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Abstract of the Dissertation
Monotonicity and the Construction of Quasiconformal Conjugacies

in the Real Cubic Family
by

Christopher Arthur Heckman
Doctor of Philosophy
in

Mathematics

State University of New York
at Stony Brook
1996

The dependence of the dynamical behavior of polynomials on their
parameters can be understood by studying topological conjugacies between
the polynomials. Topological conjugacy forms an equivalence relation on
polynomials, and polynomials with the same type of dynamical behavior are
in the same equivalence clags. In the real quadratic family, analysis of the
single critical orbit, using quasiconformal pull-back techniques and a type
of induced map called a box mapping, shows that fopological conjugacies
are quasiconformal homeomorphisms. If there is a quasiconformal conjugacy
between two distinct real quadratic maps, it is always possible to deform this

conjugacy into an entire family of conjugacies between real quadratic maps.

This characterizes conjugacy classes of real quadratic maps, containing more




than one member, as connected and open intervals in parameter space. This
provides enough information to show that topological entropy must vary
monotonically in real quadratic parameter space. This is the monotonicity
problem for real quadratic maps.

This theéis applies the same tools to the real cubic family and solves
a similar monotonicity problem. We show that any set of real cubic maps
with the same topological entropy forms a connected set in parameter space.
If one critical orbit of a cubic map is periodic, Yoccoz partitions can be
used to construct a box mapping induced from the cubic map, which then
vields information about the second critical orbit. Certain topological con-
jugacy classes of real cubic maps are shown to be quasiconformal, and the
deformation argument applied to cubic maps then yields the monotonicity

result.




TABLE o CONTENTS

Chapter I. Introduction

§1.
§2.

Cubic monotonicity

History

Chapter IT. Basic Terminology
§1.
§2.
§3.
§4.
§5.

Holomorphic dynamics
Topological conjugacy
Kneading theory
Quasiconformal maps

Béttcher coordinates

Chapter III. Foundations for the study of real cubic maps

§1.
§2.
§3.
4.

Normalization of the cubic family
Bones
Special quasiconformal conjugacies

Statement of results

Chapter IV. Quasiconformal pull-back

§1.
§2.
§3.
§4.

Induction hypotheses
Induction step

Limit of the induction

Conjugacies between hyperbolic maps

o 1 >

10

13
15
16
19

21
23
24
33
36




Chapter V. Applications of pull-back

- §1. Characterizing bone-loops 43
§2. Non-existence of bone-loops 56
Chapter VI. Box mappings and branchwise equivalences 65
§1. Standard box mappings - 65

§2. Branchwise equivalences 69

§3. Inducing Algorithm 71 i
§4. Box mapping results 79

§5. Generalized box mappings 80 1‘
Chapter VIT. Polynomial tools 85
81. Monotone pﬁll—back 85
§2. Extending the Bottcher coordinate 91
§3. Lambda lemma 102

Chapter VIII. Applications to cubic maps
§1. Real box mappings induced from cubic polynomials 123

§2. Extending real box mappings 131

§3. Constructing branchwise equivalences 142




Chapter IX. Quasiconformal conjugacies on bone-loops
§1. Final filling
§2. Non-renormalizable case

€3. Renormalizable case

References

154
154
156
160

164




I. INTRODUCTION

§1.1. Cubic monotonicity.

We prove a Monotonicity Conjecture for the family of real cubic maps.
This conjecture states that for a suitably normalized space (parameter space)
of real cubic polynomials, the points representing cubic maps with some fixed

topological entropy always form a connected set.

The work of Dawson, Galeeva, Milnor, and Tresser (see [DGMT]) pro-
vides the framework and the principal reduction of the conjecture for real
cubic maps. This work introduces the concept of bones, Whi(‘;h are subsets
of ‘the parameter space where the dynamics of one critical point are peri-
odic with specified order type. Bones of high enough period are shown to
be one-dimensional manifolds that form a skeletal structure underlying the
entire parameter space. This structure is related to a similar structure in
the parameter space of certain piecewise linear maps, where the question of
monotonicity can be directly addressed. This strategy hinges on the require-
ment that bones themselves be connected subsets of the cubic parameter
space. In [DGMT], this is stated as a conjecture, the Connected Bone Con-
jecture, and it is shown that this implies monotonicity for real cubic maps.
This paper approaches the monotonicity problem by proving the Connected
Bone Conjecture. The main tools used in the proof, deformation of quasi-

conformal structures, Yoccoz partitions, and box mappings, are the same as

those developed for studying the parameter space of quadratic polynomials.




§1.2. History.

The monotonicity problem itself was originally posed (see IMT]) for
the real quadratic family. Since the parameter space of real quadratic poly-
nomials 1s one—dimensionai, topological entropy, considered as a continuous
function on parameter space, must be monotonic if each locus of constant

entropy forms a connected set. Hence the name “monotonicity.”

Monotonicity of the real quadratic family is the first in a progression
of results working towards the ultimate goal of proving (Fatou’s Conjecture)
that hyperbolic maps are dense within any family of polynomials (See the
discussion of [DGMT] of General Hyperbolicity and how it relates to the Con-
nected Bone Conjecture and monotonicity}. The principal tools used here
are the analysis of conjugacies between polynomials as quasiconformal maps,
and Yoccoz partitions of the dynamical plane. The fundamental observation
is that two hyperbolic quadratic maps which are in the same conjugacy class
are conjugate by a quasiconformal map and, in general, such a conjugacy
class must be an open set in parameter space or just a single point. Yoccoz

partitions then provide a framework for studying the conjugacy.

Together these tools have been used to prove Fatou’s Conjecture for
the real quadratic family. Tt is easily seen that conjugacy classes for non-
hyperbolic maps must be closed sets, and if all the conjugacy classes are
quasiconformal, then non-hyperbolic classes must be single points in param-
eter space. [t then follows that hyperbolic maps are dense. Swiatek reduces

the hyperbolicity problem to the following statement about quasiconformal

conjugacy classes (See {Sw}).




Theorem 1.1. (Swiatek) Let f and f be two real quadratic polynomials
with a bounded forward critical orbit and no attracting or indifferent cycles.
Then, if they are topologically conjugate, the conjugacy extends to a qua-
siconformal conjugacy between their analytic continuations to the complex

plane.

This theorem and the tools used to prove it form the starting point
for this work. The advantage of studying bones in cubic parameter space
is that one of two critical points is effectively removed from consideration.
The bulk of the tools used to prove the above theorem, which all draw con-
clusions about a single critical orbit of an analytic map, can be applied
directly to cubic maps on bones. These tools come in the form of box map-
pings, branchwise equivalences, and Theorems [6.1] and [6.2], which are in-
troduced in Chapter V1. The chapters following all discuss how cubic maps
can be worked into the framework of box mappings. Chapter VII introduces
additional tools, including the Bottcher coordinate and the A-Lemma. In
Chapter VIII, we construct box mappings and quasiconformal branchwise
equivalences. Chapter IX applies Theorems [6.1] and [6.2] to box mappings
constructed using cubic maps, and a result similar to Theorem [1.1] is ob-
tained.

Chapters III through V show how quasiconformal conjugacies can be
used to prove the Connected Bone Conjecture. Chapter III defines the cubic
parameter space and bones. Chapter IV develops the essential quasiconfor-
mal tools for applying the box mapping results to cubic conjugacy classes,

and Chapter V uses these tools to prove that bones are connected.




I1. Basie TERMINOLOGY

§2.1. Holomorphic dynamics.
For an mtroduction to holomorphic dynamics, see [Mi2] or [Bl]. The

map f is always an analytic map of the complex plane, and we study its

iterates f°7, where f°%(2) = f o f(2), f°3(2) = fo fo f(2), ete. The

oo
j:O)

orbit of a point z under f is the sequence of points {f°/(z) and we
are concerned with the long term behavior of this sequence and the limit,
if it exists. If the sequence of points repeats itsell after a finite number of
iterations, we say z is periodic, and any points that contain a periodic point
in their orbit are called preperiodic. Note that a periodic point z of f is
fixed under iteration by f°7, if we select j to be the size of the period of z
under f. If z is fixed under f°/, we call z an attracting periodic point, if
some neighborhood of points near z have orbits which converge to z under
f°4. This behavior is characterized by the multiplier, the derivative of £°J
evaluated at the fixed point, having absolute value strictly less than one.
The set of points that have this same limit are called the basin of z, this
will also be the basin of any point in the orbit of 2. A basin is always
an open set, and the connected components containing the finite orbit of z
is called the immediate basin of z. A periodic point is repelling if the
multiplier has absolute value strictly greater than one, in which case points
near z will always leave small neighborhoods of # under iteration by f°/. We
will call a preperiodic point that contains a repelling periodic point in its
orbit repelling preperiodic. Since the multiplier varies continuously with

the parameters of the polynomial, attracting and repelling periodic points

4




always persist with small perturbations in the map f.

For this work, the map f will always be a polynomial, and if the
point z is large enough, the orbit of z will diverge to infinity. We call the
set of points in C which diverge under f, the basin at infinity, and we
also say these orbits escape to infinity. For a polynomial f, the boundary
of the basin at infinity is called the Julia Set of f, and the complement
of the Julia set is the Fatou Set. Since all points in the Julia set are
boﬁndary points of part of the Fatou set, the Fatou set is dense in C. Both
the Fatou and Julia sets are forward and backward invariant under f. The
connected components of the Fatou set must map onto each other under the
action of f. Thus it is possible to talk of a periodic or preperiodic Fatou
component. The periodic Fatou components typically form the immediate
basins of attracting periodic points. For real polynomials in particular, if
there are no indifferent periodic points, points whose multiplier has absolute
value equal to one, then all components of the Fatou sel are part of some

attracting basin.

A famous theorem of Sullivan (see [Su2]) states that all Fatou com-
ponents are preperiodic. This is a form of wandering domain theorem. A
Wéndering domain is a connected open set, which is not contained in the
basin of an attracting periodic point, whose images under iterates of a map
f are all disjoint. Wandering domains do not exist for polynomials. This is
also true of open intervals on the real line, where the polynomial is a real

map. There are no wandering intervals for real polynomials. In general, real

maps have analogous definitions for attracting basins considered as intervals,




although we must be careful of indifferent periodic points which may be at-
tracting on the real line but partially repelling in the plane. If there are no
indiﬁ"erent periodic orbits however, connected components of real attracting
basing are always the intersection of some Fatou component with the real

line. A polynomial is called hyperbolic if every critical orbit is contained

in the basin of some attracting periodic point.

§2.2. Topological conjugacy.
A topological conjugacy between two polynomials f and f is a
homeomorphism H of either R or C onto itself which satisfies the functional

equation

Hof=foH.

Conjugacies form an equivalence relation on polynomial families, and many
dynamical properties are characterized up to conjugacy class. An important
observation is that conjugacies must map orbits of critical points under f to
orbits of critical points under f . For real polynomials, the order in which a
critical orbit occurs on the real line is key o determining whether a conjugacy

exists between two polynomials on the real line.

Definition. (combinatorial equivalence) Two real polynomials, f and f,

are combinatorially equivalent if there is a one to one correspondence

between the real critical points of each map, {c,,} to {&,}, which satisfies the




following condition. For any nq, ne, ¢, and 3,

fﬂi(cnl) < ij(an) = fOé(éna) < JEOj(énz)-

According to de Melo and van Strien, for a large class of C® maps of
the interval, two maps are combinatorially equivalent if and only if they are
topologically conjugate. In particular, this is true for bimodal cubic maps

with no indifferent periodic orbits (see [dMvS], p. 157).

§2.3. Kneading theory.

A standard method of describing qualitative information about the dy-
namical class of a point with respect to a real polynomial is through kneading
sequences. Suppose f is a real cubic (bimodal) polynomial and z is a point
on the real line. We label each point in the orbit of z under f depending on
where it falls on R with respect to the critical points of f. The possibilities
are cg and ¢, if the point is equal to the right or left critical point, or L, M,
and I, if the point falls to the left of, in the middle of, or to the right of both
critical points. For work with real cubic maps, there are thus a total of five
kneading symbols, two critical symbols and three non-critical symbols.
Tﬁe sequence of kneading symbols generated by the orbit of a single point
18 called the kneading sequence of z with respect to f. The entire knead-
ing sequence is denoted by 6;(2), and the kneading symbol corresponding to

the n-th point in the orbit is specified by 0%(z). We list some of the basic

properties of kneading sequences. For more details see [MT].




For a given map f, there is a standard ordering among kneading se-
quences, inherited from the natural ordering of the kneading symbols them-

selves on the real line, which satisfies
T <Y —_ 9f($) = Hf(y),

A point z has a kneading sequence that is eventually periodic if and only if
the orbit of z converges to a periodic orbit. If the periodic orbit is atiracting
and does not contain z, small changes in @ will not result in a change in

kneading sequence 8¢(x).

FACT. Suppose z and f change continuously such that 63(z) is represented
by two different symbols. Then as « and f are varied, §}(z) must be repre-
sented by all symbols in between. In particular, the only way for 9?(@ to
change from one non-critical symbol to another is for it to become a critical

symbol first.

§2.4. Quasiconformal maps.

A fundamental observation about conjugacies between holomorphic
maps (due to Sullivan) is that they are frequently quasiconformal. For the
complex function H, let H* and H* be the partial derivatives of H with

respect to z and Z.

Definition. (quasiconformal maps) Let H be a homeomorphism from C

onto itself. The map H is K-quasiconformal if its complex dilatation vy,




which is defined to be H? /H? satisfies

K -1

/ < [ €. —_
xm| <k  ae where k KT

and if H is absohutely continuous on almost every line parallel to the real or

imaginary axis.

We list some standard properties of quasiconformal maps. Complete
proofs can be found in [AL]. The family of quasiconformal maps contains
all the conformal maps, which are 1-quasiconformal, within it. In fact, all
1-quasiconformal maps are conformal. Compositions of quasiconformal maps
are quasiconformal, and composing a quasiconformal map with a conformal
map does not change the bounds on complex dilatation at all. This property
is crucial for the refinement of partial conjugacies (see [10.1]) presented in
Chapters VI and VIIL. If the family of K-quasiconformal maps is normal-
ized at three points, i.e. all the maps are equal on the same three points,
then the family is normal, and the limit functions of convergent sequences
are also K-quasiconformal. On the existence of quasiconformal maps with
a prescribed complex dilatation, we have the famous Measurable Riemann

Mapping Theorerm.

Theorem 2.1. Let g : C — C be a measurable function with ||g)le < 1.

Then there exists a quasiconformal mapping H : C — € with yz = i almost

~

everywhere. Moreover, if H is fixed at three points in C, it 1s unique, and it

depends analytically on pu.




The fact that the partial derivatives of a quasiconformal map only
need to be measurable makes it easy to piece together different maps into
a new quasiconformal map. A quasiconformal homeomorphisin defined on
the unit disk can be extended to a quasiconformal homeomorphism of the
entire sphere if £he image of the disks boundary is a quasicircle. The issue of
gluing together maps and extensions thus comes down to the properties of
the boundaries along which the maps are cut. In the situations we need to
glue maps (see Theorems [4.6] and [4.7]) the boundaries are all constructed

out of smooth curves from which quasiconformal extensions exist.

§2.5. Bottcher coordinates.

The classical Theorem of Béttcher, concerning the straightening of
analytic functions near periodic critical points, plays a central role in the
dynamics of complex polynomials and is crucial for the results described in
this work. We present it here in a form suitable for polynomials where it
is applied to a neighborhood of infinity considered as a fixed point of the

polynomial.

Theorem 2.2. Suppose we have a polynomial
f(z) = an2™ + an 12"+ -+ ag,

where n > 2 and a, # 0. Then there exists a local holomorphic change of

coordinate ¢(z) which conjugates f with the map Z(z) = 2" throughout

10




some neighborhood of ¢(oc) = co. The map ¢ is unique up to multiplication

by an {n — 1)-st root of unity.

See [Mi2] for instance for a proof. We will refer to ¢ as the coordinate
function or Bottcher coordinate of f. The theorem always gives us the

functional equation

wo f(z)=Zow(z)  for z& U, some neighborhood of infinity.

We will need an extension to this theorem, showing that within a
polynomial family, the coordinate function varies analytically with the pa-
rameters of the family, and, if the polynomial is real, the coordinate can be

chosen to be symmetric with respect to R.

Theorem 2.3. Let {fi}rep be a family of polynomials of degree n, which
must contain at least one real polynomial, and where for fixed z, fa(z) varies
analytically in A. Suppose Bottcher coordinates, ¢, can be defined for each
fx on some common neighborhood of infinity, U. Then @, can be chosen so

that

(1) For fixed z € U, ¢x(2) varies analytically with A.
(2) Each @y is univalent.
(3) If £ is a real polynomial then ¢ is symmetric, i.e. (2) = @a(z),

and ¢ preserves the orientation of R.

We have included a proof in the appendix. We reserve the symbol ¢ for
the Boticher coordinates chosen in this way. It is clear that, for real polyno-

mials, the choice of a symmetric coordinate which preserves the orientation

11




of R is unique, and within a family, since the coordinate varies continuously,
the coordinates of non-real polynomials are uniquely determined. We use
the Bottcher coordinate primarily for defining rays and potentials, subsets

of the domain of polynomial maps.

Definition. (radial lines) A radial line of angle # down to a radius of r > 1

is defined to be the set of points

AE:{sei€€C|3>r}.

Note that all radial lines are in C — D, where D ¢ C is the unit disk. We

refer to an entire radial line of angle 8 as Ry = 7%;

Definition. {external rays and potentials) Let f be a polynomial, and let ¢
be a Bottcher coordinate which is both well-defined and univalent on some
set U. Suppose the range of ¢ contains the radial line 7%@ Then the external
ray or ray of f of angle 8 down to a radius of r > 1 is defined to be the set
of points

Ry = ¢ H(Ry).

Suppose the range of ¢ contains the circle of radius r centered at the origin.

Then the potential curve of f of radius » is defined to be the set of points
G =¢p ' {zeC—D]| 2| =r}).

Rays and potentials are always in the basin of infinity of f and depend on the

exact choice of . We refer to an entire external ray of angle 6 as Ry = Rj.




IIT. FOUNDATIONS

§3.1. Normalization of the cubic family.

We are concerned with the family of real cubic maps,
Agz?® + Aj2® | Agz + Ay Ag, Ay, Az, A3 € R,

Standard normalizations restrict this family so that we need not consider
two maps in the same conformal conjugacy class. l.e. no two maps in the

restricted family, f and JE , should satisfy the equation

We effectively lose two “degrees of freedom” from the original cubic family
and end up with a family in two independent variables, which take values in
some sub-manifold of R x R (or C x C). This manifold will be referred to as
a parameter space of the family, and it will, of course, depend on exactly
how we choose to parameterize the family.

We define our restricted family, F, by requiring that each cubic pol-
ynomial be a bimodal map of the unit interval. This norma,liéation follows

[DGMT] in particular.

Definition. (the family F) f € F satisfies
(1) f:C — € is a real cubic map.
(2) f maps [0,1] into itself and fifp 1) is bimodal, i.e. has two distinct
critical points in (0,1).

(3) The boundary of {0, 1] is mapped onto itself by f.

13




This restriction requires the coefficient Ay to be non-zero. A major
consequence 1s that any parameterization that varies continuously with the
original cubic coefficients requires a split between maps with a positive 4,
or a negative Ag. Consequently, there are two fundamentally different pieces

of the parameter space.

Real parameterization. Still following [DGMT], we consider a param-
eterization of F. Being bimodal, each map f has exactly two critical points,
both real and non-degenerate, which we label ¢; and ¢o, with ¢; < ¢3. The
corresponding critical values, v1 and vy, when considered as a pair (v1,vq),
uniquely determine a map in F and its dynamics up to conformal conju-
gacy. (See [DGMT], Lemma 1) So we consider the pair (v,vy) € R X R as
our parameterization. As noted above, the set of points in R x R for which
we have a corresponding map, f € F, comes naturally in two pieces. One
plece corresponds to maps for which 1 > vy > vy > 0, where the boundary
points of [0, 1] are fixed by f, and the other corresponds to maps for which
0 < vy <wy <1, where the boundary points of [0, 1] form an orbit of period
two.

Restricting our attention to only one such piece of the parameter space,
we can consider a map, f, with A = (vy,v3), to be continuously varying with

respect to this parameter A. We refer to such a piece as P.

Complex parameterization. We frequently need to consider the maps
in F as complex maps, and sometimes we will need to consider these maps

within a larger family whose corresponding parameter space is an open subset

14




of C x C. In particular, we will need such a family to apply the A\-Lemma
(See Chapter VII part 3), as it requires that parameters be allowed to take
values in an open disk of C. This will require our family to contain cubic
maps which are not real. As in F, we will require two pieces to in order to
take into accouﬁt both types of maps. The definition of this extended family

is as follows.

Definition. (the extended family G) A map f is in G if it can be written as
either

z(z - 1)(Adz -~ B)+ = A#0and A,BeC or

(2(Az ~B)+1)(1 —2) A#0and A, B e C.

Both pieces are parameterized by the pair (4, B) € CxC, and together

they contain all of F.

83.2. Bones.
Let P be one piece of the parameter space representing maps in F, as

parameterized by the critical values.

Definition. (bones) The left bone B_(4) is the set of parameter values
for which the left hand critical point is periodic with order type 6. By
definition, this means that the points of the orbit, numbered ag 1 < - -+ < @y,
satisfy x; > z4(¢;) Where 6 is some given cyclic permutation of {1,...,p}. The
dual right bone B (6) is the set of parameter values for which the right

critical point is periodic with this same order type.

15




A bone can be either a left bone or a right bone, and we know, in P,
that almost all bones, those where the fixed critical point has period three
or more, are smooth one-dimensional manifolds with exactly two boundary
points (See [DGMT], Lemma 4). We ultimately show that all bones are
connected and -form simple arcs. A one-dimensional manifold that is dis-
connected and has exactly two boundary points must contain a connected
component which forms a simple closed curve. We call such a component a

bone-loop.

§3.3. Special quasiconformal conjugacies.

Definition. As in the study of quadratic polynomials, we show (see
Chapter V part 1) that given the existence of a topological conjugacy between
two real cubic maps, we can continuously deform this conjugacy into a whole
family of conjugacies and conjugate maps. This construction assumes that we
can show topological conjugacies between maps in F have certain properties.

Here 1s a st of the required properties.

(1) H : ¢ — s a quasiconformal homeomorphism with H (c0) = .
(2) H preserves the real line and its orientation.

(3) H preserves [0,1] so we must have H(0) =0 and H(1) =1

(4) Suppose H conjugates f1 and fo, with fi, fo € F. Also suppose

F' is the Fatou set of f;. Then H|p is conformal. In other words,

x#(z) is zero on F.




Conjugacies which satisfy these properties will be called special qua-

siconformal or special gc-conjugacies.

Properties. The next lemma shows a special qc-conjugacy between two

given maps, if it exists at all, is unique.

Lemma 3.1. Suppose H is a special qe-conjugacy that conjugates f € F

with itself. Then H is the identity map on C.

ProoF. The first step is to show that H is the identity map on the Julia set
of f, J. The two critical points of f have bounded orbits, they are contained
in [0,1], so the basin at infinity of f, U, is simply connected. Furthermore
H, as a conjugacy between f and f, must map connected components of the
Fatou set onto other components, and since H(oo) = oo, U must be mapped
onto itself.

Let ¢ : U — D be the Riemann map that takes U conformally onto
the unit disk, mapping infinity to zero. We specify ¢ uniquely by picking
a positive real point p that we require ¢ to map onto the positive real line.

1is a conformal homeomorphism from D onto

The composed map o H op™
itself, fixing zero. By the Schwarz Lemma, this map must be a rotation.
Furthermore this map does not change the argument of ©(p), since ¢ maps
p to the positive real line and H preserves the positive real line. So the
rotation, in fact, must be the identity map. The map H then must also be
the identity on U. Since H is continuous, we must have H|sy is also the
identity.

'To show that I is the identity everywhere, we can apply a lemma due

17




to Bers.

Lemma 3.2. Let < C be an open set, and let H be a topological auto-
morphism of € such that H | is quasiconformal and H|;_ 5 is the identity.

Then H is quasiconformal and y HE@; » =0

For our purposes, we let F' be the Fatou set of f, and then the Julia
set is J = C — F. By the assumption that H is special quasiconformal, we
know x g restricted to £ is zero. Combining this with the second conclusion
of the Bers Lemma, we have yz = 0 a.e., and thus H is conformal. Since H
is the identity on the basin of infinity, H must be the identity everywhere.
Q.E.D.

Corollary. Suppose H is a special gc-conjugacy between f; and f» € F.

Then H is unique.

PrOOF. Suppose H, is another special gc-conjugacy between fi and fj,
then H ' o H is a special qec-conjugacy between f; and itself. Thus H = H,.
Q.E.D.

Corollary. Suppose H is a special ge-conjugacy between f; and fy € F.

Then H is symmetric.

Proor. Deline a new map

H, = H(z).

The map H, preserves the real line and its order, fixes zero and one, and
is quasiconformal with the same bound on dilatation as H. Since H is

conformal on the Fatou set of fy, H, is as well. Therefore, H, is also a

18




special ge-conjugacy between fi and fa. So by the uniqueness of special
qc-conjugacies, we have H(z) = H(z). This is precisely the definition of

symmetry. Q.E.D.

83.4. Statement of results.

For a piecewise monotone map f on the interval, the topological en-
tropy of f can be defined in terms of the number of laps £(£°9) of the iterate
F°4, that is the number maximal intervals on which f°/ is monotone. The

topological entropy of f is then

h(f) = lim 1—05‘%(@

J—o0

We can now state the monotonicity result for cubic maps. Recall that

P ig a connected component of the parameter space of F.

Theorem 3.3. (Cubic Monotonicity) For each hy € [0,log 3|, the set

{A = (v1,v2) € P | A(fr) = ho}

is connected.

The principal reduction of the Cubic Monotonicity Theorem is given

in [DGMT].




Connected Bone Conjecture. Every bone for the cubic family F is a

simple arc.

The work of Dawson, Galeeva, Milnor, and Tresser shows that proving
this conjecture is enough to prove Theorem [3.3]. We show that bone-loops
do not exist, and so both the Connected Bone Conjecture and Theorem [3.3]

are true.

20




IV. QUASICONFORMAL PULL-BACK

Let f and f be maps in the normalized family 7. A standard argument
due to Sullivan (see [Sul]) shows that in order to construct a quasiconformal
conjugacy between real polynomials it is enough to construct a symmetric
quasiconformal homeomorphism that maps the critical orbits of f onto those
of f , 1.e. the homeomorphism is equal to the conjugacy on the critical or-
bits. The basic procedure used in this argument is a construction called

quasiconformal pull-back.

We provide a complete proof that pull-back works in the specific case
of real cubic maps. This amounts to a short-cut in the construction of a
special qe-conjugacy between f and f. An initial homeomorphism Hy will
be.constructed which satisfies the functional equation of a conjugacy only on
a subset Up of the Riemann sphere. Then we attempt to build the topological
lift of this map through the dynamical maps f and f. As we will see, the new
map H; satisfies the conjugacy equation on a subset of ¢ which is exactly
the preimage, under f, of the original Uy for Hy. We can then repeat this
process and construct an entire sequence of maps H,,. The idea is to choose
the initial Uy so that repeated liftings will always be possible and, with each

lift, the subset on which the conjugacy is satisfied, U, expands to fill all of

A

C.

