, if two points in X are far apart in the electric metric then their images under h are far apart
in the standard metric on Y.

We will begin by studying electric quasigeodesics, which will play a similar role in the proof of
Theorem C' as quasigeodesics play in the proof that a quasi-isometry of hyperbolic spaces extends
continuously to the boundary. We will prove a generalization of Theorem 3.11 that gives us some
control over the distance between an electric quasigeodesic and a standard geodesic with the same
endpoints. We will show that a (standard) geodesic ray is an electric quasigeodesic ray exactly
when its endpoint at infinity does not lie on the boundary of any electric set. This will enable us
to extend the map h to the endpoints of such rays, and then to the entire boundary.

4.1 Electric quasigeodesics

If (A, {Sq.}) satisfies (*1) — (x3), let IIn : A — Ea denote the projection map. If e: I — Ais a
rectifiable path, we say that e is an electric (k, u)-quasigeodesic if

1
plet(elisg) — 1 < dele(s), et)) < k- lalelfs,n) + n

for all s,¢t € I with s < t. Note that a path e : I — A is an electric (k, 1)-quasigeodesic if and only
if lIx oe: I — Ea is a quasigeodesic in the electric metric.

Since dg; is a path metric, if e : I — A is any path from a to b then we have dgj(a,b) <l (e);
so for e to be a (k, u)-quasigeodesic it is in fact sufficient for e to satisfy

1
%lel(e

[s.4]) = 1 < der(e(s), e(?))

for all s and ¢ in I.

We have the following relationship between standard quasigeodesics and electric quasigeodesics:
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Proposition 4.2 Let e : I — A be an electric (k, p)-quasigeodesic and let J be a subinterval of I
such that e(J) C C. Then e|; is a (non-electric) (k, u)-quasigeodesic.

Proof:
For s,t € J we have l¢(el[s,)) = l(el[s,), and de(e(s), e(t)) < d(e(s),e(t)). Hence

Helo) = 1 < dale(s), e0) < d(e(s), (1),

So el is a (k, u)-quasigeodesic. O

We have not yet shown that electric quasigeodesics actually exist; but since dg; is defined as
an infimum of path lengths, given any ¢ > 0 and points £ and y in A, we can find a path p
from x to y such that lo(pe) — € < dg(x,y). It is easily checked that such a path is an electric
(1, €)-quasigeodesic.

Since the electric sets are separated from each other by at least ¢, every time a path p in A
travels from one electric set to another, at least c¢ is contributed to the electric length of p. Say
that p does not backtrack if it passes through each electric set at most once. Thus, if p does not
backtrack and it enters electric sets n times then the electric length of p is at least ¢(n — 1).

If e: I — A is an electric (k, pu)-quasigeodesic then it can be modified so that it does not
backtrack, as follows: choose some « such that e passes through S,, and let s and ¢ be the first and
last points of I, respectively, that are mapped by e into S,. Replace e on [s, ] by a path from e(s)
to e(t) entirely contained in S,. Since e has finite electric length it jumps from one electric set to
another a finite number of times, so after a finite number of modifications we will have produced a
path that does not backtrack. In the process, we have if anything reduced the electric length of e,
so the new path is again an electric (k, u)-quasigeodesic. Note that we have not changed e on the
endpoints of I.

We will begin by examining the relationship between electric quasigeodesics and standard geo-
desics in A. If S C A, let ENy(S) denote the O-neighborhood of S in the electric metric, that is,
the union of S with those electric sets that S intersects. We can make the following generalization
of Theorem 3.11 (Farb has proved a similar statement in [15] when the electric sets are horoballs):

Proposition 4.3 Let e be an electric (k, p)-quasigeodesic in A, with endpoints = and y. Then for
every point z in [z, y] there is a point in ENy(e) that is within (non-electric) distance D of z, where
D = D(6,k,pn) depends only on k, p and the hyperbolicity constant 6 of A. Moreover, for every
point z' in e there is a point in [z,y] that is within electric distance D of 2.

Proof:
Choose R > 0, and suppose z is a point in [z,y] for which no point of ENy(e) comes within R
of z. Let (a,b) be the maximal subinterval of [z, y| containing z and such that no point of ENy(e)
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comes within R of (a,b). We will show that if R is chosen sufficiently large then there is an upper
bound m on the length of all such intervals (a,b). Then we have that d(z, ENy(e)) < R+ m, and
the first statement is proved. The idea of the argument is as follows: if (a,b) is “too long” then
by Lemma 3.3 the portion of e that lies outside the R-neighborhood of [z,y] must travel through
many electric sets; but each time e travels from one electric set to another a definite amount is
contributed to its electric length, making it inefficient, which contradicts the fact that it is an
electric quasigeodesic.

So, let ¢’ and b’ be points in ENy(e) such that d(a,a’) < R and d(b,b') < R. We can assume
that o’ and b’ actually lie on e; let € be a subsegment of e whose endpoints are a’ and b'. As per
the discussion preceding this proposition, we can assume, after removing some portion of ¢, that
¢’ does not backtrack.

Let €!,. be the path obtained by straightening the portions of ¢’ that pass through the sets
S, and those that pass through C; that is, if a component of ¢/ N S, or ¢ N C has endpoints s
and ¢, replace that component with [s,¢]. Then since the sets S, are all g-quasiconvex and the
components of ¢/ N C are all (k, 1)-quasigeodesics, it is easy to see that e, lies outside of the
(R — q — H)-neighborhood of (a,b), where H = H (0, k, u1) is the constant from Theorem 3.11.

Choose N € Z such that % > 320k (where ¢ is the minimum separation between any two of
the electric sets). Let R be sufficiently large that R — g — H > K(N), where K(N) is the constant
from Lemma 3.3.

Let j = [l(g‘;’g])]; by Lemma 3.3, €., must consist of at least N -j geodesic arcs, so € must travel
through at least %1 of the electric sets S,. Every time €’ passes from one electric set to another,

at least c is added to its electric length; so we have

() = (L —nex 2 (l([;é;])

—1) —1e
But since ¢’ is an electric (k, 1)-quasigeodesic we also have that

le(e) < k-dg(a b))+ p < k(([a,b]) + 2R) + p.

