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Abstract of the Dissertation |

Minimal Submanifolds with “
Various Curvature Bounds |

by
Helen Flizabeth Moore
Doctor of Philosophy
in
Mathematics

State University of New York at Stony Brook

1995

This thesis consists of three main results, all of which are part

of the long term project of understanding the global behavior of
minimal submanifolds of Euclidean space. If M® C R is a min-

imal submanifold, then the total scalar curvature of M, A(M), is

defined to bé

A(M) = /Mn A" 4V

where A is the second fundamental form of M, |A| is its Fuclidean

norm, and dV is the induced volume form on M.
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The only known examples of complete minimal submanifolds
M™ C RN, n > 3 with finite total scalar curvature are planes and
catenoids. R. Schoen ([Sch83]) proved that any complete minimally
immersed hypersurface M”™ C R™ which has finite total scalar
curvature and two ends, is either a catenoid or a pair of planes. |
extend his result to show that if n > 3 and n» > NJZ“—I, then the only
such nonplanar minimal submanifolds are catenoids.

The second part of my thesis begins with the examination of

another natural curvature expression,

L [ 1apay.
% D (r)

I prove a Gap Theorem, which says that if M* C C¥ is a smooth,

Bo{M) :=sup

complete, complex (minimal) submanifold, then either B,(M) is
uniformly bounded away from 0 for all z ¢ M, or M is planar.
I show that as a consequence, the plane is the only smooth com-
plete complex submanifold of complex dimension at least two with
finite total scalar curvature. This advances the classification of all
complete minimal submanifolds with finite total scalar curvature.

The third part of my thesis contains a result on the singular
set of the tangent cones at infinity of complete stable minimal
hypersurfaces in Euclidean space with bounded volume growth. 1

prove that the singular set has codimension 2.
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Chapter 1

Introduction

This work was motivated by results concerning minimal surfaces M2 in
Euclidean space R, R. Osserman ({Oss63]) proved that there are essentially
two types of behavior, and that they are distinguished by the total (Gauss)
curvature of M, C(M) = [3;|K|dV, where K is the Gauss curvature. For
a complete minimal surface M? C R®, C(M) is finite if and only if M has a
compactification via the Gauss map. (In this case, M is conformally equiv-
alent to a compact Riemann surface M minus a finite number of points.)
Later, Chern and Osserman ([CO67]) generalized this result to hold for com-
plete minimal surfaces M? C RY. These theorems suggested the problem of

classifying complete minimal surfaces with finite total curvature.

Until the last decade, there were very few results, even in the case of M?
embedded in R3. For more than two hundred years, the only known examples of
complete embedded minimal surfaces M? C R® with finite total curvature, were

planes and catenoids. It was widely conjectured and believed that these were

the only such examples ([Hof87]). In fact, R. Schoen ([Sch83]) and Jorge and




Meeks ([JM83]) were able to rule out any other possibilities in certain cages.
Then, in the early 1980’, C. Costa exhibited a minimal surface which was
complete and had finite total curvature ([Cos82). A few years later, Hoffman
and Meeks proved that it was embedded ([HM85]). Eventually, Hoffman and
Meeks constructed an infinite family of complete embedded minimal surfaces
in R® with finite total curvature ([HM90]).

In higher dimensions, there is a theorem which generalizes the Chern-

Osserman theorem for minimal surfaces. Define the total scalar curvature,

A(M), of a minimal submanifold M” C R" to be
M) = "d
A= [ AP av,

where A is the second fundamental form of M, |A| is the Euclidean norm of A,
and dV is the induced volume form on M. A is called total scalar curvature
because, for minimal submanifolds, the scalar curvature is equal to —|A[%.
Note that A is scale-invariant and, if M? C R®, then A(M) < co if and only

if C{M) < co. The following was proved by M. Anderson ([And85], [And84]):

Theorem If M™ C RN, n > 2, is a complete minimal subman-
tfold, then A(M) < oo if and only if M has a compactification via
the Gauss map, which gives a conformal diffeomorphism between
M and a compact Riemannian manifold M minus a finite number

of points.

