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In this thesis we give a mathematically rigorous definition of
the fiberwise qﬁantum cohomology and the equivariant quantum
cohomolo.gy in the semi-positive symplectic case. We prové that the
quantum multiplication is associative an& has several properties
such as direct product, res.triction, and induction. We also compute

several examples.
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Chapter 1

Introduction

‘"The notion of quantum cohomology was first proposed by the physicist '

Vafa [V} and its mathematical foundation was established by Ruan and Tian
[RT] for semi-positive symplectic manifolds.. However, the compufation of
quantum cohomology is a difficult task in gener'allsince it does not have the
functorial property of beha.ving well under pull-back. If X and Y are two semi-
positive symplectic manifolds, and f : X — Y is a continuous map, then there
is a ring homomorphism f*: H*(Y;Q) — H *(X; Q) for ordinary cohomology.
However for quantﬁm cohomology, there does not exist such homomorphism
preserving quantum multiplication. The quantum cohomology of projective
spaces has been known for quite some time. The quantum cohomology of
Grassmannians was computed by Witten [W] and by Seibert and Tian [ST].
The notion of equivariant quantum cohomology was first proposed by Givental
and Kim in a heuristic manner [GK], and they conjectured several properties
of equivariant quantum cohomology, namely direct product, restriction and

induction. Assuming these properties, they computed the quantum cohomol-




ogy of complete flag manifolds rigorously. Laﬁer, another account was given
by Astashkevich and Sadov [AS]. They also introduced the notion of fiber-
wise quantum cohomology heuristically (called vertical qunatum cohomology
in [AS]), and computed the quantumn cohomology of partial flag manifolds
again assumir.tg the conjectured properties, Kim did a similar thing for par-
tial flag manifolds [K1]. The advantage of fiberwise quantum cohomology and
equivariant -qu_a,ntum cohomology is that the functorial pull-back property of
ordinary cohomology is partially restored for them, i.e. restriction property.
It is exactly this property and several other functorial properties that enables
Givental et al. to complete the compﬁfation. Ciocaﬁ—Fontanine computed
the Gromov-Witten invariants of complete flag manifolds using the canonical
complex structure, so he could ‘give a presentation of the quantum cohomol-
ogy of complete flag manifolds rigorously [C]. Other examples of_quantum
cohomology were worked out by Batyrev for toric manifolds [B].

In this woﬂ& we will give a mathematically rigoroﬁs definition of fiber-
wise quantum cohomology and equivariant quantum cohomology in the semi-
positive symplectic case. Assume that X' — Y is a smooth fiber bundle, ¥
is a closed smooth manifold, and the fiber is a closed manifold. Further as-
sume that X admits a differential two form w whose restriction to each fiber
V, is a semi-positive symplectic form. The main results of this paper are: 1)
We will define the fiberwise Gromov-Witten mixed invariants (called fiber- -
wise mixed invariants beloW) of arbitrary genus for X — Y using perturbed
pseudo-holomorphic maps, then we prove several properties of the fiberwise

mixed invariants such as direct product, restriction, induction and the so-




called composition law; 2) Using the fiberwise mixed invariants, we will deﬁne
fiberwise quantum cohomology and equivariant quantum cohomology. The
properties alluted to above namely direct product, restriction, induction and
associativity of fiberwise quantum cohomology and equivariant quantum co-
homology will then follow from the corresponding propertieé. of the fiberwise
mixed invariants. So we put the computation in [GK] , [AS] and [K1} on a
solid foundation; 3) As examples, .We‘ will compute lthe fiberwise quantum co-I
homology of several fiber bundles with fiber a flag manifold. In this paper, we
basically will follow the approach .of Rué,n and Tian to quantum cohomology
in [RT]. The main part of this paper will be devoted to a proof of the composi-
tion law of the fiberwise mixed invariants. In the proof, most analytic results
are adopted from [RT]..

During the f)repal‘ation of this paper, the author learned of B. Kim’s paper
“On equivariant quantum cobomology ”[K2], in which he defined equivariant
quantum coho-mology for flag manifolds ogly. His approach was different from
ours; he used Kontsevich’s moduli space of stable maps to define the equivari-

ant Gromov-Witten classes.




Chapter 2

A Compactness Theorem and Several

Transversality Results

2.1 A compactness theorem

Definition 2.1.1 i) An almost complez structure J on a symplectic manifold |

(Vo) is said to be w-tamed if w(€, JE) > O,Y€ € TV,€ # 0, and if further
W(JE, In) = w(€,n),Vé,q € TV, we call J w-compatible.

i1) A symplectic manifold (V,w) is called semi-positive if for any w-compati-
ble almost comples structure J on V, every J-holomorphic curve u : CP! -V '

has non-negative first Chern number. i.e. fppr w*cei(TV) = 0. If this inequality

is always strictly positive, we call (V,w) positive symplectic manifold.
The following is the basic setup we will work with in this section.

Assumption (x) Let X 5 Y be a smooth fiber bundle over a closed smooth
manifold Y whose fiber is closed manifold V of dimension 2n. Assume that X

admits a differential two form w with bounded H" Sobolev norm (1 > 10,¢ >




1), whose restriction to each fiber V, is a symplectic form. Here V, is the fiber
over a point z € Y. i.e., w is a fiberwise symplectic form on A'. Assume

further that (V,,w|v,) is a semi-positive symplectic manifold for each z in Y.

To define the ﬁberwise quantum cohomology for X — Y, Wé first need
to define the fiberwise mixed invariants. Suppose that X is a stable curve of
genus ¢ with m irreducible components ¥; and k marked points. Assume that
A; € H;(V; 7) are m homology classes. The fiberwise mixed invariant can be

considered as a multilinear map

k {

DU, o A B, P (I[H(x, @) x (J[H*(X,Q)) — H'(Y, Q)

1 1

To exlraiuate the image of this map on the element v € H.(Y,Q)), a key ob-
servation is that we should use the pull-back pseudo-manifold fiber bundle
Xz — Z where F : Z — Y is a pseudo-manifold representative of v and the
pseudo-manifold X'z is the fiber product Z xr X'. The advantage of this defi-
nition is that it enables us to prove the restriction property easily. Its price is
that Z is only a pseudo-manifold, so that we need to carefully treat the moduli

space of each stratum of Z.

A compact pseudo-manifold in Y is a stratified space Z together with
é, continuous map F : Z — Y satisfying: each stratum is a smooth mani-
fold without boundary, each lower stratum is at least codimension 2, and F'
is smooth on each stratum. Note that any rational homology class in Y can

be represented by a finite dimensional compact pseudo-manifold, and any two




such pseudo-manifolds representing the same homology class form the bound-

ary of a compact pseudo-manifold (and so are cobordant in the usual sense).

Fix a finite dimensional 'compa‘ci; pseudo-manifold F': Z — Y, and denéte by

Xz the fiber product Z xpr &X. Then Xz — Z is a pseudo-manifold fibration

o with fiber V. w induces a two form on Xz by the natural map X'z £ A, which
is still denoted by w. It is a fiberwise symplectic form on Xz, Note that w is

. : " continuous and is smooth on each strai;um. (Xz,w, Z,V) is the basic object

we will study below.

Remark 2.1.1 We can define a trivialization of Xz as follows. For any
Zoo .6 Z, choose a neighborhood W of F(zx) in Y, such that X|lw =W x V.
Choose a neighborhood U of z. m Z such that F(U) C W, then Xz|y has a
induced trivialization Xz|y = UXV, whe'r_e U may not be smooth. Note that for
any two different trivializations of Xz ove} Uy and U,, the transition function
fia: UynUs — Dif f(V) factors through as Uy N U, LWy N W, hag Dif f(V),
where his is a smooth transition function between {wo trivializations of X
over Wy and W,. This proﬁerty i8 impomiant.for deﬁning VATIOUS CONVETFENCES
below. This trivialization of Xz is crucial when we study the structure of

moduli space. We fix a such trivielization for Xz from now on.

Define a vector bundle £ 5 X, whose fiber E is Tsz for each = e'
Xz,z = p(z). A complex structure J on E is called a fiberwise almost complex
structuré on Xz. A complex structure J on E is said to be tamed by w if
w(€,JE) > 0,V¢ € E, &+ 0. If further w(JE, Jn) = w(§,1),YE,n € E, we call

the complex structure J on E w-compatible. We now show that there is a




.

‘fiberwise almost complex structure on Xz compatible with w.

Lemma 2.1.1 Under Assumption(x), the vector bundle E admits a continu- -

0us comple:c structure which has bounded H'Y norm on each stratum, and is
compatible with w. Furthermore for any z. € Z, J satisfies
Condition 1. || J|..xv — Jlexv |letgry— 0 s 2, = 2eo, 2, € U. Here we use

the trivialization in Remark 2.1.1 and view J|. as a section of Hom(TV,TV).

Proof: Since the vector bundle £ is a 'pseud.oﬁmanifold smooth in fiber di-
rections, we can find a continuous Riemannian metric ¢ on E, such that g
is smooth on each stratum and g satisfies | gl..xv — 9leexv ||q4(v)—_) 0 as
Zr — Zooy Zr € U. Here we use the trivialization in Remark 2.1.1 and view 7+
as a section of Hom(TV x TV,R). Then there is an unique automorphism
A of F such that w(é,n) = g(Af,n),V€,n € B,z € X7 Since w is skew
symmetric, —A? is positive definite with respect to g. It is easy to check that

J = (—=A%)~2 A is the required complex structure on £. o

Note that since the deformation of the complex structure on the bundle
E is un-obstructed, the tangent space at J consists of all the sections s of the
bundle End(F) satislying soJ+Jos=0. Let J%(Xz,w) be the space of
w-tamed continuous complex structures on £ with bounded H % norm on each
stratum satisfying Condition 1. Here é;nd in the following ¢ v’ means fiberwise.
Although J is not smooth, J7% (Xz,w) is a sinooth Banach manifold.

Next we will deﬁn.e the so-called fiberwise perturbed J-holomorphic map.

Recall that a k-point genus ¢ stable curve C = (E;@4,- -+, 24) is a reduced



connected curve ¥ whose singularities are only double points (it may have
10 singularities at all}, plus £ distinct smooth points x4, .-,z in X, such
that every smooth rational component of ¥ contains at least three points from
X1, "+, Zf OT doubie points of X, and every elliptic curve component contains
at least one such points. Such a ¥ is called an édmissibie curve.

Assume that ¥ has m comﬁonents %,y Ly (where X; may have double
points). Let J be a fiberwise almost complex structure on Xz, and 7; be the
projection from ;X Xz to its j-th factor (j = 1,2). A fiberwise inhomogeneous
term v over X X Xz.-is a set of sections vy, -, Vy,, Where each v; is a section
of Hom(w{TEz-, 73 E) satisfying

i)y; is continuous everywh.ere and differentiable on each stratum,;

ii) Cc;ndition 2. Use the notation of Remark 2:1.1, Vzo € Z, || vilsixerxv
—VilnixzeoxV lct@mixv) = 0, 88 2, = Zeo, 2, € U

iii) The J-anti-linear condition: w{jx,(v) = —J(vi{v)), where jx, is the

complex structure on ;, v is any vector in 1'%,

Definition 2.1.2 Let & be an admissible curve, J a fiberwise almost complez

' structure on Xz, and v a fiberwise inhomogeneous term on L x Xz. A fiberwise

(J, v)-perturbed holomorphic map from ¥ into Xz is a continuous map f : & —
Xy which is differentiable at the smooth points of &, such that f(£) C V, for
some z € Z, and [ satisfies the inhomogeneous Cauchy-Riemann equation on

each component L;(1 = 1,---,m). Let fi = flg;. Then

(&ﬁ)(m) = Vg(ﬂi,fi(.r)),\/a’: e 2 \ Sing(ﬂi), p=1,---,m,




where O; denotes the differential operator d + J o d o jg,. We denote the

space of all fiberwise (J,v) holomorphic map [ from ¥ into Xz satisfying

D)) = At = 1, om by MYy 4 (85,87, J, v). Here Ay, Ay are

m homology classes in Hy(V,Z).

We will use M‘(’Ah_,,,Am)(E, Xz,J,v) to define the ﬁ'b.erwise mixed invari-

‘ants later. This moduli space is similar to the moduli space used to prove

that the Gromov-Witten mixed invariants are independent of the choice of the
a,lmoét complex structure (see [RT]). In fact that moduli space is the same as
our moduli space for the case where the bundle is V x [0,1] — [0,1]. The
further generality lies in that the bundle Xz — Z may be nontrivial and that
7 is only a pseudo-manifold. Now we begin establishing a compactness the-
orem about the siructure (ﬂ‘ M"(’ Ay Am)(E,X 7, J,v) which is required for -the

definition of the fiberwise mixed invariants.

Recall that a degeneration of admissible curves is a holomorphic fibration
#1858 — A C C satisfying: (1) S is a I + 1-dimensional complex variety with
normal crossings; (2) All fibers of # are admissible. Denote by js the complex
‘structure on 5, J € J', (X Z,.w) a w-tamed fiberwise almost complex structure
on Xz. Let 7; and 75 be the projectibn maps from § X Xz to S and Xz
reépectively. An inhomogeneous term # on § x Xz is defined to be a section
of Hom(7;TS,73E) — S x Xz satisfying

i) ¥ is continuous and differentiable on each stratum;

ii) Condition 2'. Using the notation of Remark 2.1.1, Vz,, € Z, I

i}‘szrxV - I’;'|S><zoo>'<V HC“‘(SXV) - 07 as Zr — Zoo, 4 € U1




“iii} The anti-J-linear condition: J o & == —¥ o js.

The setting for the compactness theorem is: fix a degeneration of admis-
sible curves © : & — A, assume that & is the induced fiberwise continuous
symplectic form on Xz x A - Z x A with bounded H*? norm on each
stratum, J e .‘,71’1’(-;((173 X A,o) is a fiberwise almost complex structure, and
i, by, are a family of fiberwise inhomogeneous terms on S. Let {t,} be a
gequence in A converging to the origin as r — oo, set W = @|y,xs,, J0 =

J

oty DU = #~1(t,). Further assume that each %) consists of m com-

poﬁents (Eﬁ’"),-_- ., 500, and for any fixed i, 2" are diffemorphic to each
other for any r. Set v = (" .. ¥, where v = ﬁilzﬁ’)x(’;fz’ V) is the
fiberwise inhomogeneous term on LU}, Note that E,S“ converges to the i-th
component 3° of ‘an admissible curve T(*) = #7%(0), and i converges

to the i-th component ui(oo) = Bilg(e,, v, Of @ fiberwise inhomogeneous term

plos) = (%) pe)) om () % Xy in C-topology in the following sense:

there are continuous maps Ti(r) : EET) - Zz(-oo} and compact sets Kt-(T) in Ef."")

satisfying : (1) K" ¢ K Uk = 5\ {double points}; (2) 7" restricts

to a diffeomorphism from T,‘-(T)_l(Ki(T)) onto KD (3) For each index i, index
s, and each stratum Z, C Z, both [| jye) © d‘:",-(r) — de-(T) 0 Js( ||04((Tgf))_1(Kgs)))

and || %) o dTi(r) — " ”C"‘((Tfr))_l(ﬁ'}é))xk’zu) converge to zero as r — 0.

Given fi1) ¢ M?Ah-i-.Am)(Z(T)a’YZa JO, 1y, we say that f) converges to
flo) s By 5 X il || Flro - f;-(r) llos oe— 0 as r — 0. Here we need
the trivialization of Remark 2.1.1 to define C3,loc-norm, and we also need a

trivialization of V to define £ o r{” — .im_.




Proposition 2.1.1 (Compactness Theorem) Let f(q"j be in M‘EJAI,"',Am)
(Z(’"), Xz, JT) V("")). Then thére is an admissible curve 3, which is the union
of the smooth resolution 50} of B(=) und finitely many smooth rational curves
stuch that a subsequence of { {17} converges toa (J4) v)-perturbed holomor-
phic map f énf, where the fiberwise inhomogéneous term v coincide with

v{) on B} end vanishes on those rational curves, and moreover we have

[f(E)] = A+ -+ A, and f(D) C.Vz; for some z € Z.

Proof: Without loss of generality we may assume that %) is smooth, since
otherwise we can conéider the {EE”}?“ family or its resolution for each fixed
¢. In the rést part of proof, we will use A instead of Ay,---, A,,. We also
make a reduction to eliminate the fiberwise inhomogeneous term pir), Setting
Ww=2_5 >< Xz, this has a fiber bundle structure W 5 Z, p(s, &) = p{x), and
we introduce a fiberwise almost complex structure Jl(,;) € J(W,w) on W as
follows. Given the vector bundle Fyy —» W whose fiber is By (s = T.5 % k.,

if (u,v) is a vector in Ey](; ), define

IS ,w) = (js(w), T (0) + v (js(w))).

It is easy to check that this is a ﬁberwise almost complex structure on W
tamed for sufficiently small ") by the fiberwise symplectic fqrm wy which is
the sum of the pull back of ws and w to W. Moreover if we take the graph
of f0), FO) . %0 o W FO)N(z) = (2, f¥N(x)) where z € TU), then F() is a

J,(,;)—holomorphic map. So, it suffices to show that a subsequence of {F()}ee

converges to a holomorphic map F' : ¥ — W with [F(Z)] = [F,ET)(E(‘"))],

11




where £ is given in Proposition 2.1.1. Thus we have reduced the perturbed
case to the non-perturbed case ») = 0. From now on we assume that each
f@) is J0)-holomorphic. Now we fix a J (0)}_compatible metric A on E, which

satisfies
i) h is continuous, and smooth on each smooth stratum &z;

i1} Condition 3. Using the notation of Remark 2.1.1,Vz, € U; Az v —
hlzwxv ”C"i(V) — O, a8 Zp 7 Zoos Zy E U

Because J*) depends continuously on #,, there is a positive constant ¢
such that w(&,J0E) > ¢ R(£,£), for all z and sufficiently large r, where
te E,.

Lemma 2.1.2 There is a uniformly constant C'4 which depends only on A and

¢, such that for any f) € M‘A(E(’"),XZ,J(”,O), we have

L VO, s < Ca
Z(r) o

where the volume form du, is defined using any conformal metric p. on ),

Proof: Fixing & = 20), f = f0) w = W J = J0 4= p,, f(E) C V,, we

then have

fzf wly, = ff(z)_wlvz :/Awlvz-

Since w[vz. is a continuous function of {7 and z, the above integral is bounded

by some constant independent of ) and z.

