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Abstract of the Dissertation

Quantum Groups, Screening Operators,
and ¢-de Rham Cocycles
by
Abdellah Sebbar
Doctor of Philosophy
in
Mathematics
State University of New York at Stony Brook

1997

The representation theory of Virasoro algebras, established by
Peigin and Fuchs, gives a way to obtain intertwining operators
between the Fock space representations out of the top homology
classes of certain one dimensional local systems over configura-
tion spaces. A similar construction exists for affine algebras, the
main tool in this construction being the so-called screening oper-
ators. Ginzburg and Schechtman made the remark that in fact
these screening operators contain more information. Namely they

provide certain canonical cocycles of the Virasoro (resp. affine)
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operator-valued local systems on the above configuration spaces.
This gives the canonical morphisms from all homology groups of
the local systems into Ext-spaces between the above Fock space
representations. The purposc of this thesis is to investigate this
connection between the geometry of configuration spaces and rep-
resentation theory in the case of quantum groups. After giving
some constructions and results about ITopf algebras, we treat the
cases of the quantized enveloping algebras of a semisimple Lie al-
gebra, and of the affine algebra 5l,. More detailed study is done for
the case of sly; which includes also the case when the deformation

parameter is a root of unity.
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Introduction

1. The term quantum group is given to Hopf algebras that arc associated

with objects connected with algebraic groups. This includes the algebra of reg-

ular functions over an algebraic group, and the universal enveloping algebra
of a Lie algebra. Important examples are the deformations of the enveloping
algebras of Kac-Moody Lie algebras using a parameter ¢, introduced by Drin-
feld and Jimbo, in terms of generators and relations. They provide a wide |
variety of Hopf algebras which are neither commutative nor cocommutative, i
When g — 1, it is expected that one recovers the universal enveloping algebra.
For a finite dimensional algebra, Fadeev, Reshetikhin and Takhtajan gave a

second realization of the quantum group associated with a finite dimensional

Lie algebra by means of solutions of the Yang-Baxter equation. This real-

ization can be seen as an analogue to the matrix realization of classical Lie
algebras. Later they showed how to extend their construction to the case of
a loop algebra using a solution of the Yang-Baxter equation depending on a

parameter. A central extension of this quantized loop algebra was established

later by Reshetikhin and Semenov-Tian-Shansky. Meanwhile, Drinfeld gave
another realization of the quantum affine algebra, which is an analogue to the

loop realization of an affine algebra, that he showed to be equivalent to the

Drinfeld-Jimbo realization. The equivalence between the Drinfeld realization
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and the second realization above was established by Frenkel and Ding using the
(lauss decomposition. These equivalences are simply algebra isomorphisms,

and in general not Hopf algebra isomorphisms.

2. Although these quantum groups have a strong connection with statis-
tical mechanics, conformal field theory and knot theory, they are, according to
Lusztig, simply a new development in Lie theory. He showed that the algebras
of Drinfeld and Jimbo have a natural form over Z[q, ¢ '], which specializes for
¢ = 1 to the Kostant form of the classical enveloping algebras. When ¢ is a
root of unity, quantum versions of the semisimple groups over fields of posi-
tive characteristic are obtained. In terms of representation theory, everything
depend on whether ¢ is a root of unity or not. More precisely, if ¢ 1s not a root
of unity, then the finite dimensional representations of the quantized aigebras
present no real difference with the representations of the Lie algebra except for
the fact that for each representation of the latter, there are 2" representations
for the quantized algebra, where r is the number of simple roots, which is due
to the choice of r signs. If ¢ is a root of unity, then the quantized enveloping
algebra behaves like the enveloping algebra over a field of prime characteristic
p (at least for p > 3). Lusztig also developed the theory of highest weight

modules and Verma modules.

3. A natural question arises then: How much of the classical theory of
Lie algebras, their representations, and their subsequent applications to other

felds can be considered for quantization? And what are the tools that will

substitute the classical ones developed over the years for their study? Hinting
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for instance to Lusztig’s use of the theory of quivers and perverse sheaves to

construct canonical bases and the use of Kashiwara theory.

The aim of this work is to study some aspects of these questions. The

classical theory which is considered can be described as follows:

Tn their work on representation theory of Virasoro algebras, Feigin and
Fucks gave a way to obtain intertwining operators between the “Fock space”
representations of these algebras out of the top homology classes of certain
one dimensional local systems over configuration spaces. A similar construc-
tion exists for affine Kac-Moody Lic algebras. These intertwining operators
were built up from the so called “screening operators”. In a recent work,
Ginzburg and Schechtman made the remark that in fact these screening oper-
ators contain more information. They provide canonical cocycles of the afline
Kac-Moody algebra with coefficients in the de Rham complex of an operator-
valued local system on the configuration space. This makes if possible to
obtain canonical morphisms from higher homology groups of the above local

system to appropriate Ext-groups between the Fock modules.

4. We investigate a quantum analogue of these constructions in the case
of the deformation of the enveloping algebra of a semisimple Lie algebra, and
in the case of the affine algebra sl,. In the first case, the representations con-
sidered are the Verma modules; in the second case, we consider certain highest
weight representations that are g-analogues of the so called Wakimoto mod-

ules. We construct a family of operators between these modules which satisfy

certain difference equations and certain cocycle conditions. These equations
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are built using a family of ¢-difference operators which generate a flat con-
nection in a l-dimensional vector bundle over the n-dimensional torus. This
connection depends on the representations considered. We consider a “g-de
Rham” complex of the spaces of formal algebraic differential forms over the
n-torus. The homology groups of this complex can be regarded as the ho-
mology groups of the n-torus with coefficients in a local system with stalk
C. From these data, we construct the canonical “g-de Rham” cocycles, and
consequently, we obtain the canonical maps between the homology of the local

systems and the Ext-spaces between the representations in question.

Of course, onc has to make sense of all these objects in the quantum case.
The Hopf algebra structure of the quantum groups and the g-calculus are
important ingredients in these constructions. In Chapter I, we establish some
results concerning the actions of Hopf algebras on modules, and we introduce
two important objects for all this work, namely a certain bracket which play a
fundamental role, and a cochain complex that will lead to the Ext-spaces. In
Chapter 11, we treat the case of the algebra ¢,(slz), and we construct nontrivial
1-cocycles which lead to all canonical maps between homology spaces and Ext-
spaces. These maps turn out to be isomorphisms. As a consequence we obtain
nontrivial intertwining operators between the Verma modules. The case of ¢
being a root of unity is also treated. In Chapter [11, we generlize the above
construction to the case of a semisimple Lie algebra. A type of Kashiwara
operators is used in the constructions of the Vertex operators, and composition

series of these operators are considered.

In Chapter IV we consider the case of the quantum affine algebra b{q(g[z)




in the Drinfeld realization. We present a “free [ield” realization for this al-

gebra in terms of certain completions of Heizenberg algebras, and we present

the quantum screening operators. Afterward, we solve the main difference t

equation, and we construct the canonical cocycles in the simple case and in

the composition case.




Chapter I. Hopf algebras and their actions

In this chapter we recall the definition of Hopf algebras, and we present some
constructions and results related to them. All the algebraic structures will be

considered over the field of complex numbers.

1. Preliminaries

An algebra is given by a triple (B, g,n) where B is a vector space, and
4 : B® B—B and 5 : C— DB are linear maps which make the following

diagrams commutative:

Associativity axiom:

BoBeB 2% Bo B
lidm lﬂ
BB ‘- B
Unit axiom:
CoB ™% Bgp & BgC
«N, lr e
B

i
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A coalgebra is obtained by reversing the arrows of the above diagrams;
it is a triple (C,A, &), where C' 15 a vector space and A : C—C @ C and
£+ C——C are linear maps which make the following diagrams commutative:
Coassociativity axiom:
¢ 25 0ecC

IA l,idc;)A

CoC 2% cgcel
Counit axiom:

ColC &4 cgc " CceC

=N s =
o

The map A is called the comultiplication and ¢ is called the counit map.

A bialgebra is a quintuple (H, g, 1,5, €) where (H, u,m) is an algebra and

(H,A,e) is a coalgebra satisfying the following equivalent conditions:

(1) The maps pt : HQH—H and n : C—H are morphisms of coalgebras.
(2) Themaps A: H—H @ H and &: H——C are morphisms of algebras.

Here, a morphism of algebras f : (H,p,n)—(H', @', 7') is a linear map f

H— H’ satisfying:
po(f@f)=fou and fon=1n.

And a morphism of coalgebras g : (H,A,e)—(H', A, e} is a linear map

g : H— H' satistying:

(fefloA=Aof and e=¢og.
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We will a adopt the Sweedler notation for the comultiplication, that is, if

x € H, then
Alz) =5 o' @ "
(=)

Given an algebra (3, gt,7) and a coalgebra (C, A, =), we define a bilinear map
on the vector space Hom(C, B) called the convelution as follows: if f and g

are elements of Hom(C, B), then f # g is the composition
c-20®Ci™MB e BB
Using the Sweedler notation, we have:

(fxg)(z) = % Fa")gle”)-

Now, if (H,p,n,A,¢) is a bialgebra, an endomorphism A of H is called an

antipode for H if

Axidg=idgxA=noc.
Finally, a Hopf algebra is a bialgebra with antipode.

The properties of the antipode are summarized in the following theorem,

E

for a proof, see [24] or [15].
TugoReM 1.1. Let (H,u,n,A, ¢, A) be a Hopf algebra, then:
(1) A is a bialgebra morphism from H to H., i.e. we have
Alzy) = A(y)A(e) , coA=g¢,

and

(A® A)A = A®,  A(l) =1,
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where the comultiplication for HP s given by: A = 7o A, wilh
(a@b)=b@ .
(2) The following statements are equivalent :
(a) A? = idy
(b) for all x ¢ H we have

(z): A(z")z' = e(=).

(c) for all x ¢ H we have

Sy 2"A(') = 2(z).
(x)
In addition, if H is commutative (i.e. p{a®b) = p(b®a)) or cocommuiative
H 4
(i.e. Ala) =7 0 A(a)), then A? = idy.

For practical reasons, we summarize the axiomatic relations of the maps

A, A and ¢ in the following equations:

S eE @@ =3 (2) o) @z (Coassociativity axiom).
(=) (=)

(1.1) 3 de(x”) =) e(a’)a” =2 (Counit axiom).
(=) (=)
(1.2) ST a'A(x") =) A(z')e" = e(z). 1 (Antipode axiom).
(z) (=)

2. Actions on Hom-spaces

The modules considered in this section are algebra left-modules, we will

not deal with the notion of comodules.
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Let H be a Hopf algebra over C and let A, /l and & be the comultiplication,
the antipode and the counit respectively. If M and A are two H-modules,
then one can define a structure of left module on both M&A and Hom{ M, A)
by:
(my @mag) =Y (2'my) ® (2"mse)  (my,my €M, v € H),

(=)

' f(A(gym) (me M, [ eHom(M,N), ze Il
(37)

Fach vector space carrics a structure of [{-module through the map &. There-
fore, the dual space M* = Hom(M, C) carries a structure of #-module. It is

given by

= ¢(A(z)m) using (1.1).

If M, N and P are three modules, we would like to factorize the action of
elements of H on maps in Hom({M,P) which are compositions of maps from
Hom(M,N) and Hom(AN, P). We need the following lemma, whose proof was
outilined to me by S. Montgomery. To simplify the notations, we change the
superscripts / and 7 to subscripts with arabic numbers whenever more than

one is involved.
LEMMA 2.1, If H is a Hopf algebra, then for every x in H, we have:

(2.1) 2371 @1z = Z-’Eu @ A{z12)T01 @ To2.
(=) (z)
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Proor. We prove the identity by applying the coagsociativity of the map A
several simes. If z € H, then by the coassociativity, we have:
Ty @ g @ Tep = 118 L1 @ To.
Now, applying 1 ® A @ 1 to left handside, and the 1 ® 1 ® A to the right
handside, we obtain, by coassociativity:
T4 @ To1 D212 @ Toz = T1,1 @ T13 @ T2 B T2
Therefore,
T11 @ A2y 2)22) @ T2 = 21 @ A{x211)%2,1,2 ® Tap2
=z @&(221) @ L2
=21 @1
using (1.1) twice. This proves the lemma. [

PROPOSITION 2.2. (Composition lemma). If M, N and P are three IT-modules,

then for every f € Hom(N,P) and for every g € Hom(M,N) and x € H, we

have:

w-(fog):(Z(x'~f)0(ﬂ"’-g)-
z)

ProoF. The relation can be written as:

21 f(g(A(z2)m)) = ml,lf(A($1,2)$2,1Q(A(i‘z,zm))) (m € M).

Which follows from (2.1) in the above lemma after applying 1@ 1 ® A to its

two sides. O

The composition lemma seems to be jusi a consequence of the axiomatic

definition of the Hopf algebra, especially from the coassociativity. For the sake
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of completeness, we give another interpretation and a proof not involving the

coagsociativity, and which deals more with the modules themselves:
The composition map (f,g)— f o g is bilinear, it induces a linear map
Hom(A, P) ® Hom(M, N)——Hom(M, P).

The statement of the proposition is equivalent to the fact that the composition

map is H-lincar. Let us define the following maps:
Py N@ M*——Hom(M, N)
given by
D n(n @ @) m) = d(m)n (neN, meM, e,
and the evaluation map eva : M @ M*—C given by evai(m @ ¢) = B(m).

Then the following diagram is commutative:

PN QN @M MO pg M
l‘iw;pmw,n F)M'P

Hom(V,P) @ Hom(M,AN) ——  Hom(M,P).
Indeed, let m € M, n € N, p€ P, ¢ € N* and 3 € M", then we have:

b@Mp®Qme®¢®n®¢nwn=b@mﬂp®M®¢Mwm®¢m
= Pyp(p® ¢) o Pma(n®¢)(m)
= 9p(m)e(n)p.