This result motivated the question of classification of higher-dimensional

minimal submanifolds with finite total scalar curvature. Much less is known




than in the case of minimal surfaces. The only known examples of complete
minimal submanifolds M™ ¢ RY, n > 3, with A(M) < oo, are (higher-
dimensional) catenoids (see [Bla75]) and planes. An outstanding question
in this area is whether or not any other examples exist. R. Schoen ([Sch83])
proved that any complete minimally immersed hypersurface M™ < R™*! which
is “regular at infinity” (a condition which is equivalent to A(M) < co) and
has two ends, is either a pair of planes or is a catenoid. In Chapter 2, I
prove that if M is a complete minimal immersion of arbitrary codimension,
M c RN, n > 3, with A(M) < oo, and if M has two ends, then M is either
embedded or planar, Moreover, if M is embedded, and ifn > %‘i, I prove that
M™ actually Hes between two parallel n-planes in some subspace R"t! C RY.

When combined with Schoen’s result, this yields the following:

Theorem Let M» C RN, n > 3, n > %, be a complete
minimal immersion having two ends and A(M) < co. Then either

M is planar or M is a catenoid.

In Chapter 3, I examine the case of complex submanifolds of CN = RV,

and prove the following:

Theorem Let M® C C¥, be a smooth complete connected com-
plez submanifold of complez dimension k > 2, with A(M) < co.

Then M is a plane.

This contrasts the situation for complex dimension & = 1. In that case, there

are many examples with A(M) < co. The main step in the proof of the result

above is the following Gap Theorem:




Theorem Let M* be a smooth complete connected complex sub-

manifold in CV. There exists ¢ = e{k, N) > 0 such that if

1 2
B(M) := SUp oy fDm(r) |A|"dV <e
for some z € M, then M is a plane.

Here £ is the complex dimension of M, D,(r) is the geodesic ball about z of
radius r in M, A is the second fundamental form of M, and dV is the induced
volume form on M. The quantity B(M) comes from a term in the expansion
of Weyl’s formula for the volume of a tube ( [Gri78], [And86], [Wey39]), which
has been made to be invariant under rescaling. The Gap Theorem says that
for the given class of submanifolds, there is an interval of values (0,¢] which
the curvature quantity B does not attain. (See [And84] and [Kas86] for related
results.) In further work, I hope to use the Gap Theorem to obtain a theory
for complex submanifolds M with B(M) < oo, which would give global ge-
ometric and topological information, similar to that in [And84| for minimal
submanifolds M with A(M) < oc.

In Chapter 4, I prove a result on the singular set of the tangent cones
at infinity of complete stable minimal hypersurfaces in Buclidean space with
bounded volume growth. I have proved that the singular set of such tangent
cones has codimension 2. It appears likely that the singular set has even
higher codimension. It is known that for complete area-minimizing minimal
hypersurfaces, the singular set of the tangent cones at infinity has codimension
7, and there are examples with singular set of codimension exactly 7. ([Fed70])

Thus, the best result to hope for in the case of stable minimal hypersurfaces




is a singular set of codimension between 2 and 7. It would be interesting $o

know if there are any examples of stable minimal hypersurfaces with bounded

volume growth which are not area-minimizing.




Chapter 2

A Result for Higher Codimensions

2.1 Collected Theorems (for reference)

I will use the following theorems, which I lisi here for convenience:

Theorem A Let M™ C RN be a complete minimal immersion,
n > 2, with finite total scalar curvature. Then each end of M has

a unique n-plane as its tangent cone at infinity. [And84, 3.1, p.
17]

Theorem B Let M™ C RY be a complete minimal immersion,
n > 2, with finite total scalar curvature. Then M has only finitely

many ends, each of finite topological type. [And84, 2.5, p. 13]

Theorem C Let M™ ¢ RN, be a complete embedding of finite

topological type, n > 3, n — 1 = %, with o well-defined tangent




plane at infinity on each end. Then for each end V;,

Sifr) = (0 SV ()

converges to the same subsphere S** of S¥~1 asr goes to infinity.

