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Abstract of the Dissertation
On Teichmiiller and Bers fiber spaces
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n
Mathematics
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1995

This paper consists of three parts. In the first twb, Wwe Concen-
trate on establishing relationships between Bers fiber spaces (which
were introduced by L. Bers in the early 70’s) and Teichmiiller

spaces. Qur main results are extension of some results in Bers

(8], Barle-Kra [19] [20], and Kra [28).

First, we assume that I is a finitely generated Fuchsian group
of the first kind which contains elliptic elements. The question
as to whether or not the Bers fiber space F(T') is biholomorphi-
cally equivalent to a Teichmiiller space was posed by Bers in the

sarly 70’s, and was initially investigated by C. J. Earle and L




Kra in 1974. Let F(g,n;u,... ,V,.,:) be the Bers fiber space F(IH
for I' of signature (g,n;v1,...,v,), and T(g¢’,n’) the Teichmiiller
space T(I') for ' of type (¢',n'). Earle and Kra proved that, with
the exclﬁsion of ﬁnitely many sigﬁatures, F{g,n;v1,...,v,) is not
equivalenf. to any Teichmiiller space. On the other hand, it is well-
known that there are at least five pairs ({g,n;vy,...,v), (¢',n))
such fha,t F(g,n;v,...,v) iIs equivalent to T(g',n'}. After the
work of Earle and Kra, there remain 39 unknown pairs. By ana-
lyzing the work of Earle and Kra, one can reduce the problem to the
study of fixed point set of some specific periodic automorphisms in
both F(g,n;vy,...,v) and T(g',n'), which involves a careful in-
vestigation of the hyperelliptic loci in Teichmiiller space. Thi_s ob-
servation, together with topological constructions of some special
periodic self-maps of Riemann surfaces de\-zeloped by Magnus [31],
enables us to settle 27 cases (out of the 39 cases mentioned above).
We point out here that our methods do not work for the remaining
12 cases, because for certain special pairs ((g,7; v1, ..., ), (9, 7'))
all possible automorphisms acting on F(g,n;u,...,v,) do act on
T(g',n') as well. We also reprove the theorem of Earle. and Kra.
As an interesting application, we establish a complete list of pairs
((g,n;v1,--5¥m), (g,n + 1)) for which there is a biholomorphic |
map between F(g,n;vy,...,v) and T(g,n +1).

When T is torsion free, a similar question was initially stud-

ied by Bers in 1973. He showed that there exist biholomorphic




maps of F(g,n;00,...,00) onto T'(g,n + 1). Kra has asked if the
biholomorphic maps constructed by Bers can be extended to the
boundary (see the introduction for the definition of boundary). We
prove that those biholomorphic maps cannot be continuously ex-
tended to the boundary of F(g,n;00,...,00) in the case of dim
F(g,n;00,...,00) 2 2.

We return to the case that I' may have torsion, and continue to
study the relationships between Teichmiiller spaces and Bers fiber
spaces. As a résult, we give a complete solution to Kra’s problem
described above; that is, we prove that any biholomorphic map be-
tween these two moduli spaces (if exists) a,dmi‘ts-no homeomorphic
extension to the boﬁndary provided that dim F(g,n;v1,...,v) =
2. Note that in the case of dimension one, the quéstion is exactly
a famous conjecture of Bers Whi_ch states _that the Bers embedding

of the Teichmiiller space T(0,4) is a Jordan domain.

Finally, we esta,bliéh several results on fiber-preserving biholo-
morphic maps among Bers fiber spaces and on biholomorphic ‘ma,ps
among Teichmiller curves. Those results are natural generaliza-
‘tions of several important theorems in Teichmiiller spaces to Bers
fiber spaces and Teichmiiller curves; the proofs are included in this

paper since they do not appear in the literature.
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Introduction and st.atement of results

Let F be a finitely generated Fuchsian group of the first kind which is of
type (¢,n) and acts on the upper half plane U. The Teichmiiller space T(T') is
the space of complex structures on the orbifold U//I' modulo the equivalence
relation, where two complex structures a,ré equivalent if the_re 18 an isometry
between them which is isotopic to the identity. Associated to each point
z € T(T) is a certain Jordan domain D, depending holomorphically on z.
The Bers fiber space F(I') over T(T') is the set of points (z, ) with z € T(T")
and'z € Dg.

The Teichmiiller space T'(T'), with ¢ > 0, n > 0, and 3g — 3 +n >0,
admits a répresenta,tion as a simply connected domain in C39=3+" The Bers

fiber space #(I') is a simply connected domain in C39-2+",

. In this paper, we consider the following general problem: find all biholo-

orphic maps (we will use the term “isomorphisms” throughout this paper)

_@g-_various moduli spaces of Riemann surfaces. Let I' be another finitely

nerated Fuchsian group of the first kind, and let 0 = (g,n;1,...,0,), o' =

iber space F(T) for T' of signature (g,m;v1,. .., v,), and T(g',n’) the




Teichmiiller space T(I") for I of type (¢',n’). In the attempt to establish all

isomorphisms among various moduli spaces, we encounter in particular the

following several problems:

(A1) Enumerate all pairs ({g,7;11,...,v),(¢',n)) for which there is an
isorﬁorphism between F(g,n;v,...,¢,) and T{g',n'). |

(A2) Describe all possible isomorphisms between Teichmiiller spaces and
Bers fiber spaces.

(B1) Do the isomorphisms in (A2) admit homeomorphic extensions?

(B2) Do the isomorphisms in (A2) admit continuous extensions?

(C1) Enumerate all pairs ((g,n;v,..., ), (¢, n';¢,...,v,)) for which

there is a fiber-preserving isomorphism betweeh F(g,n;vy,...;v,) and F(g',n';
V.o, Vi)

(C2) Describe all fiber-preserving isomorphisms among Bers fiber spaces.
The original motivation for considering these questions comes from a paper of
:Rc_}.y.c.l.en [43], in which he proved that all automorphisms of T'(g,0) with g > 3
re _iﬁduced by self-maps of a surface of genus g. Later, Earle and Kra {19]
generalized this result to all cases of analytically finite Riemann surfaces. On
h ___oi;-her hand, in his paper [42], Patterson gave a complete solution to the
T blefn of finding all isomorphisms among Teichmiiller spaces. Since then,
:'rta:flt progress concerning the isomorphisms between Bers fiber spaces

imiiller spaces has been made by Bers [§] and Earle-Kra [19]. In this




The major part of this paper is an investigation of relationships between
Bers fiber spaces and Teichmiiller spaces. Our discussion of this topic is divided
into three parts. The first part deals with the case that I' contains elliptic
elements, and give a partial solution to problems (A1) and (A2); in the second
part, we answer question (B2) in the case that T' is torsion free; in the third

part, we return to general cases, and give a complete solution to problem (B1).

In the first part, Bers has asked wether F(T') is isomorphic to T'(I") for
some group I. The study of this question (called Bers’ question in the sequel)
was initiated by Earle and Kra [19]. They proved that in most cases the answer

%

: ‘to Bers’ question is “no”. More precisely, the statement of their result is the

following:

heorem 0.1 Suppose that I' contains elliptic elements and F(I') is isomor-
vhic to T'(1) for some group I'. If the types of T' and IV are (g,n) .'and (¢',n'),

sipe:(.:.t.ivreli, then the pair ({g,n),(g’,n’)) is among the entries of the table:

((0,3), (0,4), ((0,3),(1,1)), ((0,4),(0,5)), {(0,4);(1,2)),

(1,1}, (1,2)), . {(1,1), (0. 5)), {(0,5),(1,3)) {(0,5),(0,6)),

((0,5),(2,0)), ((1,2), (1,3)), ((1,2),(0,8)}, ({1,2),(2,0)),

((0,6),(1,4)), ({0,6),(2,1)), ((0,7),(2,2)}, ((0,8),(3,0}).

Table (A}

uerg}_'elliptz’c element of I' has order 2, unless T' is of type (0,3).




The remaining question is: what happens when the pair ((g,n),(¢',n"))
lies in Table {A)? |

There are, of course, some obvious isomorphisms between the Bers fiber
space F'(g,n;v4,...,v,) and the Teichmiller space T(g’, n') when the pair
((g,n),(¢',n')) lies in Table (A). To enumerate all well-known isomorphisms,l
we first note that if T' is of type (0,3), then T(T) is a single point. So
F(0,3; 11, v2,v5) is a disc for vy, vy, v3 € {2,3,--JU{oo} with 1+ 2+ 1 < 1.

This leads to the isomorphism:
F{0,3;v1,vm,v) 2 T(0,4) = T(1,1). (0.1)

~ Recall that a surface with signature (g, n; 14, ..., 1) is a 2-orbifold with genus ¢
and n distinguished points @4, ..., 2, whose ramification numbers are vy, ..., v,
%espectively. When some z; is a puncture, the corresponding v; is set to be
7. Next, we observe that a Riemann surface X of type (2,0}, (1,2.), or (1,1)

always admits a hyperelliptic involution. If we denote by J the hyperelliptic

mvolution, then X/ < J > is an orbifold of signature (0,6;2,...,2) if X is

In addition, any Riemann surface X of signature (0,4;c0,...,00)
" '_h..i‘.et_a confo_rma,l'involultions (Earle-Kra {19]). To explain this fact, we
a3 -a.r_iz).i.frar-y Riemann surface X of signature (0,4;00,...,00), and let
4 enote the punctures. Then there are three elliptic Mébius trans-
10ns (of order 2) Jy, J; and J3 defined on X , where J; maps z; to zs,

»maps 1 to z4, Ty to z3, and J3 maps x; to zg, 23 to z4. Note




that the three quotient spaces (orbifolds) X/< J; >, X/< Jo > and X/< J3 >

are of signature {0,4;2,2, 00, 00).

12

From the above observation it is easy to see that F(0,6;2,...,2)
F(2,0;), F(0,5;2,...,2,00) 2 F(1,2;00,00), and F(0,4;2,2,2,00) =
F(0,4;2,2,c0,00) = F(0,4;00,...,00). On the other hand, by Bers’ iso-
morphism theorem [§], we have F(2,0;_) = T(2,1), F(0,4;00,...,00) &
7(0,5) = T(1,2), and F(1,2;00,00) & T(1,3). Thus, we obtain three other

isomorphisms:

F0,6:2,2,2,2,2,2) = T(2,1), . (02)

I

F(0,5,2,2,2,2,00) & T(1,3), (0.3)

1

F(0,4;2,2,2,00) 2 T(1,2) = T(0,5) = F(0,4;2,2,00,00). (0.4).

‘We observe that there are countably many qﬁa,siconforma,l equivalence classes
of: Fuchsian groups I' of type (0,3) with distinct signatures (0,3; 1, 10, 13)
that F(I') is isomorphic to T(0,4), and therefore also to T(1,1), where
Vg, vs € {2,3,---} U {oo0}. We also see that there are at least three quasi-
onformal equivalence classes of Fuchsian groups I' of type (0,4) with distinct
_a,_t_. es such thaf F(I) is isomorphic to 7(0,5), thus also to T(1,2). (0.4)
vides two such examples, and another example is given by the equivalence:

., 00) = T(0,5).

Thi Bers question will be completely answered by solving the following

Whlch was posed in 1974:

‘e (Earle-Kra [19]). IfT contains elliptic elements, then (0.1)—(0.4)




exhaust all possible isomorphisms between Bers fiber spaces and Teichmiiller

spaces.

As we see, Theorem 0.1 is an important step towards this conjecture..
What is left unanswered is a finite number of cases. As a matter of fact, if
Theorem 0.1 is combined with (0.1)-(0.4), we can immediately find that there

remain 39 unknown cases, which are exhibited in the following Table {B):

signature {g,n;1,...,n) type {g’,n") # of cases
(0,8;2,...,2,00,...,00), 0 < m < 8, {3,0) 8
n 8—m ) .
(0,7:2,...,2,00,...,001, 0 <M £ 7, (2,2) 7
e e et
m T—m )
(0,6;2,...,2,00,...,00}, 0 < m < 6, (2,1) 5
S e v, v’
1 G-
(0,6;2,...,2,00,...,00}, 0 < m < 6, {1,4) 5
S e’ et o’
m -2
(0,5:2,...,2,00,...,00),0<m < 5, m #4, | (0,6) or (2,0} 4
S e e, e’
fic] 5—m
(0,5;2,...,2,00,...,00),0< m < 5, m # 4, (;1,3) 4
m 55— : 3
L2,m),m=2orm=c0 (1,3) 2
(1,2;2,m), m=20orm=00 (0,6) or (2,0) 2
| (0,4; 2, 00, 00, c0) {0,5) or (1,2) 1
(0,5) or (1,2) 1

Table (B)




The main body of Chapter 2 of our paper is a contribution to the conjecture
of Earle and Kra. What we attempt to do is to eliminate most entries of Table

(B). More precisely, we obtain the following theorem:

Theorem 0.2 Suppose that ' has torsion and F(T) is isomorphic to T(I")
for some group I, If T has signature (g, n; vi,...,vy) and I’ has type (', n'),
then the pair ((g,n;v1,...,v),(g'sn")) is among the entries of the following
Table (C):

signature {g,n;¥1,... b} of I’ type (g',n') of TV
(0,8;2,...,2,00,...,00), m =3,6, (3,0
S e )
m 8—m
{0,7:2,...,2,00,...,00), m=2,4,6, (2,2)
R g
oom T—m .
(0,6:2,...,2,00,...,00), m # 5, (2,1)
S e :
L 6—m
(0,6;2,...,2,00,...,00), m= 3,4, ' 1,4
| S e’
m 6—m
(0,512,...,2,00,...,00), m=2,4, _ (1,3)
X So——
. m 5—m
;.:'.(0;4;2,...,2,00,..;,00, m = 2,3, (1,2} or {(0,5)
S S s
m 4—m
{1,1) or (G, 4)




first kind with type (g,n+1). In [8] Bers proved that there are hiholomorphic
maps (called Bers’ isomorphisms throughout this paper) between F(I') and
().
Let By(L,T) denote the Banach space consisting of all holomorphic func- | -

tions ¢ defined on the lower half plane L such that

sup {|z — z|*|¢(2)]; z € L} < o0,

and

(o) (2)(v)(2) = ¢(z) forally € T and z € L.

* The Teichmiiller space T(I') (resp. T(I')) can be embedded into the complex

Banach space By( L, 1) (resp. Bg(L,f‘)). In this sense, the topological bound-

ary of T(T') is defined. On the other hand, as a simply connected domain of
Byo(L,T') x C, the Bers fiber space F'(I') has a natural boundary. Kra asked
: '_efher or not the Bers isomorphisms can be extended to the boundary (in
he 'sénse as described above). We prove that the answer is “no” in the case

r is not of type (0,3). Precisely we have:

orem 0.3 Suppose that dim T(T) > 1. Then no biholomorphic map of

toT(F) admits a continuous extension to the boundary of F(T).

;lulgf"proof, we first identify some special elements of the group Aut




Some interesting results on iterates of modular transformations on the Bers

embedding of T(I') are also used in our proof.

Notice that the method used in proving Theorem 0.3 does not work in
the case of dim T(F) = 0. In this special case, the corresponding Teichmiiller
space is T'(0,4) or T(1,1). By squeezing any curve which is homotopic neither
to a null curve nor to a puncture on a surface of type (0,4) or (1,1), we obtain
two or one thrice punctured spheres on which there are “no moduli”. As a
‘matter of fact, in the case of dimension one the problem under consideration

" is linked to Bers’ conjecture which asserts that the Bers embedding of T(0,4)

‘ig a Jordan domain.

- In the third part, we return to the case that I' is an arbitrary finitely

nerated Fuchsian group of the first kind, and continue to study the rela-

Qn_ships between Teichmiiller spaces and Bers fiber spaces. As we mentioned
:Ve'.:t.he Bers conjecture states that for »y,va,13 € {2,3,---} U {oo} with
{— -j; < 1, the isomorphism (0.1) admits a homeomorphic extension.
ural _rq_uestion to be asked is: what happens if I is any other Fuchsian
7 Th '.c)rem 3 answers this question when I is torsion free. The following

s a complete solution to problem (B1):

0.3’ Let I', T be arbitrary finitely genemted Fuchsian groups of the
sume that T' is not of type (0,3) and that I is torsion free. Then
s no isomorphism between F(T) and T(I"), or any isomorphism

o0 moduli spaces admits no homeomorphic extension to the




boundary of F'(I'}.

Teichmiiller spaces, we also investigate relationships among Bers fiber spaces

and among Teichmiiller curves. Assume that I' and I are finitely generated
Fuchsian groups of the first kind which may contain elliptic elements. Again,

let ¢ = (g,n;v1,...,v,) and o’ = (¢',n';v1,...,v,,) be the signatures of I" and

I'. f ¢ = o, then by a theorem of Bers [8], there exists an isomorphism,

- which is called a Bers allowable mapping, of F(I') onto F(I") (see §1.3 for :
- more details). The following result gives a partial solution to problems (C1)

and (C2):

|
|
Besides the above results on relationships between Bers fiber spaces and
heorem 0.4 Let T' be a finitely generated Fuchsian group of the first kind ’
s signature is 0. Assume that dim T(I') > 2, and thal ¢ is not (2,0;.-), |
. 2), (1,2;00,00), or (0,5;2,...,2,00). Also assume that T’ contains

one parabolic element if g < 1. Let I be a Fuchsian group of signature

en there is a fiber-preserving isomorphism @: F(I') — F(I") if and only

nd ¢ is a Bers allowable mapping.
Aﬁiong the entries of Table (C), we know that for some pairs
i¥n),(¢'sn')) there is an isomorphism of F(g,n;v1,...,vn) onto
(0.1)-(0.4). However, it is not known whether or not there
phism of F(g,n;11,...,v,) onto T(g',n’) for any other pairs in

|

|

ieorem 0.4 gives us information that if, for example, there is an



isomorphism of F(0,6;2,00,...,00) onto T(2,1), then we must have a non

fiber-preserving isomorphism of F(0,6;2;00,...,00) onto #(0,6;2,...,2).

Our approach to Theorem 0.4 relies on the following fact: every holomor-
phic automorphism of a Bers fiber space F(T') which keeps each fiber invariant
is an element of T', provided that I' satisfies the same condition as in Theorem
0.4. The proof of this fact is based on the results of Hubbard {26, Earle-Kra
[19] [20] which assert that the se t of {global) holomorphic sections of each Te-
ichmiiller curve is finite. (Again, there are a few exceptions, see Theorem 0.4

above or §4.1 for more details.)

As usual, let (g,7; v1, ..., v,) denote the signature of I'. Since the action of

I'on F(T) is holomorphic and keeps each fiber invariant, we form the quotient

he Teichmiiller curve and is denoted by V(g,n;vi,...,1,); 1t 1s a complex
anifold (see Earle-Kra [20]). Relationships among Teichmiller curves are

also investigated in this paper; we will discuss the following two problems:

somorphism between V{g,n;v1,...,u,) and V(¢',n';1q,...,v0),

D2) Describe all possible isomorphisms among Teichmiiller curves.

complete classification theorem (Theorem 4.4.1) for Teichmiiller curves,
w@_al known to experts but does not appear in the literature, is proved
;a,ié_o__examine all possible isomorphisms among Teichmiiller curves

2}.. The results obtained are viewed as natural generalizations of

siﬁ_ag:e V(T) = F(I')/T and the projection m: V(I') — T(T). V(I') is called

D1) Find all pairs ((¢,m; 1, ..y Vn g n's v, ..., 1)) for which there
1 n ]



Theorem 1.2.1, Theorem 1.2.2 and Theorem 1.2.3; their proofs involve general-
izations of Duma’s theorem [16] to Teichmiiller curves of orbifolds (Proposition

4.4.3 and Proposttion 4.4.4).

Aforementi_oned, Theorem 1.2.3 states that the group of holomorphic au-
tomorphisms of T(I') for a torsion free group I' coincides with the Teichmiiller
modular group Mod [' (there are a few exceptions, see §1.2 for details). Instead
of dealing with biholomorphic maps, we can consider a holomorphic surjective

map 7: 1'(g,n) — T(g,0), g > 2, and ask whether or not 7 is always a for-

- getful map (see §4.5 for the definition). The answer to this general question

is unknown. On the other hand, Earle-Kra [20] proved that 7 can be lifted to
a holomorphic map ¢ of V(g,n) onto V(g,0) if 7 is the forgetful map (where
. g,n) is the n-pointed Teichmiller curve, see §4.1 for the definition). We |
hall' show in this paper thz}t the converse remains true under Cerf;ain condi- i

jons on the surjective map T T(g,n) — T{g,0); that is, we will prove that a : |

f 7 exists if and only if 7 is the forgetful map.

paper is organized as follows. In Chapter 1, we briéﬂy review some

ﬁﬁitions and some fundamental theorems (without proofs) in the the-



T(2,1) which is useful in proving Theorem 2.1.2. In §2.3, we give another proof
of a theorem of Earle-Kra [19], which is ‘Theorem 0.1 in this‘paper. In §2.4,
we prove TheorémZ.l.Q. In §2.5, a preparation for proving Theorem 2.1.1 is
given. Some new methods of studying fhe conjecture of Earle and Kra are
developed. These methods will be applied repeatedly in §2.6, §2.7 and §2.8.
We also study an extension problem (detailed discussion is in the section), and
give a partial solution to the problem. §2.6, §2.7, and §2.8 are devoted to the
proof of Theorem 2.1.1.

In Chapter 3, we prove two non-extendibility theorems for the Bers iso-
morphism as well as its generalization. We also discuss propertieé of iterates
of hyperbolic modular transformations on Teichmiiller space by appealing to
results of Bers [10] and Gallo [22}.

. In Chapter 4, we study fiber-preserving isomorphismé among Bers fiber
ces and isomofphisms among Teichmiiller curves. We also study the forget-
ul rﬁaps of Teichmiiller curves. In §4.2 — §4.3 we investigate fiber-preserving
:i*phisms among Bers fiber spaces and prove Theorem 0.4. In §4;4 we
y isomorphisms among Teichmiiller curves. The problem as to whether or
these isomorphisms are “geometric” is also discussed; a partial solutibn is

§45 is devoted to proofs of these results.




Chapter 1

On Teichmiiller and Bers fiber spaces

In this chapter we review some definitions and some well known properties
of the theory of Teichmiiller spaces. More details can be found in [19], [20],

[2_3] and [39] All results quoted here will play important roles in our study.

Teichmiiller spaces

-.'l'i:e__ theory of Teichmiiller space is based on the fundamental work of

felz) = p(2) f:(2) RN ¢ B

) = fa(2)/ [z} is a measurable function whose L*-norm in
ie. Let D be a domain in C, and let L>(D) denote the

,_Ch_spface consisting of all measurable functions p defined in D




with || g Jlo= ess sup {|u(z)]; z € D}. Let M(D) denote the open unit ball

in L=(D).

Theorem 1.1.1 (Ahlfors-Bers [4]) For each u € M(C), there exists a unique
quasiconformal map f* of € = CU {oo} onto itself which solves the equation

(1.1} and fizes 0, 1,. 00. Moreover, for any fized point z in C, the map
p— fHz)
is a holomorphic function on M{(C).

Throughout this paper all quasiconformal maps which fix 0, 1, oo are

called normalized quasiconformal maps.
Let T be a finitely generated Fuchsian group of the first kind operating
n:.'the upper half plane U = {z € C; Im z > 0}. Let L®(U,I') denote the

ubspace of L*(U) consisting of all 1 € L*(U) with

p(zy ifzelUj

0 ifze L={z¢€C; Imz<0}.

‘Theo ér'n 1.1.1, one sees at once that there is a unique normalized

mal é.él_f—map w* of C, which solves the equation {1.1) with respect




to ji. The restriction w*|z is a conformal map. However, the domain w*(U)
may become very complicated.

Similarly, we construct

’

u(z) if z € Uj

uw(z) fze L={z€C; Imz < 0}..

\

denoted by w,, of U which solves equation (1.1) with respect to fi. Note that
w,(I/) = U and for each fixed z € U, the map p + w,(z) is real analytic.
A basic fact is that g € M(T') if and only if w,I'(w,)"" is again a (finitely

‘generated) Fuchsian group of the first kind.

- Two elements p, ' € M(T') are called equivalent (write p ~ p') if w# =

‘on R = @U. The equivalence class of deﬁned in this way is denoted

By Theorem 1.1.1 again, we can find a normalized quasiconformal self-map,




group Qn({1})/Qu({1}), where {1} denotes the trivial group and Qo({1}) is
the normal subgroup of Qn({l}) consisting of those w € @n{{1}) which restrict

to the identity map on R. It is easy to see that T(T) is the image of @,(T')

under the proje.ction Qu(T) C Q. ({1}) — T({1}).

A fundamental theorem of Ahlfors [3] (see also Bers [5]) states that the
Teichmiiller space T(I') has a unique complex structure so that the natural
projection ®: M(T) — T(I') (by sending p to [u]) is holomorphic. T'(T'), with
the complex structure defined above, is a complex manifold. The complex
dimension of T(I'} is 3g — 3 + n, where g is the genus of U/T and n is the
number of the distinguished points of U/I'. (In this thesis, by a distinguished
:point we mean a point on the closed surface —ff_ﬁ‘- which is either a puncture
of U/T, or a branch point on U/T’ cbming from the fixed point of an elliptic
element of I') An important ltheor.em of Teichmiiller [45] [46] asserts that T(T")

1is homeomorphic to R%~+2", This means in particular that 7(T) is a cell.

. The Teichmiller distance between two points [u] and [¢’] € T(T') is defined

<[], [¥] > log inf K(w),

It
b =

lere w runs over those quasiconformal self-maps w’ in Q(I') for which w’
with w, o (w,)"! on R and K (w) is the maximal dilatation of w. The

miiller distance is differentiable (see Earle [17}). It is also well known

(I'(I'), <,>) is a complete metric space.

we mentioned, since T(T') is a complex manifold, the Kobayashi pseudo-



metric on T(T') can be defined as the largest pseudo-metric d so that

d(f(z1), f(22)) £ pu(a1, 22),

for all holomorphic maps f of U into T(T") and for all z, 2z, € U, where py is

the Poincaré distance in U given by

|21 — Z2] + |21 — 22|
|21 — 22| — |21 — 25}’ |

pu(zy,z2) = log
A theorem of Royden [43] asserts that the Kobayashi metric on T(T") coincides
with the Teichmiller metric. |
The Teichmiiller space T'(I'), with its complex structure, can be realized
as a bounded domain of a complex Banach space By(L,T"}) (which is called
B;e'rs’ embedding of T(T')) defined as follows: tﬁe elements of By(L,T') are
hél?omorphic functions #(z) defined in the lower half plane L, with the following
) propertries:
(1) (b oy)(2)(V)(z) = ¢(z), for all y €T and all z € L;

_l_|_ ¢ ||l2=sup {|z — 2*|$(z}|; z € L} < 0.

. T(F) 3 ['u,] — {’w'u|L,Z} € BZ(L'JF)'




By Nehari’s theorem [40], we have || {w"|r, 2} |2< 3/2. Further, it is shown
n [12], [39] that the map (1.3) is a holomorphic bijection of T(I') onto a
holomorphically convex domain in By(Z,T’) containing the open ball of radius
1/2.

If we identify T(I') with its image under the Bers embedding described
above, the boundary of T(T') is naturall.y defined. . It was Bers who pioneered
the study of the boundary of Teichmiller space. Any boundary point of a
Teichmiller spa,ce' is characterized as a Kleinian group of special kind which
is called a b-group. Systerﬁatic investigations of boundaries of Teichmiiller

spaces can be found in Bers [6], Maskit [33], Abikoff [1] and McMullen [37].

1.2 Holomorphic maps of Teichmiiller spaces
._ Let T be as in §1.1, and let Ur denote all points z in U which are not fixed

iny elliptic element of T'. Then, the surface U/l is a compact Riemann

Let z4,...,z, be the n punctures of Up/I'". The ramification number v; of
't__Be order of the subgroﬁp of T fixing any point of U that lies over z; if
s parabolic, v; is set to be “00”. The collection

(9,771, ¥n) | 1

1 the signature of I', where v;, 2+ = 1,...,n are arranged so that 2 <

v, < oo. Tt is a known fact that there is a Fuchsian group I' with

ffé,(_:e of genus g with n points removed. The pair {g,n) is called the type of .

a }S:oint exists. z; is called parabolic if no such a point exists. In the case -



signature (1.4) if and only if

o1
20—2+ (1——)>0.

i=1 Vs

Qur discussion is based on the following result:

Theorem 1.2.1 (Beis—Greenberg [11]) Let T, IV be finitely generated Fuchsian

groups of the first kind. Assume thal I' and I' have the same type. Then the

Teichmiiller spaces T(T") and T(T') are-biholomorphically equivalent.

Remark. There are three different proofs of Theorem 1.2.1. See Earle-Kra

[19], Marden [32] and Gardiner [23].

Theorem 1.2.1 tells us that 7'(I") depends only on the type of T'. For this

reason, we usually denote by T(g,n) the Teichmiller space T(I') for a I' of

type (g,7n).
... For a moment, let T be of signature (2.0; ). Then U/T admits a hyperel-

liptic involution J which leaves precisely 6 points (which are called Weiersirass
oints) fixed. Lifting J to U we obtain a J € PSL(2,R) such that J and T
enérate a Fuchsian group ['g. It is.clear that T is the normal subgroup of
.th index 2 and the signature of Ty is (0,6;2,...,2). Note also that dim
dim T(I‘j = 3. This implies that T(T) = T(F) Similar phenomena

cur when I' is of signature (1,2; 00, 00) or (1,1;00). We obtain

7(0,6) 2 T(2,0), T(0,5) = T(1,2), TO.4) =T, (15)

al question arises as to whether or not there are some other isomor-

ns between Teichmiller spaces. This problem is solved by the following



Theorem 1.2.2 (Patterson [42]) (1.5) exhausts all isomorphisms between Te-

ichmuller sﬁaces with distinct types.

Remark. Barle-Kra [18] gives another pfoof of this theorem by using Royden’s

technique developed in [43).

Given a Fuchsian group T, an automorphism 8 of I is called geometric if
there is w € Q(T') such that §(y) = wovyo(w) *forally €T. Let w' € Q(I).
Then w' 0y o (w)™' = woyo(w)™" for all y € I' (that is, w and w' induce

thé same geometric isomorphism 6) if and only if w|g = w'[g.

The Teichmailler modular group Mod T' is defined as the group of geémetric
;a.:litomorphisms (denoted by mod I‘) modlulo the normal subgroup of inner
utomorphisms. The a,cti-on of x € Mod I on T(T') is defined as follows: Let
i)e the. .im'a,ge of  under the quotient map ¢o: mod I' — Mod I', and let
€ Q(I) be chosen so that 6(7y) = woyo(w)"! for y € I'. For any '# € M(I‘)‘,
':Bg]tra,mi coefficient ¢’ of the map w, o w™! is given by the formula: |

v(z) + (o w™)(z) - () /(247) (16)
L+ 7(2) - (mow™)(=)- (B35

is the Beltrami coefficient of w™'.

w(z) =

t is easy to check that g belongs to M(T") and [u'} € T(T) depends on
n_(__)_t. on § and w. Hence, (1.6) induces an action of x on T'(I') (defined
ing (1] to [¢]) as a holomorphic' automorphism. Thus, the group Mod
| T(I‘) as a group of biholomorphic maps. Note that the action of

not always faithful, by which we mean that distinct elements of Mod



I' do not necessarily induce distinct holomorphic automorphisms of T(I'). To

see this, let Aut (7'(g,n)) denote the group of holomorphic automorphisms of

T(g,n). Then
Aut (T(2,0)) = Mod (2,0)/Z, = Mod (0, 6),
Aut (T(1,2)) = Mod (1,2)/Z; = Mod (0, 5),

Aut (T(1,1)) & Aut (T(0,4)) = PSL(2,R),

Il

Aut (T(0,3)) = {id},

where Mod (g,n) is the Teichmiiller modular group Mod I' for I' a torsion

free group with type (g,n), and Z; stands for the subgroup of Mod (2,0)

tesp. Mod (1,2)) determined by the hyperélliptic involution on a surface of
type (2,0) (resp. a surface of type (1,2)). However, we have the following

1mp ortant result:

Theorem 1.2.3 (Royden [43], Earle-Kra [19]) Let I' be a torsion free finitely
enerated Fuchsian group of the first kind with type (g,n). Then the full group
holomorphic automorphisms of T(T') is isomorphic to Mod T' except when
is (0,3),(0,4),(1,1),(1,2), or (2,0), and the above table exhausts all the

ntional cases.

We still assume that the group I' may contain elliptic elements. Obviously,
group of holomorphic automorphisms of T(T") depends only on the type
f T and not on its signature. However, Mod I' really depends on the

ire of I'; namely Mod I"may be a proper subgroup of Mod I for I a

22




torsion free group with type (g,7). Mod I is isomorphic to Mod I" if and only
if all distinguished ‘points on a surface are either punctures, or branch points

which have the same ramification number.

1.3 Bers fiber spaces

The Bers fiber space over T(T'), denoted by F(T'), is a subset of T(T)xC
consisting of pairs ([¢], z), where. [u] € T(T), and z € w*(U). Let 7: F(I') —
T(I'} denote the natural (holomorphic) projection onto the first factor. From
the deﬁnitioﬁ and certain well-known facts, we see that the fiber of 7 over a
point [¢] € T([') is the quasidisk w‘i(U ) which depends only on the equiva-
leﬁce class of . F(I'), as an open connected and simply connected subset of

ng‘“", becomes a complex Banach manifold modeled on By(L, ') @ C, and

the projection x is a holomorphic submersion.

Suppose that T' and I are two Fuchsian groups with the same signature.

T-:'h._en,' there exists w € Q(T') such that wl'w=! = T. By a theprem of Bers

Although T(T) depends only on the type of I' (Theorem 1.2.1), F(T)




depends on the signature of I'. For the convenience of the reader, we provide
some examples to illustrate this phenomenon. Let F(g,n;u1,...,v,) denote

the Bers fiber space F(T) for a group I' of signature (g,n;v1,...,v,).

N

Ezamples. If the signature (g,n;24,...,v,) of I' has the property that 2 <
v; < oo for some ¢, 2 € {1,...,n}, then Theorem 0.1 (Earie—Kra) asserts that
F(g,n;11,...,v,) cannot be isomorphic to any Teichmiiller space. On the
other hand, the Bers isomorphisﬁ theorem [8] states that F(g,n;00,...,0)

is isomorphic to the Teichmiiller space T(g,n +1). Thus, F(g,n;v1,...,vp) is

not isomorphic to F(g,n;00,...,00) if 2 < »; < oo for some i € {1,2,...,n}.