The main obstruction to building H,41 from H, is that H, must map
the critical values of f onto the corresponding critical values of f so that
standard lifting theorems on regular covering maps apply. We must tem-

porarily remove the critical values in the image space of [ and f before they

21




can be considered covering maps, and H,, must respect these punctures. Let
CR, €L, R, and &z, be the left and right critical points of f and f respec-
tively, and let vr, vz, Ur, and 0 be right and left critical values for each

map. Define the punctured spaces

Cr = C—{oo,vr,vr} Cr = € — {o0,vL, vk}

OD = @ — {DoycLacRwa:wR} C?D - @ - {OO,CAI,,ch,’tﬁijAR}.

Assuming H,, respects this structure we will be able to construct H,,41, and

in general we will have the following commutative diagram:

cp T dp
oo b
c; I G
Clearing the obstruction to lifting for the entire sequence translates to the
condition that the initial Hy must map the entire forward orbit of both
critical points of f onto the corresponding orbits of f . This condition will
be propagated by the lifting construction.
Any bound on the complex dilatation of H,, xu,, is passed on to
H, 1. As is clear from the commutative diagram, H, 1 is the composition
of H, with two conformal maps. Since conformal maps have zero complex
dilatation, the upper bound of the dilatation of H,41 is exactly equal to
the upper bound of H, (See [10.1]). Special gc-conjugacies must also be
conformal on the Fatou set of f, and quasiconformal on the Julia set. All

these requirements can be viewed as local conditions on our maps, which
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will propagate easily through the construction since we are lifting through

conformal maps.

Assuming we can construct this initial map, we will show that the
sequence of lifts have a well-defined limiting map, which necessarily must
conjugate f an;i f . Furthermore, all the additional properties of a special
ge-conjugacy will be inherited from the initial H,, and the new map will be

a special qe-conjugacy.

§4.1. Induction hypotheses.

For a fixed f and f in , the map H, and the set U, must satisfy

these properties during induction. Let F' be the Fatou set of f.

(a) H, is quasiconformal with complex dilatation |yu, (2)] < K < 1

for all 2.

H,, maps R onto itself and preserves the orientation.
H,, maps the interval [0, 1] onto itself, fixing 0 and 1.
H,, maps vy, to v, and vg to vg.

H,, is conformal for z € U, N F, e, |xu,(2)| =0
(f) U, contains 0, 1, ¢z, and cg.

(8) f(Un) C Un.

(h) For z € U,, we have Hy o f(z) = f o Hu(2).

(i) H, maps f~*(R) onto f(R).

We also have an additional property that is easier to verify than property (i)

for the initial induction step.

(7)) Ug UR is path-connected.




For the initial induction step, property (j) will replace (i), and for all subse-
quent steps only property (1) will be required.

Relationships between the maps and the sets are given by

foHn(z)=Hyof(z) forallzeC, (1)
Un-H = f_l(Un)a and (2)
Hy1(z) = Hp(z)  forall z e U,. (3)

Note: The assumption that H, maps forward critical orbits onto for-
ward critical orbits is encoded in conditions (d), (f), (g), and (h). These
conditions also hide a strong condition on f and f , which is why there is no
explicit reqﬁirement on these maps. Their critical orbits must come in the

same order, which means they are, in fact, combinatorially equivalent.

§4.2. Induction step.

The induction argument is broken up between three lemmas which we
are now ready to state. The bulk of the induction is proved in this first
lemma, while the next two lemmas deal with the initial induction step.Let

(H,,U,) be an associated pair of one homeomorphism and one subset of C.

Lemma 4.1. If (H,,U,) satisfles properties (a)-(h), then there exists a
unique pair (Hyyq1,Uny1) satisfying (a)-(g) and (i). Moreover, the pairs

together satisfy equations (1) and (2).
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PROOF. As mentioned earlier, f: Cp — Cr and f: Cp s Cf are covering
maps as we have removed the only points without proper three to one covers.
We still need to make some additional normalizations. Define the affine map

(G taking vy, to v and vg to 9g by

~

G(z) = (gﬂ) (2 — i)+ b1

. — VR

Notice that G is also well-defined on the space (7. Now consider lifting the
map H, o G, through the maps Gfo f and f. If we label the lift H,yq, it

will satisfy the functional equation
HnoG'_loGof:foHnJrl,

which is the same as the desired equation (1).
To define this lift, we construct a homotopy from H, o G™! to the
identity map, and first lift the identity map. The homotopy I¢(2) : Cr— Cy

is defined as
I(z) = I{z,t) = 2{1 —t) + t{Hp 0 G7(2)).

Clearly Io(z) = # and I1(2) = H, o G7'(z), but we need to check that I;
respects the structure of é'[. It is quick to verify that Ii(9r}) = ¢ and
I(6g) = g for all ¢, thus I; maps punctures to punctures. The only thing
left that can go wrong is if there exists some other point y # {01,0p} and

t with I;(y) = 95, or 9g. By property (b), H,, preserves the real line, and
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GG clearly does, so I; must as well. Therefore y must be real. Without loss
of generality, suppose [4(y) = 9. If ¢ = 0, then we have y = 9}, contrary
to the definition of y. If ¢ = 1, then H, o G™'(y) = 61, which implies that
G7(y) = vy, and y = ¥7. This is again a contradiction, so we must have
0 <t <l Sin;:e I deforms y linearly into H, o G!(y), these two points
must be on either side of ¢, on the real line. So H,, o G~! must reverse the
ordering of ¥ and 9. In other words, if y < ¢y, then H,(y) > H,(51), but
this violates property (b). So I : Cr — Cr is well-defined.

The lifting of the identity map is done algebraically. Define

&(2) = (9“—‘”“) (2 e1) | én.

¢, —CR

The map G’ is an affine map taking cg to ég and ¢y, to é;. Now we examine
the map foG'—Gof. It is a cubic map with critical points (zero derivatives)
at cg and cg, and the corresponding critical values are both zero. The whole

map must be identically zero, and we have the equation
fol' =Gof.

We consider ' as a lift of the identity map through f and G o f. We can
use G' to define H,,1(2).

Let # be any point in Cp. We define a path « : [0,1] — €7 as

a(t) = I(Go f(z),1).
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Since G' is a lift, G'(z) is in f~Y(G o f(2)). By the standard path lifting
theorem, « has a unique lift with endpoint G'(z). Let H,,+1(2) be the other
end of this path. By construction, H, 1 satisfies the functional equation (1)
for z € C p. Continuity follows from the continuity of our choice of endpoints,

Go f(z)and H n o f(#), and the continuity of the path-lifting construction.

We extend H,y; from Cp to ¢ by continuity as well. We can consider
locally Hpq1(z) = floH,o0 f(z). Continuity insists that {cz,cr,wr,wr}
is mapped onto {éz,¢Rr, W, Wr} in some fashion. At any rate, H, .11 is well-
defined on C and satisfies equation (1).

Since the lift of a homeomorphism is also a homeomorphism, H, 1 is
injective on Cp, and given that {cy,cpr,wy,wr} are isolated points, Hpyy
is a homeomorphism of C.

Let us examine how H, 11 behaves on the real line. Let r be an element
of R. Since G, f, and I, all preserve R, the path we lift, a() = L(G o f(r))
is entirely contained in R. Since a([0,1]) is a connected set in Cf, the set is
either entirely contained in the interval (95,0r) or does not intersect it at
all. In the first case, all points in «([0,1]) have three real preimages under
f , and in the second case, exactly one preimage of each point in the path is
real. Thus the set f~'(a(]0,1}])) consists of three paths, at least one of which
is entirely contained in R, the other two paths are either both contained in R
or do not intersect it at all. But the path lifting specified by the construction
of H,yy has G'(r) as an endpoint, a real number. Thus H,yq(r) must be

real.

So Hp,1 maps R onto itself. The map G’ preserves the orientation of
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the real line, so H,,4+1 inherits this from G'. To see this, choose z smaller than
all points {¢r,, cr,wr,wr}, then G'(z) will be smaller than the corresponding
set

{ér,ér,Wr,wr}. In the construction of H,y1(z), we get a path lifting en-
tirely contained in R, which must be entirely to the left of the same points,
since it is continuously connected to G'(z). Thus Hp41(2) must be less than
Heoyi(er) € {ér,ér, W, Wr}, and Hy,p1 preserves the ordering of z < ¢f,.
Consequently the order of {¢y,cr,wr,wr} is preserved under H, 1, and

property (b) is satisfied. We also obtain

Hpii(en) =8 Hpyi(cr) = ép

Hn+l('wL) =Wy, Hn+1(wR) = Wg.

Equation (1) is satisfied by construction, and we use equation (2) as
the definition of U,4;. From equation (1) and property (¢) and (f) for H,,
we get

Hoa(0) = f~Y o Hy 0 £(0) = £~ o f(0).

The only real point in the set f~1 o f(O) is 0, since neither 0 nor 1 is in
(41,5r), except in the exceptional case where f(0) is a critical value itself.
In this case, the only real points in the set f 1o f (0) are 0 and a critical
point. But we already know, ,41(0) cannot be critical. In any case we
must have H,41(0) = 0. A similar proof shows Hp41(1) = 1. This verifies
property (c).

As we have already mentioned, |y, ,,(#)| and |y, (#)| share the same

bound K, so property (a) is satisfied for H1. If z is in Upyy NF, then f(2)
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must be in U, N F. Locally we know H,11 = foi0H, o fy,soon U, 1 NE,
Hyyy is the lift of a conformal map and is thus conformal itself. This proves
property (e).

To show property (g), let 2z be an element of Unyy. By definition,
f(z) € U,. By-property (g) for H,, fo f(z) is in U, therefore f(z) is in
Unt1. As a tiny corollary to this, we know U,, C Uy, which immediately
gives us property (f).

Property (d) is split into cases depending on how {cr, cr} is mapped
into {vr,vr} by f. Suppose without loss of generality that f{c;) = vg. We
know already that ¢z, is in U, 41, so we must have Hp.11(vg) = fo Hppa(en).
But as is shown above Hy 11 (cr) = ér.. So we get H,41(vr) = Op as required.

Let z be in the set f~*(R), so f(z) € R. We know from equation {1),
foHuy1(2) = Ha(f(2)). By property (b) for Hy, f o Hpy1(2) must be real,
so Hyya(z) itself must be in f ~1(R). This finishes the final property (i).

Q.E.D.

We are ready to prove a full lifting lemma now. By verifying equation
(3), we show that the sequence of maps stabilizes for points in the Fatou set.

This will be a crucial step in showing that the sequence converges.

Lemma 4.2. Suppose (H,, U, ) satisfies properties (a)-(i), then there exists
a unique pair (Hy41,Upy) satisfying (a)-(i) and together with (H,,U,)

satisfying equations (1)-(3).

PrOOF. Because of Lemma [4.1], the existence of {(H,41,Unyy) and most

of the properties have been verified. We need only check property (h) and
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equation (3). We consider the set € — f “1(R) and the corresponding set
C-f “Y(R). Evidently ¢ f “I(R) consists of several pieces. We start by
showing that f maps a connected component univalently onto one of the

standard half-planes.

Let V be a connected component of € — f —}(R). Suppose f is not
univalent, and V' contains two different points, z and w, with f(z) = f(w).
Since they are in a connected set there exists a path in V' connecting z and
w. Such a path obviously does not intersect f~1(R), but we claim its image

under [ intersects R, a contradiction. The image of the path is a closed loop

by assumption. The region bounded by this loop must contain a critical

value of f, a real point. For the loop to bound a real point it must intersect

R itself. This contradiction shows f|y is univalent.

Since V contains no point in f7H(R), f(V) contains no point in R,
and since fT!(R) contains the boundary of V, the boundary of f(V) must
be contained in R. Thus (V) must be either Ht or H™, an entire half-
plane, with boundary the entire real line. We can conclude there must be

six components to C — § ~1(R), three preimages of each half-plane.

Both half-planes have the interval (vy,vg) as part of their boundary,
so all components of C— f~1(R) have a preimage of (vy,, vr), either (wr,, er),
(er,cr), or (er,wr), as part of their boundary. We can characterize each
piece of ¢ - F~YR) uniquely, then, by which half-plane it is in and which
preimage of (v, vgr) is contained in its boundary.

We know Hy4 satisfies property (1). Thus H,; must map the pieces

of € — f71(R) onto the corresponding picces of C — f~1(R). We know Hp41,

30




by properties (a) and (b), maps the half-planes H™ and I~ onto themselves.
Furthermore (wr, 1), {¢1,cr), and (¢g,wr) map onto (¥y,2L), (ér,ér),
and (ég, Wg) respectively. Thus the pieces of C — f ~Y(R) are mapped in a
canonical way onto the pieces of ¢ — f “YR). The map H, must map the
pieces in the saﬁe canonical way.

Let z be a point in U,,. From equation {1) and property (h) for H,, we
have

Hppi(2) = floHp,of(z) = f‘lofoHn(z).

Suppose z € f1(R), then fo H,(z) is real by property (i). We divide this
cage into three sub-cases: z is in R, T, or HI™. Suppose z is in the upper
half-plane, then H,(z) is also in the upper half-plane and foH 2(z) is real
as noted. Being real, f o H,(2) can have at most one preimage under f -1
in the upper half-plane, H,(z). Since H,; must also map # into the upper
half-plane, we must have H,,11(z) = H,(z) as required by equation (3). The
other two sub-cases have similar proofs.

Now suppose our z is in C— £ 1(R), then H,(z) and Hy11(z) must be
contained in the same piece of ¢ - ]E ~1(R) as noted above. But again from
equation (1) and property (h) we have fo Hpp1(2) = foHp(2). Hpy1(z) and
H,(z) have the same image, but f maps each piece of C— f~1(R) univalently.
Again we must have Hp1(z) = Hy(2).

This proves equation (3). We get property (h) for H, 1 immediately
from this and equation (1). Suppose z € Upyy == f71{U,), then f(2) € U,.
We get

Hpp10f(z) = Hpof(z) = foHn+1(z).
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Q.E.D.

As mentioned before, in constructing the initial pair (Hy,Up), it is
eagier to start with property (j) than with property (i). The next lemma

justifies this change of requirements.

Lemma 4.3. Suppose (H,,U,) satisfies properties (a)-(h} and (j). Then
there exists a unique pair (Hp41,Uny1) satisfying properties (a)-(i) and,

together with (H,,U,,), satisfying equations (1)-(3).

PrOOF. Again existence of (Hpyy,Upt1) and most of the properties are
given by Lemma [4.1]. We need to verify property (h) and equation (3).
Again we start with equation (3). Let z be a point in U, and assume z ¢ R.
By. property (j) we can find a path, « : [0,1] — U, UR, connecting z = «(0)
with a real point a(l) € R. We normalize things by assuming that «(1) is
real and a(t) ¢ Rfor t # 1. If z ¢ R, we define a constant path a(t) = z. In
either case, we have a path connecting z and R with «(t) € U, for ¢ # 1.

From equation (1) and property (h) for H,,, we have for t # 1
Hypi(a(t)) = f1oH, o fla(t)) = flofo H,.(alt)).

By continuity, this equation holds for ¢ = 1 as well; however, «(1) is real, so
H 41 must map it onto the real line. Suppose (1) is in the interval (¢, cr),
then foH,(a(1))isin (9z,5r), and the possibilities for Hp,y1(a(1)), the three
points in the inverse image under f of fo H,(a(1)), include exactly one point

in (ég,¢Rr), Hp(o{1)). Other cases with a(1) not in (¢, ¢p} similarly prove

that Hn~}.1(&(1)) = Hn((l(].))




Consider Hp,41(a(1)) as a base point as we construct H,4, as a lift
of H,. Then Hypp1(a{0)) would be defined as the other endpoint of the
lift of H, o f(a) with endpoint Hp,41(e(1)). But clearly H,(«) is this lift
because f o Hy(a) = H, o f(a) by property (h), and this path has endpoint
Hy(a(1)) = Hpp1(a(1)). Therefore Hpyi(z) = Ha((0)) = Ha(2), proving
equation (3). Property (h) is proved as in Lemma [4.2] from equations (1)
and (3). Q.E.D.

£4.3. Limit of the induction.

The induction process is now completely defined, and we now show

that the limit of the H,, is a special qc-conjugacy.

Theorem 4.4. Let f and f in F be maps with no indifferent periodic cycles,
and suppose we can find a map Hy and set Uy satisfying properties (a)-(h)
and (j). Additionally suppose Uy contains a neighborhood of every attracting
pe?iodic point of f in @, including infinity. Then there exists a special qec-

conjugacy between f and f

PROOF. By Lemma.[4.3}, we can construct the first lift (Hy,U;) in a se-
guence. The rest of the sequence, (H,,U,) is constructed using Lemma
[4.2]. All pairs share at least properties (a)-(h), and any two successive pairs
satisfy equations (1)-(8). By equation (2) and property (g) we have a chain
of sets Uy Cc Uy C --- C U, C +--. This chain eventually contains all of the

Fatou set F. For if » € F, then for some n, f°*(z) € Uy, since Uy contains
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a neighborhood of all attracting periodic points. Therefore z is in U,,. For
any integer ¢ > n, Hi(z) = H;_1(z) = -+ = Hy(2), by applying equation (3)
repeatedly. Thus for any point z of the Fatou set, the sequence {H;(2)}52,
not only converges but becomes fixed.

For z ¢ F , the sequence {H,(2)}2%, converges, but we need to show
it converges everywhere and to a continuous function. The Fatou set of a
polynomial is dense in C, so the sequence {H,} converges pointwise on a
dense set. This is not quite enough, we still need some uniform convergence
conditions. By property (a), all our maps are quasiconformal with the same
bound on the dilatation and fix the points 0, 1, and oo, so these maps form
a normal family.

Let {H,, }%2., be some subsequence that converges uniformly on all of
C to a continuous funection H. We want to show that the full sequence has
this same limit. Let z be a point in the Julia set J = C — F. Since the Fatou
set F' is dense, we can find a sequence {z;}2,, contained in F, converging to
our point z. The sequence of functions {H, }32., becomes fixed for our points
{#:}. We define integers N; so that if & > N;, then Hy(z;) equals the limit of
the sequence {H,(#)}52,, which we know exists and label w;. Since w; is a
limit for the whole sequence, we know H(z;) = w;, and since H is continuous,
lim; oo H(2z;) = H(z). We need to show that lim,,_,., H,(z) = H(z).

Let € > 0 be given. By Arzela’s Theorem, functions in a normal family

are equicontinuous, so we can find a § > 0 so that if |z; — 2| < §, then

[Hp(z:) — Ho(z)| < /2 for all n > 0.
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Choose the integer ¢y so that two things happen. First let |z; — 2| actually
be smaller than § so that the above equation is true for ¢ > 4y, and second

let

[H(z:) — B = low— B < ¢f2
be true as well. Now finally if n > N;,, then we have

[Ha(2) = H(z)] = [Hlz) = wip| + |wi, — H{z))]
= [Hn(2) = Hn(zig)| + |wi, — H(2)].

By the previous inequalities we then get

H,(2)—H(z)|<e  forn>N,.

This proves {H,(2)}52, converges to H(z).

The map H, being the limit of quasiconformal maps with a single
bound on dilatation, is quasiconformal with the same bound. Suppose z
is in the Fatou set. As has been noted before, the sequence {H,(z)}5,
becomes fixed when f°*(z) € Uy. The part of F' contained in Uy is, by
construction, a neighborhood of attracting periodic points. Thus there is a
neighborhood of z in F, which becomes fixed by the sequence at the same
time. On this neighborhood, H,, = H, but H,, for n greater than the fixing
value, by property (e} is conformal on this neighborhood. The uniform limit
of conformal functions is conformal, so H is conformal on the Fatou set.

Clearly since all the {H,} fix 0, 1, and co, H fixes these points as well. For
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z € R, {Hn(z)}52, are all real numbers, so H inherits property (b) from the

sequence also. Finally taking the limit of both sides of equation (1), we get

~ A

Hof(z) = nangOHn o f(z) = RE()I;.OJC o Hyy1(2) = fo H(z).

Thus H(z) is a special gc-conjugacy between f and .  Q.E.D.

§4.4. Conjugacies between hyperbolic maps.

We continue to ease the conditions for which special qe-conjugacies
exist. The requirement that the conjugacy be conformal on the Fatou set is
very restrictive. The conditions under which a conformal conjugacy exists
between attracting basins of f and f are related to the multiplier of an
attracting orbit. For instance, a conformal conjugacy can ouly be defined
locally around a periodic point of one map if the multiplier of that point is
equal to the multiplier of the corresponding periodic point of the other map.
We generalize this idea to construct a measure of when conjugacies can be
defined on éntire bagin, and then use this result to show the only special

gc-conjugacy between hyperbolic maps is the identity map.

Characterizing atiractive basins. Recall that special qc-conjugacies are
symmetric by the second corollary to Lemma [3.1] and conformal on the
Fatou set. Concentrating on a connected component of the Fatou set, notice
that a special qe-conjugacy is nearly determined by these properties because

of the Riemann Mapping Theorem. This specifies how Hy should be defined
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on Fatou components to satisfy Theorem [4.4]. We will initially construct Hy
only on Fatou components containing at least one point in either critical orbit
of the map f. We will call these components post-critical. We now start
with a preliminary lemma that describes post-critical components. Note that

post-critical components must intersect the real line.

Lemma 4.5. Let B be a connected component of the Fatou set of f € F,
and let B be any simply connected open set, symmetric with respect to
R. Suppose both B and B contain a specific real marked point, p and p
respectively. Then B is symmetric, and there exists a unique conformal map
which is symmetric, preserves the orientation of the real line, maps B onto

B, and maps p and p.

PROOF. First note that f is a symmetric map, so if z escapes to infinity
under f, its conjugate Z escapes as well. Thus the basin at infinity of f is
symmetric with respect to R, and therefore the Julia set and Fatou set of
either map are symmetric with respect to the real line. The connected com-
ponent B, which must intersect the real line, is symmetric as well. We define
the Riemann map from B to B taking p to p, making it unique be requiring
the derivative at p to be a positive real number. Since the mapping is unique
and the sets are symmetric, the Riemann map must itself be symmetric and

preserve the orientation of R. Q.E.D.

We can now almost completely determine how Hy must be defined on
the post-critical Fatou components of f. Once we establish that B and B

correspond and pick two marked points, p and p, we can immediately apply
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Lemma [4.5]. Correspondence will come from the combinatorial equivalence
of f and f , but we assume we have correspondence for now and concentrate
on finding a marked point for each component, which we will call the center
of that component. The center will almost always be the unique periodic
or preperiodic I;oint in the component, but we need to take into account a

nuinber of special cases.

For the following definitions, we restrict our attention to hyperbolic
maps. Let B be any post-critical component of the Fatou set of some map
f € F. By the Fatou-Julia wandering domain theorem of Sullivan, the
component B must map into some periodic cycle of components each of
which contain a unique periodic point on the real line. We define the unique

primary point.

Definition. (primary point) If B itself contains a real periodic point, then
this is the primary point. The other possibility is that B contains only
preimages of this periodic cycle, and in this case, B cannot be a periodic
component itself. Since there are only two critical points and one must be
in the periodic components, at most one critical point can come between B
and the periodic components. Therefore B must contain either one or two
preperiodic points. If there is only one, this is the primary point, which
necessarily must be real. If there are two preperiodic points, either they are
both real, or they occur as a symmetric pair on either side of R. In this case

the primary point is either the point farthest right on the real line or the

point in the upper half-plane.




It 1s not quite enough to mark only the periodic points, Hy must make

the critical orbits correspond, so we must also mark the critical point, if there

is one, in each component. There may be zero, one or two eritical points in

any given post-critical component.
We refer to the primary point of B as «. A critical point in B will be
labeled ¢, but we will not try to distinguish between two critical points in

the same component. We are now ready to define the center of B.

Definition. {the center of B) If the primary point of B is real, it defines
the center of B. In the special case where a is not real, B must contain a

single critical point, which then defines the center of B.

Definition. {normalizing maps) By Lemma [4.5], for each B there exists a
unigue Riemann map, symmetric and preserving the orientation of the real
line, ¥ g, which takes the center of B to zero and maps B onto the unit disk.

We refer to the image of B under ¢'g as a normalized component.

The definition of Hy considered as a map from B to Bis clear. H olp is
the unique map taking the center of B to the center of B. Unfortunately, this
construction makes no guarantee that critical points will correspond under
Hy, which is crucial for Theorem [4.4]. We will need an additional hypothesis
0117 B and B, namely that any critical points occur in the same place with

respect to the normalized components.

Definition. {critical factors) For each critical point ¢in B, its corresponding

critical factor is

Yp(c) —Ya{a),
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where « is the primary point of B,

This can be considered the distance between the primary point o and

¢ in the normalized component.

Starting the induction. When f and f are hyperbolic, in several cases

we can now state when the pull-back induction can be started.

Theorem 4.6. Assume f and f are combinatorially equivalent and are both
hyperbolic. Suppose the corresponding leftmost and corresponding rightmost
critical points, i.e. ¢y, and ér,, and cp or ég, have equal critical factors. Then

there exists a special qc-conjugacy between f and f .

PRrOOF. Since f and f are hyperbolic and combinatorially equivalent, they
are topologically conjugate on the real line. There are a finite number of post-
critical Fatou components for both f and f , by the Fatou-Julia wandering
domain theorem. The conjugacy establishes a correspoﬁdence between the
components of f and those of f .

Define H; as follows. On each of the post-critical Fatou components,
B;, we pair it with its corresponding component, B;. Then Hy|p, is the sym-
metric Riemann map preserving the order of the real line, taking the center
of B; to the center of f:fz-, and mapping B; onto B;. This map exists and is
unique by Lemma [4.5]. We define Hy between the components containing
infinity in the same way. Note that infinity is the primary point, critical
point, and center of this component. Because of the combinatorial equiva-
lence between f and f, as far as we have defined Hy, it preserves the order of

the real line. Hy is also symmetric and quasiconformal {actually conformal).
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We need $o extend this definition to the entire complex sphere and preserve
these three properties. There is no obstruction to a quasiconformal extension
of Hy to the upper half-plane because, thus far, Hy has been defined to be
conformal on a finite number of connected domains. We then define H, on

the entire sphere by reflection.

Let Uy be the union of the post-critical Fatou components, the com-

ponent containing infinity, and the two points 0 and 1.

We verify the hypotheses of Theorem [4.4] one by one. The map H,
is conformal on certain regions and quasiconformal everywhere else, so H,
satisfies property (a). Property (b), symmetry, is satisfied by the definition of
Hj and Lemma [4.5]. Properties (c), (&), and (f) are satisfied by construction.
It is also easy to see that f maps Uy into itself. Under f, the union of the post-
critical components is forward invariant, the component containing infinity
is fixed, and {0, 1} is also fixed, so property (g) is satisfied. Every attracting
basin contains a critical point, so Uy, consisting of post-critical components,

must contain a neighborhood of each attracting periodic point.

We still must verify the functional equation, property (h), and show
that critical values are mapped properly, property (d). We verify these two
properties on each Fatou component in Uy. Let By and By be corresponding
components and let By and B, be the corresponding image components. The
two maps Vg, © HQ o @bgll and 5, 0 Hoo ¢]§i are bqth conformal homeo-
morphisms that map the unit disk onto itself. They both fix zero, preserve

the order of the real line, and are symmetric. By Lemma [4.5], both maps

41




must be the identity map, so

Holp, =45 otp, and Hols, =95l oyp,. (1)

Now look at the normalized dynamic maps, ¥g, o f o ¢§11 and ¢ o fo ¢§1.
1

They also map the unit disk onto itself. It is well known that such maps can

Z—a

=% and an

be represented by Blaschke products, with factors of the form
additional rotation factor. Both maps are also symmetric, so we know the
rotation factors are plus or minus one and equal to each other, depending
on the orientation of f on the right real boundary point of By, which is the
same as the orientation of f on the right boundary of B;. We break into
cases based on the number of critical points in By (and B’1)

If there are no critical points, the primary points of By and By are also
the centers, so the normalized dynamic map is one-to-one and fixes zero.
The single Blaschke factor must be z. The same holds for the corresponding
normalized dynamic map between B 1 and J[-A?z.