[JM83, Theorem 3, p. 209]

Theorem D Assume n > 3, and M™ C R" is a minimal
immersion with the property that M — K, for some compact K, is

o union of My,...,M,, where each M; is a graph of bounded slope

over the exterior of a bounded region in a hyperplane. Then M is
regular at infinity. (Such an M is said to be “reqular al infinity”
if it satisfies the hypotheses of this theorem and, additionally,
wi(z) = b+ alel™ + Y eizsla| ™"+ O(l2[ ),
i=1

is an expression of the graph M;.) [Sch83, Prop. 3, p. 802]

Theorem E Let M™ C RY be a complete minimal immersion,
n > 2, with finite total scalar curvature. Then M is properly im-
mersed. (Recall that an immersion is said to be proper if the inverse

image of any compact set is compact.) [And84, 2.4, p. 13]

2.2 Statements of Results

The main results in this chapter are the following:




Theorem 1 Let M™ ¢ R be a complete connected minimal embedding,
n > 3, with finite total scalar curvature. Then M"™ lies between two parallel

n-planes in R"1,

Theorem 2 Let M™ C RY, n > 3, be a complete oriented minimal immersion,
with finite total scalar curvature. Suppose M has two ends. Then either M is

the union of two n-planes, or M is connected and embedded.

Theorem 2 is related to a result obtained by R. Schoen {[Sch83]) for
the case N = n + 1. The proof I give here is a simple argument using the

monotonicity formula and a theorem of M. Anderson.

Theorem 3 Let M* CRY, n >3, n > %“—1, be a complete connected oriented
minimal embedding with finite total scalar curvature. If M has two ends, then

M lies between two parallel n-planes in some R C RY.

Due to Schoen’s work, the following is a corollary of Theorem 3:

Theorem Let M® C RN, n >3, n > %, be a complete connected oriented
minimal immersion with finile total scalar curvature. Suppose M has two

ends. Then M is a catenoid.

A related result is the following theorem of Anderson: if M® C RV, n > 3,

is a complete oriented minimal immersion with A{M) < oo and one end, then

M is a plane. [And84, Theorem 5.2}




2.3 Proof of Theorem 1

Proof From Theorem A, M has tangent n-planes at infinity. Denote the

collection of these n-planes by {F,}icr, where I is some index. Theorem B

says that M has only finitely many ends, and thus finitely many tangent n-

planes at infinity, say P, ..., Pp. All of the { P} are parallel in R**! by Theorem

C. These may be assumed to be of the form

P = {(ny s Yup1) € R Myprn = &},

with Cit1 2 C; for 7 = 1,2, veey k—1.

Define the set A by
A= {10 o) € R er < yupg <)
For every € > 0, let
Y. :={ge M cR"d(q,A) > &).

Y. is the set of points in M which are bounded away from A by . From The-
orem A, the ends of M are asymptotically flat. Also, each end is asymptotic

to an n-plane, which must be one of the n-planes P, C A, Thus each set Y,

is compact. If M is written as {u(z)} = {(u1(2), ..., unt1(2)}, then the coor-
dinate functions ug, 8 =1,...,n -+ 1, are harmonic. Theorem B says that wu is
a proper map, so, for each € > 0, the preimage X, := w=!(Y.) of the compact

set Y;, is compact.

Fix g0 > 0. Suppose there exists a point § = (¢i,..., fny1) € Ys, such that

Un+1 = €0. By the maximum principle for harmonic functions, u,, achieves




a maximum value m on the compact set X, = u‘l(YsU), and m > g;. Since
Unt1 has values strictly less than ey on w~"(M — Y.)), m must be a global
maximum of u,,; on © 1(M). But M =@, so (v~ (M)) = 0. So it must
be that u,y1 = m > gy > 0. This contradicts the fact that the ends of M are
asymptotic to the n-planes P; C A, 7 = 1,...,k. Thus there can be no point
g in Y,, with §,41 > €o. This argument holds for all g > 0, 50 upy1 < ¢ A
similar argument yields u, 1 > ¢, so that M les between the two n-planes

Pand P, O

Remark: In this case, M is either a plane, or M has at least two ends which
are asymptotic to catenoid ends. This follows from [Sch8&3, p. 800], where the
definition of regular at infinity is extended to include minimal submanifolds of

arbitrary codimension.