Combining these two inequalities and simplifying, we have

Nc N
— <2 — 41 .
(53957 — F(0st) < 2Rk + (5 + et
By our choice of N, (2(]?:,—2‘35) — k) is positive, so the above inequality gives an upper bound on [([a, b])

and proves the first statement of the proposition.

To prove the second statement, assume that 2’ is a point on e such that ENy(z') does not come
within hyperbolic distance R of [z,y]. Let ¢’ now be the maximal subsegment of e containing 2’
such that ENy(e') does not come within R of [z,y]. Let ¢’ and b’ be the endpoints of ¢’. There is
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a point in ENy(a') and a point in ENy(b') that come within R of points a and b, respectively, of
[z,y]; without loss of generality we may assume that o' and b’ themselves satisfy d(a’,a) = R and
d(b',b) = R. By the same reasoning as above, there is an upper bound m on [([a,b]) that depends
only on 4§, k and . Now we have

le(e) < k-dg(a', V) +p < k(([a,b]) + 2R) + p < k(m + 2R) + p.
Hence

det(7,[m,y]) < dey(,a") + de(adsa) <lg(e') + R < k(m +2R) + u + R.

4.2 Extension of i to the endpoints of rays

Returning to the setting of Theorem C, if r : [0,00) — X is a geodesic ray whose endpoint ¢ at
infinity lies on one of the sets 0, H, then it is fairly easy to see that the restriction of h to the
ray r extends continuously to &. It is more difficult to extend h along a ray whose endpoint does
not lie on the boundary of any electric set. We will use the following terminology, given a system

(A, {Sa}):

Definition 4.4 If £ € 0,,A does not lie on the boundary of any set Sy then we call ¢ a residual
point. We denote by OscQres the set of residual points in OxoA.

The following result shows in particular that if 7 : [0,00) — A is a geodesic ray whose endpoint
at infinity is a residual point then r is an electric quasigeodesic.

Theorem 4.5 There exist constants a, b, a’ and A such that if r is a geodesic segment or ray in
A starting at 0 then there exists a sequence (xy) of sets that are either electric sets or single points
on 1, such that the following hold:

(1) Upx covers r;

(2) an — b < de(0,xn) < a'n; and

(3) alm — 0] — b < do(xm» Xn) < ajm — ).

The sequence (xyp) is infinite if the endpoint at infinity of v is a residual point, and is finite
otherwise.

Proof:

Note first that up to some adjustment of constants, (2) is a consequence of (3); thus we need
only show that (1) and (3) hold.
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We will build our sequence (x,) out of electric sets that remain close to r for a long time;
wherever there is no such electric set, we will instead include a point on the ray r. If we make sure
that these electric sets and points appear at regular intervals (that is, that any two adjacent ones
are not too far apart) then it is easy to show the right-hand side of the inequality in (3). To see
that the left-hand side of the inequality holds, we show that because of the way we have chosen
the members of the sequence, any electric quasigeodesic from x,, to x,, must either travel through
many electric sets or it must spend a long time in the complement of the electric sets; in either
case, we get a lower bound on its electric length.

So, set g = 0 and consider the set X of those S, that come within D of 2y, where D = D(4,1,1)
is the constant from Proposition 4.3. If ¥ is empty then take xo = {zo}. If ¥y is nonempty then
it is a finite set since the electric sets are all separated from each other by at least c¢. So if
ko = max{t : d(r(t), Sq) < D} then there is an electric set Sy, in Xy for which kg, is maximal over
all elements of ¥y (note that ko, may be infinity). Take xo = Sa,. Let yo denote the last point
in {p € r:d(p,Sa,) < D} when traveling away from 0, that is, yp = r(kq,) (note that there will
be such a point yy except when the endpoint at infinity of r is in S,, or perhaps when r is a finite
segment, in which cases the sequence (x,) terminates here). If ¥ is empty then set yo = .

We wish to construct a sequence (x,,) of sets that are close enough together that for some A the
union of their A-neighborhoods covers r, but far enough apart that each x,, contributes a definite
amount to the electric length of any path connecting two of the sets x; and xj such that j <n < k.

Accordingly, let 21 be the point 2D + 2¢ units farther along r than yy (again traveling away
from 0). Let X; be the (at most finite) set of those electric sets that come within D of z;. Note
that ¥ and ¥, are disjoint. If 3; is empty then take x; = {z1}. Otherwise, let S,, be an element
of ¥ for which k,, is maximal over all elements of ;. Take x; = Sq,. Let y; be the last point in
{per:dp,Ss) < D} (again, there will be such a last point except when the endpoint of r is in
Sa, or perhaps when r is finite, in which cases the sequence terminates here). If 3, is empty then
take y; = x1. Let xo be the point 2D + 2¢ units farther along r than y;. Continue constructing the
sequences (xn), () and (y,) in this manner (see Figure 8). Note that the sets ¥,, are all disjoint.

To show that the sequence (x,,) satisfies (1), observe first that y2+9+8 contains the interval
[, yn]- This is trivial if x, = z, = yp. If xp is an electric set then by construction there are
points a, and b, in x,, such that d(z,,a,) < D and d(y,,b,) < D. This implies that the segment
[Zn, yn] lies within D+ 86 of the geodesic segment [ay,, by ], since the quadrilateral [z, y,|U[zy, ap]U
[an, bp] U by, yn] is 86-narrow; also, every point in [ay,, b,] lies within ¢ of a point on x,,, since x,, is
g-quasiconvex. Thus the sets x,ll) +a+89 cover all of r except possibly the intervals [Yn, Tn+1]; these

intervals all have length 2D + 2¢, so if we set A = 3D + ¢ + 85 + 2¢ then U, X} covers r.

So it remains to show that the left-hand inequality in () holds, that is, there exist constants
a and b such that for all n and m, alm — n| — b < de(Xm,xn). We will show that there is a
constant a such that de(z,,z,) > alm — n| —a — 1; the triangle inequality then gives us that
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Figure 8: A possible configuration of some of the sets in the sequence ().

det(Xm»Xn) = alm —n|—a—1—2D.

Let e, be an electric (1, 1)-quasigeodesic path from z,, to x,, so that de; (T, Tn) > le(emn)—1.
For each 7 strictly between m and n we will construct a segment of e, of a definite electric length;
if we can control the extent to which these segments overlap then we can get a lower bound on
lei(emn) in terms of |m — n|.