Another interesting example is given implicitly by Theorem 0.1 and The-
.orex.n 0.2. From (0.4) in the introduction, we know that F'(0,4;2,2,00,00) &
F(0,4:2,2,2,00) = F(0, 4;00,00,00,00) = T(0,5) = T(1,2). On the other
hand, Theorem 0.2 asserts that F(0, 4;2, oo, oé, o0) is ﬁot isomorphic to T'(0,5)

T(1,2). From Theorem 0.1, we gee that 7(0,5) and T(1,2) are the only

0,4;2,2, 00, 00) nor F(0,4;2,2,2, c0), while F(0,4;2,2,00, c0) and F(0,4; 2,
oo) are isomorphic to each other. This example tells us that two Bers fiber
ces F(I') and F(I') may or may not be isomorphic to each other even if
ind I have the same type, both contain only elliptic elements of the same

_:but their signatures are distinct.

nsolved Problem. Describe all isomorphisms between Bers fiber spaces.



Suppose now that we are given a Bers fiber space F(I'). As we see in §1.2,
the modular group mod I is defined as the group of geometric automorphisms
of T'. An element 6 € mod T’ acts biholomorphically on F(T') as follows: let 8

be represented by w € @(T), then

where v is the Beltrami coefficient of the map w* o w™!, and 2 = w” o wo
(w*)~(z). The action of mod I" on F/(T'} is called effective if for any non-trivial
f € mod T, there is an « € F(I') with 8(z) # z. Since mod T acts effectively
on F(I'} (Theorem 6 of Bers [8]), we usually identify the group mod I' with

“its action on I'(T').

Theorem 1.3.1 (Bers [8]) The modular group mod T' acts as a group of bi-
ﬁ_olomorphic‘ automorphisms on F(T') inducing the Mod T action on the base

Teichmiiller space T(T).

Since T is centerless, T is isomorphic to the group of inner automorphisms

I‘ by associating to each v/ € T’ the automorphism v +— y’07yo0 A= .na,mely
cts by conjugation as automorphisms of I'. It follows that I' ié isomorphic
‘a normal subgroup of mod I' which we denote by I' also. In particular,
e mod [ is identified with its action on F(T), T acts.on F(I') as a group

n_ioi‘phic automorphisms; the action of ¥ € T on F(I'} is given by

0([p), z) = ([r], 8), ‘ (1.7y



phisms of T', as we discussed above. If § € mod I, and x is the image of ¢ in
Mod T via the natural quotient homomorphism ¢o: mod I' — Mod T, then it

is easy to see that the following diagram is commutative:

P(T) —— F(I)

Note that the action of every element # € mod I' on F(T') is biholomorphic,
properly discontinuous, fiber-preserving, and effective. Moreover, every ele-
ment of I' can be viewed as a holomorphic automorphism of F(I') which leaves

invariant each fiber of «.

We assume, for the moment, that I' contains some elliptic element e, and
'.'t_}:i.a,t zg € U is the fixed point of e. For any {1} € T(T), there is only one fixed
point z, = w(z) of ¢* = w* oeo(w*)~! in the quasidisc w*(U). This implies

at :.the map | |
s: T(T) — I(I)

efined by sending [4] to ([u],2,) € F(T) is a section of 7 : F(I') — T(T).
’ depends holomorphically on g € M(I') by Theorem 1.1.1, the section
fined above is a holomorphic section. The image S(T(F)) under the map
.'plex manifold Which is “nicely” embedded in F(I') and is isomor-
(I‘) This phenomenon was first discussed in Earle-Kra [19]. Iﬁ this

ery elliptic element of I' produces a holomorphic section of 7. These

r'é'usua,lly called canonical sections of w. If T is torsion free, then,




in general, there is no élobal holomorphic section of 7: #(I') — T(T'). Fortu-
nately, instead there exists a biholomorphic equivalénce (which is called a Bers
isomorphism in the literature) between F(I') and T(g,n + 1). In this regard,
the theory of Bers fiber space F¥ (T") for a torsion free group I' with typ.e (g,n)
is parallel to the theory of Teichmiller space T(g,n+ 1). For more details on

this approach, the reader is referred to Kra,-[QS]. In Chapter 3, we will discuss

in more detail this important isomorphism.




Chapter 2

On a conjecture of Earle and Kra

The Bers fiber space F(I') for ' a torsion free finitely generated Fuchéian
‘group of the first kind can bé identified with a Teichmiller space. If I' has
‘torsion, Theorem 0.1 asserts that in most cases I7(T") is not isomorphic to any
Teichmiiller space. There are altogether 39 exceptiona} cases whiéh remain to
e setiled. See Table (B) in the introduction. In this chapter, we are mainly
_ﬁ@erned with the conjecture of Barle and Kra [19], and rule out 27 cases

om 39 previously unknown cases mentioned above.

Restatement of Theorem 0.2

I' be a finitely generated Fuchsian group of the first kind which con-
elliptic clements. Assume that T' is of type (g,n). The major task of this

s to prove the following theorem:




Theorem 2.1.1 (1) Assume that (g,n) = (0,8) and that the signature of T is

neither

(0,8;2,2,2, 2,2,2, 00, 00)

nor (0,8;2,2,2,00,00,00,00,00),

then F(T) is not isomorphic to T(3,0). Hence F(T) is not isomorphic to any
Teichmiller space.

(2) Assume that (g,n) = (0,7) and that the signature of ' is not in the

following list:

(0,7;,2,2,2,2,2,2,00)
(0,7;2,2,2,2,00,00,00)

(0! 7: 21 23 00, 00, 00, &0, OO),

then F(T') is not isomo.rphic to T(2,2), and thus F(T') is not isomorphic to
any Teichmiiller space.

 (8) Assume that (g,n) = (0,6). If the signature of I' is neither

(0,6;2,2,2,2, 00,00)

nor  (0,6;2,2,2,00,00,00),

(T') is not isomorphic to T(1,4).
(4} Assume that (g,n) = (0,5) or (1,2). Then F(I') is not isomorphic -
3) (hence it is not isomorphic to any Teichmiiller space) if one of the

i

ving conditions is satisfied:



(i) T is of type (0,5), and the signature is neither

(0,5;2,2,2,2,00)

nor  (0,5;2,2, 00, 00,00),

() T is of type (1,2), and contains elliptic elements.

(5) Assume that (g,n) = (0,5) or (1,2), and that T' contains elliptic

elements. Then F(I') is not _isomofphz'é to T(0,6) nor T(2,0).

(6) Assume that (g,n) = (0,4} or (1,1). Then F(T') is not isomorphic
to T(0,5) nor T(1,2) (hence it is not isomorphic to any Teichmiiller space) if
one of the following conditions is satisfied:

(z) T 4s of type (0,4), contains elliptic elements, and the signature 1is

neither

(0,4;2,2,2,00)
nor  (0,4;2,2, 00,00},
(2) T is of fype (1,1) and contains elliptic elements.

Remark. Note that the above theorem removes 26 entries from Table (B) in

e introduction.

" The basic idea which was used to prove Theorem 0.1 is the following.
First, we think of T' as a group of holomorphic automorphisms of F(T') (see
3 for the deﬁnitions). Assume that the pair ((g,n),(g’,n")) does not lie in

(A) in the introduction, where {g,n) and (¢’,n’) are the types of I' and



v, ‘respectively. Then a cyclic subgroup G of T' (with prime order) can be
chosen so that G acts on F(I') as a group of holomorphic automorphisms, but
G cannot act on T(I") as a group of holomorphic automorphisms. In addi.tion,-
G acts trivially on the image of the holomorphic section of » : F(I') — T(T)

corresponding to the elliptic generator of G.

In contrast, our method is slightly different from the above. We construct
a cyclic group ¢’ (with prime order too) of holomorphic automorphisms of
F(T') satisfying the condition that G’ is not a éubgroup of I', but it is still fiber-
preserving and leaves invariant the image of a special holomorphic section of
# : F(I') = T(T). This construction depends essentially on the signature of
I". We will check that if the signature of I" satisfies the condition of Theorem
2.1.1, then G’ cannot act as holomorphic automorphisms on the corresponding

Teichmiiller space.

It should be indicated that the method developed in this chapter has its

wn limitation. The reasons that Earle-Kra’s conjecture can not be completely

(1) Either the cyclic group G’ we constructed really acts on the corre-

sponding Teichmiiller space; this situation occurs, for example, when the pair

",_h; Vis..oy¥n),(g',n’)) lies in the 3rd row of Table (B) in the introduction;

(2) Due to lack of knowledge on conformal automorphisms of certain spe-
Ri'ema,nn' surfaces, we do not see whether or not the group G’ acts on the

e'éponding Teichmiiller space.



In the attempt to handle certain difficult situations which are not included
in the statement of Theorem 2.1.1, a new method will be introduced which

enable one to settle one more case; that is, we have the following result.

Theorem 2.1.2 The Bers fiber space F(0,6;2,2,2,2,2,00) is not isomorphic

to the Teichmiller space T(2,1).

Remark. 1t follows from Theorem 0.1, Theorem 2.1.2, and Theorem 2.1.1 (3)
that the Bers fiber space F(0,6;2,2,2,2,2, c0) cannot be isomorphic to any
Teichmiiller space. We see here that the two spaces F\(0,6;2,2,2,2,2,00) and
F(0,6;2,2,2,2,2,2) are éssehtia.liy distinct. Note also that this theorem gives
us one more example for the assertion that F(I') depends on the signature of

I

If T is of signature (0,6;2, 00, o0, 00, 00, 00) or (0, 6;2,2, 0o, 00, 0o, 00), by
‘Theorem 2.1.1 (3), F(T') is not isomerphic to T'(1,4). VHowever, there is no
.--known proof asserting that F(I') is not isomorphic to T(2,1). On the other
hand, Theorem 0.1 states that F(T') is not isomorphic to any other Teichmiller
space distinct from T'(2,1), and that T'(2,1) is the only Teichmiiller space to
hich F(0,6;2,2,2,2,2,2) is isomorphic. See {0.2) in the introducﬁion.

If T is of signature (0,5;2,2,00, 00,00), then by Theorem 2.1.1 (4), F/(T)
-no% isomorphic to 7(0,6) (or T(2,0)), but we still do not know whether F/(I')
worphic to (1, 3). We also see that T'(1,3) is the only Teichmﬁile;' space

which F(0,5;2,2,2,2,00) can be isomorphic (see (0.3) in the introduction).

‘spite of the complexity, Theorem 2.1.1 (5), (6), and (4 (ii)} give a



complete solution to Bers' question in some low dimension situations. More
precisely, the Earle-Kra conjecture is true if the pair ((g,n), (¢',n’)) lies in the

following table:

((0,4),(0,5)), ((0,4),(1,2)), ((1,1):(1,2))

((1,1),(0,5)), ((1,2),(1,3)), ((1,2).(0,6))

((1,2),(2,0)), ({0,5),{0,8)), ((0,5),(2,0))

As we mentioned earlier, our work still leaves 12 cases which remain open.

They are listed in the following Table (C’):

signature {g,n;v1,...,vn) of T | type (g',n') of T’
(0,8;2,...,2,00,...,00), m=3,6, (3,0)
S s, rbntn”
™ 8—m
(0,7:2,...,2,09,...,00), m=2,4,6, (2,2)
S S e
m 7—m
(0,6;2,...,2,00,...,00),m=1,...,4, (2,1}
S e’ e e
m 66—
(0,6;2,...,2,00,...,00), m = 3,4, (1,4)
e e’ e, e
m 6—m
{0,5;2,2, 00, 00,00) (1,3)
Table (C')

\lthough Theorem 2.1.1 and Theorem 2.1.2 only give a partial solution

rds Bers’ question, it has an interesting consequence stated as follows:



Theorem 2.1.3 Let I be o finitely generated Fuchsian group of the first kind
of type (g,n). Then the Bers fiber space F(T') is isomorphic to the Teichmiiller
space T(g,n'+ 1) if and only if one of the following conditions is satisfied:
(1) T is of type (0,3); |
(2) The signature of T is either (0,4:2,2.2, 00), or (0,4;2,2,00,00);

(3) T is torsion free.

Qutline of proof. TFirst we prove the “if” part. If T" is of type (0,3), then
~ the assertion follows from (0.1) in the introduction. If I' is torsion free, it
is the Bers isomorphism theorem. If condition (2) holds, then from (04) of
the introduction, ,oﬁe sees that I7(0,4;00,00,00,00) = F(0,4;2,2,2,oo) =
F(0,4;2,2,00,00) = 7(0,5).

Next, we prove the “onljf if” part. Suppose that no conditions (1) (2) (3)
hold, and that F(T") is isomorphic to a Teichmiller space T(I") for some group
| I of type (g,n -+ 1). This means that T' contains elliptic elements, and hence
~the condition of Theorem 0.1 is satisfied. By using that theorem, one finds that
all elliptic elements of T' must be of order 2, and moreover, by checking Table
(B) in the introduction, one sees at once that only several possible situations

n occur, which are:

(1) (g,myvgy ey tty) = (0,5;2,...,2,00,.;.,oo|, 0<k<5and(¢,n)=
k 5k
6);

' (2) (g,m 01,0 ) = (1,2;2,2) or (1,2,2,00) and (¢',n') = (1,3);

@) (gymsom, ) = (1, 1;2), and (g',n') = (1,2);

(4) (9,50, va) = (0,4;2,00, 00, 00) and (g’,n’) = (0, 5).




But all these cases are excluded by Theorem 2.1.1 (4) (5) and (6). This

completes the proof. O

2.2 Topological aspects

The purpose of this section is to construct, by means of purely topological
methods, some interesting periodic automorphisms of surfaces. We will also
study the structure of the componenté of hypefelliptic loci in the Teichmﬁllef
space T'(2,1), and will prove that any two components of hyperelliptic loci in
T(2,1) are modular equivalent (Proposition 2.2.7). The result we obtain 1s
.interesting in its own right and will play a crucial role in proving Theorem

2.1.2 as well.

Thi‘oughout this paper, we use the phrase “self-map” to denote a quasi-
- conformal self-map of a Riemann surface; and use the phrase “self-map in the
sense of orbifolds” to denote a quasiconformal self-map of an orbifold which

carries a branch point of order v to a branch point with the same order.

Let A = {z, |2| < 2} be parametrized by the polar coordinates (r,a).
Define 6 : A — A as &(r,@) = (r,a—rr). Let 23,1 =12,...,n, 7 23,
e n distinct points on C=cC .U {00}, and let 73, ¢ =.1,...,n — 1, be any
mbeddings of A into C with the properties that 7;(A) contains z; and -T;41,

s disjoint from all z; for j # #,i + 1. Suppose that (1,0} = =;, and
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7:(1,7) = ;1. We obtain a self-maps o; on C defined by

z if z ¢ 7,(A)

rodort if € n(A).
\ .
Intuitively, o; is a self-map interchanging z; and z,4y, and is the identity
- outside a neighborhood of z; and z;11. Observe that for ¢ = 1,2,...,n, 0y 18
a self-map on the punctured sphere € — {z;...,2,). Note also that o; is a
self-map (in the sense of orbifolds) of the orbifold X, where X is the Riemann

sphere C with » branch points Ty,...,2y of order ».

Remark. o, is usually called an elementary twist. For more details about the
map o;, the reader is referred to Birman-Hilden [14]. Elementary twists can
also be defined on an arbitrary orbifold provided that the two distinguished
points involved have the same ramification number. Some intefesting results
_on Teichmiiller modular group may be obtained by more careful investigations
of elementary twists. The study of this object is closely linked to the theory

of knots and braids, see Birman [13] for a discussion.
Consider the fo‘ll‘owing self-map of C:
O = 0pip0-++00]. ' (2.2)

s easily seen that o fixes z,, and realizes a permutation of the set {z1,...,Zn}.

oreni of Magnus [31] shows that, as a self-map of C—{z1,...,2,}, 0 is



periodic and its order is n—1 {up to isotopy). The isotopy I: Cx[0,1] — C be-
tween o™ ! and the identity may be chosen so that I{z;,f) = z;, for 0 <t <1
and § = 1,...,n

In general, let oo be a self-map of ¢ - {z1,...,2n}. Then oy can be
extended to a self-map of € and therefore, oo determines a permutation of

{1,...,2,}. We need the following simple lemma.

Lemma 2.2.1 If we assume that oy is a periodic self-map (up to isotopy) of
the punctured sphere C— {1,...,z,}, and also assume that oy keeps.k >3

~

punctures € {zy,...,2,} fized. Then oy is isolopic to the identily on C —

{Il,...‘,xn}.

_Proof. The extension of og to € is denoted by Go. As we see above, Go is a self-
map with the property that it permutes the set {z,...,z,}. By hypothesis,
oo induces a elliptic modular transformation (in the sense of Bers [9]) on the
Teichmiiller space T(€ — {21, ...,2,}). (The definition of Teichmiiller space of
a Riemann surface is given in §3.2.) Thus Nielsen’s theorem [41] implies that
-tilere is a n-punctured sphere, say ¢ — {z1,...,2,}, on which oy is isotopic to
_conformal self-map. The isotopy can be chosen so as to fix 21,...,2n. S0 p
nust be isotopic to a Mobius transformation. Since &, leaves more than two
oints fixed, this Mobius transformation is the identity. It follows that og is
sotopic to tﬁe identity, as claimed. m _

et X be a Riemann surface of type (g,n) with 29 —2+n > 0, and let X
he compactification of X which is obtained by filling in all punctures of X.

pos_e that X is hyperelliptic; that is, X admits a hyperelliptic involution J..



Here by a hyperelliptic involution on a Riemann surface X of type (g,n) with
9¢—2+n >0 and n > 0, we mean a conformal involution on X (hence on X)
which has 2¢ +2 fixed points on X, interchanges pairwise the n punctures if
n is even, and fixes one puncture and interchanges the other n — 1 punctures
pairwise if n is odd.
Now let X be a hyperelliptic Riemann surface, and let J be the corre-
sponding hyperelliptic involution of X. Let ¢: X — X/< J > denote the
| natural projection. We know that J has 2¢ + 2 fixed points on X, thes-e
fixed points are called Weierstrass points of X. Their images under ¢ are on
X /< J >, all of which are branch points of order 2. We see that X/<J>isan
orbifold with signature (0,2¢+2;2,...,2). In vx.rhat follows, X is always taken
_as a symmetrically embedded surface (about z-axis) in R®. In this setting, J
: 35 bonéidered as a 180° rotation about z-axis.
Let f be a self-map of X/< J> in the sense of orbifolds; that is, f carries
a Point over which the covering ¢ : X - X/< J > is ramified of order 2 or
oomto another such point with the same order. [ always lifts to a self-map
X ‘— X (see Birman-Hilden [14] for a construction} so that the following

lagram is commutative:

to see that if f is a lift of f, then J o j is also a lift of f. And




these are all possible lifts of f. Now choose a simple closed curve ¢ on X with
an arbitrary orientation so that it is symmetric about the z-axis (reca,l_l that
X is embedded symmetrically about z-axis in R3). These curves are called
canonical curves in the sequél. The following properties are immediate:

(1) J(e) = ¢

(2) J reverse the orientation of ¢, and hence J is not isotopic to the

identity.

It follows that f and Jo f cannot be isotopic to each other. Observe also
that f and Jo f are all of the lifts of f and they lie in the normalizer of < J >;

that s, foJo(f)™' = J and (Jof)oJo(Jo f)™! = J. The following lemma

is an easy consequence of a theorem of Birman-Hilden [14].

Lemma 2.2.2 Under the same notation as above, f is isotopic to the identity
on X/ < J > if and only if either forJoJ (but not both) is isotopic to the

identity on X.

:._Proof. Suppose there is an isotopy I: X/<J> x [0,1] — X/<J >, connecting
-f and the identity. By utilizing the result of [14], as we mentioned earlier, for

 fixed to, 0 <t < 1, I{2,1,) can be lifted to a self-map of X. It follows from

X % [0,1] > X such that for all € X, I{2,0) = = and I(-,1) is a lift of
~which is either f or J o f. Since f is not isotopic to J o f, only one case
i occur. Conversely, we assume first that f is isotopic to the identity. Since
-J'-'symﬁletric, by a theorem of Birman-Hilden [14], f is isotopic to the

ntity by an isotopy I: X x [0,1] — X which is J-symmetric as well. This

thiﬂuity that I(z,t), 0 <t <1, z-€ X/<J > can be lifted to an isotopy




means that | (+,t) is J-symmetric for all § < ¢ < 1, which in turn implies that
I(z,t) can be projected to an isotopy connecting f and the identity. Similarly,
if J of is isotopic to the identity, then the projection of Jo f, which is also f,

1s isotopic to the identity as well. The lemma is proved. O

We consider now a general situation. Let X be a hyperelliptic Riemann
surface of genus ¢ with one puncture. The associated hyperelliptic involution is
denoted by J. According to the definition given earliér, the puncture is one of
the 2g + 2 Weierstrass points. Let z4,..., 25,40 € X denote these Welerstrass
points. Assume that g4 is the puncture of X.

"The geometric intersection number of two unoriented non-separating, sim-
ple closed curves a and # of X, denoted by ¢(a, 8), is the minimal number of
intersections of & and B as @ and 3 run over free homotopy classes of e and
3, respectively. By definition, a canonical curve « satisfies the condition that
J(a) = a. Since J: X — X is considered as a 180° rotation about the z-axis,
a must contain only two fixed points. Moreover, & can be parametrized as
Saff), 0 <6 < 2x, so that a(f) contains only two Weierstrass points «(0) and

(7).

A chain for 414 is a 2g-tuple (a1, Bi, ..., 4, ;) of canonical curves on
! with the following properties:

(1) iag,an) = 0, i(85, B) = 0, ilay, B;) = 1, for 1 < 4,k < g;

(2) i(f;ya501) = 1, for 1 < 5 < g — 1;

(8) iy, ) = 0, for L S j,k <., 5 # bk + 1.

ample 1. Figure 1 below exhibits a chain for &, in the case of g = 5.




Remark. In [36], J. D. McCarthy introduced another concept for chain (which
is called mazimal chain in his language) for compact Riemann surfaces. Our

approach is similar to [36].

Figure 1.

‘A Dehn twist h, about a simple closed curve ¢ on a Riemann surface S
is defined as follows. Let A be an annular neighborhood of ¢ parametrized by
the polar coordinates (r,0), —1 < r <1, and 0 < § < 2 such that ¢is defined

by r = 0. Then, &, is the identity outside A. Fix z = (r,8) € A, we have

geometric interpretation of &, is: cut S open along c, twist one end through
and then glue back along c. Obvidusly, the homotopy class of k., depends
on: the free homotopy class of e Thus, the modular transformation in-

by h. depends only on the free homotopy class of ¢. Another property




is that if f is a self-map of S, then
fohe.o f_l = hf(c)- (23)

Our object now is to express the hyperelliptic ihvolution J in terms of
"a. composition of Deim twists about some canonical curves. To each hyperel-
liptic Riemann surface X we can associate a sel of canonical curves (that
is, those curves on X which are symmetric about the z- axis}. Now let
C = (a1, P, .., B) be a chain for x4, (C is a set of canonical curves

which satisfies the properties (1) (2) (3) in page 38). Define
h=hg, 0hay 0 0hg 0k, (2.4)

The followihg lemma is based on a geometric argument of [14]. Recall the
definition of o is givé11 by (2.2). For our purpose, the map o can be viewed as
a self-map of X/< J> in the sense of orbifolds. Again, ¢: X — X/ < J > is

the natural covering map.

':.'Lemma 2.2.3 The self-nap h of X deﬁned in (2.4) is isotopic to a self- map

which can be projected to a self-map of X/<J> (in the sense of orbifolds)

For completeness we sketch the proof. Consider a single Dehn twist k., about
th canonical curve ;. Let x; a,nd T, be the two Welerstrass points on «;.
he Dehn twist kg, is isotopic to the twist h: , constructed as follows: cut X
e along a;, twist one end through =, twist the other end through 7 also,

then reattach X along c. We see that b, has the following properties:




(1) Ay, leaves invariant the canonical curve o and interchanges z; and
L2;

(2) A, is the identity outside a small neighborhood N(a1) of oq;

(3) Al commutes with J.
Hence A, can be projected to a self-map o/ on the orbifold X /< J>. By
(1) (2) above, o} interchanges ¢{z1) and ¢{(z,), and is the identity outside a
disc enclosing ¢(z1) and g(x2). In particular, of fixes ¢{aa),...,¢(7242). Note
that g{zgy42) is a puncture. |

We claim that of is isotopic to o (defined by (2.1)) on the 2¢+2-punctured
sphere X/<J> —{q(zy),...,q(z2541)}. To see this, we need to investigate, in

a small disc enclosing ¢(z1) and ¢(z2), the alteration of a foliation by the map

o7 ' o o). A typical situation is illustrated in Figure 2:

’
G
qi{xp alxg)

Figure 2.

- See Thurston’s lecture notes [48] for a discussion. Since this technique is not
_heeded in this paper, we omit the details, and conclude that o} is isotopic to
51 on the 2¢ 4 2-punctured sphere X/<J> —{q¢(z1),...,9(22041)}. -

Similarly, for each i = 2,...,g, h,, (resp. hg,) is isotopic to a self-map
ki, (resp. hj) which can be projected to a self-map of X/ < J > (in the

nse of orbifolds) isotopic to o;_; (resp. og;). From (2.4) we see that A =



hp, 0 hay 0« -+ 0 hg, 0 hy, is isotopic to hj o ki, o---ohp ok, which can be

projected to the map ¢’ isotopic to ¢ = g3 0---¢y. This finishes the proof of
9 P

Lemma 2.2.3. O

From Lemma 2.2.3, one sees immediately that & is isotopic to a lift of 0.
Since o@t! is isotopic to the identity on X/<J > —{q(=z;),...,q(®29+1)}, by
Lemma 2.2.2, h%+! is either isotopic to J, or isotopic to the identity. But a
simple computation tells us that h20*! reverses the orjentation of the chain for
Tyy4q Of canonical curves (giye arbitrarily an orientation to the curves before

doing the Dehn twists). We see that h%*? is isotopic to J. We thus have

Lemma 2.2.4 As a self-map of X, the hyperelliptic involution J is isotopic

to (hp, 0 ho, 0 0hp 0 b, )T ]

Fzample 2. We consider a Riemann surface X of signature {1,1;00). X is
a punctured torus, which can be represented as C/G, — {0}, where G, =<

A, B > is the group generated by translations A: z = z+1land B : z = z+T,
“for some T € U. A fundamental region for G, is shown in Figure 3(a), where

the origin is the puncture. Consider the involution j : z — —z. A computation

joC(z)=C"1oj{z), forany C€G,. - (2.5)

}i_ié_means that j can be projected to a conformal involution J of X. Note

i X/ < J > is a Riemann surface of signature (0,4;2,2,2,00).



Let g(21), g(z2), ¢(x3) € X/ < J > denote the three branch points of order
2,'and let g(z4) denote the puncture. By pasting the opposite sides in Figure
3(a), X can be dra,v}n as Figure 4, where ¢}, ¢}, come from identifying the
opposite sides ¢; labeled in Figure 3(a). By construction, J(¢}) = ¢! (1 = 1,2),
and & che ey .is isotopic to z4. Moreover, {c], c’z} constitutes a chain for z.

Define h = hy © bt Obviously, A is a self-map of X fixing the puncture. By

Lemma 2.2.4, 3 is isotopic to J.

cl ’ ¢l

./ / /'
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cl <l
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Figure 3.

Ezample 8. Now let X be a Riemann surface of signature {1,2;00,00), and
..let X be its compactification. Let G, be as in Example _2. Consider the
ji_niversal covering C of the torus X. The preimages of the pair of punctures
(zy,z2) form two lattices. Let us denote (#;,%;) one pair of preimages of
1, z,). Any fundamental region for G, contains exactly one pair of preimages
(z1,22). By cémposing with an Euclidean motion of C if necessary, one may

sstime that (#;, #;) are symmetric about the origin. In this case a fundamental




domain (parallelogram) D for G, can be chosen so that I is symmetric with
respect to the origin and one pair of sides of D is parallel to the z-axis. Let
ez = DN {z — axis}. Without loss of generality, we assume that # and &,
are not in ¢z. Otherwise we choose D N {&} as c3, where &; is the segment
in D which pasées through the origin and parallel to the other pair of sides
of D. See Figure 3(b). Again, the mapping j : z +— —z interchanées the two
punctures ¥; and &, in D and satisfies (2.5). Hence, X admits a hyperelliptic

involution J interchanging the two punctures (obtained by projecting j).

Figure 4.

Note also that X/< J > is a Riemann surface with signature (0,5;2,...,2,00).
By pasting the opposite sides in Figure 3(b), X can be drawn in Figure 5; where
i, ¢4, come from the boundary of I by “pasting procedure” and ¢ comes from
&s by identifying the endpoints. One sees that J(c}) = ¢, for ¢ = 1,2,3. Let
h = hy ohey ohe. By the séme argument as above, & is isotopic to a lift of &
(described in {2.2)). Since o* is isotopic to the identity, by Lemma 2.2.2, h* is
either isotopic to the identity, or isotopic to J. From the construction, & fixes
the two punctures, while J interchanges the two punctures. We see that A* is

- not isotopic to J. So h* must be isotopic to the identity.



Figure 5.

The above two examples will play roles in proving Theorem 2.1.1 (4) (5)
and (6). Néw, we proceed to study the components of the hyperelliptic loci in.
T(2,1). The discussion given below is crucial in proving Theorem 2.1.2. In our
particular situation; that is, X is of type (2,1), X is hyperelliptic if and only
if its puncture is one of the six Weierstrass points of X. Every component
of the hyperelliptic loci of T(2,1) is the fixed point set of an {elliptic with
order 2) modular transformation induced by a hyperelliptic involution on a
marked Riemann surface in T(2,1). It is a connected, closed submanifold
of T(2,1). Conversely, every elliptic modular transformation induced by a
hyperelliptic involution determines a fixed point set, which is a component of
he hyperelliptic loci. We see that the set of components of the hyperelliptic
oci in T(2,1) is one-to-one correspondent with the set of isotopy classes of
'i}éilta,tion-preserving self-maps represented by hyperelliptic involutions. Let
e a component of the hyperelliptic loci in T'(2,1). By using Lemma 2.2.4,
onclude that the corresponding hyperelhptlc involution J is 1sotop1c to
.(.h.',gz 0 hﬂ; o kg, © hyy)®. Two chains for ¢ are called equivalent if they
invariant under the same hyperelliptic involution. Since h is uniquely

rmined by the chain C = (e, B1, a2, f2), we obtain

2.2.5 There is a bijection between the set of components of the hy-




perelliptic loci in T(2,1) and the set of chains for xs modulo the equivalence

relation. 0

Once again, let X be a hyperelliptic surface of type (2,1) which is sym-
metrically embedded in R? as shown in Figure 6. Qur next purpose is to show
that any chain for zg is homeomorphic (as a set of points) to a standard chain

drawn in Figure 6:

Figure 6.

where a; = {{z,4,0) € R (z — 1)? + y* = 1}, by = {(=,0,z) € R% (¢ —
3)? + 22 =1}, ap = {(z,¥,0) € R% (2 —5)* + y* =1}, and by = {(,0,2) €
H?’; (z — 7)2 4 2% = 1}. Indeed, the desired homeomorphism f; can be easily
obtained by gluing 4 simple maps fi,..., f4 together, where fi: ay — ay,
fa: By R by, fa: a; — a3, and f4; B2 — by are only deﬁne& on curves and
‘can be constructed as follows. First, fi is defined as a homeomorphism of &
;. 0 ay with fi{ag N ﬁi) =ag Nby; forisa homebmorphism of ﬁi to b, with
‘the properties that fo(er N B} = a1 N by and fH{ A n ag) = by Nag. Since
lllloth By — {ai N By, B Ny} and by — {a; N by, b N ag} consist of two open
:.l_ni_:erva.ls_, f> can be easily constructed so as to sa,ti'sfy the above properties.
The constructions of fs and f; are similar to those of f1 and f3, respectively.

om this construction, we have



dimension. [}

We are in the position to prove the following proposition which will play

a crucial role in proving Theorem 2.1.2.

Proposition 2.2.7 Any two components H and H' of the hyperelliptic loci
in T(2,1) are modular equivalent; that is, there exists € Mod(2,1) such
that Q(H) = H'. Furthermore, let J and J' be the hyperelliptic involutions

corresponding to H and H', respectively, then Qo Jo Q! = J.

Remark.  For any Teichmiller space of a compact Riemann surface, the
result is well known; it i1s, however, not known whether or not the statement
is also true for a Teichmiiller space of a Riemann surface with more than one

puncture. Our proof is similar to [36].

Proof. Lemma 2.2.5 says that we can choosé two chains for .;cs, C and '
on X corresponding to H and H', respectively. By Lemma 2.2.6, there is a
-homeomorphiém fy: C = C'. f, extends to a homeomorphism fy Qf a tubular
Tieighborhood N(C) onto a tubular neighborhood N(C'), where N(C) is drawn
._1_1_1.f‘igure 7. Hence, f, determines a homeomorphism (call it f, also) of dN(C)
nto ON(C"). The Buler characteristic of X is 2—2g = —2. On the other hand,
Y.’_léoking at. the chain C, we see that the number V of vertices of X —Cis
| e number E of edges of X —C is 6. Let F denote the number of faces of

- C. By computing the Euler characteristic by the formula V 4 F' — E, we

Lemma 2.2.6 Any two chains for z¢ are homeomorphic in the sense of one




see that
—2=F+3-6,

and we get F = 1. In particular, we conclude that X — N(C) is conformally
equivalent to the punctured disk A = {z; 0 < |z| < 1.}. We denote by ¢ this
conformal map. Similarly, there is a conformal map ¢ of X — N(C') onto A.

Think of X — N(C) and X — N(C') as polygons, we see that £ and Cl can
be extended to the closed polygons of X — N(C) and X — N(C’), respectively.
Note that f, establishes a boundary correspondence between the two polygons.
It follows that

(o frof™!

is a homeomorphism of §' onto §'. Now { o f, 0 £7! can be extended to a

self-map 71 of the closed unit disk by radial extension. It turns out that
(
(“topoé(z), ifze X — N(C);

fn(z), Cifz € N(C)




Figure 7.

2.3 Proof of Theorem 0.1

Our object in this section is to give another proof of Theorem 0.1. We

first prove

Proposition 2.3.1 Let Gy be a lorsion free finitely generated Fuchsian group
of type (go,mo) with 2g0 — 2+ ng > 0, and let xo € Mod Go be an elliptic
modular transformation of prime order, with the property that the restriction

of xo to @ component I of the hyperelliptic loci is the identity. Then xq is either

"_the identity or a hyperelliptic involution.

