O

Intertwining Operators into Cohomology Representations

for Semisimple Lie Groups

A Dissertation Presented
by ‘
Robert William Donley, Jr.
to
‘The Graduate School in Partial Fulfillment of the Requirements for the
Degree of

Doctor of Phﬂosophy |

in
Mathematics

State University of New York !

at Stony Brook

August 1996




State University of New York
at Stony Brook

The Graduate School

Robert William Donley, Jr.

We, the dissertation committee for the above candidate for the Doctorate of
Philosophy degree, hereby recommend acceptance of this dissertation.

(L, W Doy

J
Anthony Knapp
Professor of Mathematics
Dissertation Bi

Ohib-Tan Sah
Professor of Mathematics
Chairman of Defense

Leon Takhtaj
Professor of Mathematics I

vioo F_ohcert Tangerman
Visiting Assistant Professor of Applied Mathematics
& Statistics
Outside Member

This dissertation is accepte?ﬂy the Graduate School.

; ,.f' s
V/d Ao /{fﬂf&f‘fﬂ

ji




Abstract of the Dissertation
Intertwining Operators into Cohomology Representations

for Semisimple Lie Groups
by

Robert William Donley, Jr.
Doctor of Philosophy
in

Mathematics

State University of New York
at Stony Brook
1996

The Bott-Borel-Weil theorem allows one to realize all irreducible rep-
resentations of a compact connected Lie group as cohomology spaces over
generalized flag manifolds. Recasting these results via Hodge theory, one
can realize all such representations as spaces of strongly harmonic forms over
such manifolds. For noncompact semisimple Lie groups with finite center,
similar constructions of representations in cohomology spaces are possible,
and in such cases the representations are infinite-dimensional. This thesis
relates these representations to the Langlands classification.

The irreducible admissible representations of a semisimple Lie group
with finite center are classified by Langlands quotients of standard represen-
tations induced from cuspidal parabolic subgroups. In this thesis, intertwin-

ing operators are constructed from standard representations induced from
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minimal (cuspidal) parabolic subgroups into spaces of strongly harmonic
forms. These strongly harmonic forms are realized on certain mfinite dimen-
sional vector bundles over open submanifolds of generalized flag manifolds.
A Penrose transform is used to show that the interwining operator is nonzero

when considered as a map into the associated Dolbeault cohomology.
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Chapter 1. Introduction

Section 1.1. Motivation

The tradition of constructing representations for connected semisimple
Lie groups by cohomology methods began with the Bott-Borel-Weil theorem
in [Bo]. Though the Theorem of the Highest Weight was well-known at the
time, irreducible representations of compact connected Lie groups were given
concretely as sheaf cohomology spaces on vector bundles over generalized flag
manifolds.

This result can be interpreted in several ways. Lie algebra cohomology
([Ko1]), Dolbeault cohomology ([S1]), and harmonic forms ([GS]) have all
evolved as methods for studying the noncompact case.

Let G be a connected semisimple Lie group with finite center, gq its Lie
algebra, and K a maximal compact subgroup. Denote the complexification
of go by g.

The first major generalization was Schmid’s proof of the Kostant-
Langlands conjecture ([Ko2], {L1]). In a series of papers beginning in [S1] and
ending in [S2], Schmid gave an L?-cohomology construction of the discrete
series; these representations occur in spaces of strongly harmonic L*-sections
on certain line bundles. In many cases, Schmid established a definite relation-
ship hetween the L2-cohomology and the associated Dolbeault cohomology.

Meanwhile Langlands [L2] solved the classification problem for irre-

ducible admissible representations using methods of real parabolic induction.
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Knapp and Zuckerman revised this classification in [KZ] in terms of discrete
series and limits of discrete series. The final result gives the classification
in terms of "Langlands quotients” of the standard induced representations

induced from cuspidal parabolic subgroups.

Zuckerman tried generalizing Schmid’s construction to obtain a wider
class of representations in Dolbeault cohomology, but he found the analytic
Jifficulties to be insurmountable using the techniques at hand. Instead, he
distilled the algebraic properties of the problem into an analogous theory now
known as cohomological induction. Modules constructed via cohomological
induction are known as Vogan-Zuckerman modules. Details of the theory can
be found in [V2], [K3] and [KV]. Many powerful results have descended from
cohomological induction, notably an algebraic classification of irreducible
admissible (g, K )-modules, placement of Vogan-Zuckerman modules in the

Langlands classification, and methods for detecting unitarity algebraically.

Recently Wong has overcome the analytic obstacles in Zuckerman’s
geometric formulation have been overcome. The problem, known as the
Maximal Globalization Conjecture, is formulated precisely in [V2] and proven
in [Wo]. This conjecture states that the analytic and algebraic cohomolo-
gies coincide; the non-vanishing Dolbeault cohomology group for a certain
infinite-dimensional vector bundle has a well-behaved Frechet topology and
has as its underlying (g, K )-module the Vogan-Zuckerman module with the

corresponding parameters.

Results in [KV] relating the Langlands classification and cohomological

induction have been derived using the methods of homological algebra. The
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purpose of this thesis is to construct integral intertwining operators that
demonstrate this relationship directly at the analytic level. Here is a strategy

to he used in constructing such operators:

(1.2.1) Pick parameters for a given irreducible representation relevant
to the cohomological induction theory.

(1.2.2) Identify the Langlands’ parameters of the Vogan-Zuckerman
module associated to parameters in (1.2.1) by known theorems. Construct
the associated standard representation induced from a cuspidal parabolic
subgroup.

