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Abstract of the Dissertation
Hofer’s Geometry on Compact Surfaces
by
Simon Richard
Doctor of Philosophy

in

Mathematics
State University of New York at Stony Brook

1995

, Sufficient conditions for an Hamiltonian isotopy to minimize
i ' its length in Hofer’s geometry are obtained. (iven a Morse func-
tion H that separates critical points on a compact Riemann sur-
face ¥ equipped with a symplectic form w, we can associate a
1-dimensional CW-complex, its graph, that takes into account the
values of the function.

The conditions will depend entirely on this graph, and a func-
tion 7 that gives the length of the periods at the level h. This ,‘!

extends Hofer's results on autonomous Familtonians on R™ to f

surfaces, see [Ho] but our results are stronger in the sense that our i




conditions are weaker. In fact a proof in the same spirit produces
length-minimizing paths in R* with orbits of arbitrary small period
which can therefore wind around as much as we wish. In the case of
higher genus surfaces, coverings are used to get further results. The
extent to which the techniques can be applied to non-autonomous
systems is also studied. In particular, when the Hamiltonian is of

the form H(t,z) = f(t)H(z), the method applies.
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Chapter 1

Introduction

1.1 Hamiltonian Diffeomorphism

Let (M,w) be a compact symplectic manifold. 'To an isotopy ¢; joining the
identity to ¢ = ¢y, there corresponds a vector field X, defined as Xi(de(p)) =
£ ¢:(p). Such an isotopy is a path in the group of symplectomorphisms,

Symp(M,w) if and only if Lx,w = 0. But for ¢; € Symp(M, w) , we get

Lxw = dixw+ix.dw

= dex,w+0

" So ix,w is closed. If it is exact, Le. tx,w = dHy, then by definition, we
will say that ¢, € Ham(M,w), the group of Hamiltonian diffeomorphisms.

H, is only defined up to a constant, but we say that ¢, is generated by ;.

To fix notation, we will denote the Hamiltonian isotopy generated by H :




A more geometric definition can be made using the Flue Homomorphism,
[Mc-Sa). This translates into the following: for every loop y : ST — M, we

construct its image under the flow 8, : [0,1] x S* — M defined by

Br(t,5) = ¢e(v(s))

The condition for a symplectic isotopy ¢; to be Hamiltonian is

./[0,1]x51 frw =0, (V1)
A natural question arising in symplectic topology is the following: I H, — 0
in the C°® norm, does ¢g, — 17 Notice that we only have a C° control but the
conclusion is of C! nature. It is mainly to answer this question in R*?, that

Hofer introduced his metric.

1.2 Hofer’s metric

In [Ho], Hofer introduced a bi-invariant metric on the group of compactly
supported Hamiltonian diffeomorphism of R**, which was later generalized for
any symplectic manifold by Lalonde and McDuff, [La-Mecl].

This metric arises from a bi-invariant norm, which gives Ham(M,w) the
structure of an infinite dimensional Finsler manifold. As in the case of bi-
invariant metrics on finite dimensional Lie groups, it suffices to first define
such a norm on its Lie algebra, and then use integration and the bi-invariance.

Since the Lie algebra of Ham(M,w) can be identified with:

C*°(M; R)/{constants}




one can use the norm
Hl| = H(z) — inf H{z).
1] sup () ~ inf H{z)
Then the length of the isotopy ¢; generated by H;, where 0 < ¢ <1 is:

L(ds) = /1 (sup Hy(z) — ;éll\fﬁ Hﬁ(&?)) dt = /01 | He | dt

0 seM

The distance between ¢ to the identity, called the encrgy, and denoted by
E{#), is defined as the infimum of the length of all paths joining the identity
to #. Using the bi-invariance, one can also define the distance between any

two elements ¢, of Ham(M,w) by;

d(¢,9) = E(¢™)

To show that d indeed is a metric i.e. that E(¢) = 0 impiies ¢ =1, is an
highly non-trivial result. Hofer’s proof, which only works in R*® uses heavy
machinery from nonlinear analysis, mainly the study of the action functional
defined on the loop space of A% with some Sobolev norm, see[Ho-Ze].

In [La-Mcl], Lalonde and McDuff use pseudo-holomorphic techniques to pro-
duce a proof that works for any symplectic manifold. Essentially, it follows
from the generalised unsqueezing theorem, which was discovered by Gromov

[Gx] for R?, and which they generalised for any (M, w). This states:

Pheorem 1.2.1 Generalized Unsqueezing Theorem[Gr],[La-Mc1]

If there is a symplectic embbedding of B(r)*"** < M x B(R), thenr < R.




1.3 Length Minimizing Geodesics

Motivated by Riemannian geometry, geodesics are defined in a variational
way. Given ¢ € Ham(M,w), let P(z) be the space of all C* paths v =
{d:}ierpa) from N to ¥ with the C*-topology. (Thus two paths 4 and «'
are close if the associated maps M x [0,1] — M are C™-close.) For each
v € P(#) let P, be the path-connected component of P(¢) containing 7. A
path v = {¢;}ice is sald to be regular if its tangent vector c;lﬁt is non-zero
for all t € [a,b]. Further, « is said to be a local minimum of £ if it has a

neighbourhood A («y) in P, such that

L(7) S L), forally’ € N(y).

(liven an interval I C R, we will say that a path {¢; }ser is a geodesicif it is
regular and if every s € T has a closed neighbourhood A(s) = [as, b5 in I such
that the path {¢ae bten(s) is a local minimum of £, where 3 : N(s) — [0,1]
is the linear reparametrization 5(t) = (¢ — a;)/ (b — as).

Following the work of Bialy-Polterovich on R**, [Bi-Po] as well as Lalonde-
McDuff on general manifolds,[La-Mc2],[La-Mc3] geodesics are now well under-
stood in Hofer's metric. This is not the case for length minimizing geodesics

on, general manifolds.

Necessary conditions which holds for any symplectic manifold, were estab-

lished by Lalonde-Mcduff [La-Mc2], and say that in order to minimize length,

H, has to be quasi-autonomous, i.e., there exist points ¢4 and z_ , such that




for all #:

zy € {oeM: Hye)=max H}.

z_ € {reM: Hz)=minH}

Notice that the values at these points may vary. In fact, this condition is
sufficient for the isotopy generated by such Hamiltonian to be geodesics.

