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Ahlfors’ Finiteness Theorem says that any non-elementary and
finitely generated Kleinian group G acting (properly) discontinu-
ously on C represents a union 5 U Sy U ... U Sy of Riemann
surfaces such that for every i = 1, 2, ... N, 5; is of finite type.
We investigate whether there exists another Kleinian group F such

| that F is properly contained in G with finite index such that both
have the same deformation spaces. In the case of Fuchsian groups,
Greenberg, Singerman, and others had shown that such pairs do

not occur very often. These pairs of non-elementary and finitely

generated Fuchsian groups satisfy the following properties:




(1) one is a (normal) subgroup of the other and the index is
finite

(ii) the Teichmuller spaces of the two groups are equal

and the above authors specifically listed down the patrs of sig-
natures associted with these pairs of Fuchsian groups.

In the general case of Kleinian groups, we found it to be true
as well that pairs of Kleinian groups, satisfying similar proper-
ties as the ones above, do not occur frequently. The main results
are obtained by focusing on Q(F) and Q(G). In the proof of one
of our propositions (Proposition 1), we make use of the natural
decompositions of this pair of (Banach) spaces of quadratic differ-
entials and the 1-1 correspondence that results thereafter on the
assumption that they are equal, Q(F) = Q(G). In Proposition 3,
we found necessary conditions that F and G must satisfy. They
are clearly generalizations of those in the Fuchsian case. If F and
G are Kleinian groups with an invariant component, the so-called
function groups, then the signatures of their Fuchsian eqiuvalents
are crucial in determining whether they are included among these
pairs of Kleinian groups. For the general case, the component sub-
groups that do not correspond to thrice-punctured spheres play a
key role. Using standard theories, we establish the equality of their

deformation spaces in Chapter 4.
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Chapter 1

BACKGROUND

1.1 Kleinian Groups

a b
The Lie group PSL(2,C) = { | a,b,c,d € C & ad-be=1}/{L,-I}
c d
a b
acts on C via Z = i—f;’f&; it is well-known that PSL(2,C) is (isomor-
¢ d

phic) to the full group, Aut{C), of orientation-preserving conformal automor-
phisms of €. Elements of PSL(2,C) are categorized into three types: elliptic,

a b

parabolic and loxodromic (which includes hyperbolic). An element

¢ d
of PSL(2, C) is called elliptic if the square of its trace, (a+d)* € [0,4); it is

parabolic if {a+d)? = 4; loxodromic otherwise.



Suppose that G is a discrete subgroup of PSL(2,C). G is said to act
(properly) discontinuously at z € C if there is a neighborhood U of z such that
g(Uy N U = § for all but a finite number of g € G. The action of G on C
produces two sets, }{G) and A{G), with the characteristics that

1) YGINA(G) =

(i) Q(CIUAG) = €

(iii) Q(G) is the largest open, G-invariant set in C where G acts
discontinuously.

(iv) A(G) is the closure of the set whose members‘are the fixed
points of all parabolic and loxodromic elements of G.

Q(G) and A(G) are called the ordinary set and the limit set of G respec-
tively. If Q(G) # 0, then G is called a Kleinian group of the second kind (or
simply a Kleinian group) and the limit set of such a group is nowhere dense in
C. In case G is a Kleinian group of the second kind which is non-elementary,
that is cardA(G) # 0, 1, 2, then A(G) is the minimal closed, nowhere dense
and C-invariant subset of C. If, on the other hand, Q(G) = 0, then G is called
a Kleinian group of the first kind. rThese groups are primarily linked with 3-
manifolds and will not be our main object of study here. Hence, we will agree
from now on that whenever Q(G) is used, it will mean the non-empty ordinary
set of G in C. We will also, from this point on, refer to Kleinian groups of the
second kind simply as Kleinian groups.

A component of a Kleinian group G is any connected component of Q(G).
If Q(G) is itself connected, then G has only one component, 2(G). According

to Ahlfors’ Finiteness Theorem [B4], if G is finitely generated, then the 2-

o



orbifold Q(G)/G is a finite union of compact Riemann surfaces with a finite
number of special points. Let S be one of these Riemann surfaces and let {21,
T3, ..., T} be its finite set of special points. The order of z; is defined to be
the order of the element ¢ € G that corresponds to the homotopy class, [A], of
a simple loop A about z;. If a Kleinian group G has a component, A, which is
invariant under G, then G is called a function group. If G is a function group
and, in addition, its invariant component is simply-connected, then G is called

a b-group.

Definition 1 If (G,A) is a b-group and j € G is parabolic such that 3. (j) is hy-
perbolic for $:A—— U a Riemann map, then j is called an accidental parabolic.
The azis of j is defined to be the inverse image under § of the axis of 3.(j)

which is the geodesic in U connecting its two fized points.
The following lemmas are known. We show proofs for completeness.

Lemma 1 Let F and G be non-elementary Kleinian groups with FXG and

[G:F] = N < co. Then, A(F) = A(G)

Proof: Clearly, A(F)CA(G). Let G = FgoUFgUFgU...UFgn_1 be a par-
tition of G into (left-) cosets with respect to F, v&hefé Fg@ =Fand g0 = 1.

Let 20€A(G). Then, there exists a sequence of distinct elements {v;} in G
such that lim; v;(z) = z for some z in (G). This sequence has a subsequence
{%:} such that 4;(z)—z for any point z in Q(G). This subsequence is chosen
as follows. After an appropriate normalization of G that sends z—o0, each

element ¥; of this subsequence satisfies the property that the center of the




isometric circle of its inverse, §;(00), tend to z,. Withont loss of generality,
we take the subsequence to be the original sequence. From the finite partition
rabove, it follows that for infinitely many indices j, v; € Fgx for some k =
0,1,...,N-1. If k=0, then we are done. Otherwise, we have yjog;' = f; € T
Now, we observe that gy *(z) € Q(G). Hence, it follows that lim;v;(g;*(2)) =
2o which implies that lim; f;(z) = 2. But Q(G)CO(F) so that z€Q(F). Thus,

zp € A(F) which completes the proof. O

Lemma 2 Suppose (G is a non-elementary Klewnian group. If G has a com-

ponent A which is invariant under G, then A(G) = OA, the boundary of .

Proof: Clearly, 9A C A(G) since A is in the complement of (G), and
C - Q(G) = A{G). Now, let zg € A and let g be a loxodromic element of G. By
iterating g and g”! and applying it to zp, we see that the resulting sequences
of points converge to the two distinct fixed points of g, one is attracting and
the other is repelling. Hence, the fixed points of g lie on 8‘/_\. Since the set of
fixed points of loxodromic elements in G is dense in A(G), we are done. D

The two lemmas above result in the corollary below which is easy to prove.

Corollary 1 If F and G are:non-elementary function groups with F<G of
finite index, then there exist invariant components, A(F) and A(G), for F
and G respectively such that A(F) = A(G). Furthermore (i) Q(G) = Q(F)
and consequently (i) Q(G) - A(G) = QF} - A(F).

Proof: Given A(G) for G. Since F=XG, we can choose A(F) for F such
that A(G)CA(F). Suppose x € A(F) - A(G). Either x € 3A(G) in which case,



by directly applying lemmas 1 and 2, we obtain x € A(F) contradicting the
assumption that x € A(F); or x € A(F) - A{). Let f be a loxodromic element
of F and consider the sequence {f*{x)}, n = 1,2,... Then f*(x) — zo € A(F).
By assumption, A(F) - A{G) is a nonempty open set and we can thus choose
an open set O containing zo such that O N A(G) = 0. But A(F) = AG)
and A(G) = AA(G) by lemmas 1 and 2. Thus, there exists a sequence {z;} of
distinct points in A(G) such that z; — ¢ and hence, z; € O for infinitely
many j’s. This contradicts the choice of O. Hence, we get A(F) - A(G) = 8

and A(F) = A(G). The rest follows trivially. O

1.2 Quadratic Differentials

Throughout the following list of well-known facts and definitions, G will
denote a non-elementary and finitely generated Kleinian group of the second
kind and Q(G) its (nonempty) ordinary set in €. We will use the notation
T(G) for the deformation space of G, the formal definition of which is given
in succeeding chapters. If G is Fuchsian, we will denote the Teichmuller space
of G as T{G) or T(G,U) where U is the upper half-plane.

(1) A (holomorphic) quadratic differential for G on Q(G) (in general, on
any open .set DCO(G)) is a holomorphic function ¢ on Q(G) with the property
that ¢(g(z))g'(2)? = #(z) for all g € G and for all z € Q(G). This last equality
says that ¢ is an automorphic (2,0)-form or simply a 2-form on £(G) with

respect to G.

(2) The function ¢ is called integrable if

ot



dzdz
/[Q(G)/G 42) 2 | < +oo

(3) The Banach space of integrable, holomorphic quadratic differentials

on Q(G) is denoted by Q(G,Q(G)) with norm equal to the given integral above.

Remark: There is naturally a corresponding space Q(2(G)/G) of quadratic
differentials on £2(G)/G and the two (Banach) spaces Q(G,Q2(G)) and Q(Q(G)/G)
are, in fact, isometric. Moreover, Q(G,Q2(G)) is (canonically isomorphic to)

the cotangent space of T(G) at the identity.

1.3 The Planarity Theorem
We state without proof the Planarity Theorem {M].

Theorem 1 (Planarity Theorem) Let p:S+— 5 be a regular covering of the
topologically finite Riemann surface S, where S . planar. Then, there is a-
finite set w = {w! } of disjoint loops on S, where each w], is a power of a
simple loop so that p:S—— 8 is the highest regular covering of S for which the

loops {w),} all lift to loops.

A short discussion of this theorem may be helpful. Consider the Riemann
surface A/G = g which is necessarily of finite type. Since mA~——Yg is
a planar and regular covering, the Planarity Theorem applies. We get as a
result, a finite set {w! } of disjoint loops on Yg satisflying the properties men-

tioned in the theorem. Furthermore, there exists a finite set of homotopically



independent loops {al,}, all of which lift to axes of accidental parabolic trans-
formations rg(al) which are elements of some b-groups that are subgroups
of G. The set {w! } U {al} is a (complete) set of v-dividers, ¥<co, and oco-
dividers on X. We note here that this set is composed of both dividing and
non-dividing loops.

The lifts, w,,, of the loops w!, traversed v times are simple disjoint loops
in A. These loops divide A into regions R}, RY,... which are called preliminary
structure regions. The lifts, a,, of the loops o, are, apart from the parabolic
fixed points of 7g(e!) in A, simple disjoint loops as well and éach one lies
entirely in some R. The loops w,, and «, are referred to as the structure
loops of G and they divide A into regions By,R;,... called G-structure regions.
Let H; = StabgR; = { geG | g(R;) = R, }. These groups in turn are called G-
structure subgroups. These groups are b-groups without accidental parabolics.

The complement of the set of dividers in %5 is a finite number of building
blocks Y7,Y5,...,Y, which are subsurfaces of ¥4 and whose pre-image under the
covering has some F; as a connected component. Since q-<oo, there exist up to
G-equivalence only a finite number of structure regions in A. Let By, Rs,...,H,
be a complete list of G-inequivalent structure regions. From the building
blocks, we obtain the associated 2-complex, K, together with a number of 1-
complexes called connectors. K gives rise to what is referred to as the graph
of g with the building blocks as vertices and the 1l-connectors as edges.
K also gives rise to a marking, £;+,5,7,....8s*, where E,TUX,TU..UEst is

topologically equivalent, in fact conformally equivalent, to the disjoint union

of component surfaces of G. A component surface of G is {;/ (3; where ©; is a

I




componentrof QG) and G; = StabgQ,. This subgroup is called a component
subgroup of G.

Apart from the l-complexes called connectors, K is a disjoint union of
finite Riemann surfaces, K;. Hence, one can affix an {orbifold) Euler char-
acteristic to each K;. All the K;’s are of hyperbolic characteristic. If G 1s
regular, all these K;’s are elements of the marking. Otherwise a number of
them may have disappeared or thrown away together with those with euclidean
and spherical characteristics. G is usually called partially degenerate in this
case. Hence, we see that the number of component surfaces of a function
group (G,A) is not necessarily equal to the number of building blocks of X
= A/G. Note that it is also possible to consider the signatures of the elements

of the marking instead of their (orbifold) characteristics as the two are clearly

related.




Chapter 2

PRELIMINARY RESULTS

2.1 Improper Inclusion Pairs

Using the facts and definitions established in the previous chapter, we

now present the following definition. It is assumed that F # G.

Definition 2 Let F and G be non-elementary, finitely genemt-ed Kleinian
groups such that F<G with index [G:F] < co. Let Q(F ) and Q(G,Q1) be
the space of holomorphic, integrable quadratic differentials compatible with F
and G respectively and supported on Q = Q(F) = Q(G), the common ordinary

set of F and G. F and G is called an improper inclusion pair if QIFQ) =
QGQ). |

Below is the first of our preliminary results. Its proof uses the natural
decompositions of Q(F,2) and Q(G,1?) into subspaces associated with the com-
‘ponent subgroups of F and G. This will be used repeatedly in our succeeding

discussions.
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Suppose that F and G is an improper inclusion pair. Let {2 = QaU, UQLU....
be a disjoint union of components of @ where 2 is the common ordinary set of
F and G. Notice that if {}; is G-inequivalent to };, then there is no g € G and
in particular no g € F for which g{Q;) = Q;. Hence, {¥; is also F-inequivalent
to Q;.

Therefore, if @ = QURUQLU...UNs is a maximal disjoint union of G-
inequivalent components of £, then = QU UNLU..UQsU..UQg is the
corresponding disjoint union for F where S'>S. Ahlfors’ Finiteness Theorern
guarantees that S,57 < co. The associated component subgroups of I' and G

are denoted respectively by P and G,

Proposition 1 If F and G is an improper inclusion pair, then Q(ﬁ’i,ﬂij =
Q(G’i,fl,-) for all 4. In particular, if F and G are function groups, then Q(F,A)
= Q(G,A) where A = A(F) = A(G) is the invariant component common lo

F and .