If there are two critical points, the component must be periodic, and
again, the primary points of By and By form the centers. The normalized
dynamic map must be three-to-one and maps zero to zero, so z is one of the
three Blaschke factors. The two critical factors of B; are exactly enough to
determine the remaining two factors. To be precise, if Ay and Ay are the two
critical factors, then they are the critical points of g, o f o zbgll This is
because Ay = g, (f1), and similarly Ay = +5,(#2), where A1 and f are the
critical points of By. The other normalized map, 9 B, © f o qull, must have

precisely the same form since the critical factors are equal by hypothesis.
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If we have only one critical point, we need to split into two subcases
based on whether or not the primary point of B; is the center or not. If
it is the center, then we have a similar situation to the two critical point
case. Fach normalized dynamic map fixes zero and has a critical point at A,
the critical fact.or associated with either corresponding critical point. The
Blaschke product must have the form

f:%z where a = 3—_%\—5
If the primary point is not the center, then the critical point is the center.
Both normalized dynamic maps must have a critical point at zero. As noted
in the definition of primary points, B; must have two symmetric precritical
points, a and . These must both map to the primary point of By under f
and then to 0 under +p,. The Blaschke product of ¢p, o f o v,bgf must then

have the form
(z = ¥p () (z—dn(®)
(1 —1p(a)2) (1 —¥p,(a)z)

Note that ¢p, (@) is purely imaginary. So the Blaschke product has the

simpler form
22 4 o2

m, where 'i,bBl (O{) = ai.

This i1s more clearly symmetric. The other normalized map, &, © fo ;bgl,
1

must have the same form since the critical factors associated with the critical

points in By and By respectively are equal. This shows that the image of

the primary points of By and By under ¥p, and g respectively are equal.
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At any rate, in all three cases g, ofoq,bgll =g, 0 fo v,b;f Combining
this with the identities in (1), we immediately get the functional equation
Hyof(z) = foH, (z) for z € By. As aside effect, we also get that any critical
points in By are mapped to critical points in B;. The same arguments work
for all the post;critical components and the component containing infinity.

The functional equation also holds trivially for the two points 0 and 1. This

concludes the verification of property (h).

Since the functional equation holds on neighborhoods of both critical
orbits of f, we can conclude immediately that since the critical points map
to critical points under Hy, the critical values, vy and vy, must map to
the critical values of f . Since Hj preserves the order of R, vg must map
to Og, and vy, must map to oy, verifying property (d). All the hypotheses
of Theorem [4.4] have been satisfied, so we may invoke it and construct a

special ge-conjugacy between f and f Q.E.D.

Corollary. Suppose f and finF satisfy the hypotheses of Theorem [4.6].
Then f = f .

ProoF. By Theorem [4.6], there exists a quasiconformal conjugacy, H, be-
tween f and f Furthermore, H is conformal on the Fatou set of f. But f
is hyperbolic, so the Julia set has measure zero in €. Therefore H is in fact
1-quasiconformal, so H is a conformal map. By definition of F, however, the

only conformal conjugacy between maps in F is the identity map. Q.E.D.

For conjugacies between cubic maps with critical points in the Julia

set, we cannot immediately construct a special qe-conjugacy. However, we
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have reduced the requirements for when a special qe-conjugacy exists. In
particular for maps on a bone-loop, we may (see proposition [5.3]) have a

critical point in the Julia set.

Theorem 4.7. Let f and f in F be combinatorially equivalent. Suppose
each map has one periodic critical point and one chaotic critical point, in
the Julia set. Suppose there exists a quasiconformal homeomorphism H that
preserves the real line and its orientation and that H satisfies the functional

equation

Ho f(z)=foHz),

for z in the forward orbit of the chaotic critical point of f. Then there exists

a special gc-conjugacy between f and f .

Proor. We construct a new quasiconformal map making sure the proper
set of points correspond under the new map. The chaotic critical orbit of f
must correspond with the chaotic critical orbit of f . A neighborhood of each
point in the periodic critical orbit of f must correspond with a neighborhood
of cach point in the periodic critical orbit of f. Also 0 and 1 must be fixed.
Our hypotheses have taken care of the most difficult task, making the chaotic
critical orbits correspond.

Without loss of generality, we assume that the periodic critical points
are actually a fixed points of f and f Let ¢, and &, be the fixed critical
point of f and f respectively.

We claim there exists an open neighborhood V of ¢, so that H(V)

contains ¢, and has no point in the chaotic critical orbit in the closure of
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H(V). Furthermore, V can be choosen to be a topological disk symmetric
with respect to the real line. Such a set must contain the real interval
bounded by ¢, and H~*(&,). If this set does not exist, then this interval
must contain a point @ in the chaotic critical orbit. We must have either
that © < ¢« and éx < H(z), or we have © > ¢, and &, > H(z). But H(z),
by‘hypothesis, 18 the point in the chaotic critical orbit of f corresponding to
z. The inequalities then violate the condition of cornbinatorial equivalence.

Therefore our neighborhood V exasts.

If the chaotic critical orbit of f contains the periodic point 0 (or 1),
then combinatorial equivalence requires that the corresponding orbit of f
does as well. In this case, we do not need to modify I on 0 {or 1) because H

fixes the point as required for Theorem [4.4]. Otherwise, the chaotic critical

orbit falls to the right of 0 and to the left of 1 for both f and f by definition of.

F. A similar argument to that used to construct V shows that a symmetric
open set Vy containing 0 exists so that H(V}) also contains 0 and none of
the chaotic critical orbit of f . A set Vi containing 1 and mapping to 1 and
a ﬁeighborhood of infinity V. with the same property also exist. We have
that V UV, U Vp UV, contains none of the chaotic critical orbit of f and its
image under H contains no point in the chaotic critical orbit of f .

We can find a symmetric orientation preserving Bottcher coordinate ¢
defined on a neighborhood of ¢, U and conjugating f with the map z — z*
defined on a disk centered at 0. Similarly, there exists a ¢ for f defined

1

on neighborhoods U7 of &.. Then ¢! o ¢ conjugates f and f on small U,

We choose U small enough so that U is contained in V and ¢~ o ¢(U) is
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contained in H(V'). Similarly Béttcher coordinates for the fixed point at
infinity exist, Yoo and Poo, defined on neighborhoods Uy, and Uy, contained
in Voo and Voo respectively. Notice that all these sets are open and can be
chosen with smooth boundaries, so there is no obstruction to quasiconformal
extensions. -

We can now build a new quasiconformal homeomorphism Hy. The

map Hy is defined as fixing 0 and 1, equal to ¢!

o on U, and equal to
gﬁgol 0 Yoo ON Uy, Outside of VUV, UV UV, Hy is defined to be equal to
H, and we extend Hy quasiconformally everywhere else.

In preparation for invoking Theorem [4.4], we define the set Uy to be
the union of U, Uy, {0,1}, and the entire chaotic critical orbit of f. The
préperties {a) through (f) of Theorem [4.4] are satisfied by the construction
of Hy and Uy. The set Uy maps into itself under f because each set in the
union defining it also does, satisfying property (g). The functional equation,
by hypothesis, is satisfied on the chaotic critical orbit. It is also satisfied by
construction on U and Uy, because of the property of Bottcher coordinates.
It is satisfied on {0, 1} because these points are fixed by Hy and either fixed
or flipped by f and f. Thus property (h) is satisfied. Property (j) is easily
verified because all the relevant points are on the real line. The set U,

containg a neighborhood of ¢, and infinity, and Theorem [4.4] can now be

applied. Therefore there exists a special qe-conjugacy between f and f.

Q.E.D.




V. APPLICATIONS OF PULL-BACK
§5.1. Characterizing bone-loops.

Conjugacy classes on bone-loops. The poal of this section is to prove
that all points in a bone-loop represent maps in the same conjugacy class.
We first show that the critical kneading sequences are the same for maps
represented by points in a bone-loop. If A and g are in the same bone-loop,
we know from the definition of the bone containing the bone-loop, that both
maps fx and f, have a periodic critical orbit whose order on the real line is
defermined by the bone. We label these critical points ¢} and cj,. The other

two uncontrolled critical points are labeled ¢y and ¢,.

Lemma 5.1. Let L be a bone-loop in the parameter space of maps in F,
and let £ = {fi}rez. Then any two maps f and f, in £, share the same

kneading data. In other words,

05, (c3) = b5.(cu) and by (ex) = by, (cp)-

ProOOF. All maps we consider here have a periodic critical point ¢} with
a fixed order and a fixed period. We will make crucial use of the pullback
construction on hyperbolic maps, so we will need to worry about critical
factors. The point ¢} is attracting and periodic, clearly in some periodic
Fatou component B. By definition, ¢} is the primary point of B and the

center, so it is mapped by 5 to zero. But c¢3 is also a critical point of B,
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therefore the associated critical factor is zero. This holds true for all maps
in L.

We start by showing that 8, (¢}) is constant, for A € L. Remember
that as we continuously deform a map fy, the k-th kneading symbol of f3,
95‘2; (%), only changes when f3*(c%) becomes a critical point. We define n to
be the largest integer, if it exists, so that H;EA (¢}) is constant for all A € L
and k < n (Note: n may be zero). If no such n exists then we are done, so we
assume it does exist and {ry to arrive at a contradiction. We follow fy™(c})
as A is varied around the bone-loop .. By definition of n, there must be some
map fy where the kneading symbol changes, and the new symbol 6% (c}) is
critical. The number n must be less than the fixed period of ¢} in £, or
else 8% (c3) would be determined. Furthermore 6% (c3) cannot be ¢}, as this
would mean the fixed period of ¢j in £ had changed. Thus 6% (c}) = cx. In

other words, ¢} and cy, for fi, have the same periodic orbit.

The point ¢y falls somewhere on the orbit of ¢} and must be in some
component Bi. We may have B = B;. But ¢y is also a critical point, and
again since cy is periodic, it is also the center of By. The associated critical

factor of e, is therefore zero.

In a neighborhood of A in L, the attracting periodic orbit of f) must
persist, and the critical factors associated with ¢y and ¢} vary continuously.
For fy itself, fy™(c}) and ¢y are the same point, the primary point of B;. In
some neighborhood of A on L, for a different map f,, f"(c;) and ¢, may
no longer be equal, but f;"(c},) is still the primary point of By, and ¢, is
still in By. Let 8, = 9, (cy) and 0 = I,DBl(fﬁ"(c;)) be the corresponding
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critical point and primary point in the normalized component of any f, in
this neighborhood of fi. We may thus consider the normalized component,

the unit disk, as a model of the relative positions of ¢, and f;"(c}) in B;.

Following a map, f,, as p4 is continuously deformed through A in L, the
point 3, starts as a real value either to the right or left of zero. The point
B moves continuously until y = A, where f3®(cy) = ex and By = 0. The
question is what happens as we perturb p further around L. The point 8,
may cross zero, either positive to negative or negative to positive. In this case,
the symbol 9}‘» (¢y) is no longer critical, nor is it the same symbol as before
when f3,, was on the other side of zero. As we continue to follow y all the way
around L, back to where we started, G?M(c:;) must cross back to the original
symbol. At the point where it crosses back, we find a parameter, u £ A,
with f;"(cy) = ¢,. For both maps, the original fy and the new f,, both
critical points share an orbit which is periodic and has an order determined
by the bone. We see that f, and f, are combinatorially equivalent, and
furthermore f) and f, are both hyperbolic. The critical factors for both
maps are all zero, so the hypotheses of Theorem [4.6] are satisfied. By the
corollary, fy and f, are the same map. This is a contradiction, since u and

A are defined as distinet points in parameter space.

In the other case, where §,, does not cross zero, we also get a contra-
diction. If 3, does not cross zero, it must stop altogether or turn around as
4 is varied through A. In either case, we can find two distinct parameters,
p1 and pg, in a neighborhood of A, where 8,, and 8,, are equal. Note that

in this neighborhood the critical factor associated with ¢, is equal to §,, so
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the critical factors of f,, and f,, associated with the uncontrolled critical
point are equal. As mentioned at the beginning of the proof, the critical
factors associated with the periodic critical point are zero. If the critical
factors associated with ¢,, and ¢,, are zero, we have the same argument
ag before. If 11c;t, both maps must have the uncontrolled critical point at-
tracted to the orbit of the periodic critical point in the same way, and again
we must have combinatorial equivalence between f,, and f,,, giving us the
same contradiction.

We prove that 8¢ (cy) is constant for A € L in nearly the same way.
The number n is defined in the same manner with respect to 84, (cy), and
we find a map fi where 6% (i) is critical. The case where 8% (cx) = ca
occurs when f has two distinct periodic critical orbits. When we perturb
A in L, the orbit of ¢ will no longer be periodic but the periodic orbit to
which ¢ 1s attracted will persist. We proceed exactly as before, by finding
two maps sharing the same critical factors. The case where 6% (cx) = ¢}
also proceeds in nearly the same way. This corresponds to the case where fy
maps cy into the periodic orbit of €3, but ¢y is not periodic itself. The only
problem may occur if the preimage of ¢} in the Fatou component with ¢,
the primary point, does not stay real when we perturb A. The primary point
will not be the center of the component in this case, and 8, will always be
zero. We define «) as the normalized image of the primary point and follow

it as it crosses zero instead. All other steps should follow in the same way.

Q.E.D.

We are now show that all maps in a bone-loop are combinatorially
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equivalent.

Theorem 5.2. Let L be a bone-loop. Then if f and f are in £ = {fi}rez,

they are combinatorially equivalent.

PROOF. We know f and f share the same kneading data, by Lemma, [5.1].
This 1s almost enough to show combinatorial equivalence by itself, but not
quite. Consider two points, z = f°¥(c) and y = f°%(c), where ¢ is a critical
point of f. Define the corresponding points & = f°/(¢) and § = for(a).
We need to show that if # < y then & < §. Kneading theory gives us this
immediately in many cases.

The kneading sequences of z and y are just shifts of 6;(c). The se-
quences of £ and § are the same shifts of §7(¢). Since the kneading data of
f and f are the same, we always have 6(z) = 0:(2) and 8p(y) = 04(7). By
the ordering property of kneading sequences, if © < y and 8¢(z) # 0(y),
then we must have 8¢(z) < 8¢(y). Since the corresponding sequences are
equal, we get 9];(:?:) < 9);(@}), which implies that & < §.

Kneading theory says nothing if 8;(z) = 04(y), however. rSo to finish
the proof, we assume z and y have the same kneading sequence. We can also
assume that this sequence does not contain a critical symbol. If it does, then
¢ and y are precritical, and two precritical points with the same kneading
sequence must be equal. Note that z and y must be in the forward orbit
of the uncontrolled critical point ¢ because the kneading sequence of the
periodic critical point contains an infinite number of critical symbols.

Suppose z < y and & > ¢ for f and f , respectively. Then somewhere in

between f and f in £, there must be a map g where the corresponding points
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cross, i.e. a map where there exists a point z = ¢°/(¢) = ¢°%(¢). Therefore
¢ is a strictly preperiodic critical point of g. Let A be the multiplier of the
periodic orbit of z. We cannot have A = 0 or the orbit of z would contain a
critical symbol. Suppose 0 < |A] < 1, where the periodic orbit is attracting
or indifferent. Iﬁ general, we must have some sort of atéracting basin, which
may not even intersect the real line. In any case, we know that the immediate
basin of this periodic orbit must contain a critical point. In our case, this
point must be ¢, as the periodic critical point is in its own attracting basin.
But this is a contradiction since ¢ is strictly preperiodic, and immediate
basing do not contain preperiodic critical points. So |Af > 1, and thus z and

¢ must be in the Julia set of g.

We return to studying f. The points z and y share the same kneading
sequence and by the ordering property, so do all points in between. As noted,
this sequence is the same as that of 8,(z), which is periodic. Let I be the
set of points in [0, 1] under f that share this sequence. Since z < y, the set
I must be a non-trivial interval. Since the map f acts as a shift operator
on kneading sequences, and since the kneading sequence of points in [ is
periodic, I must be mapped into itself by some iterate of f. Furthermore,
the sequence contains no critical symbols, so I is mapped monotonically into
itself. There then must be an attracting fixed point for this iterate of f,
whose multiplier p must satisfy |u| < 1. This attracting orbit will persist as
we deform f into ¢ along £, and g will also vary continuously. Throughout
this deformation |u| is always bounded by 1 as the periodic point is always

attracting, but this implies the multiplier for g, A, must also satisfy |A] < 1.
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This is a contradiction that rules out the original assumption that °/(c) and

Fo%(c) crossed when f was deformed into f. Thus combinatorial equivalence

1s proved.  Q.E.D.

Critical points of maps in bone-loops. Theorem [5.2] combined with
Theorem [4.6] can be used to sharply restrict the type of map represented by
a bone-loop. We show that any map represented by a point in a bone-loop
always has exactly one periodic critical point and one critical point in the

Julia set.

Proposition 5.3. Let L be a bone-loop, and let fy be in £ = {fi}rer.

Then one critical point of fy is chaotic, i.e. in the Julia set of f.

Proor. If there exists even one fy in £ with a chaotic critical point, then all
maps in £ must have a chaotic critical point. This follows from combinatorial
equivalence. For instance, if fy has a preperiodic critical point then every
other map in £ must also have a preperiodic critical point. If £ has a critical
point which is not preperiodic, the kneading sequence of every point in the
forward orbit must be aperiodic or else the critical point is not in the Julia
set, and all other maps in £ must have the same aperiodic critical kneading
sequence. A chaotic critical point cannot be periodic.

Suppose there is no map in £ with a chaotic critical point. Let ¢y be the
uncontrolled critical point of maps in £. Then all points in L represent maps
for which ¢, is attracted to some periodic orbit. The points in I representing
hyperbolic maps, where the periodic orbit is not indifferent, must be dense in

L because indifferent periodic orbits are unstable. For the hyperbolic maps,
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the critical factor of ¢y, which we label 8, varies continuously with A € L.
We claim that we can always find two hyperbolic maps with the same critical
factor 3.

Let I be some connected component of the points in L representing
hyperbolic maps-. If I ig all of L, then our claim is immediately true because
L is a closed loop, and f cannot be a continuous injective map from I into R.
So. suppose that [ is some interval of points in L. In the limit as we perturb
A along I, fi changes from being a hyperbolic map to the limiting case where
fx has an indifferent cycle, the critical factor 8y must approach either —1 or
1 in the limit. If no two points on I have the same critical factor, then 3y
forms an injective function from I onto (—1,1). But if [ is not all of L, then
there must exist a separate connected component of representing hyperbolic
maps whose critical factors also take all values in (—1,1). Therefore, in all
cases, we can find two hyperbolic maps with the same S,.

The critical factor associated with the other critical point, the periodic
one, must be zero. So we can apply Theorem [4.6] and its corollary. These
show that the two hyperbolic maps, which are constructed as distinct maps,
are actually the same map. This contradiction rules out the possibility that
thére are no maps with chaotic critical points in £. Therefore, all maps have

a chaotic critical point. Q.E.D.

Corollary. Between any two maps in the same bone-loop, there exists a

topological conjugacy on the real line.

Proor. This follows because points on a bone-loop represent maps that are

combinatorially equivalent and have no indifferent periodic cycles, as neither
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critical orbit can be in the basin of attraction of such a cycle.  Q.E.D.

£§5.2. Non-existence of bone-loops.

For this section, we make the following claim.

Theorem 5.4. Let f and f in F be two maps represented by points on the

same bone-loop. Then there exists a special gc-conjugacy between them.

The proof of this theorem involves the machinery of box mappings
and is the subject of Chapters VI through IX. Using this theorem now how-
ever, we can prove that bone-loops do not exist. In this way we reduce the

Connected Bone Conjecture (and monotonicity) to proving Theorem {5.4].

Paihs of conjugaie maps. Quasiconformal conjugacy classes, families of
maps that are conjugate to each other by quasiconformal homeomorphisms,
have been used effectively in the study of the quadratic family. Quasiconfor-
mal conjugacy classes of quadratic maps, if they have more than one member,
always form open sets in parameter space (See [MSS]). The argument used
to prove this is very general, and we reproduce it here in the context of the
real cubic family. The quasiconformal conjugacy classes of cubic maps form
open paths in real parameter space.

Recall that y g is the complex dilatation of the map H. We use the
convention that H* and HZ? are the partial derivatives of H with respect to

z and 2. So yg = H*/H*.
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Theorem 5.5. Let f, f € F be conjugated by a special qc-conjugacy H,
with dilatation |yz| bounded by 0 < K < 1. Then there is a path of maps
fi € F, fort € (—1,1), forming a continuous deformation, within F, between
fo = fand fr = f. All these maps, ft, are conjugate to each other by special

ge-conjugacies,

Proor. Given a form
udz +Adz  with lﬁl <K <1,

the Measurable Mapping Theorem, Theorem [2.1}, states there exists a quasi-
conformal map H, unique up to composition with a Moebius transformation,
that solves the equation yy = % Moreover, the complex dilatation of H is
bounded by K. Given a specific H, we can work in the other direction and

obtain a form

Hedz + H?d7  with ‘ <K<l

Hz’
Hz

Notice that H solves the equation yg = H*/H?.

We build our path by perturbing this form. To be precise, we define
we = H?dz 4+ iﬂfdél
K

and the complex dilatation associated with this form as

2_ t
;T R XH:

x

t
K

Xt =

Ay
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Clearly for |t| < 1, the value |x¢(2)| is bounded by |¢| itself as required by
the hypothesis of the Mapping ‘Theorem. To eliminate consideration of a
Moebius transformation, we require that any solution to these forms fix the
points 0, 1, and co. Then the Measurable Mapping Theorem gives us, for

each ¢ in (—1,1), a unique quasiconformal map H,(z), and we can consider

its attributes as a definition.

Definition. (H;) H, is quasiconformal, fixing {0,1, 00}, with xpz, = x:.

From these maps, we can define our path
fo=H; o foHy (1)

Some facts are immediately obvious. Each f; is conjugate to f and thus
théy are conjugate to each other. The map Hj solves the equation xz, = 0,
thus Hf = 0 and Hy must be conformal. The identity map, Ho(z) = z, is
the unique conformal homeomorphism on ¢ fixing 0, 1, and oo, and we get
Jo = f. The map Hj 1s the original special qe-conjugacy H, so fx = f as
required.

The Measurable Mapping Theoremn also states that the solution H;
depends analytically on the original form wy, and this then holds true for f;
as well. So the f;, for t € (—1,1) does form a continuous path connecting f
and f. We still need to check that, for each ¢, f; is in F.

We start by showing that f; is conformal. Since H, fixes infinity by

definition, f; is then a conformal map of the sphere which also fixes infinity.

58




The only such maps are polynomials, and we get immediately that f; is a
cubic polynomial.

From the functional equation on Hy, we must have y fooH; = XHiofs
and we start by evaluating these dilatations. After expanding the partial

derivatives of compositions (See [10.1]) we get

(ffo HYH] + (fio H)H] _ (Hio f)f*
(ff o H)HF A (ff o H)HE — (Hfo f)f*

The simplifications in the expansion of yp,.5 are due to the fact that f* and

f7 are zero. By the definition of H,

(o ) _

tHP N 1 _ tHT O HY
(Hiof)f* K(Hzof)fr KT KE~ Hi

Cross multiplying this version of y,.; with the expansion of xy.n, and

cancelling the common term gives
(0 BB H; = (fF o HOH;H}.

If /7 o Hy is not identically zero, we cancel it and obtain

Hp — Hf He A
Note in general, however, that
Hi _Hf _ .,
S A
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So we would have 1/¥y, = xg,. However, this is impossible because H,
is quasiconformal and |ym,| < 1. Therefore f7 o H; = 0. The map H,
is a homeomorphism and takes on zero at only one point, so f7 must be
identically zero. Therefore f; is conformal.

It, for each t, H; 1s a special ge-conjugacy, then the second corollary
to Lemma [3.1] shows that H, is symmetric and preserves the order of R.
Since the original f also has these properties, f; will also be symmetric and
preserve the order of R. Moreover, f permutes the set {0,1} in some way,
and since Hy fixes these points, f; must permute them in the same way as
f. We conclude that f; ¢ F, proving the last statement in our theorem. All
we have left to do is show that H; is special quasiconformal.

We know already that H; is quasiconformal and fixes {0,1,c0}. The
original H is special quasiconformal, so H*(z) = 0 for # in the Fatou set of
f. For the same z,

xH,(2) = xe(2) = %gj—g =

But if xm, = 0, then we must have Hf(z) = 0 on the Fatou set of f, as
required for a special ge-conjugacy.

We need to show that H; is symmetric. The original map H is sym-
metric, so we know H?, *, and yy = H?/H? are also symmetric functions.
By definition,

t
XHg - EXH‘

Since ¢ is always chosen to be real, yz, is symmetric as well. If we define
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H,(z) = Hy(2), then

XH.(2) = e -f*j = xm (%) = xu, ()

" H
£(
Therefore H, is a quasiconformal map fixing {0, 1, 0o} and it solves the same
Beltrami equa,ti-on as H;. The Measurable Mapping Theorem says that such
a map is unique, so we must have Hy(z) = Hy(2) = H,(2). Therefore H, is

symrnetric.
As an immediate consequence of symmetry, H; must preserve R, and

because zero and one are fixed, H; must preserve the order of R as well.

Therefore we have determined that H, is a special qec-conjugacy, concluding

the proof of the theorem. Q.E.D,

We did not make any assumptions about £, the bound on the dila-
tation of H, in this construction. However, we need to do so in the next
section. Assuming a special qe-conjugacy H exists between f and f , 1t 18
quasiconformal and its complex dilatation x g is bounded on C. Certainly
there exists a least upper bound on |xp|, and since special qc-conjugacies
are unique, the least upper bound is a well-defined operator on the pair of
functions, f and f We normalize the path construction by requiring the

bound, K, used in Theorem |5.5] to be minimal.

Definition. (maximal path) Given f and § € F, and given a special qc-
conjugacy, H, between them, the maximal path connecting f and £ is the
set of points in parameter space representing the path of maps in F given
by Theorem [6.5] using the minimal dilatation bound on H. The maximal

path, if it exists at all is unique, since special ge-conjugacies are unique.
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Lemma 5.6. Suppose L is the maximal path of parameters deforming f),
into f», in F. Then the least upper bound operator, Ky, », (A), equal to the
minimum complex dilatation bound on the conjugacy between fi and f,,

is a well-defined and continuous map on L.

PRrOOF. The uniqueness of special qc-conjugacies shows that the least upper
bound operator is well-defined. By definition K, x, (A1) is the minimal
bound on the dilatation of H conjugating fy, and fy,, l.e. |xz(z)|. But asin
Theorem [5.5], we have xu, = (/K )xn, where K = Ky, x,(A1). Therefore
the minimal bound on |xm,{z)| is just [t|. But H; conjugates f,, and some
map fy, € F, s0

Ko (M) = .

Since both A; and |t| vary continuously with respect to ¢, we are dome.

Q.E.D.

