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Abstract of the Dissertation
Irreducible Tempered Representations of the Special Linear Group

over a p-adic Field
by

Renée Carol Burton
Doctor of Philosophy
in

Mathematics

State University of New York
Stony Brook
1995

The classification of the irreducible admissible representations of the
special linear group SL,(F) over a p-adic field reduces to the classification
of the irreducible tempered representations. These latter representations are
known to comprise the irreducible constituents of standard unitary represen-
tations parabolically induced from discrete series. The reducibility of these
standard unitary induced representations is controlled by the reducibility
of standard unitary induced representations of GL,(F) when restricted to
SL.(F). Moreover the reducibility is measured by a finite abelian group
known as the R group.

In this thesis, the discrete series of the standard Levi components of

SL,(F) are classified and, using the R group, divided into Class I and Class




I representations. The Class I representations include those with a cyclic R
group. Theorems of Mackey are employed to demonstrate that the reducibil-
ity of representations parabolically induced from Class I discrete series actu-
ally occurs on an intermediate Levi component. A complete classification of
the irreducible constituents of the standard unitary induced representations
in the Class I case is then given. Explicit realizations of these constituents
are made in terms of the reducibility of some basic representations, called
“building block representations”, and the reducibility of the discrete series

of the general linear group.
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I. INTRODUCTION

Connections with algebraic number theory, automorphic forms, and
harmonic analysis motivate the study of the representation theory of reduc-
tive groups defined over a local field F. Irreducible admissible representations
play a significant role in this theory, and consequently their classification is
an important step in understanding the representation theory of reductive
proups. Langlands [Lan] originally addressed this classification question for
reductive groups defined over R or C in 1972, and his ideas have influenced
the research in representation theory since that time. In the real or complex
case, Langlands reduced the classification of irreducible admissible represen-
tations to knowledge of the irreducible “tempered” representations. By the
1977 conference in Corvallis, Casselman had generalized this result to handle
reductive groups G defined éver any local field.

The first ingredient for the classification is the discrete series repre-
sentations, i.e., unitary representations with square integrable matrix coef-
Geients modulo the center of G. If P = MN is a parabolic subgroup of
a reductive group G and o is a discrete series representations of the Levi
component M, then we can construct a representation of G by parabolic
induction, We refer to such a representation as a standard unitary induced
representation. The irreducible tempered representations of G are the irre-
ducible constituents of these standard unitary induced representations. Thus
4 full classification of the irreducible admissible representations arises from
an understanding of the discrete series of the Levi components of G and the

reducibility of the standard unitary induced representations.




For the case that the field F is R or C, these steps were completed
some time ago. Harish-Chandra [H-C1] parameterized the discrete series,
and Knapp-Zuckerman [K-Z] analyzed the reducibility of the standard rep-
resentations and classified the irreducible £empered representations. Thus
the Langlands classification may be regarded as complete for real or com-

plex reductive groups.

The reductive groups defined over a nonarchimedean field F' have
proved more difficult to handle. It is known [Cas] that the representations
induced from parabolic subgroups have a finite composition series; however,
most results for reductive groups over a nonarchimedean field pertain only to
specific groups. The historical role and seeming familiarity of matrix groups

makes them a natural choice for study.

Indeed the classification for the general linear group G'Ln{F) is now
complete. Jacquet [Jac] proved that the standard unitary induced represen-
tations are always irreducible, and Bernstein-Zelevinsky [B-Z] reduced the
classification of the discrete series to a classification of the “supercuspidal”
representations. Kutzko [Ku| determined the supercuspidals of GL,(F), and
the classification of supercuspidals for GL,(F) was carried out independently

by Bushnell-Kutzko [B-K] and Corwin {Cor].

The classification for GL,(F"), however, does not handle closely re-

‘lated groups like the special linear group SLn(F ), which is the subject of

‘this thesis. We consider the case that F'is a nonarchimedean local field of
aracteristic 0 (though we believe that the restriction on the characteristic

s not necessary). Thus F is a finite extension of the p-adic numbers for some




prime p, and we shall refer to such a field as a p-adic field. Classification of
the diserete series of SL,(F) amounts to understanding how the discrete se-
ries of GL,(F") reduce under restriction to SL,(F'), and thus the commpletion
of the Langlands classification for SL,(F) comes down to an understanding
(')f the reducibility of the standard unitary induced representations. It turns
out, just as with the discrete series, that the reducibility depends upon the
reducibility of unitary induced representations of GL,(F') when restricted to

SLa(F).

Suppose P = MN is a parabolic subgroup of SL,(F), and let .o be
a discrete series representation of M. Let = = Indi}‘ﬁ (o) be the standard
unitary induced representation of SL,(F) determined by o. The reducibility
of 7 is measured by a finite group known as the R group, which quantifies
the reducibility of the induced representation by specifying a basis of the
commuting algebra. The R group was introduced for groups defined over
R by Knapp-Stein [K-S1] and was adapted to the nonarchimedean case by
Muller [Mul] and Winarsky [Win].

For the problem at hand, the first induced representations studied in
detail were those of the principal series, i.e., the representations induced from
the upper triangular group (a minimal parabolic subgroup), using a unitary

“‘character on the diagonal subgroup as the inducing data. Gelbart-Knapp

1ey found that the structure of the R group points to some connection with

somorphic to a group of characters of the multiplicative group F*of F, and

G-K1] showed that the R group for this situation is always abelian, and




subsequently as a certain quotient group of F*. Thus by local class field
theory, the R group is identified with the Galois group of a finite abelian
Galois extension of F. Goldberg [Gol], building upon work of Shahidi [Shd]
and Gelbart-Knapp, showed that the R group for a standard unitary induced
representation coming from an arbitrary parabolic subgroup, is canonically
isomorphic to a certain quotient group of characters of the multiplicative
group of F. In this thesis, we realize R in this fashion and as a related

permutation group; see Section 3.3.

Consider the reducibility of the standard unitary induced representa-
tions of SL,(R). If P = MN is a parabolic subgroup of SL,(R) and o is 1n
the discrete series of M, then the R group of ¢ is either trivial or isomorphic
to Zo. The first step in describing the irreducible constituents of the stan-
dard unitary induced representations is to parameterize the discrete series
of M. These representations aré, in fact, induced from M#, the product of
the identity component and the center of M. Since the identity component
of M is the direct sum of some copies of SLa(R), we obtain a set of inducing

~ data for the discrete series of M by means of the discrete series of SLa(R).

The induction to SL,(R) is then broken into two pieces; first from M #

‘to M, and then from MN to SL,(R). The reducibility of = = Ind3 (o)

zi(_:_tually occurs at the level of M, and the irreducible constituents of m are
tha,ined by inducing the irreducible constituents on M to SL,(R). Under-
standing the reducibility on M comes down to understanding the reducibility
ofs me basic representations on § LE(R); see [K-S2] and [K-Z]. This.. example

_h_'é__;nodel for our approach to SL,{¥), where F is a p-adic field.