2.4 Proof of Theorem 2

Proof Since M is a complete minimal immersion, every connected component
of M has at least one end (there cannot be any compact components). So M
having two ends implies that M has either one or two components. If M has
two components, then each component must have one end, and the following

theorem can be applied to each component:

Theorem Let M™ C RY be a complete connected minimal im-

mersion, n > 3, with one end and finite total scalar curvature.

Then M is a plane. [And84, p. 28]

10
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S0 M is either a pair of planes, or M has only one component. That is, M is

either a pair of planes, or M is connected.

Now define
vol(M™ N Bf(r))

r?’i.

vp(r) = )

for pe M, r > 0. [ will use the following:

Theorem If M™ C RY is minimal and p € M, then vy(r) is

monotonically nondecreasing in r. [Fed69, 5.4.3], [Sim83, Section

17]

Theorem If M™ C RN is analytic at p, then

vp(0) == Tl_i%i vp(r) = a(n),

where a(n) is the n-dimensional volume of a unit n-ball. [Fed69,

3.2.19]

Theorem Let M™ C RY be complete oriented minimal immer-
sion, with finile {otal scalar curvature. Then M is diffeomorphic to
a Riemannian manifold with finitely many points removed. Also,
each end of M has multiplicity one and is embedded. [And84, The-
orem 3.2 and Theorem 5.1]

By Theorem A and the theorems above, M can be written as M = 1, U
Va U S, where the V; are embedded ends, ¢ = 1,2, and S is compact. Since

each end has an n-plane as its tangent cone at infinity,

. vol(V; N B;V(r))

= afn),

T—+00 | id




for each ¢ = 1,2. Also,

(ViU V,)n BY
lim vy(r) = lim ~ XAV OBE)) o s
=00 T—00 ks

since analyticity implies that V4 N V, has zero n-dimensional measure, unless
Vi and V; coincide everywhere.

Let p be a point where M self-intersects. Then v;(0) > 2a(n), unless M
coincides with itself in a neighborhood of 5. In the case of co-incidence, ana-
lyticity forces M 1o have two components, and thus M is a pair of coincident
planes.

Assume that M is not a pair of coincident planes, and let $ be a point

where M self-intersects. Then v;(0) > 2a(n). But

lim vz(r) < 2a{n),

and vs(r) is monotonically nondecreasing in r, so vz(r) = 2a(n). Thus M
must be the union of two planes. (Otherwise, M would have v;(r) > 2a(n)
for some r > 0.)

If M is not the union of two planes, then there is no such p, and M is

embedded. [

2.5 Proof of Theorem 3

First, I prove the following lemma, which generalizes a result proved by

Jorge and Mecks for the case n = £ ([JM83, Theorem 3, p. 209]).

Lemma Let M™ C RN be a complete embedding of finite topological type,

n>3,n> %f'—l-, with o well-defined tangent plane at infinity on each end.

12




Then the components of
1 0 N-1
Xe = —(M" N SV
r
converge C to the same subsphere S™=1 of SN=1 g5 goes to infinity.

Proof of Lemma Part (2) of Theorem 2 in [JM83] holds, to give that

each component C? of X, converges C? to a totally geodesic sphere S71 in
SN-1 Suppose S and 5'5,’7“_1 are distinct. Let PP, P! be the n-planes
containing S* 1 SJ’-’““l, respectively. Since S S;*'l are totally geodesic,
dc Frn PJ?”. The condition n > _1\;% implies 2n > N + 1, which implies that
PPNPT C RY is at least a one-dimensional plane. Thus the intersection of the
great spheres S ! and 571 contains at least some great sphere S°. Since it
was supposed that the S*1 and S;-‘"l are distinct, they must intersect in V-1
without coinciding. The C*-convergence in Theorem 2 in [JM83] implies that
C* and CY intersect transversely for large r, which contradicts the hypothesis

that M™ is embedded. Thus S and .5’;-‘_1 must be the same great sphere in

SN-1

Proof of Theorem 3 Let V; and V2 be the ends of M. Let II; and II; be

the n-dimensional tangent planes at infinity of V; and V,, respectively. The
lemma implies that I, and II, are parallel, in the sense that they differ only
by a translation normal to the IT,’s.