On the other hand, we have:

Dy plid@evy Qid)(pR BN E P)(m) = d(n)Pum,p(p ®¥)(m)
= ¢(n)p(m)p,
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which shows that the diagram is commutative. If A is finite dimensional, then
P p and Gaqn are isomorphisms, therefore, we can express the composition
map in terms of xp, Paw, Parp and the evaluation map. To conclude that
the composition map is H-linear, it is enough to show that the maps ®aqnr
and evaq are H-linear. et z € H,me M,ne N, ¢ € M" and ¢ € N*,

then:

S (- (n®¢)) Z B i n(2'n @z - p)(mn)
= Z (z" - ¢)(m) n
()

= Z #(A(z")m)

=) 2'opynin® (A" )m)
(=)

=z Ppnnod)(m),

which shows that ® s is H-linear, and so is ev g because:

eva (2 (h@n)) = evp(a' 1 @a'n)
(=)

_ZCL ZCTL

(x)

=Y P(A(2

(@)
=e(z)p(n). O

Note that the result is still true if one assumes that M and P are finite

dimensional and not A,
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3. A bracket and a cochain complex

Let II be a Hopf algebra over C and let A, g, A be respectively the

comultiplication, the counit and the antipode.

We define the bilincar map < -,- > on ff ® H by

(3.1) <zy =y a'yAz") —e(x)y (z,y € H).
(=)

This bracket satisfies the following properties:

PROPOSITION 3.1. For every z, y, z in H, we have :

(1) < ay,s >=< z,<y,z>>+e(@) <y,z > +ely) <z,2>,
(2) e(< 2,y >) =0,
(3) A< o,y >) =< AX(), A2(y) >

ProOF. We have

<zy,z>= Y yzAY")A(L") — slzy)z

(2),)
<z, S YR AWY") > +e(e) Yy AlY") — e(w)ely)e
(v) {y)

=<z, <y, 2 >> + < x,ely)r > te(z) <y.z >

—< o, <y, z>> e(y) < a.z > te(x) <y, 2>,




which proves the first relation. We also have:

(< z,y >) = ?4; e(a)e(y)e(A(z")) — eley)

= e(y)e (Z x'A(m”)) —&(ay)

{=)
= e(y)e(e(z).1) - e(zy) by definition of A and €

=0,
which proves (2). To prove (3), we use the fact that A is an anti homomor-
phism, and the fact that A(A(z)) = ¥ ;) A(z") O A(2'), and that e(Alz)) =
e(z). We have
ZAQ '@ Az)"
=2 AA(=)") @ A(A(e))
= (A® A) (Z Alz)" @ A(z))
= (A2 A%) (D' ®a")
_ ZAQ(CC’) ®A2(:E").
Therefore,
< A¥{z), =Y A’ YA(A*(2"))
— AZ (Z :c’yA(ac”))
= A*< z,y>). O
Note that < 1,z >=< z,1 >=0forevery 2 € H. Andif H is commutative

then < z,y >= 0 for every z,y € H, while if H is cocommutative, then

<z, Aly) >=A <2,y >,
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[f M is a left H-module, then m € M is called an H-invariant if zm = e(x)m

for every z ¢ H. If N is another H-module, we set i
(3.2) <z, p>=u-¢p—c(x)p zcH, ¢ Hom({M,N).

Notice the analogy with the definition of < z,y >. The relation {1} in the ‘|
above proposition is still valid when we substitute z by ¢. We rewrite it as |
(3.3) ‘ |

<zy, ¢ = <y, > +e(y) <e,é>, 3,5 € M, $ € Hom(M,N).

We also have < 1,¢ >= 0 for every ¢. We say that ¢ is an invariant il

< z,¢ >= 0 for cvery z € H. |
'PROPOSITION 3.2. We have: \.

<z, gp =) <zp><d >t <o to<zY>.
(=) : {
1

PrOOF. We have

<z, >=_ (' )" ¥) — e(x)dy. |
(=) .

The proposition follows from the composition lemma, from (1.1) and the fact
that e(z) = ¥, e(z')e(2"), which follows also from (1.1). 0O

Let M be a H-module, and let us consider the following complex:
C* = C(H®, M) : 0—>M—Hom(H, M)— - —Hom(H*", M)— - -,
and the linear map |

d : Hom(H®"™* M)—Hom(H®", M)

defined as follows:




If ¢ € Hom(H®™ '\, M) and 21 ® 2, ® ... @ x, € L7, then

d(z1, 22,000 ,Tp) = T1° Hzay ..., Ty)
n—1
+ Z(—l)“(,b(:cl,... g Ty TiLip 1y T2 - v s Tn)
=1

H=1)" (1,2, - Tt )E(Tn).

PROPOSITION 3.3. We have d® =0, i.e. (C*,d) is a cochain compler.

Let us introduce the following notations:

Lplar,... ,20) =1 P2, 5T )s
dr ¢y, ..., Ty) = HT1, - - L1 )6(Tn).

Andfort <e¢e<n-—1:

df%cﬁ(:tl,... yT) = G(T1y .o Ty, R

g0 that we have:

The next two lemmas conclude the proof of the proposition .

LEMMA 3.4. We have

dod =3 (—1)"(d d — d,di™).

<]
ProoF. We have:
n+l n
dod=3 S-1 P,

7=01=0

— it+i 41 2+3r

- Z(M 1 jd 'Hd% +Z d'n+1 6'
1< iz




By changing the indices, we get:

Z(_l)i-i_jd{l-i‘ld:l = E(*l)iﬂdiﬂdff .

(>3 i<y

This proves the lemma. [J
LEMMA 3.5. For0 <i<j<n-—1, we have:
rdy = i di!
ford <1< j<n-—1
Proo¥. We will treat different cases:
(7)1 =10:

If 7 =1, then

L

(£31+1CI2¢(:E1:.' - J$n+1) = d2¢($1$2,$3, . 1In+1)
= (2122) - (T3, Tuga )y
and
d3+1d2¢($1: cer 1$n+l) =y d%qﬁ(wg, v ~¢En+1)
=xyc (ZE? ’ 95(5'331 s :$n+1))
= (@122) - dl@s, . Tnya)-
If 2 < j <n, then
dgzﬂdfz_lﬁb(mh--- s Eay1) = Ty dﬂ—lﬁﬁ(mz,--- s Tny1)

:$1‘¢($2,... -

s LjLg41se - :mn+1)3

18




and

dﬂ_kldgcﬁ(m-,_, ey Tpal) = A p(Try . T,

If j =n-+1, then

d’gi%dgé(ml) ce ;$n+1) =

(i)i>landj =42

This case is straightforward since the indices (1,7 + 2) and (j,7 + 1) are

S qs(m% s ,1137;_)5(5371-{—1)

d?ol_}_]d::(ﬁ(ﬂ?l, Ve :C'n—}-l)-

disjoint for j < n, and the identity is clear for 7 = n + 1.

(i) 1 <i=73-1<n—-1

4 dnd(@, - s Tngr)

and

d;+1di¢¢($1a e ,$ﬂ+1)

(iw)t=1, j=n-+1

= dznﬁb(xh vee a1 T 42y -

= T1y. o TiTip1Tigny - -

= @ p(Er, e TiTig1, -

= (T, .. s TTp1Tig2y

s wn-?-l)

@1 (o, TTias e Tngd )

3 m?‘H—l)

13:71.-]—1)

awn-l—l.)

5$n+1)‘

19

This case follows from the fact that € is an algebra homomorphism. O
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One can choose the coefficients of the cochaing in Hom(AM ,N), where M

and A are two H-modules. Thus we obtain a complex

C*(H, M, N') = Hom{H®*, Hom{ M, N)).
Tn this case, the zeroth cohomology space is the space of H-invariants. [ndeed,
if ¢ ¢ Hom(M,N), then dp(z) =< z,¢ >. Therefore, if d¢ =0, then ¢
is -invariant. We will see that in the case of quantum groups, the space

of invariants coincides with the space of intertwiners. More generally, the

cohomology spaces are the Ext-spaces Ext$, (M, M),

ey
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Chapter II. The algebra U, (sl), Intertwiners and L-\‘gg'
Cocycles [i
i
i
B
!
i
4, The main constructions 1!
‘II“
The quantum group U, = Uy(slz) is the associative algebra generated by “
1h
four variables £, I', K™ and the relations : | i
b
i .'
(4.1) KK = K'K =1, i
(4.2) KE = ¢EK, i
(4.3) KF = ¢ *FK, i
o K-K! |
(4.4) [E, F = P
The associative algebra i, has a structure of Hopf algebra. The comultiplica- }T!
tion, the counit and the antipode are given by: %
AE)=10E+EQK, ij
i
AFY=K'1'@F+Fal, i
i
i
A(KE) = K* @ K*,
e(EY=¢e(F)=0 and (WY =1

21
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and

AE) = —EK™, A(F)=-KF, AK*)=K¥

If ) is a nonzero complex number, M(XA) will denote the Verma module
over U, with highest weight A. This module 1s generated by a nonzero vector

vy satisfying :

Evy=0, Kuvy= ¢ oy

The action of the generators of ¢, on the Verma module M{A) is sunma-

rized in the following proposition, which one can easily prove by induction.

PROPOSITION 4.1. Let vy be the highest weight vector of M(A}, then :

K" Fouy, = ¢"V V%, (a €N, neZ).

n—1

E"Ftuy = [fle — kA —a+ &+ 1]F* vy (a € N,n € N),
k=0
with the convention that Fvy =0 ifa < 0. |

Let us consider two complex numbers A and X, and let us consider the

C-linear map
Vo MOV —1)—M(A =1} (neN)
given by

Vo (Floyv_q) = Fotry, 4 (e €N, n€N).

By direct computations, we obtain :
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PROPOSITION 4.2. The pairing of V,, with the generators of U, 1s given by:

< BV, > (Foy_1) = ¢ P (la + n)fA — a = o] — [a][V — al) Ferr oy,
< F, V, = (F“U)\J_l) — (I — (_2')",_/“_2'“)}‘_uﬂ}m'{»l’t))\ﬁlH
< I{—m’ v, > (FGU,\’—l) — (é] 4 qqrn()\'_)\—%,))Fa-l-npt\_11

for cveryn,a € N and m € Z. O

If & € C, we define a twisted differential d,, : C[[z}]—C[[z]] linearly by:

A

do(z") = [n+ oz —

where z is a formal variable. Let M(A — 1)[[z']] be the module of Laurent

series in z~ ! with coefficients in M(A — 1), and consider the operator :
{
V(z) = Y Vo ™tz : M(XN = 1)—M(A — D[z

n>0 z

We would like to find a number o € C and an operator

V(E,2) = Y Va(E)z™ : M(N — 1) = M(A — D)[[z™]
n>0
such that : )
(4.5) < E,V(z) >= dV(E, =).
This equation is equivalent to :

< BV, >=[-n+a]V,(F) (n€N).

Avplying this to F%v,_; for a nonnegative integer a, we obtain :
pplyng g & )

[—n + ]V (Fooy_1) = ¢ T4 (la + n][A — a — n] ~ [al[X —d]) Forn=loy .

We look for a number &' depending on a such that, for every n, we have:

[@ +n][X — a—n]—[a[N —d] = [-n+a][n + .




24
After multiplying by (g — ¢ 1)?%, the right hand side gives:

i

2n—o-ta —2nta—a’ +a! —a—a
#?zaumqnaa_chc +q ,

o

and the left hand side gives:

q(an.-l—‘Ea—)‘ _ qf2n-2a+)\ + q2a~)\’ 1 q—Za.—l—,\’ + q,\ + q—)\ . q)\’ o q—)\’.

Identifying the powers containing 2n (g is not a root of unity), we obtain
—o 4+ d = 2a — X, hence ¢/ = 2a + « — A Now identifying the powers
containing 2a, we get a + @' = 2a — A, This gives 2a = A — A, We must also
have ¢* + ¢ = ¢* + g, which gives ¢* = gtV. If ¢* = ¢V, then we are

dealing with the same Verma module since it is ¢ which is involved in the

highest weight condition. Therefore without loss of generality, we can assume

that A = L\,
From now on, we suppose A = —A', hence a’ = 2a and & = A. Thus
< BV, >=[-n+ AV,.([),
where
(4.6) Va(E)(F_y_1) = ¢*** M n + 2a) " oy .

By doing the same construction for the other generators F,K, K1, and using

Proposition 4.2, we have:

PROPOSITION 4.3. For X = E, F, K*', one can define operators

Vo(X) : M(=A = 1)=—M(A — 1)
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for every n € N, given by:

VH(E)('FG'U“A——l) = qA+2&+1 [n + 2(1‘]1?[”-%—17))\—17
Vn(F)(I;mU#A—l) — qn—)\(q . q~1)Fa-i~n+1UA_h
Vn(.[(il)(FaU_)\;l) — _q:I:(—-n-}-}\)(q . q—l)Fa+nU)\_'],

and which satisfy:

< X, V, >=[-n+ AV, (X} O

REMARK 4.1. If we omit the term with ¢(z) in the definition of the pairing
< o+ >, Vo(K*) cannot be defined, at the same time, K* are the only

generators for which € is not zero.
Next, we need to define the operator V,(z) for every @ € Uy,

PROPOSITION 4.4. Let § be the free associative algebra gemerated by F, F and
K*'. Then for every @ € | and n € N, there czisls an operator Valz) ¢

M(—~A = 1)——=M(X — 1) salisfying:

(4.7) < &, Vy >=[—n+ AVp{z).

PROOF. Assume that for = and ¥ in f, and for every n € N, we can define

V,.(z) and V,(y) satisfying (4.7), then for very n C N, we have:

<y, V, > =z <y, Vo> +ely) <z, Vn> using (3.3)

= [-n 4+ A(z - Va(y) + e(y)Val2)).

We set Vu(zy) = 2 - Vu(y) + e(y)Va(z), then we have

< ay, V, >=[—n+ \V.(zy).




26

Since, for = being one of the generators of f, V,{x) exists and satisfies (4.7),

the proposition follows. [
Now we extend the definition of V,(z) to U.

PROPOSITION 4.5. For every ¢ in U, and for everyn C N, there exists an

operator Vy(z) : M{(=X — 1)—=M(X — 1) satisfying the relation (4.7).

PROOF. Recall that on | we have:
(4.8) Vo(zy) =z - Va(y) + e(y)Val2)-

In view of the above proposition, we need to prove that this relation is com-
patible with the defining relations of the algebra U,. For the relation (4.1), we

have:

VA KK™) = K- V(K1) + (KT Va(K)

= I{Vn(K‘l)_lr&”1 + Vo (K).
Hence

VoK K™Y (Fvoya) = KV (K1Y M Frosyo) + g g — DN
= [~ N g — g g e - ¢")) F o

= (.