12
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At each point z € V,, choose a local unitary frame e, -+, e, € TH%V,
with respect to a metric h, and denote by {ef}7 the dual basis of {e;}7. The

symplectic form can now be written as

wlv, Mw( Nt,, z)er A €] +w(“)(tr,z)e A e +w{02)(tr,z) A€l

Let = be a local orthonormal basis of (Z , i), such that

Bu ’au

.(a)_,a .(a)_ﬁa
Nou’ ™ Fuy 0wy’ = Ouy

then the Cauchy-Riemann equation (df +J o df o j )(8%1) = ( can be written

locally as

where df(a;il) = f{gg + fig; and df(a%;) = fie; + fié;. From these equatibns

we deduce that

Froly, = w29, 2) (e Ae)) +wl ke, 2) F (e A E)
—I—w(‘."z)(tr,z)f*(e A et )

= _\/:_1&? (traz)(flfl + fzfz)dul A du2

The fact that Jiy, is édw|vz—ta.med almost complex structure implies that

(see the choice of metric i above)
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d o o g
w|Vz(df(3_m)’J0df(8_m)) +w‘vz'(df(8—u2)ajo df(&g)) '

> o (4 () + 1))

23]
= cldf[}-

On the other hand, direct computation shows that

wlv, (df (55): J © df () + wlv.(df (505), J 0 df (5%;))

= —V =L} (b, )i + Fifd)dur A duy,

and so the lemma follows.
Lemma 2.1.3 There are ¢ > 0 and C > 0 which depend only on A, J, and
o, such that for any J-holomorphic map ) € MY(Z0), Xy, J0),0), FO)
S0V, for some z, € Z, and any conform&l metric . on B with curva-
ture bounded by 1, if fp, |df )2 dvol,, < € and the injectivity radius ol «
is not less than 2R, where z € 50 R >0, we have
C

sup |df(r) 2-,- S —
Br(x) " R2

where Br(x) ts the geodesic ball centered at z and with radius R. Consequently
| f(") et (Brie) < Ca for some constant Cy independent of z..

Proof: This is ésst—:ﬁtiaﬂy Theorem 2.3 in [PW]. Here we briefly elaborate on
the establishment of the Bochner type formula. Fix a connection on bundle

E which is compatible'with the metric A and the complex structure J feo),
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Suppose that in local trivialization in V;, f() = For 2(;)) and Bap(z)

has coordinates uq,us. By direct computation, we have following formula

Adf©) = Vv (df )
(r)

1

Oug

= polynomials of up to degree 3 + linear combinations of

82 fé(T) a f}(")

c'?ua 6‘0&‘3 : 3'{!,,), ’

~where the coefficients of the polynomial involve J, the metric &, the connection

¥V, and their derivatives in the direction of V..

Then

Ay (AR, 1) = 2V V() df ) — 2(V (), V(df))

= Coldf" 2 4+ Caldr s, — (V (), V(&)
50 o el
Oug Qug  Ouy  Ous
< CildfD 4 Caldf O+ e (V(d), V(dFT))

+C(IdF L — (V(dfD), V(df)),

-+ linear combinations of

where we use the Cauchy-Schwartz inequality with ¢ < 1 in the last step. Note
that since J{), Q(T), h, V, and their derivatives in the V, directions all depend
continuously on the parameters ¢, and z,, we can choose constants Cy, Cy, C(€)
to be independent of t,,2,. So we have

A (D)2 D) < CldfOR L+ Caldf O s,

Hry Hry




and the lemma is proved.

‘Using the trivilization in Reﬁnark 2.1.1 to identify V,, with V, and seeing
that the image of f) Hes in V,, the rest of proof becomes similar to the proof
of Proposition 3.1 in [RT], and so we omit it. Observe that the ima,gé of the
limit f is contained in V. ' 0

The above proposition tell us that the limit map in the compactification

~of the fiberwise moduli space are stil} those that could possibly appear in the

_non-fiberwise case (the so-called Gromov-Uhlenbeck compactification). So if

we could establish a transversality theorem in the fiberwise case, counting the
dimension of boundary will go through as in the non-fiberwise case. It is this

transversality theorem we now turn to.

2.2 Several transversality results

Definition 2.2.1 Let ., J, and v be as in Definition 2.1.2. A fiberwise ¥-
cusp (J, v)-perturbed map f is a continuous map from &' to V, for some 2 € Z,
where the doma,-in Y of f is obtained by joining a chain of 5%’ at some dou-
ble points of . to separate the two components at the double points, and then
attaching some trees of S2’s. The resiriction of f to L is a (J, v.)-perturbed
holomorphic map and ils reétriction to the S*’s is J-holomorphic. We call
components of ¥ principal components and the others 5ubble components. A
fiberwise E—cusp curve is an equivalence class of cusp maps modulo the param-

eterization groups of bubbles.

16




By Proposition 2.1.1, we can compactify My, . 4 (¥, Xz, J,v) by adding
all possible fiberwise E;cﬁsp curves with total homology class A = A; +---+
A, We divide the set of fiberwise cusp curves by some equivalence.rela.tion_s:
(i) Some of the bubble components may be multiple covering maps, in this case
we simply forget the multiplicity and take the feduced' map onto its image; (i1)
Adjacent or consecutive bubbles have the same image, and t.hese we coilapse-
into one bubble. Note that the resulting curves are still fiberwise cusp curves’
with possibly different total homology class. Let M;’Al s dm) (B, Xz, J,v) be the
quotient of the fiberwise cusp curve compactification of My, ’“,‘Am)(E, Xz, J,v)

by above equivalence relation.

Figure 2.1: Domain of a. cusp curve

Proposition 2.2.1 Under Assumption (x), given any compact finite dimen-
sional pseudo-submanifold Z of Y, for a generic (J,v), Miy, . 4 (5, Xz, J,v)
is an oriented pseudo-manifold of real dimension 2C1(V) - A+ 2n(1 - ¢(Z)) +
dimg Z, and M}y, . 4 (5, Xz,J,0) \MY,, . 4 (5,Xz,J,v) consists of fi-
nite many pieces (called straia) and each stratum is branchedly covered by a

smooth manifold of codimension at least_ 2. Here A = A1+ ---+ A, and
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(%) s the genus of the stable curve. More precisely, MUy, ay (25 Xz, J, V)
consists of smooth stratum MEA],,,,,Am)(E?XZa,J, v) of dimension 2C(V) -
A+ 2n(1 — g(2)) + dimg Z* where Z° .mm through all smooth stratum of %.
M?Al;“',Am)(E.’XZ’ J,v)\ M}’Al‘,;;,Am)(E,Xz, J,v) consists of all M?fl,---,Am)(E’
Xza, J,v)\ M?Al,---,Am) (3, Xza, J,v) and each M?f],...,Am)(E,XZa, J, )\
M?Al,"‘,Am)(E7 Xza, J, V) consists of finitely many pieces, each of which is branch-
covered by a smooth manifold of codimension at least 2 in ME’AI‘,"‘AM)(E,XZQ,
Jyv). Here M?;fl o) (B, Xza, J,v) stands for the partial compactification of
M?Aly‘";An::) (2, Xz, J,v). By partial compactification, we mean that we do not
include limits of family of curves f) in M"’Al‘,__‘Am(E,XZa, J, v} with image in

V.., where the limil point z, is not in Z%.

Proof: By Proposition 2.1.1, all we need to show is: for a generic (J,v), for
each stratum Z¢ of Z, ME’A].i,,.,Am)(E,Xza,J,V) is. a smooth manifold of di-
mension 2C1(V)- A+ 2n(1l —g(E)) + dimR,Zo‘, and M?fi.---,Am)(E? Xza, J,V)\
Mgy ity (85 Xze, Jyv) consists of finite many pieces, each piece branch-
covered by a smooth manifold of codimension at least 2 in M"t’ A, Am)(E, Nga,

J,v). We divide the proof into three steps.

Step 1. The stratum decomposition. A stratum in M?fl,---, Am)(E, Xga, J,v)\
M?Al"_,'Am)(B,Xza, J,v) is a set of fiberwise cusp curves satisfying : (1) They.
have domain of the same homeor-norphk type; (2) Fach connected component
has a fixed homology class; (3} We specify those components which have the
same image even though they may not be adjacent to each other. We denote

by D a set with these three datas: a homeomorphic type of the domain of the




fiberwise cusp curves with intersection points, a homology class associated to

each component, and a specification of components with the same image.

Definition 2.2.2 Let D be given as above, Xq, -+, X be the principal com-
ponents &, and By,---, By be the bubble components of D. D is called A-
admissible if there are positive integers by, -, by such that A = ST+
-ET bj[Bj}, where [Py],- -, [Pul, [B1],- - , [Bx] denote the homology classes as-
sociated with 3y, - - - Y, By, -, By, We say that D is (J, v)-effective if every
principal component can be represented by a (J,v)-map and every bubble com-

ponent can be represented by a J-holomorphic map.

Denote by P‘i’:’g the set of all A-admissible, (J, v)-effective D’s. It is proved
in [RT] that Di‘"’-’z is a finite set. For each D € 'Di’:g, let M%(E, Xza,J,v) be
the stratum in MF}{’L_“,A?H)(E, XZ;, J, )\ M‘FAl,---,Am)(E? Xza,J, v) specified by
D. We perform one more reduction by identifying the dormains of those compo-
nents which have the same image, and éhange the homology class accordingly.
Suppose that the resulting new domain and homology class of each component
are specified by D. Denote by M%(%, Xza, J, ) the space of cusp (J, v}-maps
whose domain and the homology class of each components are specified by D.
Then for each f € MY(E, Xze, J,v), different bubble components have differ-
ent image and each bubble map is somewhere injective. However the imé.gé of
a principal component may be only one point. We identify MH(Z, Aze, J,v)
with M%(2, Xza, J, y) below.

Again let %;,---, X, be the principal components, 51, 5w be their

* smooth resolution(}; may have double points), and By,---, B, be the bub-




ble components. Now we begin to construct a smooth branched covering of
My (8, Xz, J,v). Let Xp be the domain of the maps in MY(E, Xzs, J,v),

and consider

/\;(}’—)(E,Xza, J,v) = {f : Ep — Xza| J is a continuous fiberwise map,
flf’:i € ME}P,-](EHXZ‘% J1 Uz'),le; € MEE:](SQ, XZG, J,O),.

Im(fs,) # Im(fp,),if § # 5'},

where ME’&](S{ Xza, J,0) C ME’BJ](SQ, Xza,J,0) is the subspace of non-multiple

covering maps. The action of the reparametrization group on each bub-

ble component induces a (% action on M%(E,Xza, Jv), G = PSL,, so
ME(E, Xza, J,v) = M%(E,Xza,J,v)/Gk. We first construct a covering of
M”D(E,ng, J,v). Let zi,--- ,':r:ih_ € X; be p; double points or marked points
which é,re bubbling points. Let h; be the number of intersection points on

¥; and A’ be the number of intersection points on the bubble component B;.

5

Consider the evaluation map

Figure 2.2: Creating a cycle in the domain
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. €p - Hé(MFP,-](iﬁXZ“:»J: Vi) X (ii)hi—pi) X HJ( Y E}.’B’;](Sz,XZa,J,O) X (52)hj)

h; j
—F Hi Xza X Hg X’}i

where ep is défined as follows:

For each ¥;, we define

épi :MEJP;](i“XZ“?J} V,;) X (i{)h;—p; — Xg&

6P.’(f? 5917.‘ e >'%hi—pf) = (f(:c;), e ,f(;v;‘_-), f('%l)a T 7f(i:hi—19i))‘ ‘

For each B;, we define

en; Mg (8%, Xza, ,0) x (821 — XL

e, (f,y1, ,ym) = (fly)yr o yws)).

X, then M N N can be interpreted as (M x N)N A, where A is the diagonal
of X x X. So we can realize the intersection pattern specified by D by con-
structing a “diagonal” in the product. Let z,---, 2z, be all the intersection

a‘
|
Then ep = I1; ep, X [1; €5, Recall that if M, N are submanifolds of a manifold I
points. For each z,, let

Is = {i)ija"'jziq:Bjﬂ'“3Bjr}

be the set of components which intersect at z,. Now we construct a fiber-

wise product XZ., of Xz such that its diagonal describes the intersection



at z,. This is done as follows: We aﬂ_ocate one or two factors from each
of ,‘t’g;l, ..,ngf, according to whether or not z, is a sell-intersection point
of the corresponding principal component. We also allocate one factor from
each of the X5 k =1,---,r. Here X} and X are the images of ep, and
eﬁ}., respectively. Then we take the fiberwise product of these factors 6ver

Z“, denote it by Xga and denote its diagonal by A% .. Then AYap =

hi+y R . P . .
Gag X X ADGa, Z ¥ i the “diagonal” realizing the intersection

pattern between components of D). Let = be the natural projection from

H(MEJP,-](EM’YZ“’J’ Vi) X (ii)hi_pi) X H(M?};,-](Szvxzaa J:O) X (Sz)hj)

H 3

onto

HMP] Eg,XZ& JU; XH 82 XZQ JO)

Then M3(E, Xza,J,v) C m(eg (Aa p)). But they might not be equal be-
cause ﬁe require that bubble components have different images. Define A% (%
Xza,J,v) 10 be eg!(AY, p) N 771 (MY (5, Xza, J, v)), and NE(Z, Xza, J,v)
to be N5(E, Xz, J,v)/GEZW . Then m : N§(Z, Xza, J,v) — Mp(%, Xza,J,v) |

is the required branched covering.

Step 2. We will show that for generic (J,v), for each stratum Z< in Z,

M, ) (B Xzay J, v) is a smooth oriented manifold of real dimension 2Cy(V)-

A+2n(1 —g(%))+dimg Z*, and N§(E, Xz=, J,v) is a smooth manifold of real

dimension
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S(2CH(V) [B]+2n(l —¢) + 2(2C(V) - [B;] 4 2n — 6)

+2hD — 2'&2 - 28D - 2n(hf) — tD) + dimR ZO‘,

v'vhere g; is the genus of ¥;, uy, is twice of the number of double i)oints of ¥, sp
is the number of marked points which a,ré bubbling points, {5 is the ﬁumber
of intersecfion' points of D and hp = S b + T Y.

The basic idea of the proof is due to D. McDuff [M1]. Fix k& > 4, ¢ > p,
1> k4 1 Leb Poyp(X7,0) — Ji\(Xz,w) be a vector bundle whose fiber
over J € J(Xz,w) is the space of all inhomogeneous terms defined by J.

Pi_1,(Xz,w) is a smooth Banach manifold. Define

Mapz_p(iiaxza, [P]) ={fi: ¥ — X | f; 1s a fiber map
with bounded H*? norm, [f,(i}z)] =[]}
Map},, (8%, Xge, [Bj]) = {f : 8 = Xya] I is a fiber map

with bounded H*P norm, [f/(5%)] = [B;]}.

(Here we require all the maps from 5? to Xz« to be somewhere injective).

Let Tho1p(TEi €5 (Elixya)) and Tpip(T5%, eh.(Elx,q)) be vector bun-
dles over [T, Mapy, (54, Xga, [P]) % TI; Map}, (5%, Xz, [Bj]) X Pro1p(Xz,w),
whose fibers over a point (f;, 4, J, v) are sections of QY (f(E)) and Q% (F1(E)),
respectively, with bounded H*~1? norm. Then we obtain an infinite dimen-

sional bundle with a section S which is a partial differential operator,



I Fk—l,p(Ti‘ia E*P;(E)) X I Pk_l;p(T5236EJ‘ (£))
— L Map} (8, Xze, [P]) x T1; Map} (5%, Xza, [Bj]) X Pro1p(¥z,w)

S(fi f3,J,v) = (81 fi = vils;s 05 F7)

Lemma 2.2.1 The zero section of the above bundle is regular for the section

S. e,

Mgy (Xe) = {5 L 40| 8(fi, 7, J,v) = 0}

is & Banach submanifold of [1; ]\d[ap};,p(f]i, Xga, [P.z]) x T1; Map} (5%, Xza, [B;])

X‘Pk_Lp (Xz,w).

Proof: For any point z € Z%, choose a neighborhood U of z in Z¢, such that
if we fix a trivialization Xyely = p ' (U)X U XV and Tp~ Y (U) 2 TU x TV,

then the tangent space at (f;, 7, J,v) is

Ty Mapy ,(5i, Xge, [P]) = (5, f7TV,) x 1. 2°
Ty Map (5%, Xge, [BI]) = Ty (52, f*IV,) x T,Z¢

T3 30 Xz,w) = Tig(Bnd(#, J)).

(Here 7 o f; = z, w0 fi = z and End(E, J) is the set of all the endmorphism

of E which anti-commutes with J). S




T3 Prot p(X2,0) = Tig(End(E, J)) % T1; Tpo1,p(w3 T8, 73 5)
sy Tho10(T Sk €5, (B)) = Tap(8, fETV;) X T2 x Qg (FITVE)

T(fjig)rk_l,p(TSZ,eB ( )) = Fk p(52 f'?*TV) X T Z X Q (S2,k—1, )(fj*TVz)

Note: the fiber directions of the above two tangent spaces are Q?g‘-,k—l_,i')(f ;
TV,) and ?.'S?Z,k-l,p) (fi*TV,), respectively. Let us compute the projection of
the linearization of S to the fiber direction at (fi, f¥, J,v) satisfying S(f;, 4, J,v)

= 0.

n Toy(Se, [2TVL) X TL Tup(S2, F9*T'V,) % T,2% % Ty o(End(E, J))

% Thi Do (w3 T8, w3 E) D5 5)

1L r,cp(z:t,f TV.) % T Trp( 5% S5TV.) X T2 x TR, , ) (F1TV2)
x [1; Q(s2 E—1 p)(fj*TVz) —

oo TV2) X T TV

We fix a Hermitian metric A on E which is compatible with J, also fix
a connection V on E which is compatible with this metric and the fiberwise
ahﬁost complex structure. Further suppose that for any z € Z, Vl|y, has
torsion Ny, , where Ny, is the Nijenhuis torsion tensor of (V,J tv.). The
construction of such a connection is the same as the construction of such a
connection in the non-fiberwise case. V defines a parallel tgansla,tions P;; and
P! along path {fi,}7, and {f/}% k_y, respectively, on the bundle I, which will

be used to define DS. We now can write down Pr o DS
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Pro DS(fi, /1, ,v)(€ .7, w, 6)
= Pr o DS(¢,0,0,0,0) + Pro DS(0,7,0,0,0) + Pr o DS(0,0,7,0,0)
+Pr 0 DS(0,0,0,w,0) -+ Pr o DS(0,0,0,0,6)
Pr o DS(E,0,0,0,0) = (V6 + Jlv, o V& i, + N, (Bt (1, 6020 0)
Pro DS(0,1,0,0,0) = (0, (Vi 4+ J]v, 0 Vi 0 jge

1 N ~
Vot O (P )
1

ProDS(0,0,0,,0) = (Gw(f) o s 0 52, (GulF) o dF o jse)icy)
where £ = (&, &mhin = (0, 7*) and 8= (61, 6m ).