On R? sufficient conditions for a geodesic to minimize length are well
understood. Hofer in [Ho} showed that autonomous Hamiltonians minimize
length as long as there are no non-constant periodic orbits. This was later
generalized by Bialy-Polterovich, [Bi-Po] and again by Siburg, [Si] to the quasi-
autonomous case, under certain additionnal hypothesis, mainly Ustilovsky’s
conditions, [Us], on the nondegeneracy at the fixed minimum and maximum
of H,. Siburg’s result states that under the non-degeneracy condition, a quasi-
autonomous Hamiltonian is length minimizing provided that ¢, does not admit
any non-constant closed trajectories for any ¢ € [0,1].

In [La-Mc3] , Lalonde-McDuff considered the space
Ty ={(m,t,2) € X x Rx[0,1] | z= Hy(m)},
which separates X x R x [0,1] into two components, I‘}'_}. They introduced
p(H) = Min{ea(Ty), ca(I'H)},
where cg(X), the Gromov radius of X, see [Gr] is defined as

ca(X) = sup, {re? | o : B(r)" — X}

where ¢ ranges over all symplectic embedding.




| In {La-Mc3], the following theorem is proved:

Theorem 1.3.1 Let (M,w) be a compact Riemann surface with area form w. i

i If p(H) = L{dn,) then ¢n, is length-minimizing in its homotopy class with

fized endpoint,

i As Ham(M,w) is contractible for any surface of genus bigger than zero, this
implies that ¢z, is length-minimizing, thus of energy L(¢g,). For the sphere an
extra assumption is needed, as Ham(M, w) retracts into SO(3). Another way

to produce length minimizing paths is to use the Fnergy-Copacity Inequality :

Theorem 1.3.2 Energy-Capacity Inequality,[Ho],[La-Mc1]

E(¢) > ysup{ca(4) : (A) N A = B}
In the case of R*™™, it remains true withoul multiplying by i L
2 F

As the right side of the inequality is clearly bigger than zero when ¢ # 1, this

shows that the pseudo-metric is indeed a metric.

1.4 OQutline of the Work

Theorem 1.3.1 and 1.3.2 constitute the foundation of this work, In order

to find neccesary conditions for a geodesic in Ham(M,w) to minimize the

distance between its endpoint, the latter results suggest two methods:

Embedding of Balls Method Find conditions on the Hamiltonian I, un-
der which the equality p(H) = £(¢g,) holds. So one must embed balls

in I'%, in order to apply 1.3.1.

I
t
I
|
|
i
t




Covering Space Method Use the Energy-Capacity Inequality, 1.3.2 on some
covering of a Riemann surface of higher genus to show that a path is

length-minimizing.

1
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Chapter 2

Statement of the Main Results |
|
| i

2.1 Definition of the Graph

Let (¥,w) be a compact surface with symplectic form w. For a given

Morse function H : 3 — R that separates critical points, we can construct a

graph (see Figure 2.1) as follows: At every critical point, we put a vertex, the
height of the vertex being its H-value. We join two vertices together if there

is exactly an open cylinder between them.

The graph satisfies the following:

It
(1) Each vertex is a critical point l

(ii) Each edge represents an open cylinder, disjoint from each others

(iii) A critical point of index 1 is where either one open cylinder splits in two,

or two open cylinders merge as one. 1
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=

Figure 2.1: A slanted height function on the torus.

Definition 2.1.1 Onthe edge o;, representing the cylinder A; C H1(b; 1, b;)
between the critical values (b;_;,b;), each h € (b;~1,b;) corresponds to a unique

point A~ in o;. We can thus define 73 : oy — R, as:

7;(h) = the period of the orbit at level &, for A € (b;1,b;).

There is a nice relation which will furn out to be crucial in this work,

between 7, and the area of the cylinder A;, namely the “Area-Equality” :

Proposition 2.1.2

Area( A; :/ w = If_l h)dh|

This tells us that a “thin” tube will have on average small periods. We will

denote by Area,, this common value.

Definition 2.1.3 By a admissible path ¢ on the graph, we mean a sequence
of edges o; that start at the maximum, which satisfies the two following con-

ditions:




(i) Two consecutive edges must be connected by a critical point

(i1) Neither edges nor vertices can be used twice

An admissible path ¢ = (oy,...,0,) thus determines a sequence of critical
points (zg,...,%,) and of critical values ag = H(zg),a1 = H{z1),...,0, =
H{(x,) so the edge o; is determined by z;.1, z;. To such a path o on the graph,
we can assign a (non-uniquel!) path v on X, which goes through the critical

points zg = maz(H), z1, ..., Ty, and is transverse to I outside of this set.

Definition 2.1.4

downwards if a;1 > ag
a; 1s called

upwards it a1 < ag

“

Thus for an admissible path o, oy is always downwards.

2.2 Definition of 7

Definition 2.2.1 The variation of the values of H along o allows us to define
a natural parameterization for an admissible path ¢. Thus, we can identify

elements of & with an & € R; if var,, = |ar — ax_1|, then denote |o;| by :

0 f:1=0
|| =

i
Zvarak 0<e<n
k=1

10




The parameterization on (|o;_ 1|, |o3|) will be given by:

s BT g ) gy = (D) (E — | ]) + aig

loi] = loial

From now on we shall make no difference between the path and its parametriza-

tion, i.e., between an element of ¢ and a real number A € (0, |oy]) -

Notice that A € (|oy_1],|0¢]) ¢ & parameterizes a element of o;, and
that H{|oy|) = a;. As v is transverse to H on A;, we can also reparameterize

the curve -, so that on A;, from z;_y to z;, we have ~; : (|oy-1|, |oi]} — As, 80

that:

H(|owa|) = b+ loizq|  if 05 is downwards,

H(|oga]) + b —|oi—1| if oy is upwards

We can now define = on the whole path using this identification:

Definition 2.2.2 Definition of 7

T (Dn |Jn|) \ {lglla |0-2|7" 'a|0-n—1}} - H:

where

7(h) = the period of the orbit at the point parameterized by .

Note that lim 7(h) =00, 0<i<n.

h—r[cr,'|




2.3 Statement of the Main Theorem

For the next definition, we will assume that H is normalised, i.e, it has
maximum M and minimum 0. To do so one has to consider I — min(H), a

process which leaves the Hamiltonian flow invariant.