(1.2.3) Construct a mapping from the representation in (1.2.2) into the
space of strongly harmonic forms associated to the representation in (1.2.1).

(1.2.4) Show that the mapping in (1.2.3) remains nonzero when fol-

lowed with passage to Dolbeault cohomology.

Section 1.2. Results

The main results of this thesis, which occur as Theorems 5.2.1, 5.2.2,
and 5.2.3, address steps (1.2.3) and (1.2.4) when the domain is a standard
representation induced from a minimal (cuspidal) parabolic subgroup. This
work generalizes techniques found in [BKZ]; work on an aspect of the non-
minimal parabolic case can be found in [Bal.

The representations are constructed in Chapter 2, addressing steps

(1.2.1) and (1.2.2). Sections 2.1-2.3 collect their defining data and Sections
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2.4-2.5 give their constructions.

Chapters 3 and 4 concern cohomology results where the fiber for co-
homology is a non-unitary principal series representation. An intertwining
operator S (defined in Theorem 3.1.1) maps an induced representation into
a cochain space for cohomology. The image of § will lie in the kernel of 0
by Theorem 3.2.1 and in the kernel of the formal adjoint to ] by Theorem
3.3.5.

In Chapter 4 the operator S is shown to have nonzero immage in Dol-
beault cohomology. The technique is to compose & with a Penrose trans-
form. An explicit formula for this composition is given in Theorem 4.2.4,
from which non-vanishing follows in Corollary 4.2.5.

In Chapter 5 the results of Chapters 3 and 4 are shown to hold if the
fiber for cohomology is replaced with its irreducible quotient. The quotient is
given in terms of the Langlands quotient operator. The analogs of Theorem
3.2.1, Theorem 3.3.5, and Corollary 4.2.5 are respectively Theorem 5.2.1,
Theorem 5.2.2, and Theorem 5.2.3.

Showing that the domain of & descends to the Langlands quotient

remains. Results in [Wo] suggest methods of doing so, but we do not pursue

them here.




Chapter 2. Constructing Representations

Section 2.1. Preliminaries

Let gg = o @po be the Cartan decomposition corresponding to K, let ¢
be the corresponding Cartan involution of gy, and let © be the corresponding
Cartan involution of G.

Let G be the complexification of the adjoint group of G. As a conven-
tion, real Lie algebras have zero subscripts; their complexifications do not.
We denote the Killing form on g by (+,+). For X,V € g, set (X,Y) = (X,¥).

Let o = to @ ao be a B-stable Cartan subalgebra in go with compact
part t; and associated Cartan subgroup H = TA. We assume that ag is
maximally abelian in $o. Then the subgroup M = Zg(ag) is compact,
although not necessarily connected. Let My be the identity component of M
and let my be its Lie algebra. {y is maximal abelian in my.

Choose X € to and let L = Zg(X). The subgroup L is connected
and O-stable. Let [y be the Lie algebra of L. Choose a 8-stable parabolic
subalgebra q == [@ # in g. Then G/L is an open complex submanifold of
the compact complex manifold G/Q, where @ is the analytic subgroup of

GC with Lie algebra q. We identify (via this inclusion) the antiholomorphic

tangent space at the identity of G//L with u.




Section 2.2. Parabolic Subalgebras and Roots

We will need to consider several root systems and here we establish
their positive roots by way of parabolic subalgebras. These subalgebras will
depend somewhat on the parameters for the Dolbeault cohomology, which
we fix in this section in accordance with [KV], Theorem 11.216. Let Apr be
an element of t* which is integral for A and let v € a*. Several restrictions
will be imposed on Ap; and v presently. All bundles are holomorphic and
homogencous.

Let b be any Borel subalgebra of [N m containing t. We denote the
k-ortho-complement of ¢ in b by nyaur. The subalgebra b’ = b ® (LN m)
is a Borel subalgebra for m; we denote its nilpotent radical by nag/7.

Form any real parabolic subgroup of I with Levi factor (LN M)A and
denote its nilpotent factor by Ny. Let (ny,)o be the Lic algebra of Np. Also
let Ny, be the subgroup of G with Lie algebra (nz ) = (fir.)o-

Let A{g,h) denote the roots of g with respect to ) and let the root
space decomposition be given by

g=9e @ Yoy

aEA(g,h)

where g, is the root space associated to «. We choose positive root systems

for { and g. Let
A*(1,9) = {roots contributing to nz, & nganr/T}

and let

At(g,h) = AT(1,5) U Ay, h),
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If ¢’ is a subalgebra of g that § acts on semisimply and Alg', ) is the ‘I |

set of h-weights, define i

t 1
a(g') = 5 Z a. u

a€A(g) I

Here are the restrictions on our parameters:

(2.2.1) (Re v, 8) > 0 for every positive a-root § of [,
(2.2.2) Aps + 6(npapy7) is strictly dominant for b, and !
(2.2.3) O\ +6(npamyr) + 6(unm)+Re v,a) > 0 forall a € Alu, h).

We choose a real parabolic subgroup for G with Levi factor M A. The

Lie algebra ng of the nilpotent factor N is chosen to satisfy three conditions:

(2.2.4) A(n) is closed under conjugation,
(2.2.5) A(n) contains A}, (1, h), and

real

(2.2.6) (Re v,a) > 0 for @ € A(n). i
Section 2.3. Disconnectedness of M |

As noted before, the group M is compact but not necessarily connected.
The discussion follows Chapter IV of [KV].