By Proposition 4.3, for every i strictly between m and n there is a point z} in ENy(eyn) such
that d(x;,z}) < D. If 2} is in the complement of the sets S, then it lies on a segment of ey, N C
whose length is at least ¢. Choose a subsegment s; such that s; contains z; and I(s;) = ¢. Setting
a= %c, each such segment s; contributes 2a to le;(emy), and if j # k then s; N sy, is at most a point
since by our construction d(z, z7) > 2c.

If 2! lies in some electric set S; then there is a segment of e, of length at least ¢ between S;
and the next electric set ey, enters; choose t; to be the subsegment of that segment that abuts 5j,
and whose length is ¢. Each segment t; contributes 2a to ly(€ems), and if j # k then ¢; Nty =0
since by construction S; # Sj (since S; € ¥; and Sy, € ¥y, and X, NXE; = 0).

Thus, we have constructed n —m — 1 segments of e, each of which contributes 2a to l¢;(emn)-
It is possible for s; and ¢; to overlap, but by counting all the lengths of the segments s; and t; we
have at worst counted some pieces twice, so we have

L (emn) > %[Zz(sj) + ()] = %(Za(|n —m|—1) = a(jn—m|) —a
i k

and hence de(zm, zn) > a(ln —m|) —a—1. O
Returning to the setting of Theorem C, if two points  and y in X are far from each other in

the electric metric on X then we have seen that h(z) and h(y) are far apart in the standard metric
onY. If r:[0,00) - X is a geodesic ray whose endpoint at infinity is a residual point then the
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previous result gives us a sequence (x,) of sets close to r whose electric distance from 0 is getting
large linearly with respect to n; thus, the sets h(x,,) are also getting far from 0 linearly with respect
to n. The sets h(xy) are uniformly quasiconvex, so by Proposition 3.9 their visual diameters are
getting small exponentially fast with respect to n; hence the sum of their diameters is finite. This
enables us to show the following:

Theorem 4.6 Letr:[0,00) — X be a geodesic ray from 0 to a point & on 0 X. Then h|, extends
continuously to &.

Proof:

Let L and x denote the quasi-Lipschitz constants of A and the quasi-isometry constants of hg.

If € lies on the boundary of some electric set H, then since H, is quasiconvex, by Propositions
3.5(b) and 3.7 for large values of ¢ there are points p; in H, such that each p; is within a bounded
distance of r(t). As t — oo, the points h(p;) converge to a unique point 7 in 05 Y, since h|g,
extends continuously to the boundary; so since h is quasi-Lipschitz, A(r(t)) must also tend towards
n as t — oo.

Otherwise ¢ is a residual point. In this case Theorem 4.5 gives an infinite sequence (x,,) of sets
such that U, Xz covers r and de(0, x;) > a-n—b— A; so d(0,h(x;})) > f(a-n—b—A) — k. The
sets h(xy) are all g-quasiconvex (since each Y, is either a point or one of the sets H,), and since
h is (L, k)-quasi-Lipschitz we have h(x:) C (h(xn))*4*; hence by Proposition 3.8 the sets h(x2)

are all Q)-quasiconvex where Q = g+ LA + k + 85. Thus we have for every n,
diamvis(h(x;?)) < Vw—[%(a.n—b—A)—nH-Q’

by Proposition 3.9 (where diam,;s denotes the diameter in the visual metric |- |, on Y'). Thus the
series

Z diamys (h(Xf))

is dominated by the series
Z ,,Uf[%(a'n*bﬂ‘l)*lfu]%?7
n

which converges since w > 1. Therefore, by going out far enough in the sequence (x:') we can
make the tail end of the first series as small as we want. As we travel along r towards & we move
out farther and farther in the sequence (x4) (see Figure 9); so if we choose T large enough we can
make the visual diameter of the set {h(r(¢)) : ¢ > T'} as small as we want. Hence h(r(t)) must
converge to a unique point as t = co. O
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3

Figure 9: The path h(r) must terminate at a unique point in OxY .

4.3 Extension of i to the boundary

In order to extend h to the endpoint of a geodesic ray r, we showed that for the sequence of sets
(xn) associated to r by Theorem 4.5, the series

Z diamys (h(Xf))
n=1

is convergent. The estimates we used to show that the series is convergent involve constants that
do not depend of the choice of ray r. This observation enables us to prove the following uniformity
property of these series: we can make the tail end of such a series as small as we like by going out
past those sets x, such that h(Xf) intersects a fixed ball in Y around 0; the radius of this ball is
independent of the choice of ray r and associated sequence (x,,). This is the main fact that we will
need in order to show that A extends to all of J5,X.

Lemma 4.7 For every € > 0, there is an N € Zy such that the following holds:

Let r be a geodesic ray in X starting at 0, and let (x,) be the sequence of sets associated to r by
Theorem 4.5. Then

Yo diamyis(h(x])) <
Jid(0,h( ) >N

[NCR e

Sketch of proof:
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Let o = {X3-4 k< d(O,h(X]A)) < k + 1}. The idea of the proof is as follows: if X}-‘l is in oy
then by Proposition 3.9 we have that diamvis(h(xf)) < vw k@ where @ is the quasiconvexity
constant of the sets h(X]A). Note that the series in the statement of the lemma is the same as the
series

Z[ Z diamviS(h(X?))]B
k=N X;’EU;C

hence it is dominated by the series
o0
Z o |pw K9,
k=N

Because the sets x,, and x,, are at least a - |[n —m| — b apart in the electric metric, their images are
also far apart, and we get an upper bound on the number of sets Xﬁ in each oy, roughly proportional
to k; concretely, it is easy to show that there exist constants ¢; and ¢y, independent of the choice
of ray r and sequence (x), such that |ox| < c1k + c2. Thus each term of the series

S5 diamu (hc)

k=0 0%
is bounded above by the corresponding term of the convergent series

o0

> ek + co)vw FHe.
k=0

So by going out far enough in the first series (where “far enough” is independent of 7 and (x,)) we
can make its tail end as small as we like. O

We are now able to prove

Theorem C Let X and Y be proper, geodesic §-hyperbolic spaces, {Hqy} a collection of closed,
disjoint path-connected subsets of X, and h : X — Y a quasi-Lipschitz map such that for every Hy,
hlm, extends continuously to a continuous map h : OsHy — 0s0Y . If (X, {Hy}) and (Y,{h(Ha)})
satisfy (x1) — (x3) and the induced map hy : Ex — Ey is a quasi-isometry then h extends contin-
uously to a continuous map h : 0 X — OxY .