The co'mpﬁtation of these formulas is exactly the same as in the non-
fiberwise case since we may choose the families of maps varying in the direc-
tions of £ or  to lie in the same fiber V,(see [M1]).-

To compute Pr o DS’(0,0,%0,0), we choose families of maps, fi; =
fi,ff = fiJ, = .J, z; satisfying %1120 = 'f, and .ut = y. Here we suppose

Im(ft) C Vzm 80

Pr o D5(0,0,7,0,0)
= ((%Pi,t(dfi.t + Jv,, © dfiy 0 ju; — vils))imas
(LBiafE + Tlw, 0 dF 0 js2))ia)
= (Vo(dfi + Jlv, 0 dfi 0 g, — vils )V, (VA(df? + J v, 0 df © j52))51)

d . ) m
((; (dfi + Jlv,, o dfi o g, — wils,) + Tidfs + Jlv,, 0 dfi 0 jz, — wils))ity,
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“qu . —hi—p; 3 hi+ I
ep : M{ipyp,p) (Xze) x TI B < [I(8%)" — xge e
, i j

is transversal to A%, 5. Let (vy, - ,vté) be a point in_A%a,D, I, = {f),-l',- e

gz’p,ij' o !B.;;r}ﬂ and
(fis.fja’]: VyZty Ty Y1y '.\yk) € 651({01: e vUtD)'
So fi (@) = -+ = fylty) = [ (u3) = - = F(y;) = v By the Hortman

Winter Lemma ([JS}, Lemma 2.6.1), there are only finitely many accumulation
points of Imf’ N Imfj', since we tequire that Imf? #£ Imf? for j # j'.
Therefore, for each: f, ﬁe can choose a small disc D;, around y;, such that
there is a smaller disc D';, satisfying that the annulus D;, — D’;, does not
intersect other bubble components. By the work of D. McDuff [M1], given
any tangent vector X € Tfjg(yja)‘[/;, Whére f(X) C V,, for some z € Z%, there
is a perturbation of the almost complex structure Jly, to (Jlv,); on V; in a
small neighborhood of Im f| D;, Dy, and also a perturbation fi* of fie on
D;, such that £l is (Jlv.)¢ holomorphic, Jo = fis, and %éi(yjs)]t=0 = X.
We can patch fi* with fis s2-p,, to get fi* defined on the whole §? such
that f°) p;,-p;, does not intersect other bubble components either. Note that
(J]v,): can be extended to a family of complex structure J; on E, ie. we
can choose perturba,tion. (J le-)t which comes from P{_; ,(Xz,w). Notice that
| other bubbles are also Ji-holomorphic and '%{;i(yj&)h,—_g = X.

For a principal component f;,, the argument is easier since we can perturb

the inhomogeneous term. We can just choose an arbitrary perturbation fi,



on a small disc D;, around z;, such that %&(mzs)it—-o = X, and then simply
perturb v;|y, to (v|v,): while keeping (v, |y, ) = &;fia,t on the graph of fi ..
Then f;,, satisfies an inhomogene(.)us Cauchy-Riemann equation with inho-
mogeneous term (v;,|v, ). Note that (v,|v,): can be extended to a family of
elements in 73}:_1@ (Xz,w). Applying this argument to e;’LCh point v, and every
point in 651( %a,ﬁ) we have shown that the map ep is transversal to Av. | D

Therefore eg' (A% e p) 1s a smooth Banach manifold. Moreover we have the

following Fredholm map

-1

b (8% p) > Piip(Xz,0).

€

By the S.ard~Smale Theorem, for a generic element (J, v) of 'Pf;_lm (Xz,w), its
preimage 77 (J, ) is a smooth manifold (it is. crucial here that Pf_; ,(Xz,w)
has smooth structure). This implies that M‘(’Ahm’Am)(E, Xza,J,v) is a smooth
manifold when we choose D with no bubbles 4, and in general N, 2(2, Xza,J,v)
is smooth manifold. Since GZ* acts freely on N3(X, Xza,.f, v), N3(Z, Xza,

v) = J\Nfl%(E,XZ;, J, y)/GEhj is smooth. Note that GLM acts freely on ep
(A%a p), 80 We can define a smooth manifold Ef)l( Yap) = €p (A%a D)/Gz B

a space that will be used below.

Step 3. A routine couni;ing dimension argument gives the dimension formula
(see [RT]). We can see that the codimension of the boundary of the moduli
spa,ce‘is at least two in the following way. Notice that for most fibers of the
fibration MYy, . 4. y(2, Xza, J, v) — Z."‘, the boundary part of a fiber is of

codimension two in the fiber as we know from the non-fiberwise case. Since

29




30

MY 4 (3, Xge, J,v) has the required smooth structure, its boundary has

1,7

codimension at least two. ' _ OJ

Remark 2.2.1 Since the moduli space has a canonically defined orientation in
the non-fiberwise case, this orientation and the orientation of Z% give a natural

orentation of the moduli space ME’A“,,’Am)(E, Xga, J,v) in the fiberwise case.

Proposition 2.2.2 For a generic (J,v} € Py ,(X7,w), and D € ’Dj’:ia,

dim NE(E, Xga, J,v) <201(V) - A+ 2n(1 — g(2)) — 2kp — 2sp + dim Z°

where kp is the number of bubble components of D (nol D), and sp is the

number of marked points which are also bubbling points. _ ‘
Proof: Similar to Proposition 4.14 in [RT]. We omit it. O

We want to prove another transversality result which will be used in

defining the fiberwise mixed invariants later. Let {U;}e,, {W;}_; be two

(possibly non-compact) families of smooth manifolds, and L; : U; — Xy, M; :

VVJ — Xz be smooth maps. We require that the images all lie in one stratum,

say Xza. For each data D, we know that A§(%, X'za, J, ) is a smooth manifold |
for generic (J,v). Consider the intersections of the components of Imf and
Im(M;), where f € NI%(E, Xza,J,v) consists of principal components {f;)I,
and bubble components (f? ;-‘zl.l Withéut loss of generality, we may assume
that Im(M,),---, Im(M,) intersect the principal cc;mpoﬁents‘lrnf;a of f, 1 Sl

s < p, and ImM,41, -+, My intersect the bubble components Imf’ of f,
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p+1 < s < d, we call this an intersection pattern, and denote it by 7. If
M; intersect more than one component, we simply choose one of them. Let
C = (21, -,2;) be a stable curve, and X :‘(:El,"',xc) be the set of -

marked points. We consider evaluation map

P
ext X Lx M: N{(E, Xgay Jyv) x [ 80, x (SP)4 P x U x W
’ 5=1

e XSk At

eX,T(fiafj;yl;'"7yp;yp+1a"'ayd)
= (f(wl)a e 1f($c);f'i1 (y1)7 Tt 3fip(yjﬂ); tfjp+1(y:l?+1)7 e afjd(yd))

where U = [ Ui, W = TLW;, L = [L; i, M = TI; Mj, G = PGLy, A} C

chdy xst? is the diagonal corresponding to the intersection pattern 7', and

'% is defined similar to Ay, 5. Note that (f;--+) is in (ex,r x L X M)Y(AS)
if and only if f(z;) € Im(L;), Imf;,N Im(M,) # $,1 < s < p, and ImfiN
Im(M,) #0,p+1<s<d
Proposition 2.2.3 For a generic (J,v) € Pro1,(Xz,w), any D € ’.Di"”z,

(exr x L x MY Y (A%) is a smooth manifold of dimension

dim NE(X, Xza, J,v) + 2d — codimL — codimM
< 20v{V)- A+ 2n(1 — g(¥)) + dim Z2*
—2kp — 28p + 2d — codiml — codimM

where sp, kp are defined as in Proposition 2.2.2, codiml; = dim Xza —dim U;,

codimC = Y;codimC;, codimM; = dim Xza—dim W}, and codimM = ¥, codimM;.




When the proposition is true, we say that Np(X, Xza,J,v) is transversal to
Lx M for (X,T), and such (J,v) is good.

Proof: We use the notation E5'(AY. D) as defined at the end of the proof of

Proposition 2.2.1. All we need to show is that

p -
exrpy X L x Mt EGN(AYa p) x J] 8i, x (SB)¥? x U x W — Xt x a5t
s=1 -

is transversal to A%, where map e(xrp) is defined similarly to Ex . Since
EZN e p) = Pre1,p(Xz,w) is a Fredholm map, according to the Sard-Smale
Theorem, for a generic (J,v), exr is transversal to A§.

To prove e(x,r,p) X L X M is transversal to AZ, assume that (f;, f, J,v, yk.,
wirtty) € (eormey x I x MY (AF), Flae) = Lilus), Fi(ys) = M), 1 < 5.
p, f(ys) - M,(w,), p+1 < s < d, we need to prove that for any X; €

Tf(m;)XZ‘Hl/s = Tf.;s(y_g)XZ'J‘:l <s 2 p and Y, € Tf.‘iS(yé)XZ‘_*)p"i'l <s < d‘7

we can find a family of curves (Fitr Fi 3 J6s Ver Us) € E5(AY o) X[ Zi.

X ga-p(5?)27P such that %(f—"lh:g = X,-,-giﬁ-'%ﬁ’t—)h:o = Y,,1 < s < p, and

& (y” G Wet)) =Y, p+1 <5 <d. We achieve this by perturbmg (fi, £, J, v, y5)
several times, each time satisfying one of the requirements satisfied without
aﬁ'ecting'the other. The perturbation goes as follows: suppose we want to
make M| —o = Y;. f Y} is a fiber direction in T}, (4,)Xze, we then only
need to perturb the curve within the fiber V,, the perturbation being similar to
the one in the pi‘oof of Proposition 2.2.1. The only new feature is that if g is
the double or cusp point of the domain of f, the perturbatif)n hé,s to keep the

intersection pattern of the cusp curve, since otherwise the perturbed family
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will not be in E;( e , 7). This can be done as follows: choose a curve ¢; in V,
with ¢o = fi,(y1) and 2|0 = Y;. For any principal component intersecting
at fi{y1), say fi, by perturbing the fiberwise ihhomogeneous term, we can
find f;; which is a local pertu.rbation of f; around 4, such that fi.(y1) = c.
For any bubble component intersecting at fi,(y1), say f7, by the work of D.
McDuff[M2], we can actually perturb J in the same way as in Proposition
‘2.2.1, with f,g" (1) = ;. Now the different components of the map f; infersect
at the point ¢;. Once again we can extend the perturbed (J|v,):, (v|v,): to
(s 1) € Phosp( Xz 0). |

If Y] is not a fiber direction, we choose a trivialization of Az~ around z €
Z* (see Remark 2.1.1). We only study the case that Yl-is a horizontal vector
under the trivialization, since this is sufﬁcient for proving the surjectivity.
Choose a curve ze in Z° with 2, = 2, %ﬁtjt:a_ =Y}, we perturb J and v in the
following way: Ji|v, = Jl|v,,mlv, = vlv,, so take f, = [ butl view that Imft

..lies in the fiber V,,. Now fi, +(y1+) = (2, fiber part), the horizontal part of

dfl'] t(yl,t)
di

cusp curve. So ex,7,p) X L X M is transversal to Af.

Dimension counting being routine, the inequality follows from Proposition

2.2.2. and the proposition is proved. ' |

Remark 2.2.2 i) If Z is a submanifold of Z°, assume that (Jo, ) is good for
NB(E, Xz, Jo, ), and consider the subspace Proip(Xz,w) C Pro1p(Xz,w)
which consists of (J, v)’s whose resiriction to X equals (Jo,v0). Then using

this space instead of Pr_1,(Xz,w) in the proofs of Proposition 2.2.1 and 2.2.2,

o is Y] and this perturbation keeps the intersection pattern of the
p on p |
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one can show that for a generic (J,v) of Pr_1,(Xz,w), NE(E, Xge, J,v) is
smooth and transversal to L x M, since we may perturb (J,v) only outsidc; of
Xz,

i) If j; is a smooth family of comples structure on 3, ¢ € [0,1], denote by
¥ ¥ equipped with 7¢, then one can consider the space UtNl%(Zt,Xza,J,v). For
a generic (J,v) € Pro1,(Xz,w), this space is smooth and transversal to Lx M.
The reason is: in the proof of Proposition 2.2.1 aend 2.2.2, replacing those
Map and Ef;( ’_’ZQ,D) spaces by their union over ¢, t € [0,1], the remaining

argument is the same.

The following proposition about the transversality of components of fiber-
wise cusp curves is important for the gluing argument in Chapter 4. Adopting
the notation of Proposition 2.2.1, coﬁsider the moduli space M7y, . 4 ) (2, Xza,
J,v). Tt consists of fiberwise (J, ») perturbed holomorphic maps which have
no bubbles and whose components intersect each other at double points. We
would like to show that the subset where at least two components intersect
non-transversally is of codimension 2. Without loss of generality, we can as-
sume that Y has only two components ¥; and ©,. Let 1y and y; be the
distinguished points on ¥; and X, corresponding to the intersection. We al-
low a self-intersection by setting ¥; = 3, and using their smooth resolution

below. We then define

Cyrye M?Al ,Ag)(zﬂ XZ") Ja V) - Hom(Tm 217 E'Xza) &b Hom(TyQZZ} E!Xza)

ey (F) = (dfi (1), df2(y2))
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where f; € My, (31, Xga, L, 1), fo € Ma,(Zg, Xza, J,1,). A generic element
in Hom(T,, 21, Elx,) ® Hom(Ty, %2, E|x,.) is a smooth fibration over Xz«
of dirﬁension 10n + dim Z% and maximal rank 4. If f; and f; do not intersect
tra,nsverrsaﬂy, then f’s image will have lower rank. The set of homomorphisms
of lower ranks is a union of manifolds R; consisting of homomorphisms of rank
i (1=0,1,2,3). dimRp = 2n + dim Z*,dim R; = 2(: + 1)n + dim Z% + 4 — 4,

1=1,2,3. Thus their codimensions are 8n,6n — 3,4n — 2,2n — 1.

Proposition 2.2.4 For a generic {J,v), e, ,, is transversal to R;. Hence

et (R:) has codimension at least 2n—1 in MZ’AI‘Az)(E,Xza, J,v), i=0,1,2,3.

Y192

Proof: Use the notation Ep'( % p) as defined at the end of the proof of
Proposition 2.2.1. Now choose data D with no bubble components and denote

E5 (A p) by M4, 45)(E, Xze, P). Consider the map

By e : MT(}Al,Ag)(EaXZ“a’P) — Hom(T,, 51, Blx,a) ® Hom(T), X, Ely,a)
By ey v} = (dfs(y1), df2(y2))s
we can show that F,, ., is transversal to R;, 1=0,1,2,3. The proof, which is

similar to the proof of Proposition 2.2.2, is omitted(see Theorem 5.10 in [RT]).

O
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Chapter 3

Fiberwise Gromov-Witten Mixed Invariants

We now. begin the definition of fiberwise mixed invariants, our aim being to
use it to define the fiberwise quantum cohomology. Let ' = (2; 21, -+, ) be
a stable curve of genus ¢, & = (X4,-++,8,), X = (21, -, 2.}, and Ay,- -+, A
be homology classes in H(ViZ), A=A+ -+ A,. Without loss of gen-
erality, assume that zy,---,z; lie in By, @;,41, -+, 2, lie in s, -+, and
B4y ,Vscim lie in %,,. Denote this position pattern by P;. Take a bundle
A L Y satisfying Assumption (x). Let {&;)S, {5;}§ bé rational cohomology

classes of X, and « be the rational homology class of Y satisfying

¢ d :
S degai + Y(deg B — 2) = 2C1(V) - A+ 2n(l — g) +deg(y). (3.1

Here we work with rational coefficients for homology and cohomology, but
we could use real or complex coefficients. In Chapter 6 we will actually use
complex coeflicients. Integer coefficients can not be used because an integral

homology class may have no pseudo-manifold representative.
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Let F: Z — Y be a pseudo-manifold representative of a homology class
4. Using the notation after Assumption (%), F*(o;) and F*(8;) are then
cohomology classes in the pseudo-manifold A’z. Denote their Poincare duals
by PD(F*(c;)) and PD(F*(f;)) respectively. We can represent PD(F*(a;))
and PD(F*($;)) by pseudo-manifolds U; and W; in Xy in the following way:

there are continuous maps

L,‘ZU,‘—)XZn} Mj:WjH-)XZ
such that on each stratum, say U7 or W j , both. L; and M; are smooth and

each image L;(Uf) or M;{(W}) lies entirely in some stratum of Xz, say A'zei.s

or A,s;,. Furthermore they satisfy the following general position condition.

General position condition:

dim Xy, — dimU? > dim Xz — dim U,
dim X'pe;, — dim W} > dim Az — dim W,
Note that if Z is smooth, then this definition coincides with the ordinary

definition of the pseudo-manifold representative of a rational homology class.

Denote L = [[; L, M = [1; M;, L x M : [L; Us x [I; W; — Xg*%. Denote
by Im the image of a map, fix an intersection pattern T: Imf,, intersects ImWj,

j =1,---,d. Then define the evaluation map

G‘(E,P,J,V) : M‘E’Al,---,Am)(E?‘XZ’ JJ V) X H;!‘:l Zﬂj B X.E-I-d

(f;yl, Tt ayd) _) (f(ml)a : '7f($c);fsl(yl)7' : '1f3d(yd))'
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Note that ez, p ) 1s @ smooth map. It follows from our assumption on the
degree of o; and f; that the image of 6()3" Py and L x M have complementary

dimensions in X5, Moreover, we have

Proposition 3.1 Under assumption (3.1), for a generic fiberwise almost com-
plez structure J and a generic inhomogeneous term v in Pr_1 (X7, w), we have
i) There is no sequence {f.}5° in M?AI,..-‘A,"}(E:XZ:J’V) with f,(z;) converges
to a point in Ly(U;) as r — oo, fo,(8,,) N M;(W;) # 0 and at least one of
the following is true:

a) for some i, fy(x;) converges to a point in L;(U; \ UY),

b) for some 3, frey(Say) 0 My(W; \ WD) 0.

Here U and WY denote the top stratums in U; and W; respectively.

i) There is no sequence {f,}5° in ME’AI’,_,‘Am)(E,Xz,J, v) with f.(x;) converges
to a point in L;(U;) as v — 00, fr,,(Bs,) N M;(W;) # 0 and the limit f in not
m My s (2, X0, J,v). Here Z° denotes the top stratum in Z.

iii) e(z pap) (M, o a) (35 X0, J,v)) and Lx M(U® x W°) intersect transver-
sally at finitely many points, i.c., there are finitely many (fiy1,--,y4) €
My a5, Xg0, J,v) X [y B, (u,w) € UO WO, such that ez pau(f3 11,
cooyya) = (LD(u), M(w)), and at each intersection point, the image of the tan-
gent space T(y U x W under L X M is transverse to the image of the tan-
gent space Tz, oy May o am) (B, Xz0, J,v) X [152, Bs,) under the evaluation

map.

Proof: i) If this fails, by Proposition 2.1.1 (here we adopt the notation there),

there is a cusp curve f € NE(Z, Xz, J,v) for some D satisfying: (1) f(Z)n
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Im(M;) # 9, 1 < j < d; (2) for each marked point ;,7 = 1,-+-,¢, either

f(z;) € Im(L;) or a bubble occurs at x;. In the second case, f(z;} may not

be in Im(L;), but I'm(L;) will intersect a bubble tree coming out of z;. Note
that I'm{M;) may intersect a bubble instead of the principal component of f.
Therefore We see that f could have fewer marked points and the number of
homology classes corresponding to the unmarked part increases. Let X' C X
be the subset of marked points which are not bubble points. Suppose that
X' = (21, -+, ,), then there are at least ¢—p bubbles. ¢+ d— p is the number
of pseudomanifolds in PD(F*(a;)), PD(F*(8;)) which intersect Im(f). Let
flz) € L) for i = 1,--,p, Im(f) N Ii(U;) # @, for i = p+1,--+ )¢,
and Im(f) N M;(W;) # 0 for j = 1,---d. Suppose that f intersects these

pseudo-manifolds in a intersection pattern T, implying

(eX,T x L x M)_I(A?«) 75 0

where Im{f) C Xz= for some o and ey r is defined before Proposition 2.2.3.
Proposition 2.2.3 says that (exr x I x M) "*(A%) is a smooth manifold, we

have an estimate of its dimension

dim(exr x L x M) ' (A%)
= dimNZ(Z, Xza, J,v) +2(c+d—p) — codime(a) - codimﬂ/;t(a)
= 201(V)-A+2n(1 — g) — 2(c — p) + 2(c + d — p) — codimUF(*

—codimW;* + dim 2,
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where U,—s(a) stands for all the stratum in /; whose image lies in X'z« and W;(Q)
has a similar meaning. If & = 0, by the assumption we have codimlU?:* >

codimU; + 2 or codimW;(a) 2> codimW; + 2, so

dim(BX,T x L x M)_l(Agw)
< 201(V) - A+ 2n(1 — g) + 2d — codimU; — codimW, — 2 + dim 2°

= -2

If e 5£ 0, then the general position condition and dim Z%* < dim Z% — 2 imply

'dim(ex,T x L x M)_l(A%)
< 2C1(V)- A+ 2n(l ~ g) + 2d — codimU; — codimW; + dim Z° — 2

= 2.