The disconnectedness of M is captured by a large Cartan subgroup.
M = MyTy, where Ty = Npr(b), the normalizer of b in M. The irreducible
representations of M are in one-one correspondence with the irreducible dom-

inant representations of Th. Given the dominant integral weight Am, the

T |




Tar-orbit yields an irreducible dominant representation of Ths and we call
the associated M -representation (o, V7). When M is connected, this is just
the theorem of the highest weight. In general, V7 is a direct sum of irre-
ducible m-representations; the set of highest weights is a Ty-orbit of Aas.
Let (-,-), be an M-invariant inner product on V°.

Choose a nonzero weight vector ¢ € V7 associated to Aps; this is
a highest weight vector with respect to the given positive ordering for m.
Define the irreducible {L N M )-representation (v,V7) as the cyclic L N M-
span of ¢. Denote the projection from V7 to V7™ by P.. When M is linear,
LN M meets every component of M but this is not true in general. When M
is connected, I N M is connected and V7™ is the [ N m-span of ¢. In general,
V7 is a direct sum of irreducible [ N m-representations and the set of highest
weights are a subset of the Th-orbit of Aps. Let (-, ) be the LN M-invariant
inner product on V7 induced from {-, },.

One final observation 1s that
(2.3.1) P ((inm)V%) =0.

Each irreducible summand of V7 as an [N m-representation is contained in
the irreducible summand of the m-representation V¢ with the same highest
weight. Thus # N'm cannot map elements of one irreducible summand in VT
into another; thus it is enought to prove the observation in the case of one
summand.

Let V™ be the {Nm-summand with highest weight A; and highest weight

vector v;. Consideration of roots shows that every weight vector of V;" is of
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the form

v=A;— Z Mo &
where o ranges over the simple roots in AT(I 1 m,t). Application of the ¢
simple root vector K_g in i N'm to any vector in V" gives a weight vector
in the corresponding m-summand V,7; this vector does not have a weight as

above. Thus the observation holds.
Section 2.4. The Principal Series Representation

The domain of the operator & will be a non-unitary principal series
representation of G. There are several possible ways of defining this repre-
sentation and in this paper we will use two of them.

Recall the representation (o, V) of M from the last section. Let pg
be half the sums of the ag-roots of ng. The non-unitary principal series

representation

(7@, ind§an(o @ ¢’ ® 1))
has as a dense subspace (denoted by C®°(G/MAN,c ® ¢*))
(F € O®(K, V) - fgman) = =@ rades sy =1 f(g)
for me M,a€ Aand ne€ N}
and G acts by
(6(9)f)(z) = f(g™" =)

The space is completed with respect to the norm

£ = ]K R d
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This construction is known as the induced picture; this picture is easier to
use when the focus is group actlons.

For g € G, let ¢ = r{g)e™Dn(g) be the Iwasawa decomposition for
G = KAN. We can get an equivalent representation to the previous repre-
sentation by restricting functions in the dense subspace to K and completing

with respect to the same norm. The group action becomes

(reg)f)(k) = ¢~ @Head G0 s =1 5)).

This construction is known as the compact picture and has the benefit of
making the space independent of the parameter v. This space will be used

implicitly when computing with minimal K-types.

Section 2.5. The Dolbeault Cohomology Representation

Recall that if (z, W) is a representation of L, one can construct a ho-
mogeneous holomorphic line bundle over G/L with coefficients in W. Since
our primary interest is the space of sections of this bundle, we omit construc-
tion of this bundle; this can be found in [K5]. The sections will be realized
instead as functions on G with certain invariance properties.

In the present case W will be infinite dimensional. The representation
of L will be a principal series representation induced from the minimal para-
bolic subgroup (LN M)AN,. Let py, be half the sum of the ag-roots of {nr.)o-
1

In the next section we will construct a one-dimensional representation X~

of LN M which has differential §(unm) — §(u); let 7' = x @ 7.
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Construct the representation (wj,, W) with
W = iIld{JLﬂM)ANL(T’ Qe @1)
as in Section 5. Here the dense space of smooth vectors is given as
{f € C®(L, V) : f(lman) = e~ WFendlose ()= £(1)};

the other features are given by replacing G and K with L and L N K.

Let s = dim(u N €). We are interested in the (0, s)-th Dolbeault coho-
mology group HyS(G/L,WY) of the holomorphic vector bundle (G/L,W).
We defer questions of topology to [Wo]. The image of the intertwining oper-
ator & will lie in the space of strongly harmonic forms on this bundle,

Let CO*(G/L, W) denote the space of smooth (0, k)-forms with coef-

ficients in W. These forms can be represented as the space
(C(G, W @ A )E,

which consists of smooth functions F' from G into W @ AFu* with the property
that

F(gl) = (zr.(l) ® Ad(D)) > F(g)

where ¢ € G and I € L. In Section 3.2, we give an explicit formula for the
& operator; since 8% = 0, we can define the (0, k)-th Dolbeault cohomology
group

HENGIL, W)Y = (ker 8;)/(im B—1)
where 8; is the restriction of 8 to C%(G/L,W).

11




We define 8* in Section 3.3 formally on all of CY*(G/L, W) for each

k.. Define the space of strongly harmonic (0, k)-forms
HOR(GJL, W) = (ker 8;) N (ker 8F).
Since each element of HO*¥(G/L, W) is a cocycle, there is a natural map

c: HOMG/L, W) = HYF(G/L,W).

12




Chapter 3. The Intertwining Operator and Cohomology
3.1. The Operator &

Before defining the operator &, a form in A*u* needs to be distin-
guished. Choose a basis {X} of lj-root vectors for g; a subset of these root
vectors form a basis for u and let {w,} denote the corresponding dual basis.