Proof. Suppose that xo € Mod Gj is non-trivial. Let

T(go; nO)XO = {‘T € T(gﬂv ﬂo), With XD(:U) = ;B}.

v hypothesis, [ is included in the set of fixed points of xo. On the other

and, T(go, o) is again a Teichmiiller space of type (¢*,n*) (see Kravetz




induced by a conformal self-map Ao on a Riemann surface X of type (go, no)
( Nielsen’s theorem [41] asserts that such an X exists)l, g* is the genus of the
surface X /< hg S, and n* is the number of the distinguished points (including
all punctures) on X/< ho>. Since we assume that [ is a non-empty éomponent

of the hyperelliptic loci, Lemma 1 of Patterson [42] implies that
N Ng
dim!=2¢— 14 [—2-], (2.6)

where [z] denote the largest integer less than . Let k denote the number of
fixed points of ho on the compactification X of X, let m be the number of the
punctures fixed by hg. Since kg defines a branched covering X — X /<hq>,

the Riemann-Hurwitz formula (see for example, Farkas-Kra [21]) shows that
290 — 2 = (ord(ho)) - (2¢" — 2) + B, (2.7)

where B is the total branch number. The number of fixed points of a conformal
automorphism on X is at most 2gy + 2. By definition, there are np — m
punctures on X which are not fixed by hq. Since the order of fg is > 2, the
number of orbits of these ny — m points under Aq is at most 3(ng —m). Note
‘that any one of these ofbits projects to a distinguished point on X /<h>. We

‘thus obtain

First we assume that g* > 1. Under this assumption, there are three possibil-

Case 1. go = 0. The left hand side of (2.7) is negative, while the right

d side is positive (since ¢* > 1, by hypothesis). This is a contradiction.



Case 2. go = 2. Since ord(ho) > 2,.and k£ < B, from (2.7), we obtain
290 — 2 =ord(ho) - (2¢" — 2)+ B > 2(29* — 2) + &,
or

* gO
: < e
9'_2

ol =
|
e ] oo

(2.9)

Since hg is not a hyperelliptic involution (otherwise g* = 0), by Corollary 2 to
V.1.5 and Proposition III. 7.11 of Farkas-Kra [21], we see that k < 4 if X is -
hyperelliptic, and k < 2gy — 1 otherwise. But our hypothesis says that g; > 2.

We see that in any case,
Now from (2.6), (2.8), (2.9), and {2.10), we obtain

290—1+‘[% = dim ! < dim T(¢*,n*) = 3¢g" =3 +n" <

1
2

1

.
Z(no—m)ﬁggo—”-i-—:

k
<3(P+5-)-3+k+

290 — 2 + [22], if ng is even; |
={ | (2.11)

290 — 2 + [B] + 3, if ng is odd.

So (211)is a contradiction if ng is even. If ng is odd, we claim that either
;"'c;rd(ho) is not 2, or m > 0. (Otherwise these ny points produces ng/2 orbits,
ontradicting that ne is odd.) We see that (2.11) is still a contradiction when

ng is odd. It follows that (2.11) cannot hold in any case.



, Case 3. go = 1. In this case, from (2.7) and the hypothesis that ¢* > 1,
we see that ¢* =1, B=k=m =0, and n* < %'ﬂ-g. A similar computation as
(2.11) shows that

1
1+[?]S3g*—3+n*§-2—ng.

But this is impossible. In summary, we conclude that the case of g* = 1 cannot
occur.

Next, we consider the case of ¢* = 0. From (2.8), we have

. 1 ‘
2g0—1+[f‘2—‘1] = dim 1< =34k +5(no—m)
' 1

< —3-|—2g0-§—2+§(n0—-m)
1

= 2go~1+ 2(n0-m). (2.12)

If ng is even, then we have equalities everywhere in (2.12), we must have
m =0, and k£ = 2go + 2. This implies that kg is a hyperelliptic involution. If
ng is odd, from (2.12) again, we have m < 1.. We claim that m is not zero.
Suppose for the contrary that m = 0. Then ng cannot be one, and we must

have ng > 3. From (2.12) once again, we have ord(hg) = 2. Observe also that
ng = m1 + 2my,

where m; is the number of orbits of the punctures with period ¢. Note also
“that my = m, we conclude that m = 1 if ng is odd, and zero if ng is even. It
Sfollows from the definition (given in §2.2) that ko is a hyperelliptic involution.

This completes the proof. |

As an easy consequence, we obtain



Corollary 2.3.2 A modular transformation xo of T(Go) ts the identity if its
restriction to a subspace with dimension greater than the dimension of the

hyperelliptic loci is the identity.

Proof. xo must be elliptic in the sense of Bers [9]. Let a = bp be the order of
Yo, where p is a prime number. By the same computation as in Proposition
2.3.1, we conclude that b = id, which occurs only if xo = id, as claimed.

O

Now we are able to prove Theorem (.1. We need two simple lemmas.

Lemma 2.3.8 Let TV be a torsion free finitely generated Fuchsian group of the
first kind whose type is (¢',n’). Assume that (¢',n’) is not (0,5), (1,3), (0,6),
(1,4), (2,1), (2,2), or (3,0). Then the codimension of the hyperelliptic loci of
T(T") is not one, and the codimension of the hyperelliptic loci of T(I") is zero

if and only if (¢',n") is (0,3), (0,4), (1, 1), (1,2), or (2,0).

Froof.  Suppose that the codimension of the hyperelliptic loci is one. The
dimension of the hyperelliptic loci can be computed; it is 29’ — 1 + [%L] By

assumption, we have
I n' ! {
2g -—l+[‘§]+1=3g -3+n,

which says that (¢',n') = (0,5),(1,3),(0,6),(1,4),(2,1),(2,2), or (3,0}, con-
tradicting our hjpothesis.' The second statement is true because there is a

n-trivial modular transformation which acts trivially on the Teichmuller

pace T{¢',n') when (¢',n') = (0,3),(0,4),(1,1),(1,2) or (2,0). O



Lemma 2.8.4 Let F be a finitely generated Fuchsian group of the first kind
which contains elliptic elements and has type (g,n), let I be another torsion
free group with type (¢',n"). Assume that (¢',n') = (0,5), (1,3), (0,6), (1,4),
(2,1), (2,2) orr(3,0), and that there is an isomorphism ¢ : F(I') — T(I").
Then the pair of types l((g,n),(g’,n’)) is among the entries of the following

table:

((0,4),(0,5)), {(1,1),{0,5)), ((0,5),(1,3)), {(0,5),(0,8))

((1,2),(1,3)), {(1,2),(0,6)), ((0,6).(1,4)), ((0,6),(2,1))

{(0,73,{2,2)), {(0,8),(3,0))

Table D

Proof. The Teichmiiller space T(T) is biholomofphicaily equivalent to the
image of a canonical section which has codimension one in the fiber space

F(T). We thus have

dira T(T) = dim F(I') — 1 = dim T(I") — 1.

3g—3+n=3¢—4+n"

The assertion then follows from the solution of the above equation. O

emark. Table(D) constitutes a core part of Table (A) in the introduction.

able(A) can be easily obtained by adding relations (1.5) into Table(D)



Proof of Theorem 0.1, Suppose that there is an isomorphism ¢ : F(I') —
T(I"), and that the pair ((g,n),(g’,n’)) does not belong to the entries of Table
(A) in the introduction. In particular, ({g,n),(g',n")) does not belong to the
entries of Table (D). By Lemma 2.3.4, (¢',n’) is not of (0, 5), (1, 3),(0,6),(1,4),
(2, 1),(2, 2),. or {3,0). Since T has torsion, we can choose #n elliptic element
~ € T with prime order. The image of holomorphic section s of Tr.: F(T) —
T(I"), which is determined by the fixed point of "y in U, is equivalent to T°(T').
It is obvious that pos(7'(I")) has codimension one. On the other hand, Lemma

12.3.3 says that the dimension of a component of the hyperelliptic loci of 7'(I")

is at least of codimension two. We conclude that

»

dim @ o s(T(T')) > dim {hyperelliptic loci of T'(I"}}.

Now 4 € mod T fixes s(T(T'}) pointwise, which implies that v/ = poyop™ €
Mod 1" fixes ¢ 0 s(T(I")) pointwise as well. It follows from Corollary 2.3.2 that
7' = id. This leads to a contradiction.

Also, from the proof of Proposition 2.3.1,- we can deduce that every elliptic
element of " must be of order 2" for some positive integer n if an isomorphism
of F(T) onto T(I"") exists. Now the second part of Theorem 0.1 follows from the
fact that any non-trivial modular transformation of T(I"j which acts trivially

on another Teichmiiller space T(I'"") (= a component of the hyperelliptic loci

in T(I')} must be of order 2. The details are omitted. O

Remark. If the pair of types ((g,n),(¢g’,n')) lies in Table(A), then we shall
ce n §2.5 that @(s(7'(T))) must be a component of the hyperelliptic loci of

IY). The argument in this section leads to no contradiction. To extend



Theorem 0.1, more delicate methods must be introduced so as to construct

new holomorphic automorphisms of F(T'). Details will appear in §2.5.

2.4 Proof of Theorem 2.1.2

The purpose of this section is to prove Theorem 2.1.2. The proof heavily

relies on the properties of the space 7(2,1) discussed in §2.2.

Let T'; be a finitely generated Fuchsian group of the first kind whose
signature is (2.0; —). From a discussion in §1.2, T’y is a normal subgroup of
a Fuchsian group Ty with Ty of signature (0,6,2,...,2). Note that ['; «
Ty is of index 2 and T(Ly) & T(Ty). Let = denote this isomorphism. The

considerations of §5 in Earle-Kra [19] leads to a holomorphic equivalence:
A: F(To) — F(Ty)

defined by sending ([],z) € F(I's) to (Z([p]), 2) € F(I'1).

| To see that A is well defined, we observe that for every g € M(Ty), there
~corresponds to a ¥ € M(I) with [v] = E([u]) and vise versa (since Z is an
“isomorphism). This implies that the set w* (U) coincides with w"'(U) for
g~ and v ~ v, | |
To see that A is holombrphic, note first that = is a biholomorphic map.
Next, when [} € T(To) lies in a sufficiently small neighborhood of [¢] € T(T'),

stays in w* (U). 1t is trivial that A is biholomorphic.



Let #%: F(To) — T(I') & 7(0,6) be the natural projection. Since Iy is

of signature (0,6;2,...,2), all canonical sections s° of 7% are determined by
elliptic elements of I'y. Let S® denote the set of all images s°(T'(Ty)). We first

prove:

Lemma 2.4.1 Let 8 € mod Ty and 6 = Ao 8o X. Then 8 € mod Ty.
Furthermore, 8y kéeps.the set 8Y invariant; that is, for any canonical section

s% of 0, 0o(s%(T(T))) is the tmage of a canonical section of 7°.

Proof. Let § € mod I'; be induced by a self-map f of U, and f; the projectioﬁ
of f to the surface U//T';. Note that U /Ty is a compact Riemann surface of
genus 2 which is, of course, hyperelliptic.

A theorem of Lickorish [30] tells us that f; is isotopic to a self-map f]
which is a product of Del’m twists about the curves belonging to the set of
Lickorish’s generators (see for example, Birman [13] for the definition and
basic properties). But the set of Lickorish’s generatofs are invariant under the
hyperelliptic involution J. It follows that any Dehn twist about a Lickorish’s
generator is isotopic to a twist about that generator which commutes with J.
(See the proof of Lemma 2.2.3.) This implies that f] is isotopic to a map (still
called f]) which commutes with J as well. It follows that f; projects to a
s;elf—ma,p fo: UJTy — U/T'y in the sense of orbifolds.

Now lift the self-map f{ of U/T; to the map f': U — U. Since f; is
.éotopic to f] on U/Ty, we can choose a lift so that f’is isotopic to f. On the
sther hand, f’ is also a lift of fy; that is, f* € N(I'o), the normalizer of I'y

Q{I'0). Hence, by definition of A, the geometﬂc isomorphism of T’y induced



by f’is exactly fy. It follows that 6, € mod Ty. Since fp is a self-map in the
sense of orbifolds (all branch points here are of order 2), it sends a branched
point to a branched point. This implies that f; sends an image of a canonical

section to an image of a canonical section. The lemma is proved. . O

Now let (7 be a finitely generated Fuchsian group of the first kind which is
of type (0,6) and contains an elliptic element ¢ of order 2. Let s: T(G) — F(G)
be a canonical section determined by the fixed point of £. Recall that the
definition of hyperelliptic Riemann surfaces of finite analytic type is given in

§2.2. We have | -

Lemma 2.4.2 Suppose that there is an isomorphism p: F(G) — T(G") foﬁ“
some torsion free Fuchsian group G'. Then p o s{T(()) is a component- of
the hyperelliptic loci in T(G); that ts, any marked Riemann surface X' €

p o s(T(@)) admits a hyperelliptic involution determined by e’ = poeo g™,

Proof. From Theorem 1.2.3, ¢ = poecop™?

is an elliptic modular trans-
formation of order 2. Next, Theorem 0.1 implies that G’ is of type (2,1) or
(1,4). |

Case 1. (' is of type (gi,ny) = (2,1). In this case, by Lemma 1 of

Patterson {42], we conclude that

!
i)

21=3, (2.13)

dim g 0 s(T(G)) < 295 — 1 +]
'_Since s(T(G)) C F{G) is equivalent to T'(G), from (2.13), we obtain

3 =dim 7{G) = dim g o s(T(G)) < 3.



We thus obtain equality in the above inequality. In particular, we have

dim po s(T(G)) =29, — 1+ {%21] = 3. (2.14)

From (2.14) and the second part of Lemma 1 of Patterson [42], we conclude
that ¢ = poeop™' € Mod (2,1) is induced by a hyperelliptic involution
on a hyperelliptic Riemann surface of type (2,1), which iﬁ turn implies that
00 s(T(@)) is a component of the hyperelliptic loci.

Case 2. (' is of type (gg,ngy) = (1,4). We use the same argument as
above. Note that {2.13) and (2.14) also work in this case, we use Patterson’s

result ounce again. O

Remark. Lemma 2.4.2 is still valid if the pair of types ({go,n0), (g{), ng)) of G
and G' Lies in Table (D) in §2.3. The proof is just a computation, and is not

repeated here.

Let Ty and Ty be as above. We choose a torsion free group I' of type

(2,1), and let ¥: F(T';) — T(1") be the Bers isomorphism..

Now we proceed to prove Theorem 2.1.2. Let T' be a finitely generated
__Fuchsia,ﬁ group of the first kind whose signature is (0,6;2,...,2, 00).

Suppose that there is an isomorphism ¢: F(I'} — T'(I"). It turns out that
- o A: F(Ty) — T(I') is an isomorphism, we thus obtain an equivalence
Y~ lop: F(T') - F(T,). For convenience, we exhibit these isorﬁorphisms

the following diagram:



P(To) —— F(Ty)

of N (2.15)
() —" I(T"

Note that the diagram (2.15) is commutative. Let S denote the set of all
images s(T'(I')) under canonical sections s of 7: F(I') - 7(T") 2 T(0,6). We

have

Lemma 2.4.3 (1) w carries S into S°.
(2) Let e denote an elliptic element of I' (e can be thought of as an element
of mod T'). Thenwoeow™ € mod I'y. Furthermore, w oeowl is defined by

an elliptic element of U'y.
Caution. The isomorphism w need not be fiber-preserving.

Proof. Let ey € Ty be an elliptic elements of order 2, let s ra,ﬁd s% be the
canonical sections of : F(I') — T(T') = T(0,6) and 7%: F(I'g) — T(To) =
T(0,6) corresponding to the fixed poinﬂs e and egq, respectively.- We define I =
@(s(T(1))) and Iy = ¢'(s*(T(Tp))). Lemma 2.4.2 asserts that both ' and [, are

~ the components of the .hyperelliptic loci in T(I) and that both ¢’ = poeop™
and e, = 1’ 0 g 04"! are the corresponding hyperelliptic involutions. By
Proposition 2.2.7, we see that there is a modular transformation x’ € Mod I”
such that x/(') = I, and x'oe’ o x ~! = ef, From a theorem of Bers (Theorem

10, Bers [8]), we know that § = ™! o x' 0 ¢ is a modular transformation of



F(T;). Lemma 2.4.1 then says that 6 = A™" 000 ) keeps the set of the images

of canonical sections invariant. We claim that w(s(T(T))) = 051 (s*(T(Ta))).

Indeed, from the diagram (2.15) we can obtain

W(s(TT)) = $'Fop(s(T (1) = $'(1)
= Y ox ) = ¥ o™ o p(L(L(T))
= Aoy ool o oo AT (L)

= AT 007 0 M (T(T0)) = 651 (*(T'(To))).

To prove the second statement of this lemma, we note that e € mod T’
fixes s(T(T')) pointwise. Hence, woeow™? fixes 85 (s°(7'(I'g)}) pointwise as

well. By Lemma 2.4.2, we see that
(057 (s°(T(To))) = I

is a component ;of the hyperelliptic loci in T'(I"). Now ¢’o(woeow™?) o)~ te
Mod I has the property that its restriction to [j is the identity. By Proposition
- 2.3.1 and Coro]la-ry 2 to Proposition ITL7.9 of Farkas-Kra [21], we conclude
that ¢ o (wo eow 1) o'~ is either the ideﬁtity or equal to the hyperelliptic
involution €/ corresponding to /2. But evidently, ¢/ o (woeow )0 ~! is not

the identity, we see that,
Powoeow oyt =¢f. ‘ (2.16)

1 the other hand, if we denote by ¢° the elliptic element of T’y corresponding

(s°(T(Ty))), by Proposition 2.3.1, we see that ¢’ 0 ¢ o Pl = el 1t



1

follows from (2.16) that €’ = w o e ow™'. This completes the proof of the

lemma. [}

To proceed, we need to recall a basic result of Kra [28]. Let 7 € T(I';). By
definition, 11"]_17(1’) is a quasidisc in € bounded by the quasicircle w”(U) passing
through 0, 1, and co. The domain 77 Y{7) = w™(U) inherits two I’;-invariant
metrics; those are, the Teichmiller metric < , > and the Poincaré metric p

which are defined in §1.1.

Lemma 2.4.4 (Proposition 4(a), Kra [28]) There exists a differentiable,
strictly tncreasing, real-valued function x on [0,00) with k(0) = 0 so that

for any z, y € 77'(7), = # y, we have

k(p(z,y)) < <z,y> < p(z,y). (2.17)

Remark. As a matter of fact, in his paper [28], Kra proves a much stronger

result than Lemma 2.4.4. But we don’t need that result here.

Proof of Theorem 2.1.2. Let U = {z; Im z > 0} C F(T'1) be the central fiber
(by a central fiber we mean the fiber #71([0])). Thus, U is the central fiber of

F(Ty) as well. Let
¢ = inf i

1 €T —{id)} lnfmeu P(m,’h(ﬂ:))- (218)

Since I'y is purely hyperbolic (type (2,0)), ¢ > 0. Note also that the function

% (defined in Lemma 2.4.4) is strictly increasing, there is a small 6 > 0 such

64




that

p(;z:,'yl(:c)) <

B2l m

as long as x{p(z,y1(z))) < & for v € T'y. By looking at the diagram (2.15},
we know that the restriction of ¢ to U is a holomorphic map into T(I") (here

U is also thought of as the central fiber of F(I'}). Hence

d(p(z), e(y)) < plz,y), forallz,yel, (2.19)

where d is the Kobayashi metric on T(I"). By Royden’s theorem [43], the

Kobayashi metric is the same as the Teichmiiller metric. Therefore,

<plz)ely) > = plz,y). (2.20)

Unfortunately, there is no guaraﬁtee that w(U) is a fiber in F(I'o). Té get
rid of this difficulty, let e, ..., e5, and e, be a set of generators of I, where
ei, ¢t = 1,...,5, are elliptic Mobius transformations of Qrcier 2, and e, 13 a
parabolic Mobius transformation. These generators may be chosen so as to

satisfy the following relation:

€50 0¢] = Coge (2.21)‘
.- Choose a point z el sé that
plz,en(z)) < 6. f | (222)

This is possible because e, is parabolic. Observe that w(z) € F(Ty). We.
denote 75 ({u]) € F(T'p) be the fiber to which the point w(z) belongs. Then

ve construct a Bers’ allowable mapping of F(T'y) onto another isomorphic Bers



fiber space, this Bers’ allowable mapping can be defined by carrying the fiber
75 ([4]) to the central fiber of the new Bers fiber space. In this regard, we
may assurne, without loss of generality, that w(z) € w(U)NU C F(I'y), and
hence also that Aow(z) € U C F(T'y). Let 7' = go(:c) € T(I"), and let
Xl = ¢ 0 €o, 0o~ 1. By Theorem 1.2.3, x., € Mod I''. Moreover, (2.20) and

(2.22) imply that

<TXe(T) > = <pla)poegopT(T) >
= <pla)po(enla)) >

< pla, ec(n)) < 6. . (2.23)

As a holomorphic automorphism, e,, € mod I' has no fixed point in F{T'),
thus x/. has no fixed point in 7(I") either. It turns out that x/_ is a parabolic

modular transformation of T(I).

From Theorem 6 of Bers {9], x’, is induced by a reducible self-map f’
of a Riemann surface X’ of type (2,1) (the puncture is denoted by z'). Let
X' = ¢(z), and let ¢ = {c’l,.. .., €.} be the corresponding admissible system
of curves on X' which is reduced by [".

Since Y. is parabolic, the restriction of f’ toA all parts of X' — N(c)
ére either trivial or periodic (see Kra [28]), where N(c') is an arbitrary small
neighborhood of ¢ = {¢], .,c.}. We may assume, by taking a power of f',
that all restrictions of f' to X’ — N(¢') are trivial. Then f’' must be isotopic

o some product of Dehn twists about cf,. .., (see Abikoff {2]).
: P 1 n

- We need the following lemma.



Lemma 2.4.5 Suppose that x., is defined as above. Then r = 2, and x.,

is actually induced by a power of the composition h;; o hy, where ¢} and c,

bounds a cylinder which contains the puncture z'..

Remark. A self-map of the form h;’; o hy is called a spin map in the litera-
ture, Spin maps have many interesting properties and are extremely useful in
studying Bers fiber spaces. For details, see [13], [28] and the literature quoted

there.

Proof of Lemma 2.4.5. " Recall that Xa 1s induced by f', and f’ fixes the
puncture z’. Theorem 10 of Bers [8] asserts that "oy’ ot € mod Ty, From 7
-the proof of Lemma 2.4.1, A" oy~ oy, ood =1'"loy! o%'is an element
of mod Tq. In particular, %' ~' o X o' is a fiber-preserving automorphism of

F(Tg). Consider the following commutative diagram

/
Xoo

T([') —s T(T)
| (2.24)

where m} = m097", and as before, 3: I'(I'1) — T(I") is the Bers 'isomorphism.
The map y' is defined by the formula 7} 0 ¥, = x' o 7). Since 7} is defined by
orgetting the puncture 2, ' is defined b)} f' by filling in the puncture z/. We
denote by f' i:,he self-map on X’ inducing ¥'. Note that the map f’ is a power
of a spin if and only if f' is isotopic to the identity (for a proof of this fact,

see Birman [13]). Suppose that x’ is not the identity. We see from (2.24) that



x'. sends a fiber to a different fiber. This implies that ' ~lox' o' sends a
fiber of F(I'y) to another different fiber of F(I'). In particular, we see that

' 1oy’ o' o(yp'2(r")) and '~ (7’) lie in different fibers.

On the other hand, the group I' is generated by ey,...,es. By Lemma -

2.4.3, the w-image of I' is a subgroup of I'g. 1t follows that

) =9 o p(x) = w(z). (2.25)
We also have
P lox oy = ¢ Tlopoeroploy =woexow™!
= wo(_eso---oel)ow_l:ego.-noe?, (2.26)
where €7, 1 = 1,...,5, are w-images of e; in T ‘We conclude from (2.25) and
(2.26) that
» o X, ot o (@b’_l('r')) =€l 0 e? o (w(z)). (2.27)

ince Ty < mod Ty keeps all fibers of F(I'g) invariant, and since z € U/, by
(2.27), we see that ¥~ o x’, 09 o ('~ 1(7")) and ¥ ~!(7’) lie in the same fiber

U. This is a contradiction. The lemma is proved. O

Continuing with the Proof of Theorem 2.1.2.  Observe that the spin map
escribed in Lemma 2.4.5 determines a closed curve ¢/ in X’ passing through
¢ is freely homotopic to both ¢} and ¢, in X', as shown in Figure 8). Thus

e homotopy class of ¢ in X’ determines an element of the fundamental group
_ Py _



m{X’,a"), and hence corresponds to an element vy, € T; which is hyperbolic

because I'y is purely hyperbolic.

X' type (2,1)

Figure 8.

It is now easy to see that ¥~ o x' o9 = v, € ', and the pair of points

(', xL. (7)) gets mapped under ¢! to the pair
(B (1), 9 0 X)) = (71 (r'), 71 097 (7).

| By (2.23), we have < 7/, x/_{7') >< 6. Note that v : F(I';} — T(I") is the
. H ‘.‘Xoo

. Bers isomorphism. From Lemma 2.4.4, we conclude that

(p(™ (1), 97" 0 xoo(T))) < 6.

.

p(p "), ¥~ o X (1) <

o e

¥

D1+, 1 0 (571(r))) <

b m



But as we have seen, 3~ '(7') and v o (¥~'(7')) lie in the central fiber U of
F(I"). This contradicts to the definition of € (see (2.18)), completing the proof

of Theorem 2.1.2. O

2.5 Holomorphic extensions of automorphisms of sec-

tions

In this section, we establish a proposition which asserts the existence
of holomorphic extensions of some automorphisms deﬁned on the images of
certain canonical sections. The result will play an important role in prov-
ing Theorem 2.1.1. We also study in this section a uniqueness problem on

extensions of automorphisms acting on certain canonical sections.

Let T" be a finitely generét_ed Fuchsian group of the first kind which acts
on U and contains elliptic elements, and let f be a self-map of U /I‘V in the
sense of orbifolds. We emphasize that f maps regular points to :egula,r points,

.~ punctures to punctures, and branch points to branch points with the same
ramification number. By definition, f induces a modular transformation x; |

on T(T). Let s denote a canonical section of w: F(I') — T'(I'). Then s induces

$.: Mod I' — Aut s(7(I"))



defined by the formula:
s (xs)(@) =soxsom(z) for z € s(T(I)).

It is easy to see that s.(xs) : s(T([')) — s(T(T)) is a holomorphic map.

Suppose that s.(xsHz) = s«(xs)y) with 2,y € s(T(T')). Then by the above

- formula, we have so xfom{x) = soxyom(y). Since so Xy is injective, we must
have 11'(3:) = n(y), which in turn implies that 2 = y. Hence s,(xy) is injective.
Similarly, one can show that s.(x;) is surjective. We conclude that s,(x7) is
a holomorphic automorphism of s(T(T")).

Unfortunately, it is not true that for arbitrary s and arbitrary f, s.(xy)
can be extended holomorphically to the whole Bers fiber space. Our aim here
is to choose a specific self-map f and a specific canonical section s so that
the automorphism s.(xs) of s(T(l')) is the restriction of a global holomor-
phic automorphism. More precisely, the self-maps we choose must satisfy the
following properties:

(a) They are self-maps in the sense of orbifolds;

(b) Their fixed points must contain at least one branch point of U/T".

“Remark. It is impossible to construct such maps in the case when I is torsion
free. So our methods doesn’t work in torsion free case. However, when I is -
torsion free, the Bers isomorphism theorem tells us that F/(I') may be identified

with the Teichmiiller space T'(g,n + 1).

- Let fbea éelf—map of U/I" which fixes the branch point 2, determined by

lliptic element e of T', and let s be the canonical section of w1 F(T') — T(T)



which is determined by the fixed point of e in U. Under these circumstances,

we have

Proposition 2.5.1 (1) s.(xys) € Aut s(T'(I')) can be extended to an element

x of mod I';

(2) x commutes with ¢ if e is also viewed as an element of mod T'.

Remark. The motion s.(xs) described in this proposition has at least two
extensions which are elements of mod I'. If x is one of them, then eox(= xoe)
is the other. The following proof provides these two extensions by means of a

concrete elementary method.

Proof of Proposition 2.5.1. Let f be described as above. Lift f to a map f’

on U so that the diagram below is commutative:

v 2w
Pl ' lp
u/r — ujr

By definition, we see that f’ € N(T)andpo f" = f op, where p is the natural

projection of U onto U/T. Since for any v € T', we have
poyofl=pofi=fop.

Then yo fris also a lift of f. We also see that yo f" oeo(vo f’)*l is an order

2 elliptic element of I'. By our hypothesis, we have -



where zp is the fixed point of e € I'. This implies that there is v € I', such
that f’(zg) = vo(zo). Let f=n3"0 f. We have
foeof‘l:'yo'lof’oeof’_1070=e. (2.28)

The equivalence class | f] of f ( that is, all f* € Q which lie in the normalizer

of T with the property that flg = f’|n) is an element of mod I'. Let x = [f].
We claim that x is an extension of s,.(x;) : s(T(T')) — s(T(T)). To see this,

first we note that

A

xs([#]) = [Beltrami coefficient of (w, o f~1)],

for [] € T(T'). We see that the diagram

«| | (2.29)

commutes (see Kra [28], or §1.3). Let [v] = xs([z]). The diagram (2.29) shows
that x maps the fiber w*(U) over [¢] to the fiber w”(U) over [v]. In particular,
x maps the fiber that the point s([x]) € s(T(T")) lies in to the fiber that the

point s{[v]) € s(I'(I'}) lies in. But we have

s o xg([u]) = s o xy o m([u], w'{z))

= su(xs)([n], w*(z0)) € s(T()). - (2.30)

s([v])

n the other hand, to prove that x € mod I' is an extension of s,(xs) (that

2 X

S(T(ry)= 5x(X7s)), we only need to show

x(s([uD) = su(x )} w*(20)) € s(T(L))-



An interesting question arises at this point as to whether or not there are
any other holomorphic extensions of s.(xy) (not necessarily fiber-preserving).
The following proposition answers this question in some special situations. In

general case, the problem remains open.

As before, let s denote the canonical section of 7: F(I') — T(T'), let s,.,(-x 7)
be the automorphisin of s(T'(T')) determined by s and f. Then Proposition

2.5.1 implies that s.{x;) can be extended holomorphically to an automorphism

x of F(F)'.-

Proposition 2.5.2 Let T be of signature (0,4;2,2,00,00), (0,4;2,2,2,00),
(0,5;2,2,2,2,00), or (0,6;2,2,2,2,2,2). Then the only holomorphic exten-

sions of s.{xs) in Aut F(T') are x and xoe (= eco0¥).

To prove this result, first we need to refine Proposition 2.3.1 in some
‘special cases. Let I be a finitely generated Fuchsian group of the first kind.

Assume that I’ (# @) is a component of the hyperelliptic loci of T'(I").

Lemma 2.5.8 Let TV be of type {2,1), (1,3) or (0,n’), for n' > 5. Assume
that ¥' € Mod T is a modular transformation whose restriction to I' is the
identity. Then y' must be of prime order, and hence ' is either the identity,

or equal to a hyperelliptic involution.

Proof. Suppose for the contrary that n = mp is the order of ¥/, where m > 2,

and p is a prime. Then x/ = x'™ is of order p. By using Proposition 2.3.1,
P X

deduce that p = 2. Therefore, n must be of form 27 for r > 1 an integer.



QObserve that
.'2r-—1

FeT(U'Y c--c T, C(233)

where x'g’"_l is induced by a hyperelliptic involution. We obtain

dim T(l”')"izr—1 =dim I,

It follows from (2.33) that

dim I = dim T(T')X = -+ = dim T(T')* . (2.34)
In the proof given below, we denote by X’ a Riemann surface of type (2,1),
(1,3), or (0,n") for n' > 5, by A’ the conformal automorphism of X' which
induces x' (its order is 2" by the above argument). Let Fix(A') be the set of
the fixed points of A’ on X', &' the number of fixed points of 2’ on X', and g" ‘
the genus of X//<h'>.

Case 1. I' is of type (2,1). Tt is obvious that
Fix(h') C Fix(h'?) C Fix(h'*) C --

Since K% is a hyperelliptic involution, it fixes all Weierstiass points zf,. .., 24

of X7, Let a§ be the puncture. Observe that A’ fixes zj and at least one another
Weierstrass point, say z}. Thus, 2’ determines a permutation of the remaining
4 Weierstrass points 2, ..., 2%, If {z},..., 25} is divided into two orbits under

the iteration of &, then k% is hyperelliptic and

Fix(h®) C Fix("®) = Fix(2"?).



It follows that all fixed points of A7 are the Weierstrass points, which implies
that the surface X'/ < b’ > has 4 distinguished points.. As an immediate
consequence, dim T(I")X' = 3¢" 41, contradicting that dim T(I")X' = dim I =

2" — 14 [n'/2] = 3.

If {z},..., 2%} is a cycle under the iteration of #’, then by the same argu-
ment as above, the surface X’/< A" > has 4 distinguished points. This implies
that dim T(I')¥* = 3¢" + 1, contradicting that dim T(I")X” = dim T(I"}¥ =

3 (where g” is the genus of X'/<h™>). See (2.34).
If 1 fixes all 6 Weierstrass points, then &' is a hyperelliptic involution.

Case 2. I is of type (1,3). In this case, K'Y is a hyperelliptic involution,
By deﬁnition, it fixes only one puncture and interchanges other two pﬁnctures.
Since the fixed points of A’ is contained in the set of fixed points of &% A’
must fix one puncture and interchanges the other two punctures as well. But
A7 is of even order (unless r = 1), it must fixes all three punctures. This is

a contradiction. We conclude that r = 1 and &’ is a hyperelliptic involution.

Case 3. I" is of type (0,n’), n’ > 5. In this case, the number of the
fixed points of .all conformal automorphisms (M&bius transformations) k',
J=1,...,2m~1, is two. Moreover, the fixed points of A" coincide with those
of R for all i,j = 1,...,2m — 1. Note that .n' > 5. By a simple cé,lculation,

r.\ire obtain
dim T(0,n)X" = dim T(X'/<h™>) =
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w3 (n/ ~2)/242 if two fixed points of k' are punctures;’
1 -3+ (n'—1)/2+2 if one fixed point of A is a puncture;

—3+n /242 if no fixed points of A’ are punctures.