Proof: Observe that Q(¥.,Q) and Q(G,Q) can be decomposed as follows:

Q(C.9) = Q(Go,20)SQ(G1)S..-8QGs,2s)

Q(F,0) = Q(F0,20)BQ(F1,0)®...2Q(F5,Q25)BQ Foy1,.0541) @ BQFor, Q)

where CA}} = Stabs$); and F'j = Stabp{l; are the associated component
subgroups for all 1 = 0,1,2,...,5 ,j = 0,1,2,...,5,541,...,5".

As Fi=G;, we note that Q(Gi,ﬂi)%Q(}%,ﬂi). Since F and G is an im-
proper inclusion pair by assumption, we have Q(F,Q?) = Q(G,?). Thus,

Q(Fj,ﬂj) is trivial for j = S+1,5+2,...,5". Without loss of generality, we will
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assume that § = S°. Suppose 3 an index k, k = 0,1,2,...,5 such that the in-
clusion Q(ék,ﬂk)HQ(ﬁk,Qk) between these two Banach spaces is not surjec-
tive. Then, dimQ(G4, Q%) < dimQ(Fk,ﬂk) and thus, dimQ(G,Q) < dimQ(F,{2).
This contradicts the fact that Q(G,Q) = Q(F,Q). Hence, for everyi=0,1,2,...,5,
we must have Q(CA;':-,Q@-) = Q[E,Qz) The remaining conclusion follows imme-
diately. 0

Remark: The definition of improper inclusion pairs can be extended to
elementary groups. This is, in fact, included among Greenberg’s results {Gr].
He showed that for each possible elementary group, F;, 1 = 1, 2, ..., 12, each
of whose signatures is indicated below, there exists a group Gy, i = 1, 2, ...,
12, with F;=G; of finite index such that their Teichmuller spaces, and thus
their spaces of quadratic differentials, are equal. Here is the list of all such

possible elementary groups, Fi,i =1, 2, ..., 12, accompanied by their respective

sigantures.
L1sT OF ELEMENTARY GROUPS

Name of Group Signature

1. Finite Cyclic Groups ‘ (0,2;n,n)

2. Dihedral n-groups | (0,3;n,2,2)

3. Solid Rotation Groups (3,3;2,3,6), e =
3,4,0rd

4. Parabolic Cyclic Groups (0,2;00,00)

5. Finite Z,-extension of parabolic cyclic groups (0,3;00,2,2)

6. Rank 2 parabolic groups _ (1,0)

7. Euclidean Triangle Groups (0,3;3,3,3), (0,3;4,4,2)
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or (0,3;6,3,2)
8. Eucildean Four Punctured Sphere Groups (0,4;2,2,2,2)
9. Loxodromic Cyclic Groups (1,0)
10. Abelian index n>2 extension of
loxodromic cyclic groups . {1,0)
11. Non-abelian index 2 extension of -
loxodromic cyclic groups N (0,4;2,2,2,2)
12. Double Dihedral n-groups (0,4;2,2,2.2)

2.2 Fuchsian Case and Greenberg’s Theorem

Let T' be a Fuchsian group. A well-known corollary of the Riemann-
Roch formula is the following result on the complex dimension of the space of

automorphic g-forms, q > 2, for I'. We state it as a theorem.

Theorem 2 IfT s a Fuchsian group and has signature (p,k;v1,va,..., 1), then
the dimension of the space of automorphic g-forms for T' is given by
(2¢- 1)(p - 1) + Thoy g~ 2]

where [z] is the integral part of x and it is agreed that [q - ¢/o0] = 1.

One can easily see that dim Q(T,U) = 3p - 3 + k by setting q = 2 and
noting that, since v; > 2, the integral part [2 - 2/} = 1 for every j. The
signature of T' is the same as the signature of the associated orbifold U/I".

Its orbifold characteristic, x, and its area can then be calculated from this

signature. It is given by the formulae below.




X(U/T) = -(2p - 2 + (Tt [1 = 2]))
Area(U/T) = 27 x{U/T)

Definition 3 A signature (p,kv1,v4,...,v1) is called hyperbolic if and only if

x < 0; euclidean if x = 0; and spherical if x > 0.

The concept of Improper Inclusion Pairs in the Fuchsw,n case is certainly
known, This is the content of the theorem of Greenberg [Gr] or of Singerman
[S]. The table of hyperbolic signatures below summarizes these results for
finitely generated Fuchsian groups £y and Gy of the first kind with Fp<Gy
and index [Gg:Fp] = 2<00.

Table 1:
fo Go
(2,0) (0,6:2,2,2,2,2,2)
(1,2;m,m) (0,5;2,2,2,2,m)
(1,1;m) (0,4;2,2,2,2m)
(0,4;m,m,n,n) (0,4;22,mn), m #n

The variables m and n are allowed to take on the value co. If m = n in
the last pair of signatures, then there exists a Gj of signature (0,4;2,2,2,m)
such that FoGod Gl with [Gh:Go] = [GoiFy] = 2 and [Gi:Fy] = 4. More
importantly, Fy and G is an improper inclusion pair. This will be treated
separately in some of our succeeding results in the next chapter.

The rest of the pairs of signatures correspond to pairs Fy and Go which
are both triangle groups, where the index [Gg:Fp] > 2. In general, these

are not normal inclusions. Those pairs with normal inclusion have indices

13




and signatures which are as follows: [Gy:Fy] = 2 where Fp has signature
(0,3;m,m,n) and Gy has signature {0,3;2,m,2n); [Go:Fo| = 3 where Fy has
signature (0,3;m,m,m) and G has signature (0,3;3,3,m); {Go:£o] = 6 where Fy

has signature (0,3;m,m,m) and Gy has signature (0,3;2,3,2m).

Definition 4 A pair of signatures, o and o ’,"wz;fl' be called a mazimal pair of

signatures if it is among the pairs of sz’gna'tﬂ'rés listed in Table 1.

Remark: All non-hyperbolic signat.ures a,ré sigr.la..tﬁr.e.s of elementary
groups, and conversely. The signatures (1,1;¢) and (0,2;v,1) with v # p never
occur and are called non-geometric signatures.

The following lemma relates the notion of improper inclusion pairs with

maximal pairs of signatures for the Fuchsian case.

Lemma 3 (Fy, U} and (Gy,U) is an improper inclusion pair of Fuchsian groups
(of the first kind) if and only if their associated pair of signatures is a magimal

pair.

Proof: (=) This direction is Greenb‘erg’s Theorem [Gr].

(<) Cronversely, if the pair of signatures from Fy and Gp is maximal,
then by using the formula dim Q(T',U) = 3p - 3 4+ n we have above for I, a
Fuchsian group, we get that dim Q(Fp,U) = dim Q(Go,U). Since the inclusion,
Q(Go,U)—Q(Fp,U), between these two Banach spaces already bolds, it must
be true that Q(Fp,U) = Q(Go,U). Hence, Fy and Gy is an improper inclusion
pair, O

We now extend this lemma to function groups.

14




Lemma 4 Suppose that (F\A) and (G,A) are non-elementary and finitely
generated function groups such that FXG with [G:F] < co. Then, Q(F,A) =
Q(G,A) if and only if the pair of signatures from A/F and A/G is a mazimal

pair.

Proof: Denoting the upper half-plane by U, let (Fy,U) and (Go,U) be the
Fuchsian equivalents of ¥ and G respectively.. Thenclearly, A/JF and U/F,
have the same signatures. This is also true for A/G and U/(y. There are

induced isornorphisms Q(£5,U)=Q(F,A) and Q(Go,U)=Q(G,A) given by
QFp,U) 5 g — (qof )((F71)) € Q(F,A)

where f is the covering map from U onto A. The induced isomorphism
between Q(Go,U) and Q(G,A) is defined in exactly the same manner. Obvi-
ously, we have Q(Go,U)—=Q(#5,U). Since Q(F,A) = Q(G,A) by assumption,
the isomorphisms above yield dimQ(F,,U) = dimQ(Go,U) and thus Q(Fp,U)
= Q(Go,U). Hence, the signatures of U/Fy and U/Gp and therefore of A/F
and A/G must be among the maximal pairs of signatures for Fuchsian groups.

The converse is clear. O

Remark: Since Q(F,,Q;) = Q(C;5%) for all other components {; as a
consequence of Proposition 1, we get that the pairs of signatures from the
Riemann surfaces of finite type, :/F; and /G, 1 =1, 2,....,S, must also be
maximal or else, F; = Gi;. Moreover, one can concludé from a result of Accola

[M1] that €4, Q, ..., Qs are all simply-connected. It then follows that for all

i=1,2, .., 8, the Teichmuller spaces of SL/F1 and Q.,-/G’i are biholomorphic
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to the Teichmuller spaces of the corresponding surfaces uniformized by the
Fuchsian equivalents of #; and G; respectively. This is shown easily via the
conformal similarity that arises from the Riemann map between §); and U.
Also, from elementary results on Teichmuller spaces of Fuchsian groups of
finite type, we get dim T(Fp) = dim Q(Fp,U) = dim Q(Go,U) = dim T(Go).

We will refer to these observations again in succeeding chapters.

2.3 Hyperellipticity and Some Consequences

The definition of a hyperelliptic Riemann surface in the compact case can

he extended to the case of Riemann surfaces of finite type:

Definition 5 A Riemann surface M of finite type (g,n) is called hyperelliptic
if and only if there exists a meromorphic function f on M, fMH(A:, such that
deg(f) = 2 and f either

(i) maps two distinct distinguished points z; and y; of the same order, 1

= 1,2,...,n (these include punctures) on M onto the same image n f: or

(1) [ 1s 2-1 there.

Remark: Riemann surfaces of signature oy = (1,2;m,m), o9 = (0,4;m,m,n,n),
or o3 = (1,1;m) are all hyperelliptic. Indeed, the underlying meromorphic func-
tion on each of these surfaces is the covering map induced by its hyperelliptic

involution, say 4; for i = 1, 2, 3. Let us denote a Riemann surface with signa-

ture o; by S;. The action of 4; gives rise precisely to a Riemann surface S; of




signature o’ = (0,5:2,2,2,2,m), o7 = (0,4;2,2,m,n), or o5’ = (0,4:2,2,2,2m) re-
spectively. We notice that S; and S;” satisfy the property that Q(S;) = Q(S),

i=1,2,3.

Lemma 5 For any untformization of a hyperel.lip'tic S’t by a non-elementary,
finitely generated function group (F\A), there exists a half-turn v such that

Y(A) = A and v is induced by the hyperelliptic'iﬁvblution.

Remark: This is a strengthened statement [RST] of a theorem by Kra-
Maskit. We give a sketch of the arguments.

Proof: First, we pass to the Fuchsian equivalent, (£,,U), of (F,A),
thereby defining a deformation (mg,8) of Fy onto I such that for every fo
€ Iy, we have my fo = frg where 85( fo) = f € F. Let ~y be the lift of the hyper-
elliptic involution on A/F. Clearly, o is a real, elliptic Moebius t.ransformz;tion
of order two. Let Gy = <Fy, 70> be the Zy-extension of Fy by v,. We observe
that Q(fo,U) = Q(GO,U). This last equality between the spaces of quadratic
differentials allows us\ to extend &, to GD.‘ By using the holomorphicity of an
induced map from the Banach space Q(Go,U) to C, we get that tr’8o{v,) = 0

and the desired half-turn v = 05(v0). C

Lemma 6 The Zy-extension of F by v is a function group whose Fuchsian

equivalent is Gy.

Proof: This follows from the fact that the image of Gy = <Fy, 70> un-

der the same deformation (mo,0p) as above yields the Z,-extension of I' by 7,
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<F 4>. This is clearly a function group, (<¥,y>,A), whose Fuchsian equiva-

lent is precisely (Gg. O

In the following corollary, we are assuming that the pair of function groups
are not triangle groups. The notations used will be the same as those in the

preceding lemma.

Corollary 2 Suppose that (F,A) and (G,A) is a pair of non-elementary and
finitely generated function groups such that F<G with [G:F] < oo. If Q(F,A)
= Q(G,A) and these have positive dimension, then G = <Fy> for some

half-turn v and F<4 G with [G:F] = 2.

Proof: This corollary is certainly known for Fuchsian groups of the first
kind where v = 7o, the (real)elliptic Moebius transformation of order two

which is induced by the hyperelliptic involution on U/ F.

For the general case of function groups, we first observe, by Lemma 5, that
AJF and A/G must have a maximal pair of signatures. Pass to the Fuchsian
equivalents of F and G, say o and Go. Our assumption that Q(F,A) = Q(G,A)
yields Q(Fp,U) = Q(Go,U) and thus, Gy = <Fo,y0>. From our remarks above
on the previous lemma, the Fuchsian equivalent of <F,y>, where 7 is the half-
turn such that v = o(70), is precisely <Fp, 70> = Go. Hence, G = <I',y>.
Furthermore, since Q(Fy,U) = Q(Go,U), we get that Fp and Gy is an improper

inclusion pair of Fuchsian groups (of the first kind) with [Go:Fo] = 2. Thus, it

clearly follows that F<4G and that [G:F] = 2. O

o
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2.4 Dimension Zero Case for Function Groups

We gave the pairs of signatures for certain pairs of triangle groups, fg

and Gy with [Go:Fy] < oo such that Fy-1GYy, in a previous section. Table 2
below gives the rest of the pairs of triangle gro.ups and the corresponding group

indices, included among the results of Gréenb.erg.’.S.Th.éor.em where normality

is absent.
“Table 2:

F Gy [Go: Fo}
(0,3;2,m,2m) (0,3:2,3,2m) 3
(0,3;3,m,3m) (0,3:2,3,3m) 4
(0,3;m2m,2m)  (0,3:2,4,2m) 4
(0,3;m,4m,4dm) (0,3;2,3,4m) 6
(0,3;4,4,5) (0,3:2,4,5) 6
(0,3:7,7.7) (0,3:2,3.7) 24
(0,3:2,7,7) (0,3:2,3,7) 9
(0,3;3,3,7) (0,3;2,3,7) 3
(0,3:4,8,8) (0,3:2,3.8) 12
(0,3;3.8,8) (0,3;2,3,8) 10
(0,3:9,9,9) (0,3:2,3,9) 12

Proposition 2 If (F,A) and (G,A) is an improper inclusion pair of function
groups such that the inclusion is not normal and [G:F] > 2, then F and G

is a pair of triangle groups whose signatures appear as a maximal pair in

Greenberg’s theorem.




