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Abstract of the Dissertation
Self-Dual HI-Cellular Structures
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Doctor of Philosophy
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1996

In this dissertation we define the concepts of HI-cell and of HI-cell complex.
HI-cell complexes are structures on polyhedra which generalize the notion of a
cell complex, and in which one can define a generalized barycentric subdivision.
We use this barycentric subdivision to define the concept of the dual complex of a
dualizable Hl-cell complex. We then define a self-dual HI-cell complex and
show (constructively):

The unique self-dual HI-cellular structure (complex) on the sphere is the
triangular one given by the faces of a tetrahedron. The torus possesses an infinite
number of self-dual HI-cellular structures, all of which must be quadrilateral. All
the surfaces of genus g=2 possess pentagonal, hexagonal and octagonal self-dual
HI-cellular structures, and these are the only “shapes”™ possible for all surfaces of

genus g2,
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O INTRODUCTION

We present here a brief outline of the contents of this dissertation.

In chapter 1 we review the concepts of polyhedron and related PL topics.
Following Rourke and Sanderson [R-S] we define a polyhedron to be a set (space)
in Euclidean space having the property that all of its points have a “linear” cone
neighborhood in the set. We wanted to have such an intrinsic definition of
polyvhedron, since a part of this manuscript introduces a generalization of the
concept of triangulation, and the spaces supporting these new constructions
should be recognized as polyhedra, without us having to verify that they can also

support a simplicial triangulation.

In chapter 2 we begin the main body of this work.

We define the concepts of H-cell and Hi-cell (Defs. 2.12 and 2.26). These
are pairs of the form (C,h:C — C) where C is a convex polyhedron (i.e. a cell),
and £ is respectively a PL (picce-wise-linear) Homeomorphism (thus the 7 in H-
cell), or a PL surjection which is a Homeomorphism in the Interior of every face
of C (thus the HI in Hl-cell). Although HI-cells might collapse faces etc., we
think of these objects as carrying a “memory” of their original linear structure.
Thus the image of points in the interior of cells “remember” the cell-conical

- structure having for vertex its pre-image, and for base the boundary of the cell; i.e.




these images of interior points remember where the vertices, eic. ought to be, even
if they do not exist anymore. This remembrance is what we need later in chapter
3 when we define subdivisions of II-cell complexes.

These HI-cell complexes are defined also in chapter 2 (Def. 2.28). They
generalize and (;ontain the classical cell complexes. HI-cell complexes are sets of
HI-cells such that when the images of two HI-cells intersect, they both recognize
(in their memories) the intersection as being unions of linearly isomorphic pairs of
original faces of each. (We have actually defined in 2.28 a face recognition

Junction.)

Chapter 3 analyzes the possibilities of extending to HI-cell complexes the
notions of star subdivision, barycentric subdivision etc.

To be able to perform star subdivisions at a point a in an Hi-cell complex, it
turns out that one needs, in general, the existence of a face-compatible function
which chooses which pre-image a “remembers”. We show in Remark 3.13 an
(surprising?) example of an HI-cell complex and a point a in it for which no such
choice function exists. Various propositions deal with the study of conditions
which are sufficient for the existence of these functions. Proposition 3.21 assures
us that one can always perform barycentric subdivisions, which are special cases
of star subdivisions. This is very fortunate since all the following work in this
research is based on the existence of barycentric subdivisions.
| We end this chapter with Theorem 3.29 which states that topological quotient
spaces obtained by linearly identifying faces of a cell can be realized as polyhedra

in Euclidean space and as the codomains of Hl-cells.




In chapter 4 we define the concept of self-duality (Def. 4.14). We use as
model the Euclidean-geometric duality possessed by the tetrahedron and known
since antiquity: If the tetrahedron were made of clay and its vertices were pushed-
in(ina controlied way) one would obtain a new tetrahedron with triangular faces
having the old vertices in their interiors, with edges transversal to the original
edges (now deformed), and with vertices in the middle of the original triangular
faces. (Faces acquire the “shape “of faces in complementary dimension.)

We use the generalized notion of barycentric subdivision to define a similar

concept of self-duality for HI-cell complexes.

Chapter 5 concludes the present work. We investigate the question of the
existence of other surfaces besides the sphere which possess self-dual HI-cellular
structures. We obtain in 5.17 necessary numerical conditions for the existence of
self-duality. We conclude by showing (by actual constructions)
¢ That the only self-dual HI-cell complex on the sphere is the classical

triangular one given by the faces of a tetrahedron. (Theorem 5.18)

* That the torus can have an infinite amount of self-dual structures, all of which

must be quadrilateral. (Theorem 5.22)

* That the surfaces of genus g=2 all possess pentagonal, (Theorem 5.27)
hexagonal (Theorem 5.29) and octagonal (Theorem 5.19) self-dual structures,
and these are the only “shapes” that work for all g =2 (Remark 5.25).




1 POLYHEDRA

Most of the definitions in this chapter can be found in [R-S].

PRELIMINARY DEFINITIONS

As usual, R denotes the real numbers and R” denotes the Euclidean space of
n-tuples {x = (x,%,,...,%,)}, x, € R. However, the meiric d on R” is given by
d(x,y) = max{]x; —y,-|}i:1___n. Also as usual, 7 denotes the closed interval
[0,]]cR. A map is a continuous function. Linear means linear in the affine
sense, thus a linear subspace VcCR"is a translated vector subspace;
equivalently, for each finite set of points {x,-}cV and real numbers
o with Y ¢; =1 we have Y ox; €V, and a map f:V—R" is linear it
FQL o) = Y, 041(%,).

POLYHEDRA

1.1 DEFINITION. LetA,B<R". The join of A and B, AB, is the subset of R”
given by AB= {aa+ﬁb[aeA, beBafeRapz0,0+f= 1}, ie, AB
- consists of all points on straight “segments” with end-points in A and B. We also

define @B = B, and the join {a}B will be denoted by aB.

_Note that two different segments aa + Bb and y¢ + 8d in AB might intersect

in their interiors.




1.2 DEFINITION. The join aB is called a cone with vertex a and base B if a¢ B,

and if each point p in aB different from ¢ has a unique representation

p=oa+pb,with .20, x+8=1,beB.

Figure 1 shows two different join presentations of the same set. One is a

cone, and the other is not. |

Two copies of the
same planar set .

TN = L
aB; isacone,

xaBz isnot.
Fig. 1

Note that there are cones ¢,B and a,B in R", having the same base B, and

such that there is no homeomorphism a B — a,B, mapping a, > a, and which is

the identity on B. Figure 2 below illustrates this fact, where B is a spiral curve in

R* with an endpoint missing. Note also that the vertex a; on the left of fig. 2,

does not have a “small” neighborhood having boundary homeomorphic to B.

Two cones with the same base but their vertices do not have homeomorphic neighborhoods,

Fig. 2

Note that if aB is a cone in R”, there is a linear map from R"" onto R*

hich maps (x,,-,,,0) to (x,,+-,x,) and (0,---,0,1) to a. The restriction of this

inear map to the cone (0,---,0,1)(Bx0) is a 1-1 continuous map onto aB




(mapping base to base and vertex to vertex). If B is compact (which is not the case
in the example in Fig. 2) aB is also compact (sce 1.8), and thus the above
restriction is a homeomorphism. Thus, if B is compact, “small” neighborhoods of
a have boundaries homeomorphic to B (to0 BXxt, 0 <t <1). Also in this sitnation,

any two cones a,B and a,B in R" are homeomorphic via a linear homeomorphism

which maps vertex to vertex, and one base to the other.

1.3 DEFINITION, P cR" is a polyhedron if every point pe P has a cone

neighborhood N =pL in P, with L compact. N is called a star of pin P, and Lisa
link . To avoid confusion, we sometimes write N =N(p,P) and L=L(p,P).

1.4 REMARK. Since L is compact and pn L=, N can always be chosen to
have the form N,(p,P)={x]x< P, d(p,x)<e} for suitable small &, and this

choice of N has link L=N,(p,P)= {x[x e P,d(p,x)= a}. [R-S]

By taking L =¢ we have that a singleton {p} is a polyhedron. An open
(circular) disk is also a polyhedron, while a closed disk is not, since a point on its ‘

boundary does not have a cone neighborhood.

1.5 PROPOSITION. Let P=VUP,; be a locally finite union of polyhedra

P, < R”. Then P is a polyhedron in R",

Proof et peP and let {P,-j} be the (finite) set of all polyhedra in {P;}

_' ontaining P. Then for each i,, p has a star neighborhood st;,- (p,Pij) in P,-J_.




Let &= min{e;}, then N= U[NE (p.P, )] is a cone neighborhood of p in P of the
i

J

o o] 8.(p. )] 0

7

Using a similar reasoning, we also have the following:

1.6 PROPOSITION. Let P =NP; be a finite intersection of polyhedra P; c R".
Then P is a polyhedron in R”.
O

1.7 PROPOSITION. Let a1, and a,L, be conesin R" and R™ respectively.

Then aly X a,L, is aconein R™™

aly X Ly = (a,a) [(al x L) U(l xa,))

with presentation:

Proof Let (x;,x)€aily X ayL,. Then x =(1—s)ay +sh and
X =(1-tay+1thy; 05,1, hely, byel,.
We have:
i)if £2 s, then (xl,xz):(l—t)(al,a2)+t(t_TSa1+%b1,sz (See Fig. 3).

i} if s > ¢, then (xl , xz) = (1-s)a, a2)+s(b1 , ST—taz +§b2].

Since [0,1]x[0,1] has a cone presentation of the form

[0,1]%[0,1]=(0,0)(7 % (0,1)w(1,0) X I), ) and ii) give a bijection: (s,£)> (x;,x,),
between [0,1]x[0,1] and &by X ayby=(ay,a, )((aby x by )(by X azhy)) which

preserves cone coordinates. Now, since a;I, and a,L, are cones, we have that




any point (x,y) € Iy X ay Ly, (x,y) # (a,4, ), has a unique representation as in i)
or in ii).

Thus, a;L X ayL, has a cone presentation (a;,a, ) [(a Ly X Ly) U (L X ay L, )] O

0,1) Gt D

A1t} (0.0)+1 (54 ,1)

Gy = o ———

(0,0)
((1-5/) &, +(s/t) b

(1,0)
, by)

by ¢

Xo = ®
(I-1) ay+th,

a, &

L & —
a} x] =(1-S) a1+Sb] b]

Casei) t2s, ((1—§)a1+-;:b1 , b2) ey X L.

Fig. 3
1.8 LEMMA.  Let L < R"be compact. Then the join al is compact.

Proof. There is a continuous map from the compact set LxJ —«R*"! 1o R”"
p P

whose image is aL. Namely, (b,1) > ((1-£)b +ta). O




1.7 and 1.8 immediately give us the following:

1.9 COROLLARY. A finite product of polyhedra is a polyhedron.

O

110 DEFNITION. Let a= (a,a5,....a,)€R". The e-neighborhood
N,,.(a, R") =[a, - &,a,+ €] x[a, —&,a;, + €] X[ a, — £,a, + €] Will be called an
n-cube centered at a .

A face of Ns(a,R") is a subset of Ne(a, R") obtained by replacing each
factor [a; —¢&,a; + ] in the above product either with itself or with & —¢€ or
a+e.

[-L1]" = Nl((O, 0, -,O),R") is called the unit n-cube and it is denoted by J".

Note that J” #I" =[0,1]". Thus, for example, a unit 2-cube is not equal to

the (usual) unit square.

1.11  REMARK. Cubes and faces are polyhedra by Lemma 1.9. Since

Ne(a,R"), the boundary of a cube, is the union of all the proper faces of

N g(a, R") , we have that N, (a, R”) is also a polyhedron by Proposition 1.5.

These facts together with Remark 1.4 and Proposition 1.6 imply that we can

always assume that all star neighborhoods and all links in a polyhedron are also

polyhedra,




1.12  PROPOSITION. Let Y be a compact polyhedron and aY be a cone

(CR"™). Then aY is also a polyhedron.

Proof. Let xeaY. We must show that x has a cone neighborhood
N(x,aY)=xL with compact link L= L(x,aY).

If x=a welet N(x,aY)=aY and since Y is compact we are done.

If x+#a,we know, since aY is a cone, that there is a unique b€Y such that x
lies in the segment ab. Now let N(b,Y) be a cone neighborhood of b in ¥ as in
the definition of polyhedron. We claim that aN(b,Y) is the required cone
neighborhood of x in a¥. [With link N(b,Y)wal(b,¥} if x¢Y (both sets in this
union are compact by 1.8); and with link aL{h,Y)if x=beY.] (See Fig. 4.)

To prove the claim, we must show that any ye aN(b,Y), y # x, has a unique
representation y =tx+(1—1#)c, 0<¢<1, with c e N(b,Y)\w aL(b,Y) or with
ce al(x,Y).

Notice that N(b,Y) is the union of segments bd’,b" € L(b,Y), and thus,
aN{(b,Y) is the union of triangles abb’ which intersect each other in the segment
ab.

If y € ab then it lies uniquely in the subsegment ax or in xb. If yeax, we take
¢ =a;if yexb, we take ¢ =b.

If yeab then it lies in a unique triangle abb’, and for a triangle we have that
y=tx+(1—t)c with ce bb’ wab’ if x#£b,0or ceab’if x=5. (See Fig. 5.)

Since aN(b,Y} is the union of such triangles abb’, N(b,Y)u aL(b,Y) is the
union Ubb’ wab’, and aL(x,Y)= Uab’ , (b" e L{b,Y) throughout), we can

& 5

conclude that aN(b,Y) is the claimed cone neighborhood of x in Y. 1




alN(b,Y) is a cone neighborhood of x ina¥.
Fig. 4

ba C' b b' X
If y is not in ab, it lies in a unique triangle abb’.
Fig. 5

PIECE-WISE -LINEAR MAPS

1.13  DEFINITION, Let P and Q be polyhedra in R" and R™ respectively.

A continuous map f:P —> Q is called piece-wise-linear (PL) if the graph of £,
T ={(x. fo)xe P} R™™, is a polyhedron in R™™.

The following shows that a map is PL if and only if it is “locally conical”.




1.14  PROPOSITION. f:P — Q is PLif and only if every peP has a star
neighborhood N(p,P)=pL such that f(tp+(1-1)b)=tf(p)+(1-1)f(b),

where beL and 0<t<1.

Proof. Fifstly, assume that every pe P has a star N = N(p,P) with the
stated properties. Let (p,f(p))eT(f), the graph of £ We claim that
N ={(a£(a)|a e N} isastar of (p,f(p)) in T(p).

Let (r, f(r) € Ny, (r, () # (p, f(p)). Since N, is homeomorphic to N (via the
projection), we have r # p. Thus, we have uniquely: r=#p+(1—1#)b,beL, and so

(£ = (4 (L= 0b.F () + (=0 1B)) = (p, F(2)) + (L= Db, ()

for unique ¢ and (b (b)). And (bf(b))is in the compact (homeomorphic to L) set
L.= {(c, F(©))|ce L}. Thus I'(f) is a polyhedron.

Conversely, assume that T'(f) is a polyhedron. Let peP. The assumption
means that (p, f(p)) has a star, N = N.((p, fF(p)),T(f)), in T(f). Let N be the
(homeomorphic) “standard” projection of this star into P, and let ge N, g # p.

There is a unique #e€[0,1) and unique (b, f(h))e NcR™™ such that
(4. f(@) =0, F(2)+A=0)(b, fB)) = (tp + (L - )b, tf (P) + (L= ) f (B)).
Equating coordinates, we have: g=1p+(1-nband f(g)=tf(p)+(1-6)f(p) O

1.15  PROPOSITION. Let f:P—>Qandg:Q—> S be PL maps. Then the

composition fog:P— S isalso PL.

Proof. LetpeP and N (f(p),Q) be a cubical star of f(p) (showing that g
is PL, as in Prop. 1.14). Choose & >0 so that Ng(p,P) is a star of p relative to f

12



and such that f (N 5(p,P)) c N f(p).O). N 5(p,P) is also a star relative to the
composition fog since forany xe Ns(p,P), x=tp+(1-1)b,

b & boundary( Ny (p, P)), we have:
g(f(x))= S(f(%‘P +(1-0b)) = g(tf (p) + U= f (B)) = tg(f(p)) + A —1)g(F (). O

Note that in the above proof, f(b) does not necessarily lie on the boundary

(link) of N, (f(p),Q). However, an easy computation shows that if g maps a
segment ab conically into R”, ie., ta+(1—)b>1g(a)+(1-1)g(b), then g is
linear in ab. ie., for any c,d € ab, we have: sc+(1-s)d > sg(e)+ (1 s)g(d).

Thus the second equality in the above proof is justified.

1.16 LEMMA. Let f.V—=R" be a 1-1 linear function, where V is an

affine subspace of R", Let PCV be a polyhedron. Then f(P)is a pélyhedron. ,

Proof. let geQ. Letp= f"'(¢g) and N be a star of pin P. Itis easy to see

that linearity (see page 4) and injectivity imply that f(N) is a star of ¢. O

1.17  PROPOSITION. Let P and Q be polyhedra and :P— Q be a PL

homeomorphism. Then h™' is also PL.

Proof. The involution {:R"xR™— R"™xR" (x,y)r>(y,x)is a linear
isomorphism mapping T'(k) onto I'(A™). Since T'(h) is a polyhedron, Lemma
1.16 implies that T'(#™) is also a polyhedron; therefore 4™ is PL., ' 0

13



Propositions 1.15 and 1.17 imply that PL. homeomorphism is an equivalence

relation on polyhedra.

1.18  DEFINITION. Polyhedra P and Q are polyhedral equivalent ( P=() if
they are PL homeomorphic.

119  REMARK. In contrast to Lemma 1,16, if fis only PL (although still
1-1), f(P) need not be a polyhedron as Fig. 6 exemplifies, but we will see later,
(1.28), that if P is compact then f{P) is a polyhedron.

Also, if fis linear but not injective, again f{P) need not be a polyhedron. See

Fig. 7.

PL injection

Polyhedron in R2. Not a polyhedron. The point a does not have a star.

Fig. 6

14




PinR3
T = vertical projection,
is linear

il

7 P) in RZ is not a polyhedron, The point a does not have a star in ().

Fig. 7

1.20  DEFINITION. Aset § cR” isin general position if no k-dimensional
linear subspace, with k<n contains more than £+1 of the points of §.

A finite set §= {x(,,xl,---,xl} in R" in general position and with I/<n, is

also said to be an independent set.

Note that a circle in the plane is in general position but it is not an
independent set. The same applies to the set consisting of the 4 vertices of a

square,

Also note that aset §= {xo,xl,- --,xl} < R", [<n,is independent if and only

if the vectors {xi - x0|i # 0} are linearly independent.

1.21  DEFINITION, o < R™ is a simplex of dimension n, or an n-simplex,

if ¢ is the repeated join vyv;-+-v, of n+1 independent points. The points v, are

15



called the vertices of ¢. The simplex 7 is a face of o if the set of vertices of T
is a non-empty subset of the set of vertices of ©.
To indicate the dimension, we will sometimes use the symbol ¢” to denote

an n-simplex.

1.22 REMARK. Using induction on the number of vertices, it can be shown

that any point xe ¢” has a unique representation as a sum:
n
x=Y oy, 0,20, o =1.
i=0

The numbers o are called the barycentric coordinates of x.

123 DEFINITION.  Let {w,,w,-,v,} be the vertices of an n-simplex o.
[

[l . ~ 1
The barycenter of o isthe point 6=y — v,
on+l

124 REMARK. Using proposition 1.12 inductively on the number of

vertices , we immediately see that a simplex is a polyhedron.

The proofs of 1.25-1.28 below can be found in [R-S] (pages 12-13).

1.25  THEOREM. A polyhedron is a locally finite union of simplices. A

compact polyhedron is a finite union of simplices.

126 COROLLARY. Let f:P->Q be PL, then there is a locally finite union

of simplices P =00, such that k|, is linear.
i




T wmj

1.27 LEMMA.  The linear image of a simplex is a polyhedron.

1.28  COROLLARY. The image of a compact polyhedron under a PL map is

a compact polyhedron.

DIMENSION OF POLYHEDRA

1.29  DEFINITION, Let Pc R” be a polyhedron. The span of P, span(P), is

the smallest subspace of R” containing P. i.e., span(P)=nNV;, where V; is an

affine subspace of R” containing P.

Note that the dimension (as an affine space) of span{c™) is equal (o .

1.30  DEFINITION. We say that a polyhedron P < R™ has dimension n
(dim(P)=n) if in a union P=u0;, as given by Theorem 1.25, we have

n = max{dimension of o, }.

1.31  PROPOSITION. Dimension is a well-defined concept, i.e., P =0, and

P =ut;, will give rise to the same number for dim(P).

Proof. Let % ={0;} be a set of simplices in R™ such that P = Ug;, and let
T= {*z:j} be another set of simplices in R™ such that P = T
Let dimy(P)=max{dimension of 0;} and dimy(P)= max{dirnension of rj}.

We will show that dimy {(P)=dim(P).