Since the discrete series representations of SL,(F'} arise from the re-
striction of discrete series representations of G L, (F'), we are able to associate
(non-uniquely) a standard unitary induced representation of GL,(F') to that
of $L,(F). The reducibility of this representation of GL,(F') when restricted

to SL,(F) controls the reducibility of the standard unitary induced repre-
sentation we started with. The theory presented in Gelbart-Knapp [G-K1]
extends directly to show that any reducibility in the restriction to 5 L.(F)
actually occurs on a subgroup of finite index in G L, (F'), and this subgroup
is pointed to by the R group. This fact allows us to apply “Mackey theory”

to our situation.

We are first led to classify the discrete series of the Levi components
M for standard parabolic subgroups of SL,(F) (Theorem 4.2.2). If o is
a discrete series representation of M, we write n — Ind}?}’ﬁ(m (o) for the
standard unitary induced representation determined by o. We then use the
R group of ¢ to describe the discrete series representations of M that contain
o in their restriction to M, where M is the corresponding Levi component in
G L, (F) (Propositions 4.4.1 and 4.4.2). Combining these two ideas gives us a

‘specific realization for a representation ¢’ on a certain intermediate subgroup

_ X (ie., M C MX C M) whose restriction to M is equivalent to 0. The
roup M is the Levi component for a subgroup GX of GL,{F) containing
n(F), and we can consider the representation achieved by parabolically
ducing o' to GX. The reducibility of this representation, when restricted
SL,(F), is exactly that of the representation achieved by parabolically

ng o to G. Thus our attention turns to studying the representation




7= IndAG,;;N (") (1)

and its restriction to SLn(F').
We then define so-called “building block representations.” To do so,
we suppose that M is the “block diagonal” subgroup consisting of exactly k
blocks of equal size ¢. Let GX(F) be a subgroup of finite index in GL,(F)

that contains SL,(F), and let MX = GX N M. Define a representation of

ET
neT
MX
Indn G:}Y . 7 (2)
rer/ Iy
for some discrete series representation 7 of G‘;( . Here ¢ = diag(e,1,...,1)is

a specific coset representative for GLn(F)/ GX. Then the representation in
" (2) can be parabolically induced to GX, and the induced representation is
called a building block representation.

Let M be the Levi component for a standard parabolic subgroup of

Ln(F ), and let ¢ be in the discrete series of M. We form the induced
épf_e;sentatiqn 7' as in equation (1), where a'- satisfies o'|pr & o. If ¢ has
cychc R group or, more generally, ¢ is a “Class I” representation in the
nse Qf Section 4.4, then we are able to associate to 7' a set of building
ck fépresenta,tions. We break the induction to SL,(F) into two pieces;
t ;_i'.larger Levi component M’ determined by the building block rep-

_taj::i_dns, and then to all of SL,(F). Mackey theory allows us to see




that the reducibility actually occurs on M', and consequently to describe
the irreducible constituents of #’|sy, (7 in terms of the reducibility of these
building block representations ana the reducibility of discrete series repre-
sentations (Theorems 5.1.2, 5.2.1). Since «'{gg, ;) =7 = Indifr}{}(F) (o), we
can determine the irreducible constituents of «.

If o is a “Class II” representation in the sense of Section 4.4, the
situation is more complicated, and the reducibility is not handled solely by
the methods discussed in Chapter 5. Instead we are led to define a linear
system of equations over the characters of the irreducible constituents of
T = Indff}(}(F) (o) (again actually written in terms of our representation !
of (1)), and we seek to understand when this system contains an invertible
subsystem by which we can compute the characters. This is the subject of
Chapter 6.

Goldberg [Gol] studied the “elliptic” representations of SL,(F), deter-
mining the exact requirements, in terms of the R’ group, for the irreducible
constituents of 7 = Indifﬁ(m (0) to be elliptic. The representations with this
: property are exactly those which can be written as a building block represen-
- tation. Though the representations covered by Theorems 5.1.2 and 5.2.1 gen-
erally do not have elliptic constituents, we see that their constituents are in-
luced from elliptic representations (Proposition 5.3.3). Moreover we can of-
n realize the characters of the irreducible constituents of 7 = Indﬁ}(}(F) (o)

when ¢ is a Class II representation as a linear combination of characters that

- induced from elliptic ones.




II. INTRODUCTORY MATERIAL

§2.1. p-adic Fields.

Let p be prime, and for any rational number 2, write & = p“&' with

nf

m! and n' not divisible by p. Then we define the p-adic norm on Q by
\EI = p~* f{or every e Q. (1)
nip (e

The completion of Q with respect to this norm is called the p-adic numbers
and is written Qp. Any finite extension of Q, is referred to as a p-adic field.
These are locally compact nondiscrete nonarchimedean fields.

Let F be a p-adic field, and let E be a field extension of F' of degree n.
Fix a basis of E over F'. For any a € E*, left multiplication by a defines an
invertible linear operator on E, and consequently determines an element of
GL.(F). The determinant of this matrix is said to be the norm of a (over
F), and is written Ng;p(a). The subgroup Ng;p(£*) of F* is called the
norm group of E (in F). If F is a finite extension of a p-adic field K, then
.NE/K(G,) = Np/x(Ngyr(a)). The following theorem is the fundamental

':.esult of local class field theory.

Theorem 2.1.1. (ref. [Ser, Chap XIV])} Let F be a p-adic field. Then there
- a one-one correspondence between the closed subgroups H of finite index
. * and the finite abelian Galois extensions F over F, the correspondence
eing: that H is the norm group of E over F'; moreover the degree of the
nsion [E : F| is |[F*/H|, and the Galois group of E/F is canonically
orphic to F*/H.




Suppose that [F': Q,] = n. Then there is a unique extension |- |p of

the p-adic norm | - |,, namely
|z = | Ngyg,(z)|)/" forall z € F.
The ring of integers in F' is the maximal subriﬁg of F', ie.,
Op ={z € F[|z|lr <1} (2)
Then O is a Dedekind domain and contains a unique prime ideal
Br={ze€F||lz|r <1} =wOr, (3)

for some w € F. We call w a prime element of Op. The additive group F
is then written F = Unez w™PBpr. Moreover the subgroups {"},.>0 form a
neighborhood base of 0, and the subgroups {1 +9B" }n>0 form a neighborhood
base of 1. If F' = Q,, then Br = (p).

Since O is Dedekind, B is a maximal ideal. The field k = Qp/PF
is called the residue class field of F, and ¢ = |k| is some power of p. If
F =Q,, then ¢ =pand k= F,.

For a complete development of p-adic fields and local class field theory,
hje reader should consult Cassels-Frohlich [C-F], Serre [Ser|, or Hasse [Has).
tie role of p-adic ﬁelds in representation theory can be found in [Car] or

il ‘among others.




§2.2. Structure Theory.