On the other hand, it is clear that V(1) = 0. Similar calculations hold for

KK =1




For the relation (4.2), we have:

Vo (KE)(Fv_y1) = K - Vo(E)(Fu_s1)
= KV, KN ()
_ q2a+3}\~2n+3 I+ 2a]ﬁ'a+n~1vk1.
And

Vo BIO(Fo_so) = (B - VoK) + VaE)) (M0 5o1)

= V(K EE ™ Fro_yy + Vo (K)K T P iy + Va(B) Fusa

The coefficient of FoF™lv_,_; is:

q2a+,\+1(q - qwl) (q—n+)\[a] [/\ +a]+ q~n+)~[a -+ n][)\ —a—-n]+ %L—_—I_—?'E—]

1
2at A1 —n42A+2a —3n422—-2a
— (‘ R
¢ —q ! (¢ q )

— q2a+3}\-2n+1 [n _|_ 2(!.].

=4q

Therefore

Vﬂ(q2EK) — q2a+3)\42n+1[n + 2&]Fﬂ+”_1”0>\_1 — Vﬂ(I{E)

The compatibility with (4.3) is checked in the same way. Finally,

K—-K1
Vo | ———= | (F*v-x-1)
qg—dq

“—‘—1 -n - n— - a+tn
= o (P ) o

— (qn—-)\ 4+ q—n+)\)Fa—|-nU)\_l.

On the other hand:

V.([E,F]) = —Vo(FYEK™' + EVi(F)K™'+ KTV (EYKF — FVo.(E).
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Applying this to (¢— ¢ *)"*v_s_1, we obtain successively the following factors

Fa-l—n

as coefficients of Un_1:

3atn+1l a+n+1)( Ata q—)\fa)

g 3a+2nt2 qa)(q/\*(a.-l-'n&l) _ q—,\+{a+n+1))

, (g

3

(g q

—b2a42n+l; nd-20t2 —n—2a—2 M2atly nt2 —n—2a
q 41 T (q?’!’ [ _ g 3 [#3 ) and q 13 (q 21 . q ).

Adding up these expressions, we get:
(0— ¢ VAl F)Fvos 1 = (g (g — ) + ¢ g —a ) P oao,

which gives the same expression as V(K — K - 0O

Recall that we have set:
‘ {
V(z) = > Vez "z : M(—A - 1)—M(A = 1)[[2'1]}%<Z
n>0 ~

Viz,z) = 3> Val2)z™™ : M(=d = )— M = D27 (& €Uy)

n>0

Using the definition of the twisted differential d, and the previous propositions,

we have:
THEOREM 4.6. For every © € Uy, there exists an operator
Vie,z) = 3 Va(@)s™ s M(=A = D)= MO = D[]
n>0
linearly dependent on x such that :

(4.9) <, V(z) >=d\V{z,z).

Moreover, for x, y in U, we have :

(4.10) Viey,z) =2 Viy,z) + e(y)V(;v,z). U




29

5. Intertwiners and Cocycles

We consider the complex of length one :
Q*: 0—00-200 —0

where

wocl, o -cEE

z

Recall that dy is defined linearly by :

The length one is due to the fact that sl; has one simple root .

From this complex and the cochain complex C* introduced in the first

chapter, we construct the following bigraded space:

If 7+ and j are two nonnegative integers, we set :
CH (U, M(—A—1), M(A=1)) = Hom(U®', Hom(M(=X— 1), M{(A—1}@ 1))

with ¢ = 0 for 7 > 2. We will denote it simply by (i Note that C¥ is
isomorphic to Hom(@U® @ M(=A — 1), M(A -1) @ V). This bigraded space
has a natural structure of a bicomplex. The first differential ' : € Uyt
is induced by the differential d introduced in the first chapter. The second

differential d : C¥ — ("1 is induced by the differential d, of {1°.

The operator V(z) is an element of C%, we will denote if by VO(z), and

the operator V(z, z) {x € Uy) defines an element V'°(z) of the space C'° by:

Vi(2)(z) = V(z, 2).




The results of the previous section can be interpreted in the following:
PROPOSITION 5.1. The elements VO (z) and V'°(z) satisfy:
(5.1) 2V (z) = 'V'(z),
(5.2) dV"(z) = 0.
PrRoOOY. For & € U, we have by definition of d":
FV () w) = - VO (2) - )V )
=<z, VI (z) >,

and d"V0(z)(z) = d\V (=, 2). Thus, the first relation is jusi a consequence of
the relation (4.9) of Theorem 4.6. And for z,y € Uy, we have:
L) (0 0 1) = 2 Vo)) — V(=) ay) + c(u)V ()(z)
=z V(y,z)— V{zy,z) +e(y)V(e, 2)

=0,

using the relation (4.10) of Theorem 4.6. [1

Let C* = C*(Uy, M(—A — 1), M(X — 1)) denotes the simple complex agso-

ciated with the double complex C**, that is:

= @ C* (nei).

at+b=n

Tts differential ¥ is defined by [3]:

D‘Gmb = d, -+ (—'l)a'd”.

THEOREM 5.2. The element (VO(z), V1%(2)) is a L-cocycle of the complex C*.
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ProOF. The element (V™ (z), V1%(#)) is in the space

CHU,, Hom(M(—X — 1), M(A = 1))).
Applying 0, we get:
U(VOl(Z) + Vm(g)) _ dlvm(z) + duVOl(Z) + d’VlO(z) _ dffvilo(z).

And we have d"V°(z) = 0 since Q° is of length one. Using Proposiiion 5.1,

we have d'V'%(z) = 0 and &'V (z) = d"V*°(2). Uence

V() + V) =0. O

Let us consider again the complex 2%, a monomial 27" is in the Kernel of
d, if and only if [—n 4 A} = 0. Since ¢ is not a root of unity, this is equivalent

to A = n. Thus the complex 2° is acyclic if A is not an integer.

We assume that ) is a nonnegative integer for the rest of this section. Thus
the space H°(2*) is a 1-dimensional space generated by the function z~*. The

space H!(£)*) is generated by the class of the form z7A 2

If we consider the homology spaces H; = H*", then H, is a 1-dimensional
space generated (for instance) by the linear form:
- C
w3 Resz=0(wz’\)
The space H° is generated by the linear form:
o — C
flz) v Res.=o(fl2)2" F).

PROPOSITION 5.3. The operator Res,—o(V®(2*)) is an intertwiner. It is the

unique U,-homomorphism : M(—A — 1)—M(A—1) sending v_,_1 to Fruyq.
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PRrOOF. From the first chapter, we know that ¥ is a space of U,-invariants,
we need to show that in fact it coincides with the space of interfwiners in I
our caze. Let ¢ € C° ile. d¢ = 0, we need to show that ¢ interfwines i
with £, I' and K*'. Let m € M(—X — 1), since < I,¢ > (m) = 0, we
have —¢(EK~'m) + E¢(K~'m) = 0, therefore HEK"'m) = KK m).
This shows that E intertwines with ¢. Now, if < K 1 ¢ > (m) = 0, then i

K¢(Km) — ¢{m) = 0, which shows that K intertwines with ¢. The inter-

twining property for K -1 follows from the invariance of ¢ with K. And if 1‘.
< F,¢ > (m) = 0, then —K T¢(K I'm) + I'p(m) = 0, since K intertwines I
with ¢, we sce that ' does too. j

Tinally, it is clear that Res,—o(VO(z*)) sends v_s_y to Fru_y_y and there- 3

fore is a nontrivial operator. Notice that *v_,_y is also a singular vector. [ :

From the discussion preceding the proposition, we have the following :

COROLLARY 5.4. We have

() 2 HO (U, Hom(M (=) — 1), MOV))

PROPOSITION 5.5. The operator Res,—o{ V1°(z) £) is a nontrivial element of

the space Ext}/{q(M(—/\ — 1), M(A = 1)).

PROOF. Res,—o(V%'2 %) is in the space Hom (14, Hom{M (=X — 1), M(A))).
By Theorem 5.2 it is a 1-cocycle of the algebra U, with coefficients in the Il

U,-module Homg(M(—A — 1), M(X — 1)), hence it defines an element of

Ext}/(q(M(—)\ — 1), M(X = 1)). It is a nontrivial element, indeed: :

Vo) L) = 3 Pl

n20

dz
A Fn-—lv)\_l‘ ;El
I

ot
<
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(Recall that Vi, (E)(v_y_1) = ¢t n]F" vy _1). Therefore
Res, o V()2 D) (B at) = N
z

The right handside is not zero since X is a nonzero integer and ¢ is not a root

of vnity. [

6. Case when ¢ is a root of unity

The following relations hold in U,:

EKY = g T PR = KT (m€ By n € ).

qm_lI( o q~m+1[(rl
-1

g MK - gm K
' = [m]
4—4q q9--9
q#«m-l-lle . qm#lll(—l et m—lI{ . q—-m-l-lj‘{-l
g—q! g—q7' '

If we assume that ¢ is a root of unity of order d {¢ # 41}, then it follows from

[E,Fm} — [m]Fm—l thfl‘

Nl 7 T — q

(£, F] = [ i

the above identities that £¢, F'* and K*! are in the center of U,, where
d if d is odd,

if o 1s even,

b | 8.

For A € C, if vy is the highest weight vector of the Verma module M(A) of
highest weight A, then for k € Z we have

kd X
Un—kd = 4 UVN—kd-

Koy jg=q"
Hence, vy_kq is also of highest weight A.

By upiqueness of the Verma module of highest weight weight A, we see

that all M{X — kd), d € Z), are U,-isomorphic to M()). The isomorphism is

given for instance by Févy_g ¥ Frothdy,
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Notice that F*®v, is a singular vector of M(A] since ¥ k¥ commutes with

Let us consider the family of operators V, 5 (n € N, k € N}, defined by:

Vap: M(=A—1) — M} 1)

a4n+kd

Iv_y_q — 17 Ui-1.

And let us consider the operators:
1y A2
Vi: M(=X MO = D271 7’ (k€ N)

defined by:

Vil2) = > Virz "z

n>0

Tt is clear that V, , acts on M(-XA — 1) in the same way the operator Vitkd

introduced in the generic case does. For @ € U, we have:
< T, Vn.k = (Fmv—l-—l) =< T, Vn+kd > (FGU#/\—I)-

This allows us to use the generic case to obtain the same constructions here.
Namely, if we define V, x(z) to be equal to Vipia(z) and if we consider the

operators:

Vi, 2) = 32 Varl@)e™ s M(=A = )—MOA = 1)z} (k€ 7),

n20

then we have:

PROPOSITION 6.1. For every k in N, and every @ and y in Uy, we have:

(a) <z, Vi(z) >= dyVi(a, 2).

(6) Vi(zy,2z) == - Vily, 2) + e(y) Vi(, 2).
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We have obtained then an infinite family of I-cocycles (V)'(z), V/°(2)) in

the simple complex C*(Uy, M(—A — 1), M(A=1)). If A € N, the space H*(Q*)
Akd 2 (ke N),

is an infinite dimensional, generated by z~

In the same way, the homology space H1(2*) is generated by the family

M — C
kc#

w > Res,—p(wztF)

The space H® is generated by (the restrictions of) the linear forms
Qar — C
f(z) > Res, ()2 &)
The operator Res,—o{ V0'(2)2*) in Home(M(—-A —1),M(A — 1)), k € Z, is

kel

the unique U,-homomorphisin: M(—A — 1)—M(A — 1) sending v_j.q to
Fatkdy . This provides us with an infinite family of linearly independent

intertwiners.

The map
HH Q) — HO(U,, Hom{M (=) — 1}, M(A —1)))
ot — C

—  Res,=o( V"' (2)2")

w +—+ Res,—o(wz’t*)

realizes a one-one linear map.
The operators

Res,=o(V1°(2)2* QE) € Hom(U,, Hom(M(— ~ 1), M(A = 1))) (k€EN)

z

are 1-cocycles of the algebra 24, with coefficients in Hom{M(-A-1}, M (A-1)),

therefore they define an infinite family of linearly independent elements in the

space Exti,q(./\/i(w)\ — 1), M(x —1)).
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To clarily this, we apply these operators to I (if we use £ or K 1 we will

obtain 0):

dz Az
Vklo Y= (U A= l ZVM 'U S ]) Pty _'f’
# n>0 z
and
Vo e(F ) vono1) = Vird (F)(v_ao1) = My — qﬁl)FHMkd_lmq.
Therefore

: | dz )
Res,=o klo(z) (F)(U—)\—l) =(g-— qil)FGMMdﬁlU*“l’

which is nonzero since ¢ # £1. The linear independence follows from the

appearance of & in the power of F.
FFinally, this provides us with a one-one linear map:
HO(Q*)—Hom{l,, Hom({M(—X — 1), M(A — ),

which sends the linear form
Q¢ — C
flz) — Reszzgf(z)z’\“d dz

z

to Res,—oVi%(#)z" dz

Z

The meaning of these maps between homology and cohomology spaces will

be clarified in the next chapter.




Chapter ITI. Generalization to a semisimple Lie algebra

7. The quantum group ,{g)

Root systems. Let (aij)i<ij<n be an nxn indecomposable matrix with
integer entries such that a; = 2 and a;; <0 for ¢ £ 4, and let (dy,... ,dn) be
a vector with relatively prime entries such that the matrix (djaq;) is symmetric
and positive definite. Notice that (ay;) is a Cartan matrix of a simple finite

dimensional Lie algebra g.

Let b be a Cartan subalgebra and Il = {a;, 1 <4 < N} the corresponding
root system and I = {aY, 1 < i < N} the corresponding coroot system,
(h,1L,11V) is called a realization of g [13]. There exists a nondegenerate sym-

metric bilinear C—valued form (.,.) on b satisfying:
(af ,h) = (h,a;)d;' for heh, i=1,---,N.
Here, {.,.) is the natural pairing between h* and b.

Since {.,.) is nondegenerate, there is an isomorphism g h—h* defined

by

(hy, (k)Y = (h1, k) (h1, k€ D).

37
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This isomorphism induces a symmetric (nondegencrate) bilinear form (.,.) on
h*. Thus we have

,u(nf:’) = cll"-'lai- , =1, ,N,

and

(az-,afj) = diaij —= djaji.
Let p be the clement of h* defined by

ef,py=1, i=1,.N.