17



Assume that dimy(P)=n, and let ¢" be an r-dimensional simplex in .
Observe that for any 7, in T, we have dimension(span(t;) Nspan(c¢™)) < n, and
dimension(span(z) Nspan{c”))=n only if span(c”)cspan(z,). (Here,
dimension(span(t; ) Nspan(c™)) etc. , means dimension in the (translated) vector

space sense. )

Let {’L'jl 2 Thyat" ’L'js} be the (finite) set of all the simplices in T which intersect
o” and such that dimension(span(rjr Yynspan(o”)) <n. Since
dimension(span(rjr)mspan(a"))<n, none of the sets 7;, N " contain a set
which is open in ¢”. Therefore, the finite union, u('cjr M 0'") also does not
contain a set open in o, and thus, one can find a point pe ¢” such that
peu(rjr N o"‘). Since ¢" < P=wu1;, there is a simplex 7, TeT, such that
pet. Thus re{fjl,rjz,n-'rjs} and so, dimension(span(7)span(c”))=n,
which as seen above, implies that span(c™) c span(7).which further implies that
dimy (P) = dimension(span(c”™)) < dimension(span(7)) < dim(P).

Symmetrically we have dim(P) < dimy(P). Thus, dimy(P)=dim (P). O

1.32  PROPOSITION. Let P and Q be polyhedral equivalent polyhedra
(see Def. 1.18). Then dim(P)=dim(Q).

Proof. let h:P— Q be a PL homeomorphism. From Corollary 1.26, we

know that there is a locally finite union of simplices P =wo; such that A, is
[

linear for alli. Since h is a PL homeomorphism, A o, 18 the restriction to o; of a

linear isomorphism H:span(o;) — H(span(o;)). Therefore, h(o;)=H(a;) is a

simplex in @ with dim{h(c;)) = dim(o;) for all i. Thus, @ is a locally finite union

18



of simplices, Q=Uh{c;), and since dim(h(o;))=dim(o;), we immediately

conclude that dim(Q)= dim(P). O
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") HILCaui Couprexes

CELLS
2.1 DEFINITION. A polyhedron C (or C") in R is called an n-cell (n<m)

if Cis compact, convex and dim(span(C)) =n.

In general, without referring to dimension, we say that Cis a cell if Cis a

compact convex polyhedron.

Note that the intersection, and the product of two cells is a cell, and also that
the image of a cell under a linear map is again a cell, since all these operations

result in polyhedra and preserve convexity.,

2.2 LEMMA.  Let P cR™ be a polyhedron such that dim(span(C))=n. Then

P contains n+1 points in general position.

Proof. Let {vy,vy,-+,v,} be a set of points of P in general position having
maximal cardinality. Assume that k <n. Since span{vo,vl,u -,vk} is a subspace
having dimension equal to k, and since k <, we see that P & span{vo,vl,-o-,vk}.
Thus, there is a point peP such that pespan{vy,v;,-,v;}. Now the set
{v{),vl,u Vi, p} of points of P, is also in general position and it has cardinality
equal to k+1, which contradicts the assumption that k is the maximal cardinality

of sets in general position. Thus, k>, ie., P contains n+1 points in general

position. a




2.3 PROFPOSITION. An n-cell C has dimension equal to n.

Proof. Since dim(span(C))=n, using Lemma 2.2 we see that C has n+1
points in general position. Therefore by convexity we can conclude that an n-cell
C contains an ﬁ-simplex c”. However, C does not contain any simplex 7 of
dimension larger than n, otherwise we would have span(t) c span(C), as well as
dim(span(C)) = n < dim(z) = dim(span(7)) which is an impossibility. Now let
P =ug;, as given in Theorem 1.25 (p. 16). We also have P=(uo;)u o” and

since dim(o;) < n we see that dimension of C is equal to 7. O

Note that if CCR™ is a cell and if V is a subspace in R™that intersects €
then VN C is a cell. In particular, if V=L is a line, then VAC is a cell of

dimension 0 or 1, i.e., a point or a segment.

2.4 DEFINITION. Let C be a cell. The interior of C, Int(C), is defined to be
the interior of Cin span(C), and the boundary of C, BA(C), is the frontier of Cin
span(C).

We recall that for A< X, X a topological space, the frontier of A in X is
FtA=FryA= AN X—A, where for B X, B denotes the closure of Bin X,

Note that since an r-cell C contains an n-simplex, (Proposition 2.3), the

interior of C is non-empty.
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2.5 DEFINITION.  Let CcR™ be a cell and xeC. Let V{(x,C) be the union of
all lines L in R™ such that LN C is a 1-cell containing x in its interior, Using
the convexity of C, it is easily proved in [R-S] (page 27) that if V(x,C) = then
V(x,C) is a subspace in R™. Now let F(x,C) be V(x,C)NCif V(x,C)# D,
and let F(x,C)=xif V(x,C)=C. F(x,C) are cells called faces of C and in the
particular case F(x,C)=x, x is called a vertex of C. Faces of dimension 1 are
called edges and faces of codimension 1 (of dimension equal to dim(C)—1) are

called facets.

One can easily see that for a simplex or a cube, the previous definitions of
face of a simplex and face of a cube coincide with the above definition of face if

we consider those objects as cells.

Given a set of points {xy,x,-,x,} in R™ and a simplex ¢” with vertices
{v¢,v1,*+,v, } there is a unique linear map X :0” — R™ mapping v, > x,. Since

o” is a cell, its image under X is also a cell C (see note below definition 2.1). It

is easy to see that C is the convex hull of the set {xq,x;, - X, I (The convex hull

of a set A is the intersection of all the convex sets confaining A).

2.6 DEFINITION.  Let {xy,x,-,x,} be a set of points in R” and C be the

cell C= X(O'") as described above. In this situation we say that {x,%, -, x, }

supports C. More generally, if A is a set and H is the convex hull of A, we say

that A supports H.



2.7 PROPOSITION. Let O be an n-simplex with vertices {vo,vl,“-,v,,}, and
let {xo,xl,---,xn} < R™ support the cell C= X(O'"), where X:0" = R" is the
linear map defined by v, x,. Let x be a vertex of C. Then, X7 (x) = v; for

some j, and thus x = X;.

Proof. Let x be a vertex of C and s € ¢” be a point in X *(x). We will

show that s int(7’) for any face 7' of ¢” of dimension i, 1<i<n, which
implies that s must be a vertex of ¢*. We will show this by induction on i.

Firstly, we see that seint('rl), for any 1-dimensional face 7'. For if

s€ int(r1 ) then s is in the interior of a segment v,v,; v, ,v; vertices of ¢”. Thus,
x=X(s) € int{x.x)  C, therefore not a vertex of C (see definition 2.5).

Now assume that for a cettain k<n, we have: If te int('f:") ,1<i<k then
y=X(t) is not a vertex of C. Let se int('r"“), then s is in the interior of a
segment v,t, where v; is a vertex of ¢”,and te int(v:k ), (see fig. 8). Tf X maps
the whole segment v;¢ onto a point of C then x = X(s) = X(#), and by the above
assumption, x is not a vertex of C. On the other hand, if X(v;)# X(z), then
x = X(s) is in the interior of the segment X(vj )X(t) = x,;X(t), which is contained

in C, and again, x is not a vertex of C. O

K1

5 is in the interior of the segment vjt.

Fig. 8
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The above proposition states that the set of vertices of € is a subset of the set

{x0.%,-, %, }, but not every x, is a vertex. For example, let {x0.%1, %, %} be a

set of 4 points in R* where x,,x,,x, are the vertices of a triangle and x is a point
p 02 %1% g 3

in the interior of that triangle; {x,,x,x,,%,} supports the triangle, but x, is not a

vertex. Butin [R-S] (pages 27-30) the following is proved:

2.8 PROPOSITION. Let C be an n-cell, then:

1) Chas finitely many vertices {xo,%,+,%, } which support C.

2) If Fis a face of C, then F is supported by a subset of {xo,xl,m,xk} (but not

every subset supports a face).
3) C=disjointu {Int(F)F < C}

Bd(C) = disjointu {Int(F)|F < C, F # C}.

4) If F<D<C then F<C.

5) If F.D<C then F nD<C.

6) Let xeC, Then C is the cone xB, where B is the union of all faces of C which

do not contain x.

Note that 2.8 1) together with the statements which precede definition 2.6

above, imply that C is a cell, if and only if C is the image X(o) of a simplex o

under a linear map X, and that ¢ can chosen so as to have the same number of

vertices as C.

2.9 LEMMA,

dim(F) < n.

Let C be a cell of dimension n, and let F<C, F£C. Then




Proof. Letx eF. Since V(x,C)cspan(C), see Def. 2.5, we have,
dim(V(x, C)) < dim(span(C)) =n. If these dimensions are equal, then
V(x,C) =span(C) and then, F=V(x,C)nC =span(C)nC=C which is a

contradiction. ]

2.10  PROPOSITION. Let C be a cell of dimension n. Then C has faces of

dimension i, for 0<i<n,

Proof. Let xeInt(C). From Proposition 2.8, we know that C is the cone
C=x(UF),F<CxeF.

CLAIM 1. No proper face F of C contains x.

Since xe Int(C), there is a cubical neighborhood N of dimension a, such that
xeNcC. LetxeF, Faface of C. Since N is the union of 1-cells containing x in
its interior, we have that NcF (see Def. 2.5). Thus dim(F)>n, and now using
Lemma 2.9 we conclude that F=C. \%

In view of the above claim, we can conclude that C is the cone with vertex x
and base equal to the union of all the proper faces of C, ie.,

C=x(UF),F<C,F#C.
CLAIM 2. Let D be a cell of dimension din R® cR™ and let xe R™ be such
that xD is a cone. Then xD has dimension d+1.

Let (0,0,+,0,1) e R*", the cone (0,0,---,0,1)D in R**! is a polyhedron of
dimension d+1 since it contains a d+1-simplex (with maximal possible

dimension) obtained as the cone (O,---,O,l)od , where o is a d-simplex in D.
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Since there is a 1-1 linear map T:R“' — R™ fixing D and mapping (0,0,--,0,1)
to x, we see that xD has dimension d+1. \Y
Now since C=x(UF),F<C,x¢ F, we have that C=uUxF,F<C,F#C,
and since this union is finite, one of the cones xF (for some face F) must have
dimension #, and thus F has dimension n-1 .
Now applying the same method to a face F of D, with dim(F)=i>1, we see
that F has a face G of dimension i-1. But G is again a face of D by Proposition

2.8 4), and we thus conclude that D has faces of all dimensions d, 0<d<n. O

2.11  DEFINITION. 1-cells are called edges, and 2-cells (in R") are called
polygons, and thus 2-cells will be denoted: triangle, quadrilateral, pentagon, n-

gon etc. in a manner analogous to planar polygons.

H-CELLS
2.12  DEFINITION. An H-cell is a pair (C, h:C —» C) where C is a

polyhedron, C isacelland k:C — C is a PL homeomorphism (onto C).
A face of an H-cell (C,h:C— C) is a pair (R(F) B p: F — h(F) < C) where

Fisaface of C, and k|:F — h(F) < C is the restriction of & to F. Thus, a face

of an H-cell is again an H-cell.

Given an H-cell (C, hC— C) where C is an edge, triangle, n-gon, n-cube,

simplex, etc. we say that & is an H-edge, H-triangle, H-n-gon, H-n-cube, H-
simplex, etc., and that C is an h-cdge, h-triangle, ~-n-gon, h-n-cube, h-simplex,

cic.
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Y1

Let (C, hC— C) be an H-cell, where C is a cell of dimension n. We

observe that Proposition 1.32 implies that dim{C)=#xn. We thus make the

following definition:

213  DEFINITION.  The dimension of an H-cell (C, h:C — C) is defined to

be the dimension of C.

Note that if (C, hC— C) is an H-cell, then the number of d-dimensional
subpolyhedra h(F) of C, where F is a face of C, is equal to the number of faces
of C having dimension 4. Also note that if C is itself a cell, h(F) is not

necessatily a face of C. See figure 9.

V3
P one k-edge of
> the A-triangle
Vi B owy; W] (in bold)
Wy is an fi-vertex
— vy - butnot a vertex
C
The dotied lines indicate how the PL map % is defined. h-triangle
Fig. 9

Note that for brevity we sometimes denote an H-cell (C, hC—> C) by (C, k).




H-CELL COMPLEXES
2.14  DEFINITION, An H-cell complex K is a finite set
K={(C.m:G—>G)} of Hecells, G in R", C;#C;ifi#], such that the

following is satisfied:

1) ¥ (Cp, h:Ci - C;)eK and if (h(F), by| F — 1 (F)) is a face of (C;, by),
then there is an H-cell (Cy,hy:Cx — G;)eK with C, =/(F) and a linear
homeomorphism i.:C,— F < C, suchthat C, > pc C, commutes.

hy, i 7

Cr=h(F)
2) It (Cp, :Ci — C;) and (C;,h;:Cj— C;) are in K and if C, N C; # @, then

there are faces | C;NC,,h| :F—>CNC; |and (C;NCLh| :G—>C.NC,
i 7 Tilg i J i i i i

.
of (Cy, ;) and (Cj,hj) respectively.
(And thus there is an H-cell (Cy, 14:Cx — C; )€K, with C = C; N C; and lincar

homeomorphisms ip:Cy — F and i:C; — G such that the diagram

— ip — —
C,OF< il Cy G)GCCj commutes. )

hy

i|F hj|G

Cr= C; ﬂCj

2.15 DEFINITION. A cell complex K is an H-cell complex
K={ (C,-,h,;:t‘;eq)} where for every i, C; isacell, C,=C,xi, h:C, > C, is

the projection map #;:C;xi—C;, and the linear homeomorphisms
ip:C = G, Xk — F < Cy x1 , are the maps i = m, X (k> 1), ie., (x.k)— (x,0).

A simplicial complex is a cell complex where every cell is a simplex.



216  DEFINITION.  Given an H-cell complex K ={ (G, 4:C; ~ G;) }, the
underlying polyhedron of K, |K|, is the polyhedron given by 1K= UG, fPisa
polyhedron such that P =IK| for some H-cell complex (cell complex, simplicial
complex) K, we say that K is an H-cellular (cellular, simplicial) structure on P.

A simplicial structure on P is sometimes called a triangulation of P.

2,17  DEFINITION. The dimension of an H-cell complex K, dim(K), is
defined by dim(K) = max{dim(C,, ,)|(C;, ;)< K}.

For every integer i, 0 <i{<dim(K), the i-skeleton of K is the H—complex
K’ ={(Cr, h:C, = C, ) (C,, h,) € K, dim(C,, h,,)Si} and cach linear

homeomorphism ir: G — F , (Cy, Iy ), (Cpo by} e K, F< G, is the same as it is
in K,
If Ve K°, then Vis called a vertex of the complex K, and if EeK'-K°, E

is called an edge of K (more properly, an H-vertex and an H-edge of K).

Example Figure 10 below, shows part of an H-cellular structure X on the

boundary of J> = R® consisting of 8 triangles, 12 edges and 6 vertices.

\

S

An H-cell complex on the boundary of a cube,
Fig. 10




218 REMARK. Observe that for any H-complex K, Prop. 2.10 implies that
K'#Q, 0<i< dim(K).

219  PROPOSITION. Let (C,h:C— C) be an H-cell. The sets
K= {(h(Fi), . 2 F; — h(F; ))I F is a face of E} and

K= {(h(F,-), Hp,:Fi = h(F7))

F; is a proper face of "C‘}
are H-cell complex with |K|=C and |K|= h(Bd((_?)).
Proof.  To see this, we need only to verify that
L={(F;, m:F;xi~> F;)| Fy is a face of T} and
L= {(Fi, 7;: Fy X i — F;)| F; is a proper face of ?}
are cell complexes with |Lj=C and |Zl= Bd(C), and this verification follows

immediately from Proposition 2.8. 0

220 DEFINITION. Let K ={(G,h:C;—C;)}and L= { (Dj. 8;:D; - Dj)}
be H-cell complexes, and f:|K|—|L| be a map. We say that (f,K,L) is H
cellular, or briefly, f is an H-cellular map if:

1) forall i we have f;(C;)=D; for some j, where f; is the restriction of f

to C,.
2) fi:C,— Dy, the lift of f,,is linear, where f, is defined via the following
S
commutative diagram: ¢ » D, (, ,&; are PL homeomorphisms. )
\[hf gJ
¢c—Li

Note that Def. 2.18 implies that each ¥, is a PL. map, and thus, f is also PL.
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2.21  DEFINITION. If K and L are both cell complexes, then a map f as in

Def. 2.20 will be called a cellular map . If K and I are or both simplicial

complexes, f will be called a simplicial map.

Note that if fis cellular, the maps f; are now linear, since in this situation
both h; and g; are linear homeomorphisms.
Note also that cellular maps, and thus H-cellular maps, are somewhat

restricted as shown below:

* EXAMPLE. Let X be a cell complex consisting of a convex quadrilateral and
all of its faces. Since any three of the vertices (4, B, Cand D Yof X span the
plane containing the quadrilateral, we have:

(*) D=0qA+ayB+aC, 3,0 =1,
Observe that o; #0, for if, say a3 =0, then D= A+ o,B, o+, =1 and
thus A, B and D would be collinear (possibly with D= A or D = B).

Assume that K is such that for i =1,2,3, we have ¢; #1 in (). [Concretely,

in the figure below we have D=3A+2C-4B=3(A- B)+2(C— B)+ B]

Let L be the cell complex consisting of an edge and its vertices, V and W.

Vv

L
Claim: The only cellular maps from K to L are the two maps which map (K|

toVorlKlto W.
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This is true because any linear map defined on the quadrilateral ABCD is
uniquely determined by the images of A, B and C, and either:
1) A, B and C are all mapped to the same vertex of the edge, implying that D , as
well as all of IK], also get mapped to that same vertex,
. :
2) Two of the vertices {A, B, C } are mapped to one of the vertices of the edge,
and the third is mapped to the other vertex, say A and B are mapped to V, and C to
W. In this case the image of D cannot be a vertex of L, because for D 1o be
mapped to V we need D= oA+ (1-o4)B+0C which is impossible as observed
at the beginning of this example; and for D to be mapped to W we need
D = oA — o B+ 1C which is impossible by our assumption that ¢; #1.

This proves the claim.

We see from the above argument, that the only quadrilaterals that can be
mapped cellularly onto an edge, are quadrilaterals whose vertices can be labeled
asA, B, Cand D, such that D=7A~rB+1C=r(A—B)+C,rcR,r#0. Thus, D
is on the line through C which is parallel to the vector A— B. Therefore the

quadrilateral ABCD is a trapezoid. See Figure 11,

A wD=1A 1B+ C W
fa)y=v
fB)=v
A fl&y=w

""(A' then (D)= -V +W=W vV

r(A-B) gA-B
_/' g

The only quadrilaterals that can be mapped linearly onto an edge are the trapezoids,
Fig. 11
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We can also see that the only polygons (2-cells) that can be cellularly mapped
onto an edge are the triangles and the trapezoids. For if the polygon has more
than 4 vertices, al least three of them must map onto the same vertex of the edge,

thus mapping the whole polygon onto that vertex.

222 REMARK. Let (f,K,L) be H-cellular where f:|K|—|L] is a PL
homeomorphism. If £,(C;)=D; ( as in Def. 2.20) then £, =(7,):D, = C, is
linear. Therefore (f~',L,K) is H-cellular.

2.23  DEFINITION. Two H-cell complexes K and L are isomorphic if there
is a homeomorphism f:|K|—> L] such that (£,K, L) is H-cellular.

Example  The H-cell complex K consisting of 8 triangles, 12 edges and 6
vertices, | K1 the boundary of a cube, given in Fig. 10 is isomorphic to the cell

complex consisting of all the proper faces of an octahedron. (See Fig.12)

W

N

Isomorphic H-cell complexes.
Fig.12



2.24  REMARK. There are H-cell complexes which are not isomorphic to cell
complexes: it may be impossible to flatten all the polyhedra C; in the underlying
space of an H-cell complex into cells. A simple example is furnished by the H-
cell complex depicted in Fig. 13 consisting of 3 rectangular H-cells (and their

faces) and whose underlying space is a Mébius band.

An H-cell complex on a Mibius band consisting of 3 quadrilateral
H-cells that is not isomorphic (o a cell complex.

Fig. 13

However, perhaps a more interesting example is the 3-dimensional H-cell
complex K> described further below, whose underlying space is a 3-simplex!
(Thus embedable in R3.) It is called the Barnette’s topological diagram and was
discovered for a different purpose [Z, 142]. K is not isomorphic to any cell
complex whose underlying space lies in R>. It is however isomorphic to a cell
complex whose underlying space lies in R* and is a PL. homeomorph of the 3-

simplex,

We first construct a 2-dimensional subcomplex K 2 of K% as follows:

(K? is sketched in Fig. 14.)




Four triangles are homeomorphically linearly-mapped onto each of the four
facets of a 3-simplex in R®. Two more triangles, 7, and T, and two

quadrilaterals, ¢, and @, are injectively and piece-wise linearly mapped into R

They are attached to the facets of the 3-simplex along the four edges
E|,E,,E,,E,, and except for these edges, their images lie in the interior of the 3-
simplex. 7j, T,, O, and Q, are also attached among themselves along 5 edges as
indicated in Fig. 14,

Welet QF, Ef, and 1} denote respectively the images of Q;, E; and T;.

Note that to map the four cells, @;, T; into the 3-simplex, we may first map
(), linearly, then map the two triangles 7; also linearly; then subdivide ¢, along a
diagonal into two subtriangles and map both of these subtriangles linearly into the

3-simplex. (f is thus a folded quadrilateral in R>.

The subcomplex K2
It is impossible to embed both quadrilaterals @7 and Q5 linearly in the 3-simplex.