We are interested in studying certain representations of the closed sub-
groups of GL,(F) containing SL,(F), and the structure of these groups
plays a significant role both in defining these representations and in their
investigation. Such groups, in general, are not linear algebraic groups. Some
of the terms used in connection with linear algebraic groups, however, are
meaningful when describing the structure of our groups. Therefore we will
define and use these terms in this context.

Let F be a nonarchimedean local field of characteristic 0, i.e., a finite
extension of the p-adic numbers for some p. Let Gn = GL(n, F), let G, =
SL(n,F), and let G' be an arbitrary closed subgroup of G, containing G,,.
Let M, be the subgroup of diagonal matrices in G, and let Ny be the
group of upper triangular matrices with 1’s in the diagonal entries. Then
P, = MyNy is called the standard minimal parabolic subgroup of e
and any closed subgroup P containing P, is called a standard parabolic
- subgroup of Gl
. The standard parabolic subgroups of &, are determined in the follow-

ng way. Suppose that {7;}%_, is a partition of n, and let
M = GLy, X GLg, X ... X GLg, (1)

_e-._ﬁhe “block diagonal” subgroup of G, corresponding to this partition.
ach IGL,—“ is called a block of M. Let N be the upper triangular matrices
#y with the identity matrix in each block. Then P = MN is a standard

-.abéﬁ_ic subgroup of G,,, and all standard parabolic subgroups are of this




form. The group M is called the Levi component of P, and N is called the
unipotent radical of M. The subgroup A of M containing scalar matrices
in each block is called the split component of M.

If G is a closed subgroup of G, containing G, and if P =MNis
a standard parabolic subgroup of Gn, then P/ = G' N P is a standard
parabolic subgroup of G'. Moreover P! = M'N with M’ = MNG'. The
terms Levi component, block, etc. have the analogous meaning in G'.

Let M’ be a Levi component for a standard parabolic subgroup of G,
and let A be the split component of M’. Indicate by Ng:(M') the normalizer
of M' in G', and indicate by Z¢:(M') the centralizer of M' in G'. Then the
Weyl group Wg/(M') = W/ (G'[A) is the quotient of the normalizer by the
centralizer: Wei(M') = Nai(A)/Za(A). Notice that Wer(M') = Wa(M).
Furthermore for any w in Ng(M') the action on M’ given by g wlgw
permutes the blocks, and the subgroup yielding the identity permutation is
Za(M "Y. Hence we may regard Wa(M') as a subgroup of the symmetric
- group S, where & is the number of blocks in M.
. If ¢ is in M, with M as in equation (1), we write ¢ = (91,92, -2 Gk )-
Also for a € F'*, we define a € M, as the diagonal matrix with determinant
‘given by & = diag(a, 1,...,1).
Let (F*)¥ denote the group of continuous unitary characters of F'*.
k is in (F*)V, then & lifts to a character of G, by k(g) = k odet(g). For

sﬁbgroup H of G, and any subset S C (F*)V, we define

HS={he H|k(hy=1 forall ke S}.

11




For simplicity, we write Gy, for GS and M* for M?, and we denote the corre-
sponding standard parabolic subgroup of G5 by P5 = M°N. By continuity
of the determinant mapping, any open normal subgroup G of finite index in
(. is equal to G5 for some subset S C ('FX)V. For any set of characters §
in (F*)V, we set

Ng = ﬂkernng.
f1eES

By local class field theory, N corresponds to the norm group of some field
extension of F. With these definitions, if {a;} is a complete set of coset
representatives for F* /N, then {@;} is a complete set of representatives for
GGy

A maximal abelian subgroup of semisimple elements in G, is a Cartan
subgroup of G.. To describe the Cartan subgroups of G, we first relate
field extensions of degree n over F' with specific Cartan subgroups. Suppose
E is such a feld extension, and fix a basis of  over F. For any a € E *,
we have an invertible linear operator on E* given by left multiplication by
a. Thus a € F* corresponds to a matrix in G,.. The collection of these
1natrices exhibits E* as embedded in G, and the embedded version of E ®
s a Cartan subgroup of G'.
Now let {@;} be a partition of n, and write M as in equation (1).
'#ppose {E;} is a set of extensions of F with [E; : F} = n;. Then E embeds
| he above fashion into the ith block of M, and thus the multiplicative
uPof the direct sum of the fields E; embeds into M. The resulting
group of M is a Cartan subgroup of G, and so is any G ,-conjugate of

subgroup. If ¢ is a closed subgroup of G,, containing G, and if Tisa




=

Cartan subgroup of G, then I = I' N G! is a Cartan subgroup of G'.

A totally disconnected group is a separable locally compact group
whose open compact subgroups form = neighborhood base at the identity.
Every closed subgroup of G, is a totally disconnected group.

In any of the above definitions, when the size n is understood, n may

be dropped from the notation.

§2.3. Representations.

Let G be a totally disconnected group. A representation of G is a
homomorphism 7 : G — GL(V), where V is a complex vector space. ris
a representation of G, we denote the space on which G acts by V™.

If W is a subspace of V™ such that 7(¢)W C W for all g € G, then W
is said to be an invariant subspace, and we say that 7 has a subrepresen-
tation on W. If the only invariant subspaces of V™ are {0} and all of V7,
then 7 is said to be irreducible. Otherwise we say 7 is reducible. Two
representations 7, and wg of G are equivalent if there exists a vector space

isomorphism E : V™ — V™ such that
To(g)Ev = Emy(g)v forall g€ G.

notion of equivalent representations determines an equivalence relation

the representations on G, and the equivalence class of a representation «




Let m be an irreducible representation of G, and let H be a subgroup
of G. The restriction of  to H is a representation of H and is denoted m|y.
Suppose W is invariant under mlg such that Vrle = W @ W' for some W'.
Then the subrepresentation of H on W is said to be a constituent of «|m,
as is any representation p of H that is equivalent to this subrepresentation.

In this thesis we are concerned solely with irreducible constituents.

If m; and 7, are representations of G and if F is a linear map from V™
into V™ satisfying Em(g)v = ma{g)Ev for all v in V™, then E is said to be
an intertwining operator between m; and my. The set of self-intertwining
operators for a representation w of G forms an algebra C(m), which is known
as the commuting algebra of 7.

If V is a complex vector space, write V' for the space of complex-valued
linear functionals on V. Let (v',v) = v'(v) for every v' € V' and v € V. lf m
is a representation on V, then its contragredient is the representation on
V' defined by the property (' (g)v’,v) = {v', v~ (g)v) forallv € V, o' e V',
and g € G.