So in either case, we get a contradiction. 1) is proved.
ii) The first half is the same as the proof of 1), the only modification is the

dimension counting,.

dim{exr x L x M)"HA%)
= dimNE(E, Xga, J,v) +2(c+d —p) — codiml/(* — codimVV;(a)

2Ci(VY-A+2n(1—g)—2—2(c—p) +2(c+d—p) ~ codimUis(a)

A

—codimW}* + dim Z°

(A

_2,
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where we use that D has a bubble component to get —2 in the second to last
step.

This a contradiction. ii) is proved.
ii1) Considering the restriction of e(s,p,ay) to M?Al,"‘jAm)(E’ Xgo, J, 1) x Hle Y,
and the restriction of L x M to U° x W, iit) follows from Proposition 2.2.3.
) ,

Remark 3.1 i) Note that if each of dim Z, dim Ui, and dim W; is one dimen-
sion higher than it is in Proposition 3.1. It is still correct, except that we should
_modify iii) as follows: their intersection is a one dimensional smooth.manifold
in Mg, o) (8, X0, J,v) x U x WO, The feason is: in the proof of the above
proposilion, if the dimensions of Z,U;, and W; are raised by 1, the result of
dimension counting in i) end ii) is -1, which still gives a contradiction.
| it) Assume dim Z, dimU;, and dim W; are one dimension higher than il
is in Proposition 3.1, and Z,U;, W; have submanifolds Z,U;, W;, respectively.
A According to Remark 2.2.2 1), Proposition 3.1 is still correct even if we fized
(J,v)’s value on 2,&-,1%— to be good. If Z,U;,W; are boundaries, the one
dimensional manifold in i) has boundary, this essentially giving a cobordism.
i) Suppose that Z satisfies (3.1), tf we consider the moduli space‘ap-
pearing in Remark 2.2.2 ii), Proposition 3.1 is still correct. The image of the
moduli space UtM?Al_...‘Am)(EhXZDy J,v)x j___l B, will only intersect the im-
age of U° x W°, and the intersection will be transverse giving a smooth one

dimensional manifold.

Now we define the fiberwise mixed invariants as follows. Denote by P :=
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(Py,T) the pair: the position pattern P, and intersection pattern T’ and denote

exr by ez, pav)- Fixa pair (J, ) such that e p.sy) and M}’Ah_“‘Am)(E, Xz, J,v)
satisfy all the properties in Proposition 3.1. Again we will call such (J,v) good.
First we associate a multiplicity m(f) with each f Mg, a5 Xz, J, v).
We define m(f) to be zero if either f(z;) is ﬁot in L;(U;) for some 7, or fs;(2s;)
does not intersect with one of the M;(W;) for some j. If [ is given as in

Proposition 3.1, there are finitely many (ya, )l S ¢ < 1) such that

faiye) € M;(WP). Putting €(f,t) to be £, the sign being determined by
-tﬁe orientation of M‘(’Al,_“’Am)(E,XZo,J,zJ) X H?:} B, ab (fiyn, ,Yud), the
orientation of U° x W° at (u,w), the orientation of xettat (), flze),

Foa(ynn )y ;fsd(ytd)), and the Jacobians of the maps €z p,ju) and L x M. We

define

i
m(f) = > e(fi1)-

t=1

Finally we define the mixed invariant

By smm 0y sl By, Ba)(7) = S m(f).

For convenience, define

‘I’fAl,---,Am,w,z,P)(ala‘ Ty Oﬂclﬁh' - ,ﬁd)(’)’) =10,

in case that

S deglor) + > (dog(B;) — 2) # 2C1(V) - A+ 2n(1 = g) + deg(y).




This defines a map

fAl,---,Am',w,E,P) : (HH*(X§_Q)) X (HH*(an)) — H'(Y; Q).

Note that. when Y is a point, X' = V, the fiberwise mixed invariants

coincide with the mixed invariants defined by Ruan and Tian in [RT].

The following proposition assures that DY o A3, P)(al, s, | By, e,

Ba)(7) is indeed a symplectic invariant. |

Pfopositidn 3.2 ‘I’(“Al,_.,Am‘w,E’P)(al," B,y Ba)(y) is independent of
the choice of (J,v); the marked points zy,--- . of the same position pat-
term Py in ¥; the conformal structure on &; the choice of pseudo-manifolds
(Li, Us), (M;, W;), (F, Z) representing o, By (i =1,-++,¢;5 =1, ,d). Fur-
thermore, the invariant depends only on the semi-positive deformation class of

Ww.

Proof: In the proof we adopt the notation used in Proposition 3.1, and divide
the proof into several parts.

i) We show that CD}’A] ,-..,Am,w,z,P)(ah' .- ,qc|ﬁ1, «++, B4)(7) is independent
of the choice of good (J,#). Suppose (Jo, v0), (J1, 1) are two choices, denote
Z = Z x [0,1], define Xz — Z to be a fiber bundle with fiber V induced
from Az, the fiberwise symplectic form & on X’s being a,lso‘the induced one.
Note that Xz — Z satisfies Assumption.(x). Define Py1,(Xz, &) similarly to
Py s p(Xz,w), but with a bouﬁdary condition: for any (J,7) € Pro (X, @),

(N rgo = (Josv0)s (, 050, = (Ji,1). Then choose L; = IL; x id,
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M; = M;xid, U; = U;x[0,1), W; = W; x[0,1}. From Remark 3.1 ii}, it follows
that for a generic (J, "), (ex.p,i5) X L x M)"Y(A%) will give a one dimensional

cobordism between (e(s,p,p.00) X I X M) (A} and (e(z,p, w1y X L x M) 71 (AF)

in the spacé M}’Al,_,,’Am)(E,XZo,j, ) x H;Ll Y, X {7° x WO, This cobor-

dism tells us that ¢, 4 5 pyla, by, -+, Ba)(7) is independent of
the choice of (J,»).

ii) We show that @f’Ah_,_,Am‘w’E,P)(al, ooy 0| By, ey Ba)(7y) is independent
of the choice of the conformal structure j on X. Suppose that jo,f1 are
two conformal structure on ¥ and connect them by a family j;,¢t € [0,1].
From Remark 3.1 iii), for a generic (J,r), the image of the moduli space
UiM(vAl,---,Am)(Eh Xgo, J,v) % Hle %.5; will only intersect the image of U x I;VQ"
the intersection will be transverse and give a smooth one dimensional manifold.
But this one dimensional manifold is the cobordism betwéen (eq(z o) Pt X
L x M)Y™AY) and (eqm i) pim ¥ L x M)"1(A%). This cobordism tells us
that B, 4 (e, Gl -, Ba)(7) s independent of the choice of
the conformal structure 7 on 2. |

iii) We show that q)?Al:“‘aAm,W;E.P)(al’ o, 0| B, e+, Ba)(y) is independent
of the choice of the marked point set X within the same position pattern P (see
the definition at the beginning of this chapter). If X’ is another set of marked
points, choose a continupus map gb ¥, — ¥ isotropic to identity, mapping
X to X', and being a diffeomorphism on each component ¥;,1 = 1,---,m.
Let ¥ to be ¥ equipped with the pullback conformal structure ¢*j, then
obviously @E’Ahm‘Am’w’E,P)(al,n-,ac| Bi,- -+, Ba)(7) defined using the stable

curve ' = (¥, X’) is the same as the one defined using the stable curve
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C = (%,X). Combining this with part ii) above, the independence of the

choice X is proved.

iv) We show that ®Y, o py(a1, -, ac|B1, -+, Ba)(7y) is independent
of the choice of psendo-manifold representatives (F, Z), (Lt-,_U,-), (M;, W;).
Suppose that (Fo, Zo), (Lio, Un), (Mjo, Wyo) and (F1, Z1), (Lar, Un), (Mj1, Win)
are two choices, both of them satisfying the general position condition. First
we can find a cobordism of pscudo-manifolds F* : 7 — Y with 8F = FyU
.Fl,c'?Z = Jy U Zl, and also construct a fiber bundle p : ' — Z with fiber V
satisfying the Assumption (x). Secondly we can find a cobordism of pseudo-
manifolds L; : Ui — Xz, M; : W; — Xj, satisfying the pseudo-manifold
representative condition listed at the beginning of this chapter(in particular the
general position condition), and 8(Ls, U;) = (Lie, Use)U (Lix, Unr), O(M;, W) =
(MJ-D, Wio)U(Mj1, W), Applying Remark 3.1 i) to (F, 2, (L, U, (M;, W),
we get a smooth one dimensional manifold which is a cobordism between
(e(m.Pa0w) X Lo X Mo) ™ (A%) and (e(z poay ) X Lq x M) 1 (A%;) in the space
Xz. This cobordism tells us that @?AJ’_,_;AWW‘E’P)(QI,. e a|Buy e, B () s
independent of the choice of (F, Z), (L;, U;), and (M;, W;).

v) We show that @}’Ahm,Am‘le’P)(al,--‘,aclﬁl,---,ﬁd)(fy) depends only
on the semi-positive deformation class of w. The reason is that (J,~) does not
depend on the symplectic form w as long as it is w-tamed, and tameness is an

open condition. o O

Remark 3.2 To define q’?Al,---,Am,w,):,P)(alv e By ey Ba) € HY(Y, Q), we

only need to choose a basis y1,---,v, of H*(Y, Q), and evaluate Bt ey AT, P)

45



(o1, ae|Bry oy Ba)(vi). Note that for some appropriate choice of yi,- -+, v,,
we can represent all v; by submanifolds Z; in Y. This means that we can
choose Z to be a manifold from the very beginning, and assume its cobordism
to be smooth too. Had we proceeded in this way, our arguments could be much
simplified. Actually in the definition of fiberwise gquantum cohomology and

equivarignt quantum cohomology, 7 is always smooth.

Next we collect a few simple properties of the fiberwise mixed invariants,

leaving the composition law for the next cha.pf.er.

Proposition 3.3 The fiberwise mized invariant ¢?A1;"';Am,w,E|P)(al’ s o | B,
<oy Ba){7y) is maultilinear in o, B andify. Furthermore, we have

i) The fiberwise mized invariant (I)EJAl,---,Am,w,E,P)(ah' syl Br, e, Ba)(y) s
zero if the “ virtual” dimension 2C1(V)- A4 2n{l — g) + degv < 0.

i) @fAl,_,_Am’w’E’P)(a],---,aclﬁl,---,ﬂd) is zero if one of.the B; is of degree
greater than 2n — 2. | | |

wi) If e+ 29 > 4 and o, is the fundamental class X, then CP*(’AI,“_’AWW’E,P)
(sl By, BY) equals By o s (a1, yae By -4 ) (7):
1) Ol oAz )@y elBry -+, Ba) () equals D- Olay o pmim, PY 0T,
aclBr, 5 Baa)(7), if Pa is of degree 2 and D = A - S, is the intersection
number, where we regard By as the induced class on V.

v) In case A =0, Oy 4w plon, b, -+, Ba) equals zero if d > 0
and equals the intersection number [, a; N---Noy if d = 0.

vi) Let § be a class in H*(Y,Q). Then p*6 is a class in H*(X,Q), and

(I)?(JAI,...,Am,w,E,P)(P*"-Sa o,y [Py, Ba) = 6N (I)?Al,---,Am,w,E,P)(alﬁ ey ) B,
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"'1ﬁd)-

Proof: For i), ii), iii}, iv), the proof, similar to the proof of Propésition 2.5 in
[RTY], is omitted.

v) (2.1) implies 73] deg oy + T i(deg 8; — 2) = 2n(1 — g) + deg(4). Fix a
pseudo-manifold repreéentative ' Z — Y, then the moduli space is Xz if
we choose the fiberwise inhomogeneous term to be zero. If we choose repre-
sentatives (L, U3), (M;, W;) of oy, B; intersecting transversally in X'z, by def-
inition @y, . 4. wrp (a1, -, ac| Bi,---,Ba) (7) is the intersection number
of Li(Uy)y NN L(U) n My(Wy) N - Mg(W,). If d > 0, this intersection is
empty because of the degree requirement. If d = 0, this intersection number

is the same as

Fray A+ A Fra (Xz)
= Lﬁ’*(xl/\---/\ﬁ'*ac(Z)
= /Va1/\---ac(F*Z)

= /Va1/\-~ac('y)

where I : Xz — X is the natural map induced from F: Z — Y.
vi) Suppose that F': Z — Y is a pseudo-manifold representative of a class

v € H*(Y,Q), then we have the diagram

x, 5 x
Pl Ip
z Xy
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Note that since F*p*§ = p*F™*§, if the Poincare dual of F*§ is repre-
sented by a pseudo-manifold K, then we can represent F*p*§ by the pseudo-
manifold (Lg,p'{i(ﬁ_’)). So the intersection of M%’A]‘,_,,Am)(z, Xz, J,v) with
(Lo,pl_l(K)),(Li,Ui),th, W;) in X! is the same as the intersection of
Mp, oamy (55 Xy Jyv) with (L, U, (M;, W;) in XZE?. This exactly means

that @?A],"',Am,w,E,P) (p*é, a1y, | Bry--- ’ﬁd) (b.4) = 8 A q)?()A],---,Am,w,E,P)

(a1, - ae| Biy- -+, Ba)(7). The proposition is proved. O

Proposition 3.4 (Direct Product) Let A7 — Y1, A, — Y, be two fiber
bundles with fibers V1, V, and fiberwise symplecticv forms wq,wy, respectively,
and assume both satisfy the Assumption (%), Then X = Xy x Ay = Vi x Y,
is a fiber bundle with fiber Vi x Vy and fiberwise symplectic form w = wy P wo,

also satisfying the Assumption (%), and
(I)ﬁfl,Ai);"',(Am,Ain),w,E,P)(a1 ® oy e @ ag]fh @ Pry -, fa ® Ba) (v ® ')
A v
= (I,(Al.m.Am,wLE,P)(alv Tt acwh e Hgd)('}')
Az,v
"I’(j;,---,A;“,wz,z,P)(aia a8y, B(Y), (3.2)
where @Y, @10 gnd &Y denote the fiberwise mized invariants on X, X,

and Xy respectively.

Proof: This follows directly from the definition of the fiberwise mixed invari-

ants. I

Proposition 3.5 (Restriction) Let X — Y be a fiber bundle with fiber V

satisfying Assumption (x), and h : Y7 — Y be a smooth map. Denote by
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Ay, = X x; Y1 to be the induced fiber bundle with fiber V and the induced
fiberunse symplectic form w. Then Xy, — Y) satisfies Assumplion (x) and we

have a natural map H : Xy, — X. Furthermore

Ay v * * * *
4 4wy (H r, Ho o [H* By, -, H* By)

= h*q’fif,...,/;m,w,g,p)(al'a |y :ﬁd)" : (3-3)

Proof: We only need to show that for any v € *(¥4,Q),

Xy, v * * * *
@(A?,...,Am,w,E,P)(H oy Hra[H By, -+ H™B)(7)

= (I)(A:}‘i’?‘---,Am,w,E,P}(ala e 1ac|ﬂ11 vt ,ﬁd)(h*’){)

Choose a pseudo-manifold representative (#,%) of 4 in Y;, and repre-
sentatives (L;,U;), (M;, W;) in Xz of H*a;, H*;. Then the pseudo-manifold
representative of .y is (hoF, Z)}, and the pseado-manifold representatives of
o; and f; in Xz can be chosen to be (L;, U;) and (M;, W;), respectively. With

these choices, both sides of the above equality amount to counting the number

of intersections of M*(’Al’,_,,Am)(E,XZo,.J,.V) with U° x W_O in X4 Clearly |

they are the same. The proposition is proved. |

Proposition 3.6 {Induction) Suppose that the fiber bundle Y — B has
fiber Vy with fiberwise symplectic form wq satisfying Assumption (x). Suppose

also that the fiber bundle X — Y has fiber V) with fiberwise symplectic form w
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satisfying Assumption (x). Further assume that w is also a fiberwise symplectic
form satisfying Assumption (x) for the induced fiber bundle X — B with fiber

V. Let Ay,--+, Ap be in Hy(V1,Z). Then

{‘t"lB‘
(D(AJ,-ﬁ,Am,w,E,P)(alg v, 0| By, Ba)

= fv_g @gdi’f.,Am,w,g,p)(ala s ee|Bay e, Ba) (3.4)

where @Y P and @YY are the fiberwise mized invariants for the fiber bundle
X = B and X —'Y respectively, and the map [y, : H*(Y,Q) — H~4™"(B, Q)

15 the Gysin map which can be defined by integration along the fiber direction.

Proof: For any v € H,.(B,Q), choose its pseudo-manifold representative F :
Z — B. Denote Y Xz Z by Z. Then F : Z — Y is a pseudo-manifold

representing a homology class ¥ € H,.(Y,Q). All we need to show is that

Q&ﬁ:?,Am,UJ|E,P}(a17 B ac|}81, R ﬁd)(’ﬂ

= (I)E.E’l,f}f-,Am,u,E,P)(alv T :a0|ﬂ11 T wgd)(:?)

But Xz — Z is a bundle with fiber V, and X5 — Z is a bundle with
fiber V;. Obviously there is a natural isomorphism Az = A, so we can
choose the pseudo-manifolds representing oy, f#; in Xz and A'; to be the same.
To prove above identity, we need to find a good (J,v) for Xz and a good
(J,7) for X; such that Ma, .. a.)(Z, Xz, J,v) is naturally identified with

Mg, an) (B, Xz, J,7) and they define the same evaluation map.



We achieve this goal in two steps. In step 1, we will show that there éure
a famﬂy of (J,v) for Xz — Z such that any fiberwise (J, v) holomorphic map
actually lies in the fiber V] of the fiber bundle V — Vz, 1.e., it is actually a
fiberwise (J, #) holomorphic map for X;. So we have an isomorphism between
M(Al,---,Am)(E,.XZ,J, v) and M(A],....,Am)(E,XZ,j, 7). In step 2, we will .show
that there are good (J,v) and (J, #) among the above mentioned family.

Stepl. Let E, E,, and F; be vector bundle over X 7,Xz, and Z respectively
as defined after Remark 2.1.1. Note that E; is asubbundle of £. Fix a splitting
E = E, ® Ef, then we have diagram with 7y, being an isomorphism on the

fiber.