Fig. 14
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Observe that the collection of all of these 2-dimensional H-cells (together
with their faces) form a 2-dimensional H-cell complex K 2, since any two H-cells

that intersect, do so along a common face.

To construét K3, we observe that the union of Q. @, T/ and T; separates
the interjor of the simplex into two regions, I; and I,, with the property that B;,
the closure of I;, can be represented as a cone whose base is the boundary of B;
and whose vertex is a suitably chosen point v; € I;. We now construct 12 conical
cells using the 8 2-dimensional cells in X2 (the domains of the H-cells of K.
Two cones are constructed over each of the cells 7;, 7,, Q) and @5, and only one
cone is constructed over each of the other four triangles.

We map the bases of these 3-dimensional cones into |_K2| using the previous
maps of K. We map their vertices as follows: For ecach pair of cones
constructed over the same base, we map the vertex of one to v, and the vertex of
the other to v, ; for each of the other four cones, we map its vertex to v; if its base
is mapped to the boundary of B,, We then map each whole cone into the 3-
simplex in the obvious conical manner. These new H-cells (and their faces) form
K2,

Observe that any two H-cells in K> that intersect, do so along a common
face, since this was the case in K2. Thus K° is an H-cell complex whose

underlying space is the 3-simplex.
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225  PROPOSITION. The H-cell complex K® is not isomorphic to any cell

complex whose underlying space is a polyhedron in R

Proof. We first note there is “only” one way to embed the boundary of
a 3-simplex in R® up to linear equivalence and that any (topological)
homeomorphism between such two 3-simplices carries the interior (in R*) of one
to the interior of the other. Thus any cell complex in R? isomorphic to X* must
have a 3-simplex as its underlying space.

(We refer again to Fig. 14 where the subcomplex K2 is described.)

Assume that the quadrilaterals @, and @, are both mapped linearly into the
interior of a 3-simplex. Then @] and Q; are convex and span affine planes 7; and
7, in R respectively. Since the simplex is the join of the edges E] and Ej, the
plane z; must intersect the interior of E; in a point p, and likewise 7, intersects
the interior of E in a point p;. Since the four vertices of a 3-simplex are not
coplanar, we have that m; # 7, and thus their intersection is a line L. Therefore
the points p,,a,b and p, all lie in L (and assume in this given order). (Sec Fig.
15.) But this implies that the quadrilateral @/ is not convex since the line through

its edge ab intersects its edge E; in the point p,. This is a contradiction, O

is not convex. The line through the edge ab intersects the edge E .

Fig. 15
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We will now construct a cell complex K ¥ isomorphic to K> whose
underlying space is a PL homeomorph of the 3-simplex and lies in R*.

We first construct a cell complex K 2 in R? isomorphic to K 2, (See Fig. 16.)
We start by lingarly mapping each quadrilateral @, onto Q' R*x0cR* in such
a way that the planes #} spanned by Q" are distinct.

Let L’ be the line through the edge a’b” and let p be the point (if it exists)
where L intersects the line through E;”. We require that the quadrilaterals Q; are
such that at least one intersection point p! exists, and when both exist we must
have that p{ # p;. Observe that these requirements depend only on the “shape” of
Q; and not on the particular linear embeddings chosen. See note at the end.

Observe that the edges E” and Ej are not coplanar since this would imply
that p{ = pj, or else that no point pf exists, thus violating the above requirements.
We thus obtain as a corollary that the four vertices of these two edges are in
general position, and therefore we can linearly embed the four triangles of the

boundary of a 3-simplex into R? using these four points as the vertices.

r

The quadrilaterals,

The boundary of the simplex.
Fig.16



We finish the construction of X* b mapping the triangles T; onto T.” also
y [ ]

linearly and observe that neither (" nor T,” intersects the interior of the simplex

as ruled out by Prop. 2.25.

To obtain the cell complex K> < R*, we now embed linearly into R* the 3-
dimensional cones whose bases are the 2-cells of K2 . We do this as follows:

The vertex of a cone is mapped to (0,---,0,1) € R* if its vertex is mapped to v, in

the previous construction of the H-cell complex K°, and it is mapped (o

(0,---,0,-1) if in K* itis mapped to v,.

NOTE regarding the “shape” of the quadrilaterals (;:
Observe that we can always construct the H-cell complex K® regardless of

the shape of the quadrilaterals, since we are allowed to embed them piece-wise-

linearly into the simplex. In particular, if we use (wo trapezoids whose edges E;

are parallel to the edge “ab”, the situation is even worse than in the case that we

analyzed. 1In this case there is no cell comple isomorphic to K?, because in any

linear embedding of these quadrilaterals in R", the edges E would always be

coplanar, thus making it impossible to embed the four facets of the simplex.
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HI-CELLS
226  DEFINITION. An HI-cell is a pair (C,g:C— C) where C is a

polyhedron, C is a cell and g:C— C is a PL surjective map, satisfying the
following:

1) g maps the interior of every face Fof C homeomorphically onto its image.
2) If (F,-,Fj) is an ordered pair of faces of C such that

g(int(F,- )) M g(int(Fj)) # (J then there is a linear homeomorphism [ Fi = F;

such that (gIFj)Of,-j =8|pl,, (Slpj)of;j:Fi —>g(Fi)=g(F]—)-

A face of an Hl-cell (C, g:C— C) is a pair (g(F), glpF— g(F)) where F
is a face of C, and g| wF'— g(F)  C is the restriction of g to F. Thus, a face of

an Hl-cell is again an Hi-cell.

The dimension of an HI-cell (C, g:C— C) is the dimension of C.
(See figures 17 and 18 for examples of HI-cells.)

¥y

?
§F3 f >
i

Fg

(Polyhedron drawn smoothly) C

(C, g) is an Hi-cell. It has 4 faces of dimension 1, g(F)= g(Fy)=D and g(F3 }= g(Fp)=E.
It has 4 faces of dimension 0, g(F5) = g(Fg)= g(F7) = g(Fg) =P.
D

_ ~ CFjg(—-—}FZO C
T2 O

Diagrams of the linear homeomoephisms fij L F; —)FJ

Fig. 17
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C 2C— C is an Hl-cell (hexagon)
Fig. 18

2.27 PROPOSITION. Let (F,-, F j) be a pair of faces of C as in 2.26 2} above. Then:
1) The homeomorphism fy:F; > F; is unique (thus, f;:F; — F; =idi: F; — F;).

2) f:Fj— F;is the inverse of fy:F; — F;.

Proof 1) Let d=dim(F;)= dim(Fj) (this equality is a consequence of the
existence of the homeomorphism f;), and let xq,x;, -+, x; be d+1 independent
points in int(F;). Let yy,y;,+,¥4 be the corresponding d+1 images (in ;) of
Xg»X;,r+,Xg under the PL homeomorphism given by the composition:
(3|int(Fj))_l° g|].m(Fi). Any linear homeomorphism f,-j:Fi — F; satisfying
(gle)"J?aj =31Fa must map x; >y, 0<i<d, and since every linear map
F; — F; is uniquely determined by the image of d+1 independent points, we have
that ﬁ] = fij.

2) To see that f;=f;', let xeint(F;). Because for yeF; we have

g(fﬁ(y))zg(y), and for xeF, we have g(fij(x))=g(x), we obtain the
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following equalities: g(f;:(£;(x))) = g o £( £3(0) = 8(3(0) = 8(x). Since gis
a homeomorphism on int(F;}, the above equality gives f; ( i (x)) = x on int(F;).
By continuity we have: f ( fif (x)) =x onall of F;. O

HI-CELL COMPLEXES
2.28 DEFINITION. An HI-cell complex K is a finite set K = { (C,-, B:C— C,-) }

of Hl-cells, with C,in R”, C; # C; if i # j, such that the following is satisfied:

D) I (G, h:Ci o G)eK and it (m(F), i|y: F — b(F)) is a face of (G, 1),
then there is an HI-cell (Cp, by:Cr — C)eK with Gy =h(F) and a face
recognition linear homeomorphism i,:C, — F < C; such that

_— Iy _—
C,—>F CCl- commutes .

hN ilp

Ce=n(F)

2) If (C;, h:Ci = G) and (C;, h;:Cj — C;) arein K and if G, " C; # @, then
there are faces (not necessarily all different) F,F,,---,F, of C; and

G1,Gy,++,G, of C; such that

¥
(F,)=h,(G,) for 1<r<s,and | JH(F,)=C;NC;.

r=1

(And thus for each r there is an HI-cell (Cy, hy:Cy — C; )€K, with
C, C (Ci A Cj) and linear homeomorphisms iy :Cy — F, and i :C; — G, such
— i — g —
that the diagram C; D E <« T —r5G,c C;  commutes. )

h
hfIFr k

"6

Cre CiﬁCj
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We let the concept of the underlying polyhedron of K, |K|, be defined as in
Def. 2.16, and we will say that K is an HI-cellular structure on |Kj|.

Also, we observe that the concepts dimension of K, dim(K), and the i-
skeleton of K, K , as defined previously for an H-cell complex K in Def. 2.17, are
also applicable if K is an HI-cell complex. We thus take Def. 2.17 as the

definition of these concepts in the more general situation of HI-cell complexes.

Example . Figure 19 shows an Hl-cell complex K with one 0-dimensional HI-
cell, three 1-dimensional HI-cells and two 2-dimensional HI-cells, where |K] is the

union of two tori along a common circle (D).

el

]

]

An Hl-cell complex.
Fig.19

2.29  REMARK. We observe that in an H-cell complex if C;NC,; # @ then

;N C; is the image of a unique face F of C; and of a unique face G of E‘J

whereas in an HI-cell complex, C; N C; is a union of the images of faces ¥, of C

as well as a union of images of faces G, of _C_J as above.
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Figure 20 below illustrates some polyhedra which are unions of images of
cells. Regarding Remark 2.29 above, note that the example on the right is not an
HI-cell complex, although the intersection of the images of the triangle and of the
square, is equal to a union of images of faces of the square, and also equal to the
image of a face bf the triangle (but not pairwise matched).

However if we had mapped the triangle onto the shaded region via a PL
homeomorphism taking ato 1", bto 27, ct0 3’, and a point x in the interior of the
edge ac to a’, the polyhedron on the bottom right would now be the underlying

polyhedron of an Hi-cell complex.

HI-cell complex. Not an H-cell complex.
Although each mapg: C — C is an H-cell.

No edge of the triangle has image equal

H-cell complex. : to the image of the edge12 of the square.

Not an HI-cell complex,

Only some of the Hi-cells are shown in each example.
Fig. 20

230  DEFINITION. Let A:C — C be an (H-) HI-cell. The (H-) HI-interior of
C, HI-int(C), is defined by HI-in(C) = h(int(C)),
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2.31 PROPOSITION. Let K ={ (Ci, h, :EI‘_‘)C{) } be an Hl-cell complex.
i=1,-1

Let f:|K|— R" be a PL map which is injective on the Hl-interior of each C; and
tt {0} =A@} 8L

Let f further possess the following properties:
1) If f(HI=int(C, ) f(HI-int(C, ) # @ then £(C,) = f(C, ).

2) If for every j, 1j<k, {Cp1,Cjpoee,Cp, b, jL< j2 <0< jw, s

the set of polyhedra in |K| mapping onto D, then for every

pair of cells (C]p,C ) there are linear homeomorphisms

I. .
- 28 N
. ——
J‘P iq C - C such that i C]q commiites.

hip hig
jP\ / qu
A
I

For all j, set D; = C 11 (the polyhedron with smallest index mapping onto D)

— — — h.
and define g;:D; — D; to be the composition: g;:D; =Cy i Ci L >D;.

Then L= { (Dj, g;:D;—> Dj)} is an HI-cell complex.

Proof. (See Figure 21, p. 48.Firstly we must show that every pair
(D}, 8;:D; - D;) is indeed an Hi-cell. ~ Part 1) of the definition of an HI-cell

(Def. 2.26) requiring that g; be a PL homeomorphism on the interior of all the
faces of D; is obviously met by g;.
Now for 2.26 2). If (F,,F,) is an ordered pair of faces of D; with

g;(int(F,)) N g;(int(F,)) # @, we need to construct the linear homeomorphism

frs:F.— F; such that gles 0 frs :gler' Since gj:I_)'j — D; is in L, there is

h:C, — C, inK with D; =C,.




a) If h(F,) = h(F,), then we have already a linear homeomorphism with the
required property, namely f,F,— F; required in K. We use this

homeomorphism in L.

b) If &(F,)#h(F,), there are (in K) linear homeomorphisms,

ip:C, > F,cC, and iy :C,—>F,cC, such that hoiy (C,)=h(F,) and
W oip (C,)=h(F,). Wenow define f,:F, — F to be the composition:

. -1 .
3 — i — i
frsiF, i) 5C,—4>C,—*>F

'S

We have shown that g;:D; — D is an Hl-cell.

Now we will show that L = { (Dj, g jzﬁj - Dj)} is an HI-cell complex.

i) We need to define the linear homeomorphisms ir (in L) as in the
definition of HI-cell complexes (Def. 2.28). Below, to distinguish the
homeomorphism iy in L from i in K, we use the notations iLy and iKy
respectively.

Let (D;,g;:D; — D;) bein L, and F < D;, thus for some r, D; =C, and

(Crohy:C, > C,) isin K. Since F < C, we have that for some s, (C;,h,:C, - C,)

is in K, with C;=h,(F), and also there exists a linear homeomorphism
iKp:C, — F < C, such that k,(C,) = h, (iKz(C,)) = h,(F).

Since h,(F)=h,(C,)=C,,we have that f(h(F))= f(C,)=D; for some j,
with g;:D; — D; in L. Thus there exists (C;,h,:C; —> C;) in K with C; =D, and
f(C,)=D; = f(C,). Therefore there is a linear homeomorphism i,:C, — C as

in the diagram above in property 2) of our hypothesis. We now define our desired

linear homeomorphism iLp:D; — FC D; to be the composition (of linear
Ky

homeomorphisms) iLp:D; = C, s € S F.
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Below is a diagram of the above construction of iLg:

G . G
NNE iLp 4
e
hy Er=l_)l h,
hr
Y 8i g_] N
C, cC, C,
AN
D
f U’ f
D.
i’
£ (F)

i) We need now to show that if (D;,g;:D; — D;) and (Dj,gj:l_)j - Dj) are

in L, with D; " D; # @, then there are pairs of faces (F,,G,), 1Sr<s, F, <D,

A
and G, <D;, such that (F,)=h;(G,) and | Ji(F,)=C; nC;.

r=1
These conditions are met in K, and because of 1) in the siatement of this

proposition, we have that D; = D; or D; " D; is a union of images of proper faces

of D; and of 5]-. Now using this fact, and a “diagram chase” similar to the one in

i), we get that these conditions are also met in L. O

2.32  DEFINITION. The HI-cell complex L obtained in Proposition 2.31 is

called the HI-cell complex induced by K and f.
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G Dy

Cr—» Dy
C3,C4 > Dy
C5, C6 (aard D4

L is induced by K and fas in Proposition 2.31.
Fig. 21

Proposition 2.31 implies that if g:C — C is an HI-cell then C and h(Bd(C))

both have “canonical” HI-cellular structures . Formally we have the following:

2.33  PROPOSITION. Let g:C— C be an Hl-cell, and let {F;} be the set of
faces of C. For every polyhedron g(F}) cC let {F,-j } c {F,-}, B <iy <<,

be the set of faces of C such that g(F}j ) = g(Fi). Then
K= {(g(F}), g[File,-l - g(ﬂ))lﬂ is a face of E’} and
K= {(g(F,-), glp.  F > g(F,-))!Fi is a proper face of E‘}
it

are Hi-cell complex with |K]= C and |K|= g(Bd(E)) :

(Note that o chosen above, is the face of C which has smallest index and

maps onto g(E).
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Proof. We know (see the proof of Proposition 2.18) that
L= {(F} m;: F; xi— F;)| F; is a face of E‘} and

L= {(F, 7;: F; i — F;)| F; is a proper face of E}
are cell complexes with |I|=C and |L|= Bd(f). Now letting g:C — C play the
role of fas in tﬁe hypothesis of Proposition 2.31 we get that

M= {(g(Fi), F, xij—1F, —% g(F,-))

Mz{(g(Fi)sFiIXil T yF, —£ )g(Fi))lFiisafaceof_é}

F; is a face of Z‘} and

are HI-cell complexes. Now replacing the maps F X i » F; —£—¢(F;) by

the maps F; —£— g(F;) we obtain the desired result, i.c.,

K= {(8(1‘1‘)’ 3|Fi1:Fil - g(F,-))

F; is a face of E} and

K= {(g(Fi), g|Fi1:F,;1 — g(Fi))‘F} is a proper face of (—7}

are Hl-cell complex with |K| = C and |K1= ¢(Bd(C)) . O

Observe that in contrast to the case of the H-cell complexes K and K, or

more specifically K(k) and K(k), constructed from an H-cell h:C — C
(Proposition 2.18), where we have that the number of H-cells in X is equal to the

number of faces of C and the number of H-cells of K is equal to the number of

proper faces of C, the complexes K(g) and K(g), constructed from an HiI-cell

g:C — C’ as in Proposition 2.31 have in general fewer cells.
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234 DERINITION. Lot K ={(G;, #:G, — G)} and L={(D;, g;:D; - D;)
be Hl-cell complexes, and f:|K|— |L| be a map. We say that (f,K,L) is HI-
cellular, or briefly, f is an HI-cellular map if:
1) For all i we have fl-(C,-) = D, for some j, where f; is the restriction of f
to C,.
2) For all i there is a (unique) linear map f;:C; — D, called the lift of f;,
such that the following diagram commutes:
z 7 -D_j
B lgj
— D;

—
—

e

We observe that the above definition implies that each £, is a PL map, and

thus, f is also PL.

235 REMARK. Let (f,K,L) be Hl-cellular where f:K|—|I] is a PL
homeomorphism. If f,(C,)=D, (as in Def. 2.34) then f;% = (?;)_1:5} —C,is
linear. Therefore ( fL K) is HI-cellular.

2.36  DEFINITION. Let K and L be HI-cell complexes. We say that
(f.K.L) (briefly, f) is an HI-isomorphism if (f,K,L) is Hl-cellular and

fiK]|— L] is a PL homeomorphism. Two HI-cell complexes K and L are

isomorphic if there exists an HI-isomorphism (f, KX, L) }




3 SUBDIVISIONS OF HI— CELL COMPLEXES

DEFINITION OF S UBDIVISION

3.1 DEFINITION. Let K = {(C,-, B:C; — C,.)} and L = {(Dj,gjzl_)j - Dj)} be HI-

cell complexes. We say that L is a subdivision of K, denoted L < K, if:
D |L=|K]
2) For every Hl-cell (Dj , gjzl_)j - DJ-) in L there is an HI-cell (Ci, h;:C; — Ci)

in K and a linear embedding e D_J — C; such that the diagram:

- oy —
D ; — 5 C

lgj lhi commutes.
Dj inclusion :
PRELIMINARY RESULTS

Proposition 3.8 will show how to construct a cell complex from a given cell C
and a point a in C by starring at a. This construction will then be utilized to
construct (define) stellar subdivisions of Hl-cell complexes.

We will firstly obtain some preliminary results, and rewrite Def. 2.5 below in

order to recall some needed concepts and notation.

25  DEFINITION. Let CC R™ beacellandxeC. Let V(x,C) be the union of

all lines L in R™ such that LN C is a 1-cell containing x in its interior. (If
V(x,C)# @ then V(x,C) is a subspace in R™) Now let F(x,C) be
V(x,C)nCif V(x,C)# D, and let F(x,C)=xif V(x,C)=D. F(x,C) are
cells called faces of € and in the particular case F' (x, C ) =x, xis called a vertex of C.
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Also recall that the metric d on R” is given by d(x,y) = max{ |x; -] } <i<n
and that the inferior of F(x,C) is the interior of F(x,C} in V(x,C).

32 LeEMMA.  Let Cheacell in R" and xe C. Then x e ini(F(x,C)).

Proof. Without loss of generality we can assume that x =(0,0,---,0) and
that V(x,C) =R x0 c R? xR* % = R”. However since our analysis below will
take place solely in V(x,C), any point ye V(x,C) will be understood to be a

point y= (yl,---,yd) in R?.
Let {Vls""vzd‘1} be the set of points in R? that have their first coordinate

equal to 1 and all the other coordinates equal to either 1 or -1. Note that because
of the condition on their first coordinates, if i#f then v; is not a scalar multiple of
v;. Also note that {_vl,---,vzd_l} and {_—vl,---,—vdel} are disjoint and that their
union is the set of the 2¢ vertices of the d-cube N (x, Rd).

For all 1<i<2%! Jet L; denote the line in R? going through v; and —v;.
Note that xe I,. Since every line L in R? =V(x,C) that passes through x

_intersects F(x,C) in a one-dimensional cell L with x e int(I:), there is an £>0

such that the 1-cells §; c L;, connecting w; = &v; to —w; = —ev; are allin F(x,C).
Since {w;}{-w;} is the set of all the vertices of N,(x,R?),all of which are

in F(x,C), and since a d-cube is the convex hull of its vertex set, we conclude
using the convexity of F(x,C) that N, (x, Rd) c F(x,C). We thus obtain that

x € int(F(x,C)). O
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3.3 COROLLARY.  Let F(y,C) be a face of a cell C and let x € ini( F(y,C)).

Then F(x,C)=F(y,C).