We thus have

" -2 " —
dim 7(0,n" )X > -3+ P_T_ +2= n—‘-)-—g - L (2.35)

On the other hand, by the same argument as above, we see that
dim T(0, )% < —3 + nogo My (2.36)
i -3+ — =— —1. .
’ - 2m 2m

Since m > 2, and n' > 5, a simple computation shows that

n' n' — 2

2m < 2
Together with (2.35) and (2.36), we thus have
dim T(0,n' X" > dim T(0,n")*,
contradicting (2.34). O

Lemma 2.5.4 Under the same condition of Lemma 2.5.3, there is a unique

non-trivial X' € Mod I'" whose restriction to I is the identity.

roof. We first consider the case when IV is of type (2,1). Let X' € I’ be

.hypereiliptic Riemann surface of type (2,1). By Lemma 2.5.3, x’ is induced



by a hyperelliptic involution on X'. By Corollary 2 to Proposition III 7.9 of

Farkas-Kra [21], there is only one hyperelliptic involution on X'. It follows that

there is only one hyperelliptic involution on X’. The assertion then follows.

Next, we consider the case when T" is of type (1,3). Again, let X' € I'
be a (marked) hyperelliptic Riemann surface of type (1,3) (see §2.2 for the
definition), and let z}, 2} and z§ denote the three punctures on X'. Since
every hyperelliptic involution on X’ must fix one and only one puncturé, if
there are two hyperelliptic involutions J' and J” on X' which fix the same
pun&ure, then j’ o J"1 is either a hyperelliptic involution or the identity by
Lemma 2.5.3. Since J' o J 1 fixes all three punctures, we see that J' o J'~1
is the identity; that is J' = J”. Now we assume that there are two distinct
hyperelliptic involutions J; and JJ, and that J! fixes &, i = 1,2. By a simple
calculation, Ji o Jj permutes all three punctures. On the other hand, by the
same. argument as above, J{ o J} is either a hyperelliptic involution or the

identity, it must fix at least one puncture. This is a contradiction.

Finally, if T” is of type (0,n’), n’ > 5, then we choose X’ € I’ and assume
~that there are .two distinct hyperelliptic involutions Jj and J; on X'. Let
h' = Jj o Ji. The modular transformation x’ induced by A’ is elliptic, and its
restriction to {' is the identity. By Lemma 2.5.3, x'r is either the identity or a
hyperelliptic involution. If A’ is the idenfity, there is nothing to prove. We thus
assume that h' is hyperelliptic. Similarly, A" = J; 0 J] is also a hyperelliptic
involution. But B o b = J{ o J, o J, 0 J| = id. It follows that A" = '. we

conclude that J] o Jj = Jjo Ji. Since &', Ji, and Jj are half-turns on X' = S%,




by Proposition B.5 of Maskit [34], the axes of A’, J; and J; constitute an
orthogonal basis as shown in Figure 9.

If n' is odd, then since A’ is a hyperelliptic involution, by definition, either

C or A (but not both) is a puncture. Without loss of generality, we assume
that C is a puncture, and A is a regular point. Since J} is also hyperelliptic,
it sends C to A, which is impossible. We see that n’ must be even, and all the

points A, B, ..., F', are not punctures.

exis of b’

Figure 9.

. Now let us denote by BCE the triangle in the spheré bounded by the
geodesics BE, CF, and BC, and so forth. (In the spherical metric.) Observe
at Ji, J!, and k' send the triangle BCE to triangles ABF, ADE, and

DF, respectively. The punctures which are contained in BCE are mapped



to punctures contained in ABF, ADE, and CDF), respectively. It is easy to
see that there are no punctures lying in any boundary of a triangle. The same
situation occurs for any of other triangles. This implies that n’ = 4k for some
k€ Z%. Let x} and x} be the modular transformations induced by Ji and

55 respecti\}ely, and let A denote the subgroup of Mod I" generated by x}
and y5. Since the quotient surface X’/< J1,J5 > has k& punctures and three
branched points of order 2, the dimension of T(0,n’)* is k. On the other hand,
by assumption dim I = dim T'(0,n’)*. We thus obtain

!

k = dim T(0,r)* = dim ' = dim T(0,n')¥ = —1 + 5] =2k—1.
But this occurs only if £ = 1 and n' = 4. , 0

Remark. 1 (¢',n') = (0,4), Earle-Kra [19] proved that any Riemann surface of
type (0,4) has three (hyperélliptic) involutions, all of which induce the identity

on 7(0,4). Lemma 2.5.4 fails in this special case.

Proof of Proposition 2.5.2.
It is well-known that F(0,4;2,2,00,00) = F(0,4;2,2,2,00) = 7(0,5),
F(0,5;2,2,2,2,00) = T(1,3) and F(0,6;2,2,2,2,2,.2) > T(2,1) {see (0.2)-
(0.4) in the introduction). Let I be of the signature which is one of those
' mentioned above, and let ¢ denote the corresponding isomorphism. Also, we
denote by s.(xs) a motion of the ime;ge s(T(T")) of a canonical section s which
“extends to a holomorphic automorphism x of F(I') (see Proposition 2.5:1).
Suppose that there are another holomorphic extension xo of s.«(xs). Then

Xoxp! € Aut F(T) is non-trivial but restricts to the identity map on s(T(T'))



From Lemma 2.4.2, we see that I’ = pos(T(I')) is a component of hyperelliptic
loci, and g o yoxgtop ! € Mod TV is non-trivial but restricts to an identity
map on {’ as well. By Lemma 2.5.3, cpoxok&l o~ ! € Mod 1" is a hyperelliptic
involution J' {since it is not the identity). On the other hand, we denote by
e € T be the elliptic element corresponding to the canonical section s. Then
poeop™! € Mod I' is a hyperelliptic involution by Lemma 2.4.2 again. Hence,
from Lemma 2.5.4, we conclude that J' = g oeo@™!; that is, e = y 0 x5 .

This completes the proof of Proposition 2.5.2. O

The rest of this chapter is devoted to the proof of Theorem 2.1.1.

2.6 Periodic automorphisms of Bers fiber spaces

Let T be a finitely generated Fuchsian group of the first kind (operating
on [/} which contains elliptic elements and whose signature is (g,7; 11,...,Va).
In the previous section, we proved that for certain self—maps f of U/T (in
the sense of orbifolds) and certain canonical sections s of = : F(I') — T(I),
- s.(xs) € Aut s(T(T)) is the restriction of a global holomorphic automorphism
x of the Bers fiber space F(T'). x is, of course, ﬁber—presérving. In this
'section., we will choose more spéciﬁc self-map f of U/T so that y is a periodic

holomorphic automorphism. lts order will be computable. The construction _



essentially df;pends on the signature of I'. More importantly, the construction
of y allows us to compute the dimension of the fixed point set of x in F(T').
Let e € I' be an elliptic element of order 2. e is also viewed as an element
of mod I'. In each case of the following proposition, s is the canonical section
of m: F(I') ~ T(T') determined by e, f is a self-map of U/T in the sense of
orbifolds which fixes the branch point on U/T" determined by e, and x always
stands for the holomorphic extension od s.(xs) to F(I') which is obtained by

Proposition 2.5.1. We have

Proposition 2.6.1 (1} Assume that the signature (g,n;vy,...,v,) of I' is one

of the following:

(0,82,...,2,00,...,00), m=1,24,578.

m Bwm

Then there is a self-map f of U/T so that x € mod T is of order 3.

(2) Assume that (g,n;11,...,vs) is one of the following:

(0,7;2,...,2,00,...,00), m=1,357.

T T—m

Then f can be chosen so that x? is either the identity or equal to e.
X

(8) Assume that (g,n;vy,...,v,) is one of the following:

(0,6;2,...,2,00,...,00), m=1,2,5.
R e

m 6—m

Then we may choose [ so that x* is either the identily or equal to e.
(4a) Assume that (g, m;1,..,va) = (0,52,2,2,00,00). Then f can be

:deﬁﬂed so that x? is either the ideniily or equal Lo e.



(41)) If (g,n501,.. . vs) = (0,5;2,2,00,00,00), then y € mod I can be
constructed so that x° is the identily.

(4¢) If (g,m;v1, ..., V) 1s edther (0,5;2,2,2,2, 2) or (0,5;2, 00, 00, 00, 50),
then f can be constructed so that x* is either the identity or equal to c.

(5) If (g,n;015. .. ) ts either (1,2;2,00) or (1,%;2,2), then f can be
chosen so that x* is either the identity or equal to e.

(6) If (g,m501, .+, v,) = (0,4,2,00,00,00), then f is defined so that x €
mod I has order 3.

(T} If (g,n501, ) = (1,152), then [ may be chosen so that y € mod I

has order 3.

Proof. (1) T is of signature (0,8;2,...,2); that is, U/T is a Riemann sphere
with eight branch points z1, ..., x5 of order 2. We may choose I so that U/T is
described as follows: take a standard unit sphere $% = {{z,y,2) | 2*+y?+ 2% =
1} in R3, let 2, be the point (0,0,1) € §%, z, the point (0,0,~1) € §%, and let
A be the standard roﬁation about z—axis with rotation angle 27 /6. Choose
a point z3 € X = {(:c,y,{}) | 22+ y? = 1}. We then define z,4, = A(z;)
for i = 3,...,7. Then automatically, A(zg) = 23. See Figure 10. Let X
be the Riemann sphere $* with branch points zi,...,zs of order 2. The

uniformization theorem asserts that there is a I' so that U//T = X. A is an
elliptic Mobius transformation fixing z; and x5,

Let ¢ € I be an elliptic element corresponding to the branch point z;, €
. U/T, and s the canoniéal section of w: F(I') — T'(T') determined by ¢ € mod I'.

Let f = A%, Then f has order 3. By Proposition 2.5.1, there is x € mod I




with the following properties:
(1) x leaves invariant the set s(7'(I'));
(ii) x commutes with ¢ if both elements are viewed as elements of mod I';
(iii) x® restricts to the identity map on s(7(I')). |
From (iii) we see that go(x®) == id, where go: mod I' — Mod T is the quotient

map. It follows that either x® = id or ¥° = e. If x® = id, we are done; if

x® = e, then we take xo = e 0 x. Xo has properties (i), (it), (iii), and 3 = 4d.

We see that xo does the job.

Figure 10,

If T is of signature (0,8;2,...,2,00), let zy,23,. .., s be branch points of
order 2, and z, a puncture.
If I is of signature (0,8;2,00,...,00), let x; be a branch péint of order

2, and 2y, ..., zs punctures.




I T is of signature {0, 8; 2,2,2,2, 00, co, 00, 00), let z3, 23, 5, 7 be branch

points of order 2, and x2, x4, Tg, Tg punctures.

It is easily seen that, in thé above three cases, the map A? (A is the map
constructed in the beginning of (1)) is a self-map of U/T" in the sense of orb-
ifolds. Note that A is not a self-map of U/T if T is of signature (0, 8; 2,2, 2, 2, oo,
00, 00, 00 ). |

If T' is of signature {0,8;2,2,00,...,00), then zj,...,25 are set to be
punctures, and z, z; are set to be branch points of order 2. By the same
construction as above, A? is a self-map of U/I" in the sense of orbifolds.

If T is of signature (0,8;2,2,2,2,2,0&,00,00), then @i, 9, ¥3, s, T7 are
set to be branch points of order 2, and zy; :cs., zg are set to be punctures.
Again, A? is a self-map of U/l in the sense of orbifolds, and the previous

argument is applied to finish the proof of case (1).

(2) Let I be of signature -(0,7;2,...,2). Take the sphere $2, and let
z; = (0,0,1) € §* be a branch point of order 2. Let A be the same rotation as
in (1). We choose an arbitrary point 2; € ¥ = {{z,3,0) | 2* +y* = 1}. Define
2y = A(z;) for 2 = 2,3,4,5,6 (this implies that A(z7) = x3). See Figure 11.
Let X be the Riemann sphere with 7 branch points z4,..., 7 of order 2. By
the uniformization theorem, there is a T' such that U/T = X. (In Case (1)
the rotation was made to fix two distinguished points. In current situation
the rotation involved ﬁxés only one branch point.) Let f = A% | f is of order
2. By Proposition 2.5.1, there is x € mod T' which satisfies properties (i} and

(ii) in (1). By the same argument as in (1), we conclude that x? is either the



identity or equal to e.

.If ' if of signature (0,7; 2, oo, ...,00), then the same rotation A as in (1)
is defined, but in this case X is the Riemann sphere with z; a branch point of
order 2, and z,,...,z7 punctures. See Figure 11. Note that A is a self-map of
U/T in the sense of orbifolds. The same argument as in (1) also works in this

case.

regular point

Figure 11.

If T' is of signature (0,7;2,2,2,00,00,00,00), then we still have the ro-
tation A, but in this case X is the Riemann sphere with z,, z3, 5 branch
points of order 2, and x3, x4, T, 7 punctures. Note that A?’I is a self-map of
X= U/T, although A is not. Let f = A% Then the same argument as in (1)

is used to obtain the required automorphism y € mod I.
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If T is of signature (0,7;2,...,2,00,00), then X here is the Riemann
sphere with z, and @5 punctures, and 21, zs, 24, 26, 27 branch points of order

2. The above discussion also works.

(3) As in (1), let z; = (0,0,1) € 8%, 2, = (0,0,—1) € §?, and let A be
the standard rotation about z—axis with rotation angle 2z /4. Choose a point

z3 € ¥ and let z;4; = A(z;) for i = 3,4,5 (then A(zg) = z3). See Figurel2.

Figure 12.

Now X is defined as the Riemann sphere with 6 distinéuished ‘points
Z1,...,%q, where:

(i) z; is a branch point of order 2 and z5,..., s are punctures if I' is of
signature (0, 6;2, c0,...,00);

(i) All = are branch points of order 2 if T is of signature (0,6;2,...,2);
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(11i) 21 and z, are branch points of order 2 and 3, ..., 2s are punctures
if I' is of signature (0,6;2,2,00,...,00);
(iv) 22 is a puncture and all other distinguished points are branch points

of order 2 if I is of signature (0,6;2,...,2, 00).

Observe that the rota,tic}-n constructed above is a self-map of X in the
sense of orbifolds, where X is in the cases of (i) (ii) (iii) (iv). Let f = A. By
Proposition 2.5.1, we have ¥ € mod I', which is thé required automorphism.
An important observation is that when the signature of ' is in (i) (ii) (iii)
(iv), x is defined as a.n element of mod I', but it is not the case when I' is of
signature (0,6;2,2,2, 00,00,00)} or (0,6;2,...,2,00,). In latter two cases,
only y? is a well-defined element of mod T.

(4a) As before, take the sphere §%. Let 2y = (0,0,1), and let A be the
standard rotation about z—axis with rotation angle 2x/4. Choose a point
zy € ¥ and set z;4y = A(x;) for i = 2,3,4. See Figure 13.

Define X as the Riemann sphere with 5 distinguished points @y, ..., s,
where 1, xa, 5 are branch points of order 2, and =z, 4 are punctures.

Now f = A% is a self-map of U/T. By Proposiiion 2.5.1, there 1s an
automorphism x € mod T’ Sati;sfying (i) and (3i) in (1) such that x? is either
the identity or equal to e € mod T
(4b) Let 2, = (0,0,1), z = (0,0, —1), and A the standard rotation about

z—axis with rotation angle 2m/3. Choose an arbitrary point z3 € X and set

rip1 = A(z;) for i = 3,4 (then A(zs) = z3). See Figure 14.




regular point

Figure 13.

In this case, X is the Riemann sphefe with 5 distinguished points z1, ... ,‘x5,
where 21, x3 are branch points of order 2, and 3, x4, x5 are punctures. Let
f=A By Proposition 2.5.1, we have ¥ € mod I' so that x® is either the
identity or equal to e. If x® = ¢, set xo = eox € mod I'. Then xo does the
job. |

(4c) Let &1 = (0,0,1) and z; an arbitrary point in X. Let A be the
rotation with angle 27 /4. Set z;; = A(z;) for ¢ = 2,3,4. Now X is the
Riemann sphere with 5 distinguished points 2y,...,zs, where z; is a branch
point of order 2, and all other points are branch points of order 2 if T is
of signature (0,5;2,...,2); all other points are punctures if [ is of signature
(0,5;2,00,...,00). In these two cases we refer to Figure 13. The map f = A
is a self-map (in the sense of orbifolds) with order 4.

(5) In Example 3 of §2.2, a self-map A of a Riemann surface X of signa-
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ture (1,2; oo,bo) was constructed, h has the properties that it fixes the two
punctures on X and A* is isotopic to the identity by an isotopy fixing the two
punctﬁres. The map h extends to a self-map (call it k also) of U/F if ' is
of signature (1,2;2,00) or (1,2;2,2). h fixes two distinguished points. Let
e € I" be the elliptic element corresponding to a branch point, and let s be
the canonical section of 7: F(I') — T(T') determined by the fixed point of e
in U. By Proposition 2.5.1, an automorphism y € mod I' is defined so that
x* restricts to the identity map of s(T(T')). It follows that x? is either the

identity or equal to e, as required.

Figure 14.

(6) Let z; = (0,0,1) and z2 € & an arbitrary point, let A be the rotation

with angle 27/3, and let z;4; = A(x;) for ¢ = 2,3 (then A(zy) = 23). See
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Figure 15. In this case X is the Riemann sphere with 4 distinguished pointé
1,...,%4, where 1 is a branch point of order 2 and all other distinguished
points are punctures. There is an x € mod T satisfying (i) and (i1) in (1) such
that y3 is either the identity or equal to e. If x* = e, then we set xo = eo x.

vo has order 3 and it also satisfies (i) and (ii) in (1), as required.

" regular point

Figure 15.

Remark. If T is of signature (0,4;2,2,2, 00) or of signature (0,4;2, 2,00, 00),
then the map A (whichlsa,tisﬁ-es the condition that x; is a branch point of
order 2) is not a self niap‘in the sense of orbifold. See Figure 15. In these two
cases, we do know that there are isdmorphisms F(0,4;2,2,00,00) = T(0,5)
and F(0,4;2,2,2,00) 2 T(0,5). In this regard, the Bers question is solved in

the case when I is of type (0,4).
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(7) Finally, if T is of signature (1,1;2), then from Example 2 in §2.2, a seif—
map h of a surface X of signature (1,1;00) was cons_tructed with the property
that A% is isotopic to the hyperelliptic involution (determined by the punctgre).
The map h extends to a self-map (call it & also) of U/T and A? is also isotopic
to the hyperelliptic involution. Since the modular transformation x3 induced
by A3 acts trivially on T(1,1), s.(x3) is the identity map on s(T(I'})). On the
other hand, from Proposition 2.5.1, there is an element x € mod I' such that
Clorry = s<(x3) = 1d. Therefore, x° is either the identity or equal to e. If
v = e, we take Yo = ¢ 0 ) as the required element. This completes the proof

of Proposition 2.6.1. o

Qur next task is to compute the dimension of the set of fixed points of
the periodic automorphism x obtained from Proposition 2.6.1. (The proof of

Proposition 2.6.1 also shows that the set of fixed points of x is not empty.)

Let F(I')X denote the set of all points in F(I') which are fixed by x. We

first prove:

Proposition 2.6.2 Let s be the canonical section of 71 F(T') — T(I") which
is determined by an elliptic element e € T'. Let f be a self-map of U/T which
fizes the branch point determined by e and let x € mod I' be constructed via

Proposition 2.5.1. Then we have

P = F(T)™* = s(T(1))™ 7.



Proof. We only prove that F(I)¥ = s(T(I'))**x); the proof of the other
equality is the same. Since x is a fiber-preserving extension of s,(x;), it is
trivial that

s(T(D))* &) ¢ F(D),

Suppose now that there is a point z € F(I')X which is not in s(T'(I))**&/),
and that z € S(T(F)) Since x is an extension of s,(xy), we have z = x(z) =
su(xs)(z). This implies that z € s(T(I))**&)| a contradiction. We conclude
that x ¢ é(T(F)). Therefore, in the fiber 7=*(x(z)), there are at least two
points, 2 and the intersection 7~ (7 (z)) N s(T(T)), which are fixed by x. But
the restriction of y to the fiber 7~ w(z)) is a conformal automorphism. It
follows that y is the identity map on = !(n(z)).

We need to investigate the action of x on 7r‘1(7r_(y)) for any y € F(I').
Following Bers [8], let &, be defined by

w,, = h, ow"|U

for any p € M(T'). Then h,: w*(U) — U is a conformal map keeping 0, 1,
oo fixed. It is easy to éee that h, depends only on [g]. From (1.7), to each
z = ([p), 2) € F(T), we have x([u), z) = ([}, ), where 5 = w" o f o (w*)"(z).

Recall that w, = aow, 0 f-‘i, where o € PSL{2,R) is such that aow, o f‘1 -

_is normalized. We thus have



Now we set [u] = n(z) € T(I'). In this situation x must keep the fiber
7~} (z)) invariant. This means that [g] = [v] and x([1], 2) = ((¢], (hu) " oao
h,(z)). By the above argument, the restriction of x to #~!(x(x)) is the identity.
We see from (2.37) that e is the identity, and hence that fis normalized. Since

Wy = W, 0 f1, f restricts to the identity on R. It follows that f commutes

u

with all elements of I', which in turn implies that f is isotopic to the identity
on U/I', which leads to a contradiction. Therefore; F(I')X = s(T'(I))*{&Xs), as

we claimed. |

Now we are ready to prove the following result (recall that x depends on

the signature of I'):

Proposition 2.6.3 With the same notations as in proposition 2.6.1:

(1) Assume that the signature (g,n;v1,...,v,) of T is one of the following:

(0,8;2,...,2,00,...,00), m=2,4,57,8,
R e e ‘

m - 8—m
Then dim F(T)X = dim F(T')** = 1.

(2) Assume that (g,n;v1,...,) is one of the following:

S ——

m T—m

(0,7;2,...,2,00,...,00), m=1,3,57.

Then dim F(I')* = dim F(T')** = 2.

(8) Assume that (g,n;v,...,v,) is one of the Jollowing:

(0,6:2,...,2,00,...,00), m=125.
S’

m E—m
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Then dim F(T)X = dim F(I')*°X =0, and dim F(L) = dim F(I)*X" = 1.
({a) Assume that the signature (g,n;vy,...,v,) = (0,5;2,2,00,00,00).

Then we have dim F(T)* = dim F(T)* = dim F(I')*" = dim F(I)*¥ = 0.
(4b) Assume that the signature {g,n;v1,...,11m) = (0,5;2,2,2,00,00).

Then we have dim F(I')* = dim F(T)*X = 1.

Proof. By a'thec_urem of Kravetz [29] (see also Earle-Kra [20] and Kra [28]),
we know that for any elliptic modular transformation xo of T'(go, ng’), the set
T'(go,n0)*® of fixed points of xp is identiﬁed with another Teichmiiller space
T(g*,n") {where g* and n* are defined in the proof of Proposition 2.3.1). By
definition, to each = € s(T'(I')}, we have s.(xs)(z) = s 0 x5 o 7(z) (see §2.5).

Hence, we obtain
T(TYY = s(T(0))™0% = s(T(I))~ 0.

In particular, we have dim s(T'(I))**™/) = dim 7(I')*/. From Proposition

2.6.2, we see that

dim F(I')* = dim T'(I')*/. (2.38)

‘Now the rest of proof of Proposition 2.6.3 is just a simple computation. We

consider the various cases.
(1) Notice that f = A and that X/< A?> is a Riemann sphere with 4

distinguished points. Thus,

dim F(I)X = dim T(X/< A?>) = dim T(0,4) = 1.
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(2) In this case f = A® and X/ < A% > is a Riemann sphere with 5

distinguished points. This yields
dim F(I')* = dim T(X/< A*>) = dim T(0,5) = 2.

(3) From Proposition 2.6.1 (3), we see that f = A and X/< A > isa

Riemann sphere with 3 distinguished points in this case. Hence,

dim F(T)X = dim T(X/< A>) = dim T(0,3) = 0.

Similarly, we have
dim F(I') = dim T'(X/< A*>) = dim T(0,4) = 1.

(4a) Observe that f = A and X/ < A > is a Riemann sphere with 3

distinguished points in this case, we have

dim F(T')* = dim T(X/<A>) = dim T(0,3) = 0.
Similarly, we obtain

dim F(I‘)>c2 =dim T(X/< A’>) = dim T(0,3) = 0.

(4b) In this case, f = A% and X/ < A® > is a Riemann sphere with

signature (0,4;2,2,4,00). Thus we obtain

dim F(I)X = dim F(T)** = dim T(X/< A?>) = 1. O
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2.7 Elliptic transformations of Teichmiiller spaces

In this section, we compute the dimensions of the fixed point sets of s.ome
elliptic modular transformations of Téichmiiller spaces in some low dimensional
cases. With the help of the periodic automorphisms constructed in. §2.6 and
Theorem 1.2.3, some elliptic modular transformations of 7'(I''} are defined
(via an isomorphism of F'(I') onto T(I'')) so that their orders are known. Qur |
purpose is to show that the dimensions of the fixed points of these elliptic
modular transformations of T'(I"} are actually different from those we obtained
from Proposition 2.6.3 if fhe conditions of Theorem 2.1.1 are satisfied. This

will finish the proof of our main theorem.

We assume that [V is a torsion free finitely generated Fuchsian group of
the first kind. Let x' € Mod IV be an elliptfc element in the sense of Bers [9].
As before, let T(I"}¥" denote the set of the fixed points of x' in T(I"). (The

set is always non-empty by Nielsen’s theorem [41}.)

Proposition 2.7;1 In each of the following cases we assume that the element
p-(’ commutes with a hyperelliptic inﬁolution ¢ € Mod IV but is not ecjual to e

(1) Assume that I' is of type (3,0} and that x' is of order 3. Then
dim T(I'")X =2; | '

(2) Assume that T is of type (2,2) and that x'® is either the identity or
equal to ¢'. Then either dim T(I".)X' or dim T(I'")*°X equals 3;

(3) Assume that T is of type (1,4 ) and tﬁat x'* is either the identity

or equal to ¢'. Then either dim T(IV)X" > 1, or dim T(I)¥x > 1, or
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dim T(I")*'" > 9;
(4} Assume that T" is of type (0,6) and that x' is of order 3. Then
dim TT)X = 1.

Proof. First of all, as we mentioned above, there exists a fixed point z* € T'(1")
of ¥’ in each of the cases discussed below. Let X’ denote the marked Riemann

surface of type (¢,n'} which is represented by =, let %’ be the conformal

automorphism of X’ which induces x', and &' the number of the fixed points
of A’ on the compactification X’ of X’. The symbol B’ stands for the total
branch number of the corresponding branched covering: X’/ — X'/< k'>, and

¢" stands for the génus of the surface X¥ = X'/<h'>.

(1) From the Riemann-Hurwitz formula, we have
4=3(2¢" - 2) + B' = 3(2¢" — 2) + 2K". (2.39)

If ¢" = 1, then from (2.39), one sees that £” = 2. By Kravetz’s theorem [29],

. one obtains
dim T(I")X = dim T(X") = 3¢" — 3+ k' = 2,

where X" is the orbifold X'/<h’>. The second equality holds because X' is
compact and the number of the fixed points of 2’ on X’ is the number of the
branch points of X”.

If ¢” = 0, then k" = 5 and again, it is easy to see that

dim T(F')x'.z 2.



This proves {1).

(2) By hypothesis, x'? is either the identity or equal to ¢’. But since x 2
is induced by a square of a self-map A, and A% must fix the two punctures on
X', we see that y'? must be the identity. Now the Riemann-Hurwitz formula

tells us that

2= 2(2¢" —2) + K. (2.40)

If ¢ = 0, then ¥/ = 6 = 2¢' + 2 and X’ is another hyperelliptic involu"uion
on X'. Froﬁ Lemma 2.5.4, we see that the hyperelliptic involution on X’ is
unique. Hence, A/ = ¢, contradicting our hypothesis. Therefore, by (2.40),
the only possibility is that ¢" = 1, and &' = 2.

Case 1. A’ fixes the two punctures. Theﬁ h' has no other fixed points.
Since ¥’ commutes with €', i’ can be projected to a conformal a,uto.morphism
B" of the swface X[ = X'/< ¢’ > in the éense of orbifolds. A" is an elliptic
Mobius transformation. This means that A" has two fixed points a” and 5",
_one of which, say a”, comes from the projection of the j)unctures. The set
{g71(¥")} (where ¢ : X' — X'/<e'> is the branched covering) must contains
~exactly 2 points, otherwise {g71(b"}} is a fixed point of A’. This is impossible.
It follows that »’ must interchange the two points {g7(0")}.

Consider the modular transformation ¢ o x’ which is induced by ¢’ o &'
Since A’ commutes with €', the self-map €’ o &' is of order 2. Moreover, ¢’ o i’
has the property that it fixes {g7?(¥")} pointwise, and interchanges the two

unctures, Then, we apply the formula (2.40) for the map ¢’ o &’ to conclude



that X'/< e’ o h'> is of signature (1,3;2,2,00) and that
dim T(I‘")c"’x’ =dim T(X'/<e' o h'>) = 3.

Case 2.. k' interchanges the two punctures. Then A’ has two fixed points
elsewhere which are symmetric with respect to ¢ (since &' commutes with ¢').
It is rather easy to see that these two };oints can not be Weierstrass points
of X7 (otherwise, " would have three fixed points). Thus, X'/ < &' > is of

signature (1,3;2,2,00) and we obtain

dim T(I"X = dim T(X'/<h'>) = 3.
This proves (2).

(3) Let A’ be a conformal automorphism of some Riemann surface X'

which induces y'.

Since A" fixes all of the punctures (which are denoted by
@), a, ah, and z')), we see that x'* is not a hyiaerelliptic involution, and hence
% is the identity. Assume that X’ is a hyperelliptic Riemann surface and
that @f, 2}, a3, and @} are arranged so that ¢'(2]) = @}, and €'(2}) = 2} Since
h' commutes with ¢/, h.f can be projected to a conformal automorphism 2" of
the Riemann surface X = X'/< ¢’ > in the sense of orbifolds. Hence, A" is a
Mébius transformation. Observe that (] is of signature (0,6;2,2,2,2,00,00).
Let 27, zf§ denote the two punctures coming from the four punctures 2, z3,
3, and i, and z3, 2}, o5, zg the four branch points of order 2 on ‘X(')'. Then |
either A” fixes both z{ and z¥, or interchanges these two punctures.

Case 1. A" interchanges z{ and 2. In this case, since A" is an ellip-

tic Mébius transformation, it has two fixed points ¢” and b". If {a",b"} C
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{3:3,:34,3:5,;1"6} then h"? fixes the set {zf,z%, 2! z%} pointwise, whlch implies
that 22 is the 1clent1ty, a CODtl&dlCthn If {o”", 0"} N {z8, 2%, 2%, 20} is @” or
b", then A" induces a permutation of the three points in {z},z},z¢, x4} -
{a", 1"}, contradicting the fact that A" is the identity. Finally, if {a”, "} and
{z4,x},z¢, x4} are disjoint, then h 2 fixes {a", ", ml,mz} which says that h 2
is the identity. So the case that h” interchanges 27 and 23 cannot occur.
Case 2. h" fixes both z{ and /. In this casé, there are three possibilities:
(1) I’ fixes all @}, x}, 4, and 2},
(i) h'(a}) = €'(2l), for ¢ = 1,2, 3,4,
(iii) A'(2?) = e'(af), for 1 = 1,2 and A'(z}) = 2!, for i = 3, 4.
If A fixes all 2f, @4, 4, and 2}, then X'/< A’ > has at least 4 distinguished

points, which means that
dim T(I) = dim T(X'/<h'>) > 1.

I W(zt) = €(af), for ¢ = 1,2,3,4, then ¢ o k' has order 4 and fixes all the
punctures. It follows that X'/ < e’ o i >. has at least 4 distinguished points

coming from the fixed points (punctures) of ¢’ o A’. This implies that
dim T(I")*°X = dim T(X'/<e' o h'>) > 1

If W(zl) = ¢(a}) fori=1,2and A(z}) =z} for i =3,4, then again, A
fixes all punctures z}, =}, #4, and z}. In this case, ¢ o h'? has order 2 and
fixes no punctures, and therefore by the Riemann-Hurwitz formula, we need
to d'is;:uss two cases. If the genus ¢” of X'/<e' oh'?> is one and k" { k" is the

number of the fixed points of ¢ 0 A2 on X'} is zero, then X'/< ¢ o b2 > is of
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signature (1,2; 00, 00), which implies that dim T(I“')”"”‘:'2 =2 Ifg"=0and
k" = 4, then X'/< ¢ o k> is a Riemann sphere with 6 distinguished points
including the two punctures zy ‘and zy. It follows that dim T )‘3’°"’2 =3, as

asserted.

(4) By hypothesis, x’ is of order 3, and %’ is of order 3 too. If A’ fixes two
punctures, then A’ permutes the remaining 4 punctures, which is impossible
since &' is of order 3. If A’ fixes one puncture, then again, A’ permutes the
remaining 5 punctures, but this case cannot happen either. It remains to
consider the case that &’ fixes no punctures. In this case, all 6 punctures of
X' must be divided into two orbits under the iteration of A'. It follows tha_t
the s'u-rface X'/ < h' > has 4 distinguished points; more precisely, X'/ < k' >

has signature (0,4;2,2,00,00). Therefore, we obtain

T(TY = T(X'[<k'>) = T(0,4).

This proves (4) and hence the proof of Proposition 2.7.1 is complete. O

2.8 .Proof of Theorem 2.1.1

Let I and I be finitely generated Fuchsian groups of the first kind. As-
sume that T contains elliptic elements and is of signature (g,.n; V1« ., ly), and

that I is torsion free with type (¢',n"). We need

Lemma 2.8.1 Assume that I' contains elliptic elements with type {g,n) #

(0,3) and that there is an isomorphism @: F(I') — T(I"}). Then there is an




elliptic modulur transformation x' € Mod I with the property that it commutes
property th

with a hyperelliptic involution.

Proof. Since F(I') and T(I") are isomorphic, by Theorem 0.1, we see that the
pair of types {(g,n), (¢’,n')) lies in table (A) in the introduction. Furthermore,
évery elliptic element of T' is of order 2 (note that (¢,n) # (0,3)). Lete e T
be an elliptic element, ¢ is also viewed as an element of mod I'. Let s: T(T') —
F(T') be the canonical section determined by the fixed point of e in U, and let
¢/ = @oeow" (by assumption there is an isomorphism ¢ : F(I') — T(I"}).
Theorem 1.2.3 says that ¢’ belongs to Mod I". ¢’ is an involution since e is
of order 2. It-follows from Lemma 2.4.2 (see also its remark) that the fixed
point set of ¢/, which is ¢ 0 8(T(I')), is a component of the hyperelliptic locus
determined by ¢’

On the other hand, by Proposition 2.6.1, one may construct a periodic
automorphism y € mod I" of F(I') with the property that it leaves invariant
the set s(T'(I'}) which is biholomorphically equivalent to 7'(I'). Now by using
Theorem 1.2.3 once again, one sees at once that ¥’ = g oy o™ is an elliptic
modular transformation in the sense of Bers [9], and the order of y' is the same

as the order of x. Since Y commutes with e, we have

X' o€ = poxopTlopoeop i =poyoeop

i

= poeoyop l=gocop lopoxoy

= 6’ OX’.