Let S be a set. A function f: G — S is said to be sﬁmoth or locally
constant if every g € G lies in a neighborhood U(g) whose image f(U(g)) 1s
_ a single point of S. The space of smooth functions from G into C is denoted
.C *(@); the éubspace of functions with compact support is denoted C&(G).
Let 7 be a representation of G on V. An element v € V is called
 smooth if the mapping g — 7(g)v is a smooth function of G into V. Denote
h subspace of smooth vectors in V by Vi,. The representation 7 of G is

smooth if V = V... In other words, 7 is smooth if and only if the stabilizer of

14




each vector v in V'™ is compact open, if and only if each vector v in V'™ is fixed
by some compact open subgroup of G. f 7 is a smooth representation and 7’
is its contragredient, write V for (V'),., and write 7 for the representation
of G on V. This representation is called the smooth contragredient of
x. When 7 is smooth, the term “contragredient” will refer henceforth to the
smooth contragredient.

Let G be a totally disconnected group, and let H be a subgroup of G.
Suppose that 7 is a representation of H, and fix an element g of G. Then
we can define a representation gr of HY = gHg ™! by gr(h) = (g~ 'hg) for
all A in HY.

Let u be a left Haar measure on G, and denote integration of functions
in C°°(G") with respect to p by fs f(¢)dg. Define the modular function

Agr on G' by
. flg)dg = Agr(g0) /G f(gg0)dg.

If 7 is a smooth representation of G, let 7(f) be the operator on V7 defined
by
W= [ S @ emds

Let 7 be a smooth representation of G on V. If visin V and ¢ is in
V' the function f(g) =< 9,7(g)v > is called a matrix coefficient of «.

A representation m of G is said to be pre-unitary if there exists a
ermitian positive definite form B on V" such that B{(w(g)vi,n(g)ve) =
vi,vy) for all v;,v; € V™ and ¢ € G. The term pre-unitary is used

cte Because V™ is not necessarily a Hilbert space, and therefore the term




unitary is not accurate. It should be noted, however, that some authors (e.g.,
Silberger) use these two terms interchangeably.

If 7 is a smooth representation such that the K-invariant vectors are
finite dimensional for every compact open subgroup K in G, then 7 is an
admissible representation. Let w be an irreducible smooth admissible rep-
resentation, and let Z(G) denote the center of G. If = is unitary on Z(@G)
and every matrix coefficient of 7 is in L?**¢(G) modulo Z(G) for ¢ > 0,
then we say that 7 is a tempered representation. The irreducible tempered
representations, up to equivalence, are denoted E:(G). The tempered repre-
sentations whose matrix coefficients are square integrable modulo Z(G) are
called discrete series representations. The discrete series representations
are pre-unitary [Sil, Section 1.11], and we denote by E2(G) the set of discrete
series representations of G, taken up to equivalence. The discrete series
representations whose matrix coefficients are compactly supported modulo

Z(G) are called supercuspidal representations.

Let 7 be an irreducible smooth admissible representation of G. Then

m(f) is of finite rank for every f in CZ(G); see [Car]. Thus the linear

O, (f) = Trace(w(f))

well defined for f in C°(G) and is called the character of 7. It 1s contin-
us on C°(G), and hence is a distribution. The characters of inequivalent

educible admissible representations are linearly independent; see [Si1].



II1. INDUCED REPRESENTATIONS AND THE R GROUP

The purpose of this chapter is to introduce the representations that
are investigated in this thesis, as well as to state the main theorems used
in our study of ‘these representations. We are interested in the reducibility
of generalized principal series representations © of Gn, as defined in Section
1. We will see that there is a corresponding irreducible representation of én
that contains 7 in its restriction to G, and Sections 2 and 3 provide results
that allow us to take advantage of this fact in our investigation. In the final
section of this chapter we combine all of this information to prove results for
the geneliaiized principal series that are analogous to those for the principal

series found in Gelbart-Knapp [G-K1].

£3.1. Induced Representations.

Let G’ be a totally disconnected group, and let H be a closed subgroup
of /. If 7 is an irreducible representation of H we want to construct a
representation on all of G'. This construction is called induction, and it
‘generalizes the notion originally introduced by Frobenius for finite groups;
:-.'s.ee [Ser2]. Further discussion and proofs of many of the results cited here
_(5: infinite groups can be found in Silberger [Sil].
 The definition of the induced space for infinite groups involves an extra
ctor not found in the finite group case. This complication arises from the
that G'/H may not have a nontrivial left-invariant measure. Let p be
eft Haar measure on G, and denote integration of functions in Cr(G")

:éé:spect to p by fG, f(g)dg. Recall from Section 2.3 that the modular




function of G is defined by

/ f(9)dg = Agr(go) f f{g90)dg-
G el

The modular function of H is defined analogously. Define a function é on
H by 6(h) = Ag(h)/Ag(h) for all h € H. This function é is used to

compensate for the lack of a nontrivial left-invariant measure on G'/H.

Definition. (Induced Representation) If H is a closed subgroup of @' and
r is an irreducible smooth representation of H on V7, let V' be the space of
functions f: G' — V7 satisfying:

(1) flg'h) =6 L2(h)r=Y(h)f(g') for all ¢' € G' and h € H, and

(2) There exists a compact open subgroup K of G such that f(gk) =

f(g) for g in G and k in K.

Let G act on V by (¢f)(z) = f(g~'2). We write 7 = Indf () for this
representation, and we say that 7r is induced from 7. In some cases, when

there can be no confusion, we write 7 = Ind(7).

REMARKS.

(1) The functions in V are smooth, however, condition (2) is generally
a stronger assumption than smoothness of the functions in V. The represen-
:t.at_ion = Ind?{' (1) is smooth. If 7 is pre-unitary and H is cocompact, then
= Ind§ (7) is also pre-unitary; see [Sil, Cor. 1.7.9].

* {2) Suppose G is a closed normal subgroup of G, containing Gy, and

i‘l’};}pose H = M'N is a proper standard parabolic subgroup of G'. Let T be




in £(M"), and extend 7 to all of H by putting the trivial representation on “

N. The representation m = Indg’}, ~ (7) is said to be parabolically induced

from 7. In this case, @' /H does not have a left-invariant Haar measure.

(3) If H is a closed subgroup of finite index in @' then § = 1. The

representation 7 = Ind§ (7) is said to be finitely induced from 7. Repre-
sentations of this type are the focus of Mackey theory, which is discussed in _1

the next section.

The next lemma makes precise the concept that “induced of induced is
induced,” and is referred to as double induction. Since it is an integral part
of the theory of induced representations, it will frequently be used without

explicit reference.

Lemma 3.1.1 (Double Induction). Let G be a totally disconnected group,
and let &' and H be closed subgroups of G with H € G'. Suppose 7 is a

smooth representation of H. Then

Indg, (Indg’ (r)) = 1nd$ (7).

Lemma 3.1.2. Let o be a smooth representation of H, and let 5 be a

gasi-character of G'. Thenn ® Indg' (o) = Indg (nlg ® o).

ROOF The operator (Ef)(z) = n~z)f(z) for [ € yind(e) implements

he equivalence from left to right. Q.E.D.
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Lemma 3.1.3. Let o be a smooth representation of H, and fix g in G'.

Let HY = gH g™, and let go be the representation of HY defined in Section

9.3. Then Ind$, (go) = Ind§ (o).

PRrOOF. The operator (Ef)(z) = f(zg™") implements the equivalence from

left to right. Q.E.D.