Let A, = Afunm)U A(unii). Asin [BKZ], define

wg = A Wers

aCA,

We note that wg is an a-weight vector with weight pg —pr and LN M
acts on wg by the character y 1. x~! is one-dimensional since L normalizes

u and M normalizes m and f. The a-weight value follows since
A(n,a) = A(unNn,a) U A(ng, a).
Restricted to t,
S(u) =d(unm) +6unn)+6(unn)
= §(unm)+26(uni),
and thus the t-weight of x is given by
~2(5(uN &)+ 6(uNm)) = —2(%(5(11) — 8(w N m)) + 6(u N m))
= §(unm) — &(u).

Under the usual action by ad, wg vanishes when acted upon by elements

in uNn or uNm. This follows because ad(X 4 )wg is a (possibly zero) multiple
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of wg_q when X, € go and wg is the vector dual to Xg in u*; since the root
spaces have multiplicity one and ad|ynmeuna has no non-trivial fixed vectors
in u*, each factor of wg is mapped to another factor (up to scale) of different
weight. Hence the exterior product vanishes.

Note that the above implies Cwg is an irreducible (L N M)AN7y, repre-

sentation.

Theorem 3.1.1. The intertwining operator
S:indGan(o®e” ®1) — C¥(G/L,W)

is defined by
[SF(@))(1) = Pr(f(2l)) Ad(l)ws

where z € G and !l € L.

Proof. First we show that [Sf(x)] has the correct (L N M)A(NL)-

invariance as a function of L. fm € LN M,a € A and n € N then
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(S f(2)|(Iman)

- Po(f(alman)) Ad(Iman) ws |
= P (f(zlman)) Ad(lma)wg
by the highest weight property of wg [
P8 o) f(al)) oD o8 (o)~ Ad(l) s
by properties of f and wg

= ¢ (rter)log “x(m) lr(m) 7 P(f(2]) Ad(D)ws ;

_ G eon e L1\ (S F(2)) (0]

“Hence [Sf(z)] is in i”d‘(LLnM)ANL (r' ® e’ @ 1).

To show that §f(x) has the correct L-invariance, observe that i

[SF(zN)) = P(f(=l'1)Ad(Dws | :
= Po(f(2I'D))Ad(") " Ad(I)ws |
= Ad(I') (S £(=))(I'D)]

= [(x(l') ® Ad(I') 'S £(2)I(D)

It follows that the image of § lies in the space of cochains. [

Remark: The formula for 8 follows from a composition of maps which

we describe below. Note that we include the parameter shifts for clarity. ‘
ind§y on(0 ® €7 ® 1) = ind{fanan, (T ® P @ 1)

~ ind§(ind g an, (7' ® €70 @1) @ AU) F;‘

15




The first map is given by projecting the values into V7. The second is

a double induction isomorphism; this is given by

(@ f)(=))(D) = f(=0)

for f € i”d(GLnM)ANL (6 ®e”®1). For the third map, we note that since Cwg
is an irreducible (LN M)AN  -representation, it can be used as the first term

in a composition series for A®1* with respect to (L N M)ANy,. Note that

ind%LﬂM)ANL(T ® cV‘|‘ﬂG ® 1) =~ in'd(LLr‘lM)ANL ((TI ® 8V+pL ® 1) ® C’UJS)
C indfyonn an, (7' © e+ © 1) ® CAd(L)ws

C ind{yapnyan, (7' @ TP @ 1) @ A",

The first line follows by checking the parameters for wg. The second

line follows by a ”Mackey isomorphism”; right to left, the map is given by
M(f @ v)(l) = f(1) @ Ad(D) e,
and in the other direction

M'(F)(1) = (1@ Ad(D)f(1).

3.2. The Cocycle Property

In this section a formula for the Cauchy-Riemann operator

§: C*(Q/L,W) — CO* UG/ L, W)
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is given for all k and shown to annihilate the image of § when k& = s.

For f € C®(G/L,W) and w € A*u*, define

Ofw= Y Xof (wa/\w)+% > f ad(Xo)(wa Aw). i

acA(u) aCA(u) i

We note that although this formula uses the basis of root vectors given in I

Section 3.1, J is independent of the complex basts chosen for u.

Theorem 3.2.1. 808 =0 :';1

This follows immediately from the next two lemmas. The first lemma ;
shows how to remove the dependence on the L-variable and the second shows w
the vanishing. That vanishing occurs term-by-term with respect to a basis

of root vector is suggestive. Fix f in C°(G/MAN,c ® ¢”).

Lemma 3.2.2. Forz € Gand [ € L, i

.i
) B(PA(F(51)) Ad(Dws)lims = AdUYB(PH(F(&))w3)lz=e0) ;;

Proof. Before computing, we make an observation. If X € go then

(3.2.1) X f(ED)|gme = % £ exp(tX)) o |
= < (ol eap(tAdT) ™ X)) emo

= (Ad(D)™'X) F(&)lsmat

Let & = 8, + 82 in the obvious manner. Then :

17 ;




(o (f(#1) Ad(Dws) |z

= S (HaPolf(ED)]5me) wa A Ad(Dws

a&A(u)

= ) (AdD) X )P (f(E) 5= AdD(AID)  wa A wg)
aEA(U)
by the above observation

= Ad(] > (AN T X)Pe(F(E))]z=at Ad(D we A ws]
A {y) .
= Ad() I

and

Oo(Pr(f(21)) Ad(D)ws)|z=s

pal—= B

> P(f(al)) ad(Xe)(wa A Ad(Dws)
€A (1)
3" P(f(al)) AdDAID™ ad(Xa)Ad(D) (Ad(D) 'wa Aws)
acA(u)
_ Ad(D) [-% S P(f(eD)) ad(Ad() ™ Xo)(Ad(D) " Nwe Aws)]
aCA(u)
= Ad(l) II.