E: T R,
! !
Xy, =N Z

We define a family of (J,») on E as follows. They are of the form
(J,7)|5, @ (J2,0)|5;, where (J,7) € Pr_y o(Er,w) and J; is the pull-back of
fiberwise almost complex structure J, € Pr_1p(Fa,wq) by m1,. Note that J is
tamed by w+erjw; for small e. We show now that for such (J, v),if fis a fiber-
wise (J, v} holomorphic curve whose image is in fiber V, then 7,0 f = constant
where V' = V; is a bundle map, i.e., it is in My, 4.)(2, Xz, J, 7). By defini-
tion, df + Jodf o jz = (7,0). Projecting it to E,, we get my.df + 71, 0 dfojy =
T1.(%,0). Since m1,J = Jpmy., we get d(m; o f} + Jp o d(m; o fYojs =0, ie,

71 0 f is a J; holomorphic map in V,. But since A € H,(\, 1),

0= fymiwy = ff(z) Tiw, = fg [*miwy = [g(mi0 f)rws,
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on the other hand f;.(71 0 f)*wy > 0 if my o f is not a constant.

Step 2. The existence of a good (J,v) can be proved in the following
way. We can choose a subspace of M ;IP(AI,...,Am)(E,X ) consisting of maps
with f(¥) C Vi x pt, and choose a subspace of Py_; (X,w) consisting of all
(J,v) described above. Now the argument of Proposition 2.2.3. works within
these two subspaces. |

The proposition is proved. ' ]

Remark 3.3 Assume that (X, w) itself is a symplecﬁc manifold, and w is also
a fiberwise symplectic form for a bundle X — Y. Note that (I)aff',}::Am,U,E,P)_
(ar, -, |By, - -, Ba) is equal to the non-fiberwise mized invariant

q’?Al,;--,Am,w,E,P) (i, aelBry- -, Ba) if Aryo A € Hy(V;Z). Choosing

B = pt in the above proposition, the non-fiberwise mized invariant and the

fiberwise mized invariant are related by

Jy q)aﬁ,f-,Am,w,E,P)(ala s By, Ba)
= (I)?(JAl,--',Am.w,E,P)(al;,' | B, e, Ba) (3.5)

In this circumstance, using the above identity, all the properties including
the compoéition law of (I)il’i’f-,Am,w,E,P)(al’”"aclﬁl"'"ﬂd) follow from the
corresponding properties of the non-fiberwise mized invariants. This fact was

already observed by Astashkevich and Sadov in [AS].



Chapter 4

Composition Law of Fiberwise

Gromov-Witten Mixed Invariants

4.1  Gluing of J-Holomorphic Maps

In this section, we will apply the implicit function theorem to the study of

deformation theory of perturbed J-holomorphic maps from a singular curve.

Recall that a degeneration of stable curveé is a holomorphic fibration
7.5 — A C C with sections oy, -, 0, satisfying : (1) For each t € A,t#£ 0,
the fiber X; = 771(¢) is smooth; (2) For each ¢, C; = (Ey;01(2), -+, 0.(¢)) is a
c-point stable curve.

Adopting the notation of Chapter 2, suppose that X 2 Y is a fiber bundle
with fiber V satisflying Assumption (%), F: Z = Y is a pseudo-manifold, and
Z% is a stratum in Z. For any point zy € Z°, we can find a neighborhood
W, C Z* of zg such that there is a trivialization Xz{wa 2 W* x V. Denoting

Xz|wa by Xy, we equip W* with Euclidean metric ds? and trivial connection



Vi. Let hg be a Hermitian metric on bundle F, V be the connection on F
compatible with hg a,nd J, with torsion iN 75 Nj is again the Nijenhuis tensor.
.Therefore hy = dst + hg is a metric on W x V.

Let v be an iﬁhomogeneous term on S X Az, and 1 be the restriction
of v to X; x Az. Consider the moduli space of fiberwise (J,;)-perturbed

holomorphic maps in Xze,

M4 (By, Xza, Jivy) = {f 18— Xga| df + Jodf 0§, =1,
[/(Z)] = A, po f(5:) =pl € 2°}
where j, is the complex structure on X4(t # 0), A is a fixed homology class in
Hy(V, 7).
Assume that Yg has m-components Y¥o1, -+, Yom, and suppose that the
position pattern of {0}, +-,0.(0) in Xy is P. Fix a partition of A = A, +
s A, Ay € Hy(V,Z), which is effective, ie., MY (No;, Xza, J, vo;) is not

empty for each 7. From Proposition 2.2.1, the moduli space MT(JA,,--., Am)(Eg,

Xza, J,vp) is a smooth manifold and for generic ¢ # 0, M4 (34, Xza, J, 1) is

also smooth manifold with dimension

dim MY (Zy, Xze, J, 1) = 2C1(V) - A+ 2n(1 — g) + dimg Z°
where 2n is the real dimension of V and ¢ is the genus of X;.

Theorem 4.1.1 Let fy be any map in M?A,,---,Am)(EOaXZ%J) 1)0) which inler-

sects transversally at each double point. Assume fo(%p) C V,,. Then there is a -
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continuous family of injective maps T, from W into M (X, Xza, J, vt), where
t is small and W is a neighborhood of fy in M?Al,-;.,Am)(EOWYW“,Jv vo) such
ihat (1) for any f in W, ast goes Lo zero, T:(f) converges to f in C®-topology
on Xy and in C®-topology outside the singular set of Xo; (2) there arc ¢,6 > 0
satisfying: if f' is in MY (X, Xwe, J, 1) and dy,. (f'(z), fo(y)) < € whenever
r € Yy, y € Xg, ds(z,y) < 6, where d,ywu_and dg are the distance functions
of metric hy on Xwe and a Kdhler metric p on S,respectively, then f' is in
Ty(W). Morcover, for generic t, T, is an orientation-preserving smooth map

from W into smooth manifold MY(Ey, Xge, J,1y).

Proof: First, we make a reduction to the case with zero fiberwise inhomo-
geneoﬁs term as we did in Section 2.1. Adopting the notation there, for any
‘deformation of fq, fi: ¥; — Xza, its graph map F;: X; — 5 X Xza is a defor-
| mation of the graph map of fo. Fy: X — 5 X Aza. Let 7; be the projection
map from S X Xze onto the i-th factor (i=1,2), then m 6 Iy =d. Conversely
if F, is a small deformation of Fy, then 7y o F is indeed a__ biholomorphism of
%y, and f; = 730 Fyo(m o E)‘l is a {J,v,)-perturbed holomorphic map, a
deformation of fy. This shows that to study the deformation of f; is equivalent
to study the deformation of Fy. So we may assume » = 0. Note that although

S X Xz« may not be compact, the object under study lies in a compact region.
In the following proof, we will use C to denote a constant independent of
t and any f near fy. The actual value of C' may vary in different places.

Let f € W, f(50) C V,, and z € W*. We will first construct an approxi-

mate J-holomorphic map from ¥, into V, for each ¢. Let p be any double point
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of Yo, and U, be a small neighborhood in § containing p. U, has coordinate

(2p1, 2p2) such that

Up N2t = {(2p1,22)| 201 - 22 = 1, |2 | < 1, ]20] < 1}.

Choose a coordinate system uy, - -, 4z ¥1, - -, ¥2n Of Xjpo near flp) (7=

dim W), such that the coordinate of f(p) is zero and

8 F;
(a_yi) = B + Oty | + tul),
J d

where i = 1,- <+, n, |y] = /2 |52, and |u| = VR . Note that there

are two connected components in U, N B,

Up = {(zp150)|.|2p1| < 1} and Up = {(O’ZP2)| |Zp2‘ <1}

Let fi = flu,, i=1, 2. Then we have the following expansions:

foilzpi) = f;n-(zm-) + terms of degree greater than 1,

where fm- are homogeneous polynomials in z, of degree 1. We identify a
neighborhood of f(p) in Awa with open set in W* x C* by putting w; =
Yi + vV =1yngi, i = 1,---,n. By assumption, at each double point, fy|y,, and
Jolu,, intersect transversally. If we choose W small enough, we may assume
that for any f € W flo,, and fly,, also intersect transversally. Then by

choosing yy,- - -, y2n properly, we have



fpl((zpho)) = (zplj{)q' ot ,0) + O(|2p1|2) < 0 x Cn,

fp?((0>‘zp2)) = (O:Z:o?aoa' : ';0) + O(|2’p2|2) e0xC™

By changing local coordi-na,tes Y1, "+ Yan, We may further assume that
fp1((2p1,0)) = (zplaﬂa"'10)= (4'1)
fpi’((ovzpl)) = (O,sz,o,"',()). (4'2)

Now we begin to construct an approximate J-holomorphic map fi*”
¥, -+ V, for each small {. Let ¢, be a smooth family of diffeomorphism from

33 into X, where % is the nonsingular part of Yo, such that ¢y = id, and

| ¢: —id |leszaun < Co - 8 (4.3)

for any small neighborhood U’ of the singular set Sing(%,) in Xy. Here Cyr is
a constant depending only on U’, and the norm is taken with respect to metric
p on S by viewing both ¢; and id as maps into §. Then for any p in Sing(Xo),

we have

| Fleiv, — fo 7 ot ®nr(ep zm2)l A <imal<ti=t or 2 < C - [¢] (4.4)

where f is the map: (251, 2p2) € Up — (251, 2p2,0,- -+ ,0) € 0 X C*. Note that

Flog = fors Floy = foz. (4.5)
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By (4.4),(4.5), there is a homotopy F; on ¥, N (Upesing(20) 1 {2p1, 2p2) | % <

|2pi| < 1,2 =1 or 2}) satisfying, for any p € Sing(Zo)

| 7 —fog ! ot (Een{(zprrm) | 2<lepltizt or 2y < C- [t (4.6)

x 1 7.
Ff = f on Et N {(Zpl,ng) | 5 g |Zp,'| S "]'_"'('}',3 =1or 2}, (4:7)
. ' 9 . ,
- Fy=fod¢; on B0 {20, 2p) | M <l £1,i=10r2}. (4.8)

We define

fi7 (@) = fo g (=) for @ € Xy \ Upesing(zo)Up;
a . L1 .
fi pp(zplazﬂ) = Fi(zp1, zp) if 9 = |zpz'| <li=lorZ (4.9)

a : 1.
fi pp(zplvz?ﬂ) = (Zplvzp%()a' ’ ':0) if |ZPi| S5y t=1and?2.

Let ¢ be a Kahler metric on § which equals dz, ® dz,1 4 dz,2 ® dzpg on U,
for each p € Sing(Xo). Let p be a smooth function on S\ Sing(%,) satisfying

0<p<3and

Plu(Zp1, 2p2) = \/|2m|? + | 2p2|? for each p € Sing(E,). (4.10)

Define a new metric g, on S, p, = p~*u. Note that

. |dzpi|2
ﬂclEtnUp — Izpilz ?

1.e., for t small, [.!,C|}3tnUp is a cylinderlike metric. The following lemma can be

easily proved from the definition of fi*?, u, and p. by local computation.
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Lemma 4.1.1 Let V be the connection defined at the beginning of this chap-
ter. Denote by D the covariant derivative induced from p and V, and D, the

covariant derivative induced from p, and V. Then for 1 < L <35,

2]
p(w)F+

i |
FONEE (412)

where | |uny and | |u.n, denote the norm defined by p, hy and p., hg respec-

[D* 7 (@) < Cull+ ——p), (1.11)

D8 £ luena(z) < Ci1 +

tively. -

Let Jy be the standard complex structure on €". By definition, for each

p in Sing (o),

1
A" + Joo dfi™ 0 5i = 0 on Xy N {(zp1,252) | 2] < 5,4 =1 and 2}

where j; = jx5,. Put

v(z) = (df*7 + J o dFEP o j,) (). (4.13)
" Then

o) = (J — Jo) 0 df*™ 0 ju(x), on TN {(z0, 232) | |7i] < %3 — 1 and 2.
Since f is J-holomorphic on X N {(2p, ) | |2i] < 3,1 =1 and 2}, we have

| I(2p1,0, - )(f* ) Jo(21,0,+ -+, 0} fu—

pl Ozp )

) - JO(O'.\ZpZ;Oa" : ,0)(f*a

J(0, 22,0, -+, 0)(fug— pz)-

ang



Then we can derive from last lemma,
Lemma 4.1.2 For 1 < k < 4, then

2l
p(z)F+1

[Divluens(z) < CpHl:

(D oulups () < Ch

(4.14)

(4.15)

We want to perturb f;"** into a J-holomorphic map from ¥; into ;X'Wa.

Fixing the trivialization Xy« & We x V as before, we can represent f;

app

2, fif"). Identifying W* with an open subset of R® z with 0 and W* with a
_ g

neighborhood with T,W®, we can define a modified exponential map

(w1, vg) (uﬂ, €$P’}tﬂm’(ut1, Uﬂ))

exp*: T,WOXT(Z, i7" T(z xV)) = W x V,

as follows. Suppose v* is coordinate of W<, yJ is coordinate around £
PP s ¥ Fal

P(z) in

V,z € &;. Then expjarr gy (Ui, ua( i (2))) is defined to be y(1), where y(-s)

is the solution of

d2 7 +I‘kl(3utl)y)%L%ﬁ = 0,
] (0) = fi77(2),

d

Tls=o = u(fif(2)).
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Here T, (suy, y) is the Christoffel symbol of connection V on E. By definition
the image of map exp* lies in the fiber u;; x V. We do not use exponential
map defined by metric h"“ because its image does not lie in a fiber. Note that
when we choose uy; = 0, exp* is exponential map on z x V, defined by metric
hE|.xv. So by the implicit function theorem and the property that solution of
ordinary differential equation depends smoothly on parameters, we get that for

small g, eTParr(,) Is a diffeomorphism on a small ball in fi™*Tare (2 x V).

Let f; be a map from ¥; into W* X V, we can represent it as (2, fu). If f; is

sufficiently close to f;** = (z, fii"), then we can write

(20, fu (=) = (ua, emp}t“’“?(a:)(uﬂautZ(ffipp(w))))v

where vy is a vector in T,W* and uy, is a vector field of f{*T (2 x V) on X,.
We need to find (us, us2) such that f; is J-holomorphic.

For any (us,uy) in T,W x fiFP*
parallel transport from 77, (@)(2: X V) to Tyarr () {2 x V) with respect to V along

the path (suy, ewp’}?pp(x) (st st (fif T (2))))1<s<1. Since V is J-compatible,

we have

J. 0 Wt(uﬂ,uaz; :B) = Wt(’urﬂ, Ut2; 1’) o Jzt- (4-16)

Let A% (ffP"*T'(z x V)) be the vector bundle over %, of all anti-(J,, j;)-
linear homomorphism from TY, to fi77*T(z X V). Denote by QO ffP"T'(z x
V1)) and Q(f/"*T'(z x V)) the space of sections of A®(f{""*"T(z x V)) and

app,*

¢ T (z x V) respectively.

T'(zx V), we denote by my{us, uyg; z) the
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Define

@0 LW X QP I(z x V)) - QNP T(= x V), (4.17)
(’Ulﬂ,‘u;g) — 'frt(uﬂ,uw; ) o} (dft + Jzt o] dft Ojt).

Because of {4.16), this map is well-defined. Let

LY*(0) = D®,(0)o, t € A. (4.18)

Lemma 4.1.3 For any 0 = (0y,03) € T,W* x Q(f{"*T(z x V)) and any

e € TY,;, we have

Lyaapp(o.h 02)(8) it VEO'Q ‘l’ Jz o] Vjte(ﬁ

dJ,
ds

1 a —
N (D0, [, 02) + im0 0 A7 0 jre + Tlon, i), (419)

where z, = soqy a path in W, T'(-,-) is the Christoffel symbol of V, and
vy is defined in ({.13), t 7& 0. Here we identify U(f/77"T(z x V)) with
T{f{PP(2,), T(z x V), so we may view V as a covariant derivative on I'(fi*"

T(z % V).

Proof: The computation, which is the same as we did in Chapter 2, Section

2, is omitted. | i O

Let LUV9PP* o QU(fEPP*T(z x V)) = T.W® x Q(f*™*T(z x V)) be the

adjoint of L,"™* with respect to the metric .dsg, hg and the metric g, on Y.

Let (e, i) be any local unitary basis of TS, with respect to p., ¢ # 0.
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Lemma 4.1.4 Assume that (-,-) is the induced metric on PP (2 x V) by

hg. For any section & € Q¥ (fi"""T(z X V), we then have

L7 (€)= (2€(e), (4, ) 0 A7 (o) + T(,00))"
_99.E(e) — 2V5ubize) + lE(), o (B0 S N(O))- - (420)

Here {£(e),(dJ, ") odfi™ (jie) + T, v)}* is defined by the relation that its inner
product with oy € T,W® 15 s, (E(e), di: pemo 0 dfE7 (1) + {0y, v:)(e))dte, and |
|

(€(e), Ny(B1, i) (e)y* is defined by the relation that its inner product with ¢J
-

|

|

oy € fIPPTT (2 x V) is (£(e), N1 (85, 1777, a2)(€))-

Proof: Let ¢, = e, €3 = jue, then the dual basis (el, e3) satisfies e3 = —je€]. |
,‘
|

Set

£ = tae; + Gae*, L€ [TT(zx V), i=1,2.

Since ¢ is anti-(J;, jz)-linear, we have

62 = ”_Jzél
So for any anti-(J,, ji)-linear vector X € QOL(fiPP*T(z x V), we have

(€, X) = 2(¢1, X(e1)). Using this, then

ua, P
/ o #c.hEdJ“'c
Bt

f ¢, LY (o1, 02))dpe

Bt




= 2_/ (€1, L7 (01, 02) (ex) e
= 2/ (61, Ve, 02 + Iz 0 Ve, 0a)dpte + 2] (&1, Ny, (07, i, 02)(e1)) dite
d.J., ‘
42 [ (60 2 om0 0 A7 (e) + Flon, ) (e0)) i

[ (Ot Vb 60N

If

ng a
32 [ (61, 2o © dfi(e2) + Tlon, v (e0)) i
The lemma follows. . 0

Lemma 4.1.5 Let & € QU (Fi77T(z x V), and r(p) be a positive function in

p. For any 0 <e<1, there is a C. such that

[ (LR dpe > (2= ) [ (o) V€ s die
~Co- [ (6o |dfswzc,hE-\elm,hﬂ—w(p)l R p )b (4:20)

C. depends only on €, the curvature tensor of hg, w. and the fiberwise almost

complez structure, t # 0.

Proof: Observe that {£(e), (dJ, Nodf PP (jie)+T (- ve))" and {¢(e), Ny, (85, £, )
(e))* are zero order operators of £. The computation, which is similar to the

computation in the remark after Lemma 6.4 in [RT], i omitted. !

We will apply the implicit function theoremn to construct the map Tt in

Theorm 4.1.1. First we need to establish the lower bound of the spectrum of

D'” WBEPP LU saPp o L‘;J,U-P'P*.




Lemma 4.1.6 Let D be a disk in C and p, be the cylindrical metric on D\
{0}, e, p. = %;. Suppose that fp : D -» z XV, where z € W%, s a
J-holomorphic map, L}, is .the linearization of Cauchy-Riemann equation al
fp. Assume that £ is a C*-smooth section of WY (fHT(z x V)) over D \ {0}
satisfying E“{-z 0 on D\ {0}, where L'} is the adjoint of L}, with respect to

to. Assume further that

jD\{U}('vgli“’hE + |le ’ |€|ic,hE')d!«5c < oQ.