Proof. We have that x e int(F(x,C)) as well as x & int(F(y,C)) and since

different faces of C have disjoint interiors ( Prop.2.8 3) ), we get that
F(x,C)= F(y,C). O

3.4 LEMMA.  Let x and y be two points in a cell C. Then F(x,C)= F(y,C) if

and only if there is a 1-cell § in C with the property that both x and y lie in the

interior of §.

Proof.  Firstly we assume that F(x,C)=F(y,C)=F. We note from the
outset that neither x nor y are vertices of C, since then x = F(x,C) = F(y,C)=y.
From Lemma 3.2, we know that both x and y lie in the interior of F ( and
dim(F)=1). Using cubical neighborhoods N(x,F) and N(y,F), the 1-cell xy,
which is in F by convexity of F, can be extended at both endpoints to a larger 1-
cell §in F < C containing both x and y in its interior.

Conversely, assume the existence of a 1-cell S with the stated properties.
Since x and y are both in the interior of § and S< C, we conclude that
§ < F(x,C) as well as § < F(y,C) (recall the definition of F(z,C) ). Since xis
in the interior of F(x,C) as well as in the interior of S, and since § < F(x,C), we
can choose a point w € int F(x,C)N S with the further property that w is in the
component of §—{x} which does not contain y (see Fig.22). Likewise we can

choose a point zeintF(y,C) S such that z is in the component of §—{y}
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which does not contain x. Note that there is an orientation (ordering) of § such

that the points w,x,y,z are sequentially positioned in S in the order given by the 4-
tuple (w,x,y,z). Also note that by Corollary 3.3 we conclude that
F(w,C)= F(x,C), V(w,C)=V(x,C) and F(y,C)=F(z,C), V(3,C) = V(z,C).
Let V(y, Cj have dimension equal to d, which is =21. Since both z and S are in
V(y,C), there is an affine subspace O, of V(y,C) which contains z and is normal
10 the line containing S. (Let O, equal z if d=1). Since z is in the interior of
F(y,C) and since O, has dimension d-1, we can choose a (d-1)-simplex o,
contained in F(y,C}n O, with the property that zeint{o,). (See Figure 22.)
(Let o, equal zif d=1) Now observe thai the d-simplex wo, contains both x and
y inits interior and that by convexity of F(y,C), wo, is contained in F(y,C) and
consequently also in V{(y,C). Since wo, is a d-simplex and V(y,C) has
dimension also equal to d, we have that int(wo,) is an open neighborhood of y in

F(y,C). Since x e int{wo, ), we finally conclude that x is a point in the interior

of F(y,C), and thus using Corollary 3.3, we get that F(x,C) = F(y,C).

wa, is aneighborhood of yin F(y,C) containing x in its interior.
Fig. 22
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3.5 PROPOSITION. Let C be a d-cell, and {C,F,,F,,--,F,} be a listing of the

faces of C where no face is listed twice. Let aC be a cone.
Then aCis a d+1-cell and {C, FI,---,Fn,aC,aFl,n-,aFn,a} is a listing of the

set of faces of aC also written without repetitions.

Proof. We already know that aC is a polyhedron (Prop. 1.12, p. 10) having
dimension equal to d+1 (Prop.2.10, Claim 2.), and therefore to show that it is a
cell we need only to show that aC is a convex set.

Thus, let x and y be two points in aC.

If one of them, say x, is equal to a, we let ¢, be the projection from a of y on
C ie., ¢, is the unique point in C such that y =ta+(1-t)c,,0St<1, as in Def.
1.2 of a cone (p. 5). Thus a and y are in the segment ac, which is contained in
aC, and since ac, is convex, the segment ay lies in acy; hence it also lies in aC.

If neither x nor y are equal to a, we let ¢, and ¢, be their respective
projections on C from a. Since C is convex, the line segment c,c, lies in C and
therefore the 2-simplex ac,c, is contained in aC. Since 2-simplices are convex

and x and y are points in ac,c,, the segment xy lies in ac,c, and thus also in aC.

We have thus shown that aC is a cell.

We will show now that {C,F,,-,F,,aC,aF},,aF,,a} is the set of faces of
aC.

1) ais a vertex of aC.

For if a is not a vertex, then a is a point in the interior of a 1-cell S=LnaC

where L is a line. But then there are points x and y in aC each belonging to

different components of §—a and thus their projections from a to C, ¢, and Cys



lie also on different components of § — a which further implies that « is a point on

the segment c,c,. Since C is convex, cz¢y lies entirely in C and therefore a

belongs to C. This is impossible. (See Def. 1.2, p. 5.)

i) Let xeC, then F(x,C)=F(x,aC). ie.: If Fis a face of C, then Fis a
face of aC.

Without loss of generality we can assume that CcR%and aCcRdH,

d = dim(C). We now observe that a & R? for otherwise aC would also be in R¥

which is a dimensional impossibility. We conclude that aC— C lies in the

Rd+1

component of ~-R? containing a.

R*™ containing a point of R? in its

It easily verified that every 1-cell in
interior is either wholly contained in RY or it contains points from both

components of R —R? Now let xeC. Since aC—C lies in a single

Rd+1 Rd-l‘].

component of -RY, gvery line L in with the property that LnaC isa
1-cell containing x in its interior must be contained in R%. Thus the above
conclusion implies that LmaC=LNC. Therefore F(x,aC), the face of aC
containing x in its interior, is equal to F(x,C), the face of C containing x in its
interior.

Observe that this reasoning also applies if F is a vertex of C.

iii) Let xeaC—-C,x#a, then F(x,aC)= aF(cx,C), where c, denotes the

projection from a of x into C as described above.

First note that the 1-cell ac, is contained in F(x,aC) since x € int(ac,).

Now let z € F(c,,C). By definition of F(c,,C) there exists a 1-cell §  F(c,,C)

such that ¢, eint§ and z € §. Now let z" € az. Since x is in the interior of the 2-




simplex aS and z’ € a¥, there is a 1-cell §” < aS such that x eint$S” and z e §°.

" Therefore z e F(x,aC), and thus all segments az with z e F(c,,C) are contained
in F(x,aC). We have proved aF(c,,C) < F(x,aC).

Now we verify that F(x,aC)c aF(c,,C).

We just applSz the above reasoning backwards. Let z € F(x,aC). Thereis a 1-
cell § in aC with x in its interior and also containing z. Project this cell from a
into C. This projection is either the point ¢, in which case z is a point of ac,,
therefore also in F(c,,C), or § projects onto a 1-cell §’< C with ¢, €int$” and

z,€8. Thus z, € F(c,,C) and since z € az, we obtain z € aF(c,,C).

iv) Let F(x,aC)=aF (cx,C) be a face of aC as in iii). Let G be a face of C
such that we also have F(x,aC)=aG. Then F(c,,C)=G.

Let g eintG and let y be a point in the interior of the 1-cell ag. y is thus a
point in the interior of aG, ie., y € int F(x,aC). By Corollary 3.3 we know that
F(x,aC)= F(y,aC). Now by Lemma 3.4 we know that there is a 1-cell Sin aC
with the property that both x and y lie in the interior of S. Let §” denote the
projection from a of S into C. If §’ is a point then g=¢, and since different
faces of C have disjoint interiors we conclude that G = F(c,,C). If § is a 1-cell
then both g and ¢, are in the interior of §”, thus by Lemma 3.4 we obtain
that F(g,C) = F(c,,C). By Corollary 3.3 we know that G=F(g,C) and
therefore, G = F(c,,C).

v} If F is a face of C then aF is a face of aC.
Choose yeintF and x eint(ay). Since xeaC-C,x#a we use iii) to

conclude that F(x,aC)=aF(c,,C)=aF(y,C)=aF. O
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3.6 LEMMA.  Let K={(C,7:Cixi— G )}f: ..., beacell complex and 4|K]|

--v,n
be a cone. Let D =C,-.D,=C,; D, =aC, . Dh,=aCand D,, , =a.

Then aK = {(Dj, 7Dy X j— Dj)}j=1,---,2n+1 is a cell complex.

Proof. From Proposition 3.5 we know that for 1< j<2n+1, D; is a cell.

To show that aK = {(Dj’ﬂ:j: D;x j—> Df)}jzl,---,2n+1 is a cell complex we need

only to show (See Definitions. 2.14 and 2.15, p. 28) that: i) if F is a face of D,
then F e {Dj} and ii) if D, N D, # & then D; N Dy, is a face of both D; and D.

If D;=C,, ie.if 1<i<n, Then i) is satisfied since
kK={(C,m:Cxi— G} oo 18 @ cell complex. If n+1<i < 2nthen D, =aC; ,
thus by Prop. 3.5, we have that if F is a face of D;, then F is a face of C;_,, or
F=aG, where G is a face of C;_,, or F=a. Since K is a cell complex all the
faces of C;_, are in {C;}. and therefore we obtain that in all these three situations
Fe {Dj}. We have thus shown i).

To show ii) let D; "D, # .

If D; Dy, c|K] then D; c|K| or Dy c|K| (otherwise their intersection would
be the cone on their intersection in (K! ). So, let D; c|K|i.e. D, =C; and
Dy =aCy_,. Then D; "Dy =C; N (., and since K| is a cell complex, D, N D,
is a face of both C; and C;_,, thus by Prop. 3.5 it is also a face of both D; and D,.

If D; "D, z|K| then D; N Dy ={a} in which case ii) is satisfied, or
D, "Dy = a(D; n D n|K]), but D, "D " [K|=C;_, " Cy_, S0 D, "D, MK is
a face of both C_,, and C;_,. Therefore by Prop. 3.5 D; n D, is a face of both
aC_,=D;and aC,_, =D, . O
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3.7 REMARK. LetC beacell and a e C. Itis easy to see (see Props. 2.8, p.24
and 2.19, p. 30) that B, = {(E mp B Xi— F;)]F,' <Ca¢ F;} is a cell complex

and that B, is a subcomplex of K = {(E 7;: F; i~ C)| F; a proper face of C}.

STELLAR SUBDIVISIONS
3.8 PROPOSITION. Let C be a cell with faces C=F,F;,-+,F, and let acC.
Let E,,--- F, be the faces of C which do not contain a. Also let

G =&, G, =E,; G,y =aF,--, Gy, = ak,, and Gy,.1 = a. Then

K, ={(Gj, ;G xj—)Gj)|1SjS2n+1} is a cell complex and K, is a
subdivision of K = {(E, mExi— FI')|F,' < C}

1<i<m’

Proof. Let B, be the cell complex as in Remark 3.7. By Prop. 2.8 6) p. 24,
we have that |K|=C=a|Ba|. Using Lemma 3.6 we see that K, is the cell
complex given by K, =aB,. Now to see that K, is a subdivision of K we first
observe that |K,| = aB,| = a|B,| and by the above we get |K,|=|K]|. [We thus have
1) of Def. 3.1. ]

Now we verify 2) of Def. 3.1. For all (_Gj, TGy X j— Gj) in X, we define
the linear embeddings e;:G; X j = F x1=Cx1 by (x, j) > (x,1) and one sees

atonce that D; X j —e‘”—-—>C1 x1  commutes.
T i

inclusion
D, s, 0

3.9 DEFINITION. Iet C be a cell and a be a point in C. The cell complex K,

given in Proposition 3.8 is said to be obtained by starring C at a.




More generally, given an Hl-cell complex K = { (Ci, h,f', — CI-)}, a point
a<|K|, and a way to chose for each cell C, with kb '(a)#& a unique point

@ € I *(a) < C; [a choice that must be compatible with face recognition maps as

defined in 3.10 below], we will construct in 3.15 a subdivision L of X by (a slight
modification of) starring each such cell C; at the chosen point ;.

Note that if I_(={(Ci, h;a - Ci)} is an H-¢ell complex then there is a
unique point in & () for each C; as above, and thus there is only one “choice

allowed”.

For F a face of G, recall the existence of the face recognition lincar
homeomorphism ir and of the commutative diagram below, which were given in

the definition of HI-cell complexes (Def. 2.28, p. 42) :
— 1 —
Cr.——> F cC,
hN :‘I F
Ci=h(F)

310 DEFINITION. Let K ={(C;, 1:C, > G;)} _ be an HI-cell complex

1<i<

and ae|K|. Alsolet K(a)={C}|(C;, n;:C; > C;)e K, b7 (a) % 21

1<j<r”
A face-compatible pre-image choice for a (bricfly, a choice function for a, a

Jface-compatible choice for a, eic.) is a function
Ch*:K(a)— UhjTl (@) C;a;  suchthat

1<jsr
D Ch(C;)=a;ehj'(a)=C;
2) For every proper face Fof C; € K(a), with @; € F and face recognition

homeomorphism ir: G — F < C;, we have: iz (Ej) = @,.
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- Note that in Def. 3.10 we used the inverses of the maps ir. Hence
d1m( )>d1m(Ck)

311 EXAMPLE Let X ={(C,;, B:C — Ci)} \<i<n be an Hl-cell complex.

For all 1si<nlet F;,F,,---, F;, denote the faces of the cell C,.
Note that a face recognition iF,I :C, = Fy c EJ maps a face F, of C, onto a

face Fy, of C;. Let K, and F; be two faces of a cell G, let ir, G, FycC;

be a face recognition and let F;, and F;, be the respective images of F,, and F

under i 7, Assume that (using the notation of the previous sentence) we always

have that if r<s then u<v.

Then for any a <|K|, we can define a face-compatible pre-image choice for
a, Ch*:& - | Jh;'(a), as follows:

1<j<r

For (cj,hj:b"jac Je K such that k;'(a)#@ we let @;=Ch"(C;) be the

unique point in k;'(a)c C; lying in the interior of the face Fj, where

r =min{u|F, is a face ofCy, int(F}, )~ 7' (a) = @}

312 LEMMA. LetK= {(C,, h: C; )}1<is be an Hl-cell complex. Let
ae|K|, and let K(a)= { CjI (Cj, hiiC; — Cj) €Kk, by Ya) # @} o Assume
that C, is the unique polyhedron in |K| which contains a in its Hl-interior.

The existence of face-compatible pre-image choice for a, Ch®, is equivalent

to the existence of a set {iF(r, ) :C, = F(r,s)C E’;} of face recognition maps

— one for each pair (r,s) with C, and C, “in” K{a), C, a “face” of C, — which

have the property that C fr(i) 5C, Frir.s) >C, is the face recognition

— g 1 —
G5,
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Proof. Given a face-compatible choice function Ch?, (_7] k> a;, we use 2) of
Def. 3.10 and define ipg »:C; — C; to be the face recognition ip:C; — F < C;
where F is a face of C; containing @; in its interior.

Conversely, given such a sel {_iF(r,s) :C, = F(r,s)c C"‘s} we define

a; = Ch“((_?j) to be the point ip(1,j)(“)' =

3.13 REMARK. Given an HI-cell complex K and a point a € |K| there might
not exist a function Ch* as in 3.10. An example is furnished in Fig. 23. It depicts

the covering cells (domains) in the canonical Hl-cell complex induced by an HI-

triangular prism (C, 1:C — C) (as in Prop. 2.33, p. 48). The three rectangular

faces F; of the prism are all mapped by & onto the same polyhedron @ — a PL
homeomorph of Bd([O, 1]2) %[0,1]. The double arrows drawn on these three faces

F; show how the face recognition maps iE_:Q — F, i=1,2,3, are defined; the
arrows on three of the edges of the prism show how E, is mapped onto them via
face recognition maps. The existence of the polyhedron € < R” and of the map A
will be shown in Theorem 3.29.

Let a e HI-int(E;) <|K]|. The six points u, v, w, x, y, z represent the pre-
images of a . We can see that there exists no face-compatible choice function for

a. The circled dots, x, y and z represent a futile attempt to define such a function

Ch?, [for example i “1(x) = y] and any other choice would likewise fail, as one

can easily verify.




C (3-dimensional)
The covering cells of K. There exists a € [K| for which there is no function C#®.
Fig. 23

3.14  PROPOSITION. If K is an H-cell complex and a €|K| then there always

exists a unique face-compatible pre-image choice function Ch® for a.

Proof.  As before let K(a) ={E—‘J| (Cj,hj:(j‘j — CJ-) €K, hj'(a)= 9}1Sj5r-

We have already noticed (just before 3.10) that in an H-cell complex K, there is a
unique function C; >4, € k;(a) for C;eK(a). Since the face recognition
maps ip:C, = FcC E‘J commute with the maps &;, we see that iF‘l(aj) =a.

Thus the function E‘J d;e hj_l(a) is a face-compatible choice function Ch%. O

3.15  CONSTRUCTION (STAR SUBDIVISION). Let K ={(C;, :C, - C) |

i
be an Hl-cell complex. Let a €|K]| and let a face-compatible choice function Ch%
be given.

We may assume that the polyhedra C; are labeled in such a way that
{G, Gy, C} (m <n) is the set of all the polyhedra in |K| which contain the

point a, and assume further that dimC; < dimC, <---< dimC,,. For each 1<j<m let
— ali—~
7,=01(3).




We claim that a is in the Hl-interior of C;. We first note that a € HI-int C, )
for some r. If we also have that a € C;, s #r then a cannot be in the Hl-interior of
C;, therefore a is in the HI-interior of & (F) where F is a proper face of C, and
thus dimF < dim@. Now from 2) of the definition of HI-cell complex (Def. 2.28,
p. 42) we see that C, and F are linearly homeomorphic and thus we have
dimC, = dimC, = dimF < dimC; = dimC,, and since this is a strict inequality we
conclude that C, = C;. Observe that g is the only pointin C; that maps onto a.

We remark that below, we will write k:C, —|K] to denote the Hl-cell
(C,-,hizfi - Ci), C; c|K]. This will simplify the notation especially in the case of
the composition of such functions.

We now construct a subdivision L of X as follows: (See Fig. 24)

Let dim G, = d. We first construct a subdivision L, of the d-skeleton K 4 of K by
defining:

Ly ={1:C - |Kl|dimC < di # 1} {m:a Ry — Kl|g & ;o {m:{a} - K]}
where &; € K, F; is a face of C, . One can easily but tediously verify that L, is
an HI-cell complex. Thus, L, can be colloquially described as the HI—ceII
complex obtained from K%by replacing C; with the cell complex obtained from
starring C at @.

For every d+1 cell C‘J containing poinis mapping onto a via h;, there are
linear homeomorphisms (face recognitions) iF}k G — Fy (T‘] (one for each d-
face Fy of C ; containing a unique point mapping onto a ) which commute with hy
and h;. [See 1} and 2) of the definition of HI-cell complex. (Def. 2.28, p. 42). ]

Using these homeomorphisms ipjk we “copy” the subdivision of € obtained

above onto all the faces of C—'] containing points mapping to a. These subdivisions




together with the other proper faces of C_,‘J form a subdivision of the boundary of
ol

We now define L, to be the HI-cell complex obtained from L, and K dtl
by replacing each d+1 cell (—?J containing points mapping onto a , with the cells
obtained by conning a; with all the cells in the above subdivision of the boundary
of C_J which do not contain &j. [It is here that we need the face-compatibility
property of the choice function Ch?: it assures that the previous subdivisions of
the faces of ("TJ which contain a; coincide with the subdivision obtained at this
stage.] Finally, these new cells in C; are mapped into |K] via h;.

We similarly obtain L;,, from L;,, and K L We proceed inductively in

this manner until we obtain L.

-

Copy the subdivision of G into
the boundary of C, and Cj.

m v
Starring K at a. ([K|is the union of a cylinder and a square.)
Fig. 24
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3.16 DEFINITION. Given an HI-cell complex K, a point a in |[K] and a face-
compatible choice function for a, Ch?, the complex L constructed as in 3.15 is

said to be obtained by starring K at a with respect to Ch?.

3.17 EXAMPLE In Figure 25 we show the subdivision L, obtained by
starring at a the 2-skeleton of the HI-cell complex K described previously in
example given in Remark 3.13. Note that it is impossible to extend this

subdivision to a stellar subdivision of K at a : - The stellar subdivision of C atx

does not agree with the previous subdivision of K.

C (3-dimensional)
It is impossible to star K (described in 3.13 and in Fig. 23) at a.

Fig. 25

In the above example, we obtained a stellar subdivision of the 2-dimensional
skeleton of K at the point 4. This phenomenon is a property of all the 2-

dimensional HI- cell complexes as will be seen shown in Corollary 3.20.

3.18  PROPOSITION. Let K be an H-cell complex and let a €|K|. Then there

exists a unique star subdivision of K at a. (Thus there is need to specify the

choice function Ch®.)

Proof. This proposition is an immediate corollary of Proposition 3.14. [0




319  PROPOSITION. Let K be a d-dimensional Hl-cell complex and let
aelK|. Let K(a)= { EJI (Cj, h;i:C; > Cj) ek, hj-_l(a) # @} and let F° be

1€j<r

a function defined on K(a) such that F“(EJ) =a; € h;l (). (F?® is not required
to be compatible with the face-recognition functions of K. }

Let (Cy, :C — C}) be the Hi-cell in K such that a eHI-int(C; ).
Then

1)y If dim(f‘l)zcl then F* is unique and is compatible with the face
recognition functions of K. (In this situation there is no need to specify ¥* and
we say that we can “star K ata”.)

2) If dzm(f‘l) =d—1 then F* is compatible with the face recognition
functions of K. (And thus we can star K at a with respectto F*.)

3) If dim(K)=2 and dﬁn(a) = 0 then the “stellar subdivision of K at a
with respect to F*” exists. That is, one can successfully perform the star
subdivision given in Construction 3.15 using F® (which is now not necessarily

face-recognition compatible) in place of a face-compatible choice function Ch%.