Contradiction. Suppose that two maps, fi, and fy,, are quasiconfor-
mally conjugate and A is in some bone in parameter space. We know fy,
must have a periodic critical orbit occuring in some fixed order on the real
line. There is, of course, a path connecting the points Ay and X in parameter
space. Moreover, every pomnt along this path must represent & map having
a periodic critical orbit with the same order and period because special qe-
conjugacies preserve these properties of f,. So the entire path is contained
in the same bone as Ay We can use this observation to reduce the Connected
Bone Conjecture to a simpler form.

The maximal path connecting the points Ag and Ay forms an open
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path, and it this openness that is incompatible with the closed and compact

bone-loop.

Lemma 5.7. A bone-loop L cannot consist of points representing maps

which are all conjugate by special gc-conjugacies.

PRrROOF. Assume we can find a special qe-conjugacy between any two maps
in £ = {falrer. We pick an arbitrary map f, € £. For any other map
fa, in L, there exists a maximal path between Ay and A;. This path must
be contained in the same bone, and since L is the connected component of
the bone containing \g, the path must be contained in L. Since we assume
spécia,l qe-conjugacies always exist, we can cover L with maximal paths,
which form open sets in the subset topology on L. We define a new least

upper bound operator on L by

Koo (1) = Ko (1) for any A\ € L.

Once again, this is well-defined since special qc-conjugacies are unique. It
does not matter what A; we pick, since we always end up taking the bound
on the same special gc-conjugacy between fi, and f,. By Lemma [5.6], K,
is a continuous function on L.

But from any maximal path constructed around Ag, we can construct
a sequence of maps, {fi, 152, where the dilatation bound on the conjugacy
between fi, and f,, is arbitrarily close to one. Since L is compact, there
must be an accumulation point, A, of this sequence in L. By continuity,

we must have Kj,(Aoo) = 1. But this is a contradiction. By definition, the
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special gc-conjugacy between f, and f_ is quasiconformal, and there must
exist a bound on the complex dilatation which is strictly less than one, thus

K, (Aoo) is always less than one.  Q.E.D.

This result and Theorem [5.4] imply the Connected Bone Conjecture.
All that remains to be proven is Theorem [5.4], for which we will need elab-

orate machinery, originally developed to study quadratic maps.




VI. BOX MAPPINGS AND BRANCHWISE EQUIVALENCES

To prove Theorem [5.4], we will transfer into a cubic setting tools
designed originally for analyzing real quadratic maps. These objects, called
box mappings, are part of the class of functions known as induced mappings,
functions which are formed piecewise from the iterates of some continuous
base function. The primary example of an induced map (and a box mapping
as well) is a first return map, formed from a continuous function and an
interval. Induced maps in various different forms have been used frequently
to study metric and expansion properties of dynamical systems, particularly

unimodal maps of the interval. For example, see [GJ].

§6.1. Standard box mappings.

The type of induced box mapping used here has continually evolved
through the work of Graczyk, Jakobson, and Swiatek. In particular see [JS1],
[JS2], and [GS2]. Later versions of this type of box mapping have been used
to prove that hyperbolic maps are dense in the real quadratic family, by
first proving Theorem [1.1] (See [Sw]| and [GS1]). It provides a complete
machinery for constructing quasiconformal conjugacies between conjugate
maps. The definition presented here is taken directly from [GS1].

Although the box mappings we use will always be induced maps, in-
duced from cubic maps in fact, the definition itself does not require the map
to be induced from some other map. Actually, the manner in which box map-
pings are defined is crucial. Since the definition makes no mention of how

the box mapping is constructed, we are able to transfer theorems originally
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designed for quadratic or unimodal applications to cubic maps.

First return maps. The ingpiration for box mappings comes from. the

so-called first return map induced from some other function f.

Definition. (ﬁfst return maps) Let f be some function from a space V,
often taken to be R, into itself. Some initial subset, U, of the domain of f is
selected, usually an interval for real f, and for each z € U, the orbit under
fof z, {f(z), f°%(z),...}, is examined to see if it intersects 7. The first

return map of f to the set U is defined o be the map taking each point to

the first point in its orbit inside U, if this point exists. The first return map

1s undefined elsewhere.
Suppose f 1s a continuous real map, the set U is an interval of R, and
P ig the resulting first return map of f to U. Then we say that ® has been

induced from f, and we call U the inducing interval.

The first return map ¢ is a map induced from f. The domain of ¢
is in general disconnected, and on connected components, @ is equal to an
iterate of f. The map restricted to these components is called a branch of
®. A primary feature here is that by post composing a branch of ® with @

itself, a new induced map, consisting of higher iterates of f, is created.

Real boz mappings. The Schwarzian derivative of a map f is defined

(N 3 (Y
Sf‘(f'> 2(1—")'

66

to be




Definition. (real box mappings) Let ¢ be a function defined on an open

subset U of the real line into the real line. Restrictions of ® to the connecied

components of U will be referred to as branches of ®. For @ to be a real box

mapping, 1t must have the following properties.

(L)

(2)

(4)

()

(6)

B = (—a, a) for some a > 0 is a connected component of I/ called
the central domain, while ¢ = ®|p is the central branch.
There exists a set B’ chosen to be the smallest interval symmetric
with respect to zero that contains the range of 4. B’ must contain
B.

¥ = h(z?) where h is a diffeomorphism onto its image B’ with
non-positive Schwarzian derivative.

All branches of @ different from the central branch are diffeo-
morphisms onto their respective images and have non-positive
Schwarzian derivative.

If A is any connected component of U, then A is disjoint from
the border of B'.

If V' is the range of some monotone (non-central) branch of @ and

A is a connected component of U, then ANV = {),

The requirement on the Schwarzian derivative comes from the appli-

cation of induced maps to the study of smooth dynamics on the interval,

where a negative Schwarzian derivative is a hypothesis of the Koebe Distor-

tion Theorem for instance(see [JS1]). For cubic maps, this property comes

comes from using strictly bimodal maps (See the corollary to Theorem [8.7]).
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Some of the analysis involving the Schwarzian derivative, in particular finding
bounds on quasisymmetric distortion, has now been replaced by the analysis
of quasiconformal maps (see Lemma [10.1]). The remaining properties de-
rived from the Schwarzian are hidden in Theorems [6.2] and [6.1], so we will

make little further reference to it.

Holomorphic box mappings. The definition of a holomorphic box map-
ping is the same conceptually as the real case and is formally obtained by

changing a few words.

Definition. (holomorphic box mappings) Let ® be a function defined on an
open subset U of the complex plane into the complex plane. Restrictions of
® to the connected components of I7 will be referred to as branches of ®. For

® to be a holomorphic box mapping, it must have the following properties.

(1) There exists an open topological disk B, a connected component
of U, that is mapped onto itself by the transformation z — —z. B
1s called the central domain, and ¥ = ®|p is called the central
branch.

(2) Let B' be the range of .

(3) 9 = h(z*) where h is univalent onto its image B'.

(4) All branches of ® different from the central branch are holo-
morphic and one to one onto their respective images.

(5) If A is any connected component of U, then A is disjoint from

the border of B'.

(6) If V is the range of some univalent (non-central) branch of ® and
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A is a connected component of U, then AN oV = .

Even though the domain of .a, holomorphic box mapping is open in C,
holomorphic box mappings should still be considered a tool for studying the
real line. We W:IH always use symmetric box mappings, whose restriction to
R is a real box mapping. The conformal properties will always be used in
conjunction with the properties of (symmetric) quasiconformal maps to draw
conclusions about the underlying real maps.

We will use the expression box mapping where both real and holo-

morphic box mapping can be substituted.

Definition. (box mapping types) We distinguish two special types of box
mappings, both real and holomorphic. A type I box mapping is determined
by the condition that all non-central branches have range B. A type II box
mapping is characterized by the property that all non-central branches have

range B’.

§6.2. Branchwise equivalences.

Box mappings will be used as a tool for showing that conjugacies be-
tween cubic maps are quasiconformal. This is accomplished by constructing
a sequence of quasiconformal maps which are partial conjugacies, or maps
which satisfy the necessary functional equation on only part of the complex

plane. We then show that a partial conjugacy suitable for Theorem [4.7]
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exists in the closure of the family of partial conjugacies. Branchwise equiva-
lences play the role of these partial conjugacies. The all important functional

equation for conjugate maps

Hof=foH,

where f and f are the conjugate maps and H is the conjugacy, plays a crucial
role in the following defimition. A branchwise equivalence will be a partial
conjugacy between f and f that satisfies the functional equation only on the
domain boundary of the hox mapping ® induced from f.

The notions of branchwise equivalence for holomorphic and real box
mappings are completely equivalent. We will express the definition for holo-
morphic box mappings, giving in brackets the few changes needed to produce

the definition for real box mappings.

Definition. (branchwise equivalences) Let & and $ be two holomorphic
(real) box mappings. An orientation preserving homeomorphism H of the
complex plane (real line) onto itself is considered a branchwise equivalence
between ® and & provided that H maps the domain of ® onto the domain
of & and satisfies the following dynamical condition. ¥ V is a connected
component of the domain of @, { is ® restricted to V and extended continu-
ously to the closure of V, while ¢ is & restricted to H(V) and continuously

extended to the closure, then

Hol(=(oH
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on the boundary of V,

A branchwise equivalence between two box mappings is not unique.
We have the following similarity relation, which stresses that the important

part of a branchwise equivalence is where is satisfies the functional equation.

Definition. (similarity between branchwise equivalences) Let ® and & be
box mappings, real or holomorphic, with branchwise equivalences H{ and
H,. Let D be the boundary of the domain of &. We say that Hy and H,
are similar if they coincide on I} and are homotopic to each other in the

complement of D). We will use the notation [H] for the similarity class of H.

§6.3. Inducing algorithm.

The motivations for introducing box mappings are Theorems [6.2] and
[6.1]. These results are the culmination of research {see [Sw], [GS1], and also
[GS2]) on constructing quasiconformal conjugacies between real quadratic
poiynomials. Tt is crucial to this work and a testimonial to the power of
the tools being used that these theorems can be immediately applied to
cubic maps. These tools include Yoccoz partitions, pull-back and inducing
constructions using quasiconformal maps, and the A-Lemma. All these tools
are essential for this work as well and will be presented later in detail. In
fact, the construction of box mappings induced from cubic polynomials and
the construction of quasiconformal branchwise equivalences between these

mappings can be viewed as a miniature version of the inducing construction
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uséd in [GS1). In particular, see Lemma [7.1]. The delicate moduli estimates
for nested annuli around the chaotic critical point and renormalization are
the only significant tools used in the quadratic case that are not directly
used in the cubic case. Although, we inherit these tools in the new form of
Theorems [6.2} ;md [6.1].

The central construction in the proofs of Theorem [6.2] and [6.1} is
the inducing algorithm on box mappings. In short, the branches of a box
mapping are composed With each other to produce new box mappings whose
disconnected domains form finer partitions of the dynamical plane. Branch-
wise equivalences, which can be shown to be quasiconformal, defined with
respect to these finer partitions approach a partial conjugacy, suitable for
Theorem [5.4], in the limit. We present an outline of the inducing algorithm

as it applies to Theorems [6.2] and [6.1], saken directly from [GS1].

Step A - filling in.. Suppose that ¢ is a real or holomorphic box map-
ping. Choose a set 5 of monotone (univalent) branches of ¢ all with the
same range R which must contain the closure of B.

Then define a sequence of (holomorphic) box mappings ¢; as follows.
¢o 18 equal to ¢ outside of B and the identity on B. Sy is 5. Given ¢y,
i > 0, and a set 5; of monotone (univalent) branches construct ¢y as
follows. Set ¢;11 = ¢; except on the union of domains of branches of 5;, and
dir1 = ¢o 0 ¢; on the union of domains of branches from 5;. At the same
time, ;41 becomes the set of all branches of ¢;4; in the form (3 o {5 where
(1 ,. (s belong to S;.

The {holomorphic) box mapping ® which is the outcome of Step A
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is defined on the set of points z such that the sequence ¢;(2) is defined for
all + and eventually constant. Then ®(z) = Hm; o $i(2) if 2 ¢ B and
®(z) = ¢(2) if z € B.

When @ is compared with ¢, we see that all branches except those with
range R have béen left undisturbed, while those branches onto R have all
vanished and been replaced with compositions among themselves and with
other branches with different images.

A typical example of filling-in occurs if ¢ is a type I (holomorphic)
box mapping. In that case there is only one possibility for R, namely R = B’
and the outcome is a type I (holomorphic) box mapping with the same B
and B’. Note that this is just constructs the first return of all monotone

branches to B leaving the central branch unchanged.

Step B - critical filing. Now suppose that a (holomorphic) box map-
ping ¢ is given. For Step B to be feasible, the critical value of ¢ has to belong
to the domain of ¢. Construct ¢y by changing ¢ on the central domain only,
and making it the identity there. Then define ® again by changing ¢ on the
central domain only, where we set ® = ¢g 0 ¢. This ® is the outcome of Step
B applied to ¢.

Observe that for & the range B’ is the central domain of ¢. The central
branch of ® has the form ¢ o ¢ where ¢ is the central branch of ¢ and ¢ is
either a monotone (univalent) branch of ¢, or the identity restricted to B.

Again, the particular case of most interest to us is when ¢ is a type
I (holomorphic) box mapping. In that case, ® is a type II (holomorphic)

box mapping. According to whether the critical value of ¢ is in the central
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domain of ¢ or not, we describe the situation as either a close or non-close

return,

Inducing steps. We will now define a simple inducing step for type
I (holomorphic) box mappings. If ¢ is such a mapping, the simple inducing
step is defined to be Step B followed by Step A. As remarked above, the
outcome will be a type I (holomorphic) box mapping. We make a distinction
between a close and non-close return for ¢, depending on whether the critical
value of ¢ is in the central domain of ¢. The simple inducing step is defined
provided that Step B is defined, i.e. the critical value of ¢ is in the domain
of ¢.

Let us now define a type of box mapping which is an obstacle to con-

tinuing an inducing construction.

Definition. (terminal box mappings) A box mapping is called terminal if
there 1s an open interval I C B containing the crifical point of ¢ so that
H(I) C I and ¢(8I) C 8I. The interval I (which must be unique) will then

be called the restrictive interval of 4.

Now we define the type I inducing step. It takes a (holomorphic)
type I box mapping ¢. The type I inducing step is defined recursively so
that it is equal to the simple inducing step if ¢ makes a non-close return,
and is equal to the type I inducing step applied to ¢; obtained by the simple
inducing step for ¢ otherwise. In other words, the type I inducing step is an
iteration of simple inducing steps continued until the first non-close return

occurs. This definition may fail if at some point the simple inducing step
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is no longer defined, or, more interestingly, if a non-close return is never

achieved.

If the last possibility occurs for a box mapping ¢, and $(0) # 0, then
it must be terminal. Indeed, let 3 denote the central branch of ¢, and
B its central domain. If a non-close return never occurs, then the critical
value must be contained in ¢~"(B) for any n > 0. These intervals form a
descending sequence, and the intersection must be more than a point, since
otherwise 0 would be fixed by . So the intersection is a non-degenerate
interval symmetric with respect to 0 and invariant under ¥ which meets the

definition of a terminal box mapping.

The inducing algorithm is applied to box mappings as follows. We
begin with the initial type IT holomorphic box mapping ¢¢ and first fill it
in to get a type I map., Then we proceed by a sequence of type I inducing
steps. There are two obstacles to performing a type I inducing step. One
is 1f the critical value escapes from the domain of the box mapping. The
other possibility is that a terminal mapping is obtained. Assuming our box
mappings are all induced from some polynomial f, the first difficulty occurs
only if the chaotic critical orbit of f is non-recurrent. In this case, the in-
ducing algorithm will not proceed to a limit. As described in Theorem [9.2]
however, the desired partial conjugacy will still be constructed before the
algorithm fails. The second obstacle can also occur and leads to renormal-
ization. In Theorem [9.5], we show that the problem of constructing the
necessary partial conjugacy in this case actually reduces to the same prob-

lem for quadratic maps, where it follows from the original quadratic results
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(Theorem [1.1]). Issues of renormalization in the cubic case, in contrast to
the quadratic case, are of little concern in the construction of conjugacies.
This is because any renormalization of a cubic map, in the situations we
must deal with, is quadratic-like (in the sense of Douady and Hubbard) and

can be dealt with using previous results.

Pull-back. We show how the inducing algorithm is used to produce a
sequence partial conjugacies, closer and closer to a full conjugacy. We con-
struct two initial box mappings ¢o and ¢, induced from f and f respectively,
and a quasiconformal branchwise equivalence between them. The inducing
algorithm is applied to the two box mappings in parallel. For each step of the
algorithm, an operation called pull-back is applied to the branchwise equiv-
alence, producing a new quasiconformal branchwise equivalence between the
new box mappings ¢; and qgi. This new branchwise equivalence satisfies the
functional equation on a larger set.

The basic step involved in pull-back is as follows. Suppose A; is a
component of the domain of the box mapping ¢, and let (4 = ¢|a, be the
branch. Suppose the image of A; under ¢y contains another component Ao,
with branch (5. If & 1s a branchwise equivalence between ¢ and qhﬁ, there exists
corresponding components Ay = h(Ap) and Ay = A(Ag), with branches G
and (fz respectively. Furthermore, since h satisfies the funetional equation on
the boundary of A, the images of A; and A; correspond under &, and they
contain A, and A, respectively.

A new box mapping is created from ¢ by replacing (; on A; with

(2 0 (3. Similarly, a new box mapping is created from q’g by replacing Cﬁl with
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s 0 (fl. The method for creating a new branchwise equivalence between the

new box mappings is to redefine h on A; with

h(z) = él_l o ho(i(z).

Inspection of this equation and the definition of branchwise equivalences re-
veals that this is the only possible definition of the branchwise equivalence on
the boundary of Ay. Recall that the similarity class of a branchwise equiv-
alence is determined by how it maps the boundaries of domain components,

so we have the following fact.

Fact. The pull-back construction operates on similarity classes. Pull-back
of any branchwise equivalence in a class, since the mapping is determined on
the boundary of domain components, always produces another branchwise
equivalence in a similarity class independent of the map chosen within the

original similarity class.

A complete description of the pull-back operation, but without the

complication of a folding branch, is contained in the proof of Lemma [7.1].

Critical Consistence and Induecing in Parallel. Referring back to the
previous exémple, the redefinition of k is well-defined if {; and (‘,:1 are injective
but involves a two to one topological lifting if (; and (; are central branches.
There is an extra requirement on the branchwise equivalence for this lifting
to exist. The critical value of ¢y, (1(0) must be mapped to the critical value

of 61, 61(0). This is the basic idea behind critical consistence.
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Definition. (critically consistent branchwise equivalences) A branchwise
equivalence is critically consistent if some member of its similarity class
maps the critical value of one box mapping, ¢;(0), to the critical value of the

~

other box mapping, ¢(0).

It turns that critical consistence is never an issue in the construction of
branchwise equivalences, in situations where the box mappings are induced
from polynomials which are topologically conjugate on the real line. It is
a fundamental principal of the inducing algorithm that the construction is

topologically invariant.

Fact. Let f and f be two real polynomials that are topologically conjugate
on the real line by a conjugacy H. Suppose {¢;} is a series of box mappings
induced from f constructed from ¢y using the inducing algorithm. Then
box mappings, {q@z}, induced from f using the inducing algorithm, will be
constructed in parallel with the {¢;}. In other words, at any point of the

construction, H will form a branchwise equivalence between ¢; and ¢;.

For example, if ¢ is any box mapping induced from f, by virtue of
the functional equation H o f °f = f °J o H, which holds for any j, the map
¢=HodoHisabox mapping induced from f . Clearly H is branchwise
equivalence between ¢ and q@ Furthermore, performing a pull-back opera-
tion, by replacing H with (7)™ o H o f°/, where f°7 and f°7 are branches
of ¢ and 43, is a null operation, merely reproducing H.

There is a corollary to this principle which states that critical consis-

tence 1s not an issue.
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Corollary. Let f and f be two real polynomials that are topologically con-
jugate on the real line, by a conjugacy H. Let ¢ and (;3 be box mappings
induced, in parallel, from f and f , and suppose [#] is the similarity class of
branchwise equivalences which contains H.

Then a,njj} h in [h] 18 critically consistent. Performing an inducing
step on ¢ and ¢, then pulling back h, produces a branchwise equivalence
which is critically consistent and is in the same similarity class as H, the full

conjugacy.

Proor. Let ¢ and gB be the central branches of ¢ and ¢, which must equal
o4 and f"j respectively for some j. Since H conjugates f and f , we must
have H o f99(0) = f°/ o H(0), and H(0) = 0. Therefore H maps the critical
value of 1 to the critical value of 1ﬁ, and so by definition, any & in [A] must
be critically consistent. The pull-back of the conjugacy H is just H. So
the pull-back, considered as an operation on similarity class, produces a

similarity class containing H. Q.E.D.

§6.4. Box mapping results.
We can now state the central results for box mappings and branchwise

equivalences. For an annulus A in C, let mod (A) be the modulus of A.

Proposition 6.1. Let ¢ and q@ be type I holomorphic box mappings. Sup-
pose that H is a K -quasiconformal branchwise equivalence between ¢ and qg

Assume that the similarity class [H] is critically consistent for each simple
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inducing step composing a type I inducing step and then again for one more
simple inducing step. Assume further that whenever D is the domain of a
branch of ¢ and D ¢ B, then mod (B' - D)>e

| Then, for every € > 0 there is a ) so that the similarity class obtained
from [H]| by the: pull-back associated to a type I inducing step has a QK-
quasiconformal representative, Moreover, if € > 4log8, then one can take

@ = exp(Q)' exp(—%)) where €' is a constant, independent of all parameters.

Theorem 6.2. Let ¢ be a type IT holomorphic box mapping, ¢q be the type
I mapping obtained from ¢ by filling-in, and ¢; a sequence, finite or not, of
holomorphic box mappings set up so that ¢, 1s derived from ¢; by the type
I inducing step for ¢ > 0. Suppose that ¢ restricted to the real line is a real
type IT box mapping. Let B; and B} denote the central domain and central
range of each ¢;.

Suppose that mod (Bj — By) > fy. For every By > 0 there is a

number ¢ > 0 with the property that for every 1

For complete proofs see [GS1] (also see [Sw]| and [JS2]).

§6.5. Generalized box mappings.
For purposes of applying box mappings to cubic polynomials, we make
two extensions to the family of holomorphic box mappings as originally de-

fined. The second extension is really a separate family but is similar enough
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to still be called a box mapping. Both extensions are concerned with the
central branch. For the most part, the term box mapping will refer to this
new extended family. Where there is a possible source of confusion, we will
use the words standard and general to refer to box mappings satisfying the

original or extended definition.

Quadretic symmetry. The first extension eliminates the need for qua-
dratic symmetry in a box mapping. By quadratic symmetry, we mean
fla) = f(—a), as is the case with the quadratic family z2? + c.

The original definitions of real and holomorphic box mappings require
that the branch of the map defined on the central domain be syminetric, in
the above sense (properties (1) and (3) of either definition respectively). This
is a natural property which is easy to satisfy when inducing box mappings
from quadratic maps. But in fact, it is not a necessary assumption, and we
really only need the fact that the central branch is a conformal two-to-one

covering map. 'To be specific we have the following more general definition.

Definition. (general holomorphic box mappings) The definition is identical
to that of standard holomorphic box mappings, except properties (1) and
(3) of the original definition are replaced with the following requirement.
There exists a set B, the central domain, that is an open disk and a
component of the domain of ®, U. B contains precisely one critical point
of ®, ¢, and @ restricted to B — {c} is a two-to-one covering map onto its

image.

Box maps are a tool for building conjugacies between maps, and it is
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for these applications that the symmetry is not necessary because we have

the following lemma.

Lemma 6.3. Suppose @ is an extended holomorphic box mapping, whose
domain is completely contained in some topological disk V. Suppose ® is
induced from a single real analytic map f, i.e.” each branch of ® is of the
form, f°*. Finally suppose that V contains one and only one critical point
of f, ¢, which must be the same unique critical point of ® in B, and that f
restricted to V' — {¢} is a two-to-one covering map onto its image.

Then @ is conformally conjugate, by a map defined on V, to a standard

holomorphic box mapping.

ProOF. Define two new maps, F(z) = f(z) — f(c) and @Q(z) = 2z?. Also
define V = Q' (F(V)). Note that both F and Q are two-to-one covers,
from V — {c} and V — {0} respectively, onto F(V) — {0} = Q(V) — {0}.
We are in a simple lifting situation. Thus we can find a lift of F through
¢} that is conformal in this case, symmetric, preserves the orientation of R,
and maps V univalently onto V. We label this lift H. We of course have the
functional equation @ o H = F. The map H is our desired conjugacy. We
define & = H 0 ® o H~* on domain / = H(U), where U is the domain of &,
and we claim that & is a standard holomorphic box map.ping.

Suppose the central branch ¢ = ®|p = f°%, where % is some positive
integer. The central domain of &, B = H{(B), is an open disk and a connected
component of U. Suppose z € B — {H(c)}, then H*(2) is in B, and by
definition of general box mappings, there is a second point in B, y, with the

same image as H '(z) under 9 = f°*. So we have ¢{H (%)) = 9(y).
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We want to show that the orbits of y and H1(z) are equal after the
first iteration of f. Consider f as a map defined on R for a moment. The
set I3 contains one critical point of f, which is the same as the critical point
of ¢. So =1 must be monotone on the set f(B). In other words, if

f(y) # f(H7(2)) then f°*(y) # f°*(H~'(2)), which we know are equal. So

we must have that y € B and

fly) = F(H(2)). 1)

Rearranging the functional equation, we get F(H'(z)) = Q(z). From
this equation, equation (1), and the definition of ¥, we get F(y) = Q(z),
which implies Q(H(y)) = Q(z), or [H(y)]* = 2. By definition, y # H1(2)
or H(y) # z, so we must have H(y) = —z. However since y € B, H(y) € B,
and we have shown that the map z — —z maps B onto itself, property (1)
of holomorphic box mappings.

By definition, the central branch of b is tﬁ = H oo H ', which is
equal to H o f°* o H™1, From the functional equation and the definitions of
F and @} notice,

FoH () = 2% + f(c).

The map f o H™' takes B to f(B), and f°*=1) is univalent on f(B). Thus
W(z) = o f** V(2 + f(c))

is a diffeomorphism on f(B) — f(¢) = F(B). For z € B, which is equal to
H(B)=Q 1o F(B), we get

W2y =Ho fo* Do fo H(2) = 4,
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as required for property (3).
All other properties of holomorphic box mappings follow immediately

from the fact that & is conjugate to & by a conformal map. Q.E.D.

Boz mappings with no central branch. We can extend the family of
hoiomorphic box mappings further by allowing the central branch to be op-
tional. We allow box mappings with no central branch. Such a function only
needs to satisfy properties (4) and (6) in the definition of standard holo-
morphic box mappings. Note that the definition of branchwise equivalences
does not need to be modified in any way to be used with this new type of
box mapping. Use of just the term box mapping will refer to a box mapping
with a proper central branch. A box mapping that does not have a central

branch will always be referred to as a box mapping with no central branch.
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VII. POLYNOMIAL TOOLS

We need some additional tools before attempting to construct box
mappings induced from cubic maps. First, we present a detailed pull-back
construction in the special case of box mappings with no central branch.
This result will be used as a bridge between the Theorems [6.2]. and [6.1],

cubic maps, and quasiconformal conjugacies between cubic maps.