The lemma then follows.




Now we prove our main results.

Proof of Theorem 2.1.1. (1) ((g,n),(¢',n")) = ((0,8),(3,0)). Let x be
constructed by Proposition 2.6.1 (1), and let ' be defined in the proof of
Lemma 2.8.1. Then both x and x' have order 3. By Proposition 2.7.1 (1), we

see that

dim T(T'Y = 2. ' (2.41)

But. since ¢ is an isomorphism, the following equality holds:
dim T(I') = dim F([)¥™ X% = dim F(T)X.

From (2.41), we obtain dim F'(I')* = 2, which contradicts to Proposition 2.6.3
(1).

‘Remark. U T isof signature (0,8;2,2,2, 00,00, 00,00,00) or (0,8;2,2,2,2,2,2,
oo, 00), then the only periodic automorphism x € mod I' we can produce has
the property that x* = e, and theréforé, dim F(I')* = 2. On the other
hand, x' = ¢ o x 0 ¢~! € Mod I" cornmutes with the hyperelliptic involution
e’ =poeop ! (where ¢ € I' is an elliptic element corresponding to a branch
point of order 2). And the corresponding maﬁ on X' projects to a map on
X'/« J'> which is again a rotation with two branch points as its fixed points.
We see that the béhavior of the action of ¥’ on T'(I) is quite similar to that
of the action of x on F(I'); in other words, we could not tell the diﬁ‘grenée be-
tween these two spaces if we only use the methods developed here. For similar
reasons, if the signature of T lies in the 2nd row of Table (C’), we cannot find

any contradiction either.



{2) ({g,n),(¢',n")) = ((0,7),(2,2)). The assertion follows from Proposi-

tion 2.6.1 (2), Proposition 2.6.3 (2) and Proposition 2.7.1 (2).

(3) ((g,n),(¢',n')) = ((0,6),(1,4)) and the signature of T' is neither
(0,6;2,2,2,00,00,00) nor (0,6;2,2,2,2,00,00). Again the assertion in this
case follows directly from Proposition 2.6.1 (3), Proposition 2.6.3 (3) and

Proposition 2.7.1 (3).

Remark. If I' is of signature (0,6;2,2,2,00,00,00) or (0,6;2,2,2,2, 00, 00),
we do not have such a y, while x* is still defined. So the method used above
cannot be applied in these two cases; the treatment of these two cases needs
"a further understanding of conformal automorphisms of punctured Riemann

surfaces. At this point we do not know whether ¥? acts on T(1,4).

(4a) ({g,n; 11 .. - va),(g',n')) = ((0,5;2,2,2,2,2),(1,3)). In this case, the
argument is different from that in (1), (2), and (3) above. From Proposition
2.6.1 (4c), a periodic automorphism y € mod T’ ils constructed so that y* is
either the identity or equal to e.

By Lemma 2.8.1, there is an elliptic modular transformation x’ of 7'(I")
which commutes with ¢ = o e o ¢! such that x'* is either the identity
or equal to ¢'. Thus, we obtain a self-map A’ of a marked Riemann surface
X' € pos(T(T)) so that A’ o€’ 0 B'~! = ¢’ on X’. This fneans tilat. h' can be
projected to a self-map A" of X = X’/<¢€'> in the sense of orbifolds. Since
h'4 is either isotopic to the identity or isotopic to €. By Lemma 2.2.2, A"

is isotopic to the identity by an isotopy which fixes all distinguished points.
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Note also that () is a Riemann surface of signature (0, 5; 2,2, 2, 00, 00}, where
one puncture comes from the puncture of X' fixed by &' (since X' is of type
(1,3} and A’ commutes with ¢'). It follows that A" fixes the two punctures
pointwise. Since h” is periodic, by Lemma 2.2.1, either 2" is isotopic to the
identity or k"% is isotopic to the identity. In the first case, by Lemma 2.2.2, &'
is either isotopic to the identity or isotopic to €', both of which cannot occur.
If A3 is isotopic to the identity, then either A" is isotopic to the identity, or
1'® is isotopic to the identity. This means thatl x' has order 3 or 6. This is a

contradiction.

(4h) The case ({g,n;11...,va),(¢',n")) = ((0,5;2,00,00,00,00),(1,3))

can be handled in a similar way.

(4¢c) ((g,myvn ..., va), (9", n")) = ((0,5;2,2,2,00,00),(1,3)). The proof of

this case is similar to (4a).

(4d) Assume now that the pair ((g,n;v1...,va),(¢',n')) is either ((1,2;2,
oo}, (1,3)) or {(1,2;2,2),(1,3)). From Proposition 2.6.1 (5) and Lemma 2.8.1,
an element x' € Mod I is defined so that x“ is either the identity or equal to
¢’. By using the same argument as in (4a) above, we finish the argument of

Theorem 2.1.1 {4).

Remark. We cannot settle the case when the pair ((g,n;11...,1,), (¢, n')) is
equal to ((0,5;2,2,00,00,00),(1,3)). This seems to be a very difficult situa-
tion. The reason is the following: the automorphism x € mod I' constructed

- in Proposition 2.6.1 {4b} can be “transplanted” as an automorphism of the




space F°(0,5;2,2,2,2,00) which is, by our knowledge, isomorphic to T(1,3).
In other words, we “see” that x really acts on 7'(1,3). So the methods which

are used in this paper do not work here.

(5a) Assume that ((g,n;v1...,1,), (¢, n))) = ((0,5;2,2,2,00,‘00),(0,_6)).'
The proof is also similar to the proof of (4a). By Proposition 2.6.1 (4a) and
Lemma 2.8.1, an element x' € Mod I" is defined so that its order is 2- or 4.

We may assume that 2’ (which induces x'}) is a conformal aﬁtomorphism
on X' (this can be done by Nielsen’s theorem [41]). Obviously, A" cannot
fix one puncture and one regular point; otherwise the number of remalning

punctures would be 5, contradicting that &’ has order 2 or 4.

We assume that &' fixes two punctures, say | and @j. In this case &’ has
order 2. Since i’ commutes with ¢/, 2} and 2% must be e'-symmetric; that is,
we have /() = x}. Also, it is easily seen that A’ interchanges the two fixed
points (not punctures) of ¢/. Observe that the remaining 4 punctures cannot

be a single orbit under the iteration of &' since h'? is the identity.

ol

The map k' can be projected to a self-map A" of X{ = X'/< e’ > whi;;h is of
signature (0, 5; 2,2,00,.00, co). Moreover, A" fixes one puncture, interchanges
the other two punctures and the two branch points. There is one more fixed
point ¥ of 2”. This implies that 2’ interchanges th‘e two points {¢7(y")}.

Consider the conformal automorphism e’ 6 h' of X’. Since ¢ comﬁutes
with &', ¢’ o A’ is of order 2 and thus divides the 6 punctures into 3 orbits.
There are also 2 branch poinfs on X'/< ¢ oh'>, which come from the fixed

points {g!(y")}. We see that X'/<e'oh’ > is of signature (0,5;2, 2, 00, 00, 00).



Therefore, we obtain

dim T(I")*"°¥' =2,

which implies that dim F(I')*** = dim T(I")***' = 2. This contradicts to
Proposition 2.6.3 (4b). |

Next, if &' fixes two regular points, then h' cannot be of order 4 unless A’
is the ideﬁtity (since h’ defines a permutation of the 6 punctures). It follows
that A’ divides the 6 punctures into three orbits, which means that‘X’/< R >
1s of signature (0,5;2,2,00,00,00). In particula.r,. dim T(I'P = 2, which

contradicts to Proposition 2.6.3.

(5b) The above argument also leads to a proof of the the following two
cases: the pair ((g,n;v1 ..., ), (¢, n")) = ((0,5;2,2,2,2,2),(0,6)) or ({(0,5;2,

o0, 00, 00, 00), (0,6)). Details are not repeated here.

(5c)} Assume that ({g,n; vq ..., v0), (¢, n") = ((0,5; 2,2, 00, 00, 00), (0,6)).
Again, the assertion follows from Proposition 2.6.1 (4b), Proposition 2.7.1 (4),

and Proposition 2.6.3 (4a).

(5d) Now we assume that ({(g,n;v1...,¥,),(¢,n")) = ((1,2;2,00),(0,6)).
In this case the proof is the same as (5a) since we have ¥’ € Mod I so that

x'* is the identity or equal to ¢’. By the same argument, we can settle the pair

((1,2;2,2),(0,6)). Since T(0,6) = T(2,0), the pairs ((1,2;2,00),(2,0)) and

((1,2;2,2), (2,0)) are handled similarly. This proves Theorem 2.1.1 (5).

(6a) Assume that ((g,n;v1...,00),(¢,n")} = ((0,4;2, 00, 00, 0),(0,5)).

Once again, by Proposition 2.6.1 (6) and Lemma 2.8.1, there is a y' € Mod TV




- with order 3. Thus, there is a self-map &' of X’ € ¢ o s{(T(T')) which induces
¥' such that ' o ¢’ 0o A'~1 = ¢’. Therefore, &' can be projected to a self-map
R of X = X'/ < € > in the sense of orbifolds. By Lemma 2.2.2, we see .
that " is periodic up to isotopy. Observe that X is a surface of signature
(0,4;2, 00, 00,00), where one puncturé comes from the fixed point (puncture)
of ¢. It follows that A" fixes both the bl‘a.nch point and the puncture coming
from the fixed point of ¢, By Lemma 2.2.1, 2"% must be isotopic to the
identity on X{. Then Lemma 2.2.2 asserts that either A2 or A' is isotopic to

the identity. But this leads to a contradiction.

(6b) Assume that ((g,n;01...,0), (¢, n")) = ((1,1;2),(0,5)). The asser-
tion follows from Proposition 2.6.1 (7), Lemma 2.8.1, and the argument in
(6a). Since T(0,5) = T(1,2), the case of ((1,1;2),(1,2)) is handled similarly.

This completes the proof of Theorem 2.1.1.



Chapter 3

Non extendibility of isomorphisms

In this chapter, we first assume that I' is a torsion free finitely generated
Fuchsian group of the first kind acting oﬁ U. Assume that U/T is of type
(g,n). Choose an arbitrary point ¢ € U, let A =T'(a) = {y(a);y € T}, and
let - |

vl —-U-—-A

be a holomorphicluniversal covering. The Fuchsian model for the action of T’

on U/ — A is the group
I'={ye PSL(.21H); thereis ay € I' with vo 4 = vy o v}.

One sees at once that U/ [' is conformally equivalent to U/T — {&}, where
@ € U/T is the image of a under the projection p : U - U/T. A point in F(T)
is represented as a pair ([1},w*(a)) for a ¢ € M(I') by Lemma 6.3 of Bers [8].

‘We also know that there is a surjective map v* : M(I') — M(T') defined as

(v*(v)) ov=v- (W0, for all v € M(D).




Now we fix a point z € F(T'), write z = ([s], w*({a)) for some p € M(T'). Since
v* is surjective, there is a v € M{(F) such that v*(v) = u. We may thus define
amap v : F(I') — T(F) by sending z to [v]. Theorem 9 of Bers [8] asserts
that 3 is a well defined biholomorphic fna,p {(which is called Bers’ isomorphism
in the literature).

| As we discussed in §1.1, T(T') can be identified with its Bers’ embedding
into the space Bz(L,T"). Thus the set of boundary points of T(T') (called Bers’
boundary of Teichmiller space) is naturally defined. We denote by 0T(T') the
Bers boundary of T(I').

On the other hand, the Bers fiber space F(T') is represented as an open
connected and simply connected subset of By(L,T')x C. The boundary of F(I')
is naturally defined as well. Let F(T') denote the closure of F(I'). Kra has
asked if the Bers isomorphism of F(I‘) onto T(T") C By(L,T") has a continuous

extension to F'(I'). In §3.3 we settle this problem in the negative if U/ is not

of type (0,3); that is, we will prove Theorem 0.3 stated in the introduction.

The proof of Theorem 0.3 involves the Thurston-Bers classification for
modular transformations as well as the iterates of modular transformations on

a Teichmiiller space.

Remark. that when U/T is of type (0,3), then F(T) is the unit disc A. It is
 well known that in this case T'(I") = A’ is a connected and simply connected
bounded subset of By(L,T) &~ C (see §1.1 for details). It is also well known

hat any conformal map of A onto A’ can be extended continuously if and

ﬁnly if A’ has a locally connected houndary (see, for example, [24]). The




problem under the consideration for type (0,3) is closely related to a famous

Bers’ conjecture which states that A’ is a Jordan domain.

1

In §3.4 we assume I' is an arbitrary finitely generated Fuchsian group
of the first kind, and continue to study the relationships between Bers fiber
spaces and Teichmuller spaces.

The Bers conjecture, as we mentioned in the above remark, really says that
the isomorphiém {0.1) in the introduction admits a homeomorphié extension
to the boundary. In §3.4 we prove Theorem 0.3’ which asserts thﬁt for any
other Fuchsian group (whose type is not (0,3)), the answer to the generalized

Bers conjecture is no.

We also study the iteration of hyperbolic modular transformation in Te-
ichmiiller space, and prove a strongerr version of a theorem of Bers [10] which

plays an important role in proving Theorem 0.3.

3.1 The Thurston-Bers classification of modular trans-

formations

In [9] Bers introduced a classification for elements of the Teichmiiller
modular group Mod T for a torsion free finitely generated Fuchsian group [’

of the first kind. Let x € Mod T, and let

a{x) = inf .y <7 X(7) >,



where <, > is, of course, the Teichmiiller distance defined in §1.1. x is called
elliptic if it has a fixed point in T(T); parabolic if there is no fixed point and
a(x) = 0; hyperbolic if «(x) > 0 and a(x) is assﬁmed; and pseudo-hﬁperbolic if
a(x) > 0 and a{x) is not assumed.

On the other hand, x is induced by a self-map f | of a surface S of type
(g,n), 2g — 2+ n > 0. The isotopy class of self-map f of S can be topo-
logically classified as follows (see Thurston [47]). A (non-empty) finite set of
simple curves ¢ = {¢,...,¢ } is called admissible if c.,- 18 not homo'topic to
a point, a puncture, or some ¢;, for 7 # 4. f is called a reduced map if it
keeps ¢ invariant, f is reducible if it is isotopic to a reduced map. f is ir-
reducible if it is not reducible. Thurston’s classification theorem [47] asserts
that any self—ma,ﬁ of S is either isotopic to a periodic map, or to a reducible
map, or to a irreducible map; any non-periodic irreducible map is isotopic
to a pseudo-Anosov diffeomorphism (a pseudo-Anosov diffeomo_rphisrﬁ fisa
diffebmorphism satisfying fF* = AF* and fF* = (1/A)F?, where F* and F*
are a pair of transversal measured foliations, and A > 1 is a real number. See
Thurston {47] for more details). A relationship between Bers’ classification
for modular transformations and Thurston’s classification for isotopy classes

of self-maps is established by Bers [9]. The results are the following:

Theorem 3.1.1 Let x € Mod T be induced by a self-map f of usr.

(1) An element x € Mod T is elliptic if and only if f is isotopic to a

(2) Assume that [ is not isotopic to a periodic map. Then x € Mod T is




hyperbolic if and only if f is an irreducible map.

Remark. Theorem 3.1.1 (2) implies that a reducible non-periodic self-map
[ corresponds to either parabolic or pseudo-hyperbolic element X- More pre-
cisely, let f be a reducible non-periodic self-map. The corresponding system of
admissible curves is denoted by ¢ = {¢y,...,¢,}. Then ﬁhere exists ann € Z7T
such that f” restricts to self-maps of all parts § — {c}. If f has the property
that all restrictions of f* to the parts are isotopic to a ﬁeriodic map, then
f must correspond to a parabolic element ¥, oiherwise, f corresponds to a

pseudo-hyperbolic element x.

For our application, we are mainly concerned with those modular transfor-
mations y of T(I') (or the corresponding self-maps of U/ I‘) for which there exist
elements v € I' C Aut F(T') such that ¥ oyoy~! = x, where 9: F(I') = T(I")
1s the Bers isomorphism described in the beginning of this chapter.

As discussed in §1.3, the group I' can be viewed as a Fuchsian group acting
on U as well as a subgroup of holomorphic automorphisms of F(T') which leaves
invariant each fiber. The restriction of T' to a fiber 7= {([1]), (1] € T(TY), is the
quasifuchsian éroup * = wtl(w*)~ .

An element v € T C PSL{2,R) is a Mobius transformation; it is either
elliptic, or parabolic, or hyperbolic. We call a hyperbolic element ~ 'Evl" simple
if 4 is a power of an element whose axis projects to a Jordan curve on U/T.
If 4 is not simple, it is called essential if the axis of 4 projects to a curve

that intersects every admissible curve on U/T. « is essential if and only if

. the complement in U /T of the projection of the axis of 7 consists of a union



of discs and punctured discs. (A curve satisfying this property is called a
filling curve.) Since there are closed curves on U/T" which are neither simple
curves nor filling curves, we see that there are countably many non-simple
non-essential hyperbolic elements of I'.

.Notice that v € T is elliptic (resp. paraboli;: or hyperbolic) if and only if
for all [u] € T(I‘),‘ ~* € T is elliptic (resp. parabolic or hyperbolic). Let Aut
F(I') denote the group of holomorphic automorphisms of F(I'). If we think
of T as a subgroup of Aut F(T') (via (1.8)), all elements of I' can be classified
as elliptic, parabolic, simple hyperbolic, essential hyperbolic, and non-simple
non-essential hyperbolic transformations:

Let v+ € I. From the above discussion, I' also defines a holomorphic
automorphism of F(T"), and hence 1 oy 04~ is a holomorphic automorphism
of T(T) as well. A relationship between the classification of I' and the Bers

classification of elements of ¥ o I’ 0¥y~ C Mod I is established by a theorem

of Kra 28], which is stated as follows.

Theorem 8.1.2 (1) Assume that U/T" is of type (0,3). Theny € I is parabolic
(resp. hyperbolic) if and only if poyop™' € Mod T is pambolié (resp. hyper-
bolic). In particular, v is parabolic if and only if ¥ oy o ™" is induced by a
reducible map;
(2)Assume that UJT is not of type (0,3). Then
(a) An element v € T is either parabolic or simple hyperbolic if and only
ifhoyop~t € Mod I' is parabolic;

(b) ~ is essential hyperbolic if and only if Y oyop™' € Modf‘ is
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hyperbolic,
(¢} v is non-simple non-essential hyperbolic elements of I' if and only if
poyoy~t € Mod T is pseudo-hyperbolic. |
In particular, Y oyo =1 is induced by a reducible map if and only if v is

not an essential hyperbolic element of T'.

For reader’s convenience, we sum up all well known relations put forth so

far in the following Table (Ej:

¥ X f
elliptic elliptic periodic
parabolic
simple hyperbolic parabolic

non-simple

non-essential ‘pseudo-hyperbolic reducible

essential hyperbolic hyperbolic irreducible (PA map)

In this table, v stands for an element of I' C Aut F(T'), x = poyo ™' is
the corresponding mod'ulér transformation, and f is a self-map of U /F which

induces y.



3.2 On iterates of hypefbolic modular transformations

of Teichmiiller space

Let T be a torsion free finitely generated Fuchsian group of the first
kind. Let @ : T(I'}) — By(L,I") denote the Bers embedding described in
§1.1. To each point ¢ € ®(T(T")), we can associate a normalized univalent
function Wy on L which admits a quasiconformal extension to € and whose
Schwarzian derivative is ¢. By Nehari-Kraus’ theorem, T(I') is bounded in

By(L,T). W, is always univalent not only for ¢ € ®(T(I")) but also for

¢ € o(T() = ¢(T(I') U ar'(I'). More precisely, it was shown by Bers
[6] that ' ——*‘Wf,;,FWq;l, ¢ € 0T(T'), is a b-grbup (that is, a Kleinian group
which has only one simply connected invariant component). The function W,

induces a group homomorphism 8y: ' — PSL(2, C) defined by the formula:
Op(v)o Wy =Wyo09, yel.

04 is an isomorphism of T onto its image I'* if I'? € @(T—(I‘)) More precisely,
I'¢ is a quasifuchsian group if ¢ is in @‘(T(I‘)). When ¢ € 97T(T), we call the
group T a boundary group. A boundary group I'* is called totally degenerate
if W,(L) is dense in C. A parabolic element of I'® is accidental if it is of the
form 84(} with v € [ hyperbolic. A b01lmda,ry point ¢ is called a cusp if '
conté.ins an accidental parabolic element.

Since the Teichmiiller modular group Mod I' acts as a discontinuous group
of holomorphic self-maps of T(T), to each x € T and each n € Z*, the maps

Do x" o &gy are bounded analytic functions. Therefore, the sequence



{®ox" 0 ® 1}, cz+ has a convergent subsequence {® o ¥ 0 &1} cz+. In [10],

Bers proved the following result:

Theorem 3.2.1 Let ¥ € Mod I' be a hyperbolic element. Then for every
convergent subsequence {® o x™ o P1},cz+ and every point v € ®(T(T)),
limj_ ®ox™o®7 (1) € OT(I') represents a totally degenerate b-group. More-

over, the limit point does not depend on the choice of .

In his paper [10], Bers wrote the following remark: “Thurston informed
me thét he can prove that for a hyperbolic element y the sequence {x"} con-
verges. The proof is not yet published”. The study of this problem requires
an understanding of the image of a Teichmiiller geodesic under the Bers em-
bedding. By using an unpublished result of Gallo [22], the above problem can
be settled affirmatively; the proof is rather straightforward. For completeness,

however, we include a proof in this paper. First we state the result as follows.

Theorem 3.2.2 Let x € Mod T’ be a hyperbolic element. Then the sequence
{® o x" o & 1},cz+ converges to a single totallly degenerate b-group for all

T € @(T(T)).

Remark. -This result tells us that the behavior of iterates of hy'perbo]jc_ modular
transformations on a Teichmiiller space is similar to those of hyperbolic Mahius -
transformations acting on the unit disc. It is not known, however, whether
the two boundary points lim, e ® 0 x" 0 ®71(7) and limpwee @0 x "0 @~ (1)

are distinct in the boundary of Teichmiller space.
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To prove Theorem 3.2.2, We first need to review some basic facts about

quadratic differentials. For more details about this subject, see Gardiner [23].

Let X denote a Riemann surface of type (g,n) with 29 — 2+ n > 0. We
define the Teichmiiller space T(Xp) of Xy as a space of all equivalence classes
of pairs (f, X), where f: Xo — X is a (quasiconformal) homeomorphism and
two pairs (fy, X1) and (fo, X») are called equivalent if fyo fi'! is homotopic to
a conformal map of X; onto X,. The equivalence class of (f, X) is denoted by
[f, X]. Let T be a torsion free ﬁniteiy generated Fuchsian group of the first kind
which acts on U. If U/T = X, then T(X,) is biholomorphically equivalent
to T'(I'). See Nag [39]. Let Q(Xo) be the 3g — 3 + n complex dimensional
vector space of holomorphic integrable quadratic differentials defined on Xj.
An element of Q(Xy) may have a simple pole at a puncture of X,.

Let 2o € Xg, and z a local parameter with z(zo) = zp. Let ¢(z) be the
local expression for ¢ in terms of the local coordinate chart z: U,, — C, where
U, C Xp is a small neighborhood of zq. Assume that zo is a regular point for

#; that is ¢(zp) # 0. We obtain a local parameter w by setting

wzfz:\/@dz.

w is well-defined and is called a natural pamhieter for Xo with respect to ¢. A
parametric curve ¢ in Xg is called a horizontal (or vertical) trajectory of ¢ ifi
¢(2)dz? > 0 (or ¢(z)dz* < 0) along c. All horizontal and vertical trajectories
of ¢ produce two transverse foliations on X, which are singular at zeros of ¢

and at punctures where ¢ has simple poles.



Letl Xo, X; be Riemann surfaces with the same type (g,n). A quasicon-
formal homeomorphism h: Xp — X is called a Teichmiiller map if its complex
dilatation p is of the form .

b=kl e
where 0 < k < 1 and ¢ € ¢}(Xo). The Teichmiiller theorem (cf [45] [46])
asserts that every quasiconformal map of Xy onto X, is homotopic to a unique
extremal map and that a map Xy — X, is extremal if and only if it is either

conformal or a Teichmiiller map.

Given Xy, a Teichmtller deformation hyg: Xo — Xip with réspect to
¢ € Q(Xo) and k, 0 < k < 1, is defined, see Bers [9] for a description. Here
h,;,d, is a Teichmiiller map. More precisely, if w is the natural parameter for X,
with respect to ¢, then w' = wo h;;,}ﬁ is a natural parameter for Xy 4, é,nd the
map hy 4 induces a quadratic differential ¢4 4 on X4 whose zeros and poles
correspond 1o the zeros and poles of ¢ under the map hygg. |

The Teichmuller ray, denoted by r(¢), is determined by a non-zero ele-

ment ¢ € Q(Xo). r(#) is an arc consisting of all points [hyg, Xie), 0 < k < 1.

Let BY~5+2 C Q(Xo) ~ R%~%*?" be the unit ball, and let PQ(Xo) |
be the space of projective equivalence classes of non-zero elements of Q(Xo).
We define a map T".: B%~%**" — T(Xo) by sending (k,¢), 0 < & < 1,
¢ € PQ(Xo), to the equivalence class of (A4, Xi,4). The Teichmiller theorem,
as mentioned above, implies that 7" is a h(:)meomorphism of B%~6+" onio
T(Xo). The inverse map of 7", which is denoted by 7', is called a Teichmiller

embedding of T'(X,) into ROI—6+2n,




The proof of Theorem 3.2.2 is based on the following theorem.

Theorem 3.2.3 (Bers [9], Thurston [47]) Let x € Mod T be a hyperbolz'é
element. Then there exists a non-zero element ¢ € Q(Xy) so that x leaves the

Teichmuller ray r(¢) invariant.
The following result leads immediately to a proof of Theorem 3.2.2.

Theorem 3.2.4 (Gallo [22]) Let ¢ € PQ(Xy), ¢ # 0. Then ®(r(¢)) has a

unique endpoint in 91'(1).

For convenience of the reader, we sketch the proof here. Before proceeding,
let us recall that a differential in Q(Xy) ia called a Jenkins-Strebel differential
if its horizontal trajectories are closed. A remarkable theorem (see [15]) asserts

that the set of Jenkins-Strebel differentials in Q{X,) is a dense subset of Q(Xy).

We choose a torsion free Fuchsian group I' acting on U such that U/T = X.

Proof of Theorem 8.2.4. First we choose a sequence {¢y,} of Jenkins-Strebel
differentials on Xy so that ¢, — ¢. Then we choose arbitrarily an endpoint
a € OT(T') of ®(r(¢)). By definition, there is a sequence {k,}, k, — 1 such
that [hy, g Xi.e) € r{¢) and {wk=?|r,-} — ¢, where py, 4 is the complex
dilatation of the Teichmiller deformation hAg, 4 and whn* is the normalized
quasiconformal map with complex dilatation pj, 4 and is conformal in the
lower half plane L.

Let T*né = pkndT(p*n#)~1 and let amn = {w*?*m|L,-}. By a theorem

- of Masur [35], we see that for fixed m, limy,_q O exists. We denote this




limit by oy,. We claim the following inequality holds:

3
| am = G fl2< 5 (1~ Ea), (3.1)
where || - ||2 is the usual sup norm defined in §1.1. To see this, let un,, be a

[knibm_compatible Beltrami coefficient which is supported on wk»#m (I} with

| ttmm floo= 1. Define
Do[ttimnl) = {1657 0 b, )

where 0 <t < 1, By Corollary 2.3 of [37];

[N ]

| @o(ptmn) o=l (d{w'™m 0wk |y, -} fdt)|imo [|2 <
Let fy (k) = {wh¥n],,-} for 0 < k < 1. Then
1 F (86 =1 (D ()i =

=[] (d{w* 0w |1, -} /dt)imo [l2=[| Do(o) 2 < g,

where g denotes a I'*0¥m_compatible Beltrami coeflicient which is supported

on wh () with || gy ||l= 1, and ko € (0,1) is arbitrary. Hence for a

sequence 1; — 1 with 0 < k, < t; < 1, we have

I Fan8) = o) 2% 5 = ).

Since fy,, (kn) = Qmmn, UMinsoo fp (i) = @ (cf. Masur [35]), and limuoeo ¢ =

1, inequality (3.1} then follows by taking ¢ — oc.

The next assertion is that for the sequence {k,} determined above, there

is a subsequence {¢,,} of {¢,,} such that

7}1—@0 Qi — O _ (3.2)



To verify (3.2), let ¢, > 0 be a sequence with €, — 0. For each fixed k., one

may choose an element ¢,,  of {¢,} such that

<‘ [hkn,qun b Xkrn‘;bmn]’ [hknﬂb! an,d?] > < En’

where < -, - > is the Teichmiiller metric. This implies that there is a normalized
quasiconformal map w, with bounded dilatation (whose norm is less than ¢,)
and satisfies

wnI‘kmdﬂn'z,n (wn)—l — Fk"'¢.

sSince €, — 0, there is a further subsequence (call it {w,} also) of {w,}, so

that w, — id, as'n — co. The assertion then follows.

Now from (3.1), we obtain

3
“ Qmp — Cmg,n ||2S 5(1 j kn).

It follows from (3.2) that

Fam, = o llz Sl am, = @mun ll + | Qg ~ @ [2= 0, as 1 — co.

Now suppose that o’ is another endpoint of ®(r(¢)). We may repeat the above
argument to choose a subsequence {ay,, } € 8T(T") which converges both o and

o'. Thus we must have o' = a. This completes the proof of Theorem 3.2.4.

Now we are able to prove Theorem 3.2.2. _ _
Proof of Theorem 3.2.2. By Theorem 3.2.3, there is a ¢ € Q(Xy) such that

X keeps the ray r(¢) invariant; this says @ o x™ 0 @~1(®(r(¢))) = ®(r(4)) for




all n € Z*. Suppose that there are two subsequences {® o x™ o ®~'}¢z+,

{®ox™ o (I)_l}jel+ which are convergent. Let

lim o x™ o @ (z) =2’ € §T(T)

Jroo

and

lim ®ox™ o @ (y) = ¢ € OT(T),
j—oo

where z,y € T(I'). Choose a point 7 € ®(r(¢)). By Lemma 2 of Bers [10],
we see that lim;_® o x™ o ®"1(2) = limj_c® o ¥™ 0 ®~Y(7) = 2’ and
lim; oo @ 0 3™ 0 @7 (y) = lim;_0 & 0 x™i 0 71(7) = ¢/'.

On the other hand, since 7 € ®(r(@)), both lim;_.. ® 0 x™ o &-1() and
lim; o ®ox™ o (I)‘l('r).are endpoints of the ray @(r(qﬁ)) By using Theorem
3.2.4, we conclude that |

lim ®oy™ 0@ 7)) = lim ®ox™ o ®~(r) € 8T(T).

Jer0s j—o0

It follows that 2’ = y'. By using Lemma 2 of Bers [10] once again, we conclude
that
lim & o x™ 0 @~ (T(T)) = lim ® 0o x™ o &~Y(1(I'))

j—co j—ea

is the endpoint of Q)(r(qb)) Since {®o x™ 0 @'} ;cp+ and {Pox™ 0 D71}, g4

are arbitrary two subsequences of {® o x™ o ®~'},cz+, Theorem 3.2.2 then

follows. 0O
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3.3 Proof of Theorem 0.3

Let ' be a torsion free finitely generated Fuchsian group of the first kind.

We need two lernmas.

Lemma 3.3.1 The set of fized points of essential hyperbolic elements of T' are

dense in R = RU {o0}.

Proof.  First observe that there are filling curves on U/T". For example, we
can choose a set of genérators in the fundamental group ?rll (U/T', zg), a curve
containing all these generators is a filling curve. Figure 16 below shows a filling
curve ¢ on a surface of type (2, lj. (See also Figure 3 in Kra [28].)

Since there is a closed geodesic in the homotopy class of a filling curve on
U/T, this geodesic corresponds to an essential hyperbolic element. So there
always exists a essential hyperbolic element « in I, |

| It is well known that for any point 2 € R, the orbit I{z) = {y(z);y€T}is
denée in R. In particular, the orbit of the fixed point of an essential hyperbolic
element + is dense in R; these are fixed points of conjugates of ~, which are

again essential hyperbolic elements. 3

Let ¢: F(T') ~+T(I‘) be the Bers isomorphism constructed in the begin-
ning of thié chapter. Since T(I') can be identified with its image under the
Bers embedding @ : T(I') — B,(L,T'), the composition ® o tp, which we still
call the Bers isonﬁorphisin and still denote by %, is a biholomorphic rna,i) of

F(T') onto its image in By(L,T).

126



Figure 16.

By Theorem 10 of Bers [8], mod I is isomorphic to a subgroup (via the
map ) of the Teichmiiller modular group Mod I' = mod I' /T with finite
index n + 1, where n is the number of the punctures on U/I'. More precisely,
the elements of the image of mod [' are induced by those guasiconformal
homeomorphisms which fix one special puncture of U/ I'. As we discussed in
£1.3 and §3.1, the group I' is also regarded as a subgroup of the Teichmiiller

modular group Mod I

Lemma 3.3.2 Suppose that dimn T(I') > 1. There is no continuous injective

map ¥ of F(I) into T(I') UOT(T) extending 1.

Proof. Let v € T be an essential hyperbolic element. Under the .inclusion
I' C mod T — Mod I described above, 9o yoh~! = x., is an element of Mod
I'. By Theorem 3.1.2, x, is a-hyperbolic modular transformation in the sense |

of Bers (Theorem 3.1.1).
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Choose two points ([p1],21), ([#2],22) in F(T) lying in different fibers;
that is, w* # w*2 on R. Let us consider the two sequences {y*([1],#)},
i = 1,2. Observe that the action of v*, n = 1,2,..., on F(T') is defined in a

quite natural way; that is,
Y ([kid 2) = ([l (7)™ (20)) =

= ([u], w0 4™ o (wh) 7 (=),

for ¢ = 1,2. It follows that the action of 4™ keeps both ﬁberé ([,u?],w”l(U))
and ([u2],w*2(U)) invariant. Observe also that on the fiber over [p], ¥*
acts as a hyperbolic Mdbius transformation 4* in the quasifuchsian group
' = w*T'(w*)~!. Therefore, the seque_ﬁce {(v*)*(21)} must converge to the

~

attractive fixed point of 4, say 2}, lying in the quasicircle w*'(R). Simi-

larly, the sequence {(v"2)*(z;)} converges to the attractive fixed point zj of
~v*? lying in w”"(ﬁ) Since {7™{([111], z1)} and {y"([p2), 23)} lie in two different
ﬁbei‘s, these two sequences converge to two different limit points {[u1], 21) and.
([p2), 25). (Note that 27 and 2z may coincide.)