Then p satisfies (p, o) = ds. :

We define also the fundamental reflexions r;, 1 <t < m, of b* by: B
r(A) = A= (af,)) (e
“I
‘ |
In particular: ri(o;) = a; — 0. ' f
I
)
Gaussian binomial coefficients. Let ¢ be an indeterminate. For n € ‘
7., d € N, we define the g—integer [n]q by : ﬂ[r
dn —dn |
g —9
nlg = ————.
e =
If d = 1, we denote it simply by [n] and we have [nle = %1. ‘E|
We also set 1
LT 1
[nla! = ] [s}a- ’§s
s=1
And we define the g—binomial coefficients i‘
n dl,-fn—13+41 i ) I
z[]d [n 1J+ ls for j € 4, j <n, ;
q 714! :
g .‘
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and
n » .
=0 if y > n.
y
We have
n A —ntg—1
=y
] d J d
and
n—1 n . T .
(7.1) T4 ) =S| " | & =0,
g=0 7=0 j
i
. - . n
here z ig another indetcrminate. It follows that € Zlq, ¢~
714
If m and n are in Z and j € N, then
m+n _ Z qd(ml-—nk) T 7
' k+i=j i l
] d ’ d d
By putting z = —1 in (7.1) and using [n)e = [n]_s for an integer n, we obtain
LI n
(72) S| " <o
=0 J ;

Finally, if z,y are two elements in a Q(q)--algebra such that zy = g*yx, then

for any n = 1, we have the quantum binomial formula:

LI R .
(z+y) = ¢ ylen .
§=0 j
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The Drinfeld-Jimbo algebra If,. We assume that ¢ is a generic complex
number and we set ¢ = ¢%. We consider the algebra i, defined by the

generators I;, Fj, K* (1 <4 < n) and the relations:

(7.3) K@I\’j = .KjKi , _KiKt-—l = K?;_lK.i =1,
(7.4.) I{i_HJ- = q?”'"EjKi s K,-Fj = q;ai“’ FjK.i,
K, — K
(7.5) L, ) = 6 E:—qi—il_:
1—a4; ]. . aij wis ' . -
(7.6) > (=1 ETWTURE; =0 if o],
5=0
3 .
1—agy | 1 —ay; S ] o .
o, - ’ D = 1f 1 F 7.
(7.7) 3=y FTWTRF =0 if 1 # ),
g=0 3
d;

The last two relations are referred to as the Serre relations. There is
a unique algebra involution w : Uy—ly such that wik) = F, wlk) =
E.i ; w(Kt) = 1’;1.

The following propositions determine the Hopf algebra structure of .

PROPOSITION 7.1. There is a unique algebra homomorphism A U,— U, U,
which takes the generators k;, F;, K respectively to the elements A(E;),

A(F), A( {EYY given by:

A(E%) == Ei ® 1+ Ift &G Ei,

AF)=F,@K'+10 I,
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AK) =K@ K, AKY) = K@ K1,
for 1 <14 < N. Moreover, A satisfies the coassocialivity aziom of a comulli-
plication.
Proor. [19] lemma 3.1.4 and lemma 3.1.10. [
PROPOSITION 7.2. There is a unique algebra homomorphism € : Uy—C such
that () = e(¥;) = 0 and e(K;) = (K" =1, 1 <1< N, which satisfies

the aztoms of @ countl.
Proor. [19] lemma 3.1.11. O

PROPOSITION 7.3, There is a unique homomorphism of algebras A : Uy ——UJ**

such that

AE) = —K' By A(F) = —FK;, A(KM)=K7" (1<igN),
which satisfies the azioms of an antipode.
PrROOF. [19] lemma 3.3.1. O

COROLLARY T.4. U, is « Hopf algebra with comultiplication A, counit € and

antipode A. O

8. Differentials and Operators

The maps 9; and ;9. Let f be the free algebra with 1 generated by
the Fy’s. Let Z[Il] be the root lattice and N[II! be the submonoid of Z[I]
of all linear combinations of elements of II with coefficients in N. For any

o = Y a;; in N[II}, we denote by f,, the subalgebra of | spanned by monomials

F; Fy, - F;, such that for any ¢, the number of occurrences of ¢ in the sequence
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i1,%2,-. . 1y 15 equal to a;. Fach ff is a [linite dimeﬁsional vector space and
we have a direct sum decomposition §f = @.f, where o runs over NI, We
also have .1l C foyer, 1 € fy and F; € . An clement 2 € § is said to be

homogeneous il it belongs to f, for some a, we then set |z| = a.

We denote by ;0 the linear map ;0 : { —»f' siich that
D)y =0, ;0(F;) =6b,; for all 7

and
B(zy) = B(z)y + ¢ ly)

for all homogeneous z, y. Similarly, we denote by 9; the linear map &; : f—f'

such that
(1) =0, Gi(F;)=4d; forally
and
Bi(wy) = ¢ Bi(2)y + xdily)

for all homogeneous z, y. These maps are examples of the so called Kashiwara

operators [19].

If # € §,, then ;0(x) and 8;(z) are in if ¢; > 1 and;8(z)=0{x)=20

if d; = 0.

In [19], it is shown that the maps .8 and &, leave the radical 7 of a certain
bilinear inper product on f' stable, this radical turns out to contain (even
generated by) the Serre relations. Therefore they are also defined on the

quotient f'/Z. Here, we will check directly that ;@ and ; conserve the Serre

relations because the inner product won’t be of any use in this chapter.
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PROPOSITION 8.1, Fork, i, and j in {1,... ,N}. i # j, we have :

[ 1
iy 1 - ai'j l—a,—5 ¢

(8.1) K| D (1) FOTRTERES | =0,

s=0 38
L J g

(8.2) | > (-1 | ET T ER | =0

L Jd;

Proo¥r. A simple induction shows that : .
ROFT) = O F]) = Squ?“l[n]ij“l (n € N).
It follows that for & # ¢ and k # j, the proposition is clear.
Itk =1
ka(Filfae'j—stP;s) . QUF‘El’a")ka(Fil_a"j_s)Ff + Fil—a“rst ﬂpa(Fis)
= U IBle) (T TN FFY 4 gf sl T

Since |Ff| = s, (e, o) = 2d;, | Fj| = a, and (a;, o) = diagj, we have :

OFT T B = gL — aij — sl P B F b g [T TR !
At this point we set @ = 1 — a;;, and we have to show that:

a

2 (-1 (g3la — sl PP FyF? 4 g sl PP By ) = 0. k
s=0 8 |
d; i

The left handside is equal to

[43 o : |
> (=1y [a — sliqt B~ Y + 3 (=1)° [shgi FP T T = |
s=0Q 5 y s=1 s N . ‘ ‘
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a1 e} . . a—1 a
> _(=1) [a—sliqf Ff 1R =3 (=1)° ERRV Fad A
=0 8 5=0 g1
i d;
. a a
which is equal to 0 because [@ — s]; = [s + 1];.
3 s+ 1
d; d;
If k=j:

ja(Fil_aéj—stFf) = q(lFf"“ﬁaz’(ﬂl—a’rsﬁj)ﬁf

o sij pal—aiy
= q? F,; .

It follows that

1 — a;; g .
O 221 = ay(=1) TR TR
s=0 S
di
1—ay 1 — a;:
— Z (_1)3 J q,sczgj Fz-l—a“”
s=0 s
dy

which is equal to 0 by (7.2). This proves {8.1). The relation (8.2) is obtained

in the same way. [l
As a consequence of the proposition, we have :

COROLLARY 8.2. The maps 8; and ;0 extend to well defined linear maps on the

algebra § generated by F; (1 <i < N), and satisfying the Serre relations. [

The following proposition will be useful in all what follows.
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PROPOSITION 8.3. For z € | homogeneous, we have:

(8.3) Kz = ¢l K, (1 <i < N)
- K — 8(z)K[ ! :
(8.4) Bz = ab; + o) a_(f)hﬁ (1<i<N).
4 4

Proor. The relation (8.3) is clear for x = 1, and for ¢ = F}, it follows [rom
(7.4) since (|z], ) = diny; and ¢Ph) = ¢/ Assume that (8.3) is true for
homogeneous z’ and z” in f, then
I(i(mfmﬂ) _ qm(|$ll'ai)$’li’i$"
= q‘-(lxtl+lmrfliai)m"m”f{t.
= ¢ &g Ky sinee |2'2"] = || 4 2",
Therefore (8.3) is true for any homogeneous € §.

The relation (8.4) is a version of Proposition 3.1.6 in [19]. ‘We will prove
it using (8.3). For z = 1, it is clear, and for & = }}, it follows from {7.5) since

di(z) = ;0(z) = &, and

1 : K, — K1
K;;0(x) — 0z I{,i_l = 51—1-+
(Kbl KT = 0

Assume that (8.4) is true for homogeneous &' and =" in f, then

Eux's" — 2’2" E;

= ﬂ?lEi.’Eﬁ + ! — K,-,-@ ') — ai ! K'Tl 2 ;l‘fmﬂE.g
¢ —q" i
_ (K" — B KT + ——(E B — B K"
%~ ¢ — 4
= - _1q'_1 (q(\m'l,as)h’imlia(mﬂ) _ mrai(mn)hfi—l + Il’ﬁa(:cl):c” _ q“m"l’“‘)@i(az’)m”)
B I{Ha(wlwﬂ) . 8,;(3:":1?”)]{{1
— — _

4 — 4
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Therefore (8.4) is true for z'z”. This completes the proof. [

REMARK 8.1. since §; and ;0 are linear, the relation {8.4) is in fact valid for

every x € f.

The operators V(z) and V(x,z). The notations used here are those of
the first subscction. Let us fix A € h* and let M{A) denote the Verma module

over U, of highest weight A — p and highest weiglt vector vy satisfying:

vy =0

Koy = q*7%ny = ¢30 0y,

for i =1,...,N. Recall that the fundamental reflexions r; of h* were defined
by 7id = A — (A, @) )oy;. We fix an index ¢ € {1,..., N} for the remaining of

this section, and we consider X' = r;A. For j = 1,... , N, we introduce tne

following g—numbers associated with an integer n:
daii ({Aal)—n
N [(A, o) — nls
Feiy

19 .
Mf;(n) = (Qé — 4 1)—_2”_ iftn= (’\=a:’/)1

and
(TI.) — [(_n + (A? a:/))aJE]J 1-—(,\,a}!')+()\,a;")a;,'¢
" Cnt (el |
We have:
+ -
1“()\,ay>+()\,a:")aﬂ !“Lu - nu':j
() = q; ——
?:r( ) 7 ¢ — G 1
and
+

qﬁ—H}l mj(n) = lim -H——:T = aj;.
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We will consider these expressions as deformations of the entries of the matrix

(@)i;- For each n > 0, we define an operator Vit M) —M(N) by :
Vin(zoy) = alifvy (z € ).

And for z being one of the generators of U,, we define an operator

Vi) : M(X)—>M(A)
given by: .
(8.5) Vi (E)(xon) = i3 ()05 () Fi ox + Siglnl;z Fi on,
86 VialKHeon) = sb)eFT s,
(8.7) Vin(F3) =0,

for 1 < j < N. Then we have: l&
PROPOSITION 8.4. For z = Ej, Fj, K¥ (1<i<N), we have : \
(8.8) <z, Vip >=[-n-+ (A o)) Vinlz).
PROOF. For x homogeneous in | we have:

(89) << Ej,V,"n > (:IT'U)\:) = EjV,;'n(:wAf) — f{jm!n(f{j—lEjﬂZU)\r).

And using {8.4), we have 3

1 .
=1 (f{J JB(QF:L) — 33(:1:Fz”)1{;1)v;\ f”5=

3 qJ \:J‘:

EVin(avy) = EjzFioy =

By definition of d; and ;0, this is equal to (ignoring the factor ; _1q__1 )k il

179y 3

(1 6T + 1 K a,0() — 7100, (@) K = a0 DK o




The middle two terms give:

]' - - = —D=pa¥ 17— =
~——-*q. — q-_l 5,‘j[n]jq;‘ 133[13:.1'_;- I‘U}\ —4q {A=p, 2 )6ﬁ-j[n]jgj 1$f’j L
A J

B QJ - qg !
5«;' e (n—1) (A~ p,aY n—1—{A—pa) —
R (A L R
q; — 495

= [—n + (X, o) Mebis[n] 2 7 Tox

Using (8.3), the second term in (8.9) gives:

, . 1
KiVi (K7 Ej)zoy = mf(j%,n(ja(m) — K 0(2) K ow
J 1
1 . (@) |oeg ) —2(N ~p2Y
= ——07 (A-’.?'ja(iﬂ)ﬂ"v,\ _ q§|31( Mooz} =2{\ ~p J)I(jwlnaj(fc)’i)x)
g — 4;
1 —2N—p )+ A—paY s
= ——7 (A’J ja(ﬂi)ﬂn’v/\ —q; 2N —paf )+ (Ao )q"(iFi ,cxu,)aj(ﬁ)pinv)\)
q; — 4;
1 . " =Y 42{0aY Yas —najy _
= (15 0y = g ‘ “Bi(a) )
J 3

where we have used the fact that if = is homogeneous then ;0(x) and J;(z) are

also homogeneous, the fact that (|F¥], ;) = n(ey, o;) = ndia;; = nd;ay, and

that

Vo)) = (A ay) — (4 af Y e, af) = (A o) — ald, ).

Adding up both terms of (8.9), we get :

< Ej,Vin > (zon) = [=n + (4 0Vl [nly2 77+ mis(n)0i (@) 7)o

1 2n—1)+{r—pa¥) TR Y nl e
=t (q' " LT Pt o I A R T (AP A j'“’\)
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This proves the proposition for x = E;. For z = Fj, the proposition is clear

since < Fy, Vin >=10. And for z = K; we have: i

< .[{jaw.n > (CE'UI\J) = I{j‘/‘i,ﬂffjf'lil'”)\‘ — E(I{j)m,n(iﬂv}\f)
= gllehen) =N =ped) [ TPy, — 2 Iy
(O e,

= [~ + (o WiVia (KT ) (ox).

The case x = K ! is done similarly. O

A cocycle condition. Having defined the operators Vi ,(.) for the genera-
tors E;, I}, I&’J-i, we can also define them for any clement of the free associative
algebra generated by £j, F; and Kf, (1 <7< N Indeed, assume this 1s

done for two clements © and y, then using (3.3), we have:

(8.10) < zy,Vip >=a <y, Vip > +e(y) < 2, Vip >,

therefore, if we set |
Vin(zy) = @ - Viuly) + () Vin(e), i

then

< zy,Vip >=[-n+ (A, a}’)]iﬁ,n(xy). ‘ri‘:'

Tt remains to extend this construction to the algebra U,.