The A-Lemma, presented in Chapter VII part 3, is the primary tool
used to construct initial quasiconformal branchwise equivalences, which are
converted by pull-back into full quasiconformal conjugacies. The hypotheses
of the A-Lemma will require a closer examination of the Bottcher coordinate.
The coordinate needs to be defined as a univalent map, even in situations

where the Julia set of the underlying map is disconnected.

§7.1. Monotone pull-back.

We present a more rigorous definition of the pull-back construction in
an environment without critical points, specifically on box mappings with
no central branch. The induction presented here will be useful in two situa-
tions. First, by simply ignoring the critical points of two cubic polynomials,
ohjects can be constructed using monotone pull-back that look almost like
type II box mappings induced from the polynomials and a branchwise equiv-
alence between them. The only pieces missing are the two central folding
branches of the box mappings which can be added at the end. In this way an
initial branchwise equivalence and box mappings can be constructed, which

will then fall immediately into the inducing algorithm described above. This
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is described in Chapter VIIL If a non-recurrent or renormalizable situation
is not encountered, the central branches of the box mappings will shrink
to a point during the inducing algorithm, producing, in the limit, another
pair of box mappings with no central branches. The limit of the quasicon-
formal branchvs;ise equivalences will be a partial conjugacy that conjugates
part of the forward orbits of the chaotic critical points of the original cubic
polynomials. In order to apply Theorem [5.4] and obtain a full conjugacy,
the partial conjugacy must conjugate the entire forward orbit of the crit-
ical point, and to achieve this condition, an additional application of the
monotone pull-back will be required. This is described in Chapter IX.
Monotone pull-back will be performed exclusively on holomorphic box

mappings, with no central branch.

Lemma 7.1. Let ¢y and ¢ be a pair of holomorphic box mappings with
no central branches, which are symmetric with respect to R. Let qhbg and &
be another such pair. Suppose there exists a map h that is a branchwise
equivalence between ¢¢ and qﬂﬁg and also between ¢ and qg Suppose h is
K-quasiconformal, symmetric, and preserves the orientation of R.

Let a sequence of maps {¢;} and { ggt} be defined inductively as follows,
With ¢q = ¢, ¢y = ¢, and hy = h.

dit1(z) = ¢o 0 $i(2).

Then each pair (¢iy1, q?SH_l) are symmetric box mappings with no central
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branches, and there exists a branchwise equivalence, hiyy, between them,

which is K-quasiconformal, symmetric, and preserves the orientation of R.

PROOF. By induction we assume ¢;, ¢;, and h; already exist with the desired
properties. Throughout the proof we will use the following notation.

Let A; be any connected component of the domain of ¢;, and let A;
be the corresponding component h;(A;) of ngSz Let Vi and V; be the images
of A; and A; under ¢; and ¢; respectively. Let (; and {; be the branches
of ¢; and ¢; restricted to A; and A;. We will also use Aq, Vo, and (o to
refer to domaing, images, and branches of ¢g. Note that the component of
do corresponding to Ag is Ay = h(Ap).

We also make the following additional induction hypotheses.

(1) Assume any domain component of ¢g, Ag, is either contained in

or disjoint from any V;. Similarly, any Ag is either contained in
or disjoint from V.

(2) Any A, is contained in some Ag, and similarly A; is contained in

some Ag.

(3) For each V;, 8V, C 8V, for some Vj, and av; c oV,

(4) For any z in 0V, hi(z) = h(2).

We of course must verify these for the first induction step. With ¢ = 1,
since ¢ énd ¢o must have the same domain components, (1) amounts to the
Markov property required of all box mappings. Property (2) and (4) are
trivially true. Property (3) may not be true for the first step, ¢ = 1, but we
will show that it is true for every step after the first. At any rate, we claim

for z € OV;, hi(z) = h(z). This clearly follows from (3) and (4) for ¢ > 1,
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and for ¢ = 1, the claim is trivial.

Define £;44 as follows.

hi(z), for z ¢ A; a component of ¢;
hipi(z) =

(it oholi(z), forze A

Fix a domain component of ¢g, A¢. For arbitrary V;, either Ay is
contained in it or is totally disjoint by (1). Notice that any domain com-
ponent of ¢;4y arises when Ay C V;, in which case ¢;11 has component
A = C;’l(Ag). Let us fix a A; and V; where this is the case. Since h; is a
branchwise equivalence

A

(Vo hio Ci(2) = hilz) for z € OA,.

This also implies that hi(8V;) = 8V;, and from (4) and the claim stated
earlier, this gives h(V;) = 8V;. Since A, is contained in V;, this shows
that Ay is contained in V;. The set Ay = f;l(Ao) is now defined as a
component of gBH_l, which we will show naturally corresponds to A;q. We
have hir1(Dig1) = h§+1(§;1(Ag)). By definition of h;1y on Ay, we get
hiv1 (¢ HAG)) = Cfl(h(Ao)) = {71(Ay). Putting this all together gives
hiv1(Aig1) = A,;H as expected.

Any connected component of the domain of ¢;4; will be a A;41 as con-
structed above, and ¢;41 restricted to Ayyq is equal to (go(;, the composition

of univalent and symmetric maps. Therefore ¢;11 is a symmetric map whose

branches are univalent. Let V4 be the image of A;4y under (44 = {50 (.
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Thus Vigr = (o 0 (i(Asp1) = Co(Ao) = Vo, and similarly, Viyy = Vi, Note
this verifies property (3) for step ¢ 4+ 1. Let Al , be any other component
of ¢;11, which must be contained in some A} by construction. By (2), Al is
contained in some Aj. But ¢¢ is a box mapping, so Vy, the image of Ay, is
disjoint from or contains Af. Therefore Al is disjoint from or contained
Vit1. This finishes the proof that ¢;;y is a symmetric box mapping with no
central branch. A similar proof shows ng,-_H 18 a box mapping. Along the way
We. have also verified property (1) for step ¢ + 1.

Turning to the map Ay, we show first that A,y is a homeomorphism.
Keeping the same notation, let us examine how h;1 is redefined on A;. Since
h; is a branchwise equivalence, for z € 9A;, we have h;(z) = (ft_l o hio(i(z).

As shown before, h; = h on the boundary of V;, so this equation becomes
hi(2) = (Tt oho(i(z)  for 2 € DA,

This matches the definition of ;14 on A;. Therefore the two pieces glued
together to form hi;p1 agree on the boundary of A;, so h;p1 must be a
continuous map. Furthermore, khiy1 takes A; to A; and the complement of
A,-‘ to the complement of Ai. Since the pieces of h;41 are both injective, we
have shown that h;y; is a homeomorphism.

It follows immediately that h;y; is K-quasiconformal because, for all
points in C, h;4q either equals h; or is a composition by conformal maps
with A. Both h and h; are K-quasiconformal. Also h;y; is either equal to Ay,
which is symmetric, or it is redefined on a domain (which must be symmetric

with respect to R) as the composition of symmetric maps. Therefore %;y is
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symmetric. Symmetric homeomorphisms, can be either orientation preserv- X
ing or reversing, and since h;y; is partly equal to h;, which is orientation
preserving, h;4; must be orientation preserving as well.

By construction, each A;y1 is contained in some A;, which by (2} for
step ¢ is containéd in a component Ay. Similarly Ai.'.l C AU. This vertfies
(2) for step ¢ -+ 1. To verify (4) for step ¢ + 1, let z be a point in V. We

claim z is not contained in any Ay, or else by (2), #z would be contained %

in some Ay. The boundary of ¥V would intersect Ag, which cannot happen
if $¢ is a box mapping. So by definition, hiy1(z) = hi(2). Therefore by (4)
for step z, hit1(z) = hi(z) = h(z).

All we have left to verify is that A,y is a branchwise equivalence. We

~

have already shown h;11(As41) = Ay, s0 hip1 maps domain components

onto domain components. For z in 9A;y1, we have by previous analysis

shown

62111 0 hiy1 0 Giy1(2) = (T o {7 0 ho gy 0 Gil2).

We know for z € 9A;41, (i(z) € 8Ay. Therefore since A is a branchwise

equivalence, h(z) = é;l o ho (p(z), and we get
éitl“ll o] hz‘+1 o) Ci-l—l(z) = Chz_l e} h (o) CZ(Z)

Notice z € 0A;4; is contained in some A;, so the right hand side is the

definition of hit1(2z). Thus we get

é:'.i:-ll o] hi—|—1 0 CH_}(Z) = hi+1(Z) for z € 5Ai+1,
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verifying that h;y; is a branchwise equivalence.  Q.E.D.

Monotone pull-back is really just a filling in step (Step A). It can be
used to build a first return map induced from ¢ by redefining ¢y from ¢ by

replacing ¢ with the identity map on the desired inducing interval.

67.2. Extending the Bottcher coordinate.

Traditionally rays and potentials are defined for polynomials with a
connected Julia set, where it is well known that the Bottcher coordinate
extends as a univalent function throughout the entire basin at infinity. Un-
fortunately we will also be trying to use rays and potentials in situations
where the Julia set may not be connected. This will be necessary for the ap-
plication of the A-Lemma. Rays and potentials must be defined with a little
more care, or to be precise, the domain of the Bottcher coordinate must be
explicitly constructed because the coordinate can no longer be extended to
the entire basin. The extended domain must be large enough to contain all
the rays we will need but must still allow the coordinate to be a well-defined

and univalent function.

Domains of the Bottcher coordinate. The Bottcher coordinate is al-
ways defined for any polynomial in a neighborhood of infinity. To fix our
notation, let f be a polynomial of degree n, and let ¢ be the univalent coor-
dinate function defined on U7, the neighborhood of infinity. We can normalize

U somewhat by requiring that its image under ¢ be a disk in C centered at
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infinity, i.e. its boundary has constant radius in C. This can be accomplished
because the image of an arbitrary U must contain such disks. Also define
Z(z) = z™.

Suppose z is any point in the basin at infinity for f. Since U is a
neighborhood of: infinity, if we iterate f enough, the orbit of z must enter
U. We then have f°(z) ¢ U. Any extension of ¢ must still satisfy the
functional equation ¢ o f = Z o . By repeatedly applying this and then

rearranging we obtain

o) = (29) 0o f3(2).

By choosing appropriate inverse branches of Z, we have a suitable local
definition of ¢ at z in terms of the original ¢ defined on U. From this we
see that the only obstructions to extending ¢ locally as a univalent map are
the critical and precritical points of f. This next lemma starts to address

the problems of defining ¢ globally.

Lemma 7.2. Let ¢ be a Bdttcher coordinate, for the polynomial f of degree
n, defined on the set U, a neighborhood of infinity. Then ¢ can be extended
as a well-defined analytic function to any path connected set V' containing U,
provided V is simply connected, does not contain any critical or precritical
points of f, and is contained in the basin at infinity of f. Furthermore, the

extended ¢ 1s locally one to one.

ProOOF. We show that ¢ can be analytically continued to any point in V
from U, and then the Monodromy Theorem guarantees that a well-defined

extension of ¢ to the simply connected V exists.
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Let « be a point in V' — {c0}. Since V is path connected and avoids
precritical points we can construct a closed path segment in V with one
endpoint at = and the other endpoint in U. Since the path segment is
compact, we can cover it with a finite number of open sets A; through 4,,,

where we require for each 1 <i < m

(1) There exists an integer j so that f°7(4;) C U
(2) f°7 is univalent on A;

(3) f°7(A;) is simply connected and does not contain infinity

Property (1) can be satisfied because V is contained in the atiracting basin
of infinity. Property (2) can be satisfied because a critical point of f°7 is a
critical or precritical point of f, avoided by V. Since f°/ is not critical at =,
it looks locally like a univalent map, so we can satisfy property (3) by taking
the A; to be very small.

Inductively we extend ¢ to each of the A; one by one, starting with a
set that intersects U. Suppose A; intersects U. As noted before, we can use

the equation
(P(Z):(Z"j)‘logoof"j(z) forze A NU. (1)

as a local definition of . Define B = £°/(A;) and B= w(B). Since B and
thus B do not contain infinity and are simply connected, the inverse image
of B through Z°/ consists of exactly n’ connected components. Let y be
soine point in A; NU, which by equation (1) must be mapped by ¢ into one

of these n/ components. We label this component Aq. Clearly Z°/ maps A
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univalently onto B. We have a lifting situation where A; and A; are simply
connected covering spaces, through f°/ and Z°/ respectively, of B and B.
The lifting criteria for ¢ is trivially satisfied as (2°9)~! : B — A, is well
defined. Furthermore a base point has been established by the requirement
that ¢(y) is in- Ay, so ¢ can be lifted to a univalent function I on Aj,
satisfying Lo £ = Z° o I, and taking y into A,. Since ¢ itself satisfies this
equation on A; N U, by the uniqueness of the lifting, this new map L must
be an extension of .

We extend ¢ to z by using the same argument to extend ¢ to each of
the A;, eventually connecting z to U. Note that the extended ¢ looks locally
like the composition of three univalent functions and is thus locally one to

one. Q.E.D.

The definition of a ray reflects the idea that a ray should always be a
path with one endpoint at infinity. We can extend this idea to the Bottcher
coordinate itself. Intuitively, we associate the fact that ¢ is well-defined and
univalent on its initial domain U with the fact that U contains no partial rays,
rays that do not extend to infinity. To extend ¢, we analytically continue
i1t along each ray, and stop if it hits a precritical point of f. The resulting
domain should be simply connected, as we can connect any two points by
traveling up one ray and down another, and by Lemma [7.2] the extended
v would be well-defined. Also the extended ¢ should be univalent because
we have carefully avoided critical points. We encompass the idea of domains

containing no partial rays in the radially convex property.

Definition. (radially convex sets) Let D be the unit disk. A set V' C ¢-D
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is radially convex, if V contains infinity, and for every z € V' — {oo} and
r > 1, rz is also contained in V. Note a radially convex set must be simply
connected, and the union of radially convex sets is always a radially convex

set.

Now we define the corresponding concepts in the dynamical plane of a

specific f a coordinate ¢, and its original domain U.

Definition. (ray convex sets) Suppose the set O C C is simply connected,

contains U, and contains no critical or precritical points of f. There is a
well-defined extension of ¢ to O, by Lemma [7.2]. We will call the set O ray
convex if it satisfies all these properties and its image under the extended

¢ is a radially convex set.

We claim that ¢ can always be extended as a well-defined and univalent

map to any domain constructed as the union of ray convex sets, which then
must itself be ray convex. To construct a proof we will need maximal versions

of ray convex sets.

Definition. (maximal ray convex sets) Fix a radius v > 1. Suppose that

{O4}aeca 1s the collection of all possible ray convex sets, and {¢,} the cor-

responding extensions of ¢, such that ¢,(04) does not intersect the closed

disk of radius r in C centered at the origin. Then define the set

M, = | Oa.
acA

For s < r, we clearly have M, C M;. We koow that at least one ray convex

set, U itself, exists. So for r small enough the set M, is non-empty.
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The coordinate ¢ can certainly be locally extended to every point
in M, but we cannot say yet that ¢ is well-defined on M,. We can say

something about the existence of an inverse map.

Lemma 7.3. Let {Oa}aca be a collection of simply connected sets in ¢,
noﬁe of which contain a critical or precritical point of the polynomial f,
and all of which contain a neighborhood of infinity I/ on which a univalent
Bottcher coordinate ¢ is defined for f. By Lemma [7.2], we can extend ¢ onto
each Og, as 4, a well-defined analytic function. Let V = |, 4 va(Oa). If
V is simply connected, then there exists a single analytic map ¢! defined
on V satisfying ¢t 0 p,(2) = z for all 2 € O, and o € A.

1

PROOF. Since ¢ is univalent on U, the map ¢~ is defined on ¢(U). Suppose

that we could show that, from {U), ¢! can be extended to V. It is then

1

easy to check that ¢ is actually the inverse of every ¢, because every i,

! is the inverse by definition. Then since O,

is extended from ¢, of which @~
is connected, the functional equation ¢! 0 p4(z) = z must hold throughout
OQ;. In other words, ¢ ™ o0 4(2) — 2 is analytic and identically zero on U,
so it must be on 0. ‘

To show that ¢! can be extended to V we first show that ¢! can
be analytically continued throughout V. To show this, let z be in V', and
let ¢o(Oy) be a set containing . The set wa(O«) is connected and contains
w(U). By Lemma [7.2], ¢4 is locally one to one on O,. Therefore ™1 will be
locally well-defined if it is analytically continued from (U through ¢,(0,)

1

to z. The Monodromy Theorem says that ¢ ™" can be extended as a single

valued analytic function throughout the simply connected V. Q.E.D.
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Using this well-defined inverse, we can show that ¢ can be extended

as a well-defined function to M, for any r > 1.

Proposition 7.4. For r > 1, the Béttcher coordinate ¢ of the polynomjal
f, of degree n, can be extended as a univalent function to the maximal ray

convex set M,.

Proor. By applying Lemma [7.3] to the collection of sets {O,} used to
build M,., there exists a single inverse map ¢~ ! for any extension of ¢ to
a subset of M,. So all we have to do to prove the lemma is show that a
well-defined extension of ¢ exists. Such an extension has to be univalent
because its inverse map exists.

If 7o 1s the constant radius of the boundary of ¢(U), then clearly the
maximal ray convex set M, is equal to U, and ¢ is well-defined on M,., for
any r > rg. Let b be the greatest lower bound of all numbers z such that
r >z implies ¢ is well-defined when analytically continued to M,.. Our goal
then 1s show that b = 1. Suppose b > 1. Then we can find an s > 1 such
that /b < s < b and ¢ is not well-defined when continued to A,.

It ¢ is not well-defined, we can find two points that w™! which is well-
defined, maps to the same point in M. In other words, we can find x, v,
and z such that ¢ '(z) = ¢! (y) = z € M,. Let O, be a ray convex set
containing U/ whose image under ¢, thé extension of ¢ to O, contains z.
Similarly we define O, and ¢, for the point y. These sets and extensions
must exist by the definition of M,. Since ¢,(0;} is radially convex and

contains z, it must contain the radial line of angle equal to the argument of

z down to the radius of |z|. If « is the argument of z. This line is denoted
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R l, and let Rlcf L (. be its image under ™!, Similarly define the radial

line hitting y, ”ﬁ,lleyl, and its image RE"I C Oy.

We now examine the two sets f (’R!f l) and f (Rf;[). Intuitively, these
must represent rays where @ is again not well-defined but, this time, in a
maximal ray coﬁvex set of radius greater than . We claim that f(Rlcf |)
a,nd f (’R!;l) are contained in Myn, to which ¢ extends as a well defined map
because s™ > b. The set f (’Rlo'f |) U U is simply connected and contains no
critical or precritical points of f because neither U nor ’Rlcf | do. Thus @ can
be extended to this set by Lemma [7.2], and from the functional equation of
f and @, we get

C(F(REN) = Z 0 (RED).

1 is the inverse of ¢y, go:c(f)'?,ltf |) is the radial line R and applying

Since ¢~
Z(z) = z™ to it gives us another radial line that extends down to the point
Z(z). We have now shown that o{f (’R,LT I) U U) is radially convex. Notice
1Z(2)| > ™, so Z(RI?)) is outside the closed disk of radius s™ Therefore
F(REY is in M,». The same proof also works for f(RJ).

But f(REY) and f(RY) intersect at f(2). The continuation of ¢ to

1

Mg is well-defined by definition of b, so ¢ ™ is univalent on (M ). We

must have Z(z) = Z(y). This implies
Zopa(RE) = Zopy(RY).

This in turn gives

P(F(REN) = o(F(RE),

o8




and finally

FREN = F(RYD.
But 7?,('; | and Rg"l were constructed to be disjoint sets. We must conclude
that f is locally two or more to one near z, and z is a critical point of 7.

This is a contradiction because z is in M, which contains no critical points.

Therefore b cannot be a lower bound, and ¢ can always be extended to any

M, forr>1. Q.E.D.

Additional properties of rays. We present some additional properties
of rays that are well-known in the case of a connected Julia set but now have

a precise meaning in situations where the Julia set is disconnected.

Corollary. Suppose a Bottcher coordinate of the polynomial f, on any
domain of infinity, is specified. Then the ray R} is unique, and it is always
defined unless there exists a smaller ray of the same angle, R, for s > r,

containing a critical or precritical point of f as a limit point.

ProOF. The extension of ¢ to M is unique because any two such extensions
are analytic and equal on an open set. So if R is defined at all it is unique.
Let R be a radial line in ¢(M; ), where r is chosen to be minimal. Therefore

5 is defined. If r 5 1 then U UR} has a radially convex image ¢(U) U RS,
Look at ¢ restricted to UURY. Suppose we can locally continue this restricted
¢ around the limit point of R} in a univalent manner. Then M; would have
to contain a neighborhood of this limit point, and the choice of r would not
be minimal. Therefore ¢ cannot be extended in a one $o one manner, so the

limit point of R} must be a critical or precritical point of f. Q.E.D.
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Corollary. Any ray Rj is a connected set forming a simple path extending

to infinity, and any two rays of different angles are disjoint.

PROOF. This follows immediately from the fact that rays are images, under
a single diffeomorphism, of radial lines, which are disjoint from each other

and extend to infinity. Q.E.D.

Corollary. If the basin of infinity for the polynomial f contains no critical
point of f, the Boéttcher coordinate ¢ extends as a well-defined and univalent

funetion mapping the entire basin onto C — D.

PRrOOF. If the basin contains no critical point, it certainly contains no pre-
critical points of f. Thus there is no obstruction to analytically continuing
¢ throughout the entire basin, which is simply connected because its com-
plement, the filled-in Julia set is connected. The range of the extended ¢
must, by the first corollary, be equal to all of C — D. Thus the maximal ray
convex set My must be equal to the basin, so ¢ can be extended univalently

toit.  Q.LE.D.

Note that f acting on a ray corresponds to Z(z) = 2" acting on a

radial line. Therefore the action of f tends to map one ray onto another.

Lemma 7.5. Suppose Ry is an external ray of the polynomial f. Let A
be either the forward image of the ray, f(R}), or one of the connected com-
ponents of the inverse image, f~1(R}), that does not contain a critical or

precritical point of f. Then A is also an external ray of f.
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Proor. By the functional equation for ¢ and f, we have

@o f(Rg) =Zowp(Ry) = 4(Ry).

The image of a radial line under Z is always another radial line. Therefore the
ray ¢~ (Z(Ryg)), if it is defined at all, must be f(Rg). By the first corollary,
we know that an entire ray is always defined unless part of it hits a critical
or precritical point of f. But f(Ry) cannot hit such points because we know
R¢ does not hit such points. A similar proof works for 1 (Rg) where again

we know that it does not hit critical or precritical points.  Q.E.D.

We can thus think of f as a map on rays. We can speak of a ray Ry
as being periodic or having a period, if f°*(Ry) = Ry for some integer k,
or fixed if k¥ = 1. Notice that the points in a ray are parameterized by the
corresponding radius of the potential curve they intersect. We say a ray Ry
of f lands at z, the landing point of Ry, if lim, .1+ ¢~ (re?’) exists and
is equal to z. Note that the orbit of such a limit point does not escape to
infinity and thus must be a boundary point of the basin of infinity. Therefore
the landing points of rays are always in the Julia set of f. The theory of
when landing points exist still has many open questions, but we have the

following standard result due to Douady and Yoccoz.

Theorem 7.6. Suppose f is a polynomial whose corresponding Julia set is
connected, and suppose z is a repelling periodic point of f. Then there are
at least one, but only a finite number, of rays landing at z, all of which have

the same period.
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We also have the converse result due to Sullivan, Douady, and Hub-

bard.

Theorem 7.7. Suppose f is a polynomial whose corresponding Julia set is
connected. Then every periodic external ray lands at a periodic point which

is either repelling or parabolic.

These facts can easily be extended to the corresponding preperiodic

cases.

§7.3. Lambda lemma.
The primary tool of this section is an extension theorem due to Sullivan

and Thurston, originally known as the A-Lemma.

Theorem 7.8. Let D C € be the open unit disk, and let B be any subsef
of the sphere containing at least four points. Suppose 75 : £ — C is a
family of injections, for A € D, with ig equal to the identity map on E. Also
suppose that for fixed z € £, i5(z) is holomorphic in A (the family forms
a holomorphic motion). Then for fixed A € D, i) can be extended to a

quasiconformal homeomorphism of the C onto itself.

The original A-Lemma stated only that such motions could be extended
to the closure of the set E (sce [MSS]). A later version ([ST]) showed that
the extension could be made to the entire Riemann sphere, and the form
presented here is taken from [BR].

As this result, shows quasiconformal maps can be constructed out of
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analytically varying families of functions, like the B&ttcher coordinate. By
Theorem [2.3], rays and potentials vary analytically as the underlying map,
[/, is perturbed. Thus the Béttcher coordinate, or more precisely the inverse,
restricted to pieces of radial lines and circles, forms a holomorphic motion.
Branchwise eqﬁivalences are constructed by extending these motions using
the A-Lemma.

The Theorem is stated using families of one complex parameter, but
the Bottcher coordinates of maps in F vary in two parameters. Thus for
coordinates of cubic maps, we must use the A-Lemma twice and compose
the results, a minor technical problem. The injective requirement of the
theorem is not a problem because two different rays are naturally disjoint
objects. The Bottcher coordinate has been carefully defined so that it is
well-defined, univalent (injective), and varies analytically in a neighborhood
of the underlying map f, so long as we can show the ray avoids precritical
points of f. This is the most difficult part, constructing a ray, for maps
within an open set in parameter space, which still avoids precritical points
when the Julia set becomes disconnected. The strategy here, starting with
an existing ray, is to keep track of the critical points and the end of the ray,
near its landing point, and show they stay apart if the perturbation is small

enough.

Universal bounds. We start our study of holomorphic motions by show-
ing that the potential curve G7, for r larger than some constant, always
exists in a neighborhood of parameter space, provided the neighborhood is

bounded, as is the case with a bone-loop for instance. This will be of use
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immediately, when we construct the holomorphic motion on rays, and later,

by providing a universal curve on which to build box mapping domains.

Lemma 7.9. Suppose {fi}iev is a sub-family of G, where G is parameter-
ized by (A4, B). Furthermore, suppose there exists constants K7, K, > 0 so
that for A\=(A,B) eV

L 4l <K and |Bl< K
K

Then there exists a radius B > 0 so that for A e V

K@ > forle] > R

Proor. Choose R = Ki(1 + K;) + 3. We certainly have the following
inequalities, if |z| > R.

|z —1] > 2 and (1)
1
|Az — Bl > |Allz| — |B| > —lz} — K2 > 1. (2)
K
Suppose |z| > R and fi(z) is of the form z(z — 1}(Az — B) + z. Then we

must show

|(2)(z = 1)(4z = B) + 2| > |2,

or equivalently

(2 - 1)(Az — B) + 1| > 1.

But this follows easily from the triangle inequality and by multiplying equa-
tions (1) and (2). A similar proof works for the other possible form of f.
Q.E.D.
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Lemma 7.10. Suppose {fi}irev is a sub-family of G, where G is param-
eterized by (A,B) € C x C. Furthermore, suppose there exists constants
Ki,K; > 0sothat for A=(A4,B)eV

1 -

— <|Al< K, and |B|<K,.

K
Then there exists a radius R > 0 and potential radius » > 1 so that the
potential curve, G” of fy, is contained in the set {z € C | |2| > R}, which

itself is contained in the basin at infinity of fy for every A € V.