Proof. In order to prove 1} and 2) recall that the existence of a set
(*) {.iF(r,s) :—C—r - F(F,S) < as'}
of face recognition maps — one for each pair (r,s) with C, and C, “in” K(a), C, a

“face” of C, — which have the property that

in — i - . i = i 5 ral
C—) ¢, ) L€, s the face recognition ), —) 5 ¢

gives rise by Lemma 3.12 to the existence of a unique face-compatible pre-image

choice function Ch? for 4.
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1) Let dim(G) = d, then K(a)={Gi}. Thus {ixy) =identity:G > G}

isasetasin (*) and it gives rise to Ch® = F®,
2) Let dlm(a_l) =d—1 and let {E‘J} be the set of d-dimensional cells
: j=20eun

“in” K which have 5'1 as a face, i.e. {Cj}j , is the set of d-dimensional cells
. = ’---‘n

for which there exist face recognition maps ip:C; — F < C;. Since C, is the only

d-1 dimensional polyhedron in |K| containing a, (as shown in Construction 3.15)
we see that in this situation wehave  K(a)={G,,C,,-,C, }.

Now for each cell in {C; }j_z_ _we let F(1,f) be the unique d-1 dimensional

Eh}

face of (_2] which contains the point g; = F“(Cj) and thus the set of face

recognition homeomorphisms

{?F(l,j)ta — F(l,j)< (,_‘J} U {identi_ty:q- —> (_,}}

2<j<n 1<j<n
is a set with the properties of () (at the beginning of the proof) and the face-
compatible function Ch? that it induces (by Lemma 3.12) is the given function
Fa

3) Let dim(K)=2 and dim{C;}=0. We want to show that it is possible to
star K at a with respect to the function F“ given in the hypothesis, even if F* is
not compatible with the face recognition functions of K.

Since djm(fl) = (), the point g is a vertex of K, and thus the star subdivision
of the 1-skeleton of K at a, leaves it unmodified. Therefore we only get a (non
trivial) subdivision of K when we star each 2-cell C; € A at its vertex @; = F*(C;),

and again this subdivision leaves the boundary of C, undisturbed (and thus there

is no need for F* to face-recognition compatible). O
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Note that in the above proposition, in contrast to 1) and 2) which apply (o an
HI-cell complex X of any dimension, 3) does not apply in the general situation of

cells (Cl) of dimension d-2 belonging to a d- dimensional HI-cell complex K, as

Example 3.17 shows.

320 COROLLARY. Let K be a 2-dimensional HI-cell complex and let
a €|K|. Then it is always possible to star K at a.
. =r v _|= e -1
Proof Againlet K(a)={C)|(C;,1;:C; > C;)e K, I3 (a) % D e
It is always possible to define a function F* (not necessary compatible with the

face recognition functions of K) which assigns to each cell Ej €A a point

aj € hj_l(a). Since KX is 2-dimensional, one of the conditions 1), 2) or 3) of
Prop. 3.19 must apply. O
DERIVED SUBDIVISIONS

3.21  PROPOSITION. Let K = { (Cl, h:C — CI-) }ISiSn be a d-dimensional HI-

cell complex where the HI-cells are indexed in a reverse order from their

dimensions, i.e. if i<j then dim(G;)2 dim(C;). For each 1 Si<n leta;bea
point in the Hl-interior of C;.

Then there is a unique subdivision of K obtained by starring sequentially at

the points ay,a,, *+,a,. (Thus no choice functions Ch™ are required.)

Proof.  Since dim(C;)=d, by Proposition 3.19 1) we can star K at ¢ in a
unique manner. Let K; be the complex thus obtained. If dim(C, ) is also equal to

d = dim(K), then we can also uniquely star K; at a, since K left the HI-interior
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of ¢, unchanged (“a, is in the HI-interior of a d-dimensional HI-cell of the d-
dimensional Hi-cell complex X;”). By induction we can sequentially perform star

subdivisions at all points ; such that dim(C;)=d.

Note that we subdivide by starring cells sequentially in descending order of

their dimensions, but when we star a point @ such that dim(C;)=e we
inductively modify “going up” the e+1, e+2, etc. skeleta of the stellar subdivision
obtained from the previous point a;_; (see Construction 3.15).

Let a, be a point in the given sequence such that dim(CS) =f<d, and

assume that we have sequentially starred at all the points 1<i<gs.

Let F and F, be two f-dimensional faces of an f+1-dimensional cell C of K
such that both contain points mapping onto 4,. All previous subdivisions have
left K and F, unsubdivided (since starring at a point lying in higher dimensional
Hl-interior leaves K and F, undisturbed, and the same applies to the previous
subdivisions at points lying in f-dimensional HI-cells) and thus_J_and £ _are

faces of different f+1-dimensional cells of the previous subdivision of E_fs (these

f+1 cells were first obtained when C, was starred at the point in its interior) .
Since a, is a point in the HI-interior of C, there is a uni(jue point @ in C,
which maps onto a,. Therefore, the subdivision of the canonical HI-cell complex
hy:C, = C, at a, is unambiguously defined. Now, using the underlined statement
in the previous paragraph, we see that when we modify “going up” the
subdivision of the f+1cells obtained from previous subdivisions, each f+1-cell
receives at most one copy of the subdivision of C,. Therefore we can subdivide
the f+1-cells (and inductively all cells of dimension greater than f) without

needing a choice function Ch%. O
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322 DERNITION. Let K={(C, 1:G - G)} be a d-dimensional HI-

1<i<n

cell complex where the Hl-cells are indexed in a reverse order from their

dimensions, i.e. if i<j then dim(C;)> dim(Cj). Foreach 1<i<n let g bea
point in the HI-interior of C,.

The stellar subdivision of K obtained by starring sequentially at the poinis
a1, 0y, a, as in 3.21, is called a first derived subdivision of K (at a;) and is

denoted by kW, Inductively we define an m-th derived subdivision, K (m), by
1
.K(m) = (K (m_l))( )(at points in the HI-interiors of the polyhedra of |_K (m)l ).

The following proposition states that in a derived subdivision as above, we
can modify the sequentially ordering of the points a;,a,, -4, (and thus also
modify the order in which the stellar subdivisions are performed) without
changing the resultant derived subdivision, as long as a reverse dimensional order

(as in 3.22) is maintained.

3.23  PROPOSITION. Let L be a derived subdivision of K = {(C,-,h,-fi — C; )}
obtained from a sequence ay,ay,+,a,, {4 € int(C,-), i<j= dim(C,-) > dim(Cj))
Let by,by,---,b, be a reordering of aj,ay,-++,a, and let D;,D,,---,D, be the
reordering of the polyhedra C,,C,,>++,C, obtained by letting b; € D;. Assume that
these new orderings also have the property that if i < J then d_im(Di) = dim(Dj).

Then the subdivision L' of K obtained from by by, --,b, is equal to L, i.e. L and

L’ are the same Hl-cell complex.




Proof. Let dim(C;)=d. Since the subdivision of k;:C; — C; obtained from
starring at g; leaves the boundary-complex of k; undisturbed (as well as any other

HI-cell in K), the subdivision of the d- skeleton of K obtained by starring the d-

skeleton at all the points g; in the interior of the images of the d-cells, is
independent of the ordering of these points.

Let C; be a “face” of a d+1-cell C,. Since C, is a cone with base equal (© its
boundary and vertex equal to &,, when we modify “going up” the previous
subdivision of #,:C, — C, by conning all the new cells lying in C; with @,, we do
not disturb the cones whose bases lie on the other d-faces of C,. (The subdivision
of C; left its boundary untouched.) Therefore when we modify the subdivision of
the d+1-skeleton, the order used to subdivide the d-cells is not important.

Since a derived subdivision is obtained by starring sequentially at

a,ay, 4y, dim(C;) 2 dim(C;,,), we see that any reordering by, by,--+,b, of this

sequence having the properties stated in the hypothesis, gives rise to the same set

of HI-cells. O

3.24  DEFINITION. Let B be a cell with vertices vy,v,,+++,v,,. Similarly to what
we have done in the simplex case, we define the barycenter B of B 1o be the point
A 1 = . .
B=Y—v. If (C,i:C — C) is an HI-cell we define the barycenter of C to be
.. i A
h(é), where C is the barycenter of C .

The barycentric subdivision of an HI-cell complex K is the derived
subdivision X as in 3.23 where every point g; is the barycenter of C;. Also

inductively, if K1 is barycentric and if the m-th derived subdivision X of K

is also barycentric, then K (m) is called the m-th barycentric subdivision of K.




In Figure 26 below, we illustrate the construction of the barycentric

subdivision of the complex K previously shown in Fig. 24 part I.

Steltar subdivision of X using the
K and all the barycenters. barycenters of the 2-dimensional cells.
1 i

Subdivision of the subdivision in IT using
the barycenters of the 1-dimensional cells,

HI

A barycentric subdivision of an HI-cell complex as a stellar subdivision from "the top ~down".

Fig. 26




325 PROPOSITION. Let K\ be a derived subdivision of an HI-cell complex
K. Thenif (D,,8;:D; > D;) is in K" then D, is a simplex and g;: D, = D, is a PL

homeomorphism (on all of D;, not just on its interior) .

Progf. Observe that when we finally subdivide the 1-dimensional skeleton
of K using the points in the interiors of the 1-cells, we get 1-simplices that are
mapped homeomorphically onto their images in |K|. (Any 1-cell mapping onto a
loop is broken in two 1-cells each mapping homeomorphically onto different
halves of the loop.) Now “going up” inductively as in Proposition 3.21, we cone
each d-dimensional simplex o? with points in the interiors of cells of dimension
d+1 and obtain d+1-dimensional simplices 0+ with the property that 6%*! — g%
is contained in the interior of a d+1 cell C where k:C — C is in a previous

d

subdivision of K, and A restricted to ¢ is a homeomorphism. Since 4 maps the

interior of C homeomorphically onto its image, h restricted to the entire ot i

also a homeomorphism, ]

The above proposition shows that a first derived subdivision of an HI-cellular
complex is almost an H-simplicial complex. Cells are simplices that are mapped
homeomorphically onto their images, however the intersection of the images of
two cells might not be a single face of both, as required in the case of H-cell
complexes (see Figure 27).

However we will see in Proposition 3.26 that a second derived subdivision of

an HI-cell complex is indeed an H-simplicial complex.
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Y|

S|

In the barycentric subdivision of a torus, the images of @and b intersect in two vertices and the
images of triangles A and B share an edge and a vertex not in that edge, and the same applies to
Aand C. )

Fig. 27

3.26  PROPOSITION. The second derived subdivision K@ of an Hl-cell
complex K is a simplicial H-cell complex. (i.e. the images of the simplices

intersect at most along a PL homeomorph of a common “face”.)

Proof. 'We will show the result only for one Hl-cell (,C, hC — C). Since in
a general Hl-cell complex K the interiors of the cells C; are mapped onto disjoint
images, the general case follows (with some work) from the analysis of the
sitnation for a single cell (which can have different faces mapping onto the same

image in a manner analogous to the general sitnation).

I If C is 1-dimensional the second barycentric subdivides C into 4 edges
and 4 vertices which map onto a PL image of a segment or a circle, and in either

case the result is obvious.

I If C has dimension greater than 1, let o) and o, be two simplices in K @)

the second barycentric subdivision C,
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II. 1) Ifeither o; or o, is contained in the interior of C, or if they intersect
the boundary of C along simplices 7, and 7, belonging to proper faces F and F,
of C such that h(F )N h(F,) =12, then
ARV CAE h(ol NGy N int(E)) = k()
where T is a common face (possibly empty) of ¢; and o, since the theorem is
true for the interior of an HI-cell. (It is true for the second barycentric subdivision

of a cell (without face identifications), as it can be quickly verified, thus it remains

true in the interior of an HI-cell).

WEIAKE) =2

(In these illustrations, simplices shaded with equal patterns, represent pairs of

simplices o3 and o,, in the second barycenter subdivision of the large square,

which possess the properties stated in the text. )

I. 2) If both o; and o, intersect the boundary of C, let F and E, be two
(possibly equal) proper faces of C' containing ¢; "Bd(C) and o, "Bd(C)
respectively such that h(F)=h(F,). Note that o; "Bd(C) is a simplex by
construction of the baryceniric subdivision, therefore g; N Bd(ﬁ'_ ) is contained in
a unique face F; of C having minimal dimension. Also recall the existence of a

PL homeomorphism f;,:F - F, “commuting with k" specified in the definition

of an HI-cell (Def. 2.26, p. 40).




We need to analyze two cases:
IL.2)i) F=F
IL.2)ii) K+#F

CaseII. 2) 1) F=E

* IHeither oy or o, intersect F along a simplex contained in the interior of
K, then h(01) N h(0,) = h{6, N 0,) and this gives the desired resul.
* Ifboth oy and o, intersect the boundary of K then
W) k(o) =h(oyNE)nk(oy " E)uh(o,no,)
By induction h(o; N ) k(0 M F) is a homeomorphic image of a simplex
% (possibly empty) in K and thus if h(o; M 0,) = we are done, If
(o) 0y)# D then 6, Mo, is acone b(6; "o, M F). Therefore,

h(c;) " h(0,) is a homeomorphic image of the simplex b7.

Casell. 2)il) K =#F
We can assume that o; N int(F;) # &, otherwise we could take F, = F, which
was analyzed above. In this situation, int{c;) nint(o,) =, Let
T; = 0; N F,. then
k(o) h(03) = h(oy O R) k(0 0 B) = h( ) h(5) = h(m) A £y (7))

(f21 18 the linear homeomorphism f, :F, — F, “commuting with A.”)




Now since 7, and f,,(7,) are both simplices in £, the result follows by

induction.

O

Theorem 3.29, will show that the quotient space obtained by identifying
linearly homeomorphic faces of a cell € can be realized as a polyhedron C, and
that there is a map g:C — C such that (,C, g.C— C) is an HI-cell.

Theorem 3.29 will finally demonstrate the existence of the HI-cell previously
given in Remark 3.13 (p. 62) and shown in Fig. 23.

First we will make the following definitions.

3.27 DEFINITION. Let C be a cell, and let T be the set of all the faces of C.
A set

7={%={C} Ai={Rnh2} = {BrFor) - = (BB} }
of subsets of C is called @ quotient partition of FC if it satisfies:
1) The sets % are disjoint
) VFE=9C
3) Foreachset F there exists a cell C; and a set of linear homeomorphisms
L :{l,-jf} > Eil I e _‘E} (one for each F; e )

4 I G isaface of F; and H is a face of Fy (F;, Fy, € %) such that
fy o li}l (G)=H, then there exists u such that G and H are in the set %, € %,.

(Lo lz§13Ej

—C,—> Fy)




3.28 DEFINITION. Given a quotient partition %, of #C, the quotient relation
induced by %, is the equivalence relation ~ on C defined by:
%~y if and only if x € int(F; ), y € int(F) and & o' (x) = y.
As usual, the quotient space C /., is the topological space whose underlying
" set 1s the set {_[x]'_} of equivalence classes of ~, equipped with the largest
topology for which the surjection m: C — {[x],_} , x>[x]_, is continuous,
i.e. Uisopenin C/~ if and only if z71(U) is open in C. A bijection = as above

is called a projection or a quotient map.

3.29  THEOREM. (PL Quotient Spaces)  Let C < R” be a cell.
Let T = {-‘E) = {E’T}= bl ={Fi1’Fi2""}’ Fy = {FZIaF:’ZZ,'"}v"" F ={E1=E2""}}
be a quotient partition of FC and let = be the quotient relation induced by ¥,.

Then there exist a polyhedron C C RY, homeomorphic to C/~, and a PL map
8:C — C such that (C,g:C — C) is an H-cell

Proof. Let K be the canonical cell complex on € consisting of all the faces
of €, and let K% be its second barycentric subdivision. K (2) is thus a simplicial
complex,

L CONSTRUCTION OF g

Recall that for each set % € # there is cell C; (homeomorphic to all the faces
in %) Let ¢; denote the number of vertices in the second barycentric subdivision

of C; which are contained in the interior of C;. Let N =0 +oq+-+o, (see

Fig. 28) and let 6 < R" be an N-dimensional simplex.
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Fo=15 =T} 5 ={6.8} =16 £}, % ={vv,uv}}

% < "
50 is a parallelogram
C isa 1-simplex

B ks C, is a I-simplex
G, isapoint

% k. "

N=opg+op+ay+o3=17+3+3+1=24
Fig. 28

We start by defining (constructing) a surjection
g(,:{vertices of K (2)} - {vertices of o™ }

as follows:

* o sends the o, vertices in the interior of € onto (any choice of) o, vertices
of V.

* 8o sends the ¢ vertices in the interior of F; (e %) onto ¢ vertices of o™
not previously used in the construction of g;.
&o sends any vertex V in the interior of any face K ; € 5 to the vertex go(W),
where W is the vertex in the interior of F, defined by W =14, ol (V).
(hobi}F; >G> EFy)

* Similarly, gy sends the ¢r; vertices in the interior of the face E; onto ¢;
vertices of ¢ not previously used in the construction of g,,.
8o sends the vertex V in the interior of any other face F; € ¥ to the vertex

go(W), where W is the vertex in the interior of Fj defined by W =4 o I;'(V).
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Now we extend g, to a function g:C — o by requiring g to be linear on all

the simplices of K2, We let C denote the image g(C).

Cis a polyhedron in RY since it is a union of simplices in o RV,

and g:C — C is a PL surjection by construction.

. CLAM. 8 is an injection in the interior of C.

First we observe that every simplex in K is mapped homeomorphically
onto its image: No simplex of K@ contains vertices in the interiors of different
faces of C of equal dimension — a property already enjoyed by simplices in the
first barycehtric subdivision of C — thus g is one-one on the set of vertices of
every simplex. (And of course, any subset of the vertices of o is in general
position. Thus the image of a simplex is a simplex of equal dimension.)

Now assume that x; and x, are two points in the interior of a face F of C
such that g{x;}= g(x;). Let 0, and o, be the unique simplices in K'* such that
x; €int(c;). Observe that oy # o, since simplices are mapped homeomotphically
by g onto their images, as observed above. Now, let y = g(x;)= g(x,), and Jet 1
be the simplex in (the canonical simplicial complex) ¢ which contains y in its
interior. Because g is simplicial and a homeomorphism on the simplices, we see
that  g(oy)=g(0,)=7 andthus o, and o, have the same dimension, hence
none of the simplices o; is a face of the other,

Note that o7 and o, share all of their vertices which lie in the interior of F
otherwise g{a;)# g(0,). Note also that this set of vertices is not empty.

We conclude from the above paragraphs that ¢, and o, intersect the

boundary of F along simplices 7; and 7, having equal dimension.




There exists a vertex V of 7 and a vertex W of z, ,V#W, such that
g(V)=g(W); otherwise o; and ¢, would have the same set of vertices forcing oy

=0,. By the construction of g, V and W must lie in the interiors of homeomorphic

faces F; and F respectively (they are homeomorphic since they lie in the same
set %). Since these faces are homeomorphic, none is a face of the other.

Now it follows from the construction of the second barycentric subdivision,

that o; contains vertices in the interior of the cone bF};, where b is the barycenter
of F, and ¢, must contain vertices in the interior of bF.

It also follows from the second barycentric subdivision, that the vertices in

the interior of F which belong to both ¢} and &, must li¢ in the cone b(Ej N F;k),
which does not intersect int(bFﬁ) nor int(bFy ).

Since we have seen that oy and o, must share all of their vertices which lie
in the interior of F, the conditions set forth in the above two paragraphs cannot
simultaneously be satisfied.

We thus conclude that there do not exist two points x; and x, lying in the

interior of a face F of C for which g{x;)=g(x,). Therefore g is one-one in the

interior of every face of C.

II. CLAM  Let xbe a point in the boundary of C and let xybe a point in
the interior of C. Then g.(xl) # g(xz).

Assume that g(x) = g(x,). Let o; be the simplex of K® containing x; in
its interior. Asin I g(oy) = g(0o,) and dim(oy)=dim{o, ).

Since all the vertices of o are in a proper face of C, the vertices of ¢, must

also be in a proper face of €, since both set of vertices have the same image.




However in a second barycentric subdivision, (already true for a first
barycentric subdivision) there are no simplices which intersect the interior of C

and have all of their vertices in the boundary of C.

Therefore g(x,) # g(x,).

IV.CLAIM g is a homeomorphism in the interior of C. (Onto its image. )

Let g° =gl = :intC — g(int C). We have from IL that g° is a bijection and

-1
it is continuous since it is a restriction of a PL. map. We need to show that (g")
is continuous. i.e. we need to show that for any open set U in the interior of C,
we have that g(U) is open in g(int Cc ) Thus we must show that for any point y in
(U} there exists an open neighborhood B, with y € B < g(U).
_1 —

Let x, = (g") (y)andlet V=C—U, Vis compact thus g(V) is compact.