Let A be the convex hull of tI; U IIy; that is, the intersection of all N-
dimensional halfspaces in RV containing 1I; U II,. Let 7 be a line which

intersects II; and II,, and which is also normal to II; and II;. Consider the set
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of all points on lines which intersect II; and II; and are parallel to . This set

is an {n+1)-dimensional subspace of R, which I will denote by R**. Clearly

A C R+

The n-planes II; and II, are contained in A by definition. Theorem A
implies that the ends of M are asymptotically flat, and approach the planes
II; and IT,. Thus M could only be bounded away from A on a compact set,
but the maximum principle rules this out. Since no part of M can be bounded

any distance away from A, it must be true that M ¢ A C R**!. O

2.6 Consequences

Theorem Let M* CRY, n>3, n> %"—1, be a complete connected oriented
minimal immersion with finite total scalar curvature. Suppose M has two ends

and is non-planar. Then M is a catenoid.

Proof By Theorem 1, M is embedded. Thus, by Theorem 2, M™ lies in some

R™* < RY. R. Schoen [Sch83| proved that in this case, M is a catenoid. O




Chapter 3

Results on Complex Submanifolds

3.1 Preliminary Remarks

For a complete minimal submanifold M™ C RV consider the curvature

quantity B,(M) defined by

1
Bu(M) = omp 5 [ Lafay,

where B,(r) is the Euclidean N-ball about the point z in M with radius r.
Proposition [If A(M) is finile, then so is Bo(M), for all z € M. And if
B,(M) is infinite for any x € M, then A(M) is also infinite.

Proof Suppose A(M) is finite, and let z be any point in M. By Hélder’s

inequality, for any r > 0,

I8

n—2

/ APdV < (/ IAl“dv)"-(f mv) ’
MnNB,(r) MNBg(r) MnBz(r)

I

- ( /MOBAT) Al dv) " [Vol(M N B (r))] 5.
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So

2

= [Vol(M N By(r))] "+

= apav< ([ jarav)
P2 IMNB.(r) MBg (r) e

The condition A(M) < oo implies that M has a finite number, say I, of

tangent n-planes as its tangent cone at infinity, and therefore implies that

o Vol(M 1 B(r)

r—0o0 f

=1

By the monotonicity property of minimal submanifolds ([Fed69, 5.4.3], [Sim83,

Section 17]),
Vol(M N B,(r))

?«'n,

<l

for all r > 0. Since

/ A" aV < / A" dV
MOB, (r) M

for all » > 0, then

e

S lapav < ([ 1arav)™ % <o,
=2 JMnB,(r) M

for all finite » > 0. Also,

1
lim —— f AP dV
r—=oo p2 farng, (r)

" / arav)” Vol(M N B,(r))] =
T—00 MnNBg(r) re

- UM A" dV)

IA

Fle

(D < oo,

So then

T—+00

1 2
i A /MﬂBx(r) APV < co.




In the case that B,(M) is infinite for some z € M, the same inequalities

show that A(M) is also infinite. O

If n = 2, then A(M) = B,(M) for all z € M. For n > 3, there are
examples of submanifolds with B,(M) < oo for all z € M, which do not have
A(M} < co. Thus the class of minimal submanifolds with B.{M) bounded for
allz € M is larger than the class with A(M) bounded. It would be interesting

to have a description of the global geometric and topological behavior of the

class with B,(M) bounded.

3.2 Proof of the Gap Theorem

Lemma 1 Let X* be a smooth complex submanifold in CV with dimeX = k.
Let By(r) be the ball in CV of radius r centered about z, and let Dy(r) =
X N By(r). Suppose DA1)N X =  for some z € X. There exists € > 0

such that if

1 2
P22 /Dm(r) |A]"dV <,

sup
0<r<2

then

sup 4%+ sup |AP(p)y < 4.
te[01] p€EDL (11}

Proof Suppose the lemma is false. Then there exists a sequence of smooth

complex minimal immersions k; : XF — CV with D, (1) N 9X; = § for some

17
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points z; € X;, such that

sup
O<r<2

1
5 [ ARV,

as ¢ — oo, but

sup <% - sup |A[X(p); > 4

te[0,1] PED,, (1-1)
foralli =1,2,3,.... Choose ¢; € {0,1] such that
2. sup |AJN(p)= sup (- sup  |A[(p)
PEDg, (1~t;) te[0,1] peDz, (1-1)

and choose y; € D, {1 —{;) such that

Al () = sup Al ().