Proof: Our hypothesis implies tha; Q(F,A) = Q(G,A). If we look at
their Fuchsian equivalents Go and Fy, we observe that [Go:Fp} = [G:F] > 2.
Moreover, by using the isomorphisms described before, Q(G,A) = Q(F,A) will
imply that Q(Go,U) = Q(Fy,U). From this and the indicated hypotheses, we
get that Go and Fp must be a pair of Fuchsiaﬁ tr.'iémr:lg.légr.dups whose signatures
appear above. This will imply that dim Q(G A) = dlrn Q(F A) = (. Clearly,

the dimension zero case for function groups occurs 1f a,nd only 1f the groups

are tnangle groups. Thus, F = Fp and G = GD




Chapter 3

THE MAIN PROPOSITION

We present, at this point, a proposition that summarizes our results re-
garding improper inclusion pairs in the more general cases of Kleinian groups.
Before we state it. however, we consider the following lemma. Let (Q(F)/F)*
and (2(G)/G)" denote the component surfaces in Q(F)/F and Q(G)/G respec-

tively whicli are not thrice-punctured spheres.

Lemma 7 Suppose that F and G is an improper inclusion pair. Then, 3 a

1-1 correspondence between (Q(F)/F) and (A(G)/G)".

Proof: By our assumptions, we have Q(F Q1) = Q(G,2). These spaces
have natural decompositions as observed in our preliminary results. Further-
more, we have seen that G has at most as many components, {3, as F and any
excess components of F must correspond to thrice-punctured spheres. This
results in a pairing of component subgroups of F and G which arises via the
obvious 1-1 correspondence induced by inclusion.

By denoting the paired component subgroups as F, and Gy respectively,

we can thus establish an induced 1-1 correspondence between ((F)/F)* and
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(Q(G)/G)" given by (QUF)/F)* 5> U/ Fy = Su—Si’ = Qi/Ch € (UG)/G)".

a

3.1 Statement of the Proposition

Proposition 3 Let F and G be an improper z'n.c_lugg.'dn pair. Then, either
(a) dim Q(F Q) = dim Q(G,St) =0
or

(b) G - F has at least one half-turn that stabilizes a component of F.

Proof: If dim Q(F,2) = 0, then dim Q(G,?) = 0 and we get (a). Thus,
assume that dim Q(F,Q) > 0. This clearly implies that (Q(F)/F)* # 0. Let S,
€ (Q(F)/F)*. Let v be an atbitrary element of G - F and {2; be a component
of Q such that S; = 0,/ F; with [} = Stabp§Y;. Denote by S! the corresponaing
surface in ((G)/G)* given by the 1-1 correspondence above so that Sf =
(/G with G; = StabsQ,.

Now, note that €; and v({);) are automatically G-equivalent. Hence,
by choice of S;, € and () cannot be F-inéquivalent for otherwise, the
dimension of Q(G,Q) will be strictly less than the dimension of Q(F,§2) which
is impossible since F and G is an improper inclusion pair. Hence, v({) =
§(£2;) for some € F. From this, observe that f~1y stabilizes Q; with ™'y € G;
- £:. By our hypothesis and Proposition 1, we must have Q(ﬁ’,,ﬂ,) = Q(éi,ﬂi).

Thus, the signatures of S; and S} must be a maximal pair. As Fiis clearly a

function group with invariant component {;, Corollary 2 implies that FaG;




with [G,ﬁ,] = 9 such that G; = <F,,v;> where ; is the resulting half-turn
found in Lemma 6. Hence, conclusion (b) follows :mmediately. O

Remark: We note that f~'y must necessarily be an element of the unique
nontrivial coset of G / I represented by ;.

Suppose that Sy, Sz, ..., Sn is a list of é_t.ll".'i;'hé:c_pmponent surfaces in
(UF)/E)* and (5:,5), Si’ € (Q(G)/G)r, ié"the'.ﬁa,_if' OStdined from the 1-1
correspondence in the previous lemma. We ha:\.fe..t.h.e fc')llow.i.r.ig corollary. The

proof directly follows from the proof of the previous proposition.

Corollary 3 Assume that F and G are as above. Then, there are only two
possibilities. Fither all the pairs (5;,5; ’)‘ have mazimal pairs of signatures or
both I and G vepresent only thrice-punctured spheres.

Furthermore, for every component, Q;, of F where Qi/}:—'i is nol a thrice-

Y

punctured sphere, there is a half-turn v; € G; - E.

Proof: By using our main Proposition, we get two possibilities. If case
(a) holds, then it is clear that both F a.nd G represent only thrice-punctured
spheres. If case (b} holds, then by our proo_f a.boye, we can assume that 3
k such that S, = Q/F and S}’ = (/G have a maximal pair of signatures.
This implies that Gk = <F'k,'yk> for some half-turn v, as a result of Lemma
6. Suppose that 5; = Qj/ﬁ} is another element of (Q(F)/F)* with 5; # Sk.
By choice of §;, we get that v.(Q;} = {({);) for some f € F - {1}. Hence,

f~1~, stabilizes §2; and we can conclude by using similar arguments as in our

previous proof that éj = <1:jj,'7j> for some half-turn v; and (5;,5;’) have a
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maximal pair of signatures. Since Sy an;i S; were chosen arbitrarily, we get
‘ the conclusion of our corollary. The rest of the conclusion follows directly. O

It is worthwhile to ask what the realizable indices, [G:F], are between F
and G. We will answer this in some special cases. First, we shall say that I
is nontriangular if (Q(F)/F) - (Q(F)/F)* %_@, Ethé}u.is, F does not represent
any thrice-punctured spheres. Clearly, if F. 1s _n._o.nt.._riédngﬁlar, then G is also

nontriangular.

Lemma 8 If F and G is an improper inclusion pair where both are nontrian-
gular, then all the pairs of component surfaces of F and G have mazimal pairs

of signatures.

Proof: The hypothesis implies that case (b) of the main proposition
must hold. Now. the conclusion follows immediately by applying the preceding

corollary. [

Proposition 4 Supposc that F and G is an improper inclusion pair. If both

F and G are nontriangular, then the index [GF] is either 2 or 4.

Proof: By the lemma above, all the pairs of component surfaces, (.5;,57),
of F and G have signatures that are listed in Table 1. For reference in our
proof, we denote these maximal pairs of signatures shown below by {(g;,0%), j

3

= 1,2, 3, 4,5, 6, 7. The pair of signatures (vq,04) is clearly a special case of

{04,0) where n = 2.
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) g o’ index
1 (2,0) : (0,6:2,2,2,2,2,2) )
2 (1,2;m,m) (0,5;2,2,é,z,m) 2
3o (Lhm (0,4:2:222m) 2
4 (0,4;m,m,n,n) (0,4,2,2,m,n),m # n 2
5 | (0,4;m,m,m,m} (0,4,2,2,m,m) _:: 2
6 (0,4;2,2,m,m) h ':(50,'4';2",2,2';’111)' b g o
7 {0,4;m,m,m,m) (0,4;2,2,2,m) 4

Let S} = Q,-/G',- = Qg/<1’3},7i> be a component surface of G, where v; is
the half-turn from Lemma 6. We will break down our proof into two cases.

Case 1: Some component surface 5 = Q. /Gy of G is of signature
oy, ab, ah, or gy,

Let v, be the half-furn associated with Gr. Suppose that S! = /G is
another component surface of G, i # k. Then, as we noted in the previous
results, the {unique) nontrivial coset in (i; represented by its associated ‘half—
gurn, v;, must contain {14 for some { € F. This implies that v € <F,y>
for all i. Hence, G = <F v1,¥2,vyn> = <F, %> where N is taken to be the
number of component surfaces of G. This yields [:F] = 2. Here in case 1,
observe that [G:F] cannot be larger than 2, for otherwise we will have a pair
of signatures ' C 7', where 7' is one of the signatures we specified above.

5

Clearly, such a pair will not be a maximal pair, simply by checking Table 1.

UThis notation is used, e.g. by Singerman, to signify the inclusion relation be-

tween the two groups associated with the given signatures.
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Case 2: No component surface of G has a signature equal to o7,
j =1, 2, 3, 4. Hence, all component surfaces, 5/, of G have only two

kinds of signatures: ¢ or oj since g = o4

Subcase 1: All component surfaces, S!, of G are of signa-

ture o;.

We now apply our previous corollary and get that all com.pox.le.nt surfaces,

S;, of F are of signature o5 and {G:F} = 2

Subcase 2: All component surfaces, S/, of G are of signa-

ture og.

Applying again our previous corollary, we find that there are two possi-
bilities since o = of. Either all component surfaces, S;, of I are of signature
o, in which case [G:F] = 2; or all are of signature g7, in which case [G:F] =
4. This is clearly the only situation under our hypothesis that yields [G:F] =

4, .

Subcase 3: Some component surfaces, S;, of G are of sig-

nature ¢ and some are of signature of:-

We find that all component surfaces, S;, of F have only two kinds of
signatures: o5 or g and that [G:F] = 2. The index here cannot be larger than

2 for the same reason as in case 1 above.

This completes the proof of our proposition. O




3.2 The Function Group Case

For function groups, the existence of the half-turn in case (b) of the main
Proposition { Proposition 3) is a direct consequence of our earlier results. To see

this, suppose that (F,A) and (G,A) is an improi)éf inclusion pair of function

groups. Then, by Proposition 1, Q(F,A) = Q(G,A)ByLemma 4, the pair of
signatures from A/F and A/G must be found in Tablel Fﬁr.t.}.;é.rrﬁbfe, Gisa
Z,-extension of F by some half-turn v inaﬂ"ce:d" by the ﬁybé'fél.lip'ti:é involution,
4, on AJF such that (A/F)/{ 1,4 } 2-A/G. This follows from Lemma 6 and
Corollary 2. Hence, conclusion (b) in our main proposition is illustrated by

this half-turn + for the case of function groups.

Recall the definitions of regular and partially degenerate given in the back-
ground from Chapter 1. Suppose that (F,A) and (G,A) are non-elementary
and finitely generated function groups such that F<G with [G:F] < co. Con-
sider the actions of F and G on H® which are properly discontinuous actions.
To each group, there is an associated polyhedron in H?, called a fundamental
polyhedron, having the property that no two of its interior points are equiva-
lent under the group. If this fundamental polyhe:drm}_ has finitely many sides,
then we say that the group is a geometrically finite Kleinian group. It is
known that F is regular if and only if F is geometrically finite and, thus par-
tially degenerate if and only if F is geometrically infinite. However, any finite
extension of a geometrically finite Kleinian group is, in fact, geometrically

finite. Hence. if F is regular, then G is regular.

Remark: Bers' Area Inequalities [B4] state that for a non-elementary,
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ﬁﬁitely generated function group I', Ar;a (QUD)/T) < 2-Area(A(I)/T); T 1s
regular if equality is attained and partially degenerate otherwise.

Now, we prove a Proposition that can be viewed as a partial converse of
Proposition | in the function group case.
Proposition 5 Let (F,A) and (G,A) be :;oﬁ:..élé.z%éﬁi&ry,;geémetrically finite
function groups with F<G of finile index. If Q(F,A):Q(G’,A), where A =
A(F) - A(G) is the common invariant c'b'v'.r:r.zy.i;ﬁent.;().fF and G, fhen Fand G
is an improper inclusion pair. (i.e. Q(FQY) = QIGQ), @ =Q(F) = Q(G) is

the common ordinary set of I and (.)

Note that since the proposition is trivial for triangle groups, we will as-
sume that neither F nor G is a triangle group. We will consider some special

cases before tackling the general one.

3.2.1 Special Cases

There are special cases where we can replace the geometrically finite as-
sumption above with the weaker hypothesis of finitely generated. The special
cases are listed below. We note that the groups in cases (i) and (iii) are
necessarily geometrically finite.

(i) F and G are both quasi-Fuchsian groups
(i) F and G are both totally degenerate b-groups
(iii) F and G are both terminal(regular) b-groups.

In (i), we have

dimQ(G.Q) = 2dimQ(G,A)
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dmQ(F,Q) = 2dimQ(F,A)
while in (ii) and (iii), we observe that
dimQ(G,) = dimQ(G,A)
dimQ(F,Q2) = dimQ(F,A) -
By asswmption, Q(F,A) = Q(G,A). This y;eiaga;mq(e,m = dimQ(F Q)
in all three cases (i), (if), and (iii). From this, it foﬂows eas1ly that Q(G Q) =
Q(F.Q) and thus, we have an improper inclusion pair.