Proof:

Let £ € 05X . By Theorem 4.6, if r : [0,00) — X is a geodesic ray from 0 to ¢ then the image
under h of r approaches a unique point 7 in 05 Y. The Hausdorff distance between any two rays
from 0 to ¢ is finite by Proposition 3.5(b), so since h is quasi-Lipschitz the images of these rays
under A must both approach the same point as ¢ — 0o, by Proposition 3.5(a); thus, n does not
depend on the choice of r.
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Given € > 0, let V, denote the open ball of radius € around 7 in the visual metric on Y. We will
show that for every ¢ > 0 there is a neighborhood of ¢ in X that is mapped by h into V.

To construct this neighborhood, we will start with a certain open set W in X that is mapped
by h into Ve, and consider the set S consisting of all points = in X such that some geodesic segment
[0, z] 1ntersects W. We will see that W can be chosen so that S will contain a neighborhood of &
in X (see Figure 10). If z is a point in S then let ¢, be a point of W N[0,z]. The point h(q,) is in

X Y
h
e
[T =
& \Y/
how) N :
Figure 10

Ve, so if we could show that k() and h(g,) are within § of each other in the visual metric then we
would have that h(z) € V,, which is what we would like. In order to make this true we will have to
modify S, in such a way that the resulting set still contains a neighborhood of £.

If (xp) is the sequence of sets associated to [0,z] by Theorem 4.5, consider the subsequence
(Xn,) consisting of those sets that come within A of [g;, z]; note that the sets (ka) cover [gy, x].
Let N be the constant from Lemma 4.7. If for all n; we were to have h(x;, ) N B(0y, N) = 0 then
the sum of the visual diameters of the sets h(xn ) would be at most $; so since h([g, z]) is contained
in the union of these sets, we would have dms(h( ), h(gz)) < But we cannot guarantee that this
will be the case; there is no reason to expect that the sets h(Xnk) will not intersect B(0y, N). To
prevent this from occurring, we will carve out of S as much as possible of those sets H/ for which
h(HZ) intersects B(0y,N), and, since some of the sets x,, may consist of single points in C (the
complement of the sets H,), we will also remove some parts of C whose image under h intersects

B(0y, N).

37



So, let ¥ denote the collection of those sets HA such that h(HZ) intersects B(0, N) in Y. If
h(HZ) intersects B(0, N) then h(H,) must intersect B(0, N + LA + ); this is a compact set, so
since the sets h(H,) are all separated from each other by at least c, only finitely many of them can
intersect B(0, N + LA + k). Hence ¥ is a finite collection. If £ does not lie in HZ for any of the
H—f} in 3, let U; be a neighborhood of ¢ that is disjoint from the sets @in Y. Otherwise, let U;
be a neighborhood of ¢ sufficiently small that if Uy N HA # () (where HA € ¥) then h(Uy N HZ)
is contained in Ve (we can choose such a neighborhood since h| na extends continuously to the
boundary).

Let Us be a neighborhood of ¢ in X such that h(Us) does not intersect B(0, N) in Y. If r is a
geodesic ray from 0 to & then by the previous theorem we can choose a point p, on r Uy NUs such
that h(p,) € Ve. The map h is not assumed to be continuous, but since h is (L, k)-quasi-Lipschitz,
if we choose p, far enough out on 7 then we can find a neighborhood W, of p, in Uy N Uy that is
mapped by h into V%: concretely, choose p, far enough along on 7 so that the ball in Y around
h(py) of radius 1 + k is contained in Ve; then the ball around p, of radius % is mapped by h into
Ve. Let W = U,W,;, where the union is taken over all geodesic rays from 0 to £ (with only one
point p, being associated to each ray r). As before, let S be the set of all z € X for which [0, z]
intersects W.

Claim: U; NUz NS contains a neighborhood of £. U; and Us are open neighborhoods of &, so
we need only show that there is a neighborhood of £ contained in S; we will show that for any
sequence (x;) tending towards &, eventually all terms of the sequence are in S. Suppose instead
that (z;) has an infinite subsequence (which we will again call (x;)) that is disjoint from S. By
Ascoli’s theorem, some subsequence of the geodesic rays [0, x;] converges to a path in X, which is
necessarily a geodesic ray from 0 to . But then eventually the rays [0, z;] must intersect W, which
gives a contradiction.

So to show that h extends continuously to £ we need only show that U = Uy NU3 NS is mapped
by h into V..

Let z be a point in U. If z lies in one of the sets HA in ¥ then by construction h(z) € Ve C Ve
and we are done. Otherwise, let s be a geodesic segment (or ray) from 0 to z. Let s’ be the maximal
subsegment of s that terminates at x, that lies completely in U, and that is disjoint from the sets
HZ in ¥. Note that if p is the initial endpoint of s’ then h(p) € Ve, since either p is in W or it is

in the portion of one of the sets H—Of‘ that is mapped into V%. We will show that the diameter of
h(s') in the visual metric is less than §, so that h(z) is in V..

Let (xn) be the sequence of sets associated to s by Theorem 4.5. By accepting only those x;,
such that y2 Ns’ # () we get a subsequence (xy, ) such that Ux;?k covers s', and such that for all
Nk, h(X,‘?k) does not intersect B(0y, N) (this is true because if xy, is an electric set H, then HA
is not in 3, by construction; and if Z,, is a single point on s’ then that point is in Uy, hence its
image under A is not in B(0y, N)).
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Now by Lemma 4.7,

. €
3" diamus (h03,)) < 5.
n

Hence dyis(h(p), h(7)) < §, and h(z) € Ve. O

5 The boundary of the electric space

If A is a proper, geodesic, d-hyperbolic space and {S,} is a collection of closed, disjoint, path-
connected subsets of A, we have defined the electric space Ea to be the space obtained from A by
collapsing each set S, to a point; Ea inherits an electric distance from the distance function on A.
In this section we will show that if (A, {S,}) satisfies («;) — (*3) then the space Ex is hyperbolic
in the sense of Gromov. As we have seen, a hyperbolic space can be equipped with a boundary
at infinity in a natural way; we will show that the boundary of Ea is homeomorphic to the set
0ol es Of residual points of 0 A (recall that a point in dxA is called residual if it does not lie
on the boundary of any set S,). The homeomorphism from OsAyes 10 0o Ea is obtained as the
extension to JsoAyes of the natural projection IIa : A = EA.