Thus the left hand side in the Lemma is equal to Ad(I} (I + II). But
the definition of & is independent of the complex basis chosen for u; since

Ad(l) is a complex linear isomorphism on u, the lemma follows.

Lemma 3.2.3. For z € G, (P (f(&))ws)|s=z = 0.

18




Proof. Using the notation for 8 and Jy as in Lemma 1, we have
AP f(E)ws)s=s = Y (XaPr(f(E)))]s=s wa Aws
«CA (1)
If o € Alwnm)UA(unin) then w, Awg = 0 by definition of wg. I
a € Aunn) then Re(X o) and Im(X ) arein np. Hence XoPr(f(E))lz=2 =0 |
by complex linearity of the derivative and right N-invariance of I

Next we have

B Pof(8) wlimz = 3 Prlf(2)) ad(Xo)(wa Aws)

aEA(u) '

f o € Aunm)U AN a) then wy Awg = 0 by definition of wg. If

a € A(unn) then

ad(X o) (we Aws) = wa A ad(Xy)ws =0

by the highest weight property of ws.

\ Thus the lemma follows. N »
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3.3. The Strongly Harmonic Property

The proof that 5% 08§ = 0 closely resembles the proof in the previ-
ous section except that some care must be used when computing with the
adjoints. Recall the C-invariant Hermitian form (-,-) on g. This induces a
pon-degenerate Hermitian form on A g and in particular a non-degenerate
Hermitian form on Au. 'This form extends to a non-degenerate Hermitian
form on AFu* in a natural way for each k.

We will also need to define an adjoint of the space W as in [KS]. First
we change our point of view on W to the compact picture. Recall the Iwasawa
decomposition of Section . The Iwasawa decomposition of L = (LNK)ANL
coincides with the one for G = K AN. We will use the same notation.

Recall the norm for W is given by

171, = ]L Sk

where f € W and dl is the Haar measure for L N K. This norm does not
in general give a unitary structure for W, but one can use it to get an L-

invariant non-degenerate pairing between (wr, W) and (77, W') where
W' = indenM)ANL(T' @e? ®1).
The group action for 7y, is given by
(wl (D F)(k) = e~ 7R 109 f(n(I71))-

Note that W and W' are the same space in the compact picture. The proof

of this invariance can be found as Lemmas 90 and 24 in [KuS).
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With these pairings in place, one can define the adjoint &* to J as

usual by

| (H@ndge) do = [ (@r@)a(o) do
G/1L G/L

where f runs through the forms with compact support modulo L.

First we prove the analog of Lemma 3.2.2, writing our formula for 8*

simply as

Ffw= > (Xa)*f(w&/\)*w-.L% > f(‘Ad(Xa))*(wa/\)*w.

aGA(u) aEA(u)

First we compute some adjoint formulas.

Lemma 3.3.1. For l € L,
(2) Ad(1)*X = Ad())7' X for X €u.
(b) (wah)* Ad(Dw = AdD)((Ad() " wah)*w) for w € AFu*,
(c) ad(Xp)* Ad(lywo = Ad(1)(ad(Ad())™ X g)*we).

Proof. (a) Let X,Y € . Then

(Ad(D)*X,Y) = (X, Ad(D)Y)

= (Ad()™'X,Y)

since [ is real.

21




(b) If w' € AF~1u* then
{(weN)* Ad(Dw,w") = (Ad(Dw,we A w')

= (w, Ad(l)*(wa A w’»

— ((Ad() N wah) e, Ad(1)'w') by (a)

= (Ad(D)(Ad() ™ wah)"w,w').

(c) Let w € u* and X € u. Then
(ad(X)* Ad(IYwa,0) = (Ad(I)oa, ad(X o)
= (wa, Ad(1)*ad(X Jw)
= (e, Ad(D) ™" ad(X ) Ad(1) Ad(1) " )
= (wa, ad(Ad(D) ™1 X) Ad(1)*w)
= (Ad(D)(ad(Ad() " X we) ). O

Again fix f ¢ C°(G/MAN,0 ®€”).

Lemma 3.3.2. Forz € Gand [ € L,
*(Pr(f(&1)Ad(Nws)|z=s = Ad()(0*(Prf(#)ws)|z=at)-

Proof. As in Section 3.2, let 8* = 9} + 8 in the obvious manner. As before,
we consider each sum separately. Again we note that the formula for 0" is
independent of the u-basis chosen.

For the first sum, we note from (3.2.1) and from Lemma 3.3.1 (a) that

if X € go and ! € I, then

X* f(# 0z = (Ad(1) 7 X)* (%) a=a1
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We compute

Of(Pr(f(20)) Ad(l)ws)la=s

= T (Ka) Pr(fE0) o) (wah)* Ad(Deos

acA (1)

= Y (Ad(D) T XY P f(&)la=nt AdD(AdD)  wa A)* ws)
aeA(u)
by Lemma 3.3.1 (b) and the above observation

= Ad(D[ Y (Ad(D) ™ Xa)* (Prf(#))]s=ot (Ad(D™ wa A)* ws)

acA(u)
= Ad(1) I.