! PROPOSITION 8.5. For any = in Uy, there is an operator Vinl(z) from M{N)

to M{)) for any nonnegafive integer n satisfying:

<a,Vip>= [-n+t (Ao} i Vialz).




Moreover, fory inlU,, we have

W,n(xy) = w"/i,n(y) + 6(y) %;ﬂ(:l:)

PROOF. As in the previous chapter, we need to show that the cocycle condition

(8.10) leaves invariant the defining relations of U,.
We have

%m(f‘{th) = Kk‘[/i,n(lﬁ)[{;l.
Hence

P NNy o m
Vi (B K (ovs = (i ()i 008 g Dt n)) @Es

(—n+(>\.0f¥))(ﬂsk+au) _1
== $1’1-‘£nv,\,

[-n + (A el

which is symmetric in & and [. Therefore, Vi (W K) = Vi oK K3}, For the
relation KK ' = K[ YK, it is straightforward (see Chapter II}, This shows

the compatibility with (7.3). For the relation (7.6), we have:
Vi,ﬂ(I{kFJ) = I{k : ‘/‘a,n(FJ) + g(ﬂ)"a‘n(f{k‘) = 0)
and for z homogeneous

W,n(FI-Kk)(;UUA’) = (Fg - V;'R(Ifk))(:j?v;\:)
= (F;m,n(f{k)f’fk — W'n(I{k)FII{k) (I’t})\-)

q—(lﬁlsak)-i-(ak,)\'_ﬁ’) (m*;c(n)Fg.tFi"v,\ — u:}c(n)ﬂmﬂnm\)

= 0.




Also for z homogeneous, we have:

Vol BuFi — FiE)(@vy) = (It - Via(Ei)) (o)

= — (FV; o Bx)K) — Vin{ J55) FLK ) v

= _q—-(|:c|,oc[)+(}t"—p,az) (Rﬂvz‘n(ﬁk)m’t)y - V;:,n(Ek)Fmv,\;) .

The expression between parentheses is equal to
mk(n)Fg@k(m)FTm~|—(‘J‘ik{n]kF;wﬂ”“lv;\—mk(n)ak(ﬂrc)ﬂ”m—5ik[n]kﬂxﬂ“_lvk.
Since gy (Fiz) = gU=beond§ o 4 Fi0,(z), we obtain:

Vin(ErFy — FiE) (xvy) = Srig™ TP (n)z 0y,
On the other hand,

Ky — K & , o
-6;3[‘/2'}11 (—&"*—““%) (a’,"l)y) = —fLT (V;‘n(f‘x k)mv» — I/z:,n‘(j‘*k l)CEUAr)

G — G, Gk —
6kl +
= —=— (phin) — pg(n)} cf vy
ey (i) = ()
= S NP (n)a FT v,

which shows the compatibility with the relation (7.5). The verification for the

remaining relations is done using the same calculations. ]

For any U,—module M, we define a shifted differential

i MU — M

given linearly by:
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Let us consider the operators

Vi(z) = ivi,nz_"_ldz € Hom (M(rid), M) [[271]] ~

and
Vi(e,2) = > Vin(z)2™ € Hom (M(r;: ), MM [[z7']] (2 € Uy).
n=0
The results of this section can be reformulated in the following theorem.

THEOREM 8.6. For any @, y in U, andi € {1,... N}, we have

(8.11) < 2. Vi(z) > = dag Vilw, 2),

(8.12) Vilzy,z) ==z Vi(y,2) + e(y)Vilz,2).

9. ¢g-de Rham cocycles

In this section we fix an element w of the Weyl group of the Lie algebra
g. We assume that w =r;,...7r is a reduced decomposition of w into funda-
mental reflexions. We also fix an element A € h* and we consider the following

elements of §™:
Ap = Tip_p T A (1<p<a)

Let A = C[[z",...,=; "] and let @7, 1 < p = @, be the free A—module

1va
generated by{%L/\.../\dz—?E, 1§j1<...<jp*§a}. We consider the
gl P

sequence of A—modules

0 00—l —— ., —0—0

and we define a linear map d” : QF-— Q51! as follows:
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It
| dz; dz;
(9.1) ne=flert L2t i g p e
i1 Zik

where f is a monomial in A, and if n, is the exponent of z,;1in [, then

- | 1z dz: dz.
dfr.'r:,v = Z[—np-i— (Ap,a:';)]ip f(zfl,-.. ’zm—l)f_? ASEL A A ij.
p=1 ~p Zjy Zin

Using the notations of the previous section, this can be expressed as:

i . B dz; dz;
d'y = Zd)\p,ip flzh .. 27 A —Nil—/\.../\—&.
p=1 31 ZJ;-

We extend d” by linearity to any 7 in F,

PROPOSITION 9.1. We have d"* = 0, i.e. (Q°,d) is a complez.

Prootr. Let f(z) = Flzrt, 251, ., 27) be a monomial, and let 7 be a form

given by {9.1). Then

e d {2 %
d'n = 3Ly + O ey S22 A LA A
p=1 Zp i Z ik
And
‘ < 2 dz, d {z;
P = Syt (el Yo+ (el f() T2 A ZE AL AR
p=1 s=1 Zs Zp Zik
¢ & dz, dz
= (S5 Gl el 2 )
p=1s=1 8 P
RN
Zj1 2k

which is easily seen to be equal to zero. [0

For each p = 1,... ,a, we consider the operators defined in the previous

section:

Vola) : M(pp)— M)z, [17,]
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and

Volz, 2p) M(AP-H)__’M()‘IJ)[[Z;:]” (z € Uy)
We recall from Chapter I that we have the following complex :
Hom (U®", Hom(M(wA), MO

and the differential d’ of this complex is defined on the cochains as follows:

—

17—

(~LVd(y, o s Tilliptseo , T

g

dd(z1y .. Ta) = T2 H(Tg,y - s Tn)

1

—1) dlzy, - .- awn—l)e(m“-)

i

_|_
+

—— e

We let C'** denote the follwing double complex:
Hom (UE*, Hom(M(w)), M(X) & Q")) 2 Hom (12* @ M(w)), M) © °).

The first differential for this double complex is ', the second differential 1s
the shifted de Rham differential d” defined above. In the following, we will

construch an a—-cocycle in the simple complex associated with C**.

For &1,Tg, - 1 &m 01 Uy and p1, P2, ,Pm where § = m < g and 1 <
pL<p2 < ... < Pm S AWE define G(x1,.-. ,TnsPis--- ,Pm ) to be equal o the
following expression:
> Vi(z) - %1—1(%1“1)‘/1)1((”,1? Zm)mff'(vpﬁl(zmﬂ) v Vo1 (Zpa—1) Vi (@ %p, )

2 (oo V(@ 2o )20+ (Vo1 () - Viel2a)) - )
dzlAcfzpl /\.../\dﬁzpm/\.../\dzcL
where * means omission, the summation is over all the terms involved in the

comultiplication of 1, -+, Tm in the Sweedler notation. In each summand,

we consider initially the composition Vi(z1)Valza) - V,{z,) and for each p; we
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substitute V,, (2p) by Vo (Ths 20, )75 - (..., where &} is going to act on all the

remaining factors to the right if there are any.

For each m, 0 < m < a, we define the operators

v e Hom (US™, Hom(M(wl), M()) & 0=y

as follows:

Yme ) =

mi 1 "
(_1) ? Z (_]‘)Pl-l- Hom g(i'l:“‘ sy Ty Pay - - apm)-
1<y <. pm e

In order to clarify these rather complicated expressions, we will give some

examples:
VO =Vi(z) - Va(za) dzy A . dza.
VeO(zy,. . za) = 3 VAl z)e - (Va(ah, 2)ey
(m1),...,(mﬂ_1)
(. . (Va_l(m;_hza_l)ﬂ:g_l : Va(ma,za)) . )) .
For a = 2:

VU’E :‘/i(zl)VQ(Zg)dzl A ng

Vl'l(m) — Z (‘/’1(1"?2«‘1)&?” : VQ(ZQ)CIEQ — %(zl)%(w,zg)cﬂzl)
(=)

V20(ay,75) = Valel, 1)y - Valee, 22).
(w1}




For a = 3:

V0'3 :Vl(zl)%(ZZ)V3(z3)dzl FAN dz-g A ng.

Vl 2 Z Vi 33' J; (‘/2(2'2)‘/3(23))()!22 A d273

— ¥ Vil )Va(a', z2)a” - Valza)dzn A dzs
(=)

+ Vi(21)Va(z2) Va(iz, 23)dey A dzy.
V3 (o =
.17372) = Z Vl(l'pzl) (%( Fg,22)$g VS(;’B))dz?
(z1)i{z2)

- ZV1($1921 (%(Zz)va(ﬁb‘z;zs))d?z
(1)

“I'Zvl(zl %(mj,ZQ) %(62,43)(3{2[
(z1)

V30 (i, 24, 23) Z Vi(z], 1)y T (Valah, z))x - Valzs, Z3). ..4|
(ﬂl) (032) ]
We recall the counit axiom from Chapter I "

N 2e(2”) = 3 ela)e" ==,

(=) (=)
and the composition lemma:
(prode) = (7 (z"¢2) (& € Uy).
(=)

PROPOSITION 9.2. We have

(1) d"Vo = dV*° =0
(2) d'VEek = (LyFd" Ve for k=0, a— 1 |

PROOF. We will prove (1), (2) is proved in the same way after substituting i

the right hand side using the relation (8.11) of Theorem 8.6. .i

The fact that d’V% = 0 is clear since O* is of length a. |
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By definition of d’ we have
AV (21,.. . Ta,Tag1) = F1° VO(xg, . Tagt) (a)
+ Z VOO Dy, ooy 2pThg1s oo s Tatt) (b)
+ (=) e (20 )V 21 -+ Ta)- (¢)

Using the composition lemma, we have

ORI R ACED R C RN
(@1 )5ere (@)

where the terms in [...] are the same as in V*%{uq, . .. . 2441) except for the

first factor. Hence

(@)= Y (2f-Valeyz))((@leg)- [ D)

(21 )sen(Ta)

Using Theorem 8.6, the summand corresponding to k in (), for k < a, is equal
to

(— 1) Valay, )y - (Vz(:c'z,zg)a,g Ty

((ah - Vil@iosrs2) + (T Vil el 26)) 24 - )
Using the counit axiom, this is equal to

"

(- ) Vi(ey, 21)ad (V2(""2122) Ty Ty ('Ek ‘k(f'«"kﬂazk)(%'ckﬂ) (- )))

(=1 Vi, z) @ - (o mres s (Ve(h 26)(@h@e1) ) -

Using the composition lemma one more time in the second term, we obfain:
1k ! " f t " ! 7 ! M
)Vl a)al - (Valah el - s (o Vilohn )alehin) ()

H1Vael e - (oo (Valako a2 (o))




r———

The term corresponding to k = a in () is:
(=1°V*°(z1,. .. s Talait)
which is equal to:
(—1)* > Valeh, 7)Y - ( (2 w) - Ve (Zets Za) ) +

(—1)%e(zap )V (21, - - Vo)

Tt follows that all the terms in (b) cancel out except the first and the last, and
it is clear that the first term cancels out with {a) and the last one cancels out

with (¢). O
As consequence of the preceding results, we have the following:

THEOREM 9.3. The element ¥ = (VO ..., V) is an a—cocycle in the

simple complex associated with C° (U, Hom(M(w)), M(A) & 0°)).

As a corollary, we have:
THEOREM 9.4. The cocycle V induces linear maps

Fro s H™(O) —Exty ™ (M(wh), M(A)) 0= m <a O

PROOF. Let ¢ @ H™(2*)—C be a linear form, we extend ¢ to the space

Then we extend ¢,, to Q™ by taking it to be zero on a complement of Z™ in

Q™. Let z1,... ,Ta—m be elements of U,, and set

B, = V(g @ - @ Taom) € Hom (M(wA), M(X) @ ™).

Zm{(0*) of cocycles up to homotopy. We obtain a linear form ¢, : 2™(0*)-—C.
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We consider the composition

Mw)) 2= M) & Om

lfd@ff’m

MA@ C = M(A)
The map obtained is then an element of flom (b{f‘“"m,'ﬁom(M (10A), M(}\)))

Since V is an a—cocycle by the preceding theorem , we have d'Ve ™™ =

(=1ye-mdyemthm=l therefore d (Id ® ¢m) 0 Py} = 0.

Meanwhile, ¢, was chosen up to homotopy, satistying d" o ¢,, = 0, hence,
the resulting map is a cochain in the complex C* (U, Hom(M(wh), M(A))).
And since dVemmm — (—1)e-m gy esmLmtl (hy Proposition 9.2}, the class
of this cochain modulo coboundaries does not cepend on the choice of ¢
up to homotopy because the above relation implies that the image of ¢y, ©
d"is d' ((Id @ (¢pm 0 d")) 0 By,), hence a coboundary. Since the cobomology
spaces of the cochain complex C'* (U, Hom(M (wA), M (M) are the Ext-spaces
Extg, (M (wA), M(A)), the theorem is proved. O

In order to illustrate this theorem, we assume that the numbers {A,, oy},
p = 1,...,q, are nonnegative integers. The homology space H*({2*) is one-
dimensional (g is not a root of unity), generated by (the image of ) the linear
form r € 2% defined by

A 10‘:! Amay
r(n) = Resz,—0 ... Resz =0 (Zi’ 0 ) 7?)‘

The elementf,(r), in Homg, (M(wh), M(})), is the unique intertwiner be-

(Al,a‘\-”‘)—}-l
- ! V).

Aasee Y41
a ) i

tween M{wd) and M(A) sending vy to F;




Chapter IV. The case of U,(sly) and the Screening

operators

10. The quantum affine algebra U,(53)

The affine algebra 5l;. We recall the definition of the afline algebra sl
and we fix some notations.
Let E, F', H be the standard generators of the Lie algebra &f;. For X, ¥ 1n
sly, we set (X,Y) = tr(XY), this defines an invariant bilinear form on sly.
Thus (E,F) = (F,E) = 1, (H,H) = 2. We fix a complex number k and we
set B(X,Y) =kX,Y).