We can say, in addition, that establishing the above Proposition for these

special function groups can easily be reduced to the Fuchsian case. To show
why, let f be a covering map from the upper half-plane U to one of the invariant
components, A, of F ( If T is totally degenerate, A == Q). Sirice A is simply-
connected in all three cases, we can assume that f is a Riemann map. Then f is
a conformal similarity between (F,A) and (G,A) to their respective Fuchsian
equivalents (Fy,U) and (Gg,U). Observe, therefore, that the signatures of A/F
and A/G are the same as the signatures of U/F; and U/Gj respectively. Since
the component surfaces of a ternﬁnal(reguiar) b-group are all thrice-punctured
spheres and hence have rigid conformal structures, it suflices then to just
consider the signatures of A/F and A/G in all of the c#ées (1), (i), (iii). With
the observations ahove, we get dimQ(Fp,U) = dimQ(F,A) = dimQ(G,A) =
dimQ(Go,U) and thus, we are reduced to the Fuchsian case as we claimed. This
means that if F and Gp have a maximal pair of signatures, then (F,A) and
(G,A) is immediately an improper inclusion pair. Moreover, by the conformal

similarity above, the Teichmuller spaces of U/F and U/Gy ate biholomorphic

to the Teichmuller spaces of A/F and A/G respectively and they are, in fact,




equal.

Remarks: 1. A quasi-Fuchsian group which is noi a Fuchsian group
is a b-group with exactly two (simply—'comieéfed') invariant components Ay
and As such that A UA,; = Q, its b'a‘dina.'ry set 'CII.e‘a',rly', 8A, = JA, and this
common boundary is the quasi-circle iinz'{g.é':zo.f R W1th1espect to the underlying
quasi-conformal clefol-ﬁ1afioﬁ. By Lemma 2,thls quas1-c1rclea,ndthe limit set
coincide. In this sense, we see that a quasi-Fuchsian group that is not a
Fuchsian group is always of the first kind. This is a difference in te;‘minoiogy
between quasi-Fuchsian groups and the usual Fuchsian groups. Therefore,
even if not specifically mentioned, any quasi-Fuchsian group referred to above

is understood to be of the first kind.

9. We note that a Fuchsian group of the second kind when
viewed as a Kleinian group acting on C is not a b-group since its invari-
ant component will not be simply-connected. Moreover, there exist Kleinian
groups which ave called extended Fuchsian groups characterized by having a

Fuchsian subgroup of index two. These are also not b-groups.

3. Maskit [M1]proved thata I{'leihi.a:n"gr()up F is a Schottky
group if and only if I is finitely generated, free and purely loxodromic. From
this, it follows that any Z;-extension of a Schottky group by a half-turn -~
cannot be a Schottky group, the reason being that the extension will not be

purely loxodromic. Hence, it is not possible for an improper inclusion pair

(F.02) and (G.Q2) to have both groups be Schottky groups.
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3.2.2 General Case for Function Groups

This subsection is entirely devoted to the proof of Proposition 5 for the
general cases. Before beginning with the p100f however we give the follow-
ing theorems. Theorem 3 was stated as a corollary in [Ml] [ts proof is a
straightforward application of the chmacterlzatlon of an acc1dental parabolic

n [M1] and the fact that [G:G] < oo 1mphes that thelr hrnlt sets coincide.

Theorem 3 [M1] If (G,A) and (G,A) are b-groups where G<G of finite in-
dex and j is an accidental parabolic transformation of G, then jis an accidental

parabolic transformation in G.

The following theorem due to Haas and Susskind will be extremely use-
ful to our succeeding analyses and discussions. With minor modifications, it
has a generalization, as was pointed out in [HS], to certain Riemann sur-
faces with punctures or ramification points. For our purposes, we only need
the generalization to Riemann surfaces of signatures (1,2;m,m), (1,1;m), and

(0.4:m.m.n.n).

Theorem 4 [HS] Let J be the hyperelliptic involution of a genus two Riemann
surface M. Then, every simple closed geodesic on M is mapped onto itself by

J.

By using these theorems, we can prove the following lemma.

Lemma 9 Assume that (F,A) and (G,A) salisfy the hypotheses of Proposition

5 where A/F is of signature (2,0) and A/G is of signature (0,6,2,2,2,2,2,2).
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Then, F and G have the same number of inequivalent mazimal cyelic subgroups

generated by accidental parabolics.

Proof: Assume that F has no accidental parabolics but that G has an
accidental parabolic, say g € G - F. As [G:F] = 2, we must have g* € F. By using
Theorem 3, we can conclude that g* is an accic.iénzt.al':pa.ra,boiic transformation
in F. (Contral) -

Now, suppose that G has only one accidental p@raboiic with primitive,
say g. Then, g? must be an accidental parabolic for I as in the proof above.
Obviously, g cannot be a primitive in F since g was chosen to be primitive in
G. Hence, g must also be primitive in F and we have at least one accidental
parabolic transformation in F. Suppose that I has another accidental parabolic
with primitive equal to, say h, such that <g> and <h> are inequivalent in
F. We will now show that <g> and <h> must necessarily be inequivalent in
G and thus, arrive at a contradiction. Denote by L, and L the two disjoint
simple loops on A/F that correspond to g and h respectively. Clea;‘ly, L, and
Lj, must be homotopically independent. There are only two possibilities for
L, or Ly:

(i) L, or Ly is non-dividing, or

(ii) L, or Ly is dividing

Suppose that both £, and L, are non-dividing. We can assume that L,
and L, are the projections onto A/F of the axes (see background for definition)

of g and h respectively which do not contain the fixed points of the half-turn

induced by the hyperelliptic involution acting on A/F. Thus, L, and Ly are
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Figure 3.1: Induced Covering

both neighboring simple loops to the non-dividing geodesics, say {; and Iy, in

their respective homotopy classes. (see Figure 3.1)

Let us look at the degree 2 covering, say p, of A/F onto A/G induced by
the hyperelliptic involution acting on A/F. By using the theorem above, each
of I, and I, is mapped onto itself by the hyperelliptic involution. We ,therefore,
observe that the corresponding images of {, and I, say I} and [}, are paths on
A/G running from one distinguished point (£1,4 and Py respectively) of order
two to another distinguished poiﬁt of order two (P, and P, respectively) and
back again. If we denote the images of Ly, and L, on A /G under the covering

map, p by L}, and L}, respectively, then it is clear that L must bound a disc

which contains P4, Py, and [} while Lj must bound a disc which contains
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Pin, Pap, and [ (see Figure 3.1). Clearly, L) and Lj are disjoint, simple
Joops on A/G since L, and Lj are and moreover, they are homotopically
-independent. This implies that <g> and <h> are inequivalent in G and we
get a contradiction. _

Now, note that L, and L, cannot be bothdwldmg since <g> and <h>
are inequivalent in F. Hence, let us now suppose th.é;t’s_ﬁez 6f’ them, say L, is
dividing. We can allow here the possibility that L;’Z'ﬁ}' g,the .sir'ripl'e geodesic
loop in its homotopy class. By the above thebrérh,z lg'muét.be: mapped onto
itself by the hyperelliptic involution. Counsider the image, Ly, of Ly on AJG.
We note that the signature (0,2;2,00) is nén-geometric and thus, never occurs.
Hence, there are also only two cases for L:

(1)’ L}, separates two distinguished points on A/G from the other four, or

(ii)’ L}, separates three distinguished points on A/G from the other three.

By our choice of Ly, it is clear that L! must not satisfy (i)’. Hence, L
satisfies (i)’ which yields that the two disjoint simple loops, Lj and L}, are
homotopically independent {see Figure 3.1). We again get that <g> and <h>
are inequivalent in G and thus, a contradiction. Hence, I' must only ha.ve one
primitive accidental parabolic, g.

For the remaining case of G having only two accidental parabolics, we can
conclude that F must also have exactly two accidental parabolics by arguing
similarly. An appropriate remark to be made, however, is that if F has three
accidental parabolics with primitives, say g, h and j, such that <g>, <h>,

<j> are pairwise inequivalent, then no two of their corresponding simple loops

Lg, Ly and Lj on A/F can both be dividing. O
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Now, we begin with the proof of Proposition 5. Using Lemma 4, the pair
of signatures from A/F and A/G must be found in Table 1 since Q(F,A) =
Q(G,A) by hypothesis. When [G:F] = 2, there are four cases to be considered.
First, we will assume that both F and G are b-groups.

Case I.: Consider the case of the pair (2,0) and (0,6;2,2,2,2,2,2). Observe
‘that the maximum number of homotopically iﬁdéée_ﬁdent loops on A/F and
A/G that correspond to primitive accidental paré,bolic transformations is 3.
This implies that if F(or G) has the maximum number of primitive accidental
parabolics, then (F,A) and (G,A) are both terminal(regular) b-groups and the
conclusion Q(G,9) = Q(F,Q) follows from the results in the special cases. On
the other hand, if G has no primitive accidental parabolic transformations,
then clearly F has no accidental parabolics and either F and G are both quasi-
Fuchsian or both totally degenerate. The conclusion Q(G,t) = Q(F,§2) now
follows again from the results in the special cases. It can also be deduced from
Lemma 9 that if F has no accidental parabolics, then neither does G. Thus,
either F and G are both quasi-Fuchsian or both totally degenerate and the
conclusion Q(G,N) = Q(F,Q) follows again from the special cases discussed
earlier.

Now, suppose that F has only one (primitive) accidental parabolic, say
f. Then, G has only one {primitive) accidental parabolic which is necessarily
equal to f by using the lemma above. Let Ly and L% be the simple loops
on A/F and A/G respectively that correspond to f. As we observed in the

proof of the lemma above, Ly either satisfies property (i) or (ii) and L either

satisfies property (1Y or (ii)"r and that if L; satisfies (i) (or (i)), then L’ must
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satisfy (1)’ (or (i)").

© If Ly and LY satisfy (i) and (i)’ respectively, then F represents two sur-
faces, one of signature (2,0} and the other of signature (1,2;00,00) while G
represents two surfaces, one of signature (0,6;2,2,2,2,2,2) and the other of sig-
nature (0,5;2,2,2,2,00). (see Figure 3.2) We .nc.)f_.é '.tha,t (0,3;2,2,00) is a eu-
clidean signature. By simply summing up 'the..' dlmensmns b_f the resulting
spaces(subspaces) of quadratic differentials Iassc'JCiai.:éd..witH..t.hese component
surfaces, we get that Q(F,Q?) = Q(G ).

I Ly and LY satisfy (i) and (ii)’ respectively, then F represents three
surfaces, one of signature (2,0) and the other two are both of signature (1,1;00)
while G represents three surfaces, one of signature (0,6;2,2,2,2,2,2) and the
other two are both of signature (0,4;2,2,2,00). (see Figure 3.2) A dimension
computation again yields that Q(F.Q) = Q(G,2).

We, now, suppose that F { and thus, also G by Lemma 9) has only two
(primitive) accidental parabolics, say fi and f,. Let Ly and Ly, be the two
disjoint homotopically independent simple loops on A/F that correspond to
f1 and f, respectively. Denote the disjoint simple loops on A/G by LY, and

Y, that correspond to f; and fo respectively_. We ﬁnd that there are two
possibilities for Ly, and Ly,. Fither L;, and Ly, are both non-dividing or one
of them, say Lj, is dividing. Note that they cannot be both dividing as they
are non-homotopic.

If Ly and I are both non-dividing and thus satisfy (i) above, then

we find by using our previous arguments that L’ and L', must both satisty

(i). Thus, F represents two surfaces, one of signature (2,0) and the other of
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signature {0,4;00,00,00,00) while G represents two surfaces, one of signature
(0,6:2,2,2,2,2,2) and the other of signature (0,4;2,2,00,00). (see Figure 3.3) We
note again that (0,3;2,2,00) is euclidean. Hence, by considering the sum of the
dimensions of the resulting spaces(subspace.s) ofqua,d1at1c differentials, we get
that Q(F,0) = Q(G,0). G : P
The other case is when Ly, is non-dividing :;.L:nc.{'.éat.i'sﬁ:és. (1) and Ly, is divid-
ing and satisfies (ii). We find that L must satlsfy (1)’ Whi_lé_ IL’f'z must satisfy
(i1)’. Since the space of quadratic different.ia,l.s.f;).f 2 thri.cze-puhc'tu'red sphere is
0-dimensional, we will only give those component surfaces of F which are not
thrice-punctured spheres. Hence, F represents two surfaces, one of signature
(2,0) and the other of signature (1,1;00) while G represents two surfaces, one of
signature (0.6;2‘2,2,2,2,2) and the other of signature (0,4;2,2,2,00). (see Figure
3.3) By using a dimension argument once again, we get Q(F.Q) = Q(G,A).
This completes our analysis and proof of case I for the pair of signatures (2,0)
“and (0,6;2,2,2,2,2.2).

Case IL: Cousider the case of the pair (1,2;m,m) and (0,5;2,2,2,2,m).

Observe that the maximum number of homotopically independent loops on.

A/F and A/G that correspond to primitive accidental parabolic transforma-
tions is 2. This implies that if F{or G) has the maximum number of primitive
accidental parabolics, then (F,A) and {G,A) are both terminal(regular) b-
groups and the conciusioﬁ Q(G,) = Q(F,Q) follows from the results in the
special cases.

If Theorem 4 is generalized to the case of M having a signature (1,2;m,m),

then we observe that we can state and prove a modified but very similar version
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of Lemma 9 for case II to show that [ and G must have the same number of
inequivalent maximal éyclic subgroups of accidental parabolics. Thus, if I (or
() has no primitive accidental parabolic transformations, then either ¥ and G
are both quasi-Fuchsian or both totally degenerate. The conclusion Q(G.)
= Q(F,Q) now follows again from the results mthe special cases.

To proceed, we observe that we only ha,vé this .o.n.e 's.i.t.uation to consider: I
has exactly one (primitive) accidental parabolic, say f which is necessarily also
the only (primitive) accidental parabolic for G. Let Ly and L’; be the simple
loops on A/F and A/G respectively that correspond to f. On A/F, there are
only two possibilities for Lj:

(1) Ly is non-dividing, or

(ii) L is dividing

If L; is non-dividing, then we assume, as before, that L is the projection
of the axis of f that do not contain any of the fixed points of the half-turn
induced by the hyperelliptic involution. Now, consider L, on A/G. We again
note that (0,2;2,00) never occurs. Moreover, (0,2;m,00) is also non-geometric,
unless m = oo. Let P’ be the distinguished point with order m on A/G. We
have three possibilities but only two are non-trivial;.