For the second sum we have that

O (Pf(ED))Ad(Dws)| 2=z

Pr(f(zl)ad(X o) ((waA)* Ad(Dws)

M!r—l mir-—*

P.(f(eD))Ad(DAd(D)~* ad(Xo,)*Ad(l)((Ad(l)“ wah)*ws)

"3
"3

by Lemma 3.3.1 (b)

tAd(z)[% 3" Pe(f(al))ad(Ad(l) ™ Xa)*((Ad(D) " wah) ws)]

aCA(u)
by Lemma 3.3.1 (c)

= Ad(l) IT'.

23




As in Lemma 3.2.2, I' + IT' is just 0*(P-(f(3))ws)ls=s written in

terms of the u-basis {Ad(!)~'X,}. Thus the lemma follows.

To show that P.(f(z))ws lies in the kernel of 8*, it will be enough to
compute in terms of root vectors, independent of scale. We list some impor-
tant observations, the last two of which depend on the fact that (X4, Xg) is
nonzero if # = —a and is zero otherwise. We will also refer to (waA)* by the

more familiar i(w ), the interior product.

Lemma 3.3.3. (a) X, € ga.
(b) Let w = wa, A Awgy, € AFu*. With ¢, a constant depending only
on X, and X_3,

()™ og,way A Aoy, A AWy,  If o= ~Tm

i(wa)w = {

0, otherwise.

(c) ad(X o) wg is a multiple of wgya.

Proof of (¢). Assume B + & is a root. Then

{ad(X o) wp,wy) = {wp, ad(Xq)wy)
= {Wg; Carty—a)

# 0 only if f = —(y — a),

where ¢qy is a constant depending on X, and X,. Thus ad(X ) wg is a

multiple of wgia.
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Lemma 3.3.4. For z € G, 9*(P, f(#)ws)|s=2 = 0.

Proof. First consider
O (Pr(f(8) wellom=s = > (Xa)*Pr(f(#))]s=yi(wa)ws
acA(u)

If « € A(unn) then X, € N n and

(Xa)" Pr(f(2)) = (-Xo)Pr(f(2)) =0

by complex linearity of the derivative and right N-invariance of f. If o €

A{uNm) then X, € TN m and

X o P (f(2)) = —Pr(o(Xa)f(2)) = 0,

The first equality follows from complex linearity of the derivative and the
right M-translation property of f; the second follows since Pr((8#Nm)V7) =0
by (2.3.1). If a € A(unNn) then i(wa)ws = 0; since —a € A(uNn), w_gz is
not a factor of wg. '

Next

Nil-—‘

B3 (Pr(f(8)) ws)lsme = E - (f(2))ad(Xo)*i(wa)ws
A

Again if o € A(un ) then {(we)wg = 0 since w_z is not a factor of
wg. o€ Alunn)UA(unm) then part (¢) in Lemma 3.3.3 shows that
ad(X ) ws = 0 using the same argument as for the highest weight property

of wg. O
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Combining Lemmas 3.3.2 and 3.3.4 as mn S

Theorem 3.3.5. * o8 =0.
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Chapter 4. The Penrose Transform

Section 4.1. Minimal K-Types

For 8 to be particularly useful, it will be necessary to show that pass-
ing to Dolbeault cohomology does not result in the zero operator. Rather
than try to show this directly, a Penrose transform will be used as stated in
the Introduction. The definition of this operator depends directly on the re-
lationship between the minimal LN K-types of W and the minimal K-types
of ind§ ,n(o ®e” ® 1). This relationship follows from Theorem 11.230 in
[KV] and is the reason for imposing condition (2.2.3). Explicit formulas for
minimal K-types can be found in [K1].

Minimal K-types were defined in full generality for irreducible admis-
sible representations in {V1]. An important property is that the minimal
K-types for standard induced representations always have multiplicity one.

Suppose indgysn(0 @ ¥ ® 1) has a minimal K-type of type y. Let
(4, V*) be an abstract copy with K-invariant inner product {-}u. Let
(L, V™) be the space of 1 M E-invariants in V#; this space is an irreducible

L N K -representation. We also note that by an argument similar to the one

for (2.3.1),
(4.1.1) P ((ant)V#)=0

where P,, is the projection from V# to V™.
Let we be a nonzero element of A? (uNE)*; since this is a top form, the

space Cwe is a one-dimensional irreducible L N I -representation le.
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‘ . - . ! . .
Define the LN K -representation (7], V™) by 1) = 7;,@x1,. We consider
it as a different representation with the same space and inner product as for

71, We can arrange spaces such that
Vi=VT cvocvr

and

VTV C v

this can be done since character shifts are accounted for by redefining the
group action and not the space. Thus all inner products are restrictions from
(': ')#‘

Using the Bott-Borel-Weil theorem, consider the map
VE o HY(K/(LNK), V)

which sends

v — fy

by
Fo(k) = Pr(u(k) ') @ we.

This map is K-equivariant and descends to cohomology since the image lies
in the space of top forms. The map to cohomology is an isomorphism. By
appealing to the adjoint formula for the 8 operator in [GS], one can see that
the image vanishes under the adjoint of 9 using (4.1.1). Thus these forms are
harmonic and give nonzero representatives for cohomology classes by Hodge

theory.
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What is important here is the connection between o and 773 we will
consider function analogs of these spaces in ind$y ,y(o @ e ® 1) and W. 7},
will occur as a minimal I N K type in W and be related to the p type inthe
above fashion.