The corresponding affine algebra 50, is defined by the generators X, (X €

5l,, n € Z) and 1, and the relations
(a)  [Xn Y] = [X, Y]mgn + nB(X,Y)6mino1 (X,Y €5ly, myn € 7).

This algebra is realized as a central extension of the loop algebra sl; @ Clz, 27"

by C.1, and we identify X, with X @ 2"

If we introduce the generating functions (currents) X(2) = ez Xnz™"

60
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(X € sly) then the formula (a) is equivalent to

(by X(z)Y(w)= i(i(’jgz + [X;’ }_/]T(;U) 4+ regular part al 2z = 1.

The affine algebra 51, is isomorphic to the Kac-Moody algebra 50, corre-
sponding to the Cartan matrix of affine type A&”. 1'o be more precise, we have
to add a derivation to 50, that is an element D satisfying: [D, X,] =nX, and

[D,1] = 0. And we have the identification

stV = 51, @ Clz, 2" @ C.1% C.D.

Let P = ZhAy @ ZA ® Z6 be the weight lattice and let (@ = Zioxg D Dicvy
be the root lattice endowed with a symmetric bilinear form (.,.) defined by
(MA@:OJMJQ:mumm:14%ﬂg:zu%@10J@®:m
where Ay = Ag + %, 6 = ag + 01

We define P* = ZH,®ZH,; ®ZD as the dual space of I, The dual pairing
18 defined by

(H;, Ay = (o, A) (:=0,1) for A€ P.
If k is a nonnegative integer we denote by Py = {(k—D)Ap+iAy, i=0,1,... Lk}

the set of dominant integral weights of level &, and we set A = (k—1)Ag+il.

Deformation of the affine algebra. The quantum affine algebra
U,(s1,'") is an associative algebra over Q(g) with 1, where g is a transcen-
dental complex number, generated by e:, fi, ¢ = 0,1, and ¢" (h € P*). The
defining relations are as follows

¢ = =1,

e = qmede @ fig =g
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hi —h '1;:'

e o
[eiﬂfj] - 6’5,5' q - q__-]‘ " in

ele; — [3leleje; + [Blaiejel —ejei =0 (i #4),

F2f = B fifs v BIALE — =0 G#7).

Here jn] = “=Lr.
We consider the algebra U, (Eﬁ;) to be the subalgebra of Uy(s [,*)) generated i

by e, fi t: = ¢ (i = 0,1). The algebra U, (51, has a Hopf algebra structure, i
The comultiplication is given by t
Ale)) =e; @1+ LB e, h

A =Ffott+1efi (1=01),

Al =ded (heP) i3

The antipode A is given by ‘ I
Al =q*, Ale)=—te, Alf)=—fiti ((=01). o =

t
The counit € is given by l’
f

ele) =e(f)=0 (i=0,1), &(¢")=1L

This definition of the quantum affine algebra by Chevalley generators is due to l
Drinfeld and Jimbo [5, 12]. Later, Drinfeld gave another realizafion for U,(sl3) o
[6], which is the loop algebra version of the above algebra. In this realiza-

tion U, (;[g) is an associative algebra generated by {E,, n € Z}, {F,, neZ},

(H,, n € Z— {0}} and invertible & and g5 satisfying the following relations

[Fay K1 =0, (Hoy H] = St (20]E)

KE K'=¢E,, KF,E'=q¢"F, le
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[ ]

[Hnab ] — 2 En+m ;) [Hn:Fm] - _Tq 2an+m 3

IRl nl fnl 21
-hn—l—lbm —q —Embfn-l-l =4 bn.Em+1 - Em+'lEn 3

Fn-l—ﬁl-Fm - q—gFm-En-{-'l - q_g-FnFerl - Fm+1Fn )

1 K(n-—m) Km=n)
q— Q’gl g ntm — 4 Grym

Where 1., and ¢, are related to H; by

(10.1) S bz = Kexp ( (¢ — g ZH;Z )

nek

[EN)P;’TL} =

(10.2) S = K 'exp ( (g —q ZH~W) .

nel =1
Here, ¢, = 1, = 0 for n > 0. We define Hq by the formula

K = exp ((q - qﬁl)%—o) :
The standard Chevalley generators {e;, fi,t;} are given by the identification
(10.3)
=g K =K, e =FE, =T, ch=F, &7 fo=FE_1.

This identification leads to an algebra isomorphism between the above re-
alizations. Equivalently, the Drinfeld realization can be obtained using the

generators Fn, F, (n € Z), ¢_n, 1 (n € N) and qi%. And if we consider the

currents

D= Y B, F()= X
n&Z

neZ
= Z P_pn2", 1/)(2) = anz_
n=0 n=>0

then the defining relations can be written as

(10“4) Potlo = oo = 1,




105)  $)e(w) = dw)e(s) s B(Nbw) = Bp(2)
] z2lplw) = (zqkﬁ w)(ZQ o

(10.6) M) = Cor— ) o3

(10.7) H2) Bw) = = B )(z),

(10.8) $(2)F(w) = "7 F(w)d(2),

(10.9) P(z)E(w) = wq:i; 2 E{w)(z),

wq 2t — 2
(10.10) p(2)F(w) = “;q;,;&q_*zjﬁ(w)?p(z),
(10.11) [E(z), F(w)] = qwlq_l (5(32‘1qk)¢(wq%) 5% H (g ™)
(10.12) (z — Fw)E(2) E(w) = (¢*z — w)E(w)E(z),
(10.13) (z — ¢ 2w)F(2)F(w) = (¢ — w)F(w)F(z),

§(z) = > 2"

nel

These relations are understood to be between formal power series. Since the .

64

Drinfeld currents are suitable for bosonization, we will use this realization for

the rest of this chapter. Drinfeld also gave the Hopf algebra structure for this

current realization [4].
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ProrosrrioN 10.1. The algebra Uq(;[;) has a Hopf algebra structure given by

o Comultiplication A
Ald*) =" @ ¢"
A(E(2)) = E(z) ® 1 + ¢(zq*™) @ E(zq"®"),
A(F(2)) = 1@ F(2) + F(20") @ $('7),
A(d(z) = d(zq"®%) @ $(2g5""),
A((2)) = $(24"%%) @ (247 5%"),

o Countt e

o Antipode A

Ap(z)) = P(2) "
If ¢(z) = 3.2 ¢p_n2z™ then the formula for A{$(z)) means that
A(2)) = T(aF $-nd™) @ (a7 F boms™).

mn

We can also formulate the comultiplication for the coefficients H,,, F, and Fi..
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PROPOSITION 10.2. The formulas for the comultiplication in the previous propo-

sition are equivalent to the following formulas:

1nlk

A = ¢F @+ HaG g

A(B) = By @1+ ¢ ™60 @ By,

w20

A(}'ﬂn) _— 1 ® Fn _|_ Z F'n,-—'m, ® q(7iL~27’L)%¢m_

m>0
PROOF. It is easy to check the equivalence for £ and 7. It is also easy to see
that the formula for A(H,) gives the formulas for A(¢(z)) and A(p(z)). Let

us prove the other direction for ¢(z). Recall that

K¢(z) = exp (—(q — g Z H_nz”) = i Kp_nz",
n=1 n=0

Taking the derivative of both sides we obtain

=S S mH K2 = Y K 2
n=1m=1 nel
therefore
n—1
nlg - ¢ Hoy = 0K don+ 2 (0= ¢ K fon (12 0)
m=0

Using this relation, we can show by induction on . that the formula for A(¢(z))
implies the formula for A(H_,) (n 2 0). Similarly, the formmula for A{z(z))

implies the formula for H, (n > 0). O

11. Bosonization and ¢-analog of Wakimoto modules

Free Boson Realization of Uq(;[g). Here we introduce the Heisenberg

algebra generated by three free boson fields a, b and ¢. We construct a homo-

morphism from the quantum affine algebra to the Heisenberg algebra which




67
will enable us to express the Drinfeld generators in terms of the Heisenberg

generators.

The generators of the quantum Heisenberg algebra H,(sly) are an, by, cn,

n € Z, ps, py, and p,. The rclations are

1 4h
(111) [anvam] = E[(k + 2)”][2”]6n+m,ﬂ » [aO:ptL] = q— q—l(k + 2)1
_ 1 _ —2h
(112) [bna bm] = *E[n]zam-%n,() y [b()apb] = q— q_]_a
] 1 2h
(113) [Cnacm] = '[J—’;[n]zé‘m_l_n,g ’ [CD:pc] = - q_‘_],

where g = e*. The remaining commutators vanish.

We define the completion ﬁq(ﬁ{g) of H,(sly) as follows:

Hy(sh) = imHy /Lo (n > 0),

where I, is the left ideal of H,(sl;) generated by all the polynomials in @,
by Gy 1 > 0, of degrees greater than or equal to n (we set dega,, = degb,, =

dege,, = m).

We form the generating functions:

CL:{:(Z) = :E(q - q_l) (% + i “:tnz':Fn) 3

n=1

1 [ D > "
be(z) =£(¢—¢ ") (50 + > banzT ) ,
n=1
by w4 —q .
b(z) _—,%T”—]z + 5% by log z + ps,

cu(z)=%(¢g—q¢") (529 + i cinz*”) ,

n=1
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-1

Cn q—q
7y = — LT log .
e(z) %[n]/j + T ogz -+ p
Tor a real number o we define:
o — fhn, —aln| ,—n 1 q— C]_l ; . '
Wsio) == g? 0 TErz\ 2k aolog P |-

n#0
Let : : denote the normal ordering of a product of operators defined by moving
the creation operators to the left and moving the an nihilation operators to the
right. In our casc the annihilation operators are {ag, bu, ¢ 7 =2 0} and the
creation operators are {ay, bn, €ay Pas Pby Por 7 < 0}. For example
cexp(b(z)) 1= exp (r > ﬂ{)lz_“) exp (—— > Ez_”) e‘""’zg:?gh__lb”.
o ] =6 [n]
The following proposition is inspired from 23, 8], with modifications either

in the defining relations of the Heisenberg generators, or in the bosonization

formulas.

— —

PROPOSITION 11.1. There is a homomorphismw from U,(sly) to Hy(slz) which

is defined on generators as follows:

w[E’(Z)] — . bl bralzg) 4 e_(’—(z)—(b-%-c)(zq—l) y
w{F’(z)] — ea+(zQ%+l) : eb+(2qk+2)+(b+c)(3qk+1) :

B e S e e A

Lu[d)(z)] = ea+(zq)eb.|.(zgv£fT)_H,+(zq§+2)1

wl(z)] = Jan (s gz By (a3 ),

where E'(z) = (¢ — ¢ ) E(2) and F'(z) = (¢ — g~ ) F(2).
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LEMMA 11.2. Let X and Y be two operators such that [X,Y] commutes with

X and with Y, then

[X’ 6Y] = [X1 lY]eY G;'nd EZXSY - EYBXG[X:Y].

PROOF. Since [X, Y] commutes with X and Y, one shows easily by induction

that
Y*X = XY™ —n[X, YY" (n€N),

which implies that
[X,eV] = [X,Y]e".
And
Xe¥ = ¥ X 41X,
= ' X4 e[X,Y]
= (X + X, Y],
Tterating, we obtain X™e¥ = &' (X + [X,Y])" for n > 0. Therefore

NV = ¥ XHXY] Y X XY

LEMMA 11.3. We have the following commutation relations:

k44 —k—d
ea.+(z)ea._(-w) . (w 24 )(w — 24 )ea_(w)ea+(z)
(w — 2¢*)(w — 2g7*) ’

” o 2
(bt (7) gb—(w) _ (2 —w) (W) gbe (2)
(z —wg?)(z —wq™?) ’
2 -2
ec.g,(z)ec_(w) . (Z T Wy )(Z —wg )ec_(w)ec+(z),

| (z —w)?
i) L ) ET WD b)  hike) gen(a)  gele) i ELT T elw) ; po(e),
zq — W z—wq
eb_(z) . eb(w) - wg — =~ . eb(w) . eb“(z), ec_,(z) . ec(w) - w—zq : ec(w) . ec_(z)’

W — z¢ wq — 2

.
.

:
i
§
d

kK

i

1

)
i
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LN L Qo)) () . ()

PROOT. We need to compute different brackets. It

il

lay(2)

n=1
— - :HM —(k+4)n —(k+4)n hn _ _—kn E)n
XZ: - (¢ +9q —¢" —q )(Z ,

therefore

6[a+(z),a_(w}] ( — qu+4)( — Zqﬁk_il)

(w = 2q*)(w — 2q7*)

And

by (2, ()] = 3 —Ca - bl () .

n=1 i |
| i § W\

— Z ___(qn _ q—n)2 (_)
n=1 n z ! i ]
| :
! we deduce !
|

ol (20— () — (z — w)2

(2 — wg?)(z —wq™?)

And
o O g —q! w\"
bt bl = (= )2l 4+ 3 Loyl (5)
2 n=1 [n]
< -1 wy "
; -t Y - (5)
i n=1 n ~
therelore
_ . f'Fj‘
(@] - FT WL ETEA i

z—wg™t  zg—w {
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Similar calculations give

o Ghb( _ 2 04
zg —w

Since [by, bon] = —[Cn, ¢—n) and [bo, ps} = —[co, pc], the brackets involving ¢ are

deduced from the above brackets. This proves the lemma. [

For simplicity we will use the same notation for the elements of Uq(fr[;)

and their images in H(sly).
Using the above lemma and the fact that

—1 -1
_a=g _ el M "
qbn —_ & 2. ((L()+b[)+00) and 'fpfl = ¢ =z (a0+b0+cg),

one can easily prove that E(z), F(z), ¢(z) and 4(z) satisfy the defining re-
lations of the algebra Uq(;[g,), except for the relation involving [E{z}, F(w)]
which needs an explanation. We look at z and w as complex variables and we
set F'(z) = — ' (2) + B () and F'(2) = Fi(z) — FL(z). Then we have

vy 2 gt i
ElL(z)Fy(w) = p—— LEL(2)FL(w) s (2> [wgt]),

z2q — wk™*?