We are concerned with representations parabolically induced from dis-
crete series. Let M be a Levi component of G, written in block diagonal
form, and recall that £(M) contains the discrete series representations of
M, up to equivalence. Let o be in £,(M). Extend o to all of M N by putting
the trivial representation on N. The representation 7 = Indg["N (o) is said

to be in the generalized principal series of G',. These representations are

pre-unitary, since discrete series representations are pre-unitary and MN is
cocompact in Gp,.

A special case arises when M = M, is the Levi component for the
standard minimal parabolic of G, Then &(M) consists of unitary charac-
ters of M, and we say that m = Indf,;;N (o) is in the principal series of
G, The reducible members of the principal series are the object of study
| by Gelbart-Knapp [G-K1}, and the characters of the irreducible constituents
are determined in Assem [As] when n is prime.

Similarly we can define generalized principal series representations of
Gy, written 7 = Ind% y{(8) with & € £3(M). These representations play a
ignificant role in our study of the generalized principal series of G,, as we

hall see in the next few sections. In particular we shall see that to each of the



-

seneralized principal representations 7 of G, we can associate a generalized

principal representation # of G, and it is crucial to the rest of our study

that ¥ is irreducible.

Theorem 3.1.4. (ref. Jacquet [Jac]) Let & bein Ey(M). Then Indf-dN (6)

is irreducible.

$3.2. Restriction Theorem and Mackey Theory.

The following theorems are used in an essential way throughout our
development of results on reducibility. The first regards the restriction of
irreducible admissible representations of a totally disconnected group to an
open normal subgroup of finite index. The results due to Mackey deal specif-
ically with representations induced from subgroups of finite index; proofs of

these results can be found in [K-V, Section 2.4].

Theorem 3.2.1 (Restriction Theorem). [G-K2, Section 2] Let m be an
irreducible admissible representation of a totally disconnected group G, and

let H be an open normal subgroup of G such that G/H is a finite abelian

group. Then

(a) 7l is the finite direct sum of M irreducible admissible representations
of H, all occurring with the same multiplicity m.

(b) The number of one-dimensional characters v in

XH(W):{VEGV|V|H:1and7r®v§7r}
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is m*M. In particular if m = 1, then dimC(n|y) = |Xa(m)|, where

C(x|n) is the commuting algebra of 7]y defined in Section 2.3.

(c) If 7y is a constituent of 7|g, define
Gr,={9€Glgm Zm}.

Then G/Gy, acts simply transitively on the constituents of w|y. Fur-
thermore if each of the constituents of 7|y occurs with multiplicity

one, then the set
QX — {¢ge G lv(g)=1for all v € Xg(r)}

is equal to Gp,.

(d) Let m be an irreducible admissible representation of H. Suppose that
# and #' are irreducible admissible representations of G whose restric-
tions to H are multiplicity free énd contain w. Then # & k ® 7' for

some character x of G, which is trivial on H.

REMARK. Recall that the finite subgroups of (F*}V are in one-one corre-
spondence with the closed subgroups H of G, containing Gy,. The characters
of € can then be taken as elements of (F*}¥ composed with the determinant

mapping. If 7 has the multiplicity one property, then (c) can be written as
GXn = {g € G| detg € Nx},

where Ny = Nkeré, the intersection being taken over £ € Xg(r). By local
class field theory, Nx is the norm subgroup in F* of some finite abelian

__G_ra,lois extension of F.
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Theorem 3.2.2 (Frobenius Reciproéity). Let G be a totally disconnected
group, and let G be an open subgroup of finite index. Suppose 7 is a smooth

representation of Gy, and suppose ¢ is a smooth representation of G. Let
7 = Indg ().
(1) Define

en VIS V™

to be evaluation at 1. Then
Homg (V¢, Vﬁ-) =~ Homg, (VP\G“V")

under the map ® — e, o @, and this isomorphism is natural in ¢

and .
(2) Define
je VI VT
as the map sending v € V™ to the function on G given by
(g™ v for g € G4
Jn(v)(g) =
0 for g ¢ G,.

Then
Homg (Vﬁ', V‘P) = Homg, (Vﬂv VLP|G1)

under the map & — @ o j,, and this isomorphism is natural in =

and ¢.
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Theorem 3.2.3 (Mackey). Let G be a totally disconnected group, and let
G, and G, be subgroups of finite index in G. Lot ® be a smooth represen-
tation of Gy, and let gm denote the representation of G2 N gG1g~! given by

h — w(g thg) for g in G. Then

Indgl(”)‘azg @ Indgznngg”(gw)'

double cosets
GagGy

Corollary 3.2.4. Let G be a totally disconnected group, and let G; and Gy

be subgroups of finite index in G. If my and 7, are smooth representations

of G and G respectively, then

Homg (Indg1 (m1) ,Indgﬁ (mp)) = @ Homg,ngcg-1 (971, 72)-

double cosets
GagGh

Corollary 3.2.5. Let & be a totally disconnected group, and let H be
an open normal subgroup of finite index in G. Let m be an irreducible

admissible representation of H. Then there exists an irreducible admissible

_ representation 7 of G such that 7|y contains 7.
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§3.3. Theory of the R group.

Let P = MN be a standard parabolic subgroup of G = G, and let

M be a Levi component of G = ¢, such that M = MNG. If oisin E(M),

then o lifts to a representation o' of M' = Z (G)M by putting the trivial

representation on Z(C:‘) By Corollary 3.2.5 there exists a representation ¢

in & (M) such that &|pr 2 o, and therefore o is contained in a|a-

If w € Ng(M), let & be the coset of Wg(M) containing w. Let o be

in &(M), and denote by [o] the equivalence class of . As in Section 2.3,

define wo by wo(m) = o(w !mw). Then the class of wo depends only on

20.

Let # = Ind{;y(c). The R group of o, adapted by Muller and

Winarsky from the notion introduced by Knapp-Stein [K-S] for groups de-

fined over the real numbers, quantifies the reducibility of m by specifying a
basis of the commuting algebra. In its original form, the R group comes
out of the theory of intertwining operators. We can define intertwining op-
erators between 7 and 7, = Ind§y (wa) for w € Ne(M). With certain
normalizations in place, these operators span the commuting algebra of 7.
The R group corresponds to the normalized operators that are not scalar,
and hence truly indicates reducibility of #. The reader who is interested in
the details of this theory should consult [K-S] or [Shd]. It is known for our
situation that the R group is a finite abelian group [Ke, H-S].

There is an alternate realization of the R group written in terms of the

57s that contain ¢ in their restriction to M. Let

W(o) = {® € Wa(M) | [ws] =[n®8&] for somen € (F)Y}, (b
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and let
W'(o) = {b € Wa(M) | [wd] = [6]}. (2)

Then W (o) corresponds to intertwining operators of = [Gol, Shd], and W'(o)
corresponds to the subset of scalar operators [Shd]. Thus the R group R(o)
is isomorphic to W(a)/W'(a). We use this realization to view the R group

as a permutation group.