The u minimal K-type space for ind$y 4 n(0 @ e” @ 1) has elements of

the form
folkan) = e~(tec) loae p (4 (k) 1o) (kan € G)

where v € V#, and the 7§ minimal L N K-type for W has elements of the

form
guw(kan) = e~ (rtoL) ‘“-‘"‘P,.r(fj;(k)"lw) (kan € L)

where w € V. Denote these spaces by V& and VEL , respectively.
Parameter shifts are used in order to introduce cohomology; to get nice

formulas, they will need to be removed. Define V[* as the space of functions

(Fxn =xuf @ FEVI)

This is just a function version of V7E; left translations by elements of L N K
act as 7, @ xEl.

Define
I: VEI‘ = VL

If=| @i

InkK
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where dl is the Haar measure on LN K.
' 1
. - - N ' . T

First, this operator intertwines the I N K -actions; for f € V" and

leLnkK,

(1 =) [ mU)

:/ rr('DIF(Ddl

ILNK

- / rp (DU D) dl
Lﬂf(

by a change of variables and Haar measure

_ / (D ® x7 1)) dI
LNK

= I((mz @ xz )(I)S).
To see that I is nonzero, note that for v,w € V™ and

fol) = Pe(r(7'0) € VI*,

(Lo = [ RO,
= ( TL(”PT(TL(I)—IU) dlvw)ﬂ
LK
= / (PT(TL(I)—IU))TL(Z)_IUJ)”dl
INK
- Sl o g1 i) 0

where {¢;} is an orthonormal basis for V7

N ./LnK Z,: (rr(Ddi, v)u{Tr(l) i, w), dl

1 -
= Z m(¢i: $i)plw, v)p

dim 7

(v, w)p

o dim Ty,
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Section 4.2. Non-vanishing in Dolbeault Cohomology

In this section, we will show that & is non-vanishing as a map into
Dolbeault cohomology. To prove this, § will be composed with a Penrose
transform

P CO(G/L, W) — C°(G/K,VH).

Tt will be shown that P vanishes on O-cocycles and hence descends to a
map on cohomology (which is also denoted P). This composition will be

non-vanishing on the minimal K-type V#. Hence the image of § cannot be

trivial when passing to cohomology. Further details on Penrose transforms

can be found in [BE].
The composition P o § is of interest in its own right, generalizing the

Poisson i)}tegrals formula found in [KW], [Ba] and [BKZ].

The argument here adapts that of [BKZ] to the present case. The

following implements the Bott-Borel-Weil theorem in the direction
HY(K/(LNK), V) VE,

Let {#!} be an orthonormal basis of V#. Let @c be the complex
conjugate of wg. Then we A @¢ is a volume form for K/(LNK) and LN K
acts trivially on it.

Define

it K — (VIE)* @ A*(n £)*
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[ilk))(0) = (u(k) T, 41, o

Note that one can write an element K of C%*(K/(L N K), VEL)) in
the form F(k) = f(k) ® we where f(k) € V/* for eack k € K. With F

represented in such a manner, define

Foapit K — AZ*(B/(IN B

(F - i)(k) = (u(R)I[F(R)], $5)u wo A o

It is easy to se(c F -4, is right invariant under LN K and thus a volume
form on K/LN K.
As in [BKZ], define

P:CO(KNLNK), Vi) — V*

Py = zi:(];{/(LnK)F A dk) g

This definition allows for some simplification:

Proposition 4.2.1. For F € C%*(K /(LN I{),VE}‘) and f as above,

P(F) = /I B(E)F(RI(L) dk.
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Proof. We compute that L

pry=3( (/Lm((;x(k)f[f(k)],¢i)ﬂ ) ¢

N z / /LnK
N Z/ K/LOK /Lm{ (p(RYyrr(FRND) dl, ¢3) e dE i
N z/ (WEDLf(RDYA), 1) dE dl & ‘

(K/(LOK)XLNK B

- ] (BRI db. [
K

W8 [ U0 b de i
LK .

Let 8 be the Cauchy-Riemann operator on K/L N K associated to

un & Compare t1<3 next proposition with Proposition 10.1 of {BKZ]. F

Proposition 4.2.2. P is K-equivariant, is independent of the orthonormal ““

basis {¢!} and annihilates the image of 9. b

Proof. The proof will follow entirely from Proposition 4.2.1. Indepen- ‘

dence of the orthonormal basis used holds immediately.

! K -equivariance follows since for k' € K and F € C**(KX/(LNK), VE"" )

with associated f, :

W(K)P(F) = p(') [ BRI dk
= [ mEBIFRN di

= [ uE ol a ‘i
= P(L(K)F),
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where £ is the left translation action on C%*(K /(L N K), VZ" ).

We show the dpe-cocycle property. Let {F;} be a basis for uNE with ‘|

corresponding dual basis {@;}.

Suppose f € CO* Y K/(LNK), Vg}') is given by

HOEDIFOLTH

where f; € CO*(K/(LNK), VZ}‘) and

OF =1 A AD A g
here ~ denote:L omission. Note that i

Oxc filk) @ 0F =Y Bifi(k) @ io; A}

i=l1

3 30 1ik) © ad(By)(@5 A &5)

Jj=1

= (-——1)"_1 E,'f,‘(k) 2 weo.

Vanishing of the second sum follows since 4 N £ annihilates we; this follows i

since wg is a top form and u N € is nilpotent.

Now for E € &,

[ MR dk = [ L reeP0) d
K K
" /I( %“(ke_tE)[fi(k)](l) dk
= [ Wi B d
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But, using complex hnearity of the derivative, we have
[ MBI de = [ =B
AL
=0

since pu{u NV = 0.

After collecting all terms, we see that P(dx f) =0.