E' (2)F! (w) = — E (2)F (w):  (lz|> log~*1),

z— wg”

waktl — zg—! ,
F;(w)E;(z):i{Uﬁ_ CFL0)EL(z) (2] < Jwd®)),
wq k1

W9 T w)EL(2) (2] < jwgF]).

wgh — z

F (w)E (z) =
The other products have no poles, more precisely:

BL ()P () = F' (w) B (2) = EL{:)FL(w) :,

E' (2)F! (w) = FL(w)EL(2) =: EL{(z)Fi(w) : .
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Therefore, for |z| >> |w|, we have:

E'(z)F'(w) =
-1 k1
B T —wg
= Bl {2 F (w)

z —wgk

o B (2} (w) s 42 BL(2)Fy(w)

P |
i ek T B (z)F (w) -

2z — wqk

and for |z| << |w| we have:

FII(T.U)F!(Z) =
-1 k41 k-1
¢~ —wg 2q — Wy .
oz wgt () (=) - T —wgh P (w) B (2)

1 FL(w) B (z) s+ I (w) B (2) 0

Since the normally ordered product does not depend on the order of the factors,
we conclude that £'(z)F'(w) and F'(w)E'(z) have the same analytic contin-
nation. The coefficient of z=» ! in the Laurent expansion of E'(2)}/"{w) —
F'{w)E'(z) is

ul—fc E'(2)F'(w)z"dz — 'L F'(w)E'(z)z"dz,
R

2w Qe Joy
where Cg and C, are circles on the z-plane of radii B >> |w| and r << |w)
respectively, which is equal to the sum of the residues of the common analytic

continuation. The latter is equal to
(wg" )+ (q— ") : By (wg*) Fp(w) : —(wq ™) g —q7") s BL(wg ") FL(w) -
Moreover,

: Bl (wg") L (w) = $(wq?)

and

LM e

).

B (wgRYF (w) = ¢(wq”




73
ITence
(4] k wo_ _k
(), )] = (0= g7 (5 plogt) = (2 otu8))
which provides the right formula for [E(z), F'(w)]. |

REMARK 11.1. The power series 6(z) and ¢(z) are g—analogues of the scalar
bosonic fields representing the By system when ¢ = 1. When & # —2, the
homomorphism w provides representations of U, (5?2) in the Fock space rep-
resentation of the Heisenberg algebra (see next section). When &k = —2 (the
critical level), the generators a, commute among themselves and generate a
commutative algebra. Therefore the representations of the quantuimn affine al-
gebra at the critical level can be realized via w in a smaller space, which is the
tensor product of the Fock representation of the subalgebra of the Heisenberg
algebra generated by by, ¢, n € Z, and a one-dimensional representation of

the commutative algebra generated by a,, n € Z, [8].

Representations. The (Jq(fjlz)wnloclules we will be dealing with are in-
finite dimensional. As finite dimensional representations, we have the so
1

called Spin ; representations VW (I € Z), of dimension [ + 1, with basis

{v@, 0 < m <[} given by
erol) = [mpplly . fiold = [ -mloll . hold = ¢,
co=F, fo=er, to=1t' on v,

herevg):{)form<00rm>i.

The infinite dimensional representations of Uq(,f;/[;} are created from the

Fock module of the Heisenberg algebra via the homomorphism w. We start by
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considering the vacuum state £ of the boson Fock space which satisfies
D=0, 0=¢c,.0=0 (n=0)
We define the vector Q, , by:

£, = exp (?"*2(%2")* + s(ps + pc)) 0 (r,s€Z).

Let F be the free Q(q)-algebra generated by {an. bn,cn, n < 0} and let F,,

be the Fock module defined by
Frsi=F Qs

It is clear that ¢(z) and ¥(z) map F,, to F,, @ C{(2)) and from the simple

obscrvation that

Rl 1Y (pe
ﬁi(fjb+pc)ﬂr s = 67 3(F+2) +{st 1 +pb]ﬂ

H ?

we deduce that E(z) maps Fs to Freo1 ® C{(z71)) and [(z) maps F,, to
Frop1 @ C((z71)). |

We denote by V(A) the Verma module over Uq(ﬁ/[;) of highest weight A
and generated by the highest weight vector v,. Thus
(11.4) eovy = ey =0, towy =¢%vy, hoy = ¢ oy,
where aAg + BA; is the classical part of A; Ag and Ay are the fundamental

weights of sl;. We refer to (11.4) as the highest weight condition.

PROPOSITION 11.4. The vector §2, ¢ satisfies:
Engr,o = anfr,ﬂ = HT!.QT,U =0 ""f n > 03

E[)Q,,w,o = 0,

Ko = ¢
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Proor. We have

E(Z)Qr,o = €Xp (Z bn[;l;]cﬂ (ZQ)_H) Qr,—l

n<0

— —n hn""‘:n —1y—n
+ exp ((q—q D bar +Z—m—(zq 3] ) 01,

n<0 n<0
it follows that, for n > 0, E, (.0 = 0.
We have a similar formula for F(2)Q,0 except that, due to the presence of
a.(z), the first term comes with the factor ¢” and the second term comes with
the factor ¢ ", which implies that F,Q,0 =0 for n > 0 only.
Also, we have ¥(2)Q,0 = ¢"Qy0, using (10.1) we deduce that H,8,0 = 0 for

n>0and Ko = ¢ e H

COROLLARY 11.5. The vector Qg satisfies the highest weight condition (11.4)

and can be identified with the highest vector vy, where

)\T = (k — 'T')AU + TA:[.
PROOF. This follows from the proposition and the identification (10.3). O

The following proposition follows from the identification of vy, with £,

and the action of the generators of Uq(ﬁ,f;) on 4

PROPOSITION 11.6. There is an embedding of the highest weight module in a

direct sum of Fock modules:

(11.5) V)= P Frs

s
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REMARK L1.2. The module V(},) is reducible as it is known in Conformal
Field Theory. If k& and r arc nonnegative integers, then one can see the re-
ducibility from the facts that fAHQ, 0 # 0 and fitiQ, 0 = 0. To obtain
irreducible modules, one has to use the g-analogue of the Felder resolution,
see [18].

We set
(11.6) W, =P Frs.
s€Z

This Fock space carries a Uq(s/[;)fmodule structure defined by the bosonization

formulae of Proposition 11.1. These are the g-analogues of the Wakimoto

modules [25].

12. Screening Operators

The operator S(z). The so called screening operator S(z) is used to in-
vestigate the irreducible representations of U, (;[2) and to compute correlation

functions in Conformal Field Theory. It is an element of H(sly) which acts

then on Fock space representations.
DEFINITION 12.1. [1] The screening operator is given by

1 kg2 -1
R C2 o B (RPN O B (4 01U B P T O R D IC R I
S(z) e € : ( e c—e T ) :

For simplicity we write z(g — ¢71)5(2) = S1{z) — Sa(2).

PROPOSITION 12.1. The operator S(z) sends F,, to Fr 1,1, and therefore

sends the module W, to the module W._q ® 2 P C((z7Y).
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PROOF. exp (_p“) sends . 5 10 14, €Xp (-— m‘;p“) sends 2, 5 to O, .1, and

k+2
—1 —1
=Pa . AZE __g4 log 2 —Pa [__ [+ o ap log 2 rpa ]
eFtz g 2h(k¥7) £, , = eFtz el 2n(kt2 G ),

T,5

—
=z k2 QT“Z,S (I

Now we compute the pairing between E(z), I'(2), ¢(z), ¥(z) and S(w).

PROPOSITION 12.2. The operator S(w) satisfies:

k

(121) < E(2), S(w) >= E(2)S(w) — ¢(z4? )S(w)(z¢7) " F(2),

(12.2)
< F(2), 5(w) >= F(zq~") S(w)p(zq™5) ™ — S(w)Flaq Fplza™) 7

(12.3) < §(z), S(w) >= p(zq%)S(w)d(z¢7) 7" = S(w),

(12.4) < P(2), S(w) >= 1h(zgF)S(w)b(2¢77) T = S(w),

where these relations are understood to be between formal power series.

Proor. We have

A(F(z)) =E(z)® 1+ qb(zq%@”) ® E(z¢"®")

=B @1+ Y b " @ B

m20,n

hence

(id @ AAEE) = B(2) @ 1+ 3 dondi™ 2™ @ A(B,)2 ™,
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therelore

< B(2),5(w) > = E(2)Sw) + 3 ¢_ng? """ S(w) A(Fn)z "
= E(2)S(w) + 3 ¢-mg? =" S(w)A(En)(¢"2) ™"
= E(z)S(w) — (ﬁ(zq%)S(w)cj)(zq%)”l.

This proves (12.1). The proof of the otherformulas is similar, i.e. by expanding
the currents and applying A to the second component of the tensor product,

and using the fact that q% is central. (1
PrROPOSITION 12.3. We have:

(12.5)  ¢(z)S(w) = S(w)¢(z) =: d(2)5(w) 1,
(12.6) ¢(2)S(w) = S(whtp(z) = P(=)5(w) 1,

(12.7) E(2)S(w) = S(w)E(z), andthe products have no poles.

ProOF. The relations (12.5) and (12.6) follow from direct computations. (12.7)

needs some explanation. Set
Ba(2) = explby (z)—(b+e)(z0)) :  and  Ey(z) = exp(b(2)—(b+)(zq 1)) i
Then we have

Fy(2)Si (w) = S(w)Br(2) = ¢+ Bu(2)Si(w) -

and

Ey(2)Sy(w) = Sy{w) Ea(z) = g Fa(2)Sa(w) &
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The other products have a pole at z = w:

. , z—wq’ '
By (2)S(w) = Sa(w)kn(z) = g Ey(2)8(w) :
L-g™ e
= qu By (w)Sa(w) : 4 regular part at z = w
and
. o L z—wgt
Fa(z)Si(w) = S1(w)Ey(z) = ¢ P : Fy(2)S1(w) :
1 -

—1

2
=g w : Ey(w)Si(w) : -+ regular part ab z = w.

o

It follows that

E1(2)Sa(w) + Falz)Si(w) = So(w) By (2) + Sh(w) Fa(z)

-1

R S (: Ey(w)Sa(w) : — 1 Fa(w)Si(w) )+

zZ— W

It is easy to see that : Ey(w)Se(w) =1 Ea(w)5 () :, and (12.7) follows. T

Before investigating how the Fourier coefficients behave with S(z), we

introduce the notion of g-difference operator:

For a function f(z) and for a € C, we define

flzq®) — flzg®)
Aq—q )

Da [p—
@f(z) =

We can also write

z.

q

In particular
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If f and g are two functions, the ¢-difference of the products is given by:
Do (f(2)9(2)) = F(2¢*)Dalg(z)) + Dulg(z))f(zq™)
= f(z¢7")Pal9(2)) + Pulf(2))9{2¢").

For p,s € C — {0} with |p} < 1 and for a function f(u), we define

[ =1 —p) 3 S

N—=—00
whenever it is convergent. This is a g difference analogue of the ordinary
integration, and it is called the Jackson integral along a g-interval [0, sea.

This integral has the following property:
soo ‘T
—= flu)d,u = 0.
/ LT,
All these notions are extended to multi-variable functions.
THEOREM 12.4. For every inleger n, we have:

(129) < By, S(w)> = 0,

(12.10) < ¢, S(w) > = <y, S(w)>=0 (n20),

(12.11) < Fy,5(w) > = ((we)™ : et Sy (uqgd) 7).

PROOF. The relations (12.9) and (12.10) follow immediately from Proposi-
tion 12.2 and Proposition 12.3. Set (¢ — ¢~ ) F(2¢7*) = Fi(zq™*) — Fa(z7F),

where
_k .
Fi(zg™) = e+ T L exp(by(2¢%) + (b + ¢)(2q)) -

and

3k 4
)

Fy(zg™F) = * ) s exp(b_(2g7*7%) 4 (b+ ¢)(zg7%71)) :
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We look at z and w as complex variables. To normally order Fy{zq )51 (w),

we need the following brackets:
" k42
{a+(zq_%+l), —a (w, ; )]
-1 o —2n
I A B I ST (T_g)
- [ 2 o, k+2pa:i ;(q 4 )[(k+ 2)?1} [a"ﬂaa——nj P
oo 1 wh\ ™
h + ; (" =15

And [by (297}, —b_ (1) — b(qu)] -+ [B(zq) — pr, —b_(w)] gives

> 1 Wy
h (1 — g1 (w> .
+ ng{ n( ) z
Therefore
Fi(zq7 ") S (w) = ¢ " Filzq 1S (w)
Meanwhile

S (W) Fy(2q7%) = 5 00m) S (w) F(2q7") o= ¢ 70 s F(zg *)S1(w) + .
Similarly, we have:
a2 )5, (w) = Sa(w)Fy(zq7®) = ¢ Foy{zg ") Sa(w) + .

The other products have poles, indeed for |w! << |z| we have:

Z—w
P (zq7 ") S5 (w) = q“"lz gy : Fy(2q7F)Sy(w) -
—k 2 — wg™ —k
Foy(zq™ ") 5 (w) = K gt : Fa(2q7")S1(w)

And for |z| << |w| we have:

—2k
W —2zq

Sz = ¢ Sy(w) Ey(zq ") -
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Syw)lileq™) = a5 zz : Sa{w) Fi(zg™)

w— 24

Gince the normally ordered product does not depend on the order of the fac-

baf@

tors, we deduce from the above relations that Flzq M) S{w)b(zq” y=1 and

S(w)F(zq“k)@b(zq*%)—l have the same analytic continuation (w(zq‘g‘)” con-

tains only positive modes, so it stays to the right when the products are

normally ordered).

Therefore, in view of Proposition 12.2, we obtain:

1 ‘

< B S()> = 5= [ Fer)S(w)iteg )7
JL J . —kN, i Ev-l n-1 g,

[ )z E)

where Cp and C, are circles of radii R >> {w| and r << lw| respectively. It
follows that < Iy, S(w) > is equal the sum of the residues of

zn—l q—l(z_w) _ e
(¢ — g1 )2w z—wg™? L Fy(eq ) Salw)  d(2g73) T+
znﬁl g(z — wq2k L e

e e e S e

therefore

-——-——1 (—(w 3 Fy(w —k_2)S (w)%b(w(_g“z)‘l :
(=g VR
T (@) Fy(wg )81 (w)i(wg® ) )

< F,, S(w) >=

Meanwhile

_k_
: Fy(wgF2) 82 (w) = pot(wi™2 T ) —alw 52
e—a('wc;‘k—{ﬁﬁgﬁ)’
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Notice the change of sign in the argument of a. Similarly

]

s o (wg™ S (w) =t e

It follows that

D n —awﬁw‘ £y-
< By, S(w) >= d::f ((qu) gt )qp(qu) 1 :)a

which proves (12.11). O

As a consequence, the bracket of the Jackson integral of 5 (w) for p = ght?
with the generators of Uq(fjﬂ),) vanishes. Using(12.11) we have
COROLLARY 12.5. The Jackson integral, 37 S(w)dyw (p = ¢**?) is an in-

vartant for U, (g[;) ]

Difference equations. We will state and prove two results concerning

the screening operators, which deal with the following difference equation:

(12.12) < z,5(w) >= de;z Sz, w),

q
——

for every = € Uy(sla).