(i) L separates two distinguished points on A/G, none of which is P,
from the other three, or

(ii)" L', separates two distinguished points on A/G, one of which is P,
from the other three, or

(iii)" If m = oo so that A/G has signature {0,5;2,2,2,2,00), L separates

P’ from the other four distinguished points.
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For (iii)’, we get that L’ must correspond to a puncture, namely F’, on
A/G. This is a contradiction since f is an accidental parabolic in G. Hence, we
only have (i)’ and (i)

We now refer to the degree 2 covering, say p, of A/F onto A/G induced by
the hyperelliptic involution acting on A/F. By using the generalized Theorem
4 for case II, we can conclude that if L; satisfies (i) (or (ii}), then L', must
satisfy (1)’ (or (ii)').

If Ly and LY satisfy (i) and (i)’ respectively, then (see Figure 3.4) F
represents two surfaces, one of signature (1,2;m,m) and the other of signature
(0,4;m,m,00,00) while G represents two surfaces, one of signature (0,5;2,2,2,2,m)
and the other of signature (0,4;2,2,m,00). {The signature (0,3;2,2,00) is eu-
clidean.) By simply summing up the dimensions of the resulting spaces(subspaces)
of quadratic differentials associated with these component surfaces, we get that
QF ) = Q(G,Q). | .

If Ly and L satisfy (ii) and (ii)’ respectively, then we agam make the
remark that the space of quadratic differentials fo1 thuce punctured Spheres
is 0-dimensional and thus, can be 1gnored Hence. F repre;sents two surfaces
one of signature (1,2,m m) and the other of sxgnature (1,1,00) whlle G repre- ‘
sents two surfaces, one of mgnatule (0 5 2 2 2 2 m) and the other of signature
(0,4;2,2,2,00). (see Figure 3.4) Clea,rly, we also get Q(F ) = Q(G,82). This
completes case 1.

Case I1l.: Consider the case of the pair (1,1;m) and (0,4;2,2,2,2m). Ob-

serve that the maximum number of homotopically independent loops on A/F

and A/G that correspond to primitive accidental parabolic transformations is




1. This implies that if F(or G) has the maximum number of primitive acci-
dental parabolics, then (F,A) and (G,A) are both terminal(regular) b-groups
and the conclusion Q(G Q) = Q(F.N) follows from the results in the special
cases.

Remark: Let f be a {primitive) accidental p'dra.bolic in F and thus, in
G. Let Ly and L} he the simple loops on A/F and A/G respectively that
correspond to f. We notice that Ly cannot Be di{fiding for otherwise, we
will get a non-geometric signature {0,2;m,c0) if m # oo or we will have Ly
corresponding to a puncture on A/F if m = co. Thus, Ly must be non-
dividing and we get that [/, must separate two distinguished points from the
other two. (see Figure 3.5) In particular, L, must bound a disc that has
exactly two distinguished points of order 2. We can see this from a version of
Theorem 4, modified for case IIL

We also get a modified but very similar version of Lemma 9 which shows
that F and G must have the same number of inequivalent maximal cyclic sub-
groups of accidental parabolics. Hence, if F{or G) has no primitive accidental
parabolic transformations, then either F ‘and G are both quasi-Fuchsian or
both totally degenerate. The conclusion Q(G,2) = Q(F Q) now follows again
from the results in the special cases. This proveé case [IL

Case IV.: Consider the case of the pair {0,4;m,m,n,n) and (0,4;2,2,m,n)
where the index is two. Observe that the maximum numb.er of homotopically
independent loops on A/F and A/G that correspond to primitive accidental

parabolic transformations is 1. This implies that if F{or G) has the maximum

number of primitive accidental parabolics, then (F,A) and (G,A) are both
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terminal{regular) b-groups and the conclusion Q{G,2) = Q(F,Q2) follows from
the results in the special cases. On the other hand, if F (or G by a corre-
sponding modified version of Lemma 9) has no primitive accidental parabolic
transformations, then either F and G are both quasi-Fuchsian or both totally
degenerate. The conclusion Q(G,(2) = Q(F,Q) now follows again from the
results in the special cases. Hence, case v ié .'d.onejrf and this completes our
analysis of the cases when both F and G are b-groups.

The general case of function groups where A is connected but not simply-
connected can be treated in a very similar fashion. We first assume that
A/F has signature (2,0) and has n dividers which are composed of say, a (r1)-
divider, ..., (v, )-divider, n = 3, 2, 1, 0. We again notice that these simple loops
must be the same (up to homotopy equivalence) as the loops we considered in
Figures 3.2 - 3.3. The projections of these loops on the surface of signature
(0,6:2,2,2,2.2.2) are then easily seen to be exactly similar to those found in the
b-group case. We, thus, observe that the only difference in the decomposition
of A/F and the corresponding one for A/G between the general case of function
groups and the special case of b-groups is that the simple disjoint loops may
correspond to elliptic cyclic subgroups and/or parabolic cyclic subgroups. The
other pairs of signatures for A/F and A/G with [G:F] = 2 can be treated
similarly (see Figures 3.4 - 3.6).

To describe the resulting decompositions more efficiently, the notion of
graph type; which was defined in the background, will be useful to us. Specifi-

cally, the graph types of the Riemann surfaces A/F and A/G will be the focus

of the next paragraphs. We observe, though, that since the dimension of the
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Figure 3.5: Type (1,1)

space of quadratic differentials for a surface S does not depend on its signature
but merely on its type, we need only specify the types of the surfaces arising
from the possible decompositions of 5. Furthermore, we will only be interested
in the non-trivial decompositions of S, by which we mean those decompositions
that have at least one component surface whose space of quadratic differentials

has positive dimension.

Type (2,0): The graph of this type may consist of two surfaces (vertices),
one of type (1,1) and the other is a thrice-punctured sphere; or two surfaces
both of type (1,1); or a single surface, the type of which may be (0,4) or (1,2}.

Apart from the thrice-punctured spheres, F thercfore represents at most two

component surfaces. Corresponding to these, the graph of type (0,6) either
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consists of three surfaces; one of type (0,4) and the other two are thrice-
punctured Spheres or two surfaces, both of type (0,4); three surfaces, one of
type {0,4) and the other two are thrice-punctured spheres; or two surfaces,
one of type (0,5) and the other is a thrice-punctured sphere. Apart from
thrice-punctured spheres, G therefore also r'ep.reé.e.'n’.cé at most two component
surfaces. Clearly, dim Q(F,02) = dim Q{G,{}) z.a,nc.i. hence Q(F,Q) = Q(G,0).

Type (1,2): The graph of type (1,2) may consist of two surfaces of types
(1,1) and (0,3); or of a single surface of type (0,4). Apart from thrice-punctured
spheres, I therefore represents at most one component surface. Corresponding
to these, the graphs of type (0,5) either consists of two surfaces of types (0,4)
and (0,3); or two surfaces of types (0,4) and (0,3). Apart from thrice-punctured
spheres, G therefore represents at most one component surface. We also see
that Q(F.Q) = Q(G,Q) from these pairs of resulting component surfaces:

Types (0.4} and (1,1): There are no non-trivial decompositions for these
two types. It therefore follows directly that Q(F.,Q) = Q(G,8).

Remark: Observe however in Type (2,0) that F may also be an amalga-
mated (free) product of elementary group‘s, namely, loxodromic cyclic groups
or rank 2 parabolic groups, bath of signature (1,0). In this case, G is an amal-
gamated product of elementary groups as well, namely, the Z,-extensions of
the loxodromic cyclic groups or the rank 2 parabolic groups which are both
of signature (0,4;2,2,2,2). Since all these elementary groups have euclidean
signatures, {}/F represents only one surface of signature (2,0) and /G also

represents only one surface of signature {0,6;2,2,2,2,2,2). Therefore, these par-

ticular decompositions still imply that Q(F,Q) = Q(G.,8). The pair of groups
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I and G where A/T having 51gnature (1,2;m,m) and A/G having 51gnature
(0,5;2,2,2,2,n) can also be built up from elementary groups. In particular, F
can be an amalgamated (free) product of a onodromic or a rank 2 parabolic
group and a finite cyclic group whose’ s1gnature 1s (0 2 ;m m) Correspondigly,
G is an amaigamated product of the Zg extensmns of these groups where we
note that the Z;-extension of a ﬁmte cychc group of 31gnature (0,2;m,m) is
a Dihedral m-group of signature (0,3;111,2,2). Obviou'sly?' we will still have

Q(F ) = Q(G.Q).

3.2.3 The Index 4 Case

Consider now the case of [G:F] = 4. Then, G/F is either cyclic or of
rank 2, that is, G/F~Z, or G/F=Z,&Z, (the Klein-4 group). In either case
however, (G - F has an element v such that 4% € F. We denote by K, the
Z,-extension <F.y> of F by 7. Clearly, {K:F] = 2 = [G:K]. Obviously, K is a
function group in this case with invariant component equal to A, the common
invariant component of F and G. This is true since the group indices we have
here are all finite {=2). Moreover {K) = {1, the common (Ier'i-riaury set of F
and G.

Pass to the Fuchsian equivalents, say Fo, Kp and G, of F,.K and G
respectively. We find that Fy must have signature (0,4;m,m,m,m) and Gy
must have signature (0,4;2,2,2,m). Hence, by the results in the Fuchsian case,

Fy and Gp is an improper inclusion pair. Observe that [Go:Ko] = [Ko:Fo] =

2. We now use this easy corollary.
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Corollary 4 If F and G is an improper inclusion pair, then for any interme-
ldiate group K where F<K<G, the. pairs F and K as well as K and G are also
improper inclusion pairs.

Proof: Clearly, we get dimQ(G,Q2) S dlmQ(K,Q) < dimQ(F,§2). Since
Q(F,0) = Q(G,0), we get dimQ(F,Q) = dimQ:(K.,"Q:)':';'&if’nQ(G,ﬂ) and Q(F )
— QK0 = QGO T o

By the corollary above, the pairs FO,E.R."'O? aﬁ&'I{O,G;' :a.ré therefore im-
proper inclusion pairs. Since we know the signatures of fo and Gg, we simply
refer to Table 1 in order to identify the signature of K. Clearly, it must be
(0,4:2,2,m,m). Hence, A/F, A/K and A/G are of signatures _(O,é;m,m,m,m),
(0,4;2,2,m,m) and (0,4;2,2,2,m) respectively. We notice that these reduce to
the index two cases of type (0,4) for the two pairs F, K and K, G. Hence
Q(F.Q) = Q(K,0) and Q(K,Q) = Q(G,Q) which yields Q(F.©) = Q(G,Q).
This completes the proof of Proposition 5. [0

Remark: Notice that G/F = Z,®Z, (the Klein-4 group) since this is
the case for their Fuchsian equivalents. Go/Fp acts on U/Fy of signature

(0,4;m,m,m,m) to give rise to U/Gq which is of signature (0,4;2,2,2,m) (see

Figure 3.4)
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Chapter 4

DEFORMATION SPACES OF IMPROPER INCLUSION

PAIRS

4.1 Ahlfors-Bers Theory and Teichmuller Theory

If G is a Kleinian group, a Beltrami coefficient g on C is called a Beltrami

P

z)

E

i

coeflicient on G provided that u(g(z))- = ufz), for every g € G and plaq

[

= (). Denote by w* the unique automorphism z—w*(z) of C from the theory
of Ahlfors and Bers [AB] which leaves 0, 1. and o¢ pointwise fixed and is g-
conformal, that is, w* satisfies the Beltrami equatiqn ) w”; = ;_m_,"_‘z. Through
a direct calculation, for every g € G thé fungt_i.or_l wh 'o'é; is a,ga,m a i-conformal
automorphism of C. It follows from the sax.ne._ t_h'e.ory.th.at w” and w* o g are
related via the equation w” o g = g; o w* for some.Moebius (ransformation gy.
It can easily be shown that the collection of all such g,’s, which is denoted by
G* = w*G(w*)~ !, form a group. In fact, it is a Kleinian group with ordinary

set Q(G*) = w*(2(G)). The mapping that sends grg, is called a quasicon-

formal isomorphism defined by u or a p-conformal deformation. It is clear




that w*:Q(G)—(G*) induces quasiconformal mappings of the components
of Q(G) onto the corresponding components of 2(G*). A general principle in
the classical uniformization theorem implies that we also get quasi-conformal
mappings between the associated pairs of component surfaces from G and G*.

We will assume from now on that G is nqn-éiemép_t_qry an_d finitely gener-
ated. If & and v are Beltrami coefficients on G .t_;h:e.'n: 1 1ssa1d ﬁo be equivalent
to v, u ~ v, if and only if w* o (w“)‘1|A(G.) i.s Moeblus Theset of Beltrami
coefficients on G modulo the above equivalence re'iat'ion. 'ss';by definition, T(G),
the deformation space of G. Aliernatively, if we implicitly assume without loss

of generality that 0, 1, and oc € A(G), T(G} may also be defined as the set

of normalized! quasi-conformal self-maps w of C that is G-compatible (l.e.

wGw ! is Kleinian) modulo the equivalence relation wy = w, {we sommetimes
say that w, is G-equivalent to w,) if and only if w; o (wy) Yae = 1. Kra-
Maskit have shown by using stratifications that T(G) is biholomorphically
equivalent to a domain in C* for some d. In addition. T(G) is. in fact, a

domain of holomorphy [KMa].

Moreover earlier works of Bers. Maskit and Kra [B3], [KMa] or [M4]
established that the holomorphic universal coveri’ﬁg of T(G) is the product of
Teichmuller spaces of the Fuchsian groups belonging to the Fuchsian model for
G. We can deduce from this that if G is, in particular, a b-group, then T(G) is
(isomorphic to) its own holomorphic universal covering. We capitalize on this

and the results in Proposition 1 in proving the proposition that immediately

by normalized, we mean that w(0) = 0, w(1) = 1 and w(x) =

QN




follows. Recall thal in Proposition 1, the spaces Q(F,Q) and Q(G(2) of an
improper inclusion pair F and G naturally decomposes into spaces of quadratic

differentials for their component subgroups and these spaces are identical in

pairs, Q(F1.0%) = Q(Gi,%).