pEDwi (1-—i,‘)

Then
AL () =1F - sup  |AJ(p) = sup {4* - sup |AP(p)
PEDg; (1—t;) te[0,1] peDx{1-1)
1:\? 5
2(5)- sup  |A[(p)
pEDmi(l'"%“)
implies

A ()= sup |AF(p) = sup  |AlN(p),

pels, (1-4) peDy, (%)

since
t; t;
= |1 —=1.
Dy'(z)cpm*( 2)

Let d3? = | Al (y;)ds? be the metric on X; induced by the complex immer-

sion h; = 6; - by, where & is dilation of CV about hi(y;) by the factor |A|,(v:).
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[t may be assumed that h;(y;) = 0, by translating, if necessary. Note the fol-

lowing relationships, where ~ signifies a quantity with respect to the induced

metric:
—_— 1
PO =P\ )
F= |A|i(%’) Ty
dV; = |A[*(:)dV;,
and
Al(p) = = - |AL(p)
i = <" i\?)s
| Al (:)

where r = |z|, € CV. Then
~2
_osup AR ()AL (p) = sup A7 (p) < 414 (%),
PEDm(MIi{yi)'%) pEDyY (F)
and so

~ 2
_ sup |A]; (p) < 4.
€Dy, (JAli (%) 5)

By assumption, 22| AL(y) > 4,50 [Al(y:) & > 1, and Ty (1) € Dy (1 Ah(ye)- 5).
Thus

~ 9 ~ 2
sup |A[;(p) < sup  |A](p) <4
pEDy, (1) pEDyY (|Ali{wi) )

The sequence h; : Dy, (1) — C¥ is then a sequence of smooth complex
immersions of open geodesic balls of radius 1 with uniformiy bounded curva-
ture, translated so that &;(y;) = 0. By the smooth compactness theorem, a

subsequence converges in the C°°- topology on compact subsets of CV, to a

~r ——

complex analytic immersion Ao : D, (1) — CV with SUPLeR, (1) |AJ|ZO < 4
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This convergence implies

L VG- [1ALdV..,
D.‘Ji Dyoo

Note that [Al;(y:) = aien - 1Al(w) = 1, for all i = 1,2,3,... implies
|A]o. (4o0) = 1.

By a result of Griffiths [Gri78, p. 471], the quantity

1 2
e f

is monotonically increasing as a function of r if X is a smooth complex analytic

variety. Thus

sup
o<rcy T2R2

1 P
ARdV; = v,
fDmi(r)l |7dV; sup ~2k_2/~ )|A|de1

0<F<2| Al () T Do, (7
o
(2| Ali(y: )% JDe, 214l ()

D

|A|3dV1- — 0.

Since y; € Dy, (1 —t) C Dg,(1), then D, (1) C D,,(2) and
Dy (1A1:(5:)) € Dai(2141:(5:)).

So

I

PO P
< /;, ALV,
|A]2 () Dy,-(IAIe(%))| :

b

i

AV,
1)

i ALdv
- _.___.___/N Al dV; — 0.
IA|2I¢ 2(%) Dm‘.(2|AEs(yi))| |

But
/N 1A 3V =0
Dyoo (1)

contradicts |A| _(ye) = 1. This contradiction means that the lemma must be

true. [




Lemma 2 Let X* be a smooth complex analytic submanifold in CV, with

D,(1)UOX =0 for some z € X. There exists ey > 0 such that if

sup
D<r<2

1
then

sup |A[*(p) <6,
PEDm(%)

where 6 — (0 as e — (.