Definition 2.3.1 Let ¢ = (oy,...,0,) be an admissible path on the graph
determined by H. The reached area, R, and H,, the H-value of the point on

the graph parameterized by h, are given by

Ro(h) = [ et

’

ai-1 + |oia| — b if k€ oy, 07 downwards

H(B) =

a1 — |oi_1| + A if h € gy, o upwards

Remark 2.3.2 We see that H(h) = H(vy(h)), where v is the curve on %
constructed from ¢ with the appropriate parameterization. Also H,,(h) =
£;(h), where {; is the linear function in the (k,k)-plane going through the

voints (|o;_;|,@i—1) and (|og], a:).

Definition 2.3.3 Let H be a Morse function with minimum 0 and maximum
K on a compact Riemann surface (3,w). An admissible path o = (..., on)

from the maximum is said to “cover enough area” if the following holds:

sup Rq(h) 2 K
he(0\|on)




Remark 2.3.4 The previous definitions only made sense for a admissible path
o starting at the maximum. An admissible path from the minimum will be by

definition an admissible path for H' = K — H.

Theorem 2.3.5 [Main Theorem]

Let H be a Morse function with minimum (0 and mazimum K on a compact
Riemann surface (X,w) of genus > 1 that separates critical poinls. Suppose
also that the graph admits admissible paths o™ and o~ from the mazimum and

minsmum, which cover enough area and satisfy:

Roi(h) > K — Hox(R)

Then the time one map of the Hamiltonian system genemtéd by H, ¢y s
length minimizing, and

E(¢g)=K

In the case of the sphere, we also need Maz(H) < 3 Area(Y), as Ham(5? w)

ts not contractible.

Remark 2.3.6 Suppose that » € oy, for o; upwards: as h > o;_1, then
Hy(h) = aj—1 +h—|oj1| > a;j1. So K —H,(h) < K —a;_y. Let ay, for k < j,
be the last downward path before o;; then R, (|og|) > K —Ho(lox]) = K —ay,;

as ay < aj_y, then K —ax > K — a;_1. Summing up, we geb:

Ro(h) > Ro(low]) = K —ar > K — aj_y = K — Hq(h)

13




That means that the conditions R, (h) > K —H,(h) are automatically satisfied
on upwards paths, provided they are satisfied on previous downwards one. So

our conditions is only on downwards paths.

As a special case, we generalize Hofer’s result for autonomous flows on

R?", see [Ho], Theorem 3, to the case of arbitrary surfaces.

Corollary 2.3.7 If ¢ does not admit periodic orbits of period T, 0 < T < 1,
then

E(¢y) = Maz(H) — Min(H).

Proof:Normalize H such that it has maximum X and minimum 0. In that
case, we have 7 > 1, 50 R (k) > fldy > h . Take a path ¢ from the
maximum to the minimum . As we only have to verify our hypothesis on

downwards paths, using
K — -1 < IO‘jH1| = K — a;_y1+ h— |O’j_1| < h,
on the downwards path o; we get

Ro(h) > h

Y

> K- aj_1+ h— |O‘j__1|

f

K —H,(h)

14




2.4 The non-autonomous case

The aim is to generalize the results of Bialy-Polterovich, see [Bi-Poj, as well
as Siburg, see [Si] in R?", on the conditions for a given non-autonomous
Hamiltonian H, to minimize the distance between its endpoints. For a gen-
eral Hamiltonian, our technique does not apply. However for I satisfying
the foliated property, under an additional hypothesis over the average of H,

ag(z) = [ Hy(z)dt, the technique works:
Definition 2.4.1 H : [0,1] x M — R satisfies the foliated property if the
following holds for all p, ¢ in M:

I H,(p)=Hy,(g) forsome ¢, ¢€]l0,1]

then

Hy(p) = Hy(q) forall tel0,1].

Remark 2.4.2 The foliated property implies that in fact

Ht:ptOHg, pt:HﬁH, tE[O,l]
For example, any autonomous Hamiltonian satisfies this property, as well for
Hamiltonian of the form H(t,z) = f(t)H(z), where f: [0,1] = R.

In fact, we won’t need the foliated property everywhere, but only along admis-
sible paths 4% on & constructed from admissible paths o which cover enough

area from the maximum and minimum of ag(z). In [Bi-Pol, the following is

proved:

i

[




Lemma 2.4.8 If H : % x {0,1] = R is guasi-autonomous, then

ﬁ(GH) = .C(H)

For the following corollary, we suppose that az is a Morse function. We now

state our result for the non-autonomous case:

Corollary 2.4.4 Let H : [0,1] x X — R satisfying the foliated property, along
admissibles paths o, and o; which covers enough area from the mazimum and

the minimum of ag(x) = [} Hy(z)dt, and which satisfy:
Roy(h) 2 K —Hoy(h)
Then H produce a length-minimizing isotopy, so that
E(¢n) = L($n,)

If H(t,z) = f(t)H(=z), we get

1

B(¢x) = (mas(H) — min(H)) / F()dt

0

Proof:

Remark 2.4.5 The ingredient needed to get rid of the foliated property con-
dition can be phrased as the following question:

Let 2 be a simply connected open set of R* equipped with the standard
symplectic form w,. Let H : U x [0,1] — R be a smooth function. Denoting

by B*(K), the disk of area I, let:

16
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Up = {(z,y) €U x R 1y € B*(agy{z))}

Uy = {(z,t,B) €U x [0, xR:0<h < Hyz)}

If the following were affirmative, 2.4.4 would be true without the foliated

property assumption.

Question 2.4.6 [Dropping the Foliated Property Assumption]
Is there a fiber preserving symplectomorphism of (i, w, & w,) into (U, w, ©

dt A dh) which fixes the base U7

This is essentially a parameterized version of Moser’s theorem, [Mo]. It boils

down. to finding a smooth family
{Bgteeu : Bag()) = {(t,h) € [0,1] x R: 0 < h < He(z)}
satisfying

O*(dt A dh) = w,

In general, ®*(dt A dh) would depend on @, but if H satisfies the foliated

property, we can find ® : B(K) — R? which works for all z.

Fven if we could drop the foliated property assumption, we are still far

from Siburg criterion, which purely is a statement about trajectories of ¢g,.