For 1 = 1,2, let [;] denote the 1-image of ([1;], z;) in T(T"). We consider

the sequence {x2([»])}. For any » > 1, we have

Xo([v]) = ¢ o™ o7 {([i]) = p(v" (i, ).

This implies that {x7([#:])} is the 1-image of {y"([ws;], z)}. Selecting if need be
a subsequence, we may assume that both sequences, { Xy (D)} = vy (wl, 2)),

. = 1,2, are convergent. By Theorem 3.2.1, both sequences converge to the
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same boundary point which represents a totally degenerate b-group I' isomor-

phicto T'. If ¢ can be extended continuoﬁsly and injectively to F'(I'), then

P([ml, 21) # P((pal, 23)-
This is a contradiction. Hence, the lemma is proved. 0

Remark. By using Lemma 3.3.2, we can easily solve the problem relatled
to the inverse of +; namely, we claim that there is ﬁo continuous extension
of %=1 to the closure T(I") U 8T(T). Indeed, as we saw before, for i = 1,2,
the sequence {x7([1])} is the ¢-image of {y"([u1i},2)}. Suppose that =1 is

continuous, since (choose a subsequence if necessary)
Jim xT([m]) = lim xJ([]) = ¢,

where ¢’ cﬁrresponds to a totally degenerate b-group IV = W‘;,rI‘Wd;I, we must
have
Jim " ({pa], z1) = lim 7"([u2); 22)-
Thus, |
(i), 21) = ([pal, 22),

but this is a contradiction; proving our assertion. To obtain the same conclu-

sion for the isomorphism 1, we must do some further work.

Proof of Theorem 0.3. First, we prove the theorem under the assumption that
dim T(F') > 2 and that ¢ : F(I') — T(I') is the Bers isomorphism. Suppose
that there is a continuous extension ¢ of 4 to the closure F(I'). Let a € T be

a simple hyperbolic M6bius transformation; that is, the projection of Azis(«)
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under the projection p: U — U/T is a simple closed geodesic on § = U/T.
By Theorem 3.1.2, as an element of Mod I', po @0 9p~1 = vy, € Mod I' is a

parabolic modular transformation in the sense of Bers.

To proceed, we need to investigate more carefully the action of the parabolic
modular transformations X« Which are determined by simple hyperbolic trans-
formations a of . We invoke Theorem 2 of Nag [38], which says that the
self—ﬁap fo which induces y, is isotoiaic to a spin rﬁap a,bout.&, where a is the
projection of a (defined in the beginning of Chapter 3) under p: U — U/T.
(For the definition of a spin map, see §2.4, [13], [28] and [38].) This .rneans
that the system of admissible curves defined by f, is ¢ = {¢;,¢;}, where ¢;
and c; bound a cylinder A containing the puncture @ and no other punctures.
Further, since a is hyperbolic, neither ¢; nor ¢; bounds a punctured disk.

On the other hand, we know tha,t the number of the curves in a maximal
system for U/T is 3¢ — 2 + n and that y, is reduced by a system with 2 |
simple closed curves ¢ = {¢1,¢}. Thus, ¢ is not of maximal system unless dim

T(G) =0 or 1; that is, unless {(g,n) = (0, 3), (0,4), or (1,1).

For any z € T(I'), let us consider the set Ac(xq, ) of accumnulation points
of {x*(z)}. By Theorem 3 of Abikoﬁ' [2], Ac(xxa, ) consists of those quadratic
differentials ¢ in By(L,T) for which W¢I‘Wq;' ! are regular b-groups. (Recall
that W, is a normalized univalent function on L which admits a quasicg.)nforma,l

extension to C and whose Schwarzian derivative is ¢.)

Fix z € T(f‘), by passing a subsequenée if necessary, we assume that

{xa(2)} converges. This implies that Ac(xa,z) consists of only one point,




which corresponds to a regular b-group B € 97(I’). Topologically, the upper
part ((B) — A(B)}/B of B (where (B) is the set of points at which B acts
discontinuously, and A(B) is the simply connected invariant domain of B) is

obtained by squeezing the curves ¢ on U/T. See Theorem 5 of Maskit [33].

By the previous argument, we see that U/ - {e1,¢2} consists of two
components if cl/@nd c2) is a non-dividing curve, and three components if
¢; (and ¢3) is a dividing curve. Since {c;,¢p} is not maximal, we know that
e PRBE—
at least one component is not a pair of pants. Therefore, we can change the
conformal structure on 5'1 4.4 S’m, m =2 or 3, where 5’,-&1‘6 obtained from
S; by capping the punctured discs on the boundary curves. Fix a conformal
structure on §; + - - - + 3. From Theorem 6 of Maskit [33], we conclude that

C—— e L A
there is a regular b-group B such that (Q(B)— A(B)}/B = 51+ -« + Sn,

and the corresponding quadratic differential lies in the boundary of T(I").
Different conformal structures on Sy + - ot Sy will produce different regular
b-groups. Let B, By be two distinct regular b-groups defined in this way, and
lét @, ¢g € Bg(L,.f‘) be the quadratic differentials corresponding to B and By,

respectively; that is, B = W,I'(W,)™" and Bg = W, (W, )L \/

By selecting a further subsequence, we assume that the sequence {x"}
of bounded analytic maps converges.r Theorem 3 of Abikoff [2] then asserts
that {x,} converges to a limiting holomorphic map of T(T') to OT(I") which
is a surjection of T'(I') onte the boundary Teichmiiller space representing the
corresponding congruence class (for the definition, see Abikofl [2]). This im-

plies that there are points @, y € T(I") such that {x%(x)} converges to ¢, and "
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{x%(y)} converges to ¢.

Let ([¢1], 1) and ([pﬂ,zz) € F(I') denote the preimages of # and y under

Y F(I') = T(I"), respectively. There are two cases.

Case 1. py is not equivalent to uo; that is, ([, =), ¢ = 1,2, lie in
different fibers. Consider the SeQUénces {o™(u;], z:)}. These sequences are
the preimages of {(xa)"(z)} and {{xa)"*(y)}. By using the same proof as in
Lemma 3.3.2, we conclude that the limit points 2! of {a™([p:],2:)}, 1 = 1,2, lie
in the boundaries of different fibers, ([u;],w“‘(ﬁ)), and the images of ([y4],2])

“and ([us], 24) under ¢ is exactly ¢ and ¢, described above, where ([u;], 2!) =

limps o0 'Yn([lui]a zi)'

By Lemma 3.3.1, we can choose a sequence {u,}32, of fixed points of
essential hyperbolic Mobius transformations in I' such that {uﬂ} %0 | converges
to a fixed point 2’ ofd € I But w#(2') is a,r fixed point of a* € I'*, which
is equal to 2. It follows that (w*1)~'(2]) = (w"?)7(z}). Let 0, n = 1,2,...,
denote the W&ﬁ@eséential hyperbolic elements of I' corresponding to
the fixed point u,. Since w*, i = 1,2, are global homeomorphisms, the
sequences {u;,} of the fixed points of {6} also converge to z{. For ¢ = 1,2,
hobse y; € F(T') so that y; lie in the fibers ([g;], w™ (U))}, respectively. Since
I' C mod I' is a normal subgroup which leaves eaéh fiber invariant, and since
u;, is a fixed point of 6%, fix n, the sequence {87 (¥:)}°-, converges to u;,.
(If u;p is the repulsive fixed point, then we replace m by —m, the above
argument still works.) We denote by z; the t-image of y; in T(T) for ¢ = 1,2.

The sequerices {07 (y;)}5o_, are mapped via ¥ to the sequences {x7 (z;)}50_;.



By selecting a subsequence if necessary, we may assume that the two
sequences {xg ()}, i = 1,2, converge for every n € Z*+. By using the
same proof as in Lemma 3.3.2, we conclude that for i = 1,2 and a fixed n, the
two sequences {x7: (z;)} converge to a single point ¢,. Let ', = W, I‘( W, )t
Then, by the Theorem of Bers [10], all I, are totally degenerate b-groups in
BT(I") isomorphic to I'. If the continuous extension ¥ of ¥ exists, then we

must have
%L(ul,n) = %Z(uzn) = ¢n
Since {u;n}, ¢ = 1,2, converge to z!, and since () = ¢,9(2}) = do, the

sequence {¢,} must converge to both ¢ and ¢, This is clearly impossible.

Case 2. u; 1s equivalent to ps. In this case y;, ¢ = 1,2, lie in the same

~

fiber. This means that the sequence {6™(y;)} converges to u, € Jw**(R) (n'is

fixed). It follows that t)(u,) is the limit ¢,, of the sequence {x§" (¥(y:))}. Since

u,} converges to z; = z, p{u,) = ¢, converges to ¢. Similarly, ¥(u,) = ¢y,
g ) 2y 2 ¥ g

also converges to ¢p. This is impossible.

Next, we deal with the case of dim T'(I') = 1; that is, U/I" is of type
(0,4) or {1,1). This means that I is of type (0,5) or (1,2). Choose a spin map
S;, = h, 0 h! about the puncture & (recall that & is the projection of a under
p: U -——> U/T"), where A, 1 = 1,2, is the Dehn twist about a simple closed curve
¢;, and ¢; bounds a punctured disk, see Figure 17. (More details about Dehn
twists are discussed in §2.2.) In this case, the spin map s, defined on U /I‘
is isotoi)ic to the Dehn twist about c;. (The Dehn twist about ¢; is isotopic

to the identity.) Let x € Mod I' be the (parabolic) modular transformation



induced by s,. By selecting a subsequence if necessary, we see that {x"(z}},
z e T(D), converges to a quadratic differential ¢’ corresponding to a regular
b-group B’. By Theorem 5 of Maskit [33}, B’ can be obtained topologically by
squeezing the curve ¢; to a point. This gives (Q(B') — A(B"))/B' = 5'{ + S,
where S} is a thrice punctured sphere, S} is a 4-times punctured sphere if U /T
is of type (0,5) and is a punct_ured torus if U/T" is of type (1,2). In both cases,
§§ has moduli. Thus, we can change the conformal structure on 5’{ + 5'5

On the other hand, since y is induced by s,, and s, fixes &, by Theorem

10 of Bers [8], ™' o x 0 ¢ € mod I". Note that the following diagram is

commutative:

where # = 7o 9™}, and 7 : F(I') — T(I) is the natural projection. We
conclude that v oy oy = o € I. Tt is easy to see that o is a parabolic
element of I'. The previous argument works equally well in this case. The

details are omitted.

For general situation, suppose that 9': F(I') — T'(I') is a biholomorphic
map which can be extended continu(-)usly to the boundary. Then ¢ o9~ is a
holomorphic automorphism of T(I). From Theorem 1.2.3, ¢ 0 9~ € Mod T.
Let ¥’ o1p~! be induced By a self-map f of U/I‘ By Theorem 3.1.2, an essential

hyperbolic element . of I' determines a hyperbolic modular transformation
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¥ o v ol which is, of course, induced by a irreducible self-map f; on U/F
(Theorem 3.1.1). fy is irreducible if and only if fo fy 0 f;l is irreducible. It
follows that 9’ 0 v 0 1"=1 € Mod I' is hyperbolic. Similarly, the self-map sy of
U/T is a spin map about & (that is, s, = he,0h7!, where he; is the Dehn twist
~about ¢, ¢ and es b.ound a cylinder which contains the only puncture &) if
and only-if fos,o f~!is a spin map about f(&). .More precisely, we see that
fosyo flis isotopic to hg(e) 0 h}'(lcl )- Furthermore, ¢; bounds a punctured
disk if and only if f(cI) bounds a punctured disk. Hence, the argument above
carries over word by word for this general case. This completes the proof of

Theorem 0.3. O

(a) )

Figure 17.

As an application of Theorem 0.3, we observe that for a torsion free group
I', the Teichmiiller space T(I') can be embedded into R®=%+?* vyia the Te-

ichmiiller embedding, as we discussed in §3.2. Therefore, we obtain an natural



enbedding 7 : F(I') — R976%2% x C ~ RO=%+2% Let us denote by B4+
the imago of F(T') under 7. On the other hand, by means of the Bers iso-
morphism ¢: F(T') — T(I"), we can define the Teichrﬁﬁller embedding of F(T')
into R®~**2" by the composition T o 4, where T : T(I') < R®9~%+2" js the

Teichmiiller embedding.

Theorem 3.3.3 The homeomm"phz'sm o = T ot o T~ admits no homeo-

morphic extension to the boundary of B89—4+2n,

Proof. Consider the following commutative diagram of homeomorphisms:

Ba—4+2n — ng—6l|-2n % C o [69-4+2n — Rog—4+2n

7] | |z

F(T) — (")

Again, let ®: T(F) s By(L,T") denote the Bers embedding. By a theorem
of Gallo [22], the homeomorphism ® o 7! : BS~4+2n «, B,(L, T') extends
continuously to the boundary of B%~%t2" Suppose that vy admits a homeo-
morphic extension, then the above statement implies that ® o T~ 04y admits
a continuous extension. But @ o T 1oy = ®opoT !, We conclude that
®orpoT ! admits a continuous extension to the boundary of B%~4+2", Onp the
other hand, by Theorem 0.3, we assert that & o1y o 7~ admits no continuous
extension to the boundary. This is a contradiction. The proof of Theorem

3.3.3 is complete. O
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3.4 Proof of Theorem 0.3’

In this section, we prove another non extendibility theorem in more gen-
eral cases. The methods used to prove Theorem 0.3 essentially rely on Theorem
3.1.2. By exploring Kra’s proof, we find that his argument needs information
ffom the Bers isomorﬁhisms; that is, the assumption that T' is torsion free
is crucial. In order to prove The&rem 0.3’, we must develop new methods
since our objects here are arbitrary isomorphisms rather than the Bers iso-

morphisms.

We remark that the methods introduced in this section do not work in
general torsion free cases. The reason is the following:

(1) U/T may be compact, or

(2) even it U/T is not compact, it is difficult (or even impossible in some
cases) to construct periodic self—nﬁaps which fix a puncture on U/T.
We see that the main parts of the proofé of these two non-extendibility theo-
rems are independent; although Theorem 0.3 includes Theorem 0.3 as a special
case.

Also, Theorem 0.2 is a significant step in proving Theorem 0.3’ since after
the work of Earle and Kra (Theorem 0.1), some cases cannot be handled by

only using the methods introduced below. For example, when I' is of signature
(0,8;2,...,2),(0,7;2,...,2) or (0,5;2,...,2)), our methods do not work since

there are no punctures on U//T". However, it is shown by Theorem 0.2 that

to any Teichmiiller spaces.

‘the Bers fiber spaces of the groups with these signatures are not isomorphic.




Let T', T be finitely generated Fuchsian groups of the first kind. Assume
that I' is not of type (0,3). Note that the group I” is always assumed to be

torston free. We need several lemmas.

Lemma 8.4.1 Let x' € Mod I, and let « be a positive integer. Then that

X' is parabolic implies that x' is parabolic.

Proof. This lemma is a special case of Proposition 2 of Kra [28]. The proof
is included for completeness. According to Bers [9], evéry element in Mod
I' is either elliptic, or parabolic, or pséudo—hyperbolic, or hyperbolic. If y’
1s elliptic, then so is x"* because a fixed point of ¥’ is a fixed point of x™.
If x' is hyperbolic, then by Theorem 5 of Bers [9], ¥’ has an invariant line
which is also a;n mvariant line of x'*. By using Theorem 5 of [9] again, we see
that yv* is hyperbolic. Finally, if .X' is pseudo-hyperbolic, then it is reducible
and at least one of the restrictions is hyperbolic. This implies that ' is

pseudo-hyperbolic. The lemma, is then proved. O

Now we assume that x" and x'® are elements of Mod I". Assume also that
x'* is parabolic. By Theorem 4 and Theorem 7 of Bers [9], ¥ is induced by a
reducible self-map f;, of U/T". Let C’ = {¢|,...,c,} be the corresponding (non
empty) system of admissible curves which is reduced by fi. By Lemma 5 of [9],
we may also assume that f7 is completely reduced by C' = {cf,.. ,c,’.} Now
Lemma 3.4.1 tells us that x’ € Mod 1V is also parabolic. By using Theorem 4
and Theorem 7 of [9] once again, X’ is induced by another reducible self-map

frof U/T". f"is completely reduced by a system D' ={d;,...,d.}.




Lemma 3.4.2 r=s and for every1=1,2,...,r, d;

" is freely homotopic to a

c; Jor some § = 1,2,...,s.

Proof. Without loss of geﬁerality, we may assume that all d} and all ¢} are
closed simple geodesics on U/T". Also, by taking a suitable power of both f”
and f!, we assume that f. is of the form h:’,: o---ohy and f'is of the
form hgil 0-:-0 h’gz, where a;, ﬂJ are integers, and h. is the Dehn twist
about ¢’ which is the identity outside an arbitrarily small tubular neighborhood
N{d)yc U/T"of ¢.

Suppose that for some ¢, d; intersects with ¢ for a j. Let 7’ .denote the
point in T'(I') which represents thé Riemann surface U/T". We may assume,
if need be a subsequence, that {x""(7'}}52, converges. The limit point (in
8T (1)) represents a regular b-group. By Theorem 5 of Maskit [33], this regular
b-group can be obtained by squeezing the geodesics ¢}, ..., .. Thisimplies that
Ifem(c;)] — 0 for j = 1,...,r {where {[c] is the length of the geodesic freely
homotopic to ¢). By hypothesis, d; intersects with ¢}. Keen’s collar lemma

(see also Lemma 2 of Bers [9]) shows that {[f*"(d})] — oo.

But on the other hand, {x""(7/)}%, is also a subsequence of {x™},. By
X n=1 n=1

the same argument as above, we have I[f**™(d!)] — 0. This is a contradiction.

We see that d) either coincides with ¢; for some j, or is disjoint from all

d. Hd #¢ forallj=1,...,r, then X' is reduced by {c},...,c},d;} this

contradicls to the fact that X" is completely reduced by C' = {d],...,c.}.

It follows that the two systems C' = {¢},...,c} and D' = {d},...,d,} are

coincident (up.to free homotopy). This proves the lemma. O




Lemma 3.4.3 Let the signature (g,n;u,...,v,) be among the entires of
Table (C°). Then there is a non-trivial automorphism x of F(I') so that x*-is

a parabolic element of I (again, T is viewed as a normal subgroup.of mod T').

Proo f. We need to examine all cases exhibited in Table (C).
(1) (g,m; 1y s v) = (0,8;2,2,2,00,...,00) or (0,8;2,...,2,00,00). Tn
these two cases, we refer to Figure 10, where z3, z3, z¢ are set to be branch

points of order 2, z;, x4, x5, @7 are set to be punctures if (g,n,v1,...,1,) =

(0,8;2,2,2,00,. ,00); and @y, @ are set to be punctures, za,...,zs are set
to be branch poinis of order 2 if (g, n;v1,...,vm) = (0,8;2,...,2,00,00).

Let v € I" be a parabolic transformation corresponding to the puncture
z1, and let A be the rotation around z-axis with rotation angle 27 /6. Then A
fixes z, a',nd zq. Set f = A% It is easy to see that f is a self-map of U/I' in
the sense of orbifolds (in both cases). Since f fixes the puncture z;, we may
choose a lift f of f so that f fixes the fixed point of 7. We obtain the following

commutative diagram:

U s v
pl lp
u/r — u/r

Thus f induces an element ¥ € mod I'. It is easy to see that go{x) € Mod T
is induced by the map f (where go: mod ' - Mod I is the usual quotient
homomorphism). Since f? = A® is the identity, go(x?) € Mod T' is the identity

as well. This in turn implies that the non-trivial element x* leaves invariant



each fiber. As a matter of fact, ¥? lies in the kernel of the homomorphism
go: mod I' = Mod T'. Hence, x*> € I. Since f fixes the fixed point of 7, we see
that x* = v € I' is a parabolic Mébius transformation. Note that x is not an

element of T,

(2) If (g,n;04,... ,r)n) = (0,7;2,2,00,...,00), then Figure 11 is referred,
where 73, T3, 24, Tg, Z7 are punctures, and z,, z5 are branch points of order 2.
The rotatioln A is made by fixing z; and a regular point. Set f = A% More
importantly, [ is a self-map of U/T" in the sense of orbifolds.

It (¢,m2;00,...,v,) = (0,7;2,2,2,2, 00,00, 00), we still look at Figure 11,
but this time zy,2,, 25 are punctures, and xs, @4, &g, £7 are branch points of
order 2. A and f are the same as above. We see that f is a self-map of U/I’
in the sense of orbifolds.

M (g,n5vh,...,0m) = (0,7;2,...,2,00), Figure 11 is referred once again,
‘ Where_ x1 is a puncture, and z,,...,z7 are branch points of orderl 2. A and
f are the same as above. Obviously, f is a self-map of U/T in the sense of
éi‘bifolds.

The rest of the argument of Case 2 remains the same as in Case 1, details

are omitted.

(3) H (g,n501,...,vm) = (0,6; 2, 56, ...,00), then Figure 12 is a reference
picture, where @, 23, ..., % are punctures and z, is a branch point of oraer 2.
A is a rotation with angle 27 /4 and is made by fixing z; and z;. Set f = A%
We see that f is a self-map of U/T in the sense of orbifolds.

If (gm0, 0) = (0,6;2,2,00,...,00), then we also refer to Figure




12, where zy, 29, 24, 7s are punctures, and z3, x5 are branch points of order 2.
A and [ are the same rotations as above. f is clearly a self-map of U/T in the
sense of orbifolds. |
If (g,n;0n,...,) = (0,6;2,2,2,00,00,00), then Figure 12 is referred,
where &, 3, vs are punctures, and i, x4, zs are branch points of order 2. A
‘and f are the same rotations as above. Then f is a self-map of U/T in the
sense of orbifolds. |
I {g,n;m,... , Vy) = .(0, 6;2,2,2,2,00,00), then once again, Figure 12 is
referred, where z1,z; are punctures, and zs, 4,5, are branch points of
order 2. A and f are the same rotations as above. Then f is a self-map of
U/T in the sense of orbifolds.

The rest of the argument of Case 3 is similar to Case 1.

(4) ¥ (g,n;01,...,v) = (0,5;2,2, 00,00, 00), then we refer to Figure 13,
where x3, 3, 25 are punctures, and z3, x4 are branch points of order 2. A is'
the rotation with angle 27 /4 and is made by fixing z; and a regular point. Set
f = A% Once again, f is a self-map of U/T" in the sense of orbifolds.

This case by case discussion finishes the proof of Lemma 3.4.3. O

Proof of Theorem 0.3°. When I is torsion free, the result is a weak version
of Theorem 0.3. So we only need to prove the theorem in the case when r
contains elliptic elements. Now Theorem 0.1 and Theorem 0.2 tell us thé,t the
Bers ﬁbér space F'(I') cannot be isomorphic to any Teichmiller Space T(¢',n")
except when the signature (g,n;u1,..., ) lies in Table (C). There are three

special cases to consider.
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When I is of signature (0,6;2,...,2), we have the equivalences:

2>

F0,62,...,2) & F(2,0,_) % T(2,1), (3.3)

where the equivalence A: F(0,6;2, . ,2) 2 F'(2,0;-) is defined by sending a
point ([}, z).€ F(0,6;2,...,2) to the point (Z([u]), z) € F(2,0;_) (E denotes
an isomorphism in (1.5)). The other isomorphism % in (3.3) is a Bers isomor-
phism which cannot be continuously extended to the bouﬁdary of F'(2,0; ) by .
Theorem 0.3. We conclude that o A admit no continuous extension. It turns

out that any isomorphism of £'(0,6;2,...,2) onto T(2,1) admits no continuous

extension.

By the same argument, we can prove that the isomorphisms (0.3) and

(0.4) admit no continuous extensions.

It remains to prove the result in the case when (g,n; Vi, s Vy) lies in
Table (C’). In this case, by using Lemma 3.4.3, we can find a non-trivial

element x € mod I', x ¢ T, so that ¢o(x?) € Mod T acts trivially on T'(I').

Let #: F(I') — T(T) denéte the natural projection. Note that Mod I’
acts faithfully on T(T') if the signature of T lies in Table (C’}. Choose a -point
[11] € T(T') so that [¢] = go{x){[#]) # [#]. Without loss of generality, we may
assume that [4] = [0] (this means that =7 !([u]) = U is the central ﬁger of
F(T)). Since go(x?) acts trivially on T(I‘); x* € T'. More precisely, we have

x? = 4, a parabolic element of T'.

- Since x* € I is parabolic, for an arbitrarily small € > 0, there is a point



([0],z) € U C F(T) so that

pu(([0],2), ([0}, X*(=))) < e,

where p,, is the Poincaré metric on U.

Suppose that there is an isomorphism ¢ : F(I') — T(I"). Then the
restriction ¢l is a holomorphic map of U into T'(IV). By a theorem of Royden
[43], the Kobayashi metric on T(I") coincides with the Teichmiiller metric

<, > on T'(I'"). We thus obtain

< o([0],2), 0([0}, x*(z)) > < e. | (3.4)

On the other hand, by Theorem 1.2.3, we see that both ¥/ = poyoe™! and
X?=pox?op™ are well defined modular_transformations of T(T"). From

{3.4) and (1.8) we obtain

< ([0, 2), x*(2([0],2)) > = < ([0], 2), 0 x* 0 ™" (12([0], 2)) > =

= < ¢({0],2), ¢ 0 x*([0}, @) > =< ([0], 2), ([0}, X*(2)) > < e.

It follows that

a(x®) = inf < 'rf,x'z(‘r') > < &,

rler(r’)
Since ¢ is arbitrary, and since x" is of infinite order, we see that x? is a
parabolic modular transformation. By Lemma 3.4.1, x’ is parabolic. Then
Lemma 3.4.2 asserts that we can find a common non-empty system C' =
{ch,...,¢€.} of admissible curves which is completely reduced by both f} and
f', where f': U/IY — U/T induces x' and f; : U/T — U/T” induces .

By taking a suitable power if necessary, we may assume that both f; and
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[’ restrict to the identity on each part of U/T' — N(C"), where N(C") is an
arbitrarily small tubular neighborhood of C' = {¢/,..., ¢ }. Since both f? and
f45 induce the same modular transformation, we conclude that I is isotopic to
fP=fof.

By (1.7}, we obtain X([UI],-’C) = ([V];w” o f(z)), where v is the Beltrami

coefficient of f~!. Define
P = ([0,9) € T(TY) and o = p(lv] v o f(=)) € T(I").

By the above argument, x” is induced by a reduced map f/, and x" is induced
by f. By selecting a subsequence if necessary, we may assume that the
sequence {x'**(7')}3%, converges. By Theorem 5 of Maskit [33], {x2"(7')}2,
converges to a limit point ¢’ in #1'(I"), and ¢ represents a regular b-group which

is obtained by squeezing all curves c},...,cl. It is immediate that y'(¢') = ¢’
q g 1 T

{see Abikoff [2]). By (3.5), we obtain

o' = p([v],w” o f(z)) = ¢ o x([0], 2) = x'(+").

Hence, by a theorem of Abikoff [2], x¥**(¢')} = x"*" o XI’K(T’) = x' o x*(1') —
X'(¢) = ¢, as n — oo, We also see from (3.5) that the w-image of x*™([0], z)
18

e(x*"([0),2)) = X" 0 p([0], ) = X" (')

and the @-image of x**([v],w" o f(z)) is
e(x"([V],w" o f(2))) = X*"(0") = X" (7).

Since x* = v € I, we have x**{[0],z) = v*([0], z) = ([0],¥"(x)). So all points

x*([0],2), n-= 1,2, -+, stay in the fiber U C F(T') and converge to (]0], '),
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as n — oo, where 2’ € R is the fixed point of 4. However,

([, w” o f(2)) =" ([v), w” o f(z)) =
= ([v],(?*)" o w” 0 f(2)) = ([v],w” 07" 0 f(x))

which stays in the fiber 7=*([v]) over [v] € T(I'). The sequence {x**([v],w" o
f(z)}e, converges to ([v],z,), where z], € OJw”(U) is the fixed point of
7 =w oo (w)

Since {0] # [v], we have ([0],2") # ([v],z}). Now it is obvious that if @ is

an extension of @: F(T') — T(I"), then we must have
¢([v],2)) = ([0}, 2) = ¢

So ¢ cannot be a homeomorphism. This completes the proof of Theorem 0.3".

O

Remark, Our methods apﬁaréntly fail in dealing with the case when the signa-
ture of T'is (0, 3; 1, v, va) for vy, 19,3 € {2,3,- - JU{o0} with ﬁ-%yiz—i—;l; < 1.
In this case, the Teichmiller space T(l') is a single point, there is only one-
fiber over T'(I') which is the unit disk.

We expect that all isomorphisms (if exist) between Bers fiber spaces and
Teichmiiller spaces admit no continuous extensions. The issue is to construct
certain automorphisms of (') with the property that they act as hyperbolic

modular transformations on T{I"). Further discussion will appear elsewhere.
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Chapter 4

On fiber-preserving isomorphisms

The aim of this chapter is to study fiber-preserving isomorphisms among
Bers fiber spaces and isomorphisms among Teichmiiller curves. Some results
stated and proved in this chapter (in particular under the assumption that the
Fuchsian groups involved are torsion free) are known to experts. Sincé these
results do not appear iﬁ the literature and they are important in studying
various fiber spaces over Teichmiiller spaces: as well, we fill in all details in this

paper for completeness.

Let T' and ¥ be finitely generated Fuchsian groups of the first kind. Then
except for certain exceptional situations, all fiber-preserving isomorphisms be-
tween F(I") and F(I') are determined. (See Theorem 0.4 for a precise state-
menf.) Since every isomorphism of Teichmiiller curves is automatically fiber-
preserving, some well-known results stated in Chapter 1 can be utilized to

investigate isomorphisms among Teichmiiller curves. First, we classify all Te-
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ichmiiller curves under isomorphisms, then we prove that all isomorphisms

among Teichmiiller curves are “geometric”.

4.1 Basic propertieé of Teichmiiller curves

Let T be a finitely generated Fuchsian group of the first kind which acts
on U and has type (g,n). As we discussed in §1.3, the Fuchsian group I' can
be thought of as the group of inner automorphisms of I'. With this point of
view, I' is a normal subgroup of mod I'. In particular, I' acts on the Bers fiber

space F(F) by the formula (1.8). The quotient space
V(T) = F(I)/T (4.1}

is a complex manifold with dime¢V(T') = 3¢ — 2 + n. (See Proposition 3.6
of Earle-Kra [20].) Due to the fact that the action of I’ Reeps all fibers of
7: F(I') — T(T) invariant, the natural projection 7 induces a holomorphic
projection my: V{I') — T'(I') with wgl(:t),- z € T'(I), an 01‘bif01d.conformally
equivalent to w*(U/)/I'*, where the quasifuchsian group I'* is defined, as usual,
by the formula I'* = w*I'(w*)~*. The object V(T') is called the Teichmiiller
curve.

| For a moment, we assume that T’ contains no parabolic elements. (We
will see later on that V(I') is isomorphic to V(I') if I is of type (9, n) with
no parabolic elements, tob.) In this case, V(T') is called n-pointed Teichmiiller

curve and is denoted by V(g,n). In particular, we see that V(g,n)is a complex

manifold with a holomorphic projection 7, : V(g,n) — T'(g,n) onto T'(g,n)
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such that for each point = € T(g,n), Yz} is the closed orbifold of genus g
determined by the surface of type (g, n) represented by .
~In what follows, we assume that I is of type (¢,n) and may or may not.

contain parabolic elements. Let
Ur ={z € U; 2 is not a fixed point of any eiliptic element of T'}.

We define the punctured Bers fiber space Fy(T') as the space
{([u,2) € T(T) x C; p € M(T) and z € wH(Up)}.

Clearly, the group I' acts on Fy(I') freely and discontinu.ously as a group of
holomorphic automorphisms which keeps each fiber invariant. The quotient
space V(g,n) = Fo(T')/I" is called a punctured Teicﬁmﬁller curve. Let = :
V{g,n) — T(g,n) denoté the natural projection. |

For every elliptic elemént of I, we have a canonical section of 7: F (') —
T'(T) defined in §1, 3; this section projects (via (4.1)) to a global holomorphic
se(;tion, which is called a canonical section of 7y : V(I') — T(T). Tt is easy
to see that the image of a canonical section of g is exactly a locus consisting
of the branch points corresponding to an elliptic element of T'. Conjugate
elliptic elements of T’ determine a single holomorphic section of 5. The above

discussion leads to the following relation:
V{g,n)' = V(g,n) ~ {the images of all canonical sections of 7, }.
If I' contains k conjugacy classes of parabolic elements, then we have

V(F) = V(g?n) - U’?zlsj(T(g?n))a
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where s;, 7 = 1,...,k, are the sections of 7., : Vig,n) = T(g,n) determined
by & punctures. |
Several important results, due t6 Hubbard [26], Earle-Kra [19] [20], give
us almost full information on global holomorphic sections of me: V{(I') — T(T).
The following result, which is; a weak version of their results (the main theorem

of [26], Theorem 4.6 of [19] and Theorem 2.2, Theorem 10.3 of [20]), is sufficient

for our use in'this paper.

Theorem 4.1.1 Let T be a ﬁnﬁely generated Fuchsian group of the first kind
of type (g,n), and let k (may be zero) be the rnumber of conjugacy classes of
parabolic elements of I'. Then the number of global holomorphic section of
7o: V(T') — T(I‘) is finite (it is zero in most torsion free cases) provided that
I' satisfies one of the following conditions:

(1) g =2;

(2)g=1,n>2 and k> 0;

(3)g=0,n2>5, and k > 0.

Remark. The condition that k > 0 guarantees that there are punctures on U//T".
When ¢ <1 and there are no punétures on U/T, we shall have uncountably

many conformal involution of V(I'). The above theorem is not true.

The number of the holomorphic sections in the above theorem can be
counted. We omit the calculations since they are not needed in this paper.
Neﬁertheless, a particularly interesting case is still worth mentioning. When

g =2 and k = 0, there are 6 Weierstrass sections (see [20]) which are defined




by the fixed point locus of the holomorphic involution J: V(2,n) — V(2,7n)
(the restriction of J to each fiber is the usual hyperelliptic involution on the
corresponding compact Riemann surface of genus 2). There are also n canoni-
cal sections sy,...,8,. S0 in this case, there are a.ltogéther 2n + 6 holomorphic

sections:

{51,805 J 08150, J 08,; six Weierstrass sections}.