Proof Suppose Lemma 2 is falge. Then there exists a sequence of smooth
complex analytic immersions g; : ZF — CV with g;(2) = 0 and D,.(1) U
07Z; = B for some z; € Z;, such that
sup —1_—/ |A]2dV; — 0,
acr<2 T2 Jp, ()
but
sup |Alf(z:) = C,

PEDs,(3)
for some fixed constant ¢’ > 0. From the previous lemma,
sup 917 - sup  [Af}(p) p <4,
t&[0,1] pED,, (1—1)
for ¢ sufficiently large. So
1\? 2 2
IV s 1R <4, and ewp [AR(p) < 16.
2 'PEDZ,'(%) 7 PEDZ,;(%)
By the smooth compactness theorem, a subsequence of g; : D, () — CV

2

converges in the C*-topology on compact subsets of CV, to a smooth minimal

immersion go, : D,_(3) — CV. Since

1 1
Al2dV; < - / AlZdV, — 0
p2k—2 ‘[Dzi('f’) I |1, — 03322 p2k—2 D,.(r) | |z — U,

sup
o<r<d

21
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and

1 1
su Al}dV; — su %/ A|l* dV,
0«@5% 2k—2 /Dz,.(r)| |;dV; O<"'§1 2k—2 DZm(r)| |5 ;

3
it follows that
1 2
swp s [ APV =0,
o<rgd T Dieo(r)
Further,
e [ ARV < sip i [ ARV =0
(%)%—2 Dao (3} ¥0<rg% T
implies
f A2V, = 0.
Dzoo (3)

But it is also true that

sup  |A[S(p) 2 O > 0,
peDZoo(%)

which gives a contradiction. Thus the lemma must be true. O

Gap Theorem Let h: M* — CV be a smooth complete connected comples

analytic immersion. There exists gg = eo(k, N) such that if

1
SUP k2 /Dz{»r) |A[*dV < eq

for some x € M, then M is a plane.

Proof By translation, assume that h(z) = 0, and let §g be dilation of CV

by 1/R. Let the new metric quantities with respect to the iminersions 6z o A




be denoted by a subscript of R. E.g., rg % . ..

.Dw(R ' 5),&ﬂd |A|R(3;) =K. |AI($)‘ Let v € (072] be such that :
__1 2
(Tr)zk—-z wa(T,) |A| dV =

r, dVp = ﬁldeVv

1
sup ——— A2V,
2, G gy
By monotonicity, such an ' exists, and 1’ = 2 suflices. Note that
1
(rf)2k~2 .

1
APdV = ——— Al% dV,
/Dz(-rf) A (rp)®-2 /(Da)m(rg) [Aln 2V
for all B > 0. So the quantity

1
su

1
APAV = — f APV
a<rgz 722 /Dz(r)l | (rr)2%-2 Dm('r’)' |

is invariant under rescaling. Let € be the constant given in Lemma 2. So

1

1
ymere APdV = / AP dVy =7 <
(rr)2-2 /Dmtr') A (7P 2 Jipmui AR Ve =E < 50

for the immersions ég o h, for all R > 0. Then

sup

[Alz(p) < &
pC(DR)z(3)
for all R > 0, where § — 0 as & — 0. So

sup R2|A|2(p) <&
pe(D)=(E)

and

6
sup |AP) <
p€(D)z(£)

on X. Thus X is planar. [

for all B > 0. Letting R — oo yields sup |A*(p) = 0, which implies Al =0
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Remark: The preceeding proof runs along similar lines to the proof of

Proposition 2.2 in [And84].

Corollary Let M™ C CV be a smooth complete connected complex submani-

Jold with complex dimension n > 2 and finite total scalar curvature. Then M

is a plane.

Proof I will use the following pointwise estimate of Anderson [And84, p.

22):

C
|$|2n

|Al(z) <

for large |2|, where ¢ > 0 is a constant.

Note that

lim

roo pin—2

[ ARy < Jim i [ japay.
Dy (7) rvoo p2=2 Jp_ (M

Also, for any constant & > 0,

- 1
Iim
fEe Tote) 7—-273»—2

j " [A]PdV < 0o < lim L APV < o0,
Byg (rynM

ree pin= /(Bzo (r)~Bay ()N
since | A is smooth and bounded on M (by the theory of minimal submanifolds

with finite total scalar curvature [And84]). So then

1
| Aav
r—00 p2n— (Bug {r)— Bz {))M
1
s Jim G / TV
r—co p2n— (Bzg (r)—Bay (s))NM |$| ™
1 C
S IIH} / T dV N
r=00 122 Jp. () -Bag(e) || .