To avoid making any statement about ag(z), it seems that one has to use the

17
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Hofer-Zehnder capacities [Ho-Ze}, instead of the Gromov radius. In [La-Mc3],
this capacity is used to prove corollary 2.3.7 in higher dimensions. However,
there are two major drawbacks as the Hofer-Zehnder capacity is very difficult

to calculate. Worse it can be infinite for compact sets, as it is imply by

Herman’s non-closing lemma[Ho-Ze].




i Chapter 3

Generalized Trapezoids

In order to use the Embedding of Bails Method, according to 1.3.1 one
has to show that given an Hamiltonian such that K = maz(H) — min(H),
we can symplectically embed balls of capacity K info Fﬁ Instead, we will
symplectically embbed a (eneralized Trapezoid, which are objects of capacity
K, provided T satisfies the hypothesis of Theorem 2.3.5. Here 7 is the function
defined in 2.1.1 which depends on the Hamiltorian H and on a given path of

its associated graph.

3.1 Trapezoid

Before defining generalised trapezoid, we recall the definition of trapezoid

as in [La-Mc3], and then compute their capacity. From now on, let B*(c)

denotes the ball of capacity ¢ ( thus of radius \/% ).




Definition 3.1.1 Let K > 0; then T{K), the trapezoid of capacity K is
defined as

T(K) = {(u,v,7) € (0, K) x (0,1) x BYK) |z € B*(K —u)}

By the unsqueezing theorem 1.2.1, we have cg(T(K)) < K. In fact, the

following stronger assertion holds:

Lemma 3.1.2
cG(T(K)) =K

Proof:To prove cg(T(K)) > K, for any ¢ > 0 we will construct a fibered
embedding
| F i BYM —¢) — T(K).

As B*(M — ¢) fibers over B*(M — €) ! and T'(K) fibers over tx = {((u,v) €
(0, K)x(0,1)} with balls of varying sizes, it suflices to construct an embedding
which preserves the fibers. More precisely, let hg(z,y) : B (M —¢) — R be
the function which at (z,y) gives the capacity of the fiber at this point. Then
hp(x,y) = M — ¢ — m(2® + y*). Let hy be the similar function on k. Then
hi(u,v) = M —u. it Thus to define F, it suffices to find an area preserving

map

f:BHM —¢) — tg, which satisfies ht(f(m,i 1) = hpl(z,y).

Then we can let F'= f x 1,

The construction of f will be given in two steps:

1If we denote by (21, z2) the element of BY(M -~ ¢), then the fibering is given by

(21,.272) — 2.

20




Step 1 We will construct a €' family of loops ®(r,0) : B*(M —¢) — ix

which will preserve the area radially and satisfy A,(®(r,9)) = hg(r,8).

Step 2 We will reparameterize our family @(r,8), along 0, so that the map

becomes arca preserving. This will be our f.

To construct such a map, consider a family of loops with disjoint images,

-

H—¢

O(r,0) : ST = b, 0Sr <yf—

such that the following are satisfied:

(i) ®(0,0) goes to the constant loop (£, 1)
(ii) Area(|J®({r} x 1)) = Area({(r,0) | r < p}) = #p?, for all p
TP
(iii) pu(®({r} x S*)) < #r? + ¢, for all v, where p, is the projection on the

U-axis.

Condition (iii) implies h:(®(r,0)) > hp(r,0), and its verification is implied by

Area{(0,7) | hp(0,7) > A} = K~—A—c¢

Area{(u,v) | he(u,v) 2 A} = K —2A ;a

We now can pass to step 2.

Consider I
|

w = k(r,0)dr A df = " (dz A dy).
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We claim that there exist a coordinate change of B?(K — ¢) of the form
G(r,0) = (r,g(r,0)) sothat G*(w)=rdrAdf,
As r is preserved, conditions (i), (ii) , (iii) will still be true, so we can let
F=®oC.
As G*(w) = k(r, g(r, 0))gedr A d0, it suffices to solve:
k(r,g(r,0))ge(r,0) =r, for gperiodicin 0. (%)

The coordinate change will essentially be a reparametrization by arc-length.

Consider the following family of functions of 8 parameterized by r:

£
WO =1 [ Hrnydy,  Tor 0 (0,26),
" JO
where 0 < v < %

Here are some properties of ¥"(#) :
(8) ¢"(0) = 3 fy k(r,n)dn = 0.
(b) As ® preserves the area of concentric disks, we get:

p 2w
// k(r,n)drdn = xp% taking derivatives, we get
0 Jo
2w

/0 k(p,n)dn = 2mp.

This gives ¢ (27) = 2=




.

rﬁ?'l

l'é‘
w
i
: |'i
Let g(r,0) be the inverse of 7(0).

We claim that g(r,8) is a solution of (). Periodicity follows from proper-

ties (a) and (b). To simplify notation, we will denote ¢7(8) by 1(r,8). Taking |
the 6§ derivative on both sides, we get: L!’
i

f

g(r,8) = ¥~'{r,8), so It

1 |

rf) = —/——————— Rl
N D) i
_ |
ZOX)) |
— r {:
© k(r,g(r,0) ‘L

i
This implies k(r, g(r, 8))gs(r,8) = 7. Ii
I

I
0 I
?1@'5%

| ﬂ‘]

i

It
3.2 Main Property of Generalised Trapezoids lf
il
|
We will construct a generalized version of a trapezoid, abstracting the ‘ |
i

hypothesis of Theorem 2.3.5. i
Let |oo| = 0, |o1],- . ., |ow| and ap = K, ay.. .., a, be sequences of numbers. l
Il

The first sequence is required to be increasing. Denoting by o the interval
(|os-1), |oi]), we say that o is downwards if o3| — |oy-1| < 0, upwards if los| — i

61} > 0. We do not admit a pair of sequences such that |og| — |os—1| = 0, for

any t. )
i
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Let H : (0,]ox]) = RY be a continuous piecewise linear function and also

7:(0,]o,]) — (0,00 be a positive integrable C* function such that
(i) H(0) =0 = ag, H{|oi|) = a;, for all 1.