However, when ¢ = 2 and k > 0, the number of sections is just n — k.
'Finally, we point out that certain situations are-still unclear; the question

is: what can we say about holomorphic sections of my: V(I') — T(T') when I'

is “exceptional”? Here by exceptional cases we alwéys mean the type (g,n)

(or signature) of I" belongs to the following Table (F):

(Q‘n)=(013)1 (0v4)| or (lsl)

g=1, m> 32, T contains no parabolic elements

g=0, n2>5, I containsno parabolic elements

Table (F)

-In considering the above table, there is nothing to say when I is of type {0, 3).
Note that Theorem 4.6 (b) of [19] tells us that if (g,n) = (0,4) or (1,1); then
for each point z € V(g,n), there is a unique global holomorphic section s
with s(mg(z)) = z. Assume that ¢ = 0 and n > 5. For each z € V(0,n), how

many global holomorphic sections of 7, : V(0,n) — T(0,n) are there which
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pass through 27 The picture remains unclear only when (g,n) belongs to the

2nd or 3rd row of Table (F).

4.2 A classification of Bers fiber spaces

Let T and I" be finitely generated Fuchsian groups 6f the first kind. Sup-
pose that their signatures are ¢ = (g, n;v4,...,v,) and o' = (¢, n/; v{,. RS 7N
respectively. Before proceeding, we take sof_ne examples to see what kind of
isomorphisms among Bers fiber spaces are known to us. Recall that Q(T') con-
sists of all quasiconformal self-maps w of U with wI'(w)~! a Fuchsian group.
First, we consider the case when ¢ = ¢’. Then there is w € Q(I') such that
wl'w™ = 1", By a theorem of Bers [8], w induces an isomorphism [w]. of F(I')
onto F (I") More precisely, the isomorphism [w], can be described by send-
ing every point ([u},z) € F(I') to thé point {[v],w" o w o (w*)~1(z)} € F(I'),
where v € M(I") is the Beltrami coeflicient of w* o w™!. It is easy fo check
that [w]. is a ﬁber-preservingisomorphism. An isomorphism defined in this
way is called a Bers allowable mapping.

Assume now that the {(unordered) pair of signatures (o,0) is either

. \

((1,2;2,v),(0,5;2,...,2,v)), Ve {23, --}U{oo}

" or ((2,0;__),‘(0,6; 2,...,2)). In these two exceptional cases, an isomorphism
can be constructed by carrying ([g], 2) € F(T') to v/ (Z2([g]), z)} € F(I"), where

~" € I'', and = stands for the canonical isomorphism

T(2,0) = T(0,6) (or T(1,2) = T(0,5))
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as we described in §1.2. Observe that in general situation, all well-known
isomorphisms among Bers fiber spaces are fiber-preserving (there are only a

few examples showing that non fiber-preserving isomorphisms exist).

The main result of this section is a weak version of Theorem 0.4 which

classifies (in a fiber-preserving way) all Bers fiber spaces F(T') in general cases.

Theorem 4.2.1 Let T' be a finilely generated Fuchsian group of the first kind
whose type (or signature) is not in Table (F). Assume that (g,n;u,...,v,)
s not (2,0;_2), (0,6;2,...,2), (1,2;“00,00), 07‘-(0,5;2,...7,2, oc). Let T be a
group with signature o' = (¢',n";v,...,v}). Then the following conditions
are equivalent:

(i) F(T') is fiber-preservingly isomorphic to F(F');

(ii) o = o',
We begin with a result whose proof is a direct consequence of Theorem

T(T'). By Theorem 4.1.1, if the type (or signature) of T is not in Table (F),

then the cardinality of § is always finite. Let
po: F(T') — V(I

be the natural projection determined by (4.1); that is, the image po(z) of
x € {[pl,w* (1)) C F(I') is its image under the natural projection w*(U) —
wH(U)/T* C V().

4.1.1. Let & denote the set of é,ll_ima,ges of holomorphic sections of 7p: V(') —




Proposition 4.2.2 Suppose that S is not empty. Then for each [y] € T(I),
S8 = n7Y[u]) N p1(8) is discrete and invariant under the action of I'* =

wHT (wh) 1. O

To prove Theorem 4.2.1, we first need to study those holomorphic auto-
mc;l‘phisms which keep each fiber invariant. In what follows, we use the same
symbol I' to denote the Fuchsian group as ﬁell as the automorphism group
of F(T') it induces. The symbol %, u € M(F), stands for the quasifuchsian
group w*I'(w*)~?, which can be identified with [|z-1(juy in the action of T on

F(T'). We need

Lemma 4.2.3 Assume that the type (g,n) (or signature) of I' is not in Table
(F), and assume that n is a holomorphic automorphism of F(T') which keeps
each fiber invariant, Then o =< T',nlz-1(qqy > is again a finitely generated

Fuchsian group of the first kind.

Proof. I T is torsion free, then Bers’ isomorphism theorem [8] asserts that
F(I'y 2 T{g,n +1). Thus, the group Aut (F(I')) of holomorphic automor-
phisms of F(I') is isomorphic to the group of holomorphic automorphisms of
T(g,n + 1) which is, by Theorem 1.2.3, the Teichmiiller modular group Mod
(g,n+1): Since Mod (g,n+1) é,/cts_ discontinuously on T'(g,n+1), Aut (F(T'))

acts discontinuously on F(I') as well. It follows that Ty is discrete.

Now we assume that T’ contains elliptic elements. Let U be the central
fiber of F(T). (By the central fiber we mean U = n~%([0]), where [0] € T(T)

is the origin.) Observe that 7|-1(q)) is a real Mobius transformation.
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The set §° = pg'(§)NU (# B) constructed above is not only T-invariant,
but also ['g-invariant. For otherwise there is a point 2o € §® with the property
that 5] ,~1¢0)) (o) ¢ S°. If we denote by so: T(I') — F(T') the global canonical
section defined by sending {¢] € T(T) to ([u], w*(zo)), the above argument
shows that 5 o 5o is a global holomorphic section of 7 whose image is not in-
ps " (8), contradicting Theorem 4.1.1. To prove that I'g is discontinuous, it is
equivalent to showing that I'g is discrete (see, for example, Farkas-Kra [21]).
Suppose for the contrary that there is a sequénce {7n} € I'g such that 5, — id.
This implies that for any point, in particular, for # € §°, y.(z) — z. Since S°
is [p-invariant and discrete in U by Proposition 4.2.2, we find é, contradiction.

Lemma 4.2.3 is proved. O

Lemma 4.2.4 Let T be a finitely generated Fuchsian group of the first kind.
Then any fiber-preserving holomorphic automorphism ¢: F(I') — F(I') projects

to a holomorphic automorphism x of T(T') in the sense that

7 op(z) =xon(z), forall z & F(T). (4.2)

Proof. Given the map , we define y by (4.2). Clearly, x is well defined.
The only issue is to show that x is holomorphic. Choose an arbitrary point
z € ({u],w"(U)) C F(T'). Thereis alocal holomorphic section s: T(T) — F(T)

with s([u]) = . For [v] close to [4], we can write

x([v]) = x o (n(z')) =7 o p(a’) = mopos({v)),
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where s([v]) = 2". Since s, , and 7 are holomorphic,  is holomorphic as well.

The lemma, is proved. - a

Lemma 4.2.5 Let D be a simply connected domain in C which misses at least

three points of C, let f is a conformal self-map of D. Then f has at most one
fized point in D.

Proof. Let a: U — D be a Riemann mapping, where U is the upper half plane.
Then a™' o f o & is conformal, and hence belongs to PSL(2,R). Therefore,

a™ o f o a has at most one fixed point in U. O

It is well-known that for any p € M(T j, there is a unique quasigonformal
self-map w, of U which fixes 0, 1, 0o, and satisfies the Beltrami equation w; =
pw,. (See§l.1.) Hence, to each u € M(T"), there corresponds a Fuchsian group
(') = T', which depends only on the equivalence class [u] of u, where «,,:
I'— T, is an isomorphism defined by taking v € T to w,0v0(w,) ! € T,. We
see that T(T) is identified with the set {e, : T — ', € PSL(2,R); [4] € T(T)}.
Let us denote by Maz(T') the set of points [1] in T(I') which corresponds to a

finite maximal Fuchsian group; that is, the group I', for which there does not

“exist any other Fuchsian group  such that 'y C G and the index [G : T,] is

. ﬁni.te..

Lemma 4.2.6 Under the condition of Lemma 4.2.3, let n be a holomorphic
lomorphism of F(I') which keeps each fiber invariant. Suppose that for all
/ E T(T), nle-1(u) is not in [*. Then the set Maz(T) is empty.




Proof. Let h,: w*(U) — U be the Riemann mapping with hp(0) =0, k(1) =
1, and h,(o0) = co. It is easy to see that A, = w,0(w*)~! and that A, I'*(h,)™"
is properly contained in hyff)‘(ﬁ,‘)‘l for all [u], where I'¥ =< T4, 0 le—1q1) >
Also, a simple computation shows that &, I*(k,)™ = w,I'(w,)~". Since &, o
Nr-1¢u)) © (Au)™! is a real Mébius transformation which is not in T, T, is
properly contained in £,I'%5(k,)™!. The discreteness of h”FS(h#j‘l for any p
follows from the proof of Lemma 4.2.3. Since a,: ' — I', runs over all points

in T(T'), the lemma is established. ]

Lemma 4.2.7 Let I' be the group which contain elliptic elements. Under the
condition of Lemma {.2.8, suppose that for some [u] € T(T), T* is properly

contained in I's =< T, ni -1, >. Then the set Maz(T') is empty.
Proof. Let .4 denote the set
{[u] € T(T); T* is properly contained in < T -2y >1-

We claim that 4 is open. Indeed, we may assume, without loss of generality,
that the origin [0] of T'(T') belongs to A. (Otherwise a Bers allowable mapping
will be constructed to carry a fiber over a point.in 4 to a fiber over [0] of
another Teichmiiller space.) Choose a point z in U which is not fixed by any

non-trivial element of I". We see that

5= py (n(=),D(2)) = inf {p,(n(),7(2)); ¥ €T, and y # id)

is positive, where p_ is the Poincaré metric on a domain E. For any sequence

{#a} € M(T) with p, — 0 almost everywhere, the sequence {w*=} converges
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to the identity uniformly on compact sets (see {4], [23], or [39]). This implies
that w”»(U) — U in the sense that for any compact set E C U, there exists
a large ng such that E C w**(U) whenever n > ng. Therefore, pwpn(r;)(:c,y)
must converge to p, (,y} for any pair z,y € U. We conclude that if [¢] € T(I")
is in a sufficiently small neighborhood of [0}, the point' x stays in w*(U) and

satisfies the condition that

Pwuw)(ﬁ(m), I‘“(m)) > 5/2

This implies that I'* is properly contained in I'f as well. Hence, .4 is open.
To show that A = T(T'), it remains to verify that A is also closed. By
assumption, I' contains elliptic elements and its type (or signature) dées not
belong to Table (F}. Choose a fixed point z of some elliptic element, and
choose an arbitrary [¢] € A°. By definition of A°, there is a v € I' so that
=1 = A= o oyo(w“)‘l. {Note that v* dépends only on the equivalence
class [u] of y.) Let B be a finite subset of pg?(S) whose cardinality is 2 2.

Then in particular, we have

77|7r"1([u]}(B n W—l([“]) = 7M(B 2 "T_l([:“])'

Consider now an arbitrary sequence {g;} € M(T) with [g,] — (¢} as i — oo,
By Proposition 4.2.2, pg'(S) N 77 Y([¢]) is discrete for any [] € T(T'). For

sufficiently large ¢, we must have

Mrer @y (BN~ ([w]) = (B N ([ws)).

(Otherwise there would be a new holomorphic section whose image is not an

element of pg '(8), contradicting Theorem 4.1.1). This implies that there is




a neighborhood N, of [i] such that for a.ﬂy [¥] € N,, the restriction of the
conformal self-map n|,-1 ) to BN 77 ([¢]) coincides with v*|{gnr-1(;)). Now
both n|;-1g)) and 4* are conformal self—ma,ps. of w(U), (nla=-1qup)"t 07" is
thus a conformal self-map of w*(U) which fixes all points in B N x~([v]).
Hence, by Lemma 4.2.5, we see that 5,1,y = v*. (Since they are self-maps
in the guasidisk and have the same values iﬂ at least two points.) It follows
that N, C A, and A° is open. This implies that for each [u] € T(T"), I'*
is properly contained in < I'*,n|-1q)) >. Lemma 4.2.6 then implies that

Maaz(l') is empty. 'O
For torsion free Fuchsian group I', we have

Lemma 4.2.8 Let T be a torsion free group whose type is not (0,3), (0,4), or
(1,1). Letn € Aut F(T) keeps each fiber invariant. Further assume that for
some {u] € T(T), T* is properly contained in T =< T* |-y >. Then the

signature of I' must be either (2,0;_2) or (1,2; 00, 00).

Proof. Suppose that the signature of T' is neither (2,0; ) nor (1,2; 00, 00).
Since there are no holomorphic sections of 7, the argument applied in Lemma
4.2.7 does not work at this time, we must use another method.

By Bers’ isomorphism theorem (8], there is an isomorphism 4 : F(I') —
T(g,n+ 1). By Lemma 6.3 of Bers [8], given arbitrarily a € U, any point of
F(I') can be represented as a pair ({u], w*(a)) for some g € M(I'). Our first
claim is that € mod T |

Suppose 7 gﬁ mod- I'. By Tileorem 1.2.3, yponotp~! is induced by a self-map

Jo of a surface X of type (g,n+1), by Theorem 10 of Bers [8], fo must send the
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spectal puncture &, where a is the image of a under the projection I/ — U/T,
to another puncture. This means fha.t fo does not define a self-map of X,
where X = X U {&} On the other hand, by Lemma 4.2.4, 5 € Aut (F(T))
projects to a trivial action on T(F); which says that = onp = 7. Since the Bers
isomorphism identifies the projection 7 onto the first factor with the forgetful

map ¥, we have the following commutative diagram:

which gives

dogonop  =gonoypl=goyp! =9,

This implies that ¢onotp~! projects to the identity via the forgetful map 4. But
ponoyp™ € Mod (g,n+1) is induced by a self-map fy of a Riemann surface
of type (¢,n + 1). We see that fy fixes &, which leads to a contradiction.
Therefore, 7 € mod I', and we conclude that 7 is induced by a self-map f
of U with foyo f*! € T for all y € I". Since I' is torsion free and the
signature of I' is neither (2,0; ) nor (1,2;oo,ooj, the Teichmuller modular
group Mod I' acts effectively on T(I'). Observe also that the kernel of the
quotient homomorphism gg:mod T’ —+ Mod I' is I'. We must have n € I'. This
implies that for all [g] € T(T'), 9]z-1(,) is an element of T'*, contradicting our

hypothesis. O




Lemma 4.2.9 Under the condition of Lemma {.2.3, assume that the signature
of I is neither (2,0; ) nor (1,2;00,00). Then any holomorphic automorphism

on F(T') which leaves each fiber invariant is an element of T.

Proof. By Lemma 4.2.8, we know that the lemma holds when I is torsion
free. Now we assume that T has torsion. Let n be a holomorphic automor-
phism which satisfics the condition of the lemma. By Lemma 4.2.3, T and
Fo =< I')9lp-1qy > are two ﬁnitély generated Fuchsian groups of the first
kind with T’ ¢ I‘O.- Suppose that I' is properly contained in I'y. The index
[0 : T = Area(U/T)/Area(U/Ts) < oo. It follows from Lemma 4.2.7 that the
sel Maxz(I') is empty. Hence, by Theorem 3A of Greenberg [25] or Theorem
1 of Singerman [44], we see that there is a,.unique group G such th-at‘]," is a
subgroup of finite index in G (the index can be proved to be equal to 2) and
T(G) = T(T). Furthermore, I' must be of the signature (1,2; v, v), where v > 2
is an integer or co. (I" cannot be of signature (2,0;__) since our assumption
says that I' contains elliptic eleinents.) This is a contradiction. We conclude
that I‘ = ['g, and thus 7|z-1(q)) 18 an element of I, By the argument of Lemma

4.2.7, we see that n € T', as a group of automorphisms of F(T). | |

Proof of Theorem {.2.1. Suppose that theré is a fiber-preserving isomorphism
@: F(I') - F(I'). The upper half plane U can be viewed as the central fiber
of both F(I') and F(I). By composing with a Bers allowable mapping {(which
is fiber-preserving, see Bers [8]), we may assume, without loss of generality,
that p(/) = U/. Consider the homomorphism o, of I" to Aut (#(I") defined

by ay(v') = ¢ oy o™t for all 4 € I, Since 4 € mod 1" leaves each fiber




invariant, a,{v') is an automorphism of F(T") which keeps each fiber invariant.
Since o is neither (2,0;--) nor (1,2;00,00), by Lemma 4.2.9, o (v') € T for

all v € I". It follows that «, is a monomorphism of IV to I'. Since o is

neither (0,6;2,...,2) nor (0,5;2,...,2,00), by Theorem 3A of Greenberg [25]
or Theorem 1 of Singerman [44], we conclude that a, is an isomorphism of
I' onto I'. Since p|y: U — U is a real Mobius transformation, a,: I' — I
is type-preserving. We conclude that T" and I have the same signature. The

reverse direction is trivial. This completes the proof of Theorem 4.2.1. O

4.3 Proof of Theorem 0.4

In this section, we prove Theorem 0.4 stated in the introductibn. To .
proceed, let us recall a lemma which is proved by Royden [43] (see also rEa,rle—.
Kra [20], Kra [28]) in the case when [ is torsion free. However, it remains true
even if ' has torsion, See Gardiner {[23] section 9.6, pp 184-183) for a proof.

We formulate it as

Lemma 4.3.1 Assume that I' is a finitely generated Fuchsian group of the first
kind, and let x: T(I') — T(T') is a biholomerphic map. If for each [u] € T{T),

there exists a x[ € Mod I' such that

xUel) = xp(s))- . (4.3)

Then xy € Mod I'. O

Now we are ready to prove




Proposition 4.3.2 Under the condition of Lemma 4.2.9, assume that the sig-
nature of I' is neither (2,0; ) nor (1, 2;00,00). Then the following conditions

are equivalent:
(i) 6 € Aut (F(T)) is fiber-preserving;

(i1) 8 projects to an element X € Mod " (which is induced by a self-map
of UJT); |

(1) 8 is an element of mod I

Proof.  The proof that (iii) = (i) is trivial. The implication (1) = (ii)
is not so obvious since we do not know 8 can be projected to a modular
transformation of T(I'). To prove that (i) = (ii), we use Lemma 4.2.4, and see
that ¢ projects to a holomorphic automorphism y of T'(I') under the projection
7 F(Ty — T(T). Now Theorem 1.2.3 asserts that x € Mod (g,7); that is, y
is induced by a self-map f of the punctured Riemann surface Up/I'. We claim
that f defines a self-map of /T in the sense of orbifolds. For this purpose,
let x([0]) = [,u} If we think of T' as a group of a.utomorphiéms of F(I'), then
for each v € T, f 0 y 0 07! is again an automorphism which leaves each fiber
of F(T') invariant. It follows from Lemma 4.2.9 that ¢ o')’f 0071 = ~, for some
7 € I'. This implies that  conjugates T to itself; in other words, @ can be

projected to a biholomorphic self-map ¢ on the Teichmiiller curve V(). We

thus obtain the following commutative diagram:
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| |7 | (4.4)

Note that the Riemann surface #57([0]) = U/T is represented by [0] € T(I'),
and 75 ([u]) = w*(U)/T'* is represented by [u] € T(T'). Since ¢ is biholo-
morphic, the restriction of ¢ to each fiber of V (I') is clearly conformal. By
construction, ¢ carries a branch point with ramification number v to a branch
point with the same ramification number. In particular, ¢ realizes a conformal
equivalence between 75'([0]) = U/T and n5!([g]) = wH(U)/T#. This implies
that the two points [0] and [u] € T(I") are modular equivalent. Let us denote
by Xo the corresponding modular transformation of T(I') induced by. ¢ |,r0-1([D])
and by f; is the self-map of U//T" which induces Xo- Note also that xo € Mod I.

Since the diagram (4.4) commutes, we have

xo({0]) = [1e] = x([0}).

Now choose an arbitrary point [v] € T(T'). By using the same argument as
abové, we see that there exists a modular transformation y, € Mod I' such
that x,([v]) = x([v]). We arrive at the situation of Lemma 4.3.1, by which
we conclude that x € Mod T; that is, x is induced by a self-map f of U/T
which is isotopic to f, keeping all distinguished points fixed. This finishes the
argument of (i) = (ii).

To verify (ii) = (iii), again, we let ¥ € Mod I to denote the projection of

f. By assumption of (ii), we see that v is induced by a self-map f of U/T. f can
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be lifted to a self-map f of UU. Then the geometric isomorphism ¥ induced by

f is an element of mod . We thus have the following commutative diagram:

Then 0o x™' € Aut (F(I)) andrefox ' =xonox~! =7 Hence, §o 7!
leaves each fiber invariant. Lemma 4.2.9 then asserts that fo ™! =y € T. It
follows that § = 4 o ¥ € mod I'. This completes the proof of Theorem 4.3.2.

O

Proof of Theorem 0.4. Suppose that ¢: F(I') — F(T') is a fiber-preserving
isomorphism. By Lemma 4.2.4, we know that ¢ can be projected to a biholo-
morphic map y: T(1") — T(I'). By Theorem 4.2.1, we see that the signatures
of I and I” are the same. Note that T and T have the same signature if and

only if there is w € Q(I) so that
wlMw ! =T (4.5)

Hence, by Theorem 2 of Bers [8], w induces a Bers allowable mapping [w]. of
F(I") onto F(I).

Consider the automorphism @y = {w];! o p: F(I') — F(I'). It is easy to
see that g is fiber-preserving and holomorphic. By Proposition 4.3.2, we assert

that ¢g is an element of mod I, This implies that there is a guasiconformal
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self-map f of U with
frft=r (4.6)

such that wo = [f],. It follows that ¢ = [wo[f], = [wo f],.;, which says that
¢ 15 the Bers allowable mapping induced by the quasiconformal self-map wo f
of U.

To be more precise, we see from (4.5) and (4.6) that (wof)I"(wof)"l =T.
Thus wo f € (X(I). Hence, by a construction of Bers [§], the mapping ¢ is

given by
SO(IV],Z).Z [wo f']*([u],z) = (X([V])swﬂ ow OfO (wu)_l(z)L V([y],z) € F(P,)’

where i is the Beltrami coeflicient of w” o (wo f)~1. By (4.5) and (4.6) again,
we know that y € M(T'). It is also not hard to see that y is defined by sending
the conformal structure [v] € T(I") to the conformal structure fu] € T(T).
The reverse direction is completely trivial. This completes the proof of our

main theorem. O

Remark. I T and I are of type (0,3), then both F(T') and F(I") are confor-
mally equivalent to the unit disk. Thus, there are uncountably many conformal
mappings (all of which are real M&bius transformations) of I'(I") onto F(T¥).
If I' and I are of type (0,4) or (1,1), then we know that there are at least
three pairs (or triples) of Bers fiber spaces which are isomorphic to each other
in a fiber-preserving way: F(1,1,v) = F(0,4;2,2,2,20), F(0,4;v,v,0,v) 2
F(0,4,2,2,v,v) = 1(0,4;2,2,2, v), and F(0,4; 01, 11, v, 1) = F(0,4;2,2, 14,

13}, where v, 11, v, > 2 are any integers or co. (See Earle-Kra [19].) Now the
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question arises as to whether there are some other pairs of Bers fiber spaces
(#(T), F(I")) with F(T') isomorphic in a fiber-preserving way to F(I") for
(g,n) and (¢’,7) lying in Table (F). This is a difficult question. Results of

further investigations will appear elsewhere.

As a digression, we reconsider the question in §2.5 which asks whether
or not there is any other holomorphic extension of S«(xs) except for the ob-
vious ones constructed in Proposition 2.5.1. In §2.5 we studied some spe-
cial cases; that is, when T is of signature (0,4;2,2, 00, 00), (0,4;2,2,2, 00),
(0,5;2,2,-2,2,00), or (0,6;2,2,2,2,2,2), With the help of the fact that these
fiber spaces are identified with some Teichmiiller spaces, we showed that the
only holomorphic extensions of s.(x;) in Aut F(I') are y and y o e(:-e o x).
We intend to consider a similar problem which asks whether or not there s any
other fiber preservin g holomorphic extensions of s, (y s) when I" has a general

signature. Comparing with Proposition 2.5.2, we have the following:

Proposition 4.3.3 With the same notation as in §2.5, assume that the sig-
nature of I' is neither (2,0; ), nor (1,2;00,00), nor in Table (F). Then y
and x o e(= e o x) are the only two fiber-preserving holomorphic extensions of

sa(X1)-

Proof.  Proposition 4.3.2 asserts that every fiber-preserving automorphism of

F(T') is an element of mod I'. Suppose that Xo 1s a fiber-preserving extension

of sx(x ) distinct from x and xoe (= eo ), then yo € mod I'. Now xoox~!is

an element of mod T whose restriction to s{T'(T)) is the identity. This implies

167




that xo o x7 ! lies in the kernel of the quotient map ¢ : mod I' — Mod T'.
Therefore, yp o x~! € I'. On the other hand, since the restriction of yg 0 1
to s(T(T')) is the identity, in particular, yo o x7! restricts to the central fiber
U of F(T') fixes the fixed point of e € I'. It follows that yo 0 x™* = id or e;

that is, either xo = x or xo = €0 x = x 0 e. This completes the proof. -0

We are in th¢ position to discuss some special situations.

(A) When T is of type (0,3), T(T) 1s a point, so F(F) is U. For each
point a € U, there are uncountably_many Mobius transformations in PSL
(2,R) fixing a. Proposition 4.3.3 fails in this case.

(B) When I’ is of signature (0, 4; 2,2, 00,00) or(0,4;2,2,2, oo), by Propo-
sition 2.5.2, we see that if a fiber-preserving extension y of s.{x ) exists, then x
and x o e are the only two possible fiber-preserving extensions. So Proposition

4.3.3 remains true in these cases.

(C) H T is of signature (2,0; ), the conclusion of the above Proposition
is also valid. To be more precise, let s: T(T") — F(T') be a Welerstrass section.
Suppose that s.(xs) can be extended holomorphically to a fiber-preserving
x € mod I'. We can conclude that x and yoe (= eo x) are the only two
fiber-preserving extensions of s.{x;), where e|y is a lift of thg hyperelliptic
mvolution, it is an elliptic M6bius transformation with order 2. Clearly, ely
is not in the group T' but in the group < [,J > (which is generated by
5 elliptic elements of order 2), where J is one of lifts of the hyperelliptic
involution. Our assertion can be verified by applying Theorem 4.1.1, Lemma

4.2.3, and Theorem 3A of Greenberg [25] (or Theorem 1 of Singerman [44]). As
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a matter of faéi;';.:those results imply that any fiber preserving automorphism
of '(2,0; ) vﬂﬁch acts trivially on the image s(T(2, 0)) of a canonical section
s 1s actually a lift of the holomorphic involution on Vi(2,0;-).

(D) If " 1s of signature (1,2; 00,00), the conclusion is also true; the proof
is basically the same as above. However, the assertion is no longer true if T
is of signature (1,2;»,v) for 2 < v < co since there are uncountably many

(global) holomorphic sections of mo: V(1,25 v,v) — T(1,2).

Remark. There are of course many cases in Table (F) for which we do not
know if the motion s.(x;) can be extended in a fiber preserving way. Further

mvestigations of this question will be pursued in the near future.

4.4 Holomorphic maps of Teichmiiller curves

In this section we continue to study the properties of holomorphic maps

(or isomorphisms in particular) among Teichmiller curves.

Let I' and I" be finitely generated Fuchsian groups of the first kind which
have types (¢,n) and (g¢',n) respectively. Theorem 1.2.1 tells us that T'(T')
is isomorphic to T(I") if I' and I have the same type. On the other hand,
Theorem 1.2.2 asserts that an isomorphism of T(T") onto T(I") exists only if
I' and " have the same type except for three special cases (see (1.5)). More
precise information on these isomorphisms is given by Theorem 1,2.3, namely,

all isomorphisms involved in the context must be “geometric”. -




The purpose of this section is to obtain similar results in the category
‘of Teichmiiller curves. We shall first clé,ssify all Teichmiller curves under
isomorphisms, and then verify that in gener@l all possible islomorphisms must
be “geometric”.

A natural question arises as-to when two Teichmiiller curves are isomor-
phic. Theorem 1.2.1 asserts that the Teichmiiller space T(I") depends only on
the type of I' while the Bers fiber space F(I') depends on the signature of T,
Some examples are given in §1.3 which illustrate that there exist groups with
the same type and distinct signatures such that their Bers fiber spaces are es-
sentially distinct. In contrast, the Teichmiller curve V(I') is semi-independent

of the type of I'. More precisely, we have

Theorem 4.4.1 Let ', I be finitely generated Fuchsian groups of the first
kind. Then V(T') and V(I') are isomorphic if and only if I' and T" have
the same type and contain the same number of conjugacy classes of parabolic

elemenis.

Remark. The proof of this result is well known. In fact, Earle-Kra [20] proved
the result in the case of ¢ > 2. Their methods are also valid in the cases of

g =1 and g = 0. The argument is suggested by Kra (oral cofnmunication).

Our discussion is based on the fact that every holomorphic automorphism
of V(T') is automatically fiber-preserving.
To verify this result, we refer to Kra [27]. First we assume that I' contains

no parabolic elements. In this case, for each point z € T(T'), the fiber w5 (z)

170




is either a compact Riemann surface or an orbifold with no punctures {where
mo: V(I') — T(T') is the natural projection defined in §4.1). Let ¢ € Aut V(I').
Consider the holomorphic map 750 (: 75 (z) — T(T"). By means of the Bers
embedding, T(I'} can be viewed as a bounded domain in By(L,T) ~ C3¥-3+n
(see §1.1 for details).

Let z;: €3+  C j=1,--+,3¢ — 3 n, be coordinate functions. If ¢
is not fiber-preserving, then z; o (g 0 C)lwg“‘(x): 75 (x) — C is a non constant |
analytic function. Since ny'(z) is compact, z; o (wg o ()(x5 " (z)) is both open
and closed. This is impossible unless z; o {m o {)|r0-1(m) is a constant map on
wgl(_:c),j = 1,39 =3 +n. Let mo 0 ((ng'(2)) = y € T(T"). We see that (
maps the fiber 757 (2) to the fiber 75 '(y) over y. The assertion then follows

in this special case.

- The above argument also works in general cases by observing that any
conformal map between two orbifolds can be extended to a conformal map

between their compactifications.

Theorem 4.4.1 gives us a complete classification for Teichmiiller curves.
Further, we will see that all possible isomorphisms involved in Theorem 4.4.1
are actually “geometric” except for some special cases. By “geometric isomor-
phisms of V(I') onto V(I')” we mean those isomorphisms induced by quasi-
conformal maps f of U/T onto U/T” with the property that f sends branch
points to branch points, regular points to regular points, and punctures to
punctures, but we do not require that [ sends a branch point of order v to

a branch point of the same order. We see that the geometric 1somorphisms
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among Teichmiiller curves are slightly different from those among Teichmiiller

spaces,

Theorem 4.4.2 Let I' and I be Fuchsian groups whose types (or signatures)
do not lie in Table (F). Then every isomorphism (if exists) of V(T') onto V(IV)

15 geomelric,

To prove this result, we must'invoke_ a theorem in [16] which states that
the group Aut V(T'} of holomorphic automorphisms of the Teichmiiller curve
V(T) with U/T" a compact Riemann surface of genus ¢ > 3 is isomorphic to
the Teichmiller modular group Mod I'. We need to genéralize this result to

the case when U/T is an orbifold.

Let AutgV(F') denote the subgroup of Aut V(T') consisting of those (fiber-
preserving) automorphisms { whose restriction to each fiber is a conformal
equivalence; that is, ¢ restricts to a conformal map hetween orbifolds which

sends a branch point of order v to a branch point of the same order.

It is useful to investigate relationships between the groups AutyV(T') and
Aut V(T'). First, if U/T is a Riemann surface {with no branch points), then

we have AutoV(I') = Aut V().

Next, we assume that I’ contains elliptic elements, and that {g,n) is the
type of I' which does not lie in Table (F)in §4.1. Let ¢ € Aut V(TI'). Suppose
that for some {uo] € T(T), ¢ |r1quop 18 & conformal map sending each branch
pomnt of order v to a branch point of the sarﬁe order v. We claim that for all

(1] € T(T), C|ﬂ;:([ﬂ]) has the same property.
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To see this; we chose a canonical section s: T(I') — V(T'). As usual, ¢ can
be projected to a holomorphic automorphism y of 7(I'), It is easy to verify
that osox~! is a holomorphic section of my: V(') — T{T") with the property

that

¢osox  (x([e])) = s'(T(T)) Nxg (x{[e])),

where s’ is the canonical section of 7y determined by the branch point ¢(s(T(T'))
N7y ([1a])). By using the same argument as in the proof of Lemma 4.2.7, we

1

conclude that ( o s 0o x™! is a canonical section, as asserted.

Another fact is that AutOV.(I‘) is a subgroup (need not be normal) of Aut
V(T) of finite index.

Indeed, we know that the set S of images of all holomorphic sections of
7ot V(I') — T(I'} is finite {(Theorem 4.1.1). Choose an arbitrary section s
of mp, and let ¢ € Aut V(T'). Then { can be projected to a biholomori)hic
self-map y of T(I'). We see that ( 0 s0 x~! is another holomorphic section
of xg. Since & contains all images of holomorphic sections, as a set, we have
Cosox HT(I')) = (ﬂos(T(I‘)) € S. Tt turns out that § is invariant under Aut
V(I‘). This in turn implies that there is a large N € Z* so that (V ¢ Allth(P)

for each ¢ € Aut V(T'). The assertion then follows.

The proof of Theorem 4.4.2 follows immediately from the following two

propositions.

Proposition 4.4.3 (First generalization of Duma’s theorem [16]) Let " be a
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finitely generated Fuchsian group of the first kind. Then AutoV(T') is isomor-

phic to the Teichmiller modular group Mod T'.

Let Mod (g,n;v1,...,Va) denote the Teichmiller modular group Mod T’
for I' of signature (g,n;vi,...,¥n), where 2 <1y <.., < v, and vy,..., v, are
integers or co. We also define the modular group mod (¢,n;»4,...,v,) in the

Sarne way.