If h: X — Y is as in Theorems C and D then the induced map hg : Ex — Ey on the electric
spaces is a quasi-isometry, so by Theorem 3.10 it extends to an injective map hg : OsoEx — OsoFy -
Iy : X UOsXyes — Ex and Iy : Y U 0xYres — Ey are the projection maps then we have
that hla, x,., = Oy o hg o lx|s, x,... So the injectivity of hi on 0 Ex tells us that hls, x,., is
injective; in fact, it tells us more: we will see that if £ € 0, X,es then for all n € 05X, h(&) # h(n).
This is the statement of Theorem D.

5.1 Hyperbolicity of the electric space

Suppose (A, {S,}) satisfies (x1) — (x3). We will begin by proving the following narrowness property
for electric quasigeodesic “triangles” in A:

Proposition 5.1 Let (A,{S}) satisfy (*1) — (*3). Let a, b and ¢ be points in A and let p, q and
r be electric (k, p)-quasigeodesics between a and b, b and ¢, and a and c, respectively. Then every
point on p lies within electric distance 40 + 2D(d,k, p) of some point of q or r.

Proof:

Let u be a point on p. By Proposition 4.3 there is a point v’ on [a, b] within electric distance D
of u. Since A is d-hyperbolic, there is a point v’ on either [b, ¢] or [a, ¢| within hyperbolic distance 46
of u'. Again by Proposition 4.3, there is a point v on either g or 7 within hyperbolic distance D of
v'. Since electric distance is less than or equal to hyperbolic distance, we have de;(u,v) < 46 + 2D.
O
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EA is not necessarily a geodesic space, so the above proposition is as close as we can get to an
analog of Proposition 3.2. However, it is sufficient to show that Ea is hyperbolic in the sense of
Gromov. Let 0 denote the point in Fa that corresponds to the basepoint 0 in A. We will denote
an electric Gromov product on both A and Fa by

(alt)et = 5ldet(a,0) + (b, 0) — dia(a, ).

A consequence of the previous proposition is the following, which will enable us to prove hyperbol-
icity:

Proposition 5.2 Let z and y be points in Ea, and let p be a (1,1)-quasigeodesic whose endpoints
are  and y. Then there exists a constant S that depends only on the hyperbolicity constant of A,
such that

del(pa 0) -5 < ($|y)el < del(pao) + 5.

The proof of the above is analogous to the proof when the space in question is geodesic and p
is a geodesic rather than a quasigeodesic (see e.g. [17]). This gives us

Theorem 5.3 Let (A, {Sqa}) satisfy (x1) — (x3). The space Ea is Gromov-hyperbolic.

Proof:

Let a, b and ¢ be points in Ea, and let p, ¢ and r be (1, 1)-quasigeodesics between ¢ and b, b
and ¢, and a and ¢, respectively. Let u € p be such that d(0,u) = d(0,p). By Proposition 5.1 there
is a point v in ¢ or r (say ¢) such that d¢(u,v) < 40 +2D(4,1,1). We have

(alb)e > d(p,0) — S = d(u,0) — S > d(v,0) — (40 + 2D) — S > d(q,0) — (46 + 2D + 5)

> (blc)e; — (40 + 2D + 25).
Thus (a|b)er > min{(b|c)er, (alc)er} — (40 + 2D +25). O

5.2 The boundary of the electric space

We can now prove that the boundary at infinity of Ea is naturally homeomorphic to the space of
residual points in A. We will need the following simple lemma:

Lemma 5.4 Let (v,) be a sequence in A that converges to a residual point & in OxxA. Then
dei(0,v,) — 00 as n — oo.
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Proof:

Let r, : [0,00] — A be the map that sends the interval [0,d(0,v,)] isometrically onto the
geodesic segment [0, v,], and sends the interval [d(0,v,),o0] onto v,. By Ascoli’s theorem, a sub-
sequence of (r,), which we will again call (r,), converges to a geodesic ray r from 0 to ¢, in the
topology of uniform convergence on compact sets.

Suppose that dg;(0,v,) does not tend to infinity as n — oo; then there is a constant B < oo
and a subsequence of (v,), which we will again call (v, ), such that d;(0,v,) < B for all n.

Claim: there is a constant (3 such that if w is a point in the image of any ray r; then dg; (0, w) < .
This follows from the fact the dg; is roughly monotonic on any geodesic segment. More precisely,
let (xx) be the sequence of sets associated to r; in Theorem 4.5, and let n be such that v; (the
endpoint of ;) is contained in x72. Then dy(0, x,) < B + A, so since de;(0, xn) > a-n — b, we have
that n < B"'TA‘H’. The point w, being before v; as we travel along r; away from 0, is contained in Xﬁz
for some m < n. By Theorem 4.5 we have de;(0, x;n) < o/ (ZE242) and dg (0, w) < o (2E24E0) + 4.

So if we assume that dg;(0,v,) does not tend to infinity as n — 0o then we must have a sequence
of rays (r,) converging to a ray r from 0 to &, and for all n we have that every point on 7, is within
a uniformly bounded electric distance of 0. But then every point on r must be within a bounded
electric distance of 0; this is impossible by Theorem 4.5, since £ is a residual point in 0, A. O

We are now able to prove

Theorem 5.5 Let (A,{S.}) satisfy (x1) — (*3). Then a sequence (z,) in A converges to a point
in OsoQves if and only if the sequence (IIa(xzy,)) converges to a point in Oso En, so that IIa extends
to a homeomorphism of OooQres With Oso EA.

Proof:

First let (z,,) be a sequence of points in A that tend toward a point £ in 0, Ajes. Since (z;,) is
a convergent sequence, we have that limy, n—00 (Tm|2n) = 00. We wish to show that the sequence
(IIa(zp)) converges to a unique point in Jso EA.