(i1) By continuity of H, we must have

@iy +|oio1| — b i k€ 0y, 05 downwards

H(R) =

ai—1 — |oia| +h itk € oy, o; upwards

Y

Definition 3.2.1 Let {|oi|}ocicns {@itocicns H and 7 be defined as above;

then the generalized trapezoid T, 4(7) is defined as
Tym(r)={(h,k,z) € (0,]|on]) x R x BYK) |0 <k <r(h),z € B*H(R))}

Theorem 3.2.2 Suppose that ﬁl"”'fr(ﬁ)dn > K, and that [ r(n)dy > K —
H(h)  for all h. Then

Cg(Ta,H(T)) =K

Proof:As in lemma 3.1.2, we will construct a fibered embedding. But we
will use trapezoid instead of balls, taking full advantage of lemma 3.1.2. Let
tgee = {(u,0) € (0,5 —€) x (0,1)}, and £, = {(h,k) € (0,|on]) x R | 0 <
k< 7(h)}. T(K — ¢) fibers over tx_. and T,x(7) fibers over ¢, with balls of

variable sizes. Denoting by k@ tx_. — R, the function which at (u,v) gives

the capacity of the fibers, and by h, the similar function on ¢,, we get that

ho(u,v) =k —e—u and h.(h, k) = H(h).




Thus to prove our theorem, it suffices to find, for every ¢, an area preserving

map:

fitg_e —t, suchthat £A,(f(u,0))> K —e—u
Our embedding will then be £/ = f x 1L

bo We now construct our f:

Let g(u) = fo' 7(n)dy and h, = g~ (K — €) We can now define

¢ (0,he) — (0, |Jn|)'

by

P(u) goesto g '(u).
Remark 3.2.3 ¢(u) s where on (0, |0,|), we have eccumulated an amount u
of area.
As
#'(u) = =

The map f given by
fu,v) = (¢(u), 7(4(u)}v)
will be area preserving, as its Jacobian at (u,v) is 1. It remains to show that

ho(f(u,v)) = H(é(u)) > K — ¢ — u. But by hypothesis

b(u)
u = fo T(n)dn

25




> K~ H{$(w)

We get H(g(u)) > K —u> K —e—u.

26
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Chapter 4

Proof of the Main Theorem

4.1 Symplectic Embedding of T, into X

Let ¢ be an admissible path, and + the curve on X constructed from it,

as in definition 2.2.1. Recall that we parameterized v such that:

a;i—1 — h+ |oi_1] I R € o downwards
H{y(h)) = o
ai—1 + h — |og_1| Ik € o; upwards

We use the Hamiltonian flow ¢f; to embed t,, = {(h, k) € R? | |oy_q| <

h<|o:l 0<k<mn(h)}into A;, the cylinder determined by the edge o;.
Let (M,w) be a symplectic mainifold. We say that an almost complex
structure J is compatible if g;(v,w) = w(v, Jw) forms a Riemann metric for

which J acts as an isometry. Such J always exists, see [Gr]. Moreover, using

g7, the Hamiltonian vector field, Xz becomes:

Xy = —Jgrad( H)




Here grad denotes the gradient in the metric g¢;.

The following is essentially a construction of Action-Angle coordinates,

see |Me-Hal.

Proposition 4.1.1 Consider t,, with the symplectic form dh A dk. Then the

Jollowing is a symplectic embedding:

45?1(”)’1'@)): if o; 15 downwards

¢£fk(%(h)), if o; ts upwards

Proof:Let J be a compatible almost complex structure. Since on 4;, dH is

non zero, we can define the one form « by:

o= L —J'dH, tealk)= ! —dH(Jk)
1 Xall;, 1 Xxllg,

As dH(v) = w(Xpg,v), we get

1
C\!(XH) = 3 dH(JXH)
X e,

= ——w(Xu, T Xa)
1Xall;,

= ——g7( Xz, Xn)
1 Xl
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i
Moreover, 3
-i-;i
a AdH(Xy, JXg) = ofXe)dl(JX1) — o JXg)dH (Xp)
= 1 xdH(JXy}—~0 by conservation of energy (
= dH(JXg)
= w(XH,JXH)
As {Xp,J Xy} forms a basis of the tangent spaces to A;, we get
w=alANdH ‘
5o in order to prove the proposition, it suffices to show that | r
V(e ANdH) =dh A dk i
.;:
First, we look at some properties of ¥;: v
(
5 —1 if 0; is downwards ,"
—H(U(h,k)) = < 4.1 I
D B0, (1) “
1 if o; is upwards v
Qﬂ(xp(h E) = 0 (4.2) |
Ok ’
(

XH if o; 1s downwards

— Xy if 0; 1s upwards




|

|

| 30
i

{

1

i

b

From (3.1) and (3.2), it follows that
(

| 0 )
g —dh if o; 1s downwards

UHdH) =

dh  if o; is upwards

From (3.3), we get

—1 if ¢ is downwards

1I!;fa(»(,?—k) = a( V() = .

1 if o; is upwards i

This implies that

dk + f(h,k)dh il o; is downwards
¥i(a) =

—dk -+ g(h,k)dh if o; is upwards

Taking the pullback of the product, we get:

-

(dk + f(h,k)dR) A —dh = du A dk  if o; is downwards |
Ui(aANdH) = < |

(—dk -+ g(h,k)dR) A dh = du A dk if o; is upwards 1

Corollary 4.1.2 [Proposition 2.1.2]

Proof:

/A_w= tldh/\dk::/ ri(h)dh

|eri—1]

!
|os !:*i
|

|

|
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4.2 Embedding under the graph
| Outline of the Construction
| 4
»%i
: Using an admissible path ¢ from the maximum, we consider +, its associ- t'
ated path with its given parameterization, as in definition 2.2.1. One can also 1

define W : £, — 3] as the following: 5;

‘:iE!"

-z@

Wi(h, k) i k€ (Joimal, |ou)), i

U(h, k)= |

f}l(|o-z|) it he {|O‘1|,|O'2|,...,]O'n|}. ;

\ ‘::II

To apply 1.3.1, we need to show that '

p(H) = Min{eo(I'r), co(Th)} = K

5

Thus we want to embed a generalized trapezoid in I'f. Here: i

g = {(m’atvz) € XN xR X [0711 | Z < Ht(m)}: 5

g

It = {(mt2) € DxRx[0,1]| 2> Hi(m)}. :

k!

We call T'g, “the space under the graph” and I'f; “the space over the graph”.

Except for & € {|oy|,]o2l,-- .. |oal}s Lope(7) fibers over ¢, with fibers of capac- ”i

Al

ity H(h). As the fiber over W(h, k) in ['y is the rectangle [0, H(R)] x [0,1], ||L

, H

see remark 2.3.2, there exist a map 8 : B*(H(h)) — [0, M — h] x [0, 1] which |




preserves the area for all A's. Here , as in the discussion following the foliated

property, it is essential that this map does not depend on & or k.