Another realization of R(o) as a certain quotient group of characters

is due to Goldberg [Gol]. Let
LA ={ne(F)|n@d=ws for some w € Wg(M) }, (3)

and recall that Xu(6) = {n € (F*) | n® &2 &) Write X(6) = Xm(7).
Then the R group of ¢ is canonically isomorphic to L(5)/X(&). This fact
generalizes the analogous result of Gelbart-Knapp [G-K1] for the reducible

principal series, l.e., when P = MN is the standard minimal parabolic.

$3.4. Reducibility of the Generalized Principal Series.

Let G = G, and let M be the Levi component for a standard parabolic
subgroup of G. Let G = Gn, and take M to be the Levi component of G
corresponding to M. If o is in &(M), let & be an element of (M) such
that iy 2 0.

We want to see that Ind%N (&) ‘G is equivalent to Ind§ v (5|ax) and

1at any reducibility actually occurs on a subgroup of finite index in G.
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The latter fact was originally proved for the principal series by Gelbart-
Knapp [G-K1]. Unlike the principal series, however, &)y may have more than
one irreducible constituent, and therefore the reducibility of Indf;lr N (&) ] o 18
generally not the same as that of Ind§;y (¢). Consequently when we turn
to describe the irreducible constituents of Ind§ y (o) in Chapter 5, it will be
necessary to utilize the classification of £(M) completed in Chapter 4, in

addition to the results below.

Lemma 3.4.1. Let G’ be an open normal subgroup of G, with standard
parabolic subgroup (P', M'), and let 7 be in &(M"). If H is an closed normal

subgroup of G, then
! ~ H
Indf,[;N, (T) H = Ind{MrmH)Nr (TlM’l"\H)
under restriction of functions from G' to H. In particular if & € E2(M), then

Ind$  (8) | 2 Ind$py (5la).

:_ PROOF. Let my = I]:l(if/;,wr (r) and my = IndfM,nH)N, (T|mram). To see that
the restriction map is one-one, notice that every z € G' can be written
= hg' for some h € H and ¢’ € M'. This follows from the fact that closed
normal subgroups correspond to sets of unitary characters, and therefore the
leterminant mapping can be used to get diagonal coset representatives, as
n Section 2.3. If f is in V™, then f(z) = f(hg') = p~/*(g")yr 7 (¢")F (R).
hus if f|y = 0, then f = 0.



To see that restriction is onto, let f be in V™, and define

f(z) = f(hg") = p= V2 (B)r=H(¢") F(R)

for all « € G'. Then f is in V™ and restricts to f on H. We need to show

that f is well-defined.

Let ¢ = hig;, and suppose that we can also write = = hags. Then

hi'hy = g19, " is in M’, and

f(@) = fhagr) = w2 (g1)7H(g0) f ()
=y~ (g1)r g1 ) (hahy  ha)
= (g1 ) (g1) flha(g291 "))
= 5~y )r N gagr )y (g1) F(B2)

— f(hzgz)-

Lastly H equivariance is clear, and the equivalence follows. Q.E.D.

Recall from Section 3 that
Le)={ne(F) |n®s2ws forsomew € Wa(M)}.

This is a finite subgroup of (F*)V, and consequently corresponds to a sub-

group GL = GL®) of finite index in G. The following proposition shows that
al.l of the reducibility of Ind% N (9) l o actually occurs on Gr.

28




Proposition 3.4.2. If ¢ is in &(M) and & is in SZ(M) such that &
contains o, then the reducibility of Ind% N (&) restricted to G is all accounted

for on GL. Precisely if = = Ind%N (&), then
dim C(7|gz ) = dimC(7|g),

where C indicates the commuting algebra.

pROOF. The proof given by Gelbart-Knapp [G-K1] for the principal series

carries over to the case of an arbitrary standard parabolic subgroup of G.
Define H = ZG, with Z being the scalar matrices. Apply the Restric-

tion Theorem 3.2.1 to 7 with the subgroup H of G. Then
Xp(my={v e G |vlpg=1and r@v =7},

and dim C(x|g) = |Xg(r)| = dim C(7|a), since Z acts by scalars. Now
define

H ={geGlu(g)=1 forallve Xu(m)}

Then H C H', and we apply the Restriction Theorem 3.2.1 again, this time
with H'. By definition Xg = Xg, so dim C(7|g+) = dim C(wig). We need

to show that H' = G*. For any character  in GV,

e Xp(r) ifandonlyif n®nd%, (5)2Indf, (5). (1)
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The left hand side of the equivalence in (1) is equivalent to Ind(c @ n)
(Lemma 3.1.2), and therefore we want 7 such that Ind(5) 2 Ind(é ® 7).
This occurs exactly when & ® n = wé, for some w € Wa(M ). Thus

XH(’R') = .E(&)

Passing to kernels, we have our result. Q.E.D.
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IV. DISCRETE SERIES OF M AND THE R GROUP

$4.1. Discrete Series Results.

Let G = G,, and suppose M is the Levi component for a standard
parabolic subgroﬁp of . Let o be a discrete series representation of M.
We presently investigate the discrete series of M, and the purpose of this
section is to provide certain results that are necessary for this investigation.
The lemmas that follow regard equivalences between various discrete series
representations and between certain induced representations.

Let G = Ghn, and let M be the Levi component of G corresponding to

M. Write

M2 Gy % Gy X oo X Gag

If o is in (M), we have seen that there exists some & in Ey(M) such that
&|m 2 o. The work of Flath [F1| shows that & can be written as & = ®F_, 5,

where &; € £2(G,;). Henceforth we write & in this fashion without further

reference to its justification.

Lemma 4.1.1. (ref. Flath [F1]) Let M be a Levi component for a standard
parabolic subgroup of G. Leét v and p bein Eg(M), and write 7 & T ®.. . Qmk

and p= py @ ... ® pr. If © = p, then m; = p; for each 1 with 1 <7 < k.

_ Our second result is very important. It says if o is in £(M) and
‘we form P = MN, where N is the transpose of N, then the standard
umtary induced representations of G obtained by inducing o from P or P are
qulvalent Combining this result with Lemma 3.1.3, we have IndM y(o) =
Ind§; y (wo) for any w € Ng(M).
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Theorem 4.1.2 (cf. Silberger [Sil Theorems 2.5.8, 5.4.4.1]). Let G' be
a closed subgroup of @,, containing Gn, and let P’ = M 'N be a standard

parabolic subgroup of G'. Suppose o is in E;(M ). Then

Ind$y v (0) 2 'Indf,;, x(@).

Lemma 4.1.3. Let M be a Levi component of G. Suppose that M’ and H
are closed normal subgroups of finite index in M with the property H C M'.

Let g be in M. If 7 is an irreducible representation of H, then

Ind} (g7) = gInd¥ (7).