Suppose instead that (z,) contains two subsequences (y;) and (z;) such that the sequences
(IIa(y;)) and (IIa(z;)) do not converge to the same point in 0, Ea, or do not even tend towards
the boundary. Then for some constant M we have

lim inf(TIA (y:)[TTa (2)))er = M < oo.

1,]—>0Q

For every i and j let e;; be an electric (1,1)-quasigeodesic from y; to z;. Then we have

hm infdel(oa el]) <M+ Sa

1,]— 00

where S is the constant from Proposition 5.2. So there exist infinitely many pairs (7, j), with
i,j — 00, for which there exists a point u;; on e;; such that dg;(0,u;;) < M + S + 1.
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By Proposition 4.3, for every such point u;; there is a point v;; on [y;, z;] such that d(u;;,v;j) <

D((5, 1, ].); hence del(O,vij) <M+ S+1+D.
The sequences (y;) and (z;) both tend towards &, so (v;;) also tends towards £ as i, j — oo (see
But this gives a contradiction, by the previous lemma. Thus, such subsequences (y;)

Figure 11).
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Figure 11: Asi,j — oo, the point u;; stays within bounded electric distance of 0; hence so does vi;. This is

impossible since vi; — &, a residual point.

and (z;) cannot exist. Hence the map IIa extends continuously to &.
We must now show that if (z,) is a sequence in A such that (IIa(z,)) converges to a point

N € OsoEa then (z,) converges to a unique point &, and that £ is in JuoA,es. Since the sequence

(IIA(zy,)) converges to a boundary point, we have that
lim (IIa (2m) A (%0))e = o0

m,1—00

Suppose that (x,) does not converge to a unique point ¢ € 9,A¢s. A is compact, so a subsequence

of (z,) must converge in A. We must consider three possibilities:
(1) A subsequence (y;) of (z,) converges to a point p within A.
(2) A subsequence (y;) of (x,) converges to a boundary point p that is not a residual point (so

that it lies in the boundary at infinity of some electric set S,).
(3) There exist subsequences (y;) and (z;) that converge to two distinct points p and o of

aOO Ares .
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Case (1) cannot occur, since if p € A then Il is defined and continuous at p and maps p to a
point in Ea, not to 1 in Js FA.

Suppose case (2) occurs. We will show that liminf; ;o (ITa (i) A (y5))er < M < oo for some
M, which will give a contradiction since (y;) is a subsequence of (z,). In fact, we will show that
there exists a constant M < oo such that for every ¢ € Z,, there are infinitely many j € Z, such
that (IIa (yi)[Ha(y;))er < M.

Choose some point w in S, , and let r be a geodesic ray from w to p. S, is g-quasiconvex, so
since & € 05054, by Proposition 3.7 every point on r is within g + 89 of a point on S,. Fix i, and
for each j, let s; be a geodesic segment from y; to y;. By Ascoli’s theorem, a subsequence (s;, ) of
(s7) converges to a geodesic ray s : [0,00) — A from y; to p. By Proposition 3.5(b), there exists a
real number 7" > 0 such that d(s(t),r) < 8¢ for all ¢ > T. So there is some N € Z, such that for
all indices j; > N there is a point z;, on sj;, that is within 8) + 1 of r, and hence within 166 +1+¢
of S, .

Let ej, be an electric (1,1)-quasigeodesic from y; to y;,. By proposition 4.3 there is a point z;k
in ENy(ej, ) that is within a (non-electric) distance D(4,1,1) of zj, (see Figure 12).

0

<126+4+q

Figure 12: There is an upper bound on hence also on (y;|y;, )ei-
Now by Proposition 5.2 we have

(HA(yi)|HA(yjk))el < del(ejk7 0) +S

< del(Z;-k,O) +5< del(z;'szjk) + del(zijSa) + dei(Sa,0) + 5
<D+166 + 14 q+de(Sq,0) + S.
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dei(Sa,0) is some finite number, so (IIa(y;)|IIa(yj,))e is bounded above by a constant that is
independent of ¢ and ji. This gives a contradiction.

Suppose case (3) occurs. Since p # o we have limsup; ;_,(yi|z;) < M < oo for some M. We
will show that limsup; ;_,. (A (yi)[1a(2;))e is finite; this will give a contradiction since (y;) and
(zj) are subsequences of (z,). Let s;; be a geodesic segment from y; to z;; by Proposition 3.4,
d(0, si5) < (yilz;) + 4.

Let ¢ and j be sufficiently large that (y;|z;) < M + 1, so that d(0,s;;) < M + 1+ 40; let a;; be
a point on s;; such that d(0,a;;) < M + 14 40. If e;; be an electric (1, 1)-quasigeodesic from y; to
zj then there is a point agj in ENy(e;;) that is within hyperbolic distance D of a;;. We have

(Ia (y)|Ta(2)))er < dei(eiz, 0) + S < dei(aij, 0) + S
< de(aij, aij) + de(aiy,0) + 8 < d(aj;, aiy) + d(aij,0) + S < D+ M + 1440 + S.
This again gives a contradiction.

Thus cases (1)-(3) cannot occur; so if the sequence (IIa(zy,)) converges to a point 1 € JuoEa
then (z,) converges to a unique point £ that lies in OpApes. O

5.3 The identifications of the map h : 0,,X — 0,Y

We can now prove Theorem D, which can be written as:

Theorem D Let h: 00X — 0xY be the map constructed in Theorem C. If € and p are points in
0o X such that h(§) = h(p) then & and p are not residual points.

Proof:

Let h(€) = h(p), and suppose that £ is a residual point. Write n = h(§) = h(p). Let (z,) and
(yn) be sequences in X that converge to £ and p, respectively. The sequences (h(z,)) and (h(y,))
both converge to . We will show first that n must lie in 05 Y;es-

Since & € 0ooXyes, by the preceding theorem we have that the sequence (Ilx(x,)) converges
to a point IIx(§) in JpoFx. The map hp : Ex — FEy induced by h extends continuously to
a map hg : OxEx — OwoEy by proposition 3.10, so the sequence hp(Ilx(z,)) converges to a
point hg(Ilx(£)) in OxEy. For all z € X U 0o Xyes, we have hy o Iy = IIy o h. So for all
n, hg(Illx (z,)) = Iy (h(xy,)). So Ily(h(x,)) converges to a point in s Ey, and by the previous
theorem the limit 1 of the sequence (h(z,)) must be in JyoYyes.