Proposition 6 If F and G are non-elementary, finitely generated b-groups
which is an improper inclusion pair, then T(F): T(G), where T(F) and

T(G) are the deformation spaces of F and G respectiirely,

Proof: Without loss of generality, assume once again as we have done
before, that ' and G have the same number of component subgroups. When
applied to b-groups, the result by Bers, Maskit and Kra mentioned above will
imply that

T(F) = T(Fp,U) x T(F1.U) x ... x T(Fs.U) where {Fo.F1,....Fs} is the
Fuchsian model for F and 2 denotes hiholomorphic equivalence, and similarly
for T(G).

Recall that the signatures of U//[; and Qi/ﬁi are the same and both
are Riemann surfaces of finite type. Hence, dimQ(Fi,Qg). = dimQ(F;,U) =
dimT(F:,U). The first equality is from fhe isomorphism hetween the two spaces
of quadratic differentials. The second equality is from the assumption that F is
finitely generated as we noted in a remark in Chapter 2. This is a basic result
from the theory of finite-dimensional Teichmuller spaces. From Proposition
1 and the results of Greenberg and others, we can therefore conclude that

T(F,,U) = T(G;,U) for i = 0. 1. 2..... S. This implies that both T(F) and

T(G) are biholomorphically equivalent to the same product of Teichmuller




~

spaces and are therefore biholomorphically equivalent, T{F) = T{G). Since
T(F) contains (G}, the only possibility is that T{F) = T(G). [
As an immediate consequence to the above Proposition, we have by virtue

of Proposition 5 the following easy coroilary
Corollary 5 If (F\A) and (G\A) are -m)'-n—.e.l'emenﬁtri.f?,..ﬁnitely generated b-

groups with FAG and Q(F,A) = Q(G,A), then T(F) = T(G).

For the general case of Kleinian groups in Propqsfit_i_or_l 6, we only need to
show the inclusion T(F)—=T(G) since the other inclusion holds already. This
is clearly immediate from our hypothesis.

First, we need to recall some important concepts in Teichmuller theory.
Let T be a Fuchsian group. A quasi-conformal map W:5——5" between Rie-
mann surfaces of finite type. necessarily of the same signature. is called a
Teichmuller mapping if its Beltrami coeficient is of the form Wr/W. = p =
k-2l This is sometimes called the (initial) Teichmuller differential on S with
k = [lplle € (0.1) and o € Q(S). the space ol quadratic differentials on S.
Now, let f be an F-compatible quasbconférmai automorphism of U and k()
= H%ZHT, The number X = %%% is called the dilatatioﬁ of f and f is called F-
extremal if and only if this number satisfies: K < K({f) for all quasi-conformal
F-compa_,til;le automorphisms f of U that 1s F-equivalent to f. The function f
induces a quasi-conformal mapping between orbifolds Wz U/F —- U/fFfL.

In fact, every mapping such as W above is induced this way. f will be called a

Teichmuller mapping if W is. In such a case, the Beltrami coefficient of f also

satisfies the analogous Teichmuller condition: u(f) = k(f)-l%, o € Q(F.U).
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Figure 4.1: <diagram 1>

We can now prove the generalized version of Proposition 6.

Proposition 7 If F and G is an improper inclusion pair, then T(F} = T(G).

Proof: Let {Ff. ... Fs} and {Gy, ..., Gis} be the Fuchsian models of
F and G respectively where the extra elements of the Fuchsian model of I
have been discarded. Recall that these uniformize thrice-punctured spheres.
Clearly, F; and (7; must necessarily be finitely generated Fuchsian groups of
the first kind for everv i = 1. ..., S. We also use the same notations as in
Proposition 1 and consider Q;. i = 1.2.....S. This is a maximal collection of
‘disjoint components of {1, inequivalent with respect to G and to I. Let {g] €
T(F).

By the remarks above in the beginning of this chapter, w* induces E-
compatible quasi-conformal mappings. w";. of 2; onto wi (), 1 =1, 2, ..,
S, where the F'’s are the component subgroups of F relative to the ;’s. We

observe that U is the universal covering space of both ©; and w*;(£2;) for 1 =

1,2, ... .5. We can thus lift w*; to an automorphism of U such that we have

a commutative diagram (see diagram 1). We observe that this hft must be
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/\
U — U
p p

Figure 4.2: <diagram 2%

ﬂA(ﬁ)f*a;kfij;]g

U
7 -
N (e )l '
w i (§2:) wrid ) w i (§2)

Figure 4.3: <diagram 3>

quasi-conformal. This follows from the earlier remarks by noting that Q; and
wH, (), which are open subsets of C are Riema‘n;l surfaces. Let us call this
lift f;. We now show that f; is Fi-compatibte. L(_e.t )\ € Fl ‘Now, A corresponds
to some element A € fﬂ such that diag.r..a.m.é C:c.)'mfr.l':utés... N.o.w, observe that
w;“:\(w,-“)‘1 lifts precisely to the map fl‘./\ff.‘.. .Furthermorh diagram 3 1s a
commutative diagram since diagram 2 is. Recall that w* is F-compatible.
Therefore, we have that wi”j\(wﬁ‘)_l 1s a Moebius transformation. Hence,

fidfit e PSL(‘Z;R) which shows that f; is Fi-compatible.

Teichmuller’s Theorem implies that f; is Fi-equivalent to a unique F;-




compatible and Fj-extremal quasi-conformal automorphism of U, Let us de-
note it by fi. Teichmuller’s Theorem further implies that £ is either a (real)
Moebius transiormation or s a ’I‘eicl‘mmller'mapping‘ However, one can easily
check that the former corresponds to the case where = 0 (trivial case). So.
without loss of generality, we will assume that the la.ttel holds. Hence if we
denote the Beltrami coefficient of f; by ,n“ then ',u1 — x(ﬁ}_ﬂ Ji—,l for some &;
e Q1) '

Now, let {G1, ..., G's} be the co:r:nﬁdﬁ'en.t" subgmupsofG 't'éll.a;éi\'e to the
Gi's. Since Q(Fi,Qg) = Q(CA}';.Qi), we can use a prdof.éiﬁ}iiéi‘ to that of Lemma
4 to get Q(F.U) = Q(G..U) for every i = 1, ..., S. Thus, ¢; € Q(G,U) and
f; as well as f; are (#;-compatible. By chasing diagram 3 in the direction
which is opposite to that of the previous one above, we conclude that w”; is
G -compatible for all i = 1. ... S. Since the w* ;" are induced by w*. we how
claim that w* is G-compatible. To show this. we observe that:

(1) wWhGH (W) = wH Gilw”;)"t foreach i = 1. ..., S

(11) U‘f:l wH () = Uf;l wH () Is a maximal disjoint whG{w) ™l - invart-
ant union of components of w*{{})

(111} w (i)™ is a Kleinian group which acts invariantly and (prop-
erly) discontinuously on w#;(€;) for cach i =1, ..., S

{iv} cwr Ch(w )7 L wrsGs(ws) ™t > = whG(w#) !

(v) w*G(w*)~! acts invariantly and (properly) discontinuously on wh ()
which is clearly nonempty since 0 # §§

Therefore, w*G(w*)~! is a Kleinian group and the claim is shown. Hence,

g is a Beltrami coefficient on G and [u] € T(G). from which we get that

At

=T




T{F)-T(G). By our first few remarks in this chapter. this is sufficient to

conctude that T(F) = T(G). O

4.2 Kleinian Modular Groups

We motivate here the definition of the modular group of a Kleinian group
by recalling some Ea.cts from the Fuchsian_(.:ase._ _G_iyen a finitely generated
Fuchsian group L. We construct a set. ['(F). for F defined as follows: Let
4:F—PSL{2.R) be an isomorphism-into. Assume that ~(F) is again a Fuch-
sian group and 7 is type-preserving and orientation-preserving. The collection
of all such +'s is what constitute the set I'(F).

On D(F). we define a relation which is clearly an equivalence relation.
Two elements ;. 72 of I'(¥) will be called equiva.leﬁt,I 41 2~ s, if and only
if there exists A € PSL(2.R) such that 4(f) = Ay(f)A7! for all f € F. The
quotient space. ['(F)/~. is the Teichmuller space of F which we denote by
T(F). It is well-known that there are other formulations for the definition of
T(F). We choose to adopt this particular one for our motivations.

Now. if we denote by A(F) the group of all elements v € I'(F) which are
automorphisms of F (i.e. 3(F) = F) and by [(F) the group of inner aﬁtomor-
phisms in A(F). then clearly [(F} is a (rormal) subgroup of A{F). The modular
group, M(F). of F is defined as the quotient group M(F) = A(F)/UTL). It nat-
urally acts on T(F) by right translation and whenever F is finitely generated,

this action is properly discontinuous.

To describe the modular group for a non-elementary, finitely generated




Kleinian group F. we first start with its Fuchsian model {Fy.Fy....Fv}. We
can associate to F a set which is the product I'(7)) x I'(I%) x ... x ['(Fy)
of the I'(#})’s whose definitions follow the Fuchsian case definition in a direct
fashion. There is a natural equivalence relation on I'(F1) x I'(#3) x ... x T'(Fy)
via application component-wise of the equivalence relation ~ defined above.
This gives rise to a product of Teichmuller spaces T(Fy) x T(F2) x ... x T(Fiv).
Each of the Teichmuller spaces, T(F}), is homeomorphic to the open unit ball
in C* where d; = dim T(F;), and thus is simply-connected. Consequently, so
is the above product. As we mentioned in the previous chapters, this is in fact

the holomorphic universal cover of T(F').

Definition 6 The modular group of F is defined abstractly to be a group,
M(F), of automorphisms of T(F\) » T(F,) v ... x T(Fy) such that T(F) =
(T(Fy) x T(Fy) v ...« T(F))MF) and M{F) = 7 (T(F)).

Remark: M(F) is known to be isomorphic to a product which we wxli
denote by m(F) x m(£3) < . s m(Fy) where cach m(F)sansﬁesm( £y <
M(£;), 1= 1. 2. ... N. Hence, the modular groupM(F)lsadlscrete gtzl'bgroup
of MOFL) x M(Fa) x o/ x M(Fy),

Our current objective is to glve.a,nother cflterlon 1n: .o.rder that F admit a
finite extension G such that T(F) T(G) F;rst 1et us go bau\ to the Fuchsian
case and define a set T(F)mqar. For é ﬁnltely_- genera.ted and nonrelementary
Fuchsian group F, the set T(F)nar is defined to be the collection of all vl e

T(F) such that there does not exist another Fuchsian group containing +(F)

as a subgroup of finite index. Greenberg has shown [Gr] that T(F)nar is




everywhere dense in T(F) or else, it is empty. T(F )mer = 0 implies that there
exists a group G containing I as a subgroup of finite index such that T(G) =
T(F). |

To extend this to the [\lelman. gasé | we. deﬁne T(F)mer = { {Ix]} =
Hlzq],ize]s-lzn])} € T(F) | [1:,} € fl'"(l*_')m,_‘,;c for ail i } x;fhere {{x]} denotes the
class of {x] = ([z1].[z2]s--.[zn]) e T F1) X T(Fg)

x T(FN) in T{F). Here,

it is understood that Fis a non elementan and ﬁnlteiy generated I\lem]an

group and {Fl,Fzg---F\r} is its Fuchbla,n model
Lemma 10 T(.E;l.).rru;r Y T(FZ)mar [ IT(E\J)mar COU&FST(F)mar :

Proof: This follows from the definition of T{F) . and the fact that the
(holomorphic) universal cover of T(F)is T(F) x T(Fy) x ... x T(Fy). O

Now, we can prove the following proposition.

Proposition 8 Let [ be a non-elementary, finitely generated Klemian group.
Then. F admits a finite cxtension with the same deformation space as F if and

only if T(F)par is not everywhere dense in T(F).

Proof: First. we lift T(£)mas to its cover given by the lemma above. We
have exactly two cases to consider which are described below.

Casel : There exists at least one i € {1, 2, .... N} such that T(F})mae = 0.
By the result Of, Greenberg, there must exist a group F; which contains F; with
finite index such that T(F;) = T(F;). In this case, T{F)mar is not everywhere

dense in T(F) following the results of Greenberg and our preceding lemma. We

then claim that there is a finite extension, ¥, of F such that T(F) = T(F). To
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see why, first we observe that the Fuchsian model of this extension is clearly
{17, .. Fn} where each F; is replaced with F. whenever T(F)mae = 0. It
is sufficient to show that the action on T, Fy) x T(F2) x ... x T(Fy) of M(F)
=m(F) x .xm(F) x ... x m(Fy) 13 ineffective when restricted to T(F}).

The nontrivial element v, in F;/F; corresponds to some nontrivial element
7 in m(F}) < M(F}). The equality T(Fg) = T(F}) between the two Teichmuller
spaces implies that the action of 4, on the Riemann surface U/ F; does not result
in a new conformal structure on U/F;. Hence, the corresponding action of 77
on T(F}) is ineffective. This proves our claim and completes case 1.

Case2 : For every i, the set T(F})ner # 8 In this case, we clearly have
T{F)mae 15 everywhere dense in T(F). Moreover, there is no finite extension
of F whose deformation space is equal to T(F) for otherwise we will arrive at
a contradiction to the Fuchsian case.