ProoOF. The radius R constructed in Lemma [7.9] is precisely what we need.
The set {z € C | |z| > R} cannot have any periodic points under any fy for
A € V, as the modulus of every point is strictly increased by the action of
fx. Therefore the complement of {z € C | |z| > R} must contain the Julia
set. of every fx. Now we attempt to construct r.

Fixing fx, notice if (" is not contained in {z € C | |z| > R}, then
no potential curve G*, with s < r, is contained it. Because, for every point
in G7, there is a point in G* with smaller modulus. So suppose for each
integer ¢ > 1, we can find a A; € V so that the potential curve G* of fj,
is not contained in {z € C | |z| > R}. The closure of V is a bounded set
in C x C and is thus compact. Considering the sequence {A;} as points in
this compact set, there must be an accumulation point, p. The map f, in G
evidently has no potential curve at all in {z € C | |z| > R}. The coefficient
A, of maps represented by the closure of V, is non-zero, so f, is a strictly

cubic map. But this is a contradiction then as the potential curves G* of
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any cubic map always bound a nested sequence of neighborhoods of infinity,
whose intersection is equal to infinity. In other words, the G* are eventually
outside a disk of any radius. Therefore we can find an r for which G" of £

is contained in {z € C | [2| > R} as required, for every A€ V. Q.E.D.

It is convenient having such universal sets which have the same dynam-
ical behavior under every map in a family. We now prove a similar result
about neighborhoods of a repelling point. This lemma is used to control the

end of a ray, while the underlying map is varied.

Lemma 7.11. Suppose {fa}aev, for V C C x C, is a family of conformal
maps, depending analytically on (A4, B) = A € C x C. Also suppose for some
Ao €V, &y, is afixed point of f,,, and suppose there exists a constant K > 1
so that the absolute value of the multiplier of the fixed point is bounded from
below by K.

| Mo | = |3, (220)] = K > 1.

Then there exists a universal radius R and an open neighborhood of A,
U ¢ C x C, so that the fixed point z,, persists as a function z,, analytic

in (A, B) = A. Moreover, with D,(R) defined as the open disk of radius R

centered at zy, for every A € U,

(1) DaA(R) € fa(DA(R))
(2) No critical point of fy is contained in Dy(R).

Proor. The point z), is of course a repelling fixed point, and it is well-
known that it persists as a repelling fixed point of £y, in some neighborhood

of Ag. The multiplier, My = f}(z,), varies analytically with A. So we can
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certainly find a bounded open neighborhood, U C Cx C, of Ay satisfying the

following finite conditions. For any A € U,
[Ma| = Ky > 1 where K > K3 > 1.

For each A € U, fy looks locally like My(z — zy) + zx. The point )
is still repelling, and if we choose a radius, R, small enough, the image of
the disk Da(R) under fy is approximately equal to Dy(]JMy|R). Since [M,|
is bounded away from one, we can certainly find an R small enough so that
property (1) is satisfied and f is univalent on D A(R), which implies property
(2). So for evéry A € U, there is some non-zero R satisfying (1) and (2). But
we need to choose R to be universal.

We proceed by assuming such a universal radius does not exist. Then
for each integer i > 1, we can find a A; € U so that either fy, is not univalent

on Dy, (R), for every R > 1/t, or equation (1) is violated, i.e.

Dy (BY & fx(Da(R)) i RZ=1/i.

Since U is bounded in C x C, U is a compact set, and we can find an accu-
mulation point, ¢ € U, of the sequence of points {);} and the corresponding
map f,. By continuity, f, inherits many properties. The map must still
have a fixed point z,, and for each R > 0, f, has a critical point in D,(R)
or equation (1) is not satisfied. Since f, has only a finite number of critical
points, either z, is a critical point of f,, or no R satisfies equation (1). But

again by continuity we must have |M,| > K3, so f, is repelling at x,, so z,
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is certainly not critical. As noted before there is some radius R for which

Jy is univalent on D,(R) and equation (1) is satisfied. This contradiction

finishes the proof. Q.E.D.

We prove one more similar result about the existence of certain po-
tential curves. This lemma provides control of an escaping critical point,

making sure it is still close to the Julia set. Compare with Lemma [7.10].

Lemma 7.12. Suppose f), is a map in G, where § is parameterized by
A= (A,B) € CxC. Suppose f, has no escaping critical orbits. Then,
given ¢ > 0, there exists a neighborhood of Ay, U C C x C, such that for
A € U, the potential curve G'*¢ of fy is a simple closed curve in the plane,

which contains the critical values, the critical points, and all precritical points

of fa.

ProoOF. This result is trivial if the filled Julia set of f) stays connected
within a neighborhood of Ag, but in general neighborhoods of Ay may contain
maps with escaping critical orbits. If Ag = (Ao, Bo), since fi, € G, we know
Ay is non-zero. We choose a neighborhood of Ay, V. If V is chosen to be small

enough, then there exist constants K, Ky > 0 so that for A=(A4,B) e V,
1
I

Hence, we will be able to apply Lemma [7.10] to V.
Let an arbitrary € > 0 be chosen. Recall that each Bdttcher coordinate,
2, can be extended onto some maximal ray convex set which we label Ay.

The potential curve G') if it is defined at all, intersects rays of every
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angle, which then must be defined for every radius greater than 1 ¢, by the
definition of My. In other words, if G'*¢ is in My, then all points outside
this potential are also in M. There are no critical or precritical points of f
in My, so this potential, G* ¢, must enclose all the critical and precritical
points. The pro;)f then is reduced to showing that G' ¢ exists for fy near f,.
Define the set W to be all A € V, where G' 7€ is not defined for fy. The point
Ag is not in this set because fy, has a connected Julia set and, by a corollary
of Proposition [7.4], all potential curves are defined for fy,. Therefore, if we
can show W is closed, then V — W is the desired neighborhood of Ay, and

we are done.

We prove W is closed by showing it contains its Jimit points. Suppose
{Ai}2 is a sequence of points in W converging to Ae. By Lemma [7.10],
there is a radius R and radius r so that {z € C | |z] > R} is contained in
the basin at infinity of f, and the potential curve G" is contained in this
set, for all A € V. Recall that if |¢r(z)| = s, then |@a(fa{z))] = 5%, and
fa(z) is outside of any potential curve of radius smaller than s*. Therefore
there exists a constant &, independent of A, so that if |pa(z)] > 1 + ¢, then

loa(f25(2))| > r and f3¥(z) is outside of G.

We claim that for any ¢, there exists a critical point of fy,, which we
label ¢;, so that f )‘ff“(c ;) 1s outside G7. Since the Bottcher coordinate of each
fa,; does not extend to include the potential curve of radius 1€, there must
be a ray R} that hits a critical or precritical point of f,, before it extends
to a radius of 1 +¢. Let a be this critical or precritical point, and let z be a

point on this ray which we can choose to be arbitrarily close to a. Let 7 > 0
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be the integer which makes f;f (@) critical. Then f;f(a) is our ¢;. Since z
is close to q, f;f(m) is close to ¢;. Certainly since j + k > k, f;fHk)(w) is
outside of 7, therefore f3 f“(cz) must be also be outside as claimed.

Let Aso be the limit of the {A;}. Since it is true for each 4, by continuity
and Lemma [2.3], fr,, must have a critical point co,, with f)‘:i”o (coo) outside
of the potential curve G". The Béttcher coordinate of fy_ cannot extend
down to a radius of 1 4 e. There must be points, =, arbitrarily close to ¢ao,

with |@a., (2)| > 1+¢, and so there is an obstruction to extending ¢,_ down

to this radius. Therefore Ay, is in W, and W is closed. Q.E.D.

Holomorphic motions of rays. We are now ready to construct a holo-

morphic motion on rays.

Lemma 7.13. Suppose f,, is a map in G, parameterized by A = (4, B) €
C x C, and f», has no escaping critical orbits. Suppose Ry is an external
ray of fy, landing at a repelling preperiodic point z which is not a critical
or precritical point. Then there exists a neighborhood U of Xy, open in
C x C, such that for A € U, the entire external ray Ry is defined for fy, i.e.
the radial line 7%9 in ¢ — D is in the range of the Bottcher coordinate .
Furthermore, this ray lands at a repelling preperiodic point ) that defines

a function, with x5, = =, that varies analytically with A = (4, B).

PrROOF. We put off dealing with the preperiodic case until later and assume
that = and Ry are periodic. We can normalize this situation even further.
By choosing a high enough iterate of fy,, we may assume that z is a repelling

fixed point and Ry is a fixed ray, i.e. forward invariant under fy,.
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This normalization satisfies the hypotheses of both Lemma [7.11] and
Lemma [7.12f, so we can apply both these results. From Lemma [7.11] we
can find a universal radius R and open neighborhood of Ag, Uy € C x C, so
that the disk DAx(R) = {z € C | |z — )| < R} satisfies

Dy(R) C fa(DA(R))  for every A ¢ Uy,

and D)(R) contains no critical point of fy. Note that for every A € U,
the inverse branch, fy!, from fi(Da(R)) onto D, (R) is univalent and well-
defined, forming a contraction towards the fixed point.

We look specifically at the original map, f,, again. The ray Rg lands
at x,, s0 as we trace the ray in from infinity, it at some point must enter
D), (R) and not leave. Since Ry is fixed, if we pick a point on the ray, wy,,
close enough to ,,, then fy (wy,) is also on the ray and the segment of
the ray between these two points is still contained in Dy, (R). In the image
space under ¢),, the Béticher coordinate, we get two corresponding points,
 and %°, which must be on the same radial line of ¢ — D, and we get the
corresponding radial segment in between. We parameterize this segment as
follows.

B(t) =tb + (1 —H)®  0<t <1,

For any A where the image of ¢y extends to this radial segment, we can

parameterize the actual ray segment as follows.

wa(t) = 3 (@(8)  0<t <L
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We claim that this ray segment is defined for A in a neighborhood of Ag.

Define 1+ ¢ to be the radius of a circle in ¢ — D that does not contain
this radial segment. For instance, with ¢ = (|&| — 1), we have || > 1 and
|| > || > 1+ e. Now we are ready to apply Lemma [7.12] for fy, and
z,. Therefore, given this ¢, we can find another open neighborhood, U in
C x C, of Ay so that all precritical points and critical values are contained in
the potential curve G'*¢, for A € U,. Under the Béttcher coordinate, this
means that either the image of ¢y extends to all of ¢ — D or at least to the
complement of the closed disk of radius 1-¢, for every A € U,. Therefore the
radial segment between @ and ©° are always in the image of py and wy(¢)

is defined for all A € Uy and t € [0, 1].

Since ¢ depends analytically on A, the points wy () are analytical with
respect to A. The open disk D)(R) also varies continuously with respect to
A. Since the boundary of Dy(R) and the ray segment {wx(t)}o<i<1, are
disjoint compact sets, we can find an open neighborhood of Aq, Us C Uy, so
that for every A € Us, the whole ray segment {w(#)}o<¢< is still contained

in D) (R). The open neighborhood, U = U; NU, N Us, is our desired set.

For each A ¢ U, we need to check two things. First, we check the entire
ray Ry is well defined for fy. Because A is in U;, we have already shown that
the ray of angle 6 down to a radius of 1 +¢, R((;Jrf), is defined. This includes
the segment of points @(f) for 0 < ¢ < 1. We will divide the rest of the ray
into similar segments and inductively verify that we can extend ¢, to each
segment. Second, we will check that the sequence of ray segments converge

to the fixed point zy, and therefore the ray Ry lands at z,.
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Suppose we take the inverse image of the segment {w(¢)}, 0 < < 1,
under the map z — z°. We get three new radial segments, with three distinct
angles. One of these angles must in fact be 8 because 8 is fixed under the
tripling action of 2°. Since [W(1)]* = %(0), the inner boundary of the old
segment corresl;onds to the outer boundary of the new segment with angle 9.
We shall check that the range ¢, can be extended to this particular segment,
extending the image of Ry under ¢y from the radial line 7%';’{1)] to the longer

radial line 7%';’(1”1/3.

Switching back to the dynamical plane of f, the corresponding oper-
ation is to take the preimage of the ray segment between wy(0) and wy(1)
via the inverse branch of fy mapping Dy (R) into itself. This new segment is
obviously still in D\(R) and has as endpoints wy(1) and the image of wy(1)
under the inverse branch. Assuming this new segment does not hit any crit-
ical or precritical points, because of the functional equation, this must be
an extension of the ray Rg, and this extension stays in the disk D,(R). We

have shown even more.

Clearly the whole construction can be repeated to generate the entire
radial line Ry and ray Rg. So long as critical and precritical points are
avoided, we get a sequence of new segments of Ry, all parameterized as
follows. With 0 <+t < 1, the first new segment looks like {f} l('w A(t))}, the
next new segment looks like { £ " o f5 ' (wx(%))}, and so on. Bach point wy (%)
is iterated b;V the branch f ! which contracts to the fixed point =y, proving
that Ry lands at zy, if it is defined.

It is simple to verily that new segments avoid critical and precritical
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points of fn. Suppose some segment contains a precritical point. All the
points on the forward orbit of this precritical point, including the critical
point, are either on previously defined segments or on the original unextended
ray ’R,E,l-l_e). Therefore the critical point is either on ’R,gl+6) , which is not true
by the deﬁnitioﬁ of rays, or the critical point is in Dy (R), which is not true

by Lemma [7.11]. Therefore the entire external ray Ry is defined for fj.

The proof for preperiodic points is just about the same, but we have to
keep even tighter control over the critical orbit. Recall that a preperiodic ray
is the preimage under some iterate of the dynamical map f of some periodic
ray. Suppose the ray R, of £, is mapped by f;:]’ on the periodic ray Rg. We
know R g persists for A near Ap by what we have just proved. This will assist

us in checking that f» does not contain any critical or precritical points on

Ro-

Lemma {7.12] will work in exactly the same way to keep precritical
points off of Ry down to a radius of 1 + € for A in some neighborhood of
Ag. By hypothesis the landing point of R, is not critical or even precritical,
so there must exist some disk V centered on the landing point x which is
mapped by f ;g to a neighborhood of the landing point of Rg. We choose V
small enough so that it does not contain any of the finite number of critical
or precritical points of f,, that have a critical point within the first 7 points
of their forward orbits. Since = and these finite points all vary continuously
with A we can construct V to be universal for X in some neighborhood of
Ag. This construction is similar in spirit to Lemma [7.11]. We choose a

radius 1 4 €, as before, so that R, for fi, is entirely inside V' below that
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radius. The rest of R, below this radius can be shown to avoid critical
and precritical points by pulling back R through f ;j , which is univalent on
V. The precritical points that are critical after j iterations are avoided by
construction of V. Any other precritical point must also be avoided or else
1ts forward imé,ge under f;j would be a precritical point on Rg. The entire

R is now constructed. Q.E.D.

Quasiconformal extensions of holomorphic motions on rays. We apply
the A-Lemma to holomorphic motions constructed with rays. This produces
quasiconformal homeomorphisms which map rays of one map f onto the
corresponding rays of another map f. In Chapter VIII part 3, we show that
if the rays happen to form the boundary of the domains of box mappings,

the homeomorphism can form a branchwise equivalence.

Theorem 7.14. Suppose fi, € F is in £ = {f)}rer, where L is bone-loop
in parameter space. Let A be some subset of C, symmetric with respect
to R, containing a finite number of external rays of fy,, which land on real
repelling preperiodic points of fy,, and also containing all points outside of
some potential curve of fy,, G". Let fy, € F be any other map in £. Then
there exists a quasiconformal homeomorphism H of the entire sphere such

that

HlA - (P:\ull O @y
where @), and @), are the Bottcher coordinates for fi, and f», respectively.

PROOF. The definition of H|4 is representative of a whole family of maps

@, 0, where 1 and A are allowed to vary within our parameter space G.
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We will show that these maps form injective holomorphic motions on certain
subsets of the plane, like .A. The heart of the proof is the A-Lemma, which
will extend these maps to full quasiconformal homeomorphism of C, and H

will be easily obtained by composition of these maps.

Recall that any map in F has no escaping critical orbits. We start by
choosing an ¢ > 0 so that 14 € < r and then apply Lemma [7.12] to every A
for fy in £. The union of all the neighborhoods obtained is an open set U
in C x C containing all the parameters in L,and the potential curve G11¢ of
fa always contains the critical values, critical points, and precritical points
of fa, for A € Up. Another way of viewing this is that the circle centered at
the origin of radius 1 + ¢ is in the range of @y, for all A € Uy. Similarly, for
each ray of fy, in A, the corresponding ray for any f\ € £ is preperiodic and
mﬁst land at a repelling preperiodic point (See Theorem [7.7]). Thus we can
apply Lemma [7.13] to each map fy in £ and take the union of the resulting
neighborhoods. We obtain a finite collection of open sets containing L, {U;},
one for each ray in A, so that every f) for A € U; has a well-defined ray of
the same angle. In other words, if Ry, is in A for fy,, then the radial line

7%,9,, in ¢ — D is in the range of @y, for every A € U;.

The sets Uy and {U;} form a finite collection of open neighborhoods of
the parameters in C x C forming the bone-loop L. So the intersection of all
these sets forms an open set U, also containing L. The image of A under ¢,
is straightened, formed of radial lines and concentric circles, and for every
A€ U, 3" has this, ¢, (A) in its domain. Therefore H = @3 o0 @y, is
Weil—deﬁned on A.
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The set of parameters L form a compact subspace of Cx C or of R x R.
To prove this theorem, it is enough to initially construct conjugacies between
fx and fy, only for A varying through some open neighborhood of Ay in L.
Since Ag is arbitrary, we could then find such open neighborhoods around
every g € L. Then by using a finite sub-cover of L, we can construct the
desired extensions between any two maps in £, by composing a finite number
of these initial extensions. We fix an arbitrary Ay and construct this open
set of parameters.

Since A is contained in U, an open set in C x C, we can find an
open ball, V, around Ay in U. If d(Aq, A2) is the standard metric on C x C,
then for some radius B > 0, the set ¥V = {} ¢ Cx C | d(X\, X)) < R} is
completely contained in U. The real axes R x R, which contain the maps in
JF, are naturally embedded in C x C. Since V is centered at Ay € R x R, it
intersects R x R in a two real-dimensional disk, also of radius R. We label a
disk slightly smaller. Let W ={A e Rx R | d(A, \o) < $R}. We attempt to
show, for every A € W, that a quasiconformal extension of (,o;l 0 Py, exists.

Fix an arbitrary point (A4;,B,) = A; in W, and label the points
M = (Ao, By) and v = (41,Bp) in C x C. To invoke the A-Lemma, we
need to construct a parameter space which is a disk of exactly one complex

dimension. To this end we define
1
Dlz{(w,Bg)GCXCI|w—Ag|<§R} and

1
Dy ={(A1,w) eCx C||w—By| < §R}.
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Notice that if (w, By) is in Dy, then
1
d((waBO)a(AﬁnBU)) = |'LU - AU' < gR
If (A;,w) is in Dy, then by the triangle inequality

d((A1,w), (Ao, Bo)) < d((A1,w), (A1, By)) -+ d((A1, Bo), (Ao, Bo))

1 1

Therefore both Iy and Dy are contained in V' C U/, and note that v is in
D
We are now prepared to define a holomorphic motion suitable for ex-

tension by the A-Lemma. On A define the map
B = P8 0P, with |w| < 1 and A = (4 + Zw, By) € Dy,

Since 7., (z) is constructed out of Bottcher coordinates, for each fixed 2, 1,,(2)
is a holomorphic function in w. Furthermore, i,, is injective, and for w € R,
1 18 symmetric and preserves the orientation of the R because each of the
coordinates have the same properties. The map 7y is clearly the identity on

A. A second motion can be defined on ;! 0 ), (A).
Jw=¢x 0@,  with [w| <1and A= (41, B + £w) € D.

The motion j,(z) is also injective, and for w € R, is also symmetric and

preserves the orientation of R.
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For w = %(Al — Ag), tw 15 extended by the A-Lemma, Theorem [7.8],

to a quasiconformal map Hy with
Hi(z) = iy(2) = ¢, 0, (2) for z € A.

For w = %(Bl — Byp), juw is extended by the A-Lemma to the quasiconformal

map Hsy with
Hy(z) = juw(z) =05 ow,(2)  for z € o, 0, (A).

Composing these maps produces a quasiconformal map H = H,y o Hy, and

restricted to A, we have
— - —1
Hia=¢5 0w, 00, 0pr, =05t 0@,

Q.E.D.

Corollary. The quasiconformal map H can be chosen to be symmetric and

to preserve the orientation of the real line.

PrOOF. We have constructed a quasiconformal homeomorphism of C that
is equal to go;ll o @, on the set A. Since A is symmetric about R and
the Bottcher coordinates are derived from real polynomials, the map H is
symmetric and preserves the orientation of the real line when restricted to
A. Unfortunately, H is not necessarily symmetric on the complement.

The complement of A is a finite collection of topological disks with

boundaries equal to pieces of rays and potentials. If some component of the
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complement, intersects R, it must be symmetric with respect to R. Let A
be such a component, and let A = H (A) be the corresponding component
in the complement of A = H(A). We show that on A, H can be redefined
so that H remains unchanged on the boundary and is still quasiconformal
but maps AN R onto A NR. Performing this operation on all components
of the complement of A intersecting R will produce a homeomorphism that
preserves the orientation of R and is glued together from a finite number of
quasiconformal pieces. The resulting homeomorphism is quasiconformal. To
guarantee that H is symmetric, we reflect the restriction of H to the upper
half plane H*. In other words we replace H(z), for » € H™, with H(z). This
will not change H on A or R because H is already symmetric here. The final
result is a quasiconformal map equal to ga;ll 0y, on A, which is symmetric
everywhere and preserves the orientation of R,

We begin the construction of an H on A which preserves R. Define a
Riemann map g which takes the upper half plane H' onto A. This map will
extend continuously to the real line. If we require that 0 and co map to the
boundary points of A N R, then the Riemann map will be unique, and by
symimetry, ¢ must map the positive imaginary axis onto A N R. Similarly,

define the Riemann map §, mapping HT onto A. We know
g(—r)=g(r)e 8A and §(—r)=g(r) €A  forr eR.
Since H is symimetric on the boundary of A, we also know

g oHog(-r)=¢" o H(g(r)) =g (Hog(r)) =4 o Hog(r). (1)
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Let ()1 and @y be two injective maps, one defined on the first quarter
of C and one on the second quarter, with range equal to Ht. In polar

coordinates, they are defined as
Q1fr,8) = (r,26) and Q2(r,8) = (r,26 — 7).
This definition gives
Qi(ri)=—r and Q(ri)=r  forr>0. _ (2)

@Q1(r)=r and Q(—r)=—-r  forr>0. (3)

It is easy to check that @3 and @ are both quasiconformal. The two
maps @7 o g o HogoQq and Q5 037 o Hogo@y are then quasicon-
formal homeomorphisms of the first and second quarters of C respectively
onto themselves. By equation (2) and equation (1), both these maps agree
on the positive imaginary axis, and we can glue them together to form a
quasiconformal homeomorphism @3 taking the upper half plane T onto
itself.

Now replace H on A with Hy = § o Q3 0 g7, which is quasiconformal

and maps A to A, If z € A NH*, then ¢ H(2) € R™, and

Qs(97(2)) = Q3 0d T o HogoQug ' (2)) = Q5 0§ 0 H(2),

by equation (3). Since H(z) € A NHT, we know g HH(2)) € R™, and by

equation (3) again

Qalg(2)) = Q' (§7' (H(2)) = 97 (H(2)).
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Therefore Hy(z) = H(z), for z € A N HF. A similar proof works for
z € JANH", so Hy agrees with H on the boundary of A.

Now if z € ANR, then ¢g7'(z) is on the imaginary axis, and if z is
on the imaginary axis, then §(z) is in A NR. Therefore Hy(z)is in ANR.

Therefore H; is quasiconformal and preserves the real line.  Q.E.D.

122




VIII. APPLICATIONS TO CUBIC MAPS

£8.1. Real box mappings induced from cubic polynomials.

We want to construct box mappings induced from maps f € F. We

must keep in mind these issues involved in construction.

(1) Markov partition Suppose U is the image, under the box map-
ping, of A, a connected component of the domain, and A’ is

any other such domain component. Then either U N A’ = A/

or U N A" = {). This property is required for any box mapping.

(2) Central domain There is at most one connected component of
the domain on which the box mapping is folding, the central do-
main.

(3) Critical recurrence In order for the inducing algorithm to pro-
ceed to a limit, the forward orbit of the critical point in the central
domain must be contained in the domain of the box mapping. The
only exception to this is if the critical point is non-recurrent under
f, meaning the forward orbit does not contain the critical point
itself as a limit point. As will be seen, such polynomials can pro-
duce box mappings with no central branch, where the inducing

algorithm is not needed.

There is one other minor property we will need which is not strictly required

for box mappings but is needed to apply Theorems {6.2] and [6.1].

(4) Type II The image of any component of the domain is equal to

B', the image of the central branch.
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A box mapping is a generalization of a first return map and often has
an inducing interval I similar to that used to comstruct first return maps.
The inducing interval I can be considered as the smallest interval containing
the range of the box mapping. The image of points under our initial box
mappings will iﬁ fact be defined as the first return of that point under the
iteration of the dynamical map f to an inducing interval I. Careful choice of
the inducing interval causes the first return map to satisfy all four properties.
In particular we cut the immediate basin of the periodic point out of the
inducing interval for maps on a bone-loop, so that only one critical point is
in the domain of the resulting map. As is the case of any first return map,
selection of the inducing interval I and the dynamical function f almost
completely defines the final box mapping. In view of the four properties
listed above, the construction of [ is natural.

For the rest of this chapter we will fix a real cubic polynomial f € F
that has, like maps on a bone-loop, exactly one periodic critical point and

one chaotic critical point in the Julia set of f.

Inducing intervals. A box mapping induced from a cubic map is a first
return map to a special inducing interval, constructed to eliminate the one

of the two critical points.

Definition. (F;) Since f has an attracting periodic orbit, its Fatou set has
a bounded component that contains the periodic critical point. We label this
set F1. We know I is a topological disk, symmetric about the real line, and

it intersects R in a single open interval. If the critical point has period k,
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the entire forward orbit of £y must consist of k& components, £ through Fy,
each symmetric and intersecting R in a single open interval. Together these
sets from the immediate basin of the periodic critical orbit.

Under f, the sets map onto each other in a cycle, in a one-to-one
manner, excepi; for Fy which i1s mapped in a two-to-one manner. Note that
the boundary points of the open interval intersections of these sets must all

be periodic or preperiodic points.

Definition. (the inducing interval) The interval (a,b) is an inducing in-

terval for f if the following are true.

(1) (a,b) contains the chaotic critical point.
(2) (a,b) is in the complement of C — Ule F;
(3) Both a and b are repelling preperiodic points whose orbits do not

intersect (a, b).

Look at the complement of the Fy, C — Ule ;. We know the chaotic
critical point is not in the {F;}, so it must be in the complement. The con-
nected component containing the chaotic critical point is a natural candidate

for an inducing interval.

Lemina 8.1. Suppose f € F is on a bone-loop. Let T be the interval in
C— fol F; containing the chaotic critical point of f. Then I is an inducing

nterval for f.

ProoF. Property (1) and (2) of the inducing interval are satisfied by con-

struction. Let = be either boundary point of 7. By construction, z is also a
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boundary point of some connected component of the immediate attracting
basin of f, and by continuity, so is every point in the forward orbit of z.
The set of all boundary points of the immediate attracting basin of f forms
a finite set which does not intersect the interior of I, as I itself is in the

complement of the closure of the immediate basin. Q.E.D.