ProoF. The representation g Ind¥ ' (7) by definition acts on the same space

as IndM "(7), written ymd(7) Let the map E on V") be given by
(Ef)(z) = f'(e) = flg™ zg)-
Then if f is in V12,

(Ef)(mh) = f9(mh)
= f(g~'mhg)
= (g7 h 7 9)f(g ' mg)
= (gr)(A")f*(m)
= (gm) (R NEf)(m),
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for any m € M' and h € H. Thus E maps yInd(r) jpto Vindlem),

To see that E is one-one and onto, first suppose Ef = 0. Then f(z) =
(Ef)gzg™") = 0 for all z € M’, and E is one-one. Moreover if f is in
ynd(s7) then f-"w1 is in V4" and maps to f under E.

To check that the action of M’ is preserved, let gm = gInd¥’ (7), and

let my = Ind¥’ (¢7). Then

7o' B )@} = (Bf)(g'™ =)
= f9(¢' ")
= flg™ ¢’ =g)
= (x(g7'd'9)f) (9™ =9)
= (gm(¢")f)* (=)
= E(g7(g') f)(z).

Thus E is an equivalence operator between gm and . Q.E.D.

Lemma 4.1.4. Let & be in EQ(I\;I), and write & = ®%_,6;. Let @ be in
WG(M }, and suppose r is the corresponding permutation on {1,...,k}. Let

g = ®f=1c"rr(,-). V=V, ®...® Vi, then the tensor product isomorphism

V1@_.,@ngvr(l)(g...@Vr(k) (1)

- induces the equivalence wg = &'.

PROOF. As vector spaces, we have Vi X ... X Vg & Vi(q) X ... X Vr(k), the
isomorphism being given left to right by (vi,..., vE) > (Vp(1), - - - Ur(ky)- Lift
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for any m € M' and h € H. Thus E maps yd(r) jpto Yndle7),

To see that E is one-one and onto, first suppose Ef = 0. Then flz)=

~

(Ef)(gzg™') = 0 for all z € M', and E is one-one. Moreover if f is in
ynd(s7) then F97" is in V() and maps to f under E.
To check that the action of M’ is preserved, let gr = gInd¥ " (1), and

let w4 = IndAH’I' (¢7). Then

7o(g' WE)() = (Ef)(¢'™ @)
= f(g'""2)
= flg™¢' " 29)
= (w(g7'd'9)f)(g " zg)
= (gm(g")f)* (=)
= E(g7{¢') f)(=).

Thus E is an equivalence operator between gm and m,.  Q.E.D.

Lemma 4.1.4. Let & be in &(M), and write & = ®F_ ;. Let w be in
W@(l\;f }, and suppose r is the corresponding permutation on {1,...,k}. Let

o' = ®f:1&r(,-). VP =V,®...9 Vg, then the tensor product isomorphism

V1®®ngV,_(1)®®Vr(k) (1)

induces the equivalence wé 2 &',
PROOF. As vector spaces, we have ¥V} X ... X Vi 2 Vo) X ... X Vi(ky, the

isomorphism being given left to right by (v1,.. ., v) = (Vpa)s - - Ur(k) ). L
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this map to the tensor products through the universal mapping property, and

call the lifting E. If ¢ = (g1,-.., %), then

E(wd) (@)1 ® ... ® ve)) = E(6(w (g1, ge)w)(mn ® ... ® i)
= E(3(gr-11)s- -+ 91 (0)(01 B - O V&)
= & p1)(91)Vr(1) ® - .. @ Fr(iy(98)Vr(k)
=&'"(g1,- - 91)(Vr(1) © - - B Vr(i))

=5 (g1, 95) (B(01 ® ... Qvg)).

Therefore E is an equivalence operator between wé and &'. Q.ED.

The rest of this section is not used until Section 3, in which we be-
gin the process of describing the discrete series in terms of the R group.
If & = Q% ,5;, we will see that the R group provides a nice expression
for some rearrangement of the &; (or equivalently, the blocks of M). The
representation &' achieved by this rearrangement is not generally equivalent
to & in fact, rearranging the blocks of M usually produces a new (though
isomorphic) group, and then the notion of equivalence is not valid. We would
like to say, however, that these representations are strongly related, and this

desire motivates the following definition.

Definition. Let H and H' be isomorphic groups, and et ¢ : H — H !
be an isomorphism. Suppose 7 and 7' are representations of the respective
groups. Then we say that 7 and 7' are similar if there exists a vector space

- isomorphism A : V™ — V™ such that

At(h)v = 7'(p(h))Av
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forall h € H and v € V™. When 7 and 7' are similar, we write 7 &~ 7/

If M is a Levi component of G written in block diagonal form and if
M'is a reordering of the blocks of M, then M' = s~'Ms, where s is some
standard permutation matrix in G. Themap ¢ : G — G givenby g — s7gs
is an automorphism of G, and maps Ng(M) to Ne(M'). This fact will be

used extensively in Sections 3 and 4.

EXAMPLE. Let M = G, x G x G, and suppose that & 2 7 Q 7' @ n7 for

~ ~

some 7 in £(Gp), 7' in 82(@,1:), and n € (F*)V. Let M' = G x Gn X G

Then M 2 M' and 6 7@ TR 7'.

§4.2. The Discrete Series of M.
Let M be the Levi component for a standard parabolic subgroup of
G = Gy, and let o be in £&,(M). Let M be the corresponding Levi component

in G = G,, and let & be a representation in 82(]\;{) such that &|p 2 o. Define
X(6)=Xu(F)={neF) |n@s =5}

Mackey theory allows us to use the group X (&) to classify the discrete series

of M.
Let M' = Z(G)M. Then M' has finite index in M, and the Restriction

‘Theorem (Theorem 3.2.1) says that Xy (5) is a finite group. This group de-

cribes the commuting algebra of &, which is also the commuting algebra
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of &|pr since Z (@) acts as scalars. Thus X () is a finite group. This fact,
combined with the multiplicity-one property below, allows us to parameterize

the constituents of &|p by means of X(&) and, consequently describe the

elements of £2(M).

Lemma 4.2.1 (Multiplicity One of ).  Suppose & is in £,(M). Then the

representation

Ind$,  (6]ar) & IndS, , (8) |6

which is the Bnite direct sum of irreducible representations, is multiplicity

free. As a consequence, every constituent of &|m appears with multiplicity

one.

REMARKS.

(1) The isomorphism cited in the lemma is Lemma 3.4.1.

(2) The proof is basically that found in Labesse-Langlands [L-L} for
SL(2); sec also Shahidi [Shd].

(3) It follows from this lemma and Lemma 3.4.1 that the irreducible
constituents of Ind§; y (o) occur with multiplicity one. This result was orig-

inally proved by Howe and Silberger [H-S] by different means.