Iquipped with this map 8, one is even more tempted to define the fol-

lowing fibered “embedding”:

O~ Ton(r) =1y

(h,kyz) s (T(h, k), B(x))

For I'};, the area under the graph, one does the same thing for an admissible
path o of H' = K—H. As ca(Ty3(7) = K, we would get, if & were symplectic
embeddings, p(H) = K, thus the proof of the Main Theorem, 2.3.5.

However, there are two major flaws in the latter construction:

(i) The map ¥ is not injective on the set h € {|ov,|oal,. .., lou-1]}.

(i) As lim 7; = oo, serious problems occur, as there is no way to extend the
B

—r |y

map to k € {|a1l, |oal, ..., |oaz1l}

Remark 4.2.1 If there are admissible paths from the maximum and mini-

muin whose level sets avoid critical values, the latter construction works, and

#%; is length minimizing.
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To circumvent the latter difficulties, we will perturb 7 a little.
Let € > 0. Let 7 : (0,|o,|) — (0,00) satisfy the following:

B
(1) sup / F(n)dn > K — ¢
he,(0yfonl) /0

(i) Je#(n)dy > K — e—H(R)

(iti) #(y) < r(n)

By 3.2.2, we have
Cg(Tg’H('f‘)) =K —c¢

Thus it suflices to show that for every € > 0, we can find a symplectic embed-

ding of T, (%) into I's.

Remark 4.2.2 Suppose there exists h, € o, with Jher(n)dp = K — ¢ Let

I7) be an open interval containing the point |0, for 0 < ¢ < &, such that

Jiq ™ < Fr Define #(k) by

0 ifhe I|g'.|

r(h) if not

Then # satisfies properties (1), (il) and (iii). It not continuous but the

point is that a pertubation can be as small as we want on the intervals /).

This will turn out to be useful.
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Perturbation of 7

Let Uy, Vu; be open neighbourhoods of @; and Ji,,| an open neighbour-

hoods of |o;] such that

(a) |H(z) — H(z;)| <¢, only,

(b) Ve, C U,

(C) V(chr.-l) C Vﬂ?e

On Iip, \ Jjoy we let 7 = 7. It remains to define 7 on Ji,;| (see Figure 4.1)
Suppose Jig;1 = (|oi| — &, |os| + 8;); Consider a one-sided thickening of ({|o;| —
5 oy 4 %)), such that the thickening is included in V,; and has area §7;. On
the intervals (|o;| — &;,|oi| — &) and (|oy| + &, |ou| + &), we “slow down” the
flow, (see Figure 4.2) in the sense that we make 7 smaller, until it reaches the
constant map 7 = T;. Denote by f; and g; these slowing down maps.Then on
(|oi] =%, |o:| +4), we make ¥ = Ti. The same construction as in theorem 3.2.2

gives a symplectomorphism ¢; from {(h, k) | b € (jo;| — &, |os| + &), k = 11} to

the thickening. We can now extend ¥ on the intervals 1| |’gi|5. To recapitulate,
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i .
Figure 4.1; Graph of ¥ near |o;]
we define
T; if b€ (|o:] — %, ]oi] + &), for some ¢

£i(h) it k€ (og| — &, || ~ &),for some 1
gi(h) if k€ (Joi| + &, |oi| + & )for some 1

r(h) if not

We now define the desired embedding ¥; : t; — % :

di(h k) if b€ (Jos| — &, loi| + &), for some 1

Ti(h, k) = <

U(h, k) if not




The slowing down is expressed by the length of the arrows.
Cylinders are joined by the thickenings.

The path changes direction Direction stays the same

Iigure 4.2: The Glueing Construction

Proof of the Main Theorem, 2.3.5

For any ¢ > 0, we use the pertubation 7 of 7 to constructed an embedding

U: of ¢t into B. To embed 7, 4(7) into I';, we use a fibered embedding, namely
\If:: x 1 TJ’H('?A;) — I‘I_-I

This gives ca(I'y) = K —e. For T'f;, we do the same for H' = K — H. We obtain

min{ca(TH), ce(Tg)} = K, so by Theorem 1.3.1, ¢} is length-minimizing. O

4.3 Proof of the Foliated Property Case

If ay is a Morse function which generates an isotopy which satisfies the
hypothesis of Theorem 2.3.5, then we can embed balls of capacity max(ag) —

min(ag) in I'Y, . But if H satisfies the foliated property, we can find symplec-

tomorphisms between I'f; and s, thus we can embed balls in I'E. O
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Chapter 5

Examples and Computations

5.1 A length minimizing isotopy which ad-
mits a set of positive measure consisting
of periodic orbits

Using 1.3.1, one concludes the following:

Corollary 5.1.1 Suppose H attains ils mazimum end mintmum on sets of

capacity M = Maz(H) — Min(H), then E(¢y) = M

Using 5.1.1, we will construct a length minimizing path in Ham(S?,w,) such
that there is a set of positive area where all the orbits have small periods. Here
simall means smaller than one, but in fact we can prescribe the orbit to be as
small as we wish. Let ¥ = {(z,y,2) € R* | 2% + ¢* + 2* = 1} with its usual

volume form, w,. We will use the symplectic coordinates (sometimes called

. chordal) (#,2),0 < 0 < 2w, —1<z<1,sothatw,=dfAdz.
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Consider H of the form f(z), a function on 3 that only depends on the
height. In that case, the isotopy is given by ¢:(0,7) = (0 4 tf'(#), z), so orbits
close whenever tf'(z) € 2zZ.

Let us choose f such that f/(z) satisfies:
(i) f'(z) is even
(i) f'(0) > 2= K, for K a big integer
(ii1) f'(») =0,2 <=L, for L > 0 very small
(iv) 1 f(2)de = M < 2n

By choosing K very large, then ¢, admits orbits of arbitrary smali pe-
riod which can therefore wind around as much as we wish. But as f(z) =
[2, f!(z)dz, (see Figure 5.1), we still have in virtue of (iv), control over the
maximum M of f.

To use 5.1.1, it suffices to choose K and L so that M < (1 — L)2x. We

then obtain that ¢; is length-minimizing,.