Now since 1 € 0 Yres we have that the sequences (IIy (h(xy,))) and (Ily (h(yy,))) both converge
to a point Iy (7)) in Ox Ey .

Since hg : Ex — FEy is a quasi-isometry, it has a quasi-inverse, that is, a quasi-isometry
gr : hg(Ex) — Ex such that for some constant A, dej(a,g9p o hg(a)) < A for all @ € Ex. Since
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gp is a quasi-isometry it extends continuously to a map from the boundary of hg(Ex) to 0xEx.
We have then that the sequences (g (Ily (h(zy)))) and (9 (Ily (A(yy)))) both converge to the point
9e(Iy (1)) in O Elx .

Now since Iy (h(z,)) = hgp(llx(x,)), we have for all n

d(Ilx (zn), 9 (Ily (h(z)))) = d(Ilx (zn), g o he(llx (z,)) < A,

and likewise
d(Ix (yn), 9 (y (h(yn)))) < A.

So the sequences (I1y (z,)) and (ITx (y,)) also converge to gg(I1y (n)) by Proposition 3.5(a).
But then by the previous theorem the sequences (z,) and (y,) must converge to the same point
in Oso Xyes- This is a contradiction, since £ # p. O

In the Kleinian groups problem, we know that the semiconjugacy ¢ : ¢ — € from the action
of I'y to the action of I' identifies points on the closure of each component €2, of the domain of
discontinuity of I'y according to the ending lamination Aa; we wish to show that these are the
only identifications that occur. Since the sets €2, can intersect in their boundaries, one obstacle to
proving this is the possibility that the intersection of two sets 2, and ﬁg might contain a point
that is on the closure of a leaf of A\, and also on a leaf of 5\5; then all the points on these two
leaves will be identified by §. Points on different sets €2, and ﬁg would clearly also be identified
if there were a chain of components of the domain of discontinuity Qo, ..., Q,,, with Qy = Q, and
Q= ﬁg, and leaves Iy, ..., 1,,, of the ending laminations of €y, ..., Q,,, respectively, such that for
each 7, one endpoint of /; is an endpoint of /;_; and the other endpoint of /; is an endpoint of
li+1, as in Figure 13 (we will show later in this section that in fact this cannot occur). Our next

Figure 13: If this configuration were to occur then the map § would identify points in C that do not lie on
the same set Q.

theorem shows that this is the only obstacle to proving Theorem B. The only part of the proof
that is specific to the setting of the Kleinian groups problem is the fact that the map §: H® — H3
of Theorem A descends to a map of electric spaces that is a bi-Lipschitz homeomorphism, not just
a quasi-isometry. In fact, if A : X — Y is any map satisfying the conditions of Theorem C' such
that the map hg : Ex — FEy of electric spaces is a bi-Lipschitz homeomorphism, we can say the
following;:
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Theorem E Let X, Y, {Hy} and h: X — Y be as in Theorem C, and suppose that the induced
map hg : Ex — Ey on electric spaces is a bi-Lipschitz homeomorphism. If & and p are points in
O0so X such that h(§) = h(p) then there is a finite chain of electric sets {Hy,...Hp,} such that

(1) £ € OsoHy and p € OxoHy,.

(2) Fori=0,...,m — 1 there is a point p; € OscH; N OxcHjt1 such that h(p;) = h(€) = h(p).

Proof:

Write n = h(§) = h(p). Since h(§) = h(p), by Theorem D there exist electric sets H, and Hpg
such that £ € 0xH, and p € 05 Hg. Choose a point u € h(H,) and a point v € h(Hg); the rays
[u,m) and [v,n) terminate at the same point on 05 Y, so by Proposition 3.5(b) there are sequences
(z],) on [u,n) and (y),) on [v,n) that tend towards n and such that d(z/,,y!,) < 80. The sets h(H,)
and h(Hg) are g-quasiconvex, so every point on [u,n) or [v,n) is within ¢ 4 8§ of a point on h(H,)
or h(Hpg), respectively, by Proposition 3.7; hence there are sequences (z,) and (y,) on h(H,) and
h(Hp), respectively, that tend towards n and such that d(z,,y,) < ¢+ 166. Let s, be the geodesic
segment from z, to y,. Let a, be a point in H, that is mapped by h to z,, and b, a point in
Hp that is mapped to y,; we will construct a finite chain of points {ang, bno, an1,bni; .-, Gnar, buar}
from a,, to b,, whose behavior we can control.

Set ano = a,. If Hy # Hg, let s,1 be the component of s, N A(C) that begins at the last point
in s, N h(H,), traveling towards y, (recall that C is the complement in X of the electric sets).
The map h restricted to C is a homeomorphism, so we may pull s,,; to obtain a path h=!(s,)
in C whose initial endpoint lies in H, and whose terminal endpoint lies in some other electric set
H,1; let by denote the initial endpoint and a,; the terminal endpoint of h='(s,1) (see Figure 14).
If Hy1 # Hg, let sp2 be the component of s, N A(C) that begins at the last point in s, N h(Hp,

h(s..)
h(s.) v h
\] b
ano. nl e/ bﬂ
H, b, ay H,
“Ha

Figure 14: The construction of the points a,o,bno, @n1, bnl, - Ak, Onke -

h(H,)

traveling towards g,,. The path s,2 pulls back to a path h~!(s,2) whose initial endpoint lies in H,;
and whose terminal endpoint lies in some new electric set H,9; let b,; denote the initial endpoint
and a,2 the terminal endpoint of h~!(x,2). Continue constructing the points a,; and by,; in this
manner; the process with terminate when we have reached a point a,, that lies on Hg; set b, = by,.

Since there is a uniform upper bound on the lengths of the paths s,, there is (trivially) a
uniform upper bound on the total lengths of the paths s,; for each n; each such path must have
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length at least ¢ (the minimum separation between any two electric sets), so it follows that there is
a uniform upper bound on the number of paths s,;, for each n. So since the map hg : Ex — Ey
is a bi-Lipschitz homeomorphism, we have the following:

(1) There is some constant M such that for all n, the above construction terminates after
producing at most M points a,; and M points b,;.