Next define
R* : CO*(G/L,W) - CO*(K /(LA K), Vi)
as the pullback of the inclusion

R (K/LOK, VI @ AW E) — (G/L, W ® A®w).

Since this inclusion is holomorphic, R*@ = OxR*. Note that J factors

through R* in the W component and projects onto weo in the A*(u N £)*

component.

Define the Penrose transform P as

(PF)(z) = P(R*(L(z)'F)).

Proposition 4.2.3. The image of 9 lies in ker P.

Proof. As in [BKZ], we have
P(OF)(z) = P(R*(L(z)™ OF)) = P(R*(0L(z)™' F))
= P(Og(R*L{z)"' F))

= 0. 0
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Taking the composition with §, we have

PoS:ind§ ylo®e” @1) = C(G/K, V).

The formula for P o § allows for simplification.

Theorem 4.2.4. For some nonzero constant ¢,

(Posfe)=c | ukP(Flek)dk

-
Proof. Since P and § commute with left translations by G, it will be
enough to show the theorem when ¢ = 1.

Consider

(R*S FY(k)(1) = R* (P [f(k1)] Ad(Dws)

with k € K and [ € L N K. The A*(u N &)*-component is just a nonzero
multiple of Ad(Dwe since (ws,we) # 0; see [BKZ] for more details. Thus
the nonvanishing piece of Ad(!)wg is a nonzero multiple of x (D we.

The xr(1)™! can be moved to the W-component (as a L (1 K represen-

tation). The domain of the operator I can be extended to this shifted W.-

Since I is LN K equivariant and 71, occurs in the shifted W with multiplicity
one, I must annihilate all other L N K-types. Since the span of these LN K-
types is dense in the shifted W, I already accounts for the projection onto

7L
Vir.
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Collecting the picces, the previous paragraph gives

(PoSf)(1)=c /K W(k)(P, (kT dE.

Corollary 4.2.5. Po S #£ 0.
Proof. _Let
fo(kany = e~ ((Feadlos) p, (4y(1) =1 4)

where ¢ € V7 is given as in Section 2.3. Then

(P o SFo(1), e = (e [ WP (F4(8)) a, 4),

K

= (e [ HRPAPL (k) 9) db, g0,

K

= ¢ [ (PR 9), ) )

K

= ¢ [Pk 6), P () P

K

>0 since (Pr(¢), Pr(¢)}, > 0.
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Chapter 5. Formulation with Quotients
Section 5.1. The Langlands Quotient Operator

Many results concerning cohomological induction or maximal global-
izations are stated in terms of irreducible representations. Until now we have
not been concerned with irreducibility of W; in this section we introduce the
Langlands quotient operator and recast previous results with this operator
in place.

The key features of the Langlands’ classification for irreducible admis-
sible (g, K)-modules is that every such module is infinitesimally equivalent
to a quotient of some standard induced representation and that the quotient
operation can be written as an integral intertwining operator. Reformulated

via [KZ], these standard induced representations are of the form
indnGJlAer(D ® 6u & 1)

where M'A'N' is a real cuspidal parabolic, D is a discrete series or limit
of discrete series representation on M' and v occurs in the closed positive
Weyl chamber associated to M'A'N’. Since we are interested only in the
case where M AN is a minimal parabolic, we will not define these notions;
see [K2| for further details.

We note that we have not made use of the parameter » in any proofs;
here this parameter becomes important. Reducibility for non-unitary prin-
cipal series representations is controlled by v. The choices in (2.2.1) and

(2.2.6) guarantee uniqueness of the respective Langlands quotients.
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For the choice of v, the quotient operator for W is given by
Qf(l) = / f(in) di
Ny

where f is an LN K-finite vector in W and diy, 1s the left Haar measure on

Ni,. Calculating shows that the image of @ lies in

W™ = ind(LLnM) 4w, (T e ) 1),

We denote the closure of the image of the L N K -finite vectors in W by W.

We recall some facts from {V1]. The minimal L N K-types of W occur
with multiplicity one and are independent of the v parameter. In the compact
picture W and W~ are the same space and thus Q can be thought of as an
operator on W. For our choice of v, @ is non-vanishing on these LN K-types

and by Schur’s Lemma must act as a nonzero scalar on each type.
Section 5.2. Results with Quotients

We wish to define an associated operator S' with the quotient operation
on W in place. Definition of bundles and operators are as before with W
replaced by W. Results in {BKZ] and [Ba] are formulated with the quotient
operator already in place; the ‘heuristic principle’ in [K4] leads one directly
to quotient operators.

Define &' = Q 0 §; that is, we have a map

S ind§ an(c@e” @1) — ind§ (W @ A°u*)

C indS (W™ @ A*u*)
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given by

(S () = /_ Pr(f(zln)) Ad{injws dn

L
where f € ind§ ;{0 ®@e” ®1).
That the image space is correct follows from Section 8.1 and that @
maps W to W.

Theorem 5.2.1. do &' = 0.

Proof. The integrand vanishes under 8 for all & € Ny from Lemmas

3.2.2 and 3.2.3. 0
Theorem 5.2.2. 8* 0 &' = 0.

Proof. Similar to Theorem 5.2.1, this follows from Lemmas 3.3.2 and

3.3.4. Note that for purposes of adjoints, W C W~. O
Theorem 5.2.3. § is nonzero.in cohomology.
Proof. As noted in the previous section, the quotient operator is a

nonzero scalar on the set of minimal L N K-types. Thus all statements in

Chapter 4 will hold with suitable alterations with @ in place. 0
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