The set {z | |z| < L} consists of periodic orbits. O

graph of f(z) graph of f(z)

Figure 5.1: A length minimizing Hamiltonian with “a lot” of closed orbits

33




Remark 5.1.2 A similar construction using a function depending r* = z* 4
y? on R? would give a length-minimizing Hamiltonian isotopy with compact

support on B? which has periodic orbits on a set of positive measure.
] P

5.2 Some calculations on the torus

In [La-Mc3] it was proven that T? is unbounded in Hofer’s metric. A
construction was given, of an Hamiltonian isotopy which minimizes length
for all time, by passing to the universal cover R?. We will give an explicit
construction, using a finite cover. But f{irst we need a lemma, getting rid of

the 1 in the Energy-Capacity Inequality,1.3.2.

Lemma 5.2.1 Let (12,w) be the torus with area w(T?).

Then the following holds:

B(9) = suplea(4) : 6(A) N A = 0}
Proof:Let ¢/ the symplectic image of a ball be such that
(i) ¢U)NU =10
(ii) ¢, () > E($)

Then there exists H € C°(T? x R) such that | H| < ¢, (i), and ¢3; = ¢.

Let 35?}} be the unique lift of ¢4 to R* such that #% = 1: Then:

L(¢) < L(dy) < co(Uh)

As E(?x{) NU =0, this contradicts 1.3.2. ]
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5.3 An isotopy of the torus which minimizes
length for all time

In the case of R*®, the Hofer norm is continuous in the C° topology as it

was discovered by Hofer, see [Ho| , as the following inequality holds

Theorem 5.3.1 For any ¢ € Ham(R**,w,),

B(4) < 256 - diam(supp(@)) - [9]lo0

where the C%-norm is sup |¢(z) — z|.

In particular, no function of compact support can generate an isotopy which
minimize length for alltime. But in the case of surfaces, the continuity of the
Hofer norm is still unknown, see [Lal.

On the torus, we can minimize length for all time, as the following holds:

Lemma 5.3.2 The isotopy generated by the Hamiltontan H(z,y) = 1 cos(2rz)

on T2 minimizes length for all time.

Proof:By Moser’s classification [Mo] we can suppose T? = R/Z @ R/Z with
the induced standard symplectic form dz A dy.

Let H(z,y) = 1 cos(2mz). We get the Hamiltonian flow

$ia(2,) = (3,y -+ b sin(2ra)).

As H is autonomous, the following holds:

¢5fq = QB}H
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Both notations will be used interchangeably. Thus it suffices to show that ¢}y
minimizes length. If we think of ¢4 as the unique lift on the universal cover,

R?* which at ¢ = 0 is the identity, it displaces the set
Ay ={(z,y) e R?| 0 <2 < 1,0 < y < twsin(27z)}

As
3
ca(Ay) = / trsin(2rz)de =t = L(tH),
0
we see that @i displaces a set of capacity equal to its length, but viewed as a
map from R%. Let

n > sup tmsin(2rx) = tmy
EE(O,%‘)

Consider the n-sheeted cover T2 of T2 given by R/Z & R/nZ. Let 5}; denote
the unique lifting of #% such that ;b_?; = 1.
Then Eg displace 4\, a set of capacity {.

For fixed ¢, let {$% 0]} be another isotopy such that ¢, = $rer; Then
@bfrﬂ =¢mtec c€ly

As qﬁ; , and q/S—tf;I fix some points, this implies ¢ = 0. Thus zﬁ; 1 displaces Ay

From lemma 5.2.1, we get:

Lk ,) > L(by,) = t = L($Y)

Thus ¢4 is length-minimizing for all £. |
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5.4 Morse functions which generate high en-
ergy Hamiltonian Diffeomorphisms

As the group Ham(T? w,) is unbounded, and the Morse functions are
dense in C*(T% R), one would expect that there exist Morse functions which
generate isotopies of arbitrary length. As 2.3.5 only produces length-minimizing
paths for which B(¢) < w(X), to show that there exist Morse functions which
generate length minimizing paths with energy bigger than the arca of the un-
derlying surface, a construction is required.

Another problem arises: (Ham(M,w),dy) i not complete, as was shown by
[La-Mc2). In fact, they constructed a ¢ € Ham(S5? w) for which there is no
shortest path from 1 to ¢. Using the results in Bialy-Polterovich, [Bi-Po], one
can show that this holds for any symplectic manifold. This was pointed out
to the author by Polterovich. In other words, for any symplectic manifold
(M, w) there exist ¢ € Ham(M,w) such that there is no shortest path from
the identity to ¢. In [La-Mc2], necessary conditions for a geodesic to minimize
length are obtained. We will give the version for Hamiltonians generated from
a time independant Morse function, thus simplifying the statement. First we

define the linearized flow:

Definition 5.4.1 Consider a path ¢; with ¢¢ = 1. Suppose that = is a fixed

extremum of the Hamiltonian {H,;}sep,] and consider the linearizations

L, = déu(z) : To(M) — T.(M)
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of the ¢, at z. This is the symplectic isotopy generated by the Hessian of H;

at q.

In the case of a Morse function H, in a Darboux chart [Mc-Sa], the Hessian

at any local maximum or minimum does not depend on t. Moreover, it is a.

positively or negatively definite symmetric bilinear form. The linearized dow

at those point becomes:

L, = exp(J,Hess(z)t), where J, =

-1 0

L

Trom classical Hamiltonian mechanics, as in [Me-Ha], there exists a linear

symplectic change of variable = such that the system becomes:

=N, Hess(z)2 =

or

This will be called the normal form of ©,. So in these charts the system has
solution R, the rotation with angle 8 or —#6. This system admits closed

~ orbits as soon as t§ € 2xZ. If, for every v € T,(M) and every ' € (0,1,
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the only trajectories o) = Ly(v),0 < ¢ < ¢, with v = Lo(v) = Ly(v) are
single points, we will say that the linearized flow at « has no non-trivial closed

trajectories in the time interval (0, 7).

Theorem 5.4.2 [La-Mc2f

Suppose ¢y is a length-minimizing path generated by the Morse function H on
the compact surface (5,w). Then there is at least one fized mazimum and one
fized minimum af which the linearized flow has no non-trivial closed trajectory

in the open interval (0,1).
From the normal form of Ly, it follows:

Corollary 5.4.3 Let (X,w) be any compact surface. Then there is no isotopy

generated by a Morse function which minimizes length for all time.