If yeg(V) there is £>0 such that _Ng(y,RN)n g(V)=@ and thus
YEN(3.C)g(U). [Ne(3.C)=Ns(y,RY)nC]

If ye g(V) there exists a point x; in C such that g(x,)=g(x)=y. Since g
is one-one in the interior of C, x, is a point in the boundary of €. Now by IIL

8(x) # g(x;), and thus y & g(V).
V. CLAIM Let (P,f , F}-)be a pair of faces of C such that
g(int(F})) M g(int(F j)) #©. Then there exists a linear homeomorphism
fiyiF = F; such that (g|Fj)of,-j =gl
Part 2) of Def. 3.27 (p. 78) implies that there exist Fr F, € F such that
Fefand F; e,

It %, # 7, the image under g of the set of vertices of X2 lying in the interior of

F;, and the image of the set of those lying in the interior of F; are disjoint, by




construction of g (in I. ). Now, since any point in the interior of a face F of C lies

in the interior of a simplex which has at least one vertex in the interior of F, we
see that g(int(F))r g(int(Fj)) ={J. This contradicts the hypothesis. Therefore,

I, and F; belong to the same set 7, € %, and are thus labeled as E = F,, and
F} =Fy.
We now define the linear homeomorphism f;: £ — F; by:
= 1
f;'j:E =Fus"__"_>cu'_m‘>‘l7;a :F}'
To finally show that (Sl 7. )o fi= gl g Weneed only to show that
7 1

(g'Bd(F,-))" i = 8lpa(sy)

and this is true because of condition 4) of Def. 3.27 (p. 78) (Def. of quotient

partition) and the construction of g.

VL CLAIM. (_C, g:f - C) is an HI-cell,

Parts I, TV. and V. of this theorem taken together, are precisely the defining
conditions for an HI-cell. (Def. 2.26, p. 40.)

VIL CLAM. C is homeomorphic to the quotient space C [

Let m:C— C/~ be the quotient map x+[x]_. Let x~y, that is:
xe int(E-j), y€int(F;) and I ol,;}l(x) =y. Let Vbe a vertex in the interior of F;
and let W be the vertex in the interior of Ej given by [, ol,-}l(V)z W. By

construction, the map g:C — C is such that g(V)=g(W). Therefore by part V.
(Where f}; =1l oI;") we obtain that g(x)= g(y). Hence, g is constant on each set

_71:_1( [x] . ) It is a basic topological fact, that in these circumstances, the function

h:C/_— C defined by h_( [x] ~) = g(x) is continuous and hom=g.




c
4N\ o
C ,."’;')’C |

It is easy to see that 4 is a bijection and since C/~ is compact we conclude that h

is a homeomorphism. O




4 SELF- DUAL HI— CELL COMPLEXES

STARS AND LINKS IN K

4.1 DEFINITION. Let K be an HI-cell complex and v.€|K] be a vertex; i.e. v is the

image of a zero-dimensional HI-cell A:v — v of K.

The star of vin K, st(v,K), is the set of HI-cells of K defined by
st(v,K) = {(Ck, hy:Cp — Ck)l(Ck,hk) is a face of b;: C; — C;, for all C; withve G }

The link of vin K , k(v,K), is the subset of st(v,K) given by
Ik(v,K) = { (C., 1:C, = C,)|(Cpohy) 5LV, K), v & C,,}.

When clear, we will also call the underlying polyhedra Jst(v,K)| and [Ik(v, K)|

respectively the star of v in K and the link of vin K .

4.2 REMARK.
i) In the above definition, when we say that “(_Ck,hk) is a face of &;:C; — C;”

we obviously mean that there is a face k|y:F — C, of h:C, — C; and that
- — i -
(Ck, h.G — Ck) is the HI-cell in X such that C; L > Fc C; commutes

h .
as in the Def. 2.28 (p. 42) of an HI-cell complex. N i|F

ii) st(v,K) and lk(v,K) are subcomplexes of X as it can easily be verified.
iii) Note that [st(v,K)| and [Ik(v,K)| are not topological invariants of |K], i.e.
if L is another complex with |L|=|K| having the property that v is also a vertex in

L, then Jst(v,K)| and lst(v,L)| are not necessarily homeomorphic and the same

applies for the links.




Also, [st(v,K)| and [Ik(v,K)| should not be confused with the concepts of “a
star of a point in a polyhedron™ and “a link of a point in a polyhedron” defined in
1.3 (p. 6) (def. of polyhedron). These stars and links as in Def. 1.3 will be from
now on called polyhedral stars and polyhedral links respectively to distinguish
them from stars and links in K. For example, in the “usual” HI-cell complex K
on the torus consisting of one vertex, two edges and one rectangle (see figure 29),
lst(v.K)| is the whole torus and |ik(v, k)| is empty, while a polyhedral star of any

point in the torus 1K1, is a polyhedral disk, and a polyhedral link is a circle.

v

st (v, K)=K, |st (v, K)| is the torus, |k (v, K)| is empty,
Fig. 29

iv) Note however that if K is a simplicial complex then it is a standard fact
that |st(v, K)| and any polyhedral star of v in IK| are PL-homeomorphic and the
same applies for links. (See [R-S] and recall that Remark 1,11 (p. 9) states that
stars and links of a point in a polyhedron can be realized as polyhedra. )

In fact, classically one proves the PL-invariance of polyhedral stars and links
of a point p in a polyhedron P (which we had not yet done) by first proving that P

is the underlying space of a simplicial complex K having p as a vertex, and then
one uses the fact that [st(v,K)| and any polyhedral star of p in P are PL-

homeomorphic.




DUAL STARS
4.3 REMARK. Let K be an HI-cell complex and (C,h:C — C)e K. Let KV be

the first barycentric subdivision of X. Observe that if (D, g:ﬁ - D) e K then
DA Cisemptyor DNC = g(F), where Fis a face of . (This follows from the
definition 3.1 (i). 51) of subdivision.) We thus can refer to the dimension of
DN C as the dimension of F when DN C# @, and define dim(DC)=-1

when DPnC=.

Let Te ={(D;h;:D; - D;)|(Dyohy) « KO, dim(D; A C) <0},
Observe that T is a subcomplex of KD: T (D,g:D— D)e T and (F.f:F— F)

is “a face of (D, g)” then dim(F N C)< dim(D N C)<0; thus (F, f) e Tp.

4.4 DEFINITION. Let K be an HI-cell complex and (C,h:f - C) € K. The dual
star C" of C is s_t(é, Tc), the star of the vertex € in T (C= barycenter of C).

We will sometimes also call the polyhedron [st{C, T, )| the dual star of C.
5 C

Some examples of dual stars are shown below in figure 30.




Ic] isa circle!

C” is the dual star of C.

Fig. 30

MANIFOLDS

4.5 DEFINITION. A polyhedron P is called an n-dimensional ball , or n-ball , if it

is PL-homeomorphic to the unit n-cube J" =[-1,1]". A polyhedron is called an

n-sphere if it is PL-homeomorphic io the boundary of J”.

Since an n-cell C is a cone a(Bd(C)), where aent(C), we sece that

C= Ist(a, ak )], where K is the cell-complex consisting of the proper faces of C




as in Proposition 2.19 (p. 30), and aK is the cone cell-complex obtained as in
Lemma 3.6, Also, since we may assume that span(C)=R", we see that any
a € Int(C), has by Remark 1.4 (p. 6), a polyhedral star in C (as in Def. 1.3 (p. 6))
of the form Ns(a,C)={xlxeR”,d(a,x)is}, which is an n-cube. Now
subdividing K into a simplicial complex (thus also @K ) and using the fact that
for a vertex v in a simplicial complex K we have [by iv) of the remark 4.2] that
|‘st(v, K)] and any polyhedral star of v in the polyhedron |K| are PL-

homeomorphic, we see that C = Ist(a, subdivision(af( ))l is PL-homeomorphic to

N, (a, R") .
A 3-dim cell C.
An #- ¢ell is PL homeomorphic to an n- cube N, (4, C).
Fig. 31
We thus get the following:

4.6 PROPOSITION. Let Cbe an n-cell. Then Cis an n-ball.

O

4.7 DEFINITION. A PL n-dimensional manifold (or briefly an n-manifold) is a
polyhedron M such that every point x € M has a neighborhood U, in M which is

PL-homeomorphic to an open set ¥, of R”.
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A PL n-manifold with boundary is a polyhedron M with the property that
every x € M has a neighborhood U, in M which is PL-homeomorphic to an open
subset V, of R, where R} = { (xl,xz,---,xn)]xn > O}. The boundary oM of M, is
the set of all the points in M such that V, is not open in R" (under the inclusion

R} cR").

4.8 REMARK. Let M be a PL n-dimensional manifold (possibly with
boundary), and let U, € M and ¥, c R" (or V, < R} ) be open sets as in Def. 4.7.

Since each set V,, is a locally finite union of closed n-cubes, it is also a locally
finite union of n-simplices and thus each V, has dimension equal to ». Since
Prop. 1.32 (p. 18) asserts that PL homeomorphic polyhedra have equal
dimensions, we see that every U, has also dimension equal to n. By local

compaciness, M is a locally finite union of sets U,. Therefore M is a locally

finite union of #n-simplices, and thus it has dimension equal to n.




DUALIZABLE C OMPLEXES

4.9 DEFINITION. Let K be an Hl-cell complex such that |K| is a manifold of

dimension n. K is said to be dualizable if for every d-dimensional HI-cell
(Ci» 1:C; —> G} e K there is an (n—d)-dimensional Hi-cell (q B iG> c,f")

(not in X but with C:c C|K]) called the dual HI-cell of (C;,k;), satisfying the

following:

1)

2)

3

Q* = |St(éi’TC,- )l, the underlying polyhedron of the HI-complex “the dual

star of C;.” (See 4.3 and 4.4.)

For every HI-cell (_D

i gjzlh)j — Dj) in “the dual star of C; ” there is a

linear embedding eﬁzﬁj — C; such that the diagram below commutes.

#

hi (i.e. the complex "the dual star of C;"
is a subdivision of #;.)

——-—)
g
C—)

L1
('34-— <")

For every proper face (h,* (F), bilp:F > b (F)) of (C,* hi*:Ef — Ci*) (the
dual HI-cell of (C;,#%)) there is a unique Hi-cell (_Cj, h;:C; — Cj) in K
with C; a proper face of C; such that “F is mapped onto the dual Hl-cell of

(_C-, h ) More precisely, there is a linear homeomorphlsm

ip: C —Fc C such that the diagram Cj N FcC C,. commutes.
hj\ }/’fIF

Cj=(F)
Conversely, for cach C; in K with C; a proper face of C;, there is at least

one proper face (_h,-*(F), Blp = hf(F)) of (Cf hl*C_:‘ — C;") “Mapping

onto the dual H-cell of (C;, h;)"
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410 REMARK. The above is an inductive definition. Observe that in part 3)
we have that dim(C j) >dim(C;), and thus for 3) to make sense, we must start by

verifying that the dual HI-cells of the n-dimensional Hl-cells in X satisfy the
definition. (These duals are just O-dimensional HI-cells mapping onto the
barycenters of tﬁe n-Hl-cells of K). Then inductively, to verify 3) for the dual HI-
cells of the d- dimensional Hl-cells of K, we use the (already verified) dual HI-

cells of the HI-cells in K of dimension greater than d.

In Fig. 32 we show an example of a dualizable HI-cell complex.

. - . [ ]
| ___%__ 2 A
————————————— —

v v £ E=E
E *
b v
The dual Hi-cell of V
The Hl-complex X, The dual star of V., and the dual H-cell of E,
Fig. 32

411 REMARK. Note that even if X is a simplicial (cell) complex on a
manifold, that the dual of a simplex (cell) need not be a simplex (cell).

Also note that if X is a general Hl-cell complex on M then K is not
necessarily dualizable. An example is illustrated in Fig. 33, where M is a
(polyhedral) 2-sphere and K consists of two (HI-) triangles each mapping onto a

different hemisphere of M, together with 3 edges and 3 vertices. K is an Hl-cell

complex (and not an H-cell complex) because the triangles intersect along 3




common edges. Note that the dual stars of the vertices are not 2-dimensional HI-
cells (satisfying Def. 4.9) since by 2) and 3) of Def. 4.9, any 2-dimensional cell
mapping onto the underlying polyhedron of the dual star of a vertex would have

only two edges. This is impossible.

g"’

The HI-cell complex K. The dual star of V5,

Kiis not dualizable. The dual star of V7 is not a 2-dimensional HI-cell: it has only two"dual- edges”.

Fig. 33
We however have the following:

412 PROPOSITION. Let K ={(C;, 1:C; — G)}be a dualizable HI-cell

complex on a manifold M. Then K = {(C;* , hl*a; = )} is an HI-cell complex

on M,

Proof,
* () We show that IK*I =M.

Since it is obvious that II_{ *| C M, we need only to show that M — |K *l and we

do this by showing that any point p in M lies in V" for some vertex V of K. But

since p lies in the Hl-interior of C; for some i, it suffices to show that any point p




in the interior of a cell C; lies in the dual star of a vertex of C; (in the complex
consisting of all the faces of C, ). Thus:

If p is the barycenter of C,, then p lies in the segment 5V (V any vertex of
C;) and pV is a I-cell in the barycentric subdivision of C; and it is contained in
the dual star of V. (pV intersects V in the O-dimensional cell V)

If p is not the barycenter of C;, p lies in a segment bf where b is the
barycenter of C; and £ is a point in a proper face F of C;. By induction on the
dimension of the cell, we assume that flies in the dual star S (in F) of a vertex V
of F. And thus, 7 lies in the cone bS and bS is contained in the dual star (in _C_i)
of V (the cellsin bS are in the barycentric subdivision of C; and are faces of cells
which contain V).

-+ 1) We see that 1) in the definition of an Hl-cell complex (Def. 2.28 p. 42)
[Colloquially: “For each face of an HI-cell in a complex there exists a
corresponding Hl-cell in the complex”] is satisfied by 3) of Def. 4.9,

* 2) Now we show 2) of Def. 2.28. [“Two intersecting Hl-cells in a complex
intersect along a union of pairwise common faces™]

Let (Cf, hf:Ef——)Ci*) and (C}‘,h;:—cfﬁ C]*) be in K" and CiNC +D.
Let {(C,, ,:C; = C,)} be the set of HI-cells in K such that both (G, 1:G ~ )
and (_Cj, hj:fi? - Cj)are “faces” of (,C,,, h:C, — Cr) but they are not “faces” of
any proper face of (C,, h,).

[There exists at least one such HI-cell (,C,, h:C, — C,,) otherwise Ci* and C;

would be disjoint. It is also easy to see that if K is an H-cell complex that there is




exactly one such H-cell (C,,, hr). (Since in this case H-cells intersect at most along
one common face.)]

CLaM: G nC; =Jc;.

o r

Similarly to 0) above, we need only to show that C; (C) N C; (C) = G (C),
where Cg are all cells and C; (C) denotes the dual star of C,, in (the cell complex
induced by) a single n- dimensional cell €. That is, we have the following
sitation: C; and C; are faces of C, (and not faces of a proper face of C,)and
they are all faces of an n-dimensional cell C.

We will show that C; (C)m f‘;(ﬁ'— )= E:(E ) by showing that for any face F
of C with C], C; and C; all faces of F, we have C; (F) N C; (F)=C,'(F). This
will be shown by induction on the dimension of F.

Note that C, is the unique face of C of minimal dimension containing both

C; and E‘; , as observed in the parenthetical remark at the beginning of 2), We
thus start the induction by showing: C;'(C,)NC; (C,)=C;'(C,), and observe
that G, (C,) = b, where b, is the barycenter of C,.
By construction of the barycentric subdivision, it is immediate that

b,€C; (C)NC;(T,). Now assume that there is a point p#b, with
reC (CHn C; (C,). There is a unique point ¢ with ¢ in a proper face Q of C,
such that p lies in the segment b,q. Let b, and b; be the barycenters of C; and (_L‘]
respectively. (See Fig. 34.) Since pe C; (C,) C; (C,) the segment pb, lies in a
cell D; of C; (C,) and pb; lies in a cell D; of C;(C,). By construction of the
barycentric subdivision, the cells D; and Dj are cones with vertex b, and bases in
(. Thus the segments gb; and gb; are in Q, and therefore Q intersects the

interiors of C; and C;, hence C; and C; are faces of Q. This is a contradiction,
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Now let F be a face of C such that G, C; and C, are all faces of F. Since

C, (F) does not intersect any proper face of C,, we see that C, (F) is contained in

both 7 and T (see 4.3 for definition). We thus have that the cone complexes
i L

b,C, (F) and b,C; (F) ate subcomplexes of C, (F) and ,C_,‘;(F ) respectively. We

immediately obtain that C, (F) (E}*(F) A E;(F)).

Now to show the reverse inclusion, we inductively assume that for any face G
of C with dim(G)<dim(F) and with C;, €; and C, contained in G, that
(T @ C;(6)) T (G). Let pe (G'F) AT} (F)) and let by denote the
barycenter of F. p lies in a segment bpg with g in a proper face G of F, and as
done in the first step of the induction (F = C,), we see that g lies in C, (G) as
well as in (—L'j*(G) (See Fig. 35). By induction we obtain that ge C, (G) and
therefore bpg (and thus p) lies in C, (F). Hence, (E}*(F) ) E’;‘(F)) cC/(F). O

C,(F)

L2 G (6) =
H=7T(6)n T (©)
C. C.

!

Ei andt‘ifarefaceson. T E',-*(F)ﬁ E;(F)=E:(F).
Fig. 34 Fig. 35




SELF-DUAL HI-CELL COMPLEXES

413  DEFINITION. Let X be a dualizable HI-cell complex on a manifold M,
The HI-cell complex X~ on M given by Proposition 4.12 is called the dual
complex of K.

The H-cell complex on the boundary of a cube consisting of 8 H-triangles, 12
H-edges and 6 vertices previously given in Figs. 10 and 12 (pp. 29, 33), is
isomorphic to the cell complex consisting of the proper faces of an octahedron.
This H-cell complex is the dual of the cell complex consisting of all the proper
faces of the cube; thus it is usvally said that “the octahedron is the dual of the
cube”. Interestingly, the dual H-cell complex of the cell complex K consisting of
the proper faces of a 3-simplex, is isomorphic to K itself (see Fig. 36), and hence

we say that “the tetrahedron is dual to itself”.

- 1
* I
K K
-1 ' 1
elc. . % efc.
4
2
E M

3
The tetrahedron is dual to itself,

Fig. 36




4.14  DEFINITION. Let K be a dualizable HI-cell complex on a manifold M
A self-duality of K is an Hl-isomorphism (f, K. X *) We say that K is self-dual it

there exists a self-duality of K.

Recalling 2.34, 2.35 and 2.36 (p.50, Def. of Isomorphic HI-cell Complexes)

we observe that an Hl-cell complex K on an n-dimensional manifold M is self-
dual if there exists a PL-homeomorphism f:M — M such that for every d-
dimensional Hl-cell (G;.h;:C; — C;) of K we have:

1) £(C;)=C; where £, is the restriction of f to C; [and (Cj.hjf'j - Cj) is

an (n-d)-dimensional Hl-cell of K]

2) alinear homeomorphism £:C; — C_j such that the following commutes:

*

Ji ECJ

h, l K
f- £

il

-~

e

0

Note that the complex K on the boundary of the 3-simplex given in Fig. 36 is
self-dual: The PL homeomorphism f:M — M (given in the figure by x> x")
satisfies 1) and 2) of the definition, and is homotopic to the map given by

reflection on the barycenter of the 3-simplex (the “antipodal” map).

We will define in 4.16 the notion of structural self -duality which is a weaker
form of self-duality where the existence of the homeomorphism F:M — M (with
the above stated properties) is not required; we only require the existence of local

PL-homeomorphisms (in neighborhoods of the cells) which preserve the local HI-

cellular structure.

We need first to make the following definition:




415  DEFINITION, Let K = { (C,-, h:C, — Ci)} be an Hl-cell complex and La

subcomplex of K, i.e. L is an Hi-cell complex and L = K. The HI-cellular
neighborhood of L in K, N(L,K), is the subcomplex of K defined by:

N(LK)={(CnC > C)

(C,h) aface of (B,g)e K,Bn|L]# @},

Observe that (C;,h;)e K and (_C;,h;)eK* can both be considered as

subcomplexes of K(Z), the second barycentric subdivision of K, and considering
them as such, we let N; = N{(Gihy). k) and Vo = N((C], 1) K@), Tis

notation will be used in the definition below.

416  DEFINITION. Let K ={(Cp, 5:G, = G;)} be a dualizable Hi-cell

complex on a manifold M and let K~ = {(C;C= h:Cp — Cg)} be its dual complex.

A structural self-duality on K is a bijection
B:{(C. h:C = G,)} —>{(c,f, BCr — c,’:)}
such that if B((Ci,h,-f‘i —)Ci))=(C;,h;:C_;% C:) then

1) N; and N;, are isomorphic Hl-cell complexes (as subcomplexes of K(Z))

via a PL-homeomorphism Fy:[N;| - |N A

. (See Defs. 2.34 and 2.36, p. 50.)

2) There exists a linear homeomorphism f£:C; — C_;‘ such that the diagram

Ci_H Cj N commutes.

h;

¢ c v,

We say that K is structurally self-dual if there exists a structural self-duality on K.

&
:>C]-

417 REMARK. Observe that a self-dual HI-cell complex is structurally self-
dual: The bijection B is obtained via the HI-isomorphism ( K. K *) of Def. 4.14,




In figure 37 we give an example of a structurally self-dual Hl-cell complex on
the Klein bottle which is not self-dual. In this example, the image of (C,%) under

the bijection B is denoted by (C’,h") (we have labeled only the vertices and the

quadrilaterals),

v

~

— o —_—
v{o.x%) (o' x®)

i
\
|
|
!
|
B is a bijection of the HI-cells of Kand K *respecting local cellular structures. ‘

Fig. 37 ‘




Note that in the above example there is no homeomorphism f:M — M
respecting the bijection B since the quadrilateral Q shares edges with R, S and T,
while Q" only shares edges with R and 7’. Note this situation is not unique to
our indicated bijection B since any quadrilateral in K shares its edges with the
other three, while any quadrilateral in K™ shares its edges with only two other

quadrilaterals.