Cubic first return maps. We fix an inducing interval I for f. We now

check to see if the first return map to I is a box mapping,.

Definition. (Cubic first return map, ®) The map ®, with respect to a map
f € F on a bone-loop and an inducing interval I, is defined for points in

(0,1) to be the first return map of f to I.

The first return map ® will be undefined on entire intervals in the
Fatou set whose iterates fall into the immediate basin and thus never hit the
inducing interval. There may also be points whose orbit never hit the closure
of the immediate basin but never enter I either. However these points must
always be isolated because an entire interval in the Julia set that avoided the
critical point would be a wandering interval. If the critical orbit is recurrent,
then ® will be defined on every point of that orbit. Each point always avoids
the immediate basin and must eventually return close to the ecritical point in
.

The chaotic critical orbit of f will never hit the components of the
attracting basin, Fj, but it may not return to I itself. The question of
whether it does or not splits our construction of box mappings into two

distinct cases. If the critical point does return, there will be some entire
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interval around the critical point that returns to I with it. The map @
will be folding or two-to-one here. Because we have eliminated the other
critical point from consideration and since the chaotic critical point is in 7,
norother interval on which the cubic first return map is continuous will be
folding. This si.:ngie folding interval will lead to the central branch of our box
mapping.

If the critical orbit does not return, things will be much the same.
However there will be no interval at all on which the first return map is
folding. This will lead to a box mapping with no central domain. This case
is very similar to the behavior of Misiurewicz polynomials in the quadratic
case, which have a non-recurrent critical orbit. The most obvious situation
where this might happen is when the eritical orbit hits the boundary of I
before it hits the interior. The proof that ® is a box mapping goes in exactly
same way, whether or not the critical orbit returns to I. The properties of
bok mappings concerning the central domain are all opt.ional. We only need

to take into account both possibilities.

Suppose the critical orbit does return $o I, then we will have a central

domain.

Definition. (the central domain of #) By assumption, the function & is
defined at ¢, the chaotic critical point. There must be some maximal open
interval, containing ¢, where points near ¢ also return to I on the same
iteration as ¢. Clearly @ is continuous on this interval. We label the interval

B, the central domain of ®.
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Such open intervals in the domain of & can be constructed around any
point where ® is defined. We will call these intervals components of the
domain of ®, and later, when we extend these definitions to the complex
plane, this name will also apply to open disks in the plane, symmetric about
the real line. F;)r now, we continue to consider only real intefvals. We make
some preliminary observations about these intervals and what ® looks like

restricted to them.

Lemma 8.2. Let (a,b) be any maximal open interval on which ® is defined
as a single iteration of f, f°!, for some integer . Then the extensions of ®
to @ and b, lim,_, .+ ®(2) and lim,_,;- ®(z), are boundary points of I. Thus

a and b are preperiodie, and ® is undefined at a and b.

PRrOOF. The map ®|, ;) = f° is continuous, so we get, immediatel
P Pita,b g Yy

lim ®(z) = f°(a) and lim B(z) = FoH(b).

z—rat

The point f°(a) must be part of the closure of the inducing interval T by
continuity, but it cannot be in the interior. If it were, each of the first i
points in the orbit of @ would be in the interior of the complement of the
Fr. With a slight perturbation of a, these orbit points would still be in the
interior, and & would still be defined on a larger inferval. Thus the set (a, b)
would not be maximal. Therefore °'(a) must be a boundary point of I. We
also claim, for any j < ¢, f°/(a) is not in the interior of I. Otherwise, points
in (a,b) arbitrarily close to a would also return to the interior of I after j
iterations, rather than ¢ iterations, and ®|(a 1) would not equal f°'. Similar

arguments also hold for the point b.
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We have shown that the orbits of @ and b under f first intersect I on
its boundary and the conclusion follows from the definition of an inducing

interval. Q.E.D.

This lemma proves that maximal domains, on which @ is some constant
iterate of the map f can also be characterized as connected components of
the domain of . We can also characterize what @ looks like on most of

these intervals.

Lemma 8.3. Suppose A is any connected component of the domain of @
that does not contain a critical point of f, in other words, any component

which is not B. Then @ restricted to A is a homeomorphism onto the interior

of TI.

Proor. Recall @ is always undefined on the immediate basin of the periodic
critical point of f. Now suppose z is a critical point of ® in A. By definition
= is a critical point of some iterate of f, f°F = ®la, for some integer k.
This can happen only if one of the first k points in the orbit of z under f,
{z, f(z), f2(a),..., ¢ D(2)}, is a critical point of f, chaotic or periodic.
None Of these points can be the periodic critical point, or else ®(z) would
be undefined. The point z itself cannot be the chaotic critical point, which
is not in A. The next k — 1 points in the orbit cannot be the chaotic critical
point because this point is in the interior of I, and the orbit of & does not
intersect I until the k-th iterate. We have reached a contradiction, so z
cannot be a critical point of ®. This shows that ®|a is a homeomorphism,

and by Lemma [8.2], ®|a must extend to the boundary of I. Q.E.D.
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This shows that © has the same qualitative behavior on all the com-
ponents in its domain, except possibly the central domain B. We establish a
notational convention here to use the symbol A to represent arbitrary com-
ponents of the domain of ® on which @ is a injective. We have the symbol
B to represent ;che central domain of ®, and in general, A will not be used
to refer to this interval.

The Lemma [8.2] has consequences for the central domain B, if it exists,

as well,

Lemma 8.4. Suppose B is equal to the open interval (a,b). Then a and
b are preperiodic, f(a) = f(b), and ® restricted to B — {c} is a two to one

cover onto its image.

PRoOF. The map ®|p is folding on B because B contains the critical point
¢, and this must be the only fold. By Lemma [8.2], @ and b are preperiodic,
and the range of ®fp extends to the boundary points of I. Because ® folds
only once on B, the boundary points of B are then not only preperiodic, but
their orbits must hit the same boundary point of I on the same iteration. In
other words, if ®|g = f°!, then f°(a) = f°'(b) € AI.

Consider the orbit of the set B as it eventually returns to I. For each
J <1, the set f°¥(B) is connected and must be contained in some connected
component of the domain of & If j # 0, then the component containing
f°)(B) must be one of the monotone components A outside of I. In any
case, all the folding that ® does to B must occur in the first iterate of f. We
must have f(a) = f(b).

It now follows quickly that ® is a two to one cover on B — {c}. Since
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¢ is the only critical point of ®|g, we must have that & restricted to either
(a,¢) or (¢, b) is an injective map each with image (f(¢), f(a)) = (f(c), £(B)).
Q.ED.

§8.2. Extending real box mappings.

We have demonstrated most of the key properties of @, and in fact
¢ satisfies the definition of a real Type IT Box mapping. However we will
leave the remaining details of the proof until later. Now we concentrate on
extending @ to a holomorphic box mapping. For each interval in the domain
of @, we will construct an extension of that interval to the complex plane and
define ® to be the analytic continuation of ®. The extension of the interval
is constructed so that its boundaries are pieces of potential curves and rays
landing at the endpoints of the interval. The resulting topological disk is
symmetric about the real line and its intersection with R is the original
interval. This is an example of a Yoccoz puzzle piece. We have already
shown how such an object can be used to build a quasiconformal map using
the A-Lemma.

Puzzle pieces and the resulting Yoccoz partition of the plane form a
link between the classification questions we are studying here, monotonicity
and conjugacy classes for instance, and geometric questions about Julia sets
and parameter space. It is therefore natural that puzzle pieces form the frame
upon which quasiconformal conjugacies are built, the geometric objects we:

are most interested in. For now we show how puzzle pieces can also provide
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a complex region which mirrors the dynamics on the real line.

Ertended interval regions. For real maps, every ray Ry has a natural
reflection R_g, which is literally the reflection of Ry about R. In particular,
if Ry lands at a real point z, then so does R_g. In such a situation, the set
of points forming the two rays and the landing point z will be called a ray
pair. The union of the ray pair with infinity forms a Jordan curve in C,
dividing the sphere into two pieces. As a convenience, we define a notation

for these pieces.

Definition. (ray pair sets) Let Ry, R_g and the common landing point be
a fay pair of f. Also let a be some point in the complement of the ray pair.
As noted above, the ray pair divides the sphere into two open pieces. We

define Op{a) to be the set containing a.

Recall that by Theorem [7.6], if @ is a repelling periodic point, then
there are always ray pairs landing at it. Now, if z is preperiodic and its orbit
hits a periodic point which is repelling, there must be inverse images of the
rays landing at the periodic point that form rays and ray pairs landing at the
preperiodic z. As is proved in Lemma [8.2], the boundary points of domain
components of the first return map ® are all preperiodic and always have at
least one ray pair landing at them,

For domain components A of &, or any interval with repelling pre-
periodic boundaries, we can construct an extended domain, also labeled A,

whose intersection with R is the original interval.
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Definition. (extended interval regions) Let A = (a,b) be an open interval
of the real line with a boundary formed by repelling preperiodic points of a
real polynomial f. We know at each boundary point there is at least one
ray pair of f which lands there. Let R, and R_, form the rightmost pair
landing at the ieft boundary point a, and let Rg and R_4 form the leftmost
pair landing at the right boundary point, . We then define the extended
interval region to be the set Oy (d) N Og(a). This is clearly bounded by the
« and 2 ray pairs and is the smallest of all regions bounded by ray pairs

landing at @ and b, which contain the interval (a, b).

Definition. (bounded interval regions) A bounded interval region, A7, is
obtained from an extended interval region A by truncating it with the po-
tential curve G". Thus A" is the intersection of A with the disk bounded hy

G".

The careful choice of boundary ray pairs, in situations where multiple
pairs land at a point, is necessary to handle issues of containment. The
Markov properties all stem from the construction of sets that nest properly.
We need to make sure that if one interval contains another interval, then the
same containment holds for the corresponding extended interval regions. One
major problem has already been circumvented by using rays as boundaries
because distinct rays of f do not intersect each other. This combined with
the careful choice of rays among multiple ray pairs landing at a common

point, yields this easy but crucial lemma.

Lemma 8.5. Let Ay and Ay be real intervals with repelling preperiodic
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boundary points under f € F. Suppose A; and A, satisfy one of the three

containment properties

(1) A} - Ag
(2) Ay C Ay
(3) Al M Az — %

Then A; and A, congidered as extended interval regions or bounded interval

regions, AT and Al satisfy the same property.

PROOF. Suppose Ay = (a1,b1) and Ay = (az2,b:). Corresponding to the
points ay, b1, a2, and by, suppose ay, f1, as, and B, are the angles used to
construct the ray pair boundaries of the extended interval regions of A; and
Ag.

We claim that if @ < ag, then O, (b2) C O (b1). If a1 and ay
are equal, then we must also have a; = ay, both angles representing the
rightmost ray pair landing at a1 = a. Since both b; and by fall to the right
of a1 = ay, we have O, (b)) = O4,(b2) and the claim is true. If we have the
strict inequality a3 < ag, then the ray pairs represented by a; and wy are
distinct sets. The sets O, (b1) and O,,(b2) are simply connected sets that
share no boundary in C. The real line between a, and b; does not contain a4
by the inequality, i.e. there is a path between b; € O, (b1) and the boundary
of Oq,(by) which does not cross the boundary of O, (b1). We must conclude
that the claim is again true. A nearly identical proof shows that if b; > bs,

then we have Og,(ay) C Og, (a1).

Now suppose Ay < Ay, then we must have a; < ap and by > b,. But
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then by the above claims, we get
Ag = 002(62) N Oﬁz(GZ) C Oal(bl) N Oﬁl(a'l) = Ay,

Similar proofs hold for containment properties (1) and (3). Q.E.D.

There is also the issue of whether extended interval regions map to
other extended interval regions under iteration by f. This next lemma to-
gether with the last lemma constitute most of the work involved in showing
our extended first return map has the necessary Markov properties to be a

holomorphic box mapping,.

Lemma 8.6. Let Ay be a real interval with repelling preperiodic boundary
points under f € F. Fix an integer k, and suppose A; containg no critical
point of f°F. Let Ay = f"k(Al). Then, if Ay and Ay are considered as

extended interval regions, it is still true that Ay = Fo¥(A1).

PrOOY. Let us label the boundary points as Ay = (ay, &) and Ay = (as, by).
The boundary of A; must be mapped to the boundary of A,, but this can
be done in an orientation preserving or orientation reversing manner. We

assume that

fHa)=ay  and  fF(b) = by,

and a similar proof will work for the orientation reversing case. Let us label
the left boundary of the extended region Ay, the rightmost ray pair landing
at aj, as Ry, and R_,,. Similarly, label the left boundary ray pair of Ay as
Ra, and R_g,. We must show only that f°%(Ra, UR_q,) = Ra, U R_a,.
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An identical argument shows that f °k maps the right boundary of A; to the
right boundary of A;. Then since the boundaries of Ay and A, correspond
under f° and since the interior of A; must map into the interior of A,
because they do so as real intervals, we must have the desired equation on
extended inter\-ral regions, Ay = foF(A).

Notice that, since the first £ points in the orbit of ¢; do not hit a
critical point of f, locally f°F looks like as + C(z — a1), a rotation and
dilation followed by a translation. Furthermore, the constant € must be
both real and positive, since f is real and we are assuming f°* is orientation
preserving on Ay. Thus, locally f°F preserves the upper and lower half planes
and the left to right order of any ray pairs landing at a;. Now suppose that
F¥(Ray UR_a,) # Ray UR_q,. Since the image of any ray under an
iterate of [ is another ray, this equation implies there are multiple ray pairs
landing at a;. Moreover, there must be corresponding ray pairs landing at
a1. In other words, there must be a different ray pair, Rg, UR_g,, which by
definition of the extended region A; is not the rightmost pair landing at a;,
that is mapped by f°* onto Ry, UR _q,, which is the rightmost pair landing
at ap. This violates the local orientation preserving properties of f°% and is

a contradiction. Q.E.D.

Construcling holomorphic box mappings. The two boundary points of
the inducing interval I are not in the domain of @, considered as a real map
by definition. This fact has two consequences. First, any interval in the
domain of ¢ must be either inside or outside of I, and second, the image of

each interval under @ is inside of I by Lemma [8.3]. So given any component
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of the domain of @ and the injective image of another component, either one
set must contain the other, or they are totally disjoint. This is the desired
Markov property of box mappings. By combining this real line property
with the properties of extended interval regions, Lemmas [8.6] and [8.5], we
construct a corﬁplex version of ®, which satisfies the conditions necessary to
be a holomorphic box mapping. Lemimas [8.6] and [8.5} can be considered as
justification for the extended definition of ®.

The map ® restricted to each component of its domain on the real line
will be extended as a holomorphic map to the bounded interval region deter-
mined by the domain component. Let r be the universal radius, determined
by the bone-loop containing f, of the potential curve that is bounded away
from 0 and thus well inside the basin at infinity of f. We start by taking the
extended interval region of the inducing interval I and cutting it off at the

potential curve G*. This set is a bounded interval region which we label I7,

Definition. (@ extended from injective components) Suppose A is a con-
nected component of the domain of the real ® on which & is injective. We
know that @ restricted to A is equal to f°F for some k. Define ® on the

1k
3

extended domain A®, where s = r3 , as f°* considered as a holomorphic

map. Note that ® is univalent on A®, and the image of A® is contained in

I,

If a central domain exists, we do not merely extend the central interval
B. We need to make special arrangements so that the image of the extended

central domain under ® is {”. Suppose the central branch of the real box
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mapping is ®|z = f°*. Since the critical point ¢ returns to 7, the critical

value f(c) must be in the domain of ®. In particular it must e in some

1{k=1)

monotone domain A, which has an extension A%, s = r3® , on which the
holomorphic @ is already defined. Furthermore, since the image of B under I
is connected a.nd contained in the domain of the real ®, it must be contained
in the single connected component A, and the image of the boundary points
of B under f must be a single boundary point of A. In terms of the ray
pairs bounding the extended interval regions, both ray pairs bounding B are
mapped by f to one of the ray pairs bounding A. Therefore, the image of
the extended interval region of B is the open set bounded by this ray pair

and containing A, and A,

Definition. (% extended from the central component) The domain of the
central branch is defined to be the open set f~1(A®), which is contained in,
but is not all of, the bounded interval region BT. This new set still contains
the entire original interval B however. The set £ ~1(A®) will still be called the
extended central component B, although this does not match the definition
of an extended interval region. On the extended B, ® is defined to be fok

considered as a holomorphic map.

This completes the definition of ®. The image of any point under &
not contained in the extended central components or one of the extended

univalent components is undefined.
Proposition 8.7. The extended map @ is a holomorphic box mapping.

PRrROOF. The domain of & is the union of bounded interval regions derived
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from the connected components of the domain of the original real version
of ¢. These extended regions are open disks, thus the entire domain of
definition U is an open set. By Lemma [8.3], all branches of the real map
®|g are homeomorphic onto their images, except possibly for the central
branch mappiné the domain containing the chaotic critical point ¢. Suppose
A® is the bounded interval region extended from an interval on which D
is monotone. Then A? can contain no critical point of f and is mapped
univalently onto another bounded interval region by Lemma [8.6). Further
iterations under f of this bounded interval region, until I” is reached, are
all mapped univalently by f because the underlying real interval contains
no critical point of f and no critical point of f exists off of the real line.
Therefore, all the branches of the extended &, except the central branch, are

univalent onto their images.

By the extension construction and Lemma [8.3], the image of any uni-
valent branch f°% is the bounded interval region of I, I”. The image of the
central branch B, if it exists, is also I” by construction. We must check,
for the Markov properties required of holomorphic box mappings, that any
other domain component A® is either contained in I" or totally disjoint from
1t. The interval A®* NR is either contained in or disjoint from the interval I
because A° NR is entirely contained in the domain of ®|g and the boundary
points of I are not in this domain. By Lemma [8.5], the extended interval
regions A and I share the same containment property. The same property
can then by shown to hold for the bounded interval regions A® and I” by

noting that the cut off for A® is G* which is contained in the cut off for I*,
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(7. The Markov property holds for the central domain B also because, by
definition, B is contained in the bounded interval region B”, and the same

reasoning shows that B” must be contained in I7.

We must also check that ®| B;{c} is a two to one cover onto its image.
It suflices to show only that f is two to one on B” — {c}, since B = Tz (A?)
for some region A® on which & = f°(*~1) ig univalent. To show that fis
two to one on B” — {c}, we first show that this is true when we restrict our
attention to the real line. Suppose B"NR = (a,b). By Lemmal[8.4], P|g is
two to one on {a,b) — {c}, f(a) = F(b), and hence the map f must also be
two to one on (a,b) — {c}.

Now let Ro and R.., be the rightmost ray pair landing at a, and let
R and R_g be the leftmost ray pair landing at b. We claim that these two
ray pairs have the same image under f. This follows from the same argument
used in Lemma [8.6]. Since a and b are on opposite sides of the critical point
¢, if f reverses the orientation of R locally near a then it must preserve the
orientation locally near b. In this case the rightmost ray pair landing at «
must be mapped by f to the leftmost pair landing at f (a), and the leftmost
ray pair landing at & must be mapped by f to the same leftmost ray pair
landing at f(b) = f(a). An identical argument can be made if f is locally
orientation preserving near a and orientation reversing near b. In either case,

F(RaUR_a) = f(RgUR_5).

It now follows immediately that f(B"NHT) and f(B" NH™) have the
same boundary, and thus represent the same set, which we label V. This set

is bounded by the ray pair f(Ra UR_q) = f(RpUR_p) and the potential
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curve G™°. We obtain V from the entire set bounded by these curves by
removing the part of the real line between the critical value f(c) and the
landing point of the ray pair. Inspection reveals that V is simply connected,
and this shows that B” N HT and B™ N H~, which contain no critical point
of f, are both Iﬁapped univalently by f onto V. This finishes the proof that
f is two to one because any point in V has exactly one preimage in BT NHT

and onein B"NH~. Q.E.D.
Corollary. The restriction of ® to the real line is a real box mapping,.

PrOOF. The restriction of the extended ® to the real line is of course just
the original first return map. Almost all the properties of real box mappings
are inherited from ® being a holomorphic box mapping. The monotone and
containment properties of intervals in the domain of @ are inherited from the
corresponding interval regions. Actually the proof that & is a holomorphic
box mapping shows that extended interval regions have the necessary prop-

erties by first showing that property for the underlying interval.

Thus all we have left to prove is that branches of ®|g have non-positive
Schwarzian derivative. The polynomial f is cubic and bimodal, so the
first derivative of f will be quadratic with two distinct real roots. Poly-
nomials with such property always have a negative Schwarzian derivative.
Compositions of functions with a negative Schwarzian also have a negative
Schwarzian. All branches of a box mapping induced from f are compositions
of f with itself, so the branches must have a negative Schwarzian derivative.

Q.E.D.
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§8.3. Constructing branchwise equivalences.

Suppose f and f € F are two maps on the same bone-loop. We know
there is a real conjugacy between them. Suppose these maps each hrave a
cofresponding inducing interval, I" and 7 respectively, which are mapped
one onto the other by the conjugacy. In the same way, the construction of
the first return maps to 1|y and I |g, will parallel each other. Tn other words,
any maximal interval on which @ is defined as £°!, will be mapped to the
corresponding domain of &, where & is defined as F°1. The conjugacy be-
tween f and f is also a conjugacy between ® and <i>, since conjugacies are
preserved under iteration, and clearly this conjugacy is a branchwise equiva-
lence between & and & as well. Establishing the correspondence between the
connected domains of ® and &, considered as box mappings is thus straight-
forward and follows naturally from the fact that the conjugacy between f

and f is always a branchwise equivalence.

Of course the ultimate goal is to show the conjugacy can be extended to
a quasiconformal conjugacy, and to do this, we need to induce from an initial
branchwise equivalence which is quasiconformal. The conjugacy itself is thus
not a suitable starting point. We need to find a branchwise equivalence in
the same similarity class, which is also quasiconformal. From this starting

point, the inducing algorithm constructs a quasiconformal conjugacy.

'To find this initial quasiconformal equivalence, we will use the inductive
construction in Lemma (7.1} to reproduce the first return maps, ® and .

The lemma will then produce the desired branchwise equivalence between

our initial box maps.




Inducing branchwise equivalences. The constant r and s = r¥ will
be present throughout the construction. This is the same 7 used in the
construction of the extended ® and @. It is a universal radius used to specify
the potential curve G, which exists for any map f in the neighborhood of

the bone-loop. The existence of such a radius is proved by Lemma [7.10] and

Lemma [7.12].

Our goal here is to construct pairs of holomorphic box mappings with
no central branch and a branchwise equivalence that will satisfy the condi-

tions of Lemma {7.1].

Recall the notation for components of the attracting basin of f on a
bone-loop, {F;}. Suppose f and § are two maps on the same bone-loop, then
they are conjugate maps. Therefore both maps have corresponding basins
for a single super attracting periodic orbit. We define F} to be the interval
corresponding to F; under the conjugacy between f and f. The end-points
of all these intervals are preperiodic points, so we can extend these intervals
into the plane as bounded interval regions. We cut off these interval regions
at the potential curves G° and G* respectively as boundaries, producing the
family of bounded interval regions, {F#} and {F7}.

We prepare to construct the map ¢, and gﬁ will be constructed similarly.
There are a number of marked points on the real line, depending on the map
f, rwhich we will use to construct the rays constituting the initial domain
boundaries of ¢. The first return map ® is constructed from f, and the
boundary points of the central domain B of this map, if it exists, are the

first marked points. We consider the entire forward orbit of each of these
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points and the boundary points of each F; and then T itself as marked. These
boundary points are all preperiodic, so the set of marked points is finite.
Finally we mark the repelling periodic points 0 and 1, and then collect the
finite number of ray-pairs landing at the marked points into a coliection R
Thése rays, tht;,ir landing points, and the potential curve G partition the
plane info a finite number of pieces. Those intersecting the real line look like

bounded interval regions A®, including the regions {F7}. We are ready to

define ¢.

Definition. (4) The domain of ¢ is the union of all domains, A®, that
intersects R between 0 and 1, unless that domain is one of the {Fy} or the
bounded interval region B*® containing the extended central domain B. Then

#(2), for z in its domain, is defined to be f(z).

Definition. (¢o) The definition of ¢q is identical to that of ¢, except we

define ¢g to be the identity on any component of the domain inside I°.

Definition. (A) The set A is the union of all the rays in R, their landing

points, and all points outside, and including, the potential curve G°.

There are parallel definitions for qAS, o, and A.

Definition. (k) On the set A we define h = ¢~ 0 . Where o and ¢ are
the Béttcher coordinates of f and f respectively. By Theorem [7.14] and
its corollary, since 4 includes only a finite number of rays and a collection

of potential curves with radius bounded from below by s, this map can
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be extended to a symmetric quasiconformal homeomorphism of the plane

preserving the orientation of the real line.

The dilatation of the induction process, I, 1s now defined to be the

bound on the complex dilatation of k.

Lemma 8.8. The maps ¢, ¢y, q$, qAﬁo are all symmetric holomorphic box
mappings with no central branch. Furthermore A is a branchwise equivalence

between ¢ and ¢ and between ¢ and E,ZU.

ProOOF. The domain of ¢ is an open set consisting of connected components
which are topological disks. The map ¢ is equal to f where it is defined,
but the regions of f containing critical points have been removed from the
domain of ¢. Restricting ¢ to the remaining components of the domain must
therefore yields univalent maps.

To prove that ¢ is a box mapping with no central branéh, we must
show that images of domain components either contain or are disjoint from
other domain components. Let V be the image of some component and let
A? be some other component. First examine the restriction of these sets
to the real line. The interval region A® intersects R in an interval whose
boundaries are two of the finite preperiodic ray landing points found in A.
There can be no other real point of A inside this interval because all such
points are not in the domain of ¢ by definition. On the other hand, the
boﬁndary points of ¥V NR must also be in A because by definition they are
in f(A) and A is forward invariant by construction. But it is not necessarily

true that this interval contains no other real point of A. There can be no
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partial overlap of VN R and A® NR or else A® would contain a point of A.
Therefore as intervals ¥V must either contain or be disjoint from A®. The
set A® is bounded by the potential with radius s by definition, while V is
bounded by radius r. Therefore, by Lemma (8.5], V either contains or is
disjoint from Aé considered as bounded interval regions. This proves ¢ is a

box mapping with no central branch.

Since ¢ has the same domain components as ¢, the proof for ¢ is
exactly the same. The image V may be the image of some A® under the
identity map rather than f, but this does not add any complications. Similar
proofs also show cgg and ¢y are box mappings with no central branch. The
branches from all these maps are iterates of f or f, or they are identity maps.

In any case, all four maps are symmetric.

The boundaries of domain components of ¢ and ¢y make up A and
are mapped by k onto .,ZAI, the boundaries of components of ¢y. Therefore
the components of the complement of A are mapped onto the components
of the complement of A. Since h respects the conjugacy between f and f
011.‘/4., we must have F° mapping to Ff, for each ¢, and fhe extended central
domain B® mapping to B°. By the pigeon hole principal, we must have
domain components of ¢ mapping to domain components of ng Notice that
any branch of ¢ is equal to f, and any branch of ¢ is equal to f. Let z € A
be an arbitrary boundary point of the domain of ¢. By applying the basic

functional equation for Béttcher coordinates, we obtain

hof(2)=¢ " opof(z)=¢""p(2)*) = fop™ ow(z) = foh(z).
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This immediately implies the desired equations for branchwise equivalences.
The same proof also works for ¢y and (50, but in some cases, branches equal
to f and f may be replaced by the identity function. The same equation is
obviously still true here. This shows % is a branchwise equivalence hetween

both pairs of maps. Q.E.D.