Proposition 4.4.4 (Second genefalization of Duma’s theorem {16]) Let T' be
of type (g,n). assume that {g,n) does not lie in Table (F). Then Aut V(L) is
isomorphic to Mod (g,n;v,...,v,00,...,00), where 2 < v < oo and k is the

k
number of conjugacy classes of parabolic elements of T'.

Remark.  Proposition 4.4.4 is apparently false if the type of ' lies in Ta-
ble (F). For example, when I' is of signature (1,2;v,v) with v < oo, there
are uncountably many automorphisms of V{(T') keeping each fiber invariant.

However, Mod (1, 2;v,v) is always countable.

The tools which are used to prove Proposition 4.4.3 and Propositionr 444
are applications of the theorems stated in §1.1, §1.2 as well as the finite-
ness theorem of holomorphic sections of general Teichmiiller curves {Theorem
4.1.1).

We also need two basic facts on Teichmiilier curves, one of which is merely

a restatement of Royden’s theorem (see Theorem 1.2.3) stated as follows:

Lemma 4.4.5 Let I' be of type (g,n) which is not (0,4) or (1,1). Then every




holomorphic automorphism of T(g,n) can be lifted to an automorphism of the

punctured Teichmiiller curve V{g,n)'.

The other fact is that, under certain conditions for I', every holomorphic
map between two punctured Teichmiiller curves V(T')' and V(") is the re-
striction of a holomorphic lr.na.p of V(I') onto V(I"). The precise statement is

the following:

Lemma 4.4.6 Let T and I be of type (g,n) # (0,4) or (1,1). Assume that
both I' contains no parabolic elements. Then every isomorphism of T(I') onto

T(T') can be lifted to an isomorphism of V(T') onto V(F’).

Finally, we consider two finitely generated Fuchsian groups I' and T, of
the first kind (acting on U) whose types are (g,0) and (g,1) with g > 2,
respectively. The important Bers isomorphism theorem [8] asserts that the
Teichmiiller space T(I'y) = T'(g,1) is biholomorphically equivalent to a Bers
fiber space; or we can say T'(g,1) admits a natural fibration structure. As-
sociated to this natural fibration structure there is a holomorphic submersién
t:T(g,1) — T(g,0) whose Fréchet derivative is complex linear at each point.
The submersion ¢ is usually called the forgetful map in the literature sinée
it is defined by forgetting the distinguished point. A natural question arises
as to whether or not a fibration r: T'(g,1) — T(g,0) with fiber conformally
equivalent to the unit disk is a natural (Bers) fibration structure of T(g,1).

As a final result of this paper, we will prove:

" Theorem: 4.4.7 Let 7: T(g,1) — T(g,0) be a fibration with fiber conformally




equivalent to the unit disk. Assume that ¢ > 2. Then, up to a modular
transformation on T(g,0), T defines a natural (Bers) fibration structure of
T(g,1) if and only if there is a holomorphic map ¢: V(g,1) — V{(g,0) so that

the following diagram is commutative:

Vig,1) ——s V(g,0)

@l [ (4.7)
T(9,1) —— T(9,0)

The next section is devoted to the proof of these results.

4.5 Proofs of Theorems 4.4.1, 4.4.2 and 4.4.7

Proof of Theorem 4.4.1. Let ' amd I be of type (¢,n) and (g’,n’), re-
spectively. Suppose that we have an isomorphism ¢: V(T') — V(IV). Thén
¢ is fiber-preserving. IHence £ can be projected to an isomorphism of T'(I")
onto T(I'}. From Theorem 1.2.2, we conclude that (g,n) = (¢, ') unless the

unordered pair ((g,n),{g’,n')) lies in the following short list:

((2,0),(0,6)), ((1,2),(0,5)), ((1,1),(0,4)).

Since the restriction £[,) of £ to a fiber w5 ([1]) is holomorphic; it is a conformal |
map between two orbifolds. It turns out that the above exceptional cases
cannot happen. We see that ¢ = ¢’ and the two groups I, I'" have the same

number of conjugacy classes of parabolic elements.




The reverse direction of this result is given by Earle-Kra [20] in the case

of g, 9 > 2. In the case of ¢, ¢ = 0 or 1, Kra suggest a similar proof (oral

communication). We outline a proof here for convenience of the reader.

Agajﬁ, let I' be of type (g,n), and let k, 0 < k < n, be the number of
punctures on U/T.

Case 1. g =g¢'> 2and k > 0. Let T be a torsion free group of type
(9:k) so that U/T = U/T), = S as Riemann surfaces (with & punctures).
Let p: U — S and pp: U — § be the projections with covering groups I’
and T’y respectively. Then there is a surjective holomorphic holomorphic map
hi: U — U with p = pp o by and an epimorphism xi : I' — Iy such that
b oy = xr(v) 0 by for all ¥ € T (see Lemma 4.1 of [20]). For every u € M(T)
(see §1.1 for the definition). We define hra{pt) by the equation

hia(tt) 0 hy = phi fT. - (4.8)

It is easy to see that Ay, is a well-defined bijective 1sometry of M (T') onto

M(T't). Consider now the map

hi = w” o hy o (w*)™1, » z-hk'*(,u). (4.9)

From Corollary 4.3 and Lemma 4.2 of [20], A" is independent of choice of
element in the equivalence class of 1 and depends holomorphically on . Define

Le: T(T) = T(T'y) and a map fi: F(T) — F(T4) by

be([1]) = [hin(u)] (4.10)
il 2) = (([)), B2 (2)). (4.11)
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The map t; and f). defined above are the forgetful maps. We thus obtain a

holomorphic map ¢, so that the following diagram commutes:

V) =20 Vg, kY

™| | | (4.12)
) — T(g,k)

tx

WBere Vg, k) = V(T'y) is the punctured Teichmiiller curve of type (g, k)
(see §4.1 for the definition). From Theorem 4.6 of [20], the map , x ¢, :
V(I') = T'(I') x V(g, k) defines a biholomorphic map of V(T') onto the closed
submanifold
W = (52 ta(a) = m(2)).

Similarly, there exists a holomorphic map £: V (I} — Vg, k)’ (with respect
to the forgetful map t : T(IV) — T(g,%)) so that the diagram (4.12) also
commutes (where the Teichmiller curve m, : V(I') — T(T) is replaced by
7ot V(') = T(I")). We may assume (without loss of generality) that U/T =
U/T" = S as Riemann surfaces. There is an isomorphism A : T(T') — T(I")

which is called the Bers-Greenberg isomorphism (see (11]). We thus obtain
te =1, 0\
This implies in particular that
W(T(T) = t,(T(T)  and  GV(T)) = G(V(T)).

Again, from Theorem 4.6 of [20], V(I") is biholomorphically equivalent to the

closed submanifold W' = {(2',2); #(2’) = 74(2)}. Let (z,z) € W. Since




t(Me)) = ti(z) = mi(2), we have (M), z) € W’. Thus the map defined by
sending (x,z) € W to (A(z),z) € W' is a biholomorphic map. It follows that

V(I') is biholomorphically equivalent to V(I).
Case 2. g = ¢ =0, k > 3. The same argument as in Case 1 applies.
Case 3. g =¢'= 1, k > 1. Again, use a similar argument as in Case 1.

The following two cases are treated in a slightly different way; the reason
is: when all branch points on U/T" are neglected, we will obtain a Riemann

surface which is not hyperbolic. So in general we do not have equations (4.8)-

(4.11).

Cased. ¢ = ¢’ =0 and k < 3. Again, by forgetting all branch points of

finite order, we obtain the commutative diagram:

!

() — {point}

where C is the Riemann sphere with £(< 3) points removed. #; is holomorphic,

and it is also easy to see that (o is holomorphic. So V(T') is isomorphic to the

trivial bundle T(T')x C. Similarly, V(I") is isomorphic to the product T(I")x €.
Since T'(T") = T'(I"), the result follows. '

Case 5. g =¢ ' =1and k=0. Let (1,n304,...,1,) and Ln'su,..., v,
g 1

n

denote the signatures of I' and I”, respectively. If there is a branch point T
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on U/T whose order v; is the same as the order of a branch point ac:7 on U/TV,

then the method of Case 1 is applicable; the forgetful map €, (resp. &) are
obtained by forgetting all branch points except ; (resp. zf).

Ifn>1and y # uj for all ¢ and 7, then we choose a branch point z; on
U/I" and a branch point zt on U/I", the forgetful map & (resp. &) is obtained
by forgetting all branch points except w; (resp. z:). So it remains to show
that V(1,1;v) is isomorphic to V(1,1;2') with v # /. But this fact is clear,
since the map A: V(1,1;v) = V(1,1; ') defined by ;\(V[p], z) = (AM[¢]), z) does

the job, where, as before, A is the Bers-Greenberg isomorphism. Ol

Proof of Proposition {.4.3. Let { € AutoV(I'). We know that ¢ is fiber-
preserving. Hence { can be projected to an automorphiSrn-x of T(I'). From

the proof of Pi‘oposiﬁ0114.3.2, we sce that x € Mod I'. Define
O: AutoV(I') — Mod T

by sending ¢ to y.
On the other hand, for every y € Mod I', there is ¥ € mod I' in the
preimage of x under the quotient map go: mod T' — Mod T (defined in §1.2).
| Then there is (" € AutoV(I') so that py o = ('opg, where pq: F(T) — V(T)
1s defined in §4.2, Define

O": Mod I' — Aut, V()

by sending y to ¢’. It is easy to check that ¢' is independent of choice in
the preimage of x, so it is well defined. To see that ©' o O is the identity on

AutoV(I'), we must show that ('o( =1 € AutoV(T) is the identity. By definition,




('o¢™!is an automorphism which leaves invariant each fiber. There are several

cases to consider.

Case 1. I'is not of type (0,3), (0,4), (1,1), (1,2), or (2,0). In this case,
the action of Mod T’ on T(I") is effective. Observe that the conformal map
o "1|W0_1 oy ©f U/T to itselfl determines a modular transfofmation WhiCh
acts trivially on T(I'} (Lemma 4.3.1). We conclude that ('o (‘1]%-1([(,]) is
isotopic to the identity.- Hence, ('o C'lf%-:{[o]) is the identity. Similarly, we can

prove that (' o (7! is trivial on each fiber.

Case 2. T is of type (0,3) or (0,4). By definition of (*, we know that
for every [u] € T(I‘)? ("o (-1 |7r0~1 (lu)) 18 @ conformal self-map keeping all distin-
guished points fixed. Since (' o (:‘1]%—1([”]) € PSL(2,C), one sees at once that

(o C_ilﬂffl([#-]) is the identity.

Case 3. I'is of signature (1,2, », u) with g« # . In this case, C’oC“l|ﬂ0—1(Iﬂ})
fixes the two branch points for all [u] € T(T). Let X, denote g5 ([x]) with
the two branch points removed. Then ("o (™! is a conformal automorphism
of X, for all [u] € T(T"). It induces a trivail action on T(1,2) = 7(0,5). Since
Mod (1,2)/Z = Mod (0,5), we see that (' o (- ', =1 18 either the identity or
J, (where-J, is the hyperelliptic involution of X,. Since ¢’ o o (1 =1 (1]} fixes

the two punctures, we are done.

Case 4. T is of signature (1,1;v), (1,2;%,v), or (2,0; ), where v > 2 is

an integer or oo. In this case, let f be a self-map of a surface X = U /T of
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signature (2,0; ) which induces X € Mod (2,0). Choose f: U — U so that
the diagram is commutative:

: f

v —— U

/| [»

Let [f] be the set consisting of all self-maps /' of U with the properties:
(1) fT/~' =T, and
(2) f’ is isotopic to f in U.

Then [f] = ¥ € mod T is a preimage of x under ¢. It follows that (* o (1
is not the hyperelliptic involution. The discussion is the same when T is of
signature (1,1;») or {1,2;»,v). The argument in Case 3 can then be applied

i this case.

We have shown that © 0 O is the identity on AutoV(T). The proof that
0 0 @ is the identity on Mod I' is obvious by construction. In particular, we
see that © is a bijection. The proof that © is a group homomorphism is trivial.

This proves Proposition 4.4.3. O

Remark.  The group AuteV(T) acts on V(T') in the following way: we take
¢ € AutoV(T'). For any point z € V(T'). Choose a fmint % in the set py'(z),
and choose a lift ¢: F(T) — F(I") of {. We have the following diagram:




pol lpo (4.13)

We see that ((z) is defined by pp o {{#). Now it is easy to check from the

diagram (4.13) that ( is a well defined holomorphic automorphism.

Proof of Lemma {.4.5. lLet x be a holomorphic automorphism of T(g,n).
Theorem 1.2.1 implies that x defines a holomorphic automorphism (call it x
also) of T'(1') for a torsion free group I' of type (g,n). Assume that T is not
of type (0,3), (0,4), (1,1), (1,2) or (2,0). By using Theorem 1.2.3, we know
that x is an element of Mod I'. Let ¥ € mod I' be a preimage of x under
go: nﬁod I' = Mod I'. ¥ can be projected to a holomorphic automorphism { of
V(') = V(g,n). Of course, we should check that { is well defined. But this
1s done in the proof of Proposition 4.4.3. There are several exceptional cases
to consider.

I T is of type (0,3), there is nothing to prove. We assume that I" is of sig-
nature (2, 0; —). Since T'(2,0) = 7(0,6), x actually defines a holomorphic auto-
morphism (call it x also) of (0, 6). By Theorem 1.2.3 and the above argument,
x can be lifted to a holomorphic automorphism of V. (0,6;00,...,00). But since
every (quasiconformal) self-map of a surface of signature (0,6; 00, ...,00) can
be lifted to its double cover whose compactification is of signature (2,0;_),

the assertion then follows. The case that I' is of signature {1,2; 00, 00) can be




handled similarly; the only issue is that every holomorphic automorphism of
T(1,2;00,00) determines a holomorphic automorphism of 7(0,5;2,2,2,2, c0)
which is induced by a self-map of a surface of signature (0,5;2,2,2,2, o0). Now

the above argument works equally well in this case. I

Aemark.  When (g,n) = (0,4) or (1,1), we do not know whether or not
the lemma is still true. It is obvious that any modular transformation of
7(0,4; 21, vp, 13, 14) (o1 T(1,1;v), where Vi,V Vs, vy and v = 2 are integers)
can be lifted to an automorphism of V(0,4; 1/1,.1/2, vs,v¥4). On the other hand,
we have Aut 7'(0,4) 2 PSL(2,R) & Aut T(1,1). The question is: whether
or not any other automorphism (€ PSL(2,R)) can also be lifted to an au-
~ tomorphism of V{0, 4; Yi,v2,V3,). We expect but cannot prove that an
n € Aut T(0,4) can be lifted to an automorphism of V(0,4; Vi, Vy, Vg, vy) if
and only if 5 belongs to the group generated by Mod (0,4; vy, vy, v, v4) and

the three conformal invo]utions.‘

Proof of Lemma 4.4.6 By Theorem 4.4.1, we see that T and I have the
same type (g,n). We assume (g,n) # (0,3) (if {g,n) = (0,3), the lemma is
trivial). By hypothesis, dim I'(T') = dim T(I") > 2. By Theorem 4.4.1, we
can find isomorphisms ¢ : V(I') — V(o) and ¢': V(I") — V(I'y), where T,
is a Fuchsian group of the signature {9,7;2,...,2). Observe that both of the
isomorphisms carry the images of canonical sections to the images of canonical
sections,

Let 6 be an isomorphism of T(I') onto (. Théorem 1.27‘1 implies

that # actually defines an isomorphism (call it 8 also) of T'(T'w,) onto T(T"),

184




where T, (resp. T%.) is the Fuchsian group so that U/T is conformally
equivé,lent to U/I' — {all branch points} (resp. U/I" — {all branch points}).
By Lemma 4.4.5,. ¢ can be lifted to an isomorphism ¢ of V(I'y) (& V(I))
onto V(I ) (& V(I'")).

Consider the map 5 = ¢ o¢ 0 & y(rgy: V(Ip) — V(Io)". We claim that
n can be extended holomorphically to an automorphism 7: V(I'g) — V(I').

To see this, first observe that n is fiber-preserving. Hence 5 can be pro-
Jected to a biholomorphic self-map y of T'(I's) which is induced by a self-map
f of Ury/To (see §4.1 for the definition of Ur,). By assumption, all branch
points of /Ty have the same orcli_er and f sends a puncture to a puncture, we
see that f can be extended to a self-map (denoted by f again) of U/I'y in the
sense of orbifolds. Clearly, f can be lifted to a self-map f of U with the prop-
erty that fTof~! = Ty, Furthermore, f induces a Bers allowable mapping [f].
of (To) onto itself. This means that [f], € mod I and [f], can be projected

to a biholomorphic map 7 of V(L) onto itself. -

Clearly, § can be projected to the automorphism y defined above. It
follows that 7j|yr,) 077! can be projected to tl'le identity, and hence ﬁIV(FDV)I 0
7™t is an automorphism which leaves invariant each fiber. -By using the same
proof of Proposition 4.4.3, we conclude that flvey o5~ is the identity. It
follows that % = |y (p,y. Therefore, ¢ = £ lofol: V(T) - V(I') is the
desired lifting of 8. This completes the proof. O

Proof of Proposition 4.4.4 (Sketeh).  First we assume that the type of T' is
neither (2,0) nor (1,2). Let ¢ € Aut V(T). By Theorem 4.1.1, the set S
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of images of {canonical) sections of 7 : V(I') — T(T) is finite. By the same
argument as in Lemma 4.2.7, we obtain ((S) = &. This implies that ¢ restricts
to an automorphism (call it ¢ also) in Aut V(I'). By Lemma 4.4.6 (with a
slight modification), we see that ¢ extends to an automorphism (call it ¢ also)
of V(I'y), where Iy is a group of signature (g,n;v,...,v,00,... ,00), k is the
number of conjugacy classes of parabolic elements pf I, and » 2k2 is an integer.
By using the same argument of Proposition 4.3.2, we conclude that ¢ can be

rojected to y € Mod s V., 0,00,...,00). Define
ptoj X (¢ )
. k

O: Aut V(I') — Mod (g,n;v,...,y,oo,...,oo)

by sending ¢ to y.

On the other hand, let ¥y € Mod (g,n;v,...,v, 00,...,00), and let ¥ €
N, e

k
od (¢,n;v,...,1,00,...,00) be a preimage of v under the quotient homo-
mod (g, _A.)pegxn e quotient homo
morphism go. As usual, § can be projected to an automorphism ¢’ € Aut V(Ty)
in the sense that pyoy = (o py, where po: F(T'o) — V(T'y) is defined in §4.2.
Clearly, (' restricts to an element (callit ¢ also) in Aut V(I's). By Lemma

4.4.6, (' defines an automorphism (call it ¢’ again) of Aut V(I'). Define
©': Mod (¢,n;v,.. 3 ¥,00,...,00) = Aut V(T)
k
by sending x to ¢’. It is easy to check that (" is well defined. The only issue
is to show that ©' 0 © is the identity; that is, we have to show that ("o (!
restricts to the identity map on each fiber. Now the proof remains the same

as Proposition 4.4.3.
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If ' is of type (2,0), then by a discussion in §4.4, we have Aut V(T) =

AutoV(T). The assertion follows from Proposition 4.4.3.

If I is of signature (1,2 v,00) With 2 < 1 < 00, we use the same argument
as in Case 3 of Proposition 4.4.3. Note that each ¢ € Aut If(F) cannot send a
holomorphic section to the section determiﬂed by the puncture.

If T is of signature (1,2; 00, 00), then the argument in Case 4 of Proposi-

tion 4.4.3 applies. O

Proof of Theorem {.4.2. Let ¢C: V(T) > V(I") be an isomorphism. By
Theorem 4.4.1, T and I have the same type (¢,n) and contain the same
number k of conjugacy classes of parabolic elements. Let G, G’ be Fuchsian

groups of signature (g,n;v,...,», 00, ...,00} (¥ > 2is an integer) such that
k

Ur/T 2 Ug/G  and Ur /T 2 Ua J .
By definition, we know that there is a quasiconformal map (in the sense of
drbifo]ds) f = U/G — U/G" which induces a geometric isomorphism f, :
V(G) — V(G). There are also conformal maps « : Ur/T' - Ug/G and
o't Upe [T = Ugi [
By Lemma 4.4.6 and our definition of geometric isomorphisms (see §4.4),
the map « (resp. o’) induces a geomeﬁic isomorphism a, of V(T'} onto V(@)

(resp. . of V(I") onto V(G")). Consider the automorphism
e=a"ofioa, o0l l¢ Aut V(TV).

By Proposition 4.4.4, (5 is a geometric isomorphism. Hence, ¢ is a geometric

isomorphism. This completes the proof of Theorem 4.4.9,
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Sﬁmmary. Theorem 1.2.1, Theorem 1.2.2 and Theorem 1.2.3 tell -us that,
except three special cases (see (1.5)), all isomorphisms between Teichmiiller
spaées are “weakly geometric”, by which we mean all isornorphisms are in-
duced by qua.sicdnformal maps between punctured Riemann surfaces. The-
orem 4.2.1 and Theorem 0.4 say that except Table (F) all ﬁbe.r-preserving
isomorphisms among Bers fiber spaces must be geometric, by which we mean
all fiber-preserving isomorphisms are induced by quasiconformal maps in the.
sense of orbifolds. Theorem 4.4.1 and Theorem 4.4.2 assert that except Ta-
ble (F) all isomorphisms among Teichmiiller curves are “semi geometric”, by
which we mean all isomorphisms are induced by those quasiconformal maps
between two punctured Riemann surfaces Which send punctures to punctures

{on original orbifolds).

Proof of Theorem 4.4.7. The “only_ if” part is a special case of Theorem 4.5
of [20] (see also Case 1 in the proof of Theorem 4.4.1). We only need to prove

the reverse direction.

Suppose that we have commutative diagram (4.7). It is immediate that ¢
is fiber-preserving. Hence the restriction of ¢ to each fiber Y (2), z € T(g, 1),
is a holomorphic map from the orbifold (represented by z) to the Riemann
surface Xo of type (g,0) (represented by r(z) € T'(g,0)). Notice that " (z)
1s a compact orbifold of genus ¢ with one branch point. The map ¢ actually
defines a holomorphic surjective map ¢, : X; — X, between two Riemann
surfaces of type (g,0). Thus {, is a covering map. (To see this, note that

for every point a € Xy, ¢(7'(a) is a finite set and the cardinality of this set is
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independent of choice of ¢ € Xo.) Since ¢ > 2, Riemann-Hurwitz formula (see,
for example, Farkas-Kra, [21]) implies that ¢, is a covering map with degree 1;
that is, (; is a conformal map for each 2 € T(g,1).

Choose an arbitrary fiber D = ™ Hz), 2 € T(g,0). By hypothesis, D is
conformally equivalent to the unit disk. We claim that the map ¢|p must be
a constant map (recall that ¢ is the forgetful map).

Suppose not, then the image of D under ¢ is a connected and path-

connected subset of 7'(g,0). Define a map
A V(g 1) - V(g,0)

| by forgetting the branch point. Thus the following diagram is clearly commu-

tative:

Vig1) —— V(g,0)

n| |7

For each point x € D, C]Rfl{x) is holomorphic as a map between two orbifolds.
By definition of A the two compact Riemann surfaces A(7;!(2)) and (i (z))
are éonformally equivalent. Hence, we can find a modular transformation
Xz € Mod (g,0) which sends the point 74 o ({77 (2)) € T(g,0) to the point
mo 0 Az (z}) € T(g,0), namely, Xz sends 7(z) to ¢(z).

On the other hand, by definition, the set {r(z); z € D} is a single point,
whereas ¢(D) contains a continuous arc e(r), r € [0,1], in T(g,0). We thus

obtain a continuous family {X=(r)}refo,1] € Mod(g, 0) sending the point 7(z) €
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A

7(g,0) to the continuous arc ¢(r), contradicting the fact that thé Teichmiiller
niodular_group Mod(g,0) acts discontinuously on T'(g,0). We conclude that
for each fiber D, t), is a constant map, as asserted. Now we define a self-map
x: T(g,0) — T(g,0) by carrying each point z to x(z) = #(y), where Y is a
preimage of 77(2). The above argument shows that x{z) is independent of

choice of y in 77(2).

It is easy to show that the map x defined above is one to one and onto.
Since T and t are holomorphic and since # has a local holomorphic section pass-
ing through y € t7(2), we conclude that X is a biholomorphic automorphism
of T(g,0). It follows from Theorem 1.2.3 that y € Mod(g,0). Therefore,

X o7 = ¢ and the fibration structure of T(g,1) determined by ¢ coincides

with that determined by y o 7. This completes the proof of Theorem 4.4.7.
O

Theorem 4.4.7 has a direct consequence, which is stated as follows.

Corollary 4.5.1 ILet Ty and I' be as in Theorem 4.4.7, Assume that there

are holomorphic maps ¢': T(T'y) —» (), f: F(T) — F(T'), and {': V(T}) —
V(T') so that the diagram

FIy) 2 R

| [

V(T —— V(1) | (4.14)

= | | lﬂo

Ty) —— T()

tf
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commautes, where po, py, 1, and 7 are the natural projections. Assume Jurther
that for each 2 € T(T), v Haz) is conformally equivalent to the unit disk. Then
there is a 0 € mod I' so that f' = 6o f, and ¢/ = 9(6) ot, where f and t are

defined by (4.11), (4.10), and qo: mod ' — Mod T is the natural quotient

homomorphism.
To prove this corollary, we need a simple lemma.

Lemma 4.5.2 Let G be a finitely generated Fuchsian group of the first kind,
let {7}, (1] € T(G), be a continuous Jamily of Mébius transformations so
that for each () € T{(@), Mw € G*. Suppose that i) = v for a Y € G. Then

{7} is a holomorphic family and for each {u] € T(@), V) = Y*.

Proof.  Since (7 acts discontinuously on U, we can choose a point z € U, which
15 not a fixed point of elliptic elements of G, so that ¢ = inf {r,(7(2),0(2)); o
€ G, 0 # v} is a positive number, where p, is the Poincaré metric on the

domain E. Since {74} is a continvous family, for (1] sufficiently close to [0],

z stays in w“‘(U) and satisfies
inf {p 0 (11 (2), 0#(2)); o* € G¥, o* £ 4} > ¢/9,

It turns out that the set 4; = {[e] € T(G); y# = Y} is an open neighborhood
of [0]. But it is easy to sce that the complement A§ of A, is also open. Thus,

A = T(Q), as we claimed. O

Proof of Corollary 4.5.1. By Theorem 4.4.7, we see at once that ¢/ — xot

and (' = Y o ¢, where t, ¢ are the forgetful maps defined by (4.10} and (4.11),
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respectively. ¥ € Mod I and % ¢ Aut(V(I")} are determined by Proposition
4.4.3. Clearly, ¥ can be lifted to a geometric automorphism ¥ € mod I,

Hence, go(¥} = y.

It remains to prove the corollary under the assumption that ¢’ and ¢’ are
the forgetful maps defined by (4.10) and (4.11). We select from the upper
half of diagram (4.13) an arbitrary slice, say that determined by the fiber

([ee], w(U)) for a p € M(TI'1), and obtain the following commutative diagram:

w) L W

u | ‘(4.15)
wH(U)/T# — w(U) /T

where p, and pv are the natural projections. Note that (" is the identity map
on the base Riemann surface. From Lemma 4.1 of [20], /7 is a surjective map

and it induces an epimorphism X«: " = T defined by
Jrov" = x.(v*)o f' for any 4* € I*.

On the other hand, the map A*: w*(U) — w¥(U) defined by (4.9) satisfies the
condition that p, o * = (“op, (that is, we also have the above diagram where
f"is replaced by the map h*). 1t follows from (4.14) that for each z € wh(U),

there is a 7, ,) € I'” so that

B (2) = g 0 £(2). (4.16)
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Since both f’ and A* are continuous in terms of z and I' is discrete, 7, ) is

independent of choice of z € w*(U). Let Yzl = Y- Equation (4.15) yields
h'u'(z) =71 © fl(z), for a i eI . (4.17)

Now let p' € M(I'}) be so close to',u that z stays in w*'(U). Since h* depends
holomorphically on g € M(I') (Lemma 4.2 of [20]) and f’ is holomorphic on
F(I'1), we conclude that the family {v,1}, [v] € T(I"), defined by (4.16) is
é. continuous family. From Lemma 4.5.2, we see that y,; = ¥, [v] € T(I).

Therefore, we have

h=vyof,
where v is viewed as a holomorphic automorphism of F (T'), and 4 is defined
by sending the point ([u], ) to the point (£([u]), £#(z)). Observe that -y is an
element of mod T and that « lies in the kernel of the quotient map ¢o: mod I' —
Mod . Taking Yo = 70 £, we have ao(o) = o 0 ) = ao(7) 0 20(%) = .

This completes the proof of the corollary. O
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Appendix: Some unsolved problems

We now discuss several unsolved problems suggested by the work of this

paper.

(1) Bers’ question. An equivalent version of this question is the conjecture
of Earle and Kra which is stated in the i:ﬁtroduction of this paper. A proof
of this conjecture will give us full information on isomorphisms between Bers
fiber spaces and Teicl_lmiiller spaces. The above conjecture states that if T
contains elliptic elements, then (0.1)-{0.4) in the introduction exhaust all pos-
sible isomorphisms between Bers fiber spaces and Teichmiiller spaces. Rarle
and Kra [19] proved that in almost all cases, the answer to Bers’ question Is
negative; that is, they proved that the Bers fiber space F(I'} is in general not
isomorphic to any Teichmiiller space. There are, however, 39 unclear cases
(for the signature of T') which .remain to be settled. The work of this thesis
settled 27 cases out of the 39 cases mentioned above. What happens if the
signature of I" lies in the remaining 12 situations? To give a complete solution
of this problem, some new ideas and techniques must be introduced. For more
detailed discussion on the issue of this conjecture, see Chapter 1 and Chapﬁer

2 of this paper.

(2) Structure of the group of automorphisﬁzs of Bers fiber space. In order

to study isomorphisms among Bers fiber spaces, as we mentioned in (1), we
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need to find new automorphisms of Bers fibep spaces. In general, all fiber-
preserving automorphisms of Bers fiber spaces are modular traﬁsformations
(see Proposition 4.3.2). In this setting, we must find non-fiber-preserving
automorphisms of the Bers fiber space I'(I"). What does a non fiber-preserving
automorphism look like? The answer s not so clear even if I is torsion free,
in which case, F(T) can be identified with a Teichmiiller space T(g,n + 1)
by Bers’ isomorphism theorem 8] (here we assume that T is of type (g,n)).
-We see that all fiber-preserving automorphisms of F(T') can be obtained fromm
self-maps of a surface of type (9,n + 1) with a “special puncture” fixed. This
in turn imp-lies that we can have a lot of non fiber-preserving automorphisms
(all of them are obtained by doing elementary twist (see §2.2 for the definition)
involving that special puncture) and, if U/T is compact, there will be no non

fiber-preserving automorphisms of F(T'). In general situation; that is, if T

contains elliptic elements, the question remains unanswered.

(3) Fiber-preserving isomorphisms among Bers fiber spaces in lower genus
cases. An interesting questién is to find all fiber-preserving automorphisms of
F(T), where T is of type (g,n) with ¢ = 0 or 1. It seems that, even if in
the case when both T' and IV are of type (0,4), the general picture is very
hard to predict. For instance, we have F(0, 4 2,2,00,00) = F(0,4;2,2,2, 00)
in a fiber-preserving way, but F(0,4;2,oo,oo,oo) cannot be isomorphié to

F(0,4;2,2, 00, oo) (or F(0,4;2,2, 2,00)). See §4.3 for a discussion,

(4) Continuing with Problem 3, we are also interested in investigating

holormorphic sections of mo: V(I') — T(T) if the type of I' lies in Table (F)
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in §4.1. The earlier work of Hubbard [26] and Earle-Kra {19] [20] suggested

that all (global) holomorphic sections be obtained from canonical ones if genus
is > 3; when ¢ = 2 and T has no parabolics, then all (global) holomorphic
sections be obtained from canonical ones, fhe images of canonical ones under
a hyperelliptic involution, and Weierstrass sections. There are simnilar results
addressing some specific cases when g =‘0,1 (see Theorem 4.1.1). | But in
general, the picture is still unclear. There are uncountably many holomorp_hic
sections of g if (g,n) lies in Table (F) and, of course, hyperelliptic involution
operations contribute a lot of sections which are distinct from canonical ones.

Is there any other (global) holomorphic section of T which is basically distinct

from the ones obtained by hyperelliptic involutions?

(5) Theorem 4.4.2 asserts that any holomorphic automorphism of (T
always lifts to a holomorphic automorphism of V (T} if T is torsion free and is
not of type (0,3), (0,4), (1,1), (1,2) and (2,0). This result is nothing but a
restatement of the theorem of Royden and Earle-Kra [43], [19]. In the light
of this formulation, instead of considering -automorphisms of a Teichmiiller
space, we are interested in studying holomorphic maps of T'(g,1) onto T(g,0)
for ¢ > 2. Theorem 4.4.5 says that if a holomorphic map f is a submersion
and determines a fibration with fibers conformally equivalent to the unit disk,
then f can be lifted to a holomorphic map of V(g,1) onto V(g,0) if and only
if f is the so called forgetful map. A natural question arises at this point as

to whether or not every holomorphic map of T(g,1) onto T(g,0) is forgetful;

that is, whether or not every holomorphic map of T'(g,1) onto T'(g,0) can be




lifted to a holomt)rph_ic map of V(g,1) onto V(g,0)

(6) Continuing with problem (5), we assume that I' contains no parabolic
elements, and consider a Iifting problem: whether or not every holomorphic
automorphism of T(T') can be lifted to an automorphism of V(I")? By Roy-
den’s theorem (see also Earle-Kra [19]), the answer to this question is “yes”
except when (g,n) = (0,4) or (1,1.). It is obvious that any modular transfor-
mation of 7°(0,4; vy, v, v3, v4) (or T(I; 1;v), where vy, vy, 15, v4 and v > 2 are
integers) can be lifted to an automorphism of V(0,4;01,...,v4). However, Aut
7(0,4) = PSL(2,R) = Aut 7(1,1). A natu‘ra] question is: whether or not any
other automorphism (€ PSL(2, H)) can also be lifted to an automorphism of
V{0,450, ..., 1y). Weexpect but cannot prove that an 7 € Aut 7(0,4) can be
lifted if and only if 5 belongs to the group generated by Mod (0,4; vy, vy, v3, v4)

and the three conformal involutions described in the introduction.
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