4.18 REMARK.

1) In the example given above in Fig. 37, and in all subsequent examples of
manifolds (and other polyhedra)M with a given HI-cellular structure K, which are
obtained as quotient spaces of a given polyhedra P with an HI-cellular structure .,
we implicitly assume that there exists a (specific) PL map m: P — R™ (which can
be constructed by a generalization of the construction I. of theorem 3.29, p. 79)
such that:

a) n(Py=M

b) for the first barycentric subdivision £ of L, mpossesses the
properties stated for the function denoted by fin the hypothesis of
Proposition 2.31 (p. 45).

¢) the HI-cell complex on M induced by 1Y and (see Def. 2.32, p. 47.)

is the first barycentric subdivision of K.
For example, in the Hl-cell complex K on the Klein bottle, depicted on the

left side of Fig. 37, we are assuming that M is a given polyhedral Klein bottle

embedded in R™, P is the quadrilateral depicted in the left of the middle row in
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Fig.37. The (HI-) cell complex L on P has 9 vertices, 12 edges and 4 faces but the

top and middle rows in the figure taken together, are a representation of K (4 HI-
vertices, 8§ HI-edges and 4 HI-faces) on the Klein bottle M (via the implicit 7).

(In Fig. 37 # identifies cells of 1Y that “lie” in different edges labeled a
according to their placement in the order given by the arrows, and it does the
same for cells in b; 7z is injective in the rest of P. Similar conventions will be used
in future depictions of polyhedra given by identifications of HI-cells in a
polyhedron P.)

The reason for « to identify Hl-cells of I and not of L is apparent on the
complex illustrated on the right side of Fig. 37: The edges of the (middle)
quadrilateral do not lie along HI-cells of the depicted HI-cell complex but they lie
along HI-cells of its first barycentric subdivision.

2) In Fig. 37 and in similar figures showing examples of structural self-
duality (or self-duality), we take the linear map f;:C; — C;f of Def. 4.12 (shown

in the top row of the figure by ¥ > X”) to be the identity i;:C; — C;, and the map
k;

— — E,.
h; :C;f ——)Cj is taken to be the composition C; »C; g >C}‘ (or the

composition C; i >C; % >C;= in the case of self-duality). The map F (or f;)

is also implicitly given, and the two bottom rows in the figure are an attempt to

describe it, again via the identification map .




5 SELF— DUALITY ON S URFACES

EULER -POINCAR]é CHARACTERISTIC

We recall below the (topological) notions of attaching a finite number of
disjoint n-disks to a topological space and of finite CW complex [V.p.62]. Let
D" = {(xi,xz,---,x,,) € R”’ Y x? < 1} and §"7 = {(xi,xz,---,x,,) € R"’ N xf= 1}.
D" is called the n-disk and 5" is called the round (n-1)-sphere. Contrast this
nomenclature with the one in Def. 4.5 and recall that in our metric 4 on R” {given
on page 4), the disk D" is not the 1-neighborhood of (0,0,---,0)e R". (See
Def. 1.10, p. 9.)

5.1 DEFINITION. Let Df',D},--,Dj be m disjoint copies of D" and
Sp, 8571 e 8771 be their respective round (n-1)-spheres (boundaries). Let ¥ be
a topological space and for 1<i<m let f£:8""' -7 be a continuous function.
Let ~ be the least equivalence relation on D' U D \--UD) U Y such that for
xe Sl‘-"’"'1 we have x ~ fi(x). Then the space X =D UDFU---UDE WY/ ~ is

said to be obtained by attaching m n-disks to Y via f,,1<i<m.

3.2 DEFINITION. A finite CW complex is a sequence X' c X' c--c X" = X of
closed subspaces of a compact Hausdorff space X such that:
1) x° is a finite set of points

2) X* is obtained from X% by attaching a finite number of k-disks to X*1,




5.3 PROPOSITION.  Let K ={(C;.h:T; - G;)} be an n-dimensional HI-cell

complex. Then |K0|<:]K1| - [K"|=|K] is a finite CW complex where K’ is

the i-skeleton of K.

Proof. Every lKiI in the sequence IKOIC|K1|C---C K"

=|K|=X of the
underlying polyhedra of the skeleta of X, is closed in |K|. Every k-cell C; is PL
homeomorphic to the unit k-cube, as shown in Prop. 4.6 (p. 90), therefore it is
homeomorphic to the disk P*. From the definition 2.26 (p. 40) of an HI-cell,

together with the definition 2.28 (p. 42) of an HI-cell complex, we see that we can
consider each polyhedron |K k| to be obtained from II_( k”ll by attaching all the cells

C; of dimension k [(C,;,h,::(_?i ——)C,;)eK] via the maps #; restricted to the

boundary of C;, O

Recall that for a topological space X, the i-th Betti number of X, b(X), is the
rank of H;(X) [H;(X} is the i-th integral singular homology group of X] and that

the Euler-Poincaré Characteristic of X, %(X), is the homotopy-invariant integer
defined as X(X)= Y (-1)'b(X).
- i

5.4 REMARK. If X’ c X' <.c X" = X is a finite CW complex obtained by

attaching a number d; of disks of dimension i to X'~ [and letting dj, be the

n +
number of points in X"}, then it is well known [V, p. 73] that ¥ (X)= Y (-1)d,.
- i=0




5.5 PROPOSITION. Let K ={(Cj, hjfj — Cj)} be an n-dimensional HI-cell

complex and let o; denote the number of Hl-cells (C i hj:(j‘j -C J-) € K having

n .
dimension equal to i, then X(|K])= ¥ (-1) «;.
- s

Proof.  The result follows immediately from Prop. 5.3 and Remark 5.4. L[]

VALENCE NUMBERS
Recall that for an HI-cell complex K and integer i>1, K ® denotes the i-th
barycentric subdivision of K, and that for an integer j>0, K/ denotes the F

skeleton of K. Also recall that st(v,K) denotes the star of a vertex v in K given in

4.1 (p. 86), and that for (Ci,h,-) ink, C‘i denotes the barycenter of C;. (3.24 p. 72).

5.6 DEFINITION. Let K = { (C,-,hif',- - C,-)} be an HI-cell complex. For every
G <|K| and integer m such that dim{C;) < m < dim(K) we define the m-valence

number of C;, V,,(C;), to be the number of connected components of the

polyhedron |st(€', k@ )’ s (IK ’"I - lK m_ll).

5.7 EXAMPLE 1n Fig. 38, the two drawings on the right side of the top row and
the one on the right of the bottom row, show three polyhedra (out of possible
four) of the form I.St(éi’ e )’n (, Kml_lK m‘ll) for an HI-cell complex K on the
Klein bottle consisting of one vertex V, two HI- edges E, and E,, and one HI-
quadrilateral Q. Note for example that V;(V) =4, since this is the number of

components of the “cross” shown on the top of the figure, and observe that 4 is in

a certain sense “the local number of edges having V as a vertex” although there




are only two 1-dimensional Hl-cells in K. Similarly, V,,(C;) is the “local number

of m-dimensional Hl-cells having C; as a proper face”.

(I,
w

k{2, @) el k)Y (7] -&)

(V) =4,v,(V)=4 and v, (&, }=2. (Not shown, V,(E,)=2. )
Fig. 38

Klein bottle

5.8 REMARK.

1) If K is an H-cell complex, it can be casily proved that the m-valence
number of C; is the number of m-dimensional cells of K that contain C,asa
proper face.

2) If K is a dualizable HI-cell complex with |K] an n-manifold and if P is a
vertex in K, then the 1-valence number of P, V,(P), is equal to the number of
(n-1)-dimensional faces (facets) of the n-cell ?, where (F,h*) e K" is the dual
Hl-cell of (V,h). [See 3) of Def. 4.9, p. 92.]

3) It can be shown, by induction on the dimension, that an n-cell has at least

n+1 faces of dimension n-1. Thus for any vertex P of a dualizable HI-cell

complex on an n-manifold, we obtain by 2) that V{(P)>n +1.
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5.9 PROPOSITION.  Let B be a structural self-duality on an Hl-cell complex K.

Let (G 1:C; - G} K and let B((G;, h:C, — G)) = (CJ, B:C > CJ).

Then for all m , such that dim(C;) < m < dim(K), we have Vu(Ci) = Vm(C;).

[ The valence number VM(C;) is computed using the skeleta of K, i.c. Vm(C;) is
- K*"'MID.]

the number of components of st(é}“, K (2))| N (K +

Proof. The polyhedron st((l' K 2) ‘n ’Km’ |Km ID used in the definition
of V,,{G;) is the underlying space of a subcomplex of N; = N( (Ci.h;), K(Z)), the
HI-cellular neighborhood of {C;,#;) in the second baryceniric subdivision of K.
(See Defs. 4.15 and 4.16, p. 100, )

Let Nju = N((Cj.h;).K®). since B((C;. 1:C— G)) = (¢, 7765 - c;)

and K is structurally self-dual, we have (by Def. 4.16):
1) N; and ¥, are isomorphic HI-cell complexes (as subcomplexes of K(2))

via a PL-homeomorphism F:|N;|— ’N i

2) There exists a lincar homeomorphism 7:C, — C—; such that the diagram
%

From the definition of X* (Def. 4.9, p. 92) and Prop. 4.12 (p. 94), one sees that
the homeomorphism £, maps I_St(C K 2) |n ]Kml ‘K"’ 1|) homeomorphically

commutes.

*m *m—l

K

onto |st(C K 2 ‘n(

D Hence, V,,(G))=V,(C]). O




510  NOTATION. Foracell € and integer i, 0 <i < dim(C), let A,(C) denote

the number of i-dimensional faces of C.

5.11  PROPOSITION. Let K = { (Ci, h:C, — Ci) }be an HI-cell complex. Let
oy denote the number of d-dimensional Hl-cells in K, and to emphasize the

dimension, let {(Cf,hf:&? — C}i)} denote the set of d-dimensional HI-
. ISjSad

cells in K. Then for integers 0<d <m < dim(K), the sum of the m-valences of

all of the d-dimensional polyhedra Cf C|K| is equal to the sum of the numbers

of d-dimensional faces in all the (covering) m-dimensional cells CP. e :

Oy d (4.5 I
Y(cf)= Yadlce)
=1 k=1

Proof.

L Let K be the (covering) cell complex given by K = |JC; (and all of their

disjoint
faces) and let H:[K|— |K]| be the PL map H = u(h,-:(—?,- — C,-). Observe that the
second barycentric subdivision of X, K (2), is the HI-cell complex induced (see
Def. 2.32) by K@, the second barycentric subdivision of K, and the map H, as
an analysis of Construction 3.15 (p. 63) and Def. 3.24 (p. 72) will reveal.

Il Also note that since each map %:C; — C; is a PL homeomorphism in the
interior of Cj, and the cells C; are disjoint, we see that V, (G;), i.c. the number of

connected components of lst(C},K(z))l m(’K’"'—

K”Hl), is the number of

am ——
connected components of H _1( Ist(("?i,K (2)) I ) n Uk .
N k=1




~

I Now let {C,-,S =H™! ((AL‘,-), i.e. the set of pre-images of the

}ISSSS(i)
am [N
barycenter of C;. Using L. above, we sec that H _1(]st(CA‘f,K(2) )I)G(U C,’C"J is
. k=1

s(7)
the disjoint union: | J
s=1
subdivision of the m-skeleton of K.

= =M\(2) —m .
st(Ci,s,(K ) )' where K denotes the second barycentric

components of X we obtain:
s(2)

) w2 )of G] -o U(E)
e

Combining II. and III. and letting #(X) stand for “the number of connected
24

i |

= |JC" and the cells Cf*  are disjoint, it is enough to prove
k=1

Since

the theorem for the case of an Hl-cell complex L consisting of a gingle m-
dimensional Hl-cell ( C"h:C™ - Cm) (together with a subset of its faces).

We thus need to prove:
IV. LEMMA. Let (Cm BiCT s Cm) be an m-dimensional HI-cell and let L

be the canonical HI-cell complex on C" given by Prop. 2.33 ( p. 48).
Then if {(Cf,h}l:Cf'—) Cf)} represents the set of d-dimensional HI-cells
- 1<jsa,

in L we have: %V (Cd)—A c™
. m j - d .
=1

[ Refer again to Fig. 38, p. 107, where it can be seen that W(Vy=4=A, (Q_ )
and Vy(Ey) + V3(E)=4=A(0).]




To see that the lemma is true we first observe that for the canonical HI-cell
complex L on an m-dimensional HI-cell (_C"",h) as in the lemma, we get from (x)

the following result:

(x) - __jé"m("f )=+ U U) {(8.E))

Let {F,‘f} ) denote the set of all the d-dimensional faces of Cm, and

A d(c'“

observe that the union of all the d-dimensional faces of C™ maps onto the union

LF . aafs(j) —
of the polyhedra ,Cf. Thus, UH_l(CJ‘-i) U U , the union of the pre-
j=1 =1\ s=1

images of the barycenters of CJ‘?, is equal to the set of the barycenters of the 4-

faces of C™. We thus obtain:

oy S(J Ad(clm ~d
U G | = U £,
j=1\ 5= 1 w=1

Therefore from ( *) we obtain:

o) Sl U W)

j:]_ u=1

and thus, to finish the proof of the lemma we must show that the number of

N *_
connected components of | J st[lf; ,(Cm) ) is equal to A d(Crn).
=]

Since each polyhedron is compact and connected, (it is a finite

g (—\(2)
()"
union of simplices all of which intersects the barycenter), we need only to show:
st E,,(C ) st Fw,(C )

(See Fig. 38, p. 107.)

Forv#£w, and

are disjoint.
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From the definition of the second barycentric subdivision we see that

s ()| cimto{ ()"

ng —=\(2) ag ()
and ‘ st(F.,f ,(C’") J cint st(Fﬁ ,(C’") )
From the definition of the first barycentric subdivision, we obtain that both of the

above stars on the right intersect cither only on the barycenter of C™, or along a

cone C"F, where F is a common face of F,,d and Ef . Thus in both cases the
stars on the right intersect only on a subpolyhedron of their boundaries. Therefore

the stars on the left are disjoint since they lie in the interiors of those on the right.
O

5.12  REMARK. It is interesting to note that each number Vm(CJ‘!) depends
on how the images of the m-dimensional cells are attached to Cf (t.e. it depends

on the local PL topology of certain transversal neighborhoods). However Prop.

g
5.11 shows that the sum ZVm(C;'i) depends only on the disjoint set of linear
j=1

isomorphism classes of the m-cells Cy' —not on the attaching Hl-cell maps A"

513  PROPOSITION. Let K= { (Q, h;:C, — C,-) }be an Hl-cell complex.

Let &y denote the number of d-dimensional Hl-cells in K, and let

{ (C,-‘i,h,- d:a‘i - C,-‘i,) } _ denote the set of d-dimensional HI-cells in K.
. IStdStxd
G 0y & 1\, & 2 me1 st m—1
Then va(c,-o)— va(cil)+ va(c,-z)m---+(—1) by Vm(C,-mﬁl)
io =1 i]=1 iz :-1 im—l =1

is equal to 20, when m is odd, and equal to 0 when m is even.




Proof.  Since by definition a cell is a convex polyhedron, it is contractible.
Therefore a cell has the same homology as a point; hence its Euler-Poincaré

characteristic is equal to 1.

am____
We see then that the polyhedron |I? m|=disjoint [JC has thus Euler-

ip=1
Poincaré characteristic, %, equal to ¢,,.

Using Prop. 5.5 to compute X we obtain:

o, —_— Oy G, —_ 1y -
Z A, (CI;:: ) - 2 Ay (Cz:: )+ 2 AZ(CI",:) - '+(_15’l 1 ZAm—I(("::: )+ (_lynam = Oy
i =1 =1 ;

in=1 iy =1

which by using Prop. 5.10 becomes:

] o Oy Oy

2 V(€)= 2Vl G )+ 202 =" SV, (1)) 41" e, =
o=1 i=1 =1 g =1

Thus:

g o & LS _ +1
ZVm(C,-(;)-ZVm(C,-11)+ V(G )=t -1yt Y ValCr ) = (-1 "ot
ip=1 i=1 b=l 1=l

which gives the desired result. Ol

5.14  COROLLARY. Let {PO,PI,---,P%} be the set of “vertices” of an HI-

it
cell complex K, then ZVI(P,-)=2051, where oy denotes the number of
i=1

I-dimensional HI-cells in K.

Proof. 'This follows trivially from Prop. 5.13. O
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HOMOGENEOUS HI-CELL COMPLEXES
5.15  DEFINITION. Let K be an Hi-cell complex whose underlying polyhedron

IK1 is an n-dimensional manifold, We say that X is hemogeneous if for any two
n-dimensional HI-cells (C;,5;:C; — C;) and (Cj,kjfj - Cj) in K there exists a

pair of maps (_T,y,l,-j), where TUC_', '_>(_j-j is a linear homeomorphism and

1;:C; — C; is a PL homeomorphism, such that the diagram below commutes:

Observe that the self-dual Hl-cell complex on the 2-sphere given in Fig. 36
{(p. 98) as well as the structurally self-dual HI-cell complex on the Klein bottle
given in Fig. 37 (p. 101) are both homogeneous. Generalizing the above
mentioned classical construction on the 2-sphere, we will show in this chapter that
any orientable surface (an orientable 2-manifold) is the underlying polyhedron of
a homogeneous self-dual HiI-cell complex. We will in fact show that any
orieniable surface of genus 2 or larger can possess pentagonal, hexagonal and
octagonal homogencous self-dual HI-cellular structures, and that these are the
only “types” of HI-polygons in any homogeneous self-dual HI-cell complex
whose underlying polyhedron is any given surface of genus g = 2. (If we restrict

the genus, g, by g = k,k> 2, then additional polygonal shapes as above exist.)




5.16  PROPOSITION. Let K be a homogeneous structurally self-dual HI-cell
complex on the n-manifold |K\, and let (_P, P — P) be a vertex in K. Then the

I-valence number of P, Vi(P), is equal to the number of (n-1)-dimensional faces
of any n-dimensional cell C such that (C, hC — C) € K. [Thus in this situation,
the function V;:K° — Z, is constant. (Z, denotes the set of non-negative

integers.)]

Proof. From Remark 5.8 3) we know that Vj(P) is the number of (n-1)-
dimensional faces of the n-cell P*, where (P*,h*) is the dual HI-cell of (P, ).

Since K is structurally self dual, by 2) of Def. 4.16 (p. 100), there exists an n-
dimensional HI-cell (C,-,hi:(_i_‘,- — C,-) € K with the property that there exists a

linear homeomorphism f,f‘, — ?; and thus, since K is homogeneous, P is
lincarly homeomorphic to any n-dimensional cell G with (C,i:C - C)ek.
Since linearly homeomorphic cells are isomorphic when viewed as cell complexes

(as in Prop. 2.20, p. 30), the result follows. O

STRUCTURAL SELF-DUALITY ON SURFACES
5.17 NECESSARY CONDITIONS

Let X be a homogeneous structurally self-dual Hi-cell complex. Let ¢
denote the number of d-dimensional Hl-cells of X and let v denote the (constant)
valence number V;(P), where P is a vertex of K. (See Prop. 5.16.)

Let % be a PL 2-manifold and let X denote the Euler-Poincaré characteristic

of Z. The following are three necessary conditions required for the existence of a

homogeneous structurally self-dual HI-cell complex K with [K| =%,




1. Op— O +ay =y
2. Gy =0y
3. Vol = 20(1

Note: 1. is Prop. 5.5. (p. 106) 2. follows from the existence of the bijection B
(structural self-duality) of Def. 4.16 (p. 10(8. follows from Corollary 5.14
and Prop. 5.16.

Performing Gaussian elimination, we get the following;

-2

10 -1 o) 100 X _,

(M;) L 0 -1 0f=0 1 2| —x|=|0 1 0o 7%/
—4| - -2

0 0 v-4| 2y 0 0 1 ?%_4

We analyze first the case of the orientable surfaces.
Let %, denote a PL surface of genus g; i.e. %, is a “sphere with g handles”.
Since the 2-sphere has characteristic equal to 2 and since to attach a handle we
must remove two 2-dimensional cells and “glue” a cylinder which has
characteristic equal to zero, along 1-spheres, also of characteristic equal to zero,

we sec that the Euler-Poincaré characteristic is reduced by 2 for each handle
attached and thus x(zg) =2~-2g. Using this, from the last matrix in (M) we get:

aoala 4 4
10 0 8=4/




SELF-DUALITY ON SURFACES: Genus g=0~The Sphere
5.18  THEOREM. The only (up to HI-isomorphism) homogeneous self-dual

Hi-cellular structure K on the 2-sphere, X, is the one given by the canonical

cell complex on the boundary of a 3-simplex. (See Fig. 36, p. 98.)

Proof.  'We have shown the self-duality of the above complex K on page 96.

Substituting g =0 in the matrix M, of 5.17, we obtain for any homogeneous
self-dual HI-cell complex L on X, the following conditions:

B="Vy_s a="Y,_ 4 w="Y_,

Since by 3) of 5.8 we have that v 2 3, and since the numbers ¢ are positive
integers, we conclude that v=3. Hence, we obtain: ¢ = 4 o =6 a,=4
Since v =3, the 2-dimensional (covering) cells of L are triangles.