We can build two sequences of functions, {$:} and {ggm,} Where ¢1 = ¢,
ggl = gg:
$ir1(z) = doodi(z)  and,
$i+1(3) = ng o ﬁgi(z)-

Notice that at each step of the induction, the domain of ¢,y or 9’3i+1 may
shrink because the composition may not be defined. In view of Lemma [8.8],
by Lemma [7.1], these are all symmetric holomorphic box mappings with
no central branch, and there exists a sequence, {A;}, of K -quasiconformal

branchwise equivalences, which are symmetric and preserve the orientation

of R.

The limating branchwise equivalence. We check that the sequence {d:}

converges to a branchwise equivalence.

Lemma 8.9. For z in the domain of the first return map ¢ of f, but not
in the central domain, ¢;(z) converges to ®(z). Otherwise, the {¢i(2)} have

no limit or become undefined.

PROOF. First notice that P(z) and lm; o ¢i(2) agree for = € R. Let z

be an arbitrary point in the interval [0,1], and let us follow the sequence
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{6i(2)}2y. In general, ¢o(2) = ¢1(2) = f(2), and starting from here, the

sequence can be given by,

$ir1(2) = do 0 $i(2) = f(¢i(2)) = f*(2),

until a terminating condition is reached, either when ¢y becomes undefined
or becomes the identity map. This sequence is thus equal to the orbit of z
under f until that orbit hits the interior of the real interval I, in which case
the sequence becomes fixed because ¢y is the identity, or until the orbit hits
A or some Fj, in which case the sequence becomes undefined. The value of
®(z) is also determined by following the orbit of z under f. ®(z) is defined
if the orbit of z hits the interior of I before any F;, the boundary of any F;,
or the boundary of I. This is almost exactly the same condition, since ANR
contains the boundary points of these intervals. Unfortunately A contains
additional points from the forward orbits of the boundary of B, the central
domain.

Suppose the orbit of z hits the interior of I before any point in ANR,
then clearly we have ®(z) = lim;_.o, ¢;(2). Suppose the orbit of z hits a
point in A before returning to the interior of I. Then, either the orbit hits
a boundary point of some F; or [, or it hits some point in the orbits of the
boundary points of B. In either case, the sequence ¢;(z) becomes undefined
by definition because ¢¢ is undefined here. Since the orbits of the boundary
of B hit the boundary points of the interval I or some F; by definition of I3,

®(z) is still undefined for both cases. We have shown
Pln = lim ¢ifx.
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Let A be some interval in the common domain. Suppose we have
®|a = limysoo ¢ila = f°7. Then by definition of the extended map, P is
defined on Af, £ = r3'. At each stage of the induction, the branches of
$; also look like f°7, and domain components are bounded interval regions
equal to the pﬁll—back of some A® through f°U~1  These domains have

. 1(i-1) 1
radius f = $3 = r%

. So the limit of the sequence {¢;} must also be
defined on A, Since every domain component of ® or the {¢;} fall into this

case, except the central domain B, we are done.  Q.E.D.

We have shown that the only place where lim; o, ¢;(#) does not equal
®(2) is for points in the extended central domain, and the same holds for

1im; o0 4(2) and $(z). Is is suitable to define the maps
$oo(?) = lim ¢i(2)  and  Poo(z) = lim ¢;(z),

defined where the limits exist. Because of Lemma [8.9], both ¢oo and des
are holomorphic box mappings with no central branch. In particular, they

are equal to ® and & with the central branches removed.

Lemma 8.10. There exists a branchwise equivalence between ¢ and ggoo,
which is K-quasiconformal, symmetric, and preserves the orientation of the

real line.

PROOF. In view of Lemma [8.8], we can apply the results of Lemma [7.1]
to the {¢;} and {¢;}. There must exist branchwise equivalences {h;} be-
tween each pair of maps (¢, qu), which are K-quasiconformal, symmetric,

and preserve the orientation of R. It natural to use the limit of the {h;} as
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a candidate for a branchwise equivalence between ¢, and $oo. We do not
however need to expend the effort to show the limit exists. The sequence of
K-quasiconformal homeomorphisms forms a normal family, so we can pick an
arbitrary convergent subsequence of { hi}. We label this arbitrary limit, also
a I —quasiconfc;rmal homeomorphism, H. The map H is also symimetric and
preserves the orientation of R because it is the limit of maps with the same
properties. Furthermore, we show H is the desired branchwise equivalence
between ¢, and ggoo.

Let A® be any domain of ¢... For large enough 7, A® is also a compo-
nent of the domain of ¢;. By Lemma [8.9], for z € A*, lim;_, ., di(z) = @(z).
The sequence {¢:(2)}2, must become fixed at the stage in the orbit of z
when it returns to I. But by definition, the step where {$:(2)} becornes
fixed, is exactly where {h;(z)} becomes fixed. The sequence k; must there-
fore have a limit at this point and H (#) is equal to this limit. Therefore H is
equal to a branchwise equivalence on A® and, by continuity, on the bound-
ary of A® as well. Thus H maps the domain component A? of ¢, onto the
corresponding component of ¢o, and satisfies the functional equation of the
boundary. Since all components of the domain of ¢, and q;,’;oc, arise in this

manner, H must be a full branchwise equivalence itself Q.E.D.

Adding the central branch. The map H constructed in Lemma [8.10] is
almost the desired branchwise equivalence between @ and ®. We have only
the issue of the central branch remaining. Recall that intervals containing the
critical points of f and f were removed from consideration in the induction.

However, the branchwise equivalence must also take the central domain of @

150




onto the central domain of &. It is possible to redefine A (#) on the bounded
interval region B” so that it maps B, the central domain of ®, onto the

central domain of <i>, B.

Theorem 8.11. There exists a branchwise equivalence between & and o,
which is quasiconformal, symmetric, and preserves the orientation of the real

line.

PROOF. The branchwise equivalence, H, between ¢o, and ggoo needs to be
redefined on B”. Recall that H is the limit of a subsequence of the branchwise

equivalences {h;} between the {¢;} and the {¢;}. We know that
H(2) = ho(2) = hi(2) for z € B"U A and for ¢ > 0

because in this case ¢;(2) is undefined for all ¢ > 1 and therefore h;(z) stays
ﬁxéd. In particular, H maps B onto B ", since Ay does.by definition.

Recall that f and f map their chaotic critical points into monotone
domains of ® and fi>, which we label A® and A® respectively, and recall
that the central domains, B and B are defined as FYA®) and f _1(5“’)
respectively. We label the ray pairs bounding B as R, UR_, and Ry UR_;,
and the corresponding pairs bounding Bas ’ﬁ,au'ﬁ,_a and 7%3,U7n3_b. R UR_,
and RyUR_; map under f to a single ray pair, R.UR_., part of the boundary
of A®. Similarly 7%,1 U?Al_a and 7%5 U’)'AZ_;, map under f to facuﬁ,_c bounding
As. All these ray pairs are in A or A4, so H inherits from hy the property
that R, maps to 7%,&, R to ’)‘%b, R. to 7%5, ete.

The map H must map A? onto some domain component of ®. This

component must be A® because H maps R, bounding A® to R, bounding
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A®. We also know H maps the potential curve G7 to the corresponding
curve G, As R.UR_. U G™ and 7%6 U 7%_6 U G form the boundary of
f(B™) and f (BT respectively, # must map these sets onto each other, so we
are in a position to pull H, defined on f (B"), back to a map defined on B.

This is a éimple lifting situation, giving us a symmetric homeomorph-

ism H between B" and B" satisfying
ffof(z)::foﬂ(z) for z € B, (1)

We know H is quasiconformal by the same argument used in lifting through
univalent maps because f and f are conformal and H is K-quasiconformal.
We claim H agrees with #/ on the boundary of B". Inheriting this from hq,

H also satisfies
Hof(z)=FfoH(z) forzecdB" C A

Thus H is also a lift through f and f of H restricted to the boundary
of f(B"). Since the lifting is unique, given that we require the lift to be

orientation preserving on R, we must have
Hlapr = H|ppr.
Thus if we extend H be defining

H(2) = H(z) for z & BT,
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we get a homeomorphism. Moreover the extended H is quasiconformal. We
also claim that H maps the central domain f~(A®) onto F~'(A*). From
eqﬁation (1), we get A® = H(A*} = fo H(B). So H(B) = f‘l(As) = B.

Thus H maps the domain of &, including the central domain, onto
the domain of 5:1} 'The map H is quasiconformal, symmetric, and preserves
the orientation of R. Furthermore H, by Lemma [8.10], is a branchwise
equivalence outside of the central domain. All we have left to check is that
H has the proper definition for a branchwise equivalence for points on the
boundary of B.

By definition, ®|p = f°/ and fi=| B = foi | for some integer 7. Recall
that A® and A® contain the respective chaotic critical values of f and f . We
must have ®|as = U~ and @[AB = foli-1, By definition H is equal to

H on A®, a branchwise equivalence by Lemma [8.10], so we have
foli-D o H(z)=Ho f°(j_1)(z) for z € A, (2)

For z € 0B, by definition f(z) is in JA*, so combining equation (1), equation

(2), and the definition of H, we obtain
f"joH(z):f"(j""l)oH(f(z)):Hof"j(z) for z € 0B.

This verifies that H satisfies the functional equation for branchwise equiva-

lences on the boundary of B. Q.E.D.
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IX. QQUASICONFORMAL CONJUGACIES ON BONE-LOOPS

In this chapter we finish the proof of Theorem [5.4]. This provides the
final piece in the proof of the Connected Bone Conjecture and monotonicity

for the real cubic family.

§9.1. Final filling,.

The next proposition is the final step in the proof of Theorem [5.4] in
all non-renormalizable cases. Box mappings with no central branch can be
obtained in these cases, and pull-back immediately produces a quasiconfor-
mal map matching the conjugacy on the forward orbit of the chaotic critical

point.

Proposition 9.1. Let ¢ and ¢ be holomorphic box mappings with no cen-
tral branch, induced from real polynomials f and f that are topologically
conjugate on the real line. Let & be a branchwise equivalence, in the same
similarity class as the conjugacy, that is K-quasiconformal, symmetric, and
preserves the orientation of the real line.

Let J be the intersection of the Julia set of f with R. Suppose that the
only open intervals not intersecting the domain of ¢ are in the Fatou set of
J. Finally suppose that ¢ is not equal to the identity on any component of
its domain. Then there exists a quasiconformal homeomorphism H that is

symmetric and preserves the orientation of the real line, and which satisfies

Ho f(z) = f o H(z),

for any z in J.




PrOOF. With ¢y = ¢; = ¢ and ggg = ¢ = gg, define a new sequence of maps
b1 =doo¢; and i = g0y

With initial branchwise equivalence h, Lemma [7.1] applies. All the {d:}
and {qu} are box mappings with no central branch, and between each pair
(qbz;, ggg) there exists a branchwise equivalence h;, which is K-quasiconformal,
symmetric, and preserves the orientation of R. Let H be the limit of a
convergent subsequence of {£;}, which must exist as the K-quasiconformal
maps form a normal family. The map H itself is K -quasiconformal, and it
inherits symmetry and orientation from the the {h;}. We claim H is equal
to the conjugacy between f and f for every real point in the Julia set of f.
The conclusion follows.

Since h is in the similarity class of the conjugacy, each of the A; is also
in the similarity class of the conjugacy. Therefore each h;, on the boundary
of its domain, is equal to the conjugacy. By the pull-back construction the
only open intervals on which ¢; is undefined are inverse images of open
intervals on which ¢ is undefined. These intervals are in the Fatou set of
f, so intervals not intersecting the domain of ¢; are also in the Fatou set.
So, if ¢;{z) becomes undefined for z € J , 2 must still be in the closure of
the domain of ¢;. Therefore, either z is the boundary point of some domain
component of ¢; or there is a sequence of such boundary points converging
to z. Either way since h; is equal to the conjugacy on boundary points of

components, h; is equal to the conjugacy on z by continuity.
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The final observation is that, in the limit, the ¢; become undefined
evérywhere. If there is some interval on which the box mappings stay defined,
since the iterates of f defining the #; go to infinity, this interval would be
contained in the Julla set and under iteration would never hit the critical
point, a contrad-iction. Thus every point is the limit of points on which the
f; become fixed and equal to the conjugacy. Therefore the limit of the h; H

must agree with the conjugacy between f and f for every real point in the

Julia set of . Q.E.D.

£9.2. Non-renormalizable case.

Recall that the inducing algorithm for box mappings may produce a
terminal box mapping if there is a restrictive interval I. In this case, for some
box mapping, the central branch will map [ into itself and the boundary of T
into itself as well. If the box mapping is induced from f, the central branch
is an iterate of f, and in the special case of a box mapping induced from a
map on a bone-loop, we also know the orbit of I under f never intersects the
periodic critical point because this point has been removed from the domain

of the box mapping. This inspires the next definition.

Definition. (maximal restrictive intervals) Suppose f € mapfamily is on a
bone-loop. A maximal restrictive interval I of f must be mapped by £°7/, for
some 7, into itself, and £°/(8I) must be contained in 81 as well. Furthermore
the interval I must contain the chaotic critical point of f, but neither I nor

the forward orbit of I under f can contain the periodic critical point.
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Cubic maps with this property are analogous $o renormalizable qua-
dratic maps, which also exhibit restrictive intervals. We will call a map on a
bone-loop renormalizable if it has a maximal restrictive mterval., We now

finish the proof of Theorern [5.4] in the non-renormalizable case.

Theorem 9.2. Let f and f € F be two maps on the same bone-loop.
Suppose f is not renormalizable. Then there exists a special quasiconformal

conjugacy between f and f

PROOF. We know there exists a topological conjugacy between f and f on
the real line, by the corollary to Proposition [5.3]. We split the proof into
two cases based on the recurrence of the chaotic critical point. If the chaotic
critical orbit of f is non-recurrent and there exists an interval Iy containing
the critical point which the orbit otherwise never intersects, we attempt to
turn this into an inducing interval. Since the chaotic critical point ¢ is in the
Julia set of f, we can certainly find real repelling preperiodic orbits close to
the critical point. So given a finite set of repelling preperiodic orbits that
intersect both pieces of Iy —{c}. We take the two repelling preperiodic points,
one on either side of ¢, closest to ¢ as the boundary points of the inducing
interval I. If the chaotic critical orbit is recurrent, the inducing interval is
deﬁned to be the largest open interval not intersecting the immediate basin
of the periodic critical point. In the first case, the orbits of the boundary
pdints do not intersect I by construction, and otherwise Lemma, [8.1] proves
the orbits do not intersect I. In either case we have an inducing interval T

for f, and a corresponding interval I for f , equal to the image of I under

the conjugacy.




We can now construct the cubic first refurn maps for each polyno-
mial and extend them to holomorphic box mappings, ® and &, by invoking
Proposition [8.7]. Then by Lemma [8.11], there exists a quasiconformal
branchwise equivalence, H, between ® and &, which is symmetric and pre-
serves the orieni;a,tion of R. Notice that H is obtained by pull-back from a
branchwise equivalence that is in the same similarity class as the conjugacy.
So H and any branchwise equivalence obtained by pull-back from H is also
the in the similarity class of the conjugacy and critically consistent as well.
If the chaotic critical points are non-recurrent, the resulting hox mappings
will be without a central branch, and otherwise they certainly will have a

central branch.

If there is no central branch, we can apply Proposition [9.1] at once
to produce a quasiconformal homeomorphism that matches the -conjugacy
be£ween f and f on the entire forward orbit of the chaotic critical point.
In view of Theorem [4.7], a special qc-conjugacy between f and f can be

constructed.

If there is a central branch, we must use the inducing algorithm. By
Lemma [8.3], ® and ® are type II box mappings, as all domain components
have image equal to the image of the cenfral domain. By the corollary
to Proposition [8.7], the restrictions of these maps to the real line are real
box mappings themselves. By restricting ¢ to the bounded interval region
I", where f is a two to one map, we can conjugate ®, via some conformal
map G, to a standard holomorphic box mapping. Similarly there exists a

-~

G conjugating & with another standard box mapping. Conjugating ¢ and
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$ with conformal maps in this way preserves all the relevant properties
of the box mappings. The new box mappings are still type II, and their
restrictions to the real line are real box mappings. Furthermore, the map
G o H oG is a branchwise equivalence between the new box mappings,

which is quasiconformal and critically consistent.

We can perform the inducing algorithm on these new mappings, and
the obstructions to inducing, renormalization and non-recurrence, have both
been ruled out for this particular case. The algorithm can therefore proceed
to a limit, producing two infinite sequences of box mappings {¢;} and {q}z}
Theorem [6.2], and then Proposition [6.1], apply to these sequences. We con-
clude first that the modulus of B} — B;, the annulus constructed by removing
the central domain of ¢; from its image, grows linearly in 7. After a finite
number of steps, the modulus will be larger than the key value 4log 8. From
this step on, we will be able to find quasiconformal branchwise equivalences
between ¢; and q@i, whose dilatation grows at the rate exp( Q' exp(—£)),
where () is a constant and € grows linearly with the modulus. A brief anal-
ysis shows that the infinite product of these factors is still finite, so in the

limit, we obtain a branchwise equivalence that is still quasiconformal.

The limit of the inducing algorithm on @ cannot be a terminal box
mapping. Such a situation can only happen if a restrictive interval around
the chaotic critical point exists, and we have explicitly prevented this by
requiring f to be non-renormalizable. The limit of inducing must produce
two box mappings with no central branch and a quasiconformal branchwise

equivalence between them. This translates back through G and & to box
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mappings again induced from f and f We apply Proposition [9.1] and -

then Theorem [4.7] again to produce the desired quasiconformal conjugacy.

Q.E.D.

§9.3. Renormalizable case.
In the event that there does exist a maximal restrictive interval around
the chaotic critical point, hox mapping are not needed at all. In fact, the

renormalization on the restrictive interval is polynomial-like (quadratic-like)

in the sense of Douady and Hubbard, and Theorem [5.4] follows from the

quadratic version, Theorem [1.1].

Definition. (polynomial-like mappings) A polynomial-like map of degree

d is a triple (U, U, f) where U and U' are open subsets of C isomorphic

to dises, with U’ relatively compact in U, and f : U’ — U a C-analytic

mapping, proper of degree d.

Also define K¢ to be the set of points in U’ whose orbits under f are
completely contained in U’. This is a set analogous to the filled-in Julia
set of a polynomial. The fundamental result of Douady and Hubbard, which

incidently also uses quasiconformal pull-back techniques, is the Straightening

}
|
Theorem (see [DH]). i

Theorem 9.3. Every polynomial like mapping of degree d is conjugate, by

a quasiconformal map defined on a neighborhood of K f> to a polynomial P |
of degree d. Moreover, if K; is connected, P is unique up to conjugation by |
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an affine map.

Lemma 9.4. Let f € F be on a bone-loop and have a maximal restrictive
interval I. Then there exists an open disk U’ in C so that (UL (U, fisa

polynomial-like mapping of degree 2.

PROOF. Let £/ be the first return map of f to I. The bonndary points
must be preperiodic under f because 7 maps the boundary into itself. The
boundary is also repelling, in the Julia set of f. So we can construct an
extended interval region A whose intersection with the real line is 1. We
cut off A at any existing potential curve G, producing a bounded interval
region A",

We claim that f°/(A”) contains A”. There is only one fold on I of f°7,
so both boundary points must map to the same boundary point under £°7.
Therefore both ray pairs bounding A" map to ray pairs landing at the same
point, and in fact, they must map to the same ray palr. This shows that
£°7 is properly two to one on A”. The rest of the boundary of f°j(A’") is
the potential curve G”"a, which does not intersect A", Since I maps to itself
under f°7, A" must be contained in FoI(AT).

The set A" is the natural candidate for the set [J’ , but it is not quite
compactly contained in f°/(A7). Instead we choose U’ to be a set slightly
larger. If the distance between the boundary of U’ and A™ is chosen to be
small enough everywhere, then U’ will be compactly contained in FoHUn

because f°7 is repelling near the boundary of A”. Q.E.D.

We now conclude the proof of Theorem [5.4] for renormalizable maps.
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Theorem 9.5. Let f and £, both in F , be on a bone-loop and have corre-
sponding maximal restrictive intervals I and . Then there exists a special

qc-conjugacy between f and f .

PROOF. Let ho-be a topological conjugacy of the real line between f and f,
which must exist because f and f are on the same bone-loop. Let £°7 be the
iterate of f which maps I into itself. Because the interval maps into itself
but folds only once, there must be a finite sequence of intervals containing
the forward orbit of I and that are all mapped onto I injectively by iterates
of f. We label these Iy = I through I,, and there must be corresponding
intervals 1) through I, where £°7 has the same behavior. The conjugacy hg
restricted to each of the I,, also conjugates £/ with £/ on .. Both F°7 and

f°7 are bimodal maps on each of these intervals, and they inherit the chaotic

critical point from f and f respectively.

By Lemma [9.4], we can construct open disks U’ and I/, containing I,
and I, respectively, that make f°/ and f °J into quadratic-like maps. 1o each
set we can apply Theorem [9.3] and construct a quasiconformal conjugacy

H between f°/ and some real quadratic map () and another conjugacy H

between f°7 and Q.

The map @ has a unique fixed point and first preimage of the fixed

i

|
i point that must correspond under H with the boundary of I,,. Thus H maps
I, to the entire intersection of the Julia set of Q with the real line. The same J

situation is true for H and Q as well. The map H o hy o H forms a real
conjugacy between (@ and @ defined on the interval between the fixed point

and its first preimage. Therefore Q and ) are tully conjugate on the real line.
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Q and Q inherit from £°7 and f°7 & bounded critical orbit and no attracting
cycles. Thus Theorem [1.1] applies, and there is an extension of H o hooH™!
to a full quasiconformal conjugacy A between Q and Q.

The map H 1o ho H is quasiconformal, and it extends the conjugacy
hg between f°j- and f°7 on some neighborhood containing I,,. This same
construction can be used to extend &y to a quasiconformal map on a neigh-
borhood of each the I,,. By piecing these maps together we can construct a
quasiconformal map which preserves the real line and its orientation. Fur-
thermore this map matches the conjugacy hg on the entire chaotic critical

orbit. Invoking Theorem [4.7] finishes the proof. Q.E.D.
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APPENDIX

§10.1. Dilatation Lemma.

We prove a property of quasiconformal maps, crucial to pull-back con-
structions, that composition with a conformal map does not change the global

bound on the complex dilatation.

Lemma 10.1. Let f and ¢ be maps from C to itself. If g 1s conformal then

xpog(2)l = Ixs(9(2))l-

And if f is conformal then

IXrog(2)] = Ixg(2)]

PROOF. The partial derivatives of a composition satisfy

Nfog) _ Of] 9 ofry 93 4
Oz Oz a(2) Oz 0z g(z)az’ :
0z 0z | () 07 07,07

If g is conformal then d¢/0z and 87/0z are zero and |8g/dz| = |0g/0z|.

Thus by the definition of x f., and the above identities

| oz af
8z o0z Az
_ g(x) . g(z) _
Ixrog(2)] = o wml T | = |xs(g(2)).
7 lg(zy 9% 2% |02
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If f is conformal then 8f/9% is zero, yielding

af Bg
9% [y(z) 9% "g_g
[xreg(2)] = 1 ss| e T lxq(2)|.
&P gg dz
g{z)

Q.E.D.

It easy to see that any bound on the dilatation of a quasiconformal

map is preserved by composition with a conformal map.

§10.2. Analytic dependence on parameters.

We provide a proof of Theorem [2.3]. First a preliminary lemma.

I Lemma 10.2. Let A be an open set in C and D the open unit disk. Suppose
| filz,A) 1 Ax D — C are a sequence of functions, analytic in either variable,
z or A, which omit at least three points of C in their range, i.e. {0,1,00}.
Further suppose that for each A € D, the sequence of functions, considered

as functions of z, converge uniformly to a limiting function v, (z). Then for

fixed z € A, @a(z) is analytic in A.

PROOF. We use the notation f7(X) = fi(z,A) and ¢.()\) = ¢(z) when we
want o stress that z is being held fixed.

gf First notice that the family f7: D — €, z € 4,1 < i < oo, satisfies the
conditions of Montel’s Theorem, and so the {7}, and {¢,}, form a normal
family. By Arzela’s Theorem, this family is equicontinuous as well. Suppose

we are given € > 0, then there exists a § > 0 so that if [A\; — Ay| < &, we have

|fE(0) — fi(A2)l <e/3  forze Aand 1 <i < o, and (1)
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le (A1) —e2(A2)] < €/8  for z € A. (2)

Now let {};}7_; be a finite set of points in D, chosen so that the §-balls
centered at the A; form a finite cover of D. By hypothesis, for any j between

1 and n, there exists an integer N; so that
177 (A) — @A) < ¢/3  fori> Ny (3)

Define M to be the maximum of the integers {N j}?zl' Now suppose
z i fixed in A, and let A be any point in D. The point A must be within §
of some A;, therefore equations (1) and (2) apply. If i > M, then equation

(3) applies as well for this particular A;, and we get

[FE) =@ = [FE(A) = £ Q) + F7(00) = 02(05) + 0. (05) — (M)
SFEO) = FEODNH () = 020501 + lea () — (M)

<e/3+e/3+e/3=c¢

Since M was choosen independent of A € D, the conclusion is that {7},
converges uniformly, as functions of A, to ¢,(X). By Weierstrass’s Theorem,

¢, must be an analytic function of A.  Q.E.D.

PROOF OF THEOREM [2.3]. Define F\(z) to be the lift of f5(2) through the

covering map e* onto U. Also define

Fok
Br(z) = lim =

k—oo N
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It is the contention of the Bottcher Theorem itself (See [Mi2]) that these
lifts exist and the sequence converges uniformly to their }mit. Then, with

w = e*,

pa(w) = M

is a well-defined analytic function on U, and ¢x o fi(2) = [pa(2)]”. The
definition of ¢y depends on the particular lifting, F, of f) we choose, but
otherwise the Béticher Theorem is independent of this choice.

Since fy is analytic in A, by carefully choosing the branch of the natural
logarithm we use in defining F(z) = log(fA(¢#)), I can be made to depend
analytically on A. Therefore the {F{*/n*}%° | vary analytically with .

Notice that ®5(z) is defined on the domain V = exp™! /. The set
ex(U) = e®2 (V) is contained in € — D, by Béttcher’s Theorem again. Thus
®(V) is contained in the half-plane {z € C | Re(z) > 0} and clearly omits
three values. Since the {F)‘\’k /n*}e | converge uniformly to @, there is some
k beyond which all Fy*/nf maps V into {z € C | Re(z) > —1} and these
functions also omit three values. So we may assume without loss of generality
that the the sequence of functions {FY¥/n*}$ . satisfy the conditions of
Lemma {10.2]. The conclusion then is that (), for fixed z € V, is an
analytic function of A. Since ® is the 1ift of @), we immediately obtain the

desired conclusion, ¢x(z), for z € U, is an analytic function of A.  Q.E.D.

Note that if the ¢3(z) are defined, for some subfamily, for # in a domain
larger than that of U, then the dependence on A still holds, as the functions
at this z will be determined by the analytically varying germ in /. The most

restrictive condition is finding the universal neighborhood U, which is in the
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domain of all the ¢. See Lemma [7.9] and Lemma [7.10], for ﬁndmg this

neighborhood for the specific polynomial family, G.
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