Since, these are the only possible cases, the proof of our proposit_io’ri_f’q.j '

complete. O

4.3 The Schwarzian Derlvatlve

If (F,A) an.d' (G,A) is apau offunc’mon groups wﬁi_ch_.'_;s-_.ar_i 1mpr0pe1

inclusion pair, then anothel wav ot bhowmg Proposmon 7 i'é’ by"'p'r(')ceeding

as follows. We first observe that the c!ecomp031txons of. T(F) and T(G) in

Proposition 6 is shghtly modaﬁed such that except'for the ﬁrst pair of factors,

the remaining ones are still the Telchmuller s’paces'of the other Fuchsian groups

in the Fuchsian models of F and G. By a result of Accola mentioned in a



previous chapter, they are biholomorphically equivalent in pairs. Now. let
us consider the first pair of factors associated with the common invariant
component A, which in this case js'n.oi hé_ac_ess_,arily simply-connected. These
factors are usually denoted by T(F, L\) andT(GA respectively.

Remark: It is known that F(FA _#-T(Fo, )/m(Fo) and T(G,A) =

T{Go,U)/m(Gy) where m(FU) and m(Go) a.re Subgroups of the modular groups

of Fy and Gy tespectueiv The act10ns of m(FD) a,nd m(Co) are propell

discontinuous and these ﬂrmups are, m Eact the respectne dech gmups f01 the

two coverings pllr(Fo,U)l-—)T{F '_\.) and pg r].((rg )|-—>T(G ) Thrs follows '

from the fact that T{F5.U) and T((p,U) are the (holommpluc) umversal covers
of T(F,A) and T(G,A} respectively.

The elements of T(F,2\) and T(G.A) consist respectively of classes of

quasi-conformal self-maps of C supported on \ such that wFw™ and wGw™!

are Kleinian groups. Let [ie]p € T(F.A). Now, it is clear that T(G.A)—=T(F.A}).

Hence. if we show that lwlr € T(G.A). we will get T(F.A) = T{G.Q) and our
desired equality T{F) = T{G) will be established.

To begin, recall that {F..\) and (G.‘_\‘) is an improper inclusion pair by
assumption. Hence, G - <F> by Corollary 2 (where v is a half-turn).
From this, one can deduce that the quasi-conformal map w satisfies wGw™! is
a Kleinian group if and only if wyw™! is a Moebius transformation. We now
aim to show that the latter is true. First we prove the following two lemmas.

Note that we are following the same notations as before.

Lemma 11 If w is a quasi-conformal map of C supported on \ that is com-




patible with F, then Sfwy) € Q(Go.U) where S is the Schwarzian derwvative
operator and wy 15 the lift of w.

Proof: Since w is (‘ompatlble mth “e get that wiw™! is a Moebius
transformation for any f € F. Fix an f E F Cons:der a d1agram similar to

diagram 3 where m and 7’ are covelmg rna.ps Thus wa - hfts via 7 to a (real)

Moebius transformation, say jo Now clearly,_ lsfts to a, qua,31 conforrnal map

wq of U. Let fo be the cmr%pondmg element to fm the Fuchsmh equwalent

Fy, of . Observe that wyfowo .1:'— jo Wute thas equalstv as.wo o W fow
and take the Schwarzian derivatives oi both 31des Recall that 9( )'— 0 if and
only if fis a Moebius transformation. Furthermore, S satisfies ‘the :folloiving
identity known as Cayleyv’s identity: 5{f o g) = (5{f) o g)(g)? + S(g).

By using these two facts. we get (S{wo) o fo)-{(f§)? = S(wo). This implies
that S(we) € Q(F5.U). Since Q(Fp.U) = Q(Go.U), we get 5(we) € Q(Go.U).

O
Lemma 12 The mapping u= w ! C—sC lifts to a (real) Mocbius trans orma-

tion.

Proof: By the previous lemma, b(uo € Q(Gg ) Smce Gg.-— <F0,f0>
we have (S(wg) 0 Y0){75)* = S{wo). Hence, S(wo 5 70)_— S(wo) However if
the Schwarzian derivatives of two ma,ppmgs ére the same, then they differ by
4 Moebius transformation. Therefore, wg o 49 = A o wo for some Moebius
transformation A. Observe that A leaves U invariant which shows that A €

PSL(2,R) = Aut{U). Clearly wﬁgwo_l is the lift of wyw™! and the desired

result now follows directly. O
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For the rest of our proof, Lemm'a".-l._"Zi.i_s"'f'hf(::f:'key. Set v, = wyw !. The

map 7, is clearly a.quasi-conformal'aﬁt’:{)_ Yo 'h'isﬁi:_i‘).f@ and maps w{A) onto

itself. By lemma 12, its lift 'UJ(}’)’DIL)[}T]_.:.. a real Moebms transformation A

we Set Gw —= <WFW._..]' ”}’w>,then \Ye_

the ordinary set of Gusatlbﬁeb QG

Q(F) = Q(G) is the common ordinary set of F and G
a Kleinian group and thus. w is G-Corﬁpatibié.’Néﬁ,j denote the deformation

class of w in T(G.A) by [w]g when viewing A as the invariant component of

We have therefore shown that [w]r = [w]e € T(G.A) a,nci T(FA)c—fI‘(G,_\
The desired conclusion now follows directly as we noted above. O B

Remark: Notice that similar to what we just employed, we only neededto
make use of the quasi-conformal mapping restricted to the invariant componeﬁ.t- i
of F in our proof of proposition 7.

As a byproduct. the previous lemmas imply the following corollary almost
immediately. The map @ referred to below is the induced quasi-conformal
mapping between the two Riemann surfaces A/F and w{A)/wFw 1. 4 is, as

usual, the hyperelliptic involution on A/T".

Corollary 6 The function @4~ (A ) /wFu~'—w(A)/wFuw™" is a confor-

mal self-map of w(A)/wFw™" i e @ydt € Aut(w(A)/wFw).

Proof: To prove this. we simply observe that wA ™! lifts precisely to




the (real) Moebius transformation A :“-'[L'U?}at_vg" € Aut(TU). Hence @37 " is
conformal and thus an element of Aut(w(A)/ WFW"I) 0

Remark: Set 4, = 57" (tlie map in Corollary 6). Clearly, ¥, is of

order two. Its action on W(A)/WF:X;V.W-_ :_'fés.iii.ts;__to aRIem&nn surface which

is quasi-conformally equivalent to f_\/Gv . The m pf}wlsthe involution

on w{A)/wFw™! analdgbus to f} G Aut(A/F which

any new conformal structure on'A/F. As:
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Chapter 5

SURFACES WITH IDEAL BOUNDARY CURVES AND

SoME LOXODROMIC CYCLIC CONSTRUCTIONS

Our objective in this chapter is to construct improper inclusion pairs by
using some known techniques which are found in [M1], [M2]. We first recall

the following definition.

Definition 7 Let I be a finitely generated Fuchsian group. U is said to be of

the first kind if A\(T) =R U {x} = R. and of the second kind if A(T) C R.

A Fuchsian group of the second kind therefore acts discontinuously on
certain segments of the real axis. Each such segment L is kept invariant by a
hyperbolic cyclic subgroup H of G, and every element of G not in H maps L
onto some other segment. A generator h of H is called a boundary element of
(- H is called a boundary subgroup of G. If C is the axis of h { 1.e. C is the
seodesic line segment joining the fixed points of h ), then the non-Euclidean

half-plane between C and L is precisely invariant under H, and is called a

boundary half-plane of the Fuchsian group of the second kind.
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The results of Greenberg [Gr] and S1110e1ma11 [S] included such pairs

where the Fuchsian groups are ﬁn;tely generated but of the second kind. We

:;,b) denote the (conformal) si

will let #(T) = Q)R and (g,n yl,}/

nature of the associated sulfa.ce S = U#/F :';.UUQ#( [)/I. The surface S has

genus g, with n dzstmgmshed pomts} these nclude punctures) and b bound-

ary curves. Notice though that Q(I‘)/I‘ 'hlc_ .13 the double of S, is necessarily

[Go:Fo
(1,0,1) and [# /(G has signature (0.3:2

signature (0.2 n:1) and (F /Go has signature {0,2:2.
q / q

with [GoiFof = 2

A. Our aim at the present is to construct pairs of impropet .iﬁcl't.is'i'd';i""""
pairs with the preceding theorem as the springboard of our loxodromic cycli.(.:
constructions.

Start with a non-elementary and finitely generated Fuchsian group Fo of
the second kind of signature (1,0,1), normalized such that the second quadrant

is a boundary half-plane and such that the sector { z| § < arg(z) < 27 - 6}

is precisely invariant under Stabgp({0.0c}), where § < 27/n for some n € FAR
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Figure 5.1: Construction I Fundamental Domain)
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Set J = Stabp{{0,0c}) and let _](Z 7. b:é'__th_e generator of J where t > 1.

Choose the fundamental domam E fo ) to:b'e-'_t_ﬁ'e' annulus { z] t7 < [z] <t

Call the sets indicated in Figure 5.2 as B, and B‘z \ppivmg the-l\l

proper intercative pair), we get that F'is a non—elementary,. flmteiygen :
Kleinian group with D = Dy N Dy = (D, N By U (D21 By asa t;uﬁ._'daﬁiéht_'a_

domain (see Figure 5.2). D has two connected components. but a side of one

component is identified by elements of .J, with a side of the other Compoher_it_s :
as we saw earlier. Hence. Q(F)/F represents only one surface which 1s of

signature (2,0).

Remark: We remark that this group F is an example of a group where
every component is simply-connected and no component is invariant under I.
However, there are exactly n s'pecia,l components of F that are invariant under
J, but Jy keeps no component invariant. The reader 1s veferred to [M1] for

more details.




A
o=l

Figure 5.2: Construction I{Side-Pairing)




ﬁmfel) generated Fuchsian group of the

Now, let (Gp be a nonfelement'ary,

second kind with Fy<a(y, [GD:FO]"'”' 2 anu GU is of signature (0,3;2,2,2;1). We

a 51m11a.r way as Fy was, Starting

assume that Gy 1s chosen and-'ﬁtﬂi‘r’na’;hzeckﬁl

with 7y and doing the same 10xodrom1c cychc'constructlonb as in above, we

get a non-elementary, ﬁmtely' geﬁe'rettec K einl.an group G such that Q(G)/G

Since (jo)”

elementary. finitely generated Fuchsian groups of the second kui_d.fjfb
where (g contains Iy as a normal subgroup of index 2, such tﬁaf-'i;hé_'sigtjaf
tures of [y and Gy are (0.22m.m:l) and (0.2:2.m:1) 1espect1ve1\ with mi —2
3, ....or c. The Riemann surlaces of finite type. Q(F)/F and Q(G)/G. asso-
ciated to the resulting Kleinian groups F and G after we perform similar lox-
odromic cyclic constructions as in above, will have signatures (0,4;m,m,m,m)
and (0,4:2.2,m,m) respectively. Furthermore, [G:F] = [Go:Fp] = 2 < oo. Ob-
serve that their pair of signatures is a maximal pair and thus, it follows that

Q(F,0) = Q(G,?) in this case as well.

B. Next, we do a construction of a pair of function groups which is an

improper inclusion pair. The general idea is again found in [M1].




-1
S

Let £} be a finitely generaﬁédfﬁ_cl an group of the first kind of signature

(1,1;0) with v = 3. N01ma.hze Fl:'_::..

it disc, J = Stabr, (0) = Stabﬂ(“

disc than 31 centeled at the 011g1n and B2
invariant under J in f5. Choose a fundamental’ domam D3ifo
that of Fy. {Here. F; is taken to be of s;gnature (1,1,3)_ as: wellwbut‘- the only

requirement is that F, have an elliptic element of order v as does F i

Set F = <F,.Fy> with J being a common subgroup to I and ':F.?:;.:. Set
D = (DiNBy) U (DynBy). It is clear that F represents three Coﬁd.pon.e:r'ﬁ.;:--'.'-_._
surfaces, two of which have signature (1.1:3) and the remaining surface h.a‘s'.
signature (2.0). (See Figure 5.3) Let F, and F; be the component subgroups
of F corresponding to the component surfaces with signature {1,1;3) and let

£, be the component subgroup corresponding to the component surface with

signature (2,0).

[y stabilizes the component equal to an unbounded disc, F, stabilizes the
component equal to a small disc centered at the origin and F} stabilizes the

annular region between them that contains Wy = dB,. Indeed, F,=FandFis

actually a function group with this annular region as its invariant component.




Figure 5.3: Construction II



Now, we adjoin the Moebius transformation, ~:z— -z, to ' and let G =
<F,v> so that [G:F] = 2 < co. This half-turn v will stabilize all three compo-
nents of ¥. The result is that Gis a functioﬁ g:roup such that 2(G)/G represents
three surfaces of signatures {0,4;2,2,2, 6) (0 6,.,,,4,L,'2,2.2) and (0,4:2,2,2.6).
Clearly, the dimensions of the spaces of quadratlc cllffelentlals for F and G

are equal and hence, Q(F,Q) = Q(F,Q). =




Chapter 6

OTHER RELATED RESULTS

This chapter discusses a nummber of topics that may provide possible routes
in further exploring our central ideas. In line with this, we raise a conjecture

at the end of each section.

6.1 An Exact Sequence of Kleinian Groups

The result we have here is mainly an extension of a theorem due to Harvey
[H]. This theorem says that if ¥ and G are non-elementary. finitely generated
Fuchsian groups and a certain short exact sequence involving ¥ and G exists.
then T(G) is the fixed point set of some finite subgroup, H. of the modular
group of F, M(F'). The converse to this theorem is in fact true as well and was

shown also by Harvey [H]. First, we consider the following.