(2) There is an upper bound B (independent of n and 4) on d(bni, ay(iy1))-
We wish to produce collections {an0,bno, an1,0bn1, .., ank, bk} for each n that all have the same
number of elements; so if & < M, set ayy1) = bp(kr1) = Ankt2) = - = M = bunsr = by,

Choose some subsequence {n;} of Z* such that for all i between 0 and M, the sequences
(an,i) and (by,;) converge in X to points p¢ and p?, respectively. By our construction we have
h(p%) = h(p?) = n for all i = 0,1,..., M, so that in particular the points p¢ and p? all lie in Gs X
and, by Theorem D, are not residual points.

For each i and each ng, we have that d(bn,i,a,,(i+1)) < B; hence by Proposition 3.5(a) the
sequences (b, ;) and (ay,, (;+1)) converge to the same point in 0 X as ny — oo, that is, P =l
Set p; = p{; we will be done if we can show that for : — 0, ..., M, p; and p;; lie in the boundary of
the same electric set, since we already know by construction that py lies in 0, H, and pps lies in
Hg.

Fix 1; we know that p; = limy,, o0 Gp,i and pjp1 = limy,, o0 by,i. For each ng, an,; and by, ; lie
on the same electric set Hy, i. There are two possibilities for the sequence (Hy, i): either infinitely
many of the sets H,, ; are the same, or there is some infinite subsequence of (H,,;) whose elements
are all distinct. Suppose first that infinitely many of the sets H,,,; are the same; call this electric
set H;. Then p; and p;41 both lie on H;, and we are done. Otherwise there is some subsequence of
(Hy, i), which we will again call (Hy,;, whose elements are all distinct. Since there is a minimum
separation between any two electric sets, for every N < oo there is an upper bound on the number
of electric sets that intersect B(0,N) in X; hence as ny — oo, d(0,H,,) — oo. The electric sets
are uniformly quasiconvex, so by Proposition 3.9 we have diam,;s(Hy,) — 0 as ny — oo. Thus
dyis(@n,i, bp,i) = 0 as n — 00; so in this case the sequences (ay, ;) and (by,;) converge to the same
point in 0.X, that is, p; = p;+1. So since p; = p;+1 is not a residual point, we certainly have again
that p; and p;41 lie in the boundary of the same electric set. O

This enables us to prove

Theorem B Let g : ¢ = € be the map constructed in Theorem A. If x and y are in C then
g(x) = g(y) iff for some Qq, z and y lie on the closure of some leaf or complementary component

of Aa.
Proof:

If the domain of discontinuity €2 of I'g is empty or has two components, we have already seen
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that the statement of the theorem holds. For the remainder of the proof, we assume that € has
infinitely many components (the only remaining possibility, by Lemma 2.4). In this case we have
seen that the map g : (H®, {H,}) — (H3,{g(H,)}) satisfies the conditions of Theorems C, D and
E (recall that the sets H, are the components of the complement of the convex hull of I'y, and
each set H, meets the boundary C of H3 in the closure of a component €, of Q).

We wish to show that is z € Q, and y € Qg where Q, and Qg are distinct components of €,
then g(z) # g(y). In view of Theorem E and the discussion immediately preceding it, it will suffice
to show that if § € Q4 N Qg then £ is not an endpoint of any leaf of the ending laminations A, and
AB.

So let £ € QN ﬁg; we will show that £ is not an endpoint of a leaf of Aa. Let Iy C Ty and
I's C I'p be the stabilizer subgroups of €, and €13, respectively, so that the boundary circle of
Qq, is the limit set of I'y; likewise for Qg. Write I'yp = I'o N I'g. By work of Susskind (see [29]),
the intersection Ap, N Ap, of the limit sets of 'y and I's is the limit set Ar_, of ['yp, and T'yp is
geometrically finite.

Equip ©Q, with a Poincaré metric and realize the leaves of A, as geodesics. Let CH (Ar.,)
denote the convex hull in Q4 of Ar,,. Since I'ys is geometrically finite, CH(Ar,,)/Tap is a
compact surface. We will show that the quotient of CH (AFaB) by 'y is the same as its quotient
by I'a, so that CH(AFQB)/FQ is a compact subsurface of S. = Q4 /L.

Let v € I'y. If v € T'yp then v(CH(Ar,,)) = CH(Ar,,). If v is not in T'yg then we claim
that y(CH(Ar,;)) NCH(Ar ;) = 0. If y(CH(Ar,,;)) NCH(Ar,,) is nonempty then there must be
points @ and b in Ar_, and ¢ and d in y(Ar,,) such that ¢ and d separate a and b on the boundary
circle of €2,. But then since a and b lie on the boundary of {25 and ¢ and d lie on the boundary
of ¥(£2g), the sets Qg and 7(3) must intersect (see Figure 15); this is impossible since « is not in
"5, the stabilizer of 2.

Thus the quotient of CH(Ar,,) by I'y is the same as its quotient by I's4, so that CH(Ar,,)/La
is a compact subsurface of S, with geodesic boundary. Hence the boundary of CH(Ar,,;)/Tas in
Se consists of a finite collection of simple closed geodesics.

Now suppose £ € ﬁg N ﬁg and ¢ lies on the closure of a leaf of Xa; then ¢ is the endpoint of a
geodesic half-leaf [ of A\,. Let [ denote the projection of [ to Se; [ is a half-leaf of A..

Since ¢ is in Ap,,, either:

(1) [ is asymptotic to a boundary component of CH (Ar,,); or

(2) [ is eventually contained in CH(Ar,,). (see Figure 16).

In either case, if ¢ is a simple closed curve in the boundary of CH(Ar,,)/T4, c intersects I
transversely at most once; so since [ is dense in A, in fact A, cannot ever intersect ¢ transversely.
But then either ¢ is contained in A, which is impossible since )\, contains no closed curves, or c is
disjoint from A, which is also impossible since ). is maximal. So we have arrived at a contradiction.
O
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y(convex hull)

.
“aamn=’

Figure 15: The shaded region denotes the convex hull of Ar . If the points ¢ and d separate a and b then
Qs must intersect v(Qg).

) D

Figure 16: The two possibilities for I, if £ € Qq N Qp.
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