THEOREM 12.6. For every x € Uq(ﬁTg), there exists a well defined operator

S(z,w) such that:

(1) S(z,w) vanishes on the Fourier coefficients of E(z), ¢(z), ¥(z), and

(P w0) = (wq)™ : € Flaogt) s (m € Z).

(2) For every z,y € Uq(s/f;), we have:

(12.13) S(zy,w) =z - Sy, w) +(y)S(z,w).
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PROOY, We consider S(z,w) to be linearly dependent on z and defined on
the generators as in (1), and we extend it to the free algebra generated by 17,
Fry d_pny b (m € Z, n € N) and qi%. In order to have S{z,w) well defined
for every = € Uq(fﬁ;), we need to show that the relation (12.13) is compatible

with the defining relations of Uq(g[;). By linearity of S{z,w), we have:

(12.14) S(B(2),w) = S(8(2),w) = S((2),w) = 0,
and

It is clear that the relation (12.13) is compatible with the relations (10.4)—(10.7),
(10.9) and (10.12) since (12.13) vanishes on both sides of these relations (they

do not involve I(2)). We will prove the compatibility with (10.8) and {10.11).

From (10.8) we have

E_
z142 2 Z9

&(21)F(23) = gi(2)F(z2)d(z1), with ge(=) = -

= _2‘
2142 — 224

And
S((z1) F(z),w) = ¢(21) - S(F(z),w) + e{ F3(22))S(¢(z1), w)

k k k42 k &
" (%) O NE CTO R

Z3
Meanwhile,

(12.16)
(z{“+2 —w)(z1¢7%% — w)

(z1¢%2 - w) (21472 — w)

P(wgs) T (zg?) ! = $(z197) Hp(wg )7L

And since

{_a (w, _k_'l'g) ) —a(zlq%‘l)] =2h+3 (q(k+2)n _ q(k—2)n> (%) ’

2

n=1
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we obtaln

2 k
& 1 —a(w,—E2) L wyg” — 214 Ey 1 _afw,— k2
(1217) T (agd) T = et e R

I'rom (12.16) and (12.17) we obtain:

(12.18)

z— -k k k42 i
S(¢{z1) F(z2),w) = et B (wq ) : (:”“(‘”-’"j?:_)ij)(wq?)']' .

w— z g k2 29
We need to compare this expression with S(gu(z)I"(z2)é(21),w). Since we
know that S{gx(2)¢(21), w) =0, we have:
S(gr(2) F(z2)$(21), w) = e(gi(2)${=1)) S(F(22), w)

= go(2)S(F(z2), w).

Now we use techniques from Vertex Operator Calculus [9], and we have:

& —2 k k -2 k
w g - w egt — 2z 1)
gg(z)é(q) _22 q 6(9’):1[2 19 5(@).
22 g “Za — 21 Zy q 292 )

This follows from the fact that:

o (%) s (2),
z Z

Therefore

2w — _ksl
Slgs()F () b(z1), w) = T S () w),

which is equal to (12.18). The case of {10.10) is done similarly.

We will use a different approach to prove the compatibility with

1

[E(z), F(w)] = i

(60 2a poteeat) 6207 )otwn™) )

Since S(z,w) vanishes if @ is the right hand side, we need to show that

S(E(2)Fy,w) and S(Fy E(2)) (m € Z}, given by (12.13), are equal.
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On one hand

S(FnB(2),w) = Iy - S(E(2), w) + e(E(2))S (P, )

= Q.
On the other hand

S(E(z)Fip,w) = E(z) - S(Fp,w) +0
= [(2)5(Fn,w)

—(w0g") b (zq% ) D P 0gE ) s gleq? ) T E(R),

Using (10.9), we have

k2 k
plwat) B(z) = L E R ‘?\

wg? — zq*
Keeping in mind the relations (12.16) and(12.17), we see that the second term
in the expression of S(F(z)}Fy,,w) is L(2)S(F,,w) times u

(w— g2 2) (0 — ) wg? — 2q" wgT" —q "2
(w— g "2 (w — *2z) w— ¢t w— gtz '

This product is easily seen to be equal to 1. Therefore S(E(z)Fn,w) = 0.

The case of (10.13) is similar. [

THEOREM 12.7. The screening operator S(z) satisfies: |

D
(12.19) < w,5(2) >= dkjS(m,:), :
q 0

for every xz € Uq(sﬁ). ‘f

Prootr. This is already satisfied by the generators of U, (;[2) by Theorem 12.4. i

Since both sides are well defined for every z € U, (5/?2), assume that the equality




&7

holds for z and y, then, by Theorem 12.6, we have

Which proves the theorem. O

13. Universal g-de Rham cocycles

The simple case. [rom now on, we set a = k42 and we suppose a # 0
(the level is noncritical}, and let r be a complex number. Recall that the
operators z3 5(z) and z=S(z,z) (z € U,(513)) send W, to W,_p @ C{(z71)).

We consider the following complex
(13.1) Hom (U, (s0,)®*, Hom(W,, ', -3) ) -
The differential d’ of this complex is given by

n—1
d'p(xy,...  Ta) =Ty P(X2y. 0., Tu) + Z(—l)%(:ch Tty 5 )
=1
+(=De(xn)(@r, . oo s Tnat)-

The cohomology groups are Ext7, (T)(T/VT, W,_3). And the 0-cohomolgy group
gl
is exactly the space of U (::f;)—invariants.
Let Q° = C((z7")) and Q! = C((#7"))d,z (the space of formal algebraic

g-differentials 1-forms). We consider the following complex:

(13.2) Q* : 0—0°— 0 ——0.
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The differential of this complex is given by

q?‘—ﬂ'dqz

d'(f(2)) = Dl f(2) - 177

where DL (f(2)) = Daf (zg®*) (the last derivative should be read as f'{z¢%) and
not as (f(za"))).

Let us consider the double complex
Hom (UQ(:@)Q‘)',Hom(TfVT, Wi o ® Q')) = Hom (U,,(Ei;)@‘ Q W, W, 2® Q’) )

which we denote by C'**. Let C* be the simple complex associated with this

double complex, that is

cr= P C*t (n€Z),

at-b=mn

and its differential is given by d = d' + (—1)*d" when acting on (b,
Set
5% = ¢ 2% S(zq" )y
Sm@%:ﬁSWJ)(xeﬂ@Q)

Then (5%,5'") is a one-cochain in C!, and we have:

TREOREM 13.1. The cochain (S0, 510 is a one-cocyele in Ct.

PROOF. We need to prove that

(13.3) 45 =0,

(13.4) d$0(z) =0,

(13.5) 480 = d"s.
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(13.3) follows from the fact that the complex {2* has length 1, and (13.4)

follows from Theorem 12.6. The relation (13.5) follows from Theorem 13.5 in

the following way:

Doz S(2, 2)) = Dolz= Sz, z¢ %) + (2¢*)a Dy S, 7)

— [r]5 1 5(z, 24%) + ¢ 25 DaS e, 2),
therefore

D! (25 8(z,2)) = [rlg "5 (»,2) + g 27Dy S (x.2¢%)

r

= [rlg" ¢S (z,2) + ¢ =% <, 5(2¢%) >,
by Theorem 12.7. We deduce that

d"(zS(x,2)) =< z,q¥ 25 5(2¢%) >

= d's°.

O

Compositions. Let p be a positive integer, and let us consider the ring

L4

AP = (C[[z'lv s aziﬂ]”]:[ 3i—1}5

=1

we look at A, as the ring of functions on the p-th power of the formal punctured
disk X,.
Let ©° (1 < a < p) denote the space of algebraic g-differential a-forms on

the formal variety X,. Thus, 2% is just A,, and elements of % have the form

ST f(z1 s 2p)dgz A Ndyzi, (Fle . L 2p) € Ay).




We consider the following complex
(13.6) 0° 00—t —Or——0,

its differential is given by

p—1 ‘
&' =Dl =3 - 212,
V 1=0 Z

(D!, is defined above). Fori=1,...,p, we set:
() = H IS (%)

T:-_2(}0——2')5(111, 33)-

Sz, z) = 2
The operators §'(z;) and S'(z, ) are elements of
Hom (Wo—s(i-1), W21 © Ap) -
We consider the following double complex:
¢** = Hom (U, (s)®*, Hom(m, Wy gp ® Q%))
= Hom (U, (85)%* @ W, Wy ® Q).

And for each m = 0,... ,p, we define the operators

smo=m ¢ Hom (U, (56)™, Hom(Wy, W,y & )
as follows:

SR (e Tn) =

mm+1 ] ) B .
(-1)" = b (=)t Sy, Bt yim ),

‘.I.SZ‘]_ S.Slmsp

and S is given by

S @) S e - (S ) e S (s Zie )T

(Z1,0e 2n)

(S (zipgr) oo S () gz A A doziy Ao Ndgzi Ao N dgzy.

90
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Tn this expression, we consider initially the composition 5'(z) ... S'(zp),
and we substitute cach $'(z,) by S'(zk, 7, )@} - ... and zj is acting on all
the remaining factors on the right if there are any, if not, it is just S'(z, i, )
(which happens only when i, = p . And the sum is taken over all the terms

involved in the Sweedler notation for the comultiplication of &y, ... Tm.
The element § = (S°7, ... ,87°) is p-cochain in the simple complex asso-

ciated with the double complex C**.

THEOREM 13.2. The cochain S is a p-cocycle.

We need to prove that
dﬂSO,p — dls;o,ﬂ — O,
and for k=0,...,p—1
dlsk,p—k — (__1)kdh'5-k+1,pﬁk#1.
These relations follow from Theorem 12.6 and Theorem 12.7 and some lemmas
on Hopf algebras. We give the proof in the case p = 2 to illustrate the

techniques used, the general case is proved exactly in the same way but with

lengthy formulas.
Let us assume p = 2, we have:

§0:2 = 5'(21)5(22)dyz1 A dy2a,

Stiz) = (S, z)z" - §'(2)dgzs — S’(zl)S’(CE, z)dg71),
()

§20(z,y) = > S'a',z)z" - Sy, za).
(=)
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We will use the counit axiom and the composition lemma severai times, with-
out mentioning them. We will drop the sigma in the Sweedler notation in

order to simplify the expressions.

Gince 1 is of length 1, it is clear that 47692 = 0. Lel us prove that

d'5%9 = 0. We have

d'S* Nz, y,z) = - (5'(y', 2 )y - S(2,22)) — Sialy', ) (2"y") - S(z,22)

+ 82!, z)a" - Slyz, ) — e(z)5(x!, z)z" - S(y, ).

Using Theorem 12.6, we get:

o (S S 22)) =2+ S )"y - S22,
Sty )y - Sl ) =2 - S, =)&) - Sz )
+ 82!, 1) (a"y) - S'(#, 23)s

S, z)a" - Sy, z2) =5(a!,z)(a"y) - §'(#, 22)

+e(2)S' (@', m)a" - Sy, 72)

Adding up, we get d'5*0 =0.

Now we prove that it = —d" 5%

254 (o, g) = - (S 2" - 8 () dgzn — @ - (S (1), 22)) g2

_ §'(zly )2y} S (z)dgze + S'{2,)8' (2, 22)dg 21

() 2" - S'()dgza — () S(21)S (@' 22 o
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Using Theorem 12.6, we get:

d’Sl’J'(J:,y) - < 3‘:’,5(21) > mh’ ) S’(y,z;;)dqz’l

S, )" < o (z2) > dya.

On the other hand:

r—2

D82z, y) =[rlg = 2F 'z S(a,m)a” - Sy, z2)dyn

I—==
[

T 2
+¢¥ 2t z® <o, S(2g") > 2" Sy, za)den
r r—2_1q |

[ -2 2 S(2f z)a - Sy, ze)dyze

L or=2 < « ]
+ qg(f—zlz{“ Z‘),a S(Cﬂ’, Zl)mh" < IL‘,.S(Z?,Q )‘> C!.'qZQ,

where we have used Theorem 12.7. Therefore

r r—2
d"S%0(x,y) = ¢¥ 27 2" < 2, S(2¢%) > 2" Sy, 22)dy

r—2
o

+ (12(,-_2)213z2 S(.’B',zl)m”- < a:,S(zzq") > dng
= <, S(z1) > «" - 5"y, z3)d =

+ 52!, z)a" <y, 8 (zy) > dy2o,

which show that d&'S™! = —d"5%9,
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Finally, we need to prove that dS%% = d"Sb%:
d'S9% () =z - (5'(21)S"(23))dg21 A dyzz — (@) S (1) 5" (22)dg 21 A dyzg

=’ §'(z1)a" - 8 (2)dyzs A dyze — ()5 (1) 5 (22)dyz1 A dgzy
=<a,8(z) > 2" §z)dez Ndyze

+ ()5 (z1)x" - §'(22)dgzs A dyzy — (3) S (21) 8" (22} dg21 A dyz
=<2/, 8(z) > 2" Sz)dyz Ndyzo

+ 8(z1) < x,8(22) > dyz1 A dyza,

Meanwhile,

r—=2

D5V () :q"*“[r]qz("_z)zlgﬁlzg“ S(z', z)a" + S{za)dgzy A dyzy

=2

¥ Uz < 2 8(21¢%) > 77 S(z)dz A dg

—2

ce t L .
+ g% [r —2)¢"% zl 2% TS(2)S (2, za)dgz A dgzg

+q21 2(r— 2)7 22 (Zl) < %5(329,0) > dqzl A dqzz,

therefore

r—2

d"5' (z) =¢¥ ¢? 2)z"‘zg < 2/, 5(x19") > 2 S{z3)dgz A dyzs
ror=2
F P ep 0™ S(ay) < @, 5(200%) > dyzy Adgzs
=< a',5(z) > " 5 (z)d,z1 A dyza

+ 5(n) < z,8(z) > dyzy Adyz
q i

Which proves that d'$%? = d" S J
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