Then limit limg,_of(w) exists and is a vector in Tj,)(z X V). Such a limit is

called the residue of £ at z =0,

Proof: From Lemma 4.1.4, we know that LY¢ = (L9,&,L15¢) € T,W* x
QO(f5T (2 x V). Observe that LY, is exactly the operator Lj in [RT]. Then

the lemma follows from Lemma 6.5 in [RT]. ]

Let LY and L¥ be the linearization of the Cauchy-Riemann equation at fo
and [ respectively, and let LY* and L¥* be the adjoints of L§ and LY on X\
Sing(¥p). We denote by KerLj* the set of those sections £ of Q0 (feT'(zoxV))

over ¥y \ Sing(Zo) satisfying Lg*¢é = 0 outside Sing(Xq),

/EO |V§|2’thE + pz ’ |€|iC;hEdﬂc < 00,

and for every node p in Sing(%g)

Hmz—»(}.zEUpléz + lzmz—e-O,zEUpggz = 0.

65



66

Here U, is any small neighborhood of p with two irreducible components Uy,

Uy,s. We define KerL"* similarly.

" Proposition 4.1.1 For a generic {J,v), KerLy* is trivial, and for any f € W,

kerlV* is trivial also.

Proof: Fact 1. Write L¥* = (L&1, Lys), and KerLg® C KerLgs. According to

Lemma 6.1 in [RT], KerL3; =0, so KerL¥* is trivial.

Fac£ 2. Again Xg; are componénts of By, Let X8, = g, \ Sing(Xo) and de-
note by Lg*|zgi and L""[go. the restriction of Lg” and L** to QU(Z5,, faT (2 X
V)) and Q%2001 f*T(z x V)) respectively. Since for elliptié .operators,

dim KerL"’*|Egi is upper semi-continuous function of f, dim KerL"*|gg, < dim

KerLg"|gze . Here we probably need to shrink W a little bit.

Fact 3. Consider

Ry HKer(LgﬂEgi) —¥ H Tfo(p)(Zg X V) X Tfo(p)(z() X V)

1=1 pESing{Lo)
Ro(&) = H (l’émqufzg,.a Hm’zﬁp‘fzgi,)a
pESing(Lo)
No= JI {(w—u)iueThplzoxV})}
pESing{To)
R H Ker(LU*IEg‘_) — H Tf(p)(z X V) X Tf(p)(z X V)
i=1 pESing(To)
R&= 1 (Iimz_,pfzg’_,limz_.,pfggi‘),
pESing(To)
A= H {(u,—2) | uw € Tym){z x V).
pESing(Lo}

On each component £3, f converges to fo in C*-topology, and KerL™ |zg‘.

converges to Kerlg*lyo in C%-topology, i.e., map R is C*-close to Hy. Irom




the proof of Proposition 6.1 in [RT], map Ky is transversal to Ao for generic
J, R map js transversal to A, KerL* = 0 follows from above three facts and

a simple dimension counting. B ' O

Lemma 4.1.7 There is « constant C' > 0, independent of i, such that for
¢ sufficiently small, the first eigenvalue A (TP%7) of 07" is bounded from

below by @ |t|)

Proof: Write LV — L% 4 [15% where L™ : T,W= — Q01(X,, f7*T(z
XV)) and LY2 H Q(Et, PP T(Z’ X V)) — QO’](Etgffpp’*T(Z w V)) Then

Lu,a.pp* _ L'u JApDE Lv,app* &Ild I—_—lv app __ L-u ,app Lv.app* _l_ L'v a.;up ‘U a;op*- Note
1 t2 t1

1,2pp

that L33*"F o L}*P* is exactly the operator L, 0 L7 = [, in [RT]. Lemma 6.6 in

[RT] then implies that the first eigenvalue A\ (L; o L}) Note in the

c
| =
proof of Lemma 6.6 [RT], we need the second half of Proposition 4.1.1. Since

operator L3"PF o L{{*""* is non-negative, and the spetrum of Lt"”’ P o Ly are

all eigenvalues, A ([V7F) > sl tl}2 follows from functional ana1y51s O

Let ®, : T,W® x Q(ff""T(z x V)) — QY f#""T(z x V)) be the map
defined in (4.17), define

Ty (£) = @, 0 LV QOI(fIPPT (2 x V) — QUY(fPPT (2 % V) (4.22)

To find a J-holomorphic fi, it suffices to show that ¥,(¢) has a zero

solution ¢£.

Lemima 4.1.8 U,(£) has the following expansion,
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,(0) = vy, | (4.23)
Ui(€) = ve + L™ o LY+ Hy(), (4.24)

where v, is defined in (4.13). Furthermore, Hy(€) satisfies

| H(&) — H(élllog < Cl & llag + 162 lla)- 160 = &a [l21,(4:25)
| H () log =< C-Hl € lluz - 1€ Hlag (4.26)
where we denote by || - ||,1 the C%3 - Hilder norm defined by the metric hy, on

We x V and the melric u, on 2.

Proof: Consider ihe expansion of &;(cy,02),

®,(01,07) = vy + L™ o1 + Ly oy + Goy, 02),

where G(o1,03) is the nonlinear part.

Claim:
Glo1,02)(€) = La(o1,02) 0 Ve + La(01,02) 0 Vje0n
4Q1(01,02) 0 dfy™(e) + Qa(01,02) 0 dfi™(jee),
| Li{o1,02) lo s < C - (|| o1 [lo + | o2ll12)i=1,2,
I Qi(o1,02) log < C - (| v la + [l o2 1), 8 = 1,2,

| Glo1,02) — Glot ) hag = O (| (o1,) sz + 1 @) )

N (01,02) = (@4,05) b

| Glor,02) llog < C- [l {o1,02) llog - 1| (01:02) [l1 g




where e is ¢ vector in TYy, Ly and L, are linear first order differential operator

in (01,03), @1{01,02) and Q3{0y,02) are quadratic operators in (01,03, Vo).

To prove the claim, view W® x V as a symplectic manifold with standard
symplectic form on W* c R (if W is odd dimension, we replace it by
W=*xR). Then ®,(o1,02) is operator d at f77P for symplectic manifold W x V.
The claim follows from the calculation done by A. Floer ([F], section 3). Note
although the constant C' depends on f{**, since || S |ls,1 is bounded, we
may assume constant C' does not depend on fi*? at all.

By choosing oy = Ly}""¢, o9 = L™ ¢ in the claim, note || o1 [o< C-|]
€ flros [ o2 [l < C-|| € llo,1, all the estimates of the lemma then follow from

the claim. . 0

Define T53 (A ™" T(z x V) = {€ € QP T(z x V) | 1€ [ln3<
co}. Then .

U, : T2 (A FEPPAT (2 x V) — TOF(ADL f72P2 (2 x V7)),

Dy.a:op . rz’%(AO'lff"’p'*T(z % V)) — FU'%(AO‘lffpp’*T(z X V))

Lemma 4.1.9 Assume £ € Fz'%(AO’Iffpp’*T(z xV)), (= Df’“mé' on L;. Then

1€ 11,45 C - (~Loglth 1 ¢ llog - (4.27)
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Proof: Note that

VOI(EHJUC) S C- (—log|t|)7

. ldue < C- 11 € I -(~toglt),

[ e e e = [ (6,0
= [ (&.0)dn.

< C- 1€ flo (~loglt® - ([ Icladnc)?.

Lemma 4.1.7 implies that

L6 e)dp > 2@y - [ lefidp

Then

L JelEdue < 011 ¢ I3 (—toglt)®.

“Then (4.27) follows from above inequality and the standard elliptic esti-

mate. . O

Proposition 4.1.2 There is a to > 0 such that for any 0 < || < [to], there is
a unigue £ € THI(AGLFIPP*T (7 x V) satisfying || € 2,4 < \/m and U,(£) =0

on Ly, d.e., fi = expiepn (L") is a J-holomorphic map from Iy into 2 X V

for some 2 € W*. Denote this solution by f*° in the following.

Proof: Let B (0) be the ball in P25 (A0 fePP*T(z % V) with radius 1/]¢| and

the center at origin. Then solving equation ¥,({) = 0 for some £ € B \/m(()) is

equivalent to solving equation
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&= (CPPY M=o + Hiy(£)),

where ({£37"")71 is the inverse of O0;"**". Note that

(TF7) " (v + Hi()) : TR (A 7P Tz x V) = T3 (A 7T (2 x V).

First we show (0)*")~Y(—v, + Hy(")) ¢ B\/m(O) — B\/H(O)' By lemma

418,

1 () (v + H(E)) [y

< O (~loglth? | v lloy +C - (—loglt)E- || Hi(€) o
< O (loghth® - |t + C - (—loglt))3- [ € llp - | € llag
< - (~loglth? /It

< |t].

when |t| is small enough.

Secondly we show (1P}~ (—v; + Hy(*)) is a contracting map.

VAN

IA

| (OFP) " (—vs 4+ Ho(€1)) — (EF) 7 (—ve + Hil2)) oy
N Hil) = Hilea) o
’ (” 3! ||2% + ” £ “2,%)‘ ” €& =& ”2%

\/lt_l || & — & ”2,% .

wle

C - (~loglt])

o

C - (~loglt])

wfem

C - (—loglt])




72

When |¢| is small enough, it is a contraction map. So by the Banach contracting
mapping theorem, (O07*)~'(~v; + Hy(-)) has an unique fixed point. The

proposition is proved. 0

Assume that f € M‘(’Ah,,,Am)(Eg, Awe,J,0). By the transversality result
in Section 2.2, the tangent space of M, o) (o Xwa, J,0) at fo is naturally
identified with the kernel KerL}, where L} is the linearization of the Cauchy-
Riemann equation at fy, ie., a ;uangeht vector at fy is a continuous section -
w = (ur,ug) € T,y WX Q(Eq, [T (2o x V) satisfying Lyu = 0 on ig\Sing(Eg).
This implies that there is a local diffeomorphism from a neighborhood of 0 in
KerL} into M?’A],__,?Am)(EO,XWa, J,0). We assume that W is contained in the

image of such a neighborhood, we may assume that for any f, and f, in W,

|| fo =T llerm)S C || fa— fo lloogse) -

Given any f in W, there is a unique section u}}” = (uff, u}l;) in T,y W x

T, foi 7" T (20 x V) such that

S () = expiare(py (ufy” (foi"(2))), = € By

where f5/"(z) is the approximate solution constructed from fy. A straightfor-

ward computation shows

[Vuiig luehs(2) £ C - pla),

and for any f., f» in W
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| ui? —ufdt lewzag=S C |l fa = fo lioogms) -

We define Ty : W — MY%(Z;, Xwa, J,0) by assigning #ol in Proposition
4.1.2 to each f in W. Clearly, Ty(f) converges to f as t goes to zero. It is
easy to see that 7, is smooth. We want to examine the invertibility of the

differential of T} at any point f in W. For simplicity, we do it at fp.
app

Lemma 4.1.10 Let x;(u3}", x) be the parallel transport along the path {ewp;gpp($)

(sufP(foi"(2))) Yocs<r- Then there is a uniform constant C' > 0 such that

| vt = m(uZP, @Yoy floo< C It | £ = o lloogo) (4.28)

where vo; = dfgl” + Joy 0 dfpg” 0 Ji.

Proof: Choose a diffeomorphism ¢ from a neighborhood of foirP(X;) onto a
* neighborhood of f;77(3};) satisfying (1) || ¢ —id | <Y fo — flles; (2) for each
node p in Sing(Xo), let Uy, 2, and zy; be as in the begining of this chapter,

then

PP (21, 250) = &7 © feP (21, Zp2) = (%0, Zp1, 22,0, ++,0) €20 x V

for all (zp1, 2p2) in U,.
When z € % \ {Upesingzo U,}, then by the definition of f5/* and fi*, we

have

o () = foo ¢7 (), FiP(z)=fod (2),




where ¢; ' is the diffemorphism nsed in the construction of approximated so-

lution. Since both f and f, are J-holomorphic, we have

Uot(&?) = dfgtpp +Jo dfgfp 0t = Jy 0 dfo 0 (¢;1 0Jt—Joo Qst_*l),

velz) = J; 0 df 0 (61 0 e — jo 0 4.1).

It follows that

|vos(z) — ‘?5*_1%(37”
= |(Jqodfo— ¢ 0 Jo0df) - (851 0 ji — Jo 0 45)](2)

< CoAf = foler - [H-
When z is in U, where p is a double point of £q. Then ¢o fi™ (2,1, 22) =

Joi " (2p1, Zp2) = (20, Zp15 2p2, 0, - -, 0) implies that

¢y v(z) = (4," 0 Sy 0 ¢y — Jo) 0dd™" 0 fiT7 0 ju),

where Jy is the standard complex structure on C”.

Since ¢~ 1 o f is ¢, o J o ¢,-holomorphic, \%fe have

Qf’*_l oJ,o0 ¢*|f(zm.0) =Jo = ¢:1 oJ.o gﬁ*lf(ovzp?)'

In C*, we view ¢;' 0 J, 0 ¢u|f(z,,0) a5 an almost complex structure at

f(2p1, 2p2). We may assume that |2,1| > |2,2| at z. It follows that
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¢:1'Ut($) = (qb;]‘ O_Jz o (;s*'f(zpl,zp?) - ¢*_1 o JZ O ¢*[f(zpljo)) Q dfggjp ° jt'

Similarly we also have

. vﬂt(x) = (J30|fo(zp1,zp2) - J20|fo(zp1,0)) o df;tpp 0 ji.

By the mean value theorem we deduce on U,

|'UOt($) == ¢;1Ut($)lﬂc
=" Supgcec || V(I = 677 0 T 0 ) s 00) * 120} - [df57 | ()

< Co |l F = folleosoy V2.

It follows from the definition of approximate solution that

[vos() = vi(o)] < C- || £ = fo llowgay /11l (4.29)
The lemma follows from cémbining this inequality, |vi|co < ol |¢], and

| =@y ) 0 ¢ —id oS O = follos . - °

Let £y, & be the sections in Proposition 4.1.2, such that Ti{fo) = €T Pjape
(Lg™*¢1), and Ty(f) = emp;‘,?pp(l}f’“pp*,fg). Using the fact that Ty{fo), T:(f)

are J-holomorphic, we have

0= wor + Lgi™ o L™ (1) + Hoe(61), (4.30)




get

0= m(ufl?, Yo+ L% o LY (&) + Ho(&a)),  (4.31)
He < Vit 1 o< Vit

Note that

| ey, ) 0 L™ 0 L™ — L™ o L™ o my(uf?, ) (2) lo,g

< O = folee, (4.32)

I ("Tt(”fz ) Hy(E2) — Hm(?ft(uﬁ BIt) E|0,%

< G\l 7= fo o | (4.33)

Substracting (4.30) from (4.31), we obtain

Q (“;fpa Jvg = o

= L& —m(uf’, - )) + Hos(€1) — Hom(uz", )62) + B. - (4.34)

(4.32) and (4.33) imply
I B llog< € /It Il £ = fo llew, (4.35)

Applying Lemma 4.1.9 to (4.34), and using Lemma 4.1.10 and (4.35), we

&2 — me(ulf?, Yoz lop < C /It - (~loghth) 1| £ = fo llce -

Therefore the map 7, is injective near f,. Moreover, if Dy T} denotes the

derivative of T; at fy, then for any u in KerLg, we have
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(1=C- [t [l wllo < | DpTe(w) o (L +C- [t} [ w lo - (4.36)

Denote by L¥* the linearization of the Cauchy-Riemann equation at f§.

Lemma 4.1.11 Let KerL2* be the set of all solutions for Ly u = 0. Then
Kerl%®® converges uniformly to KerLy as t goes to zero. In particular, the

v,s0]

dimension of KerLy®™® stays as a constant for t small enough.

Proof: The proof of the first part is similar to the proof of Lemma 6.9 in
[RT]. Note that KerLy® < T:We x Q(f"T(# x V)), one can show that
dim Ker L2 is a upper semi-continuous at { = 0 as in Proposition 4.1.1.

Then (4.36) implies it is actually continuous. O

Corollary 4.1.1 The derivative Dy, T; is an isomorphism between KerLy and

KerLi® satisfying ({.36).

Remark 4.1.1 Note that in non-fiberwise case Ty is an orientation preserving
map, and the TsW direction in KerLy?® has fived orientation. So in fiberwise

case Ty is again an orientation preserving map.

It remains to show the second part of the Theorem 4.1.1. Let f' be given as
in Theorem 4.1.1. For any f in W, then there is a unique vector field u ot =
(u‘fzsolj_, uj.ftsol2) Such tha..t f'(w) = emp}:az(m)(u-ftsol(ftSOI(m))) a.»nd H Uf:ai HQS 6",

where € is small and depends only on W and ¢ in Theorem 4.1.1. We want to

sol

show that f' coincides with one of f;

7




Lemma 4.1.12 Let p be the function in Lemma 4.1.5, F be either 2% or f'.

Then there 1s a uniform constant A < 1 such that

dF2 , dp. < AR .
[%'[09|t|2—10gp2R| pehp e = ( )

Consequently, for some uniform fy > 0,

[dF % 4p(x) < C - pla)™. - (4.38)
Proof: This is exactly Lemma 6.10 in [RT]. : 0

Lemma 4.1.13 [f ¢, |t| are sufficiently small, there is a f in W such that

g [0S C - 2] (4.39)

where Py is given in (4.88).

Proof: By cutting ¥, along the loops in {z € 2, | p(z) = \/ZFI} and gluing
disks to the boundary components of the resulting surface, we obtain m sur-
faces ¥y, 1 = 1,---,m. Let 3, be the disjoint union of those surfaces. We
can naturally embed X, \ {z € &; | p(z) = \/ﬂ} into ¥, as a submanifold.
Then we can extend the conformal structure J: on % to be a natural conformal

structure ft on flt.

It follows from Lemma 4.1.12 that when 2 - /it| < p(z) <104/,

|4f o () < C - |7 (4.40)
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Therefore we can extend f' to be a map f from %, into z x V satisfying

19 oy < C- e,

where © = d f + J, 0df oj;. We denote by ff“_the linearization of Cauchy-
Riemann equation at f by Lv* its adjoint. Then by the same argnement as in
the proof of Lemma 4.1.7, one can show that the first eigenvalue of LYo L™ is
no- less than C - (—loglt|)~2, where C is independent of f' and t. By applying
the implicit function theorem in a similar manner to the proof of Proposition

4.1.2, we can find & € T,W< x Q%1(F*T'(z x V) such that f*! = e:cp}-(f/”*f) is

J-holomorphic. Moreover, if |¢| is sufficiently small, we have

1€ la< C-Jef2.

So the distance between In(f’) and Irn(f**) is less than €' - [t]3%. The
map f* may not be in MUy, am) (BoyXza, J,vp). However, using (4.40)
and the fact that M’fAl,---,Am) (X0, Xza, J, 1) is smooth at f,, one can show
that f*¢ lies in a C - |t|% neighborhood of some f, in W, as long as both ||
and e are sufficiently small. The lemma is proved. 0O

Without loss of generality, we assume that f = f, in Lemma 4.1.13. Let £
be the unique.solution of Ly o Lot e = Loy sz Multiplying this equation

by £ and integrating by parts, we obtain

feeP < o [ B [ 6Pau 440
T B : B .