Proposition 9 Lel (F.A(F)) and (G.A) be non-elementary, finitely generated = .-
funetion groups and 7:F— G be a 1-1 homomorphism (monomorphism) that

is type-preserving such that [G:r(F)j<oc. Then,




(i) (T(F).A) is a function g:ou

(i) If QIFA(F))ZQ(G, _\) then (T(F}:'A') and (C'A) Is an improper

inclusion puir of function gmup

and theretore f(‘.l\)

invariant ur’id:ei‘“"r(F) Thu‘s (T(

have the same szgnatmes Thewfme Q,( ( !

pothesis we get Q(r(F),A)=Q(G, A) By a dl_rn:ei’_i?g]o_rl_;._:ar:__g_-u_rpgn

directly that Q(r(F).) = Q(G.A). By Proposition 5, we get that r{F) and.
(5 is an improper iuclusion pair. '

Now, we have:

Proposition 10 Let (F.N(F)) and (G.A(G)) be non-elementar .y. ﬁml‘ny gf'n:“'
erated b-groups and 7:F—— G be a -1 homomor‘phmn (rnonomorphz>nz) z‘haf'f___
is type-preserving. Suppose that the quuencrz |
[ FT G H—1

is exact for some finite group H.

Then, the set 7(T(G)) is the fized point set, F(H'j, of some finite sub-
group, I, of the automorphism group of T(F) where 7 is the map from T(G)
to T(F) induced by 7

Proof: Since the sequence




—F G- )

15 exact, we get £ is surjective, im7 = ker& and G/keré = G/imr = H. In

particular observe that we also 'ge't.: i'rri;.'r':% T(F)<] G.'and by finiteness of H,

the index [G:7(IF)] is finite.

Using the first part of the above prop.oéi'ti'b.n.,. wegetthatr(F) is a function
).

simply-connected. Thus, (7{F).A} is in fact also abgloup Itl

group with invariant component A = A(G), Smce(G,A

is":'_é_,ﬁ'_'t._)igroup, ANis

known (see

chapter 4) that for b-groups. we have a biholomorphié.rh.," L’
T(Fo) x T(F) x T(F) x o x T(Fy) 2 T(F)

where {Fy. F\ Fy,....Fx} is the Fuchsian model of F. The I‘ES‘[.: bf ;o'u.r:' at;f

Fuchsian model of G. where N™ > N,

Now, 7 induces a finite family of monomorphisms {7;|1=0.1.2, ... N }

between [I; and (; and a finite family of short exact sequences
| — F = G Hp—
where H; are the finite groups G,/ ( F}).

Then, by Harvey's results, 7{T(G;}) is the fixed point set of some finite
subgroup, H!, of the modular group, M(F,), of I for i =0, 1, 2, .... N. We now
form the set Hy x Hy x H; x ... x HY which is clearly a finite set. Now, we
restrict our biholomorphism, . on T(Fy) x T(F) x T(F) x ... x T(Fy) and

call this restriction i as well. for simplicity of notation. Consider the push

forward, v.(H) x H] x H} x ... x H{), of H) x H] x H} x ... x HY via the




restriction 1. Clearly, this is a finite subgroup of the automorphism group! of -
T(F). Set
H = v (H) x H] x H x ... x HY)

Notice that 7(T(G;)) = @ since T(G;) = @ for i = N+1, N+2, ..., N,
Then, by construction, we get that 7#(T((G)) is the fixed point set of H’. This
completes our proof. O

Cc;njecture: Let F and G be non-elementary, finitely generated Kleinian
groups and 7:F——G be a 1-1 homomorphism (monomorphism} that is type-
preserving. Assume that

Pt GEy e
is exact for some finite group H.
Then. the set 7{T(()) is the fixed point set. I'(H"). of some {finite) sub-

group. ', of the automorphism group of T{F).

6.2 Kleinian groups of the First Kind

Here, we investigate the case when F is a non-elementary and finitely
generated Kleinian group of the first kind. Recall that this implies Q(F) = §.
Let us assume that F'<G, where G 1s a non-elementary and finitely generated
Kleinian group and [G:F]. < o0o. Then, as Q(G)COA(F). we get Q(G) = @ and

G is also a Kleintan group of the first kind.

'Here. by automorphism group we mean the group of biholomor'ph_icg-: _sglf—

mappings.




All our previous results cannot:be applied but if we assume that I” is geo-

metrically finite, then it is \{fe:l'.l!:k'né\'.\fﬁft' { G;s also geometrically finite. Their
associated 3-manifolds, P /F-' an P(G i/ G.w hele P(F) and P(G) are the tun-

Emll hoth be compact (without

damental polyhedra for F‘: and: .re'5p'e'ct1vely,.

boundary). We can thus conc[ud fmm;these. that P(F)/F and P(G)/G will

each have a unigque hyperbolzc stmcture as consequence of the famous Mostow

Rigidity Theo-re_r_n_-_ [Mo]

6.3 Conditions for Adjoining Elements

Our present goal 15 to investigate this question: .if F' is a non-elementary
and finitely generated Kleinian group and <F,y,....7,> is also a Kleinian
group, where ~,.....7. are elliptic elements necessarily of finite order, such that
<F,v4v.> and F is an improper inclusion palr. what properties must the

elliptic elements satisfy? We will assume that {Q(F)/F)" # @ in our succeeding
discussions. The case where dim Q{F.02) = 0 has more interesting implications
and will be considered towards the end. The results that we have are mainly
a series of conditions that must be satisfed by the adjoined elliptic ele’ments.
It is easy to verify that these conditions will gunarantee the result of having an
improper inclusion pair. |

Leﬁ v be among the v, ... 7.. We will proceed by looking at the action

of v on . This will depend on the location of the fixed points of v. Denote

by p and g the two distinct fixed points of y. There are four possible cases:

Casel : p and ¢ both lie in the same component, say ,,.




Case2 : p and q lie in two distinct components, say Q, and 2, respectively.:
Case3 : p lies in some component, say (2, and g lies in the limit set of F.
Cased : p and g both lie in the limit set of I\

[. Let us look at Cases 1-3 where p and q € Q. Consider the two component
surfaces of T, namely, 0,/ F,-and Qq/ﬁ’q, where [, and F, are the component
subgroups aésociated with 2, and Q,, respectively. Note that if 2, and 2, are
F-equivalent, then {1, and {2, correspond to the same component surface in
Q(I)/F. Our first condition is the following. The notations and assttmptions
are the same as in above.

Condition [.: Unless they are thrice-punctured spheres, QP/FP and Qq/ﬁq
must have signatures that are listed in Table [ whenever p and q € §)

[[. To proceed. asswme first that F is nontriangular. Denote one of the
component surfaces which rhas a signature listed in Table | by S;. Such a
component surface exists by Lemma 8. In particular. 5) is a hyperelliptic
Riemann surface of finite type. As usual. let 2, be a component of @ and F\
be a component subgroup of F such that Q}/Fl = 5|. Let v, be the resulting
half-turn in Lemma 5 which is induced by the hyperelliptic involution on 5;.
Denote the two distinct fixed points of v, by 2, and x,. Hence, we see that £,
must contain at least one of these two points. This eliminates Case 4 above.
We now have this condition which was often used in the proofs of our earlier
propositions.

Condition I1.: If Q; is any other component of Q0 not containing Ty mn T2
then 1 () = f(:) for some f€ F. =
II1. Now, let us consider the case of Q(F)/F - (QUF)/F} # @T S




case where there are thric_e}p’_i_;h‘é:ttitec bphf‘lt‘b in the orbit space of F. With =

this assumption, it is clear tha 1St'_:éatisfy the following.

Condition I[.: Let'ﬁ'i’-: be g dv-b’_fﬁf‘(ii‘y component of {t which does not

contain any of the ﬁred pomts f andﬂ be the component subgroup of F

associated with (1;. Then a le f the following must be true:

()3 () = fi00) for

(i) 9 /F zﬁs' éz fh r‘;;”c »

Iv. \ow Suppose that ; with S =0 /Fl Recall

that Gleenberg 5 Theorem mcluded .some p__1rs of tr1angle groups. Hence, it

is possﬂ:)le that there emsts an eEhptlc element ﬂ/l, which 1s not necessarily a

half-turn, that gives rise to.such a pau ot'_tuangle groups, Fy and <Fy 70>
Let L. be the order of ~;. The [ollox\ mg (01.1.(11t10n is clearl\, the generalization
of Condition Il when the order of the (E‘Hl[)EIC eiement is bigger than 2
Condition IV.: Let O, be an arbn‘:ruy componem‘ of 2 which does not
contain any of the fired points of =) and [ be fhe component subgroup of F

associated with ;. Then. at least one of the jollowmg must be true:
(i) for everyn € { L 2...k-1 Y. v" (%) = () for some f, € F
(1z) Q;/Fi is a thrice-punctured sphere.
V. Now, let 7 be elliptic such that ¥ ¢ I and furthermore, assume that

% is not among the possible v;’s and ;s described above which satisfy the

foregoing conditions. Let p and § be the fixed points of 7.

Lemma 13 7 and G are both in the limit set of F.




Proof: Suppose that one.of the fixed points, say P, is in some component,
{I5, of Q. Then, ¥ acts invariantly on 5 and induces a conformal self-map
on Sz = 5/ Fg where £ is the component subgroup of I' associated with (2.
Since ¥ is chosen such that it is not among the +,’s and ¥;’s, the resulting pair
of signatures by the action of the induced conformal self-map on Sy must not
be maximal. This will imply that dim Q(<I*},7>,Q~5) < dim Q(ng,ng) which
is not acceptable. Therefore, ¥ must not act with fixed points on . This
shows that ¥ and § must both be in the limit set of F. O

This is Case 4 above. Moreover, we see that 7 leaves no component of

invariant. If we denote the order of 7 by k, then observe that 7 () N ()

= forany s # t,sand t € { 1,2,...k } since (;, F0), T2 (), -y FHHD)

are all components of the extension of F that contains 5.

Condition V.: At least one of the following is true for any component Q)
of Q1.

(i) for every n € { 1,2,...k-1 }, 7* (%) = fu () for some f, € F.

(1i) Q,;/f?‘i is @ thrice-punctured sphere, where Iy, = Stabpf);.

VL It is clear that if {yy,...,¥1,....;7,... } s a finite set of elliptic elements
having the properties described above, then F and <F 1,0 Y1y, 18 an
tmproper inclusion pair. However, suppose that <E 1 Py Toeeng1> 18 a
Kleinian group which is a finite extension of F, ¢; ¢ F, and that g, is not
elliptic. Since the extension is finite, there must exist a smallest postive integer
my > 2 such that ¢;™ € F.

Condition VI.: At least one of the following is true for any component {1;
of Q2.




(i) for every n€ { 1,2,...mqy - 1}, 4" () = Fu () for some f, € F

(it) Qi /F; is a thrice-punctured sphere.

VII. Now, as a separate case, let us consider the situation where ((F)/I)*
= 0. Obviously, dim Q(F,Q) = 0. This implies that any finite extension of
I' by any type of Moebius transformation must have the same 0-dimensional
space of quadratic differentials as F'. Recall that this will fall under case (a) in
our main proposition in Chapter 3.

VIIL. Assume once again that (Q(F)/F)* # §. In this case, there is clearly
a maximum number of appropriate extra elements, elliptics or otherwise, that
can be adjoined to F in order that I and this finite extension be an improper

inclusion pair. We get the following corollary. Its proof is straightforward.

Corollary 7 Let {K;| i = 0, 1, 2,...,k} be the resulting ascending set of inter-
mediate groups arising from the adjoinment of the extra elements to F, ordered
by inclusion where we set Ky = F and Ky, = G. Then, any pair K; and K;

with i <j,i=10,1,2 .., k1,j=1,2 .., kis an improper inclusion pagr.

Conjecture: If (Q(F)/F)* = 0, then such an ascending set of intermedi-

ate groups can be infinite.

6.4 Exceptional Pairs

The following pairs of non-elementary and finitely generated Kleinian
groups (of the second kind), F and G, with F<G of finite index cannot be

improper inclusion pairs. Again, we are assumning that neither F nor G is a

triangle group.
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(1) Fis quasi-Fuchsian and G is totally degenerate
(%) F is terminal(reqular) and G is totally degenerate
(iii) F is terminal(reqular) and G is quasi-Fuchsian
(iv) F is quasi-Fuchsian and G is terminal(regular)
(v) F is totally degenerate and G is terminal(regular)
(vi) F is totally degenerate and G is quasi-Fuchsian
(vii) F and G are both Schottky groups
We should note, however, that there may be other, more subtle, examples
besides the ones listed above. Let us pursue the first three cases (1), (i), and
(i):
I is quasi-Fuchsian and G is totally degenerate
F is terminal(regular) and G is totally degenerate
F is terminal(regular) and G is quasi-Fuchsian
Recall that Q(G)CO(F) (in fact, Q(G) = Q(F)} must hold. These three
pairs clearly violate this inclusion relation.
Now consider (iv). If F is quasi-Fuchsian and G is terminal(regular), then
dimQ(F,?) = 2dimQ(F,A)
dimQ(G,2) = dimQ(G,A)
Obviously, Q(F,(1) = Q(G,Q) if and only if their dimensions are equal
and thus if and only if 2dimQ(F,A) = dimQ(G,A). This can only happen if
| and only if dimQ(F,A) = dimQ(G,A) = 0 since 0<dimQ(G,A)<dimQ(F,A).
F and G are both triangle groups in this case. (contral)

For (v) and (vi), since F is totally degenerate and F has a common or-

dinary set {} and invariant component A as G, we conclude that Q - A = §




for G in both cases. This implies that /G is a single surface. If G is quasi-
Fuchsian, /G is the disjoint union of exactly two surfaces, hence we have a
contradiction. If G is terminal(regular), /G consists of at least two surfaces
which also leads to a contradiction. For (vii), we need only recall a remark
made in Chapter 2 regarding Schottky groups.

Conjecture: If F is a Schottky group of rank 2, under what conditions
does there exist a terminal({regular) b-group G containing F such that F and G
have the same space of quadratic differentials and will the index still be finite
in this case 7 If F is a terminal(regular) b-group that represents a surface of
genus 2 and two thrice-punctured spheres, does there exist a Kleinian group G

properly containing F with finite index such that G only represents a surface

of genus 2 and will G still be finitely generated in this case 7
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