Since 6 = Cg is the maximal number of 1-dimensional edges possible in a cell

complex having four vertices, and likewise 4 =C5 is the maximal number of

triangles in such a complex, the complex on the boundary of a 3-simplex (being
uniquely maximal) is the unique H-cell complex satisfying the above conditions.

We will now show (by contradiction) that an HI-celf complex L _as above is

an H-cell complex, thus proving the theorem. With this in mind, we assume:

L There exists a covering cell C in L such that (at least) two faces of C are
identified. Since every Hl-cell in L is a face of a triangle, it suffices to

assume: There exists a covering triangle T in L such that (at least) two faces

of t are identified.

The possible cases are:




a.  Exactly two vertices of the covering triangle T are identified
but no edges of t are identified
Let V' denote the common vertex in the canonical complex T induced by the
HI~triangle having domain 7, and let W denote the other vertex. Let
Vi(P,T) denote the I-valence of a vertex P computed in the complex T,
Since Y(V,T)+V(W,T)=3-2=6 by Corollary 5.14,

(p- 113) and V(W,T)=2 (because the Hl-triangle is a

local homeomorphism near W) we obtain: Vv, T)=4.

Hence V(V)2=4 [V(V) is the valence in Z ]. This is

impossible since v =3,

b.  Three vertices of the covering triangle t are identified

but no edges of t are identified.

Similarly o a. we obtain that ¥;(V)> 6 and this is again a contradiction.

¢ Two edges of the triangle T are identified.
Again let T denote the canonical Hl-cell complex on the HI-triangle 7.
Let E denote the (image of the) HI-edge of T corresponding to the two
identified edges of the triangle 7, and let V denote the image of the vertex V
of 7 belonging to the two identified edges. Since the link of V (in the

second barycentric subdivision of ) is mapped to a 1-sphere in the 2-sphere

Ly, the star of V in f is mapped to a 2-ball having V in its

interior. Since X, is a manifold and is the underlying

polyhedron of the HI-cell complex L, V cannot be the face of

any other Hl-edge of L, nor can E be a loop. Therefore

Vi(V)=1. This contradicts (V)= v =3,

:VI(V):l




d. Three edges of the triangle T are identified.

In this case there is only one HI-edge (E,h:E" — E) in T. Thus V,(E,T)=3

by Proposition 5.11 (p.109) and therefore Vo(E)23. Since the underlying
space of L is the compact 2-manifold X, the 2-valence (in L) of any HI-

edge of L must be 2. This contradicts the above. (d. also follows from c.)

We conclude from the results obtained in part I above that all the covering

cells in L are mapped homeomorphically onto their images,
We now assume (reducing the analysis as in I only to the triangular cells):

L. Every covering triangle is mapped homeomorphically onto its image and
there exist two HI-triangles (t,h:f; = 1,) and (t5,hy:, — t,) in L such that

t Nty #42 is not a common face of both 1, and 1.

a. Nty ={V,W} where Vand W are the images of two vertices
(V.i:V = V) and (W,n:W — W) in L.
Let 73, be the Hl-cell complex obtained by the union of the canonical
complexes induced by the HI-triangles (f,hy:f; — #;) and (t.hy:8y > 1,).

There are 6 HI-edges in 1 ,, hence the sum of the 1-valences (computed

in 75) of all the vertices in 7j, is equal to 12. Note also that there are

(exactly) 4 HI-vertices in 1, (since there are no

W

identifications in any of the triangles). Since for a vertex

P in T, other than V or W we have V{(P,Tj,)=2, we

obtain ¥ (V,7,)+V,(W,%,)=8. This contradicts the

y

I, )=

fact that the 1-valence of any vertex in L is equal to 3. w(v, 4
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4Nty ={U,V,W} where U, Vand W are the images of three vertices

as ina.
In this situation there are 6 edges and only three vertices in T,.

Thus V; (U, B ) + Vi (V, i)+ Vi(W, T;,) = 12 which contradicts v = 3.

Nty ={V,E} where V is a vertex and E is an edge and V and E are
disjoint.
In this situation there are only 3 Hl-vertices and 5 Hi-edges in 7j,.

Therefore the 1-valence in 7, of one of the vertices must be at Ieast equal

to 4. Again this is impossible,

HhNty = {EI,EZ} where E\,E, are edges.
Similarly to I c. the vertex Vbelonging to £, and to E, isin

the interior of a 2-ball. Therefore it cannot be the image of a
vertex of any other Hl-edge of L. Hence V(V,T,) = V{(V),

. . L 4 (ijgz )=
but since V{(V, 112) =2, we again obtain a contradiction. vi(v)=2

& [Nt = {El,Ez,E},} where E,E,, and E; are edges.

Exactly as in d. we obtain (V. 7;,)= V{(V)=2 for any veriex V in Tis.

We now conclude from 1. and I1. that a homogenous self dual Hl-cell complex L

on the 2-sphere must be an H-cell complex. Since we have shown at the

beginning of this proof that such an H-cell complex is isomorphic to the canonical

cell complex consisting of all the proper faces of a 3-dimensional simplex, we

have proved the theorem. O
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SELF-DUALITY ON SURFACES: Genus g1

Recall the usual topological presentation of a surface Z, of genus g, (g21) by
identifying pairs of edges on the 4g-gon as indicated in Fig, 39 for X,.

Note our labels, s;, &, in the 4g-gon. They help visualize the construction of
a sphere (by idgntifyizzg the ;) which has 2 holes{ or g handles) (via h;) (See the
right side of Fig. 39).

Also recall that Theorem 3.29 (p. 79) guarantees the existence of HI-cells
(_C, hC—CcRrRY ) with C homeomorphic to the quotient space obtained by

identifying ltinearly homeomorphic faces of a cell €. Thus in view of this, we
take %, to be PL and the above presentation to be an Hi-cell (with image X o>
Letting v = 4g, in the matrix M, (page 116) we obtain the solution:
=1, oy =2g and o, =1.
We sce that this solution corresponds to the above presentation 3, g
Since the edges in the above surface presentation are identified in pairs, we

see that there are 2g 1-dimensional Hl-cells in the canonical Hl-cell complex on
2.

Ty

7, Sphere with two pairs of identified holes,
%, as an Hl-cell having the 4g-gon as its covering cell satisfies the system of equations (M),

Fig. 39




5.19  THEOREM. For g1, let Z, denote a PL surface of genus g and Iy,

denote a regular 4g-gon. The canonical Hi-cell complex K obtained from the HI-
cell (_Eg, hilly, — Eg) (the usual presentation of 2 as indicated above) is a

self-dual HI-cell complex.

Proof. We need to exhibit an HI-isomorphism ( 7KK *) (See Def. 2.36,

p- 50.) Since X has one vertex, 2g Hl-edges and one 2-dimensional HI-cell, the
required PL homeomorphism f:|K |= 2, IK *l =X, must map the vertex of K

onto the barycenter of Z,,map X, onto the dual of the vertex of K, and map the

set of 2g edges onto the dual set of edges. Also, f must be covered by linear maps

mapping the cells of K onto those of K.
We show the existence of the HI-isomorphism ( f,K,K*) by describing

pictorially the image under f of each HI-simplex in the first barycentric
subdivision of %, (which are themselves images of simplices in the first
barycentric subdivision of the cell Ll4e).

Recall that in all figures showing self-duality, we take the (covering) cells C;
in K to be also the covering cells in K*, and that we take the various covering
linear homeomorphisms f:C; —éEj to be the identity maps i:C; — C;, as
previously remarked in 2) of Remark 4.18 (p. 103). Also recall that the simplices

in the first barycentric subdivision are further subdivided by the second

barycentric subdivision for the purpose of embedding X ¢ in Euclidean space, as

described in Theorem 3.29 (p. 79). However we do not show the second

barycentric subdivision in Fig. 40 nor in other similar figures.
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The homeomorphism f: % g > 2,
Fig. 40

We partition the 4g-gon into g regions as indicated at the top of Fig. 40. (See

Remark 5.20, below, concerning g=1.)
[The surface X, has a presentation where the identifications sihisflh,-“l are
along 4 consecutive edges of the 4g-gon, thus the above partition exists. ]
We start by defining f on the image of one of the regions of the 4g-gon as
“indicated for the shaded region in Fig. 40; An HlI-edge of the first barycentric
subdivision marked x on the right region is the image of the HI-edge also marked
x on the left region. (This map is extended uniquely to the Hl-triangles in the first
barycentric subdivision.)
Since the image of 1 under f1s the same polyhedron 1, and the same is true

for 17 (however freverses their orientations), we can, and therefore will, define f
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on the other regions of the 4g-gon in the same manner as it was defined on the

first.

Please verify that this gives an HI-isomorphism between K and K*,

[ For example, the Hl-edge @ (in bold) of K, represented by 6 U8 (or

16 14) is mapped by fonto its dual HI-cell, which is represented as the union of
the two bold edges on the right side. ] O

5.20 REMARK. We observe that the proof of theorem 5.19 is also valid for
the torus, X,. In this situation, the shaded part in Fig. 40 is a parallelogram
(square) and the edges labeled 1 and 17 are a unique edge, 1, in the interior of the
square and f defined in 5.19 still has the desired properties.

Also note that this self-duality on the torus is not the one obtained by
translating the integral square lattice on the plane by the vector (yz,%)

From Theorems 5.18 and 5.19 we obtain the following immediate result;

5.21  COROLLARY. Every PL orientable surface is the underlying

polyhedron of a homogeneous self-dual HI-cell complex.

Proof. Every orientable surface is a surface of genus g20. a

We will now reanalyze the matrices in (Mp) and (M) (which are copied

below), and will obtain additional homogeneous self-dual HI-cellular structures

for all the orientable surfaces of genus §21, different from those given in 5.18 and

5.19,




I -1 1]y 10 v—4
(M) L0 ~1jof=l0o 1 2] —gf={0o 1 o "%/ |,
_ _4| = -2
v -2 0]0) \0 0 v-4| 2y 001%4
(24 o
1ool 44
(M,) 0 1 o M2-2)
00 1 =Y

5.22  THEOREM. There are an infinite amount of homogeneous self-dual HI-
cellular on the torus X,, and the 2-dimensional cells of any such structure must

all be quadrilaterals.

Proof.  The Buler-Poincaré characteristic of the torus is equal to zero, and
from the bottom row of the central matrix in M, we see that if =0 the system
of equations My can only be solved if ¥ =4, and in this case we have an infinite
amount of solutions all having the form
(D Cy=0y =20, o,eZ,

Note that v =4 implies that the HI-2-cells in any homogeneous self-dual
complex on the torus must be quadrilaterals.

The Hl-cell complex on the torus obtained in Theorem 5.19 satisfies the
numerical conditions (T) with e, =1. For any positive integer &k >1 we will now

sketch the existence of self-dual HI-cell complexes on the torus with o, = k.
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Let X, be realized as the polyhedron X, = Bd([—i, 1]2)>< Bd([—l, 1]2) in R*.

For k,m,n € Z, such that mn=k,m >n, we let Pmn 2o — Eq denote “the” k-fold

PL covering space, given by a PL analogue of the topological k-fold covering
pisixst 5 sl st (zl,zl)H(zf’,z{') where z; are complex numbers with

|z,-| =1. The self-dual HI-cell complex on 2 having one HI-vertex, two HI-edges

and one HI-square given in Theorem 5.19 (p. 122), can be “lifted” via the k-fold

covering map p,, , to an HI-cell complex K, , on Z, having k Hl-vertices, 2k

Hl-cdges and k HI-squares. (See Fig. 40.)

To show the existence of an HI-isomorphism (a self-duality) between Ky u
and its dual, we now view X, as being obtained by the usnal edge-identifications
of a unit square belonging to the usual square planar lattice whose vertices are all

points having integer coordinates. We define the desired HI-isomorphism
( fm,n:Km,nﬁK;,n) (on the above planar lattice) by letting it be the translation by

1 1 1 i
th tor | —,— |, i. e. VI=lxd—, v+ —|. O
e vector (2m 2n) e fun(%y) (x Y 2n)
6o 0,0
: 1
!
1 ]
1 1
. I ]
— 1
U () ( Ly+t) :
3y = _! +-_
o I R SR LI
©,0) Ky, :,2

An Hl-isomorphism between K,,and X, : g
Fig. 41

Note that if both m,n>3, Ko can be realized as a cell complex on

Bd(T1,, ) x BA(T1,) where II; is a regular I-gon in R2.
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The above theorem shows the existence of infinitely many homogeneous self-

dual HI-square structures K, on the torus. The following example however,

shows the existence of other homogeneous self-dual HI-square structures on the

torus which are not HI-isomorphic to any Koyn

523 EXAMPLE In Fig. 42 we show a (very symmetric) self-dual HI-celiular

structure, SKs, on the torus consisting of 5 HI-squares, and also its dual SKs. We

also show their pullback complexes, (SK5 )3 5 and (SKg‘ )3 4> On the torus via a 9-

fold covering, and show also the complex Ks;. All HI-quadrilaterals depicted arc

to be taken as PL images of squares (parallelograms).

HNEENE

| 3 4 3

— B A I AN
(sx.)

a 9-fold covering of SK.,. A 9-fold covering of SK .

33°
SK5 is not HI-isomorphic to K5, (SK; )3 3 18 not Hl-isomorphic to any X, .
Fig. 42
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We have indicated, by numbering the vertices, an HI-isomorphism between
SKs and SK5. One can pethaps better follow this isomorphism by seeing it in the
covering spaces, and for this, we have shaded in (SK5 )3 5 the pullback of two HI-

squares in SKs, and have also shaded in (SK§ )3 2 the pullbacks of their images.

Now note that since 5 is a prime number, the only self-dual structure Kpy p» @8
in 5.22, having 5 quadrilaterals is Ks;. Note that in K, two edges of each
covering square are identified, while in SK this is not the case. Thus we have

shown:

* 5Ky is not HI-isomorphic to any Koo

Note that (SK5 )3 5 18 also self-dual (and can be taken as cellular) and has 45

vertices , 90 HI-edges and 45 HI-squares.
We also have:

. (SK5 )313 is also not Hl-isomorphic to any of K451 Kis3 07 Ky 5.

To verify this fact, we observe that through the barycenter x of an HI-square
in (SK5 )313 there are two different maximal paths which connect “linearly” the
barycenter of any square which they intersect to the barycenters of opposite edges
of that square; i.e. each path is the union the PL images of linear segments each
connecting the barycenter of a covering square to the barycenters of two non-
intersecting edges of that square. A section of one such path is shown in Fig. 42,

One can verify that both of these paths through any such barycenter x

intersect 15 quadrilaterals, and this number is an invariant of x in the HI-
isomorphism class of (SK5)3 5 Howeverin K, , through any barycenter, one of




the paths as above intersect m quadrilaterals and the other intersect n, hence none

Of Kys,1» K153 OF Ky 5 is HI-isomorphic to (SK), ,.

5.24 THEOREM. There exist infinitely many self-dual HI -Square structures on

the torus which are not isomorphic to any Ko e

Progf. Using a notation similar to the one in Example 5.23, we let (SK5 ) »

denote the ¢ ¢ covering of SK.

One can prove, by induction on , that through a barycenter of a square in
(SK5 ) . » there always exist exactly two different paths defined as in the previous
example, both of which pass through 5¢ squares (we only need the result that both

paths are different, and pass through the same number of squares).
This shows that (SKs), . is not Hl-isomorphic to any Ko > for if so, mn

would have to be a perfect square as well as mn = 5¢2. This is impossible. O

We will now change our point of view slightly: Instead of continuing the
search to find self-dual structures that “fit” a given genus, we will investigate
which homogeneous self-dual structures all of which use the same regular n-gon

can “fit” all the surfaces of genus g=2. (We have already analyzed in depth the

cases of genus 0 and 1.)

We recall again the numerical conditions necessary for the existence of

(structural) self duality which were given in (M»):
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v—-4 : v—4
We make the following observations:

525 REMARK.
1) For all g=2, the only possible values for v that will result in positive
integer values for all &; are v=5, v=6 and v=8§.
2) For v=5, we get oy =4(g~1) o =10(g-1) o, =4(g—1)
3) For v=6,weget  a=2(g-1) o =6(g~1) o, =2(g-1)
4 For v=8,weget  ay=(g-1) o =4(g-1) oy =(g-1)

The Euler-Poincaré characteristic x(}: g) of a surface of genus g satisfies
2Zg)=2~2g =25 -1)= 4(Z,) (¢~ 1)

For g2, the similarity between 2), 3) and 4) of the above remark and the
above equality can be understood geometrically by observing thal X, is a (g —1)-
fold covering of X, (for various covering maps). This observation is the
comnerstone for the last investigations of this work. We will show that for g22
there exist self-dual pentagonal, hexagonal and octagonal Hi-cell complexes on
%,

We will construct on X, self-dual HI-cellular structures with:

* 4 Hl-pentagons, 10 HI-edges and 4 Hl-vertices,

* 2 Hl-hexagons, 6 Hl-edges and 2 HI-vertices. _

* 1 Hl-octagon, 4 HI-edges and 1 HI-vertex. (Already shown in Thédi‘ém 5.19,
p. 122.) FE
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Thenfor £23, we pull back these structures onto Z,, via (g—l)-fold_‘_Q" o

coverings of X;. However, we have:

5.26 PROPOSITION There .qre no homogeneous self-dual H-cell complexes
on Ty, v i .

Proof, From' 5.25 2), :3) and 4) we observe that for g=2, any such HI-
pentagonal structure has only 4 vertices, any hexagonal has only 2 Hl-vertices and
any octagonal has only one HI-vertex. Thus every 2-dimensional covering cell of

any such structure has some of its vertices identified. O

5.27  THEOREM. There exist self-dual HI-pentagonal complexes on all the
surfaces X, of genus g 2 2.

Progf. In Fig. 43 below, we show such a complex Pand its dual on X,. We
represent X, as a torus with two quadrilaterals taken out (unshaded “holes™) and
show the identifications along the boundaries of these holes by numbering
identified vertices with the same integers (note that we must rotate the “handles”
by 90 degrees to identify the edges of the holes).

We can thus “lay” various copies of %, flatly on the plane and ﬁse the mxn
coverings of the torus given in Theorem 5.22 (p. 125) to obtain coverings of .
The shading on the pentagons show the Hl-isomorphisms. Vertex 1 1s ihapped 0
A, 2toBelc. o

131




Sy
S
i

o
s

5
e L
o S

Fig. 43

Note that the identifications on edges of the holes occur after a 900 rotation.

5.28  REMARK.

1) Note that one could start with pentagons on a torus with 12 holes as given on

Fig. 43 without it being a covering of 2. One could then identify different pairs

of holes and still obtain self-dual structures on X not HI-isomorphic to Ha3) OF

0 #; 6)- (To make the pictures fit, note that in the above theorem, in contrast to

Theorem 5.22, in the pairs (m,n) representing the covering maps we have m<n.)




2) One can obtain a different self-dual structure on Z, by identifying the vertices
along the boundaries of the holes in a different manner (rotate now 90 degrees in
the opposite way from before). We show it in Fig. 44, and we have verified its
self-duality. N_ote that in the structure given in Fig. 43 only two vertices of each
covering pentagon were identified, but in the structure below two pairs of vertices
of each pentagon are identified: For example, the diagonally shaded Hl-pentagon

has only 1, 2 and 4 as its Hl-vertices.

w7

The Hi-pentagons only have 3 HE-vertices.

Fig. 44

We show in Fig 45 a complex similar to the one in Fig. 43. However in Fig
45 we represent X, as a sphere with 4 holes, in 3-dimensional space. This might
be easier to visualize than the previous planar lattices. One also can visualize
pullbacks of this complex onto the surfaces of higher genus by assembling such
spheres. For example, one could stack them vertically to obtain a 1xn covering

space.
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A A
The above sphere opened up. The dual complex.
Fig. 45

5.29  THEOREM. There exist self-dual Hl-hexagonal compléxes_ ‘on all the
surfaces %, of genus g2 2, e

Proof.  We present one such structure in Fig. 46.

In I. we show two hexagons (one is “transparent”) on the .spf__iefej"s_w'i_t_h two
holes, as well as their identifications. e o :
Notice that the induced complex in %, has 2 HI-hexagons, 6HI—edgesand 2

Hl-vertices. Note also that the 1-valence of each HI-vertex 1s1ndeedequalt06
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In II. we show the decagon obtained by cutting 1. along edges 1, 3 and 4. :

In II. we show the HI-isomorphism f establishing the self-duality. We show.'
in bold atrows the “definition™ and the verification of the required isomorphism.
Note for example, that the images of B and E coincide, as they should, and note as
well that the order in which the bold arrows transverse the vertices gels preserved.

In IV. we show how to concatenate copies of 1. to obtain self-dual hexagonal

complexes on the surfaces of higher genus.

—

14 Zhole v

hole W
w —
1 Ir
A self-dual HI-hexagonal structure on X, .
Fig. 46
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We cﬁd'this ork by ::ébmmenting that we have already shown a seif-dy
octagonal HI- structure in %, and it is a simple matter to lift it to all the orientable

surfaces of genus ¢ >3. We have thus obtained:

530  THEOREM. :All the orientable surfaces of genus 222, admit

homogeneous self-dual, pentagonal, hexagonal and octagonal, HI-cellular

Structures.

Conversely, these are the only “types “of HI-cell complexes that can have all

the surfaces of genus g.>2, as their underlying polyhedra.
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