Proof:As noted, Ry admits closed trajectories for all points of index zero or

two, as soon as t is big enough. O

Construction a Morse function G on T? such
that {¢f }ico; is length minimizing and max(G)—
min(G) > w(T?).

From the proof in Section 5.3, if we can construct a function & such that

for its flow ¢, its unique lift to the universal cover starting at the identity

52;, displaces a set of capacity equal to max() — min(G), then #% minimizes
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G B c

Figure 5.2: The flow of the height function on the torus

length. So it suffices to find a Morse function G with max(G) — min(G) >

w(T?) satisfying the desired property.

Suppose we have an embedded torus in R®, such that it stands on the
plane z = 0. Let H denotes its heigth function with minimum 0 . Let Xy be
its Hamiltonian vector field. Consider a curve v on the torus, from A to D,
which is transverse to H outside critical levels, see Iligure 3.2 and moreover

does not pass through any other critical points.

Let F be a compact set of the image of v between the the two critical
points of index 1 B and C. We can suppose, if the torus is big enough that the
cylinder between 2 and z along ¥ is the flat round cylinder of radius one,

which we will denote by A,, .,. Thus area(A,, ,,) = 2n(z; — 1) On A, ,, if

we put the coordinates (z,0) with z; < z < z, and 0 < 8 < 2, , then for the
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heigth function I, we get 7(2) = 2. If we compose H with a f : B — R such
that f’ never vanishes, letting G = f o H, we obtain Xg = f'(#)Xg. Choose
i f such that f(2) = Az on (21, 22). Then for the function , we have 7(z) = 2=
Choose ) so that 2 = < Then if q% is the unique lift to the universal cover that

starts at the identity, gﬁn}; displaces a set of capacity N2m(z3 — 21) = Alzg — 2)

But as the variation of f between z and z; is equal to Az — #) =

2w N (2 — z1), we need room to get to the maximum and the minimum. TLet

Bnazs Omin and dp denote the following:

Sae = G(A) = G(B) Spin = G(C) — G(D) 8p = G(B) — G(C) — 20N (23 — 21)

Then K = 20N (22 — 21) + Omaz + Omin + 65 (see figure 5.3.) We want f so that

qSNtG displaces a set of capacity K — ¢, for any € > 0. i

Lemma 5.4.4 We can choose f such that Tpee = {z € T | G(B) < G(z) <

G(A)} and Toe = {z € T? | G(D) < G(z) < G(C)} both admit sets Upan

and Unmin of capacity bman and Spmin which are displaced by q%

Proof:Choose f such that 7 > 2 on both these sets. Consider the symplectic
coordinates {(h, k) | 0 < k < 7(h)} introduced earlier. We consider the T,qe

case, Tm being similar.
7>2={(hk)|G(B) <h<GB),0<k<l}C T

Letting Upay = {(h, k) | G(B) < h < G(B),0 < k < 1}, this set is displaced

and has capacity G(B) — G(A). To make 7 < 2, it suffices to choose f such

that f’ is small enough for z > z,. O




Omax {\_

8min {’

Figure 5.3: Composing the height function

Lemma 5.4.5 The cylinder A between the critical points B and C admils a ;
simply connected set Up of capacity 2nN(zy — z1) -+ 6p which is displaced by
et

Proof:We only consider the case {z € A | G(z) < G{z) < G(B)}, the case
{z € Al G(C) < G(z) < G(2)} being similar. As 7 — o0 as z — B, and
on A, s, 7T <1, wecan choose f such that 7 decreases in a monotone way

from B to z,. We have two cases:

7(2) > 1 : Let w such that 7(w) = 1. Then in the universal cover, ¢¢ displace

the set {(h, k)| G(B) < b <w,0 < k < 1} of capacity G(B) — G(w).
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7(2) < 1: Then in the universal cover, ¢ displaces the set {(A, k) | Glw) < A

h < @(z),0<k< ;(j;ﬁ} of capacity bigger than G(z) — G(w), as 7 > 1.

Taking the union of A,, ., the two former set, joined along the curve v, then qﬁ%
displaces a set of capacity G(B) — G(z3) +2x Nz — #). To get the remaining ‘ .
part of 6, we do the same for {z € A | G(C) < z < G(z)} and let Ur be the

unions of theses five sets. O

Proposition 5.4.6 There exist ¢ Morse function G' on T? which generates

an tsotopy of minimal length such that max(G) — min(G) > w(T2).

Proof:We can choose N such that 27 - N{zg — z1) > w(T?);
Choose [ as in the two preeceding lemmas. Let € > 0: Let 4 be a lift of v in
the universal cover, Attach a4, U and Up along 4.

We can excise small neighborhood of U4z, Umin and Up such that we
do not delete more than an amount of ¢ area. Thicken the path % along the
deleted area such that qﬁd}{ displaces the thickened area and that the union of
the thickening and Lo, Unmin and Up is homeomorphic to a ball. Then géd%;

displaces a ball of capacity more than K — ¢, O

5.5 Generalizations

We now discuss some ways to generalized theorem 2.3.5:

Extending the class of admissible paths We could admit paths that pass

through critical points of order zero or two, and then come back. Thus an




edge could be used twice. But one has to be careful to “share the area”
as the path travels through the critical point. More precisely, suppose
that o; is an edge from the point z;_; of order one going to the point ;
of order two. Let 4 be a loop based at #;_; transerve to H on the open
cylinder A; determined by the two points. Then v; decomposes as 'yg?"
and ;", the upwards and downwards parts. On v, we flow along X_g,
using 7, but until we reach ;. On 47, we flow along Xy, using =, but
until we reach ;. The point is that we dont use all of ; on any of the

paths. But by using both paths, we can recover all of the area of A;.

Allowing functions which are not of the Morse type If afunction f has
a finite number of critical points, we can define its graph, thus 7 and the
theorem generalized to this case. For a general f : ¥ — R with minimum
0 and maximum K, let Reg(f) € (0, K) be the set of regular values of
f. Let e > 05
Then by Sard’s Theorem, we can find a finit number of mutually disjoint

intervals I; = (a;,b;) of Reg(f) such that

by —a;) > K —e

M

One could then define T on these intervals to get some results.

Approximation by Morse Functions One could use the C*°-density of Morse

function to approximate a general function f.
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