By the same arguement as in the proof of Lemma 4.1.9, one can show
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W

fz 1€l due < € (~loglt])? - fg LS €. (4.42)

Combine with (4.39) and (4.41), we get for ¢ sufficiently small,

[, efdue <143

Since Li™ o LUl ¢ = LUroly ft;oz = O(|| ugsat [|1,0), by the standard elliptic

estimate we have

B
I la< o ¥

Consequently

[ ugo = Lo € ||, 4< C - 'k (4.43)

Now we want to find a new fi in W which is very close to f = fq, such that
Ugsot = Li; #o¢, for some & € Q0Y(T,, 22 (W x V), where LY;* is linearization
of 8 operator at I sol . Using equation = exp;f:,,(u fls?l) = ea:p;:o[(u ﬁoz), we

“can define a map S, from a neighborhood of fEoh into KerLg? at £,

Si(fr) = W(fo,fl)(uffgf Ly; 501*61)

[ l {
where 11;:‘30 ufiﬂof L'u 150 'U' so *6

15 ®(fo, /1) denotes the isomorphism from
KerL¥** at £ to KerLs?' at for which depends smoothly on f;. Clearly S,

is a smooth map. By the same arguement as in the proof of (4.36), one can

show




(A= C %) ull < [FDsSuu) flo < (L +C- )l (444)

Then by the implicit function theorem, there is a f; such that S,(f;) =0,
and || u foot I, 1< C - |t{¥. For simlicity, we may assume that f, coincides with

v,s50l%

Jo, then Ugsol = Lo7"7E. Since both f' and fy are J-holomorphic, it follows

from Lemma 4.1.8 that

Ll = —Hy(£).

Multiplying this equation by £ and integrating by parts, one can deduce

L e e R (445)

However || L€ ||1< C- |t|%u, so for ¢ small enough, (4.45) is impossible

v,s0l*

unless u g = L7 =0, 1., f' = for. The theorem is proved. ' ]

Remark 4.1.2 Essentially Theorem 4.1.1 is a corollary of corresponding glu-
ing theor.ém in non-fiberwise case. This can be seen as follows: view W* x V as
© a symplectic manifold, now fiberwise moduli space M?Aa,-'-, Am)(ED, Xwa, J,0)
and M?% (2, Xwe, J,0) is a subspace of M4, .....4,,)(Z0, W* x V, J,0) and M4
(4, W x V, J,0). The key difference is that in the non-fiberwise case, the
deformation space of J-holomorphic map f is parametrized by subspace of

Q(f*T(W* x V)) whose TW* component may not be a constant. Fortu-

nately, by modifying exponential map and applying the requirement that
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TW-component is a constant to non-fiberwise deformation theory, each de-
formed map is a fiberwise J-holomorphic map, which gives exactly fiberwise

gluing theorem.

4.2 Cohiposition Law of Fiberwise Gromov-
Witten Mixed Invariants

Let (L;,U;)kE, and (M;,W;):_, be pseudo-manifolds in A’z satisfying the

i=1

general position condition. Assume

k !
> (n+dimZ —dimU)+ > (2n+ dim Z — dim W, — 2)
=1 =1
= 2C1(V)-A+2n(1 —g) +dimZ, ' (4.46)

where ¢ is the genus of a smooth Riemann surface .

Adopting the notations at the beginning of this chapter, define the eval- |

uation map for ¢t # 0

e s M(Se, Xy Ty ) (B)! — B @
el fiyn, - u) = (Floa(®), -5 Flow(t)); flyn)s -+ -5 ()
Recall that for a generic (J, v) and for generic nonzero ¢, the image Im(e,)

intersects the product [T5_; U; x H;-:l W; transversally. Considering an inter-

section point ( fs; ¥s1, -+, Yst), We can assign a sign to (fy; ys1,- -+, ys) by using

the orientation of M”A(Et; Xygo, J, 1), (Xzo)*+ and TIE, UP x H;‘:1 W7, where
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Z°, U, and W} mean the top stratums. For ¢t = 0, after fix a position pat- .

tern Py of (01(0),-++,04(0)) in Xg and an intersection pattern 7', again for
generic (J, ), the map eg intersects [T, U? x Hi‘:l W} transversally at finite
many points in Xé{f ' Let (fo;yo1s-- -, yor) be one of such intersection points.

Theorem 4.1.1 gi\'fes

Corollary 4.2.1 Let (J,v) bé generic and (fo;yor, " Yor) bé as the above
which intersects transversally. Then there are €, & > 0 such that for t suffi-
ciently small, there is a unique { fy; Yo, yYu) in the space MY (X, Xgo, J, vs) X
(B satisfying: (1) ds(yss,y0;) < €, and da,(fo(2), fi(¥)) < € whenever
ds(z,y) < 6. Moreover the sign associated Lo (fi; 40, -, yu) is the same as the
sign associated to (fo;yo1, -+, ya) for those generic t such that MY (Z¢, Xz, J,

v) is a smooth manifold.

In Chapter 3 we have defined the fiberwise mixed invariants DU o im0, 20, P)
(ar, o yam | Bry-o, Bi)(), denote @Yy 5 pyles, <y | Bryoo, Bi)(y) by
@’E)A,w,g)(ala R 4" | ﬁl) e 7/61)(7)5 where P stands for the trivial pOSitiOﬂ pat-

tern and the trivial intersection pattern since ¥; is smooth.

Theorem 4.2.1 ( Composition law ) Suppose that fiber bundle X — Y sat-

isfies Assumption (*). Then for any rational cohomology classes oy, - - -, ag; By,

o, B € H*(X,Q) and rational homology class oy € H, (Y, Q),

@E’A’w,g)(ah- c o | Buo B)()

= Z Z (I)th,---,Am,w,ﬂe,(Pl,T))(ala Tty O I By, ﬁl)(7)7(448)

A=Aj+Ay T
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for any fized position patiern Py.

Proof: Fix a degeneration m : 5 — A of a k-point genus g smooth stable
curves, such that the central fiber is a stable curve C' and other fibers are
smooth genus g Riemann surfaces with k-marked points, where A C Cis a
unit disc. Suppose that for ¢ # 0, (fi; 91, +,yu) 1s an intersection point,
then fi(o:(t)) € Im(L;), and f;(Z:) N Im(M;) +# .(D. By Proposition 2.1.1.,
and taking a subsequence if necessary, we may assume that f; converg_es to
fo in ./\;I’(’Ahm’Am)(Eg,Xz,J, vo) for some partition Ay,---, A, of A and some
intersection pattern T as ¢ goes to zero. By Proposition 4.1.1, if (J,1) is
generic, fo is actually in My, . 4 (X, Xz0, J, 1), and by Proposition 2.2.4,
we may assume that fy intersects transversally at every double points. Let
y§ be the limit of y;, clearly fo(0:(0)) € Im{Ly), fo(y3) € Im(M;), therefore
(fo; 4%, -- -,y is an intersection point. Theorem. follows from Corollary 4.2.1.

O

Next we want to show that (I’fAl,---,Am,w,zo,P)(aia'":O’k | Ba,- -, B0(7)
could be explicitly calculated in terms of the fiberwise mixed invariant of each
component of Xy and the contribution from the double points. There are
two kinds of double points on a stable curve: intersection of two different
components or self-intersection of one component. In each case we will give a
formula.

Case 1. Suppose that LEO has two coﬁlponents o1y and X(pz) of genus ¢y

and g, respectively, satisfying: (1) X(g;) and X(gy) intersect at a double point

p, (2) X(o1) contains m marked points x;, -+, %, and Xg,) contains the rest
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of marked points. This is the position pattern P, Let C = (Zg; a1, --, x4 ).

Then @E’ Ar Apw,C,P) AL be calculated as follows.

‘Assume that Z is a psendo-manifold representative of . Let [HS] be a
basis of H*(Xz, Q). Consider the diagonal Az in Az X A’z. By the Kunneth
formula, we could write the Poincare dual of A as PD(Az) = TapMZab) *

Hg ® HY, where N(ze.0) 15 the intersection matrix of H*(Xz, Q).

- Theorem 4.2.2 Lel lhe intersection pattern 1' be that the image of Yo

intersects Im(M;), j = 1,---,1' and that the image of X(gg) intersects Im{M;),

j=U4+1,---,1. Let Ay and A, be two homology classes in Hy(V,Z). Then

Dy s ey, e | By, B(v)
= ZW(Z,T,(S) ) @?AI;W;QI)(al’ Ty O, [HE] | ﬂl') e 761')(7)

7,0

B g, g0y (Ot 15 5, [HE | Brzas- -, B)(), (4.49)

-

q)z}A,w,g)(al:"')ak | ﬁla"'aﬁl)(’)f)
I
1
= 7 aZrs
1334%:,43’:21;%]!'(1“3)! (@#md)

'(I’EJAl,w,gﬂ(al: Tty O, [HE] | 180('1}! Tt ﬁﬂ(.i))('T)

'@?Ag,w,m}(am«}-l: vty Oy [Hg] | ﬁﬂ’(j-l-l)) e 7180’(1))(7)3 (4'50)

where By and By arve any two homology classes in Hy(V,Z) and o are permu-

tations.
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Proof: The proof follows from applying the argument of Theorem 7.3 in [RT]

to moduli space Mp,, 4.1(Xo, Xz, J, 15). o

Case 2. Suppose that ¥y is a genus ¢ — 1 curve with one self-intersection

point, Let C = (Yo; @1, -+, &)

Theorem 4.2.3 We have

@?A,w,g)(ah Tty O ] ﬂla e 7181)(7)

= Y n@ms)  Plawg-nylon, - an [HZL[H) | b1y -+, B)(7)- (4.51)
7,6

Proof: The proof follows from applying the argument of Theorem 7.5 in [RT]

to moduli space M% (%o, Xz, J, 15). - | O




Chapter 5

Fiberwise Quantum Cohomology and

Equivariant Quantum Cohomology

Suppose that X 5 Y is a fiber bundle with fiber V satisfying Assumption
(x). Let Aj,--,A, be an integral basis of Hy(V,Z). Any homology class
A € Hy(V,Z) can then be written as A = dy - Ay ++ -+ + dp - A, For
simplicity we assume that for any genus zero J-holomorphic map f of V,
f(CP)=dy- A+ +dn-An with d; > 0,2=1,---,m.

Let

AT
= Z @?A,w,ﬁ)(ala Ty Oy | )([Y])Qfl e qfnm € C[IQI: s Qm]]:(5'1)
AeH(V,Z) 4

where o; € H*(X,C),i = 1,--,k, ¢," ** , ¢ are parameters, and C[[q;, " - -, gm]]

is the set of formal power series of g;.

We define fiberwise quantum multiplication
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* 1 H*(Xac)[[%' o >Qm]] X H*(Xad:)[[qla' : 'aqm]]

- H*(Xv C)[[Q’l: T qu]] (52)

ax B(B) = &i(o, 8, PD(B)), (5:3)

where o, 8 € H*(X,C), B € H(X,C), and PD(B) is the Poincare dual of B.
We extend * linearly to all of H*(X, C){[q1, - -., Gm]-

We call H*(X,C){lg1,- -+, ¢m]] with fiberwise quantum multiplication *

the fiberwise quantum cohomology associated to the fiber bundle X Y,

denoted by QH"(X,Y, C). Note that when Y is a point, the fiberwise guantum

cohomology becomes quantum cohomology of V.

Theorem 5.1 For any fiber bundle X 2 Y with fiber V; and fiberwise symplec-
tic form w satisfying Assumption (x), there is a well defined fiberwise quantum
cohomology. It has the following properties.

i) Itisa H{Y,O)lar,--- ,q;n]] module. This module structure is the same as
that of H*(X,C) as « H*(Y,C)-module. |

i) It is graded commulative:

a*f=(~1)18980. gy q (5.4)

iii) (Direct Product) For any two fiber bundles X1 — Y1 and Ay — Y,

satisfying Assumption (x). There is an isomorphism
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QH™(Xy X X, Y1 x Yo, C) = QH*(X,,Y1,C) x QH*(A,,Y,, C) (5.5)

as ¢ H*(Y, X ¥z, C)llg1: "+ + gy 4m,]]-module. Here qy,---,q,, are parameters
for QI (X1, Y1,C) and gmyq1,- ) Gy 4my 7€ the parameters for QH*(X,, Yz, C)
) (Restriction) Let Y; be a closed finite dimensional manifold and b : Y, —
Y be a smooth map. Set Xy, = X x,, Y1, the induced fiber bundle with fiber
V and induced fiberwise symplectic form w. Then there are a natural map

H: Xy, = X and a H*(Y,C)[[q1," -+, qm]]-module homomorphism

CH™ QH*(X,Y,C) - QH*(Xy,,Y:,C). (5.6)

Here we assume that QH*(Xy,,Y1,C) has the induced H*(Y,C)[[g1, -, ¢m]]-
module structure from h* : H*(Y,C) —» H*(Y1,C). '

v) (Induction) Suppose that fiber bundle Y — B has fiber V, with fiber-
wise symplectic form wy satisfying Assumption (%). Assume that w is also
a fiberwise symplectic form satisfying Assu_mptz'on (x) for the induced fiber
bundle X — B with fiber V. Assume further that Hy(V,Z) has an integral
basis By,---, By 4m, such that By, 41, -+, Bytm, are the integral I_)_asis' of

Hy(Vy,Z). Then there is an isomorphism

QH*(Xan C)/{(qﬂ%1+17 e ,q7m+m2) ’ H*(X'.'Bv C)} = QH*(Xa Yv C) (57)

as a H*(B,C)|[q1, " * » Gm, )]-module.
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Proof: The proof follows directly from the corresponding properties of the

fiberwise mixed invariants. 0

Theorem 5.2 For any fiber bundle X 5 Y satisfying Assumption (x), fiber-

wise qudntum cohomology QH*(X,Y,C) is associative.

Proof: Suppose oy, 0, a3 € H*(X,C), H® is a basis of H*(X,C) and (n,,)

is the intersection matrix, then

(o * ) * a3
= (Mayb - éi(a;aazaﬂal) - H") % ag
= Ny OU(0n, ap, H™Y - @5 (HY g, H*2) - 0y, - H™.
o * (o * az)
= ay * (g, - (0, 05, H) - H)

= Nai b &)Z(alaffblaHM) ) &)Z(Cfg, a31Hal) *Tlagba Hbz‘

It follows from Theorem 4.2.2 that

Naa,by é:(alva% Hal) ) (i)::(Hbl:aBaHaz)
= éz(al,az,a&ff@)

= Mapby ° ézz(alﬂHblaHM) ’ @Z(aha&ﬂa!)'

So

(_051 * O:‘g),* Qg = O * ((]!2 * 053).
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The theorem is proved. 0

Suppose that Lie group G acts on a semi-positive symplectic fnanifold
(V,w), keeping w invariaﬁt. Denote by EG — BG the universal G bundle. Let
Y = B@ and X-= V x¢ EG. However we can not apply the fiberwise quantum
mﬁitiplica,tion directly to this case because Y is infinite dimensional. Note that
by the definition equivariant cohomology Hg(V,C) = H*(X, C). To define the
equivariant qua,ﬁtum mﬁltiplication a#f for o and B € HE(V,C), we use finite
-dimensiona,l approximation of Y. We choose a N dimensional approximation
BGy of BG such that H'(BGy,C) are isomorphic to H(BG,C) for @ <
dega + dég B+ 1. Then Xy = V Xg BGn has same cohomology as A’ up to
degree at least deg o +deg f+ 1. We define a* J2] to be (a* B)n, defined using
Xy — BG. |

We need to show this multiplication is well-defined. Suppose N’ is another
such integer. We need to show -(05 # B)n(B) = (a* B)y(B), for any B €
H.(X,C). Since .

(a*BnB) = S o8ly(a 8, PD(B)(BGN - 4

A€Hz{(V\Z)
(axfw(B) = T @ (e, 8, PD(B)([BGw D -
. AEHQ(V,Z)

where ‘Dﬁ(ﬁ o and @fif:}:&) are the fiberwise mixed invariants defined by Xn

and Xy respectively. So all we need to show is

&1 (@, B, PD(B))([BGw]) = 82y (ex, B, PD(B))(IBGN')
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Without loss of generality, assume that N < N’. Choosing BGy C
BGp C BG to be submanifold, then Xy C A is also a submanifold. Froﬁ
the choice of N, we can choose psendo-manifold representatives (L1, Uy ), (L2, Us)
‘of a, f# in X+ such that their images, intersecting with Xy, give the pseudo-
manifold represéntatives of @ and # in Xy. (Ls,Us) is the pseudo-manifold
representative of B in Xy. Under the inclusion Ay C .X_’Nr, we view ( Lz, Us)
as a representative of B in Xy From Remark 2.2.2 i}, we know that there is
a generic (J,7) which is good for Ay and its restriction to Ay is a,iso good.
@a";};)(a, B,8)(BGn) is defined as counting the number of the intersection
of Mﬁ(Sz;z"t’N:,J, v) X (8%)* with (L, Uh), (L2, Us), (Ls, Us) under evaluation
map. The intersections happen only inside A’ because of the choice of (L3, Us).
Also note that M%(S?, Xy, J,v) is a subspace of M”A(Sz, Xy J,v). So the in-
tersections are exactly the same as the intersections of M%(S%, Xy, J,v)x(5%)?
with (L1, Uy),{Ls,Us), (L3,Us) under evaluation map. The number of the
latter interseci:ions is by deﬁnitiﬁn @ﬁzf‘o)(a,ﬁ,PD(B)) (BGn). So well-

definedness is proved.

When Y is infinite dimensional, for a fiber bundle X' — Y satisfying As-
sumption (%), we can define the fiberwise quantum cohomology QH*(X,Y,C)

similarly. We will use this definition in Section 5.2.

We call H5(V,C)|[g1," -+, ¢n]] with equivariant quantum multiplication
equivariant quantum cohomology, denoted by QHE(V, C). It is a g-deformation

of equivariant cohomology. The following two theorems follow from Theorem

5.1 and 5.2,
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Theorem 5.3 Suppose that Lie group G acts on a semi-positive symplectic
manifold (V,w), keeping w invariant. Then there is a well-defined equivariant

quantum cohomology QHE(V,C). It has the following properties.

i) QHL(V,C) is @ H*(BG,C)[[q1, -, gm]]-module. This module structure is 7

the same as the'H*(BG; C)-module structure of HE(V; C).

i) QHE(V,C) is graded commutative:

axf=(—1)dsatdessg o (5.8)

ii1)(Direct Product) Suppose that Lie groups G; act on the semi-positive

symplectic manifolds (V;,w;), keeping w; invariant, i = 1, 2. Then

QHG va,(Vi x V3, C) = QH, (V1,C) @ QHE, (W3, C), (5.9)

where wy X wy is the symplectic form on Vi x Vy and Gy x Gy acts on Vi X V5
by product action.
iv) (Rest_fiction) Suppose G C G is a normal Lie subgroup. Then there is a

homomorphism

1 QUA(V, ) - QHy(V,C) (5.10)
as a H*(BG)[[g1, " -+ , gm|]-module. Here we choose EG = EG which induces a
map BG — BG and the H*(BG)|[gs," - » gm]]-module structure of QH&,(V, C)
is induced from h* : H*(BG,C) — H*(BG,C).

v) (Induction) Let &' C G be a normal Lie subgroup with G/G‘ being simply

connected. Suppose that G/é 18 a semi-positive symplectic manifold. Assume
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that G acts on a semi-positive symplectic manifold (f/,tﬁ), keeping & invariant.
Let V =V x5G. Assume that & can be extended to a semi-positive symplectic
Jform on V invarient under G action. Assume further that Hy(V,Z) has basis

Bi,+++y Bgtms With Boyg1, -+ Bryym, being basis of G/G. Then

QHZ(V; C)/{{gmi415* Gmy4ma ) QHE(V,C)} = QHAE(V,C).  (5.11)

Theorem 5.4 Egquivariant quantum cohomology is associative.