. 1 T ¢ et
= 7'15%10 pin—2 /; /SN_J(l) p_él'r: P dO’ d‘o

(where dVw is the volume form on RV, p = |z|, and do is the volume form on




the unit sphere SV=1(1))

= % Vol(SVI(1)) - Tim L ( L i)

Since n was assumed to be greater than or equal to two, the last line is

zero. This argument holds for all &€ > 0, so choose & small enough such that

1
—— AV <
gin—2 Lzo ()M | ‘ > £oy

where ¢q is the constant given in the Gap Theorem. Then

1
lim —— / |A[2dV
r—roo pin—2 Dag {r)

1
< lim —f |APPdV
r—oo pin=2 Jp_ (r)nM

1
= lim "ﬂf Af*av
r—ro0 P47 (Bmo (r)=Bag (e))NM
1
i / Al*dV
+ T-Lrgé T2n_2 Bmo (e)nM | |
S £p.

Thus M is planar. O
As was noted in the introduction, this result does not hold if n = 1.

For example, the graph of the complex function f(z) = 2? has total scalar

curvature %’”



-ﬁimal Submanifolds




if

HA

< R,

implies

AP + f o
Bo(R)nM (Bo(2R)—Bo(R))nM R (Bo(2R)—Ba (R))nM

Thus

1 1
< =
Bo(R)NM T J(Bo(zR)-Bo(R))nM 2 T JByemym R

1
B2 Jpy(Rynis

1

A < —
|A] <

-Vol"(B(2R) N M) ,

and

.1 . Vol(B(2R) n M)
lim —— 2o
Rovoo R2 Iy (R)nM AP = 2 ]%E;%o (2R)"

Vol*(M™ N BY (r))

T’ﬂ

<K :




e he tangent cone at infinity of M 'lids__;;_;:_sl_

codimmension 2

Proof FirSt ‘note that

<K

Vol (M™ 1 BX (1))

.rﬂ

for SOIl.'.lé.'.a:’,'.& eM i_m:pli:eé )

[ n N
i Vol*(M™ N B, (r))

T—r00 r7

<K

for a.l'l z ZEI M. This is true because

Vol{D,(r) — D,(r)]  (2r)"" Yz — y| _ 1
Vol(D(r)) < const - r® const - r 0

as r — 00,

Choose a sequence r; — oo. Define

1
T, := T— (M n Bmo(ré))a
and

Too := lim L (M N By, (ri)).

im0 1
Since M is stable, 7; is stable for each 4. By the Compactness Theorem of
geometric measure theory ([Fed69, 4.2.17], [Mor88, 5.5]), the limit 7., exists
in the flat norm, and is minimal. This gives existence of tangent cones at
infinity, but not uniqueness, since various choices for the sequence r; could
lead to various limits.

Claim: there exists a constant N = N(n) such that for each 3, there is a

covering of T; by %—baﬂs with no point of 7; contained in more than N of the




|A[2dV > e.

<

By the Proposition,
|A*dV < K

forall z ¢ M. So
1

72 B, (r)nM

[AdV < K

for all r > 0, and for all z € M. Since U,, C L (M N By, (n))

L AP
riT 7 (M By (7))

|A|PdV <

ay

of those o; su_bh‘

o




1
n—2
[

|APdY = 2

r & (MNB, (r:) (r)y 2 (}i(ﬂ{ﬂon(w)))xl __|

1 . 1
= [ AP =
“ Ty /\'E(M”Bwo (r:)) T (MOBa, (r:))

and so

n—2
L

| APV < K.

Since U,, = e (Tl—‘) N 13, no point of M is in more than N bf_rth

Us;. Thus, for any given 1,

. 1
Mes $es B[ P = $ L apay

o €A a;EA; o;eh; i

<rfi.N- [APdV < 2. N . K.

=2 Jo
Dividing by ¢ yields

[A;| < const - 2,

since 1; has Hausdorff dimension n, IT';|, the number of %—ba,lls in-'."th'e
cover O; of T;, is proportional to ri'. 'The gingular set of T} is conta,ined."ln
the U,, for o € A,. By the definition of m-dimensional HausdorT meas.u_:r_é_
([Fed69, 2.10.2]), the singular set of each T} is of codimension 2, and so t_ﬁé

singular set of any 7T, is of codimension 2. []
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