Chapter 6

Several Examples | ‘

6.1 Classical cohomology rings

Let n be a natural number and %, - - - , ks be a partition of n, L.e., ky+---+

ks = n (k1,---, ks are natural numbers). Recall that a partial flag manifold

Fg,y, .. k,) is defined to be the set of all flagsin C*, 0 C C, C--- ¢ ¢, = C"
with dim ' = ky + -+ 4+ ki, ¢ = 1,--- 5. There are s complex vector bundle
L; of rank k; over Fiy, ..x,) whose fiber at above flag is C;/C;_,. Here we use

convention Cy = 0. Denote by C" the trivial bundle of rank n. These bundles

satisfy the following relation
Lo---®L,=C" (6.1)

Lemma 6.1.1 The cohomology ring H*(Fiy, ...x.), C) is isomorphic to

C[ui,...,u}cl;...;u;...,uza]/{gh...’%}
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'i.
i

part of the e:vpansiorn of (1 4wy +-- up ) (1+uf 4 +uj ). Under the

where u’. are parameters which we assign with a degree 23 and o; is degree 2j
isomorphism u is mapped to the j-th Chern class c;(L;). Furthermore the first

Chern class of F(;c},...,ks) is 3o 1(k; -+ kjy1)p; where p; = Yp; ubtl,

Proof: This result is well-known. For convenience, we sketch a proof.

From (6.1), there is a natural map which maps u} to ¢;(L:),

C[u;a T 7u}c1; T ;uia' st -.\u}scs]/{o'lv' o van} = H*(F(kl,---,ke)!c)

First we show that p is surjective by showing that H*(Figy s C) 18
generated by ¢;(L;). We argue by induction. When s = 2, Fy, ,, is a Grass-
mannian. The statement is true. Suppose that it is true for s — 1 case. Then

consider fiberation

Fly ) = G(n — kyom)

with a fiber Fiy, .. x,_,)(C" %) where x maps ﬂag 0cCyC--CC,toCoy.
Note it is easily to see the restriction of ¢;(L;) for 1 < ¢ < s —1 to each fiber
is the Chern class of those “L;”s of the fiber, by assumption they generate the
cohomology of the fiber. The Chern classes of similarly constructed rank k,
bundle L, on G(n — k,,n) generate the cohomology of G(n — k,,n), and they

are mapped to ¢} under #*. So the Leray-Hirsch Theorem for fibration applies.

H*(Flgy,ks)- C) 18 generated by c¢;(L;)’s.
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Secondly, we show that p is an isomorphiém. The Poincare series P,(H*
(Fliy o ks)s €)) is the product of Poincare series of H*(F, ..x,_,), C) and H*

(G(n — ks, n),C), a simple induction gives

?:1(1 — t%)
] kj iy
Hj:l HZ;I(]‘ - t2 )

PH (Fhy o €)) = (6.2)
which is exactly the Poincare serics of Cluf, -, up;;-5ui, -, ul |/ {o1, -,
on} (see [BT], section 23}. So p is an isomorphism.

Denote by W; the vector bundle of rank Zf;} ki1 over F, .. x,) with fiber

at flag 0 C Gy C --+ C C, to be C*/C;. Note that W; = @1 L;;, and

M

T o) = D" i Hom (L, W)

It follows
s—1
1 (Fpy, k) = ) a(Hom(L;, Wy))

=1
s;l

=) al(l; ®W;)
J=1
s—1

=D =k + -+ ko)er (L) + ke (W)
i=1
s—1

(kg oo Rl + B e )]

[
1]
A

= k?pl + -+ ksps—l + k1}01 +er ks—lps—l

s—1

= > (k; + kjz1)p;.

i=1
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Where we use the fact —(u} + -+ +uj) = p; in the second to last step. This

fact follows from v} + -+ + uf = 0. o _—

Suppose that £ — X is a complex Ve.c.télgiigﬁ;ndle of rank n. The pa,rtiél |
flag manifold Fiy, ... )(E ) over X can be constructed as follows Let {U,} bea
covering of X such that £ can be trivialized on each U E lv, = Uy xC?, with
transition functions (¢ug, Aag), Where dup : U — Uﬁ and A op P UaNUz —
G'L(n,C). Then patching together U, X Fig, ..k, ) usmg the mduced action of
Agg on Figp k), we get Fi, k) (F). Note that F(kl".{'..

Q(E) 2 X is a fiber

bundle with fiber Fy, ...x,). Similarly we can define’ vector bundle'

Fy o) (E). It is not hard to see

L(E)@ - L(E) = p*E

Lemma 6.1.2 The cohomology ring H*(Fiy, .1 (E),C) is Esomorphzcto

H*(X; C)[u}, Ty u}cl; e ACPEEEN uis]/{al - Cl(p*E)a T Un—cﬂ(p*E)}

as a H*(X;C)-module. Here parameter v} is mapped to cj(L,-(E)) and oj is

defined as in Lemma 6.1.1.

Proof: Consider fiberation F(kl,...,ks)(E) 2, X which is a fiber bundle with
fiber Fiy,....r,). Note that the restriction of ¢;(L;(F)) to ea,ch ﬁber Flog o)

gives ¢;(L;). The lemma follows from the Leray-Hirsch theorem for fiberation

and (6.3). : O




Note that the standard action of U(n) on C* induces an action of U (n) on
Fixy,k,) and a fiberwise action on Fi, .. x,){E). So we can make the following
construction. Suppose G = U{({;) x --- x U(%) € U(n) is a subgroup with the

induced action on Fig, ..x,) and Fig,..k,)(E). Then

Figy iy (E) g EG 5 X x BG

is a fiber bundle with a fiber Fi, ..z,). Here EG — BG' is the universal
principal G bundle. Construct the L;(E,G) bundle over Fiy, .., {(F) x¢ EG
as before. There is a bundle £ = E x g EG of rank n over X x BG whose
restriction to each X slice is E and whose restriction to each BG slice 1s EG x g
C”. Denote by ¢;(G) the i-th Cliern class of universal G bundle EG x5 C™.
Then ¢;(E) can be expressed in terms of ¢;(E) and ¢(G), 4,5,k = 1,--+,n,

and

L(E,G)® - ® L(F,G) = p*E. (6.4)

Lemma 6.1.3 The cohomology ring H*(Fy, ..x\(E) x¢ EG, C) is isomorphic

to

H*(X;C) X H*(BG;C)[U‘:},"'3”}:1;"';?‘::"'7”7:,]

How — a(pE), 00 — ca(p"E)}

as a H*(X,C) x H*(BG,C)-module. Here parameter u; is mapped to ¢;(L;(E,

G)), and o; is defined as in Lemma 6.1.1.
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Proof: The proof , which is similar to the proof of lemma 6.1.2, is omitted. O

Note that if X is a point and G = U(n) in Lemma 6.1.3, we get the

equivariant cohomology of flag manifold

H ) (g k)5 ©)
= Clug, -5 ul, s upsa{U(n), o ealU(n)]

/{01 - Cl(U(n))1 Tty On Cn(U(n))}

Two special cases are:
Case 1. Consider the diagonal embedding U({) — U({)x -+ x U(l) € U(n), ¢
factors U({). This embedding induces an action of U(f) on C"; denote this ac-
tioﬁ by g1 Then the cohomology ring H*(Fy, ..k,) X, EU(1), C) is isomorphic

to -

C[’U,}, e 1“%:1; Tt ;ui? e ,uis;cl(U(l)), e aCI(U(l))]/{Ul - 617' e On Eﬂ}

where uz and o; are the same as in Lemma 5.1.1 and ¢; is given by 1+¢&+---+¢,

=1+ o)+ +aU@)]

Case 2. Consider a embedding U(1) — U(1) x - -- x U(1) which send 2V =18
to (e2mV=Tril ... 210} with v; € Z. This embedding induces an action of

U(1) on C*; denote this action by p. Then the cohomology ring H*(Fix,,...k,) X5

EU(1); C) is isomorphic to
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C[uia ) ',’U.},']; e ",U,i,' : ':uzg;cl]/{al - Ela“ 3O0p — En}
where u; and o; are the same as in Lemma 5.1.1 and 5:; is given by 14+ & +
En = (1 +T1§1)"' (1+TnC1).
Note that if s = 2 and k; = 1. Under above action we get, after eliminat-

ing one parameter,
Hyoy(CP™) 2 Clz, e/ {(z — mer) -+ (& — raer)}.

6.2 Fiberwise quantum cohomology of .
F(kl,---,ks)(E) Xa EG — X x BG

Suppose X — Y is a fiber bundle satisfying Assumption (x} and fiber V
is a positive symplectic manifold. Assume further that the cohomology ring

of X can be presented by a ring isomorphism

H*(Y)[:El:'-' ’ 7$1V{f17 v :fs} i’ H*(/Y,C),

where we view the lef side as graded commutative polynomial algebra of
@1, @ plzy)y -, p(e:) are homogeneous generators of H*(X;C), and
fis++ -, fs are homogeneous polynomials of zy,-- - , Ty

Proposition 6.2.1 If we give a appropriate degree to q;, then there are homo-

geneous polynomials g;(x1, -, T4; g1, -+ > Gm) such that gi(z1, -+, 4,0, ,0) =

0 and QH*(X,Y,C) can be presented by a ring isomorphism
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Note that the standard action of U(n) on C” induces an action of I/(n) on
Fy .,y and a fiberwise action on Fy, ... x,}(E). So we can make the following
construction. Suppose G = U({) x --- x U(l) C U(n) is a subgroup with the

induced action on Fg, ...x,) and Fig,,..x,){(E). Then

F(k1,'--,ks)(E) X G 2 X x BG

is a fiber bundle with a fiber F, ..x,). Here EG — BG is the universal
principal G bundle. Construct the L;(E,G) bundle over F, ..k (E) X EG
as before. There is a bundle £ = E Xy(m) £ of rank n over ‘X x BG whose
restriction to each X sliceis I¥ and whose restriction to each BG slice is EG X g
€. Denote by ¢;{G) the i-th Chern class of universal G bundle EG x5 C™.
Then ¢;(E) can be expressed in terms of ¢;(E) and (@), 4,7,k = 1,---,n,

and

L(E,G)& - & L(E,G) = p°E. (6.4)

Lemma 6.1.3 The cohomology ring H*(Fy, .. k) (F) xq EG,C) is isomorphic

to

H*(X;C) x HY(BG; C)luy, -+ 5y 5050,y ug ]

o1 —a(E), 00— ca(p" E))

as a H*(X,C) x H*(BG, C)-module. Here parameter u', is mapped to c;(Li(E,
@), and o; is defined as in Lemma 6.1.1.
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Proof: The proof , which is similar to the proof of lemma 6.1.2, is omitted. OO

Note that if X is a point and G = U{n) in Lemma 6.1.3, we get the

equivariant cohomology of flag manifold

HB(R)(F("“I 1"'lk8)’ C)

= O[uia T 7u}c1; e ;ui,- ot :ufcs;cl(U(n))a' tt '}Cn(U(n))]

[Hor = e{U(n), -+, on — ca(U(n))}.

Two special cases are:
Case 1. Consider the diagonal embedding U(l) — U(l) x --- x U(1) C U(n), t
factors U(1). This embedding induces an action of U(f) on C"; denote this ac-
tion by pi. Then the cohomology ring H*(Fy, k) X5 EU(I), C) is isomorphic

to-

C[uia' " 9“‘}31; SR ,uis;cl(UU))a s 7Cf(U(l))]/{al — €1y, 0 — éﬂ}

where u; and o; are the same as in Lemma 5.1.1 and ¢; 1s given by 1+4¢,+- - -+¢,

=[1+aU)+--+aUD)]-

Case 2. Consider a embedding U(1) — U(1) x - - - x U(1) which send e2rV=10
to (62”\/:?”9,- ., 62'”‘/_‘_1"""9) with r; € Z. This embedding induces an action of

U(1) on C*; denote this action by p. Then the cohomology ring H*(F(x,,..k,) X 5

EU(1); C) is isomorphic to
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where u; and o; are the same as in Lemma 5.1.1 and ¢&; is given by 1 + & +
En = (1+'J‘"1C1) (1';1-?”7,,(31).
Note that if s = 2 and k; = 1. Under above action we get, after eliminat-

ing one parameter,
H{,(l)(CP“) = Clz, cq]/{{z —ricy) -+ (2 — roer)}

6.2 Fiberwise quantum cohomology of
Fipy i) (E) g EG — X x BG

Suppose X — Y is a fiber bundle satisfying Assumption (¥) and fiber V
is a positive symplectic manifold. Assume further that the cohomology ring

of X can be presented by a ring isomorphism

W )fany - wd/ {fyy fu B HY(X,C),

where we view the left side as graded commutative pélynomjal algebra of
#1,-, 2. plxy),---,p(z;) are homogeneous generators of H*(A;C), and
fi,++, fs are homogeneous polynomials of z3,---, ;.

Proposition 6.2.1 If we give a appropriate degree to g;, then there are homo-

geneous polynomials gi(zy, -+, T q1,++ , Gm) such that gi(@y,- -+, 24 0,---,0) =

0 and QH*(X,Y,C) can be presented by a ring isomorphism
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H*(Y)[:’Bl?" Taigy g1yt vqm]/{fl — 1, :fs —‘gs} '_ﬁ)QH*(X';KC)

Proof: Let I be an ideal in C[[gy, - -, ¢i]} generated by g1, -+, g Since'V is

a positive symplectic manifold, for any o, 8 € H*(X;C), we have

axB=aAB+h(a,Biq,qm)

where £ is a polynomial in ¢, , ¢, and k(a,5;0,---,0) = 0. So

QH*(X,Y,C) = span {p(z1), -, p(z:)} use * multiplication

1 QH*(X,Y,C).

By the Nakayama Lemma, it follows

QH*(X,Y,C) = span (p(z1), -, p(z:)) use * multiplication. (6.5)

If fi(z, -, 2) = zaiﬁ,m,j: gt oo gl denote product p(z;)* - * p(;)

of § factors by p(z;)*, consider

Soab o pla) e (e
= Za;'l,---,jt cp(a)? A A pla)

F578 (G gm) - p{)T A A p(e)t
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with & . (0,---,0) = 0. By (6.5), we may assume

Pz Ao Ap(ae)e = 3ol pmg )™ w ok p(ze)™.

We get

Sk el ok p(wg)

= @ gm) T p(an )k p(e)

Let g; = Ebﬁ;h_._,jt(qi,- o gm) cj;'f: . ;,;il a;;t We see that f; — ¢;

is mapped to zero under map p. p is a ring homomorphism. Since p is an
isomorphism, § is an isomorphism modulo ideal /. The fact that 5 is an
isomorphism follows from the Nakayama Lemma. The proposition is proved.
I

Since we have mathematically defined the equivariant quaﬁtum cohomol-
ogy and established the properties of restriction and induction, the foﬂowing
results from [AS] and [GK] are theorems(see proof in [GK] and [AS]). Some
simple matrix manipulation will reduce the matrix in [AS] to the following

simpler form.

Theorem 6.2.1 (Astashkevich-Sadov) The equivariant quantum cohomol-

ogy of the flag manifold QHE(H)(F(kl,---,k,), C) can be presented as

Clug, -y g 3% 5 Uk 4 s Gmsi 01, s el [{oa{g) —en, -y onlg)—en},
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where c; is the i-th universal Chern class -cg-(U(n)), the degree of ¢; is k; + ki1,

the degree of u; is 2, and o:(q) is defined to be the degree 2i part of‘the

expansion of det{A). The matriz A is defined to be

T+ul 4+ uj, 0 0 - 0
-1 1+U%+f"+uil gz - 0
0 0 0 .- Gs—1

\ 0 0 0 .- 1+u§+...+uza)

As a special case, when s = n, by = --- = k, = 1, we have

Theorem 6.2.2 (Givental-Kim) The equivariant quantum cohomology of

the flag manifold QHz y (Fi1,-1) C) can be presented as

C[ulb ey URiGl,t tt y Gn=13€61, '107%]/{0-1((1) —Cpyt ,G'W(Q‘) - cﬂ}’

where ¢; is the i-th universal Chern class, the degree of g; is 2, the degree of u;

is 2j, and o;(q) is defined to be the degree 2i part of the expansion of det(A).

The matriz A is defined to be




1+ @1 0o --- 0 0 0
1 14u; g -~ 0 0 0
0 0 0 «++ =1 TH4uzy gu
0 0 0 .-~ 0 -1 1+ u,

These result can be geﬁeralized to

Proposition 6.2.2 Let G =U(l) x --- x U(ly), the'ﬁberﬁ;ise quantum coho-

mology QH*(F(kII,..,‘ks) (F) xqFEG, X x BG,C) can be presented as

H*(X,C) ® H*(BG,C)[u},- ‘ '1“}:1; e ;uia' o jruzs;‘hv e :-qs—l]

Howla) = a(@*E), -+, 0n(q) — ealp" E)},

where 0;(q) is defined as in Theorem 6.2.1.

Proof: By the Proposition 6.2.1, we only need to show that relations o;(q) —
c(p*E) = 0,i = 1,---n, hold in QI*(Fy,,x.,) (E) X¢EG, X x BG,C).
Choosing a IV large enough such that H(BG) = H{((BG)y)fori = 1,---,2n+

105




9. Consider the classifying map h : X x (BG)y — B(U(n)) of bundle B.. }

pulls back the universal flag manifold over B(U(n}) to Fiy,,..k)(£) Xa (EG)N

From Theorem 6.2.1 and the restriction property of the fiberwise quantum co
homology, we conclude that the relation o;{g) — ci(p*E) = 0 hold for § =

1,0 - o

Two special cases are:
Case 1. The fiberwise quantum cohomology QH*(Fiz, ..k % 5 EU(1), BU(1),C)

can be presented as

C[u%v'"7uilc];"';‘uia"'vuis;clv“'1Cl;q13"'1q3—1]
/{JI(Q) e El,"'70n(Q) - &n}:

where o;(gq) i1s defined as in Theorem 6.2.1 and & is defined as in Case 1 in
Section 6.1. _
Case 2. The fiberwise quan’tﬁm'cohomology QH*(Fg,y ..k x5 EU(1), BU(1),

C) can be presented as

C[u})"'7“}‘:1;"';“;‘":uzs;cl;qla"'7qs—1]/{0—1(Q) _615“'70-?1-((1) _6‘n}7

where 0;(¢) is defined as in Theorem 6.2.1 and &; and § are defined as in Case
2 in Section 6.1.

When s = 2, k; = 1, and § is the action of U(1) on C", we have

_QHBU)(CP”_I; C) & Clz,e1,q)/{(z ~ r1c1) - - (& —mpey) — ¢}
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where degree of ¢ is 2.
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