Proor. We write 7 = Indf-d N () Recall that this representation is irre-
ducible (Theorem 3.1.4}, and note that the reducibility of 7|g actually occurs
on a subgroup G’ of finite index in G, by Proposition 3.4.2. Assume 7 C ey
We are to show that

dim Home (7, mle) = 1. (1)
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This is accomplished by using the theory of Whittaker Models. Let Ny
be the unipotent radical of the standard minimal parabolic subgroup of G .
A character ¥ of Ny is said to be non-degenerate if for s € Ng(M,) with
s € My, we have

¢lNoﬁs—1Nos # 1.
A representation 7 of G is said to have a Whittaker Model for ¢ if m embeds
into Ind% (). The work of Jacquet [Jac] shows that 7 has a Whittaker
model for each nondegenerate character i of No. Fix such a character 1,
and let © be a nonzero G map of 7 into Indg (). It is known that Whitfaker
models have the multiplicity one property [Shk, G-Kal, and thus ¢ is unique

up to a scalar:

dim Homg(r, Ind§ (#)) = L. (2)

For any representation p of G, Mackey theory gives
G ~
IHdG" (P) ]Gl = @gjpu
3

the sum taken over a complete set of coset representatives g; for G/G".

Applying this formula to p = Ind]((}' (1), we have
G ~ G G’ ~ G’
Ind§ (9)|_ 2=, (ma (%)) | = @ngHdN () (3)

The map ¢ above is one-one since 7 18 irreducible. When ¢ is composed with

an inclusion 7 C 7lg, it induces a nonzero G' map of 7 into Indg (). By
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(3), we obtain a nonzero G' map ¢’ of 7 into ngnd]C\;r' () for some g; € G.

The map ¢’ is one-one since 7 is irreducible. Then we have

dim Homgy (7, 7|g) = dim Homg(w, Indg, (7)) by Frobenius Recipocity
< dim Homg (W,Indg, (ngndﬁ; (¢)))

via composition with Ind(¢')
= dim Homg (w, Indg, (Indg' (z,b))) by Lemma 3.1.3
— dim Homg(, Ind§ (#))

=1 by (2)1

and (1) follows.  Q.E.D.

If o is in £,(M), then the Restriction Theorem 3.2.1d shows that the
representations & in £,( M) that contain o in their restriction to M differ from
one another only by a character of F**. We define an equivalence relation on
E2(M): & ~ &2 if and only if 61 = 5287 for some i € (F*)V. As a result,
the constituents of 71|p and &2]a match when &; ~ &3, and are otherwise
disjoint.

The irreducible constituents of &{yrx), acéording to the lemma above
(Lemma 4.2.1) and the Restriction Theorem (Theorem 3.2.1) restrict irre-
ducibly to distinct elements of the discrete series of M. This one-one corre-
spondence between the irreducible constituents of &|pyx(s) and the irreducible
constituents of &|p allows us to classify £,( M) by explicitly describing the
constituents of &|yx for all & € £(M). The crucial concepts in this

process are illustrated in the example below, in which M has only two blocks
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and X (&) is cyclic. This example is chosen because it is the simplest situation
for which Mackey theory sheds new light on the irreducible constituents of
&#|ar; if M is a single block, the restriction of & to M, for & € &(M), produces
the discrete series of SLn, and the relationship among constituents of a fixed

& is already seen in the Restriction Theorem.

Example. Let G = GLy, and let M be a Levi component of G of the form

M 22 GLn, X GLg,. To simplify our notation, we write M = Gy x Ga.

Suppose that & is in 82(]\2[) and that & 2§ Q@ &2. Let
X:X(&):{'J]E(Fx)v ln@&%&}.
Assume that X is cyclic with generator (. Let

G¥ ={g€G:i|{g) =1}

Then ¢ € X(;) for ¢ = 1,2, by Lemma 4.1.1. Multiplicity One and the
Restriction Theorem show that &;lgx contains exactly r = |X| irreducible
constituents, and they are inequivalent. As a result, &|gxxcx contains
exactly r? irreducible coﬁstituents, and they are inequivalent.

On the other hand, &|px has r = X[ irreducible inequivalent con-
stituents, and the index of G{ x Gy in M X is r. The constituents of
&lox xgyx are partitioned into sets of r representations that induce equiva-
lently and irreducibly to M X thereby recovering the irreducible constituents
of &lpyx. In fact, if p is an irreducible constituent of &|ax, the representa-

tions in P|G{fo§ form one of the aforementioned sets. To sec this, apply
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part (c) of the Restriction Theorem to p. If 7 is a constituent of FlaxxGy
then the set containing 7 consists of {g;7}, where the g¢; are a complete
set of coset representatives for M X /(G x GF). By Multiplicity One,
the representations in {giT} are inequivalent, and thus by Corollary 3.2.4,
p e Indg; X GX (gi7) for any g;. Consequently inducing one representation
from each set recovers the irreducible constituents contained in &{psx.

Fix a constituent p of &|px. By the Restriction Theorem 3.2.1c,

1%

FZpdépd - DEp,

where € is a member of F* whose coset generates F*/Nx and & € M
is defined as in Section 2.2 by & = diag(e,1,...,1). Let ;1 and py be irre-
ducible constituents of & |gx and 73 lex respectively, with the property that
p1 @ p2 C ploxxay The above remarks show that &|px can be written

explicitly as

=1

o . x
Glarx = @ &t IndﬂG”f xgx (PL® p2). (1)

£=0

The representation £° Indg,fox (py ® p2) on the right hand side of (1) is
. 1 2

actually equivalent to Indg; < GX (@ p2)), by Lemma 4.1.3. Moreover
1 2

since & is diagonal, &(p1 ® p2) = (é¢p1) ® p2, where the € on the right is

understood to be in Gy. Therefore

r—1

« ~ x . :

Flyx = @ IndnG/I{(xG%( (%1 ® p2) - (2)
£=0

Suppose now that o € &(M) and that o C &|p- We know that the re-

ducibility of &|p occurs already in the restriction to M%. Therefore each
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term on the right hand side of (1) is irreducible when restricted to M, and
o must be equivalent to one of these restrictions. Consequently we have

determined the form of all the members of £(M) contained within Flar-

Theorem 4.2.2 below generalizes this example and provides a classifi-

cation of £ (M), introducing the notation we will use to parameterize these

representations. First we show that for any finite subgroup X of (F*)Y and
set of representations satisfying some conditions, we can construct elements
of &(M). Then we start with an element o of £(M) and an element & in
EQ(M ) that contains o upon restriction to M. We consider the restriction of
& to MX. Using Mackey theory, we are able to obtain an explicit description

of &{arx, which yields a set of parameters for the constituents of &|as.

Theorem 4.2.2 (Classification of the Discrete Series of M).  Let G = G,
and let M be a Levi component for G of the form M 2 GLa, ... XGLa, . Set
G; = GLa,. If X is a finite subgroup of (F*)V, let G¥ be the subgroup of G;
defined as GX = {g € G; | n(g) =1 for all n € X}. Let IT = {m; | 1 <1 <k}
‘be a set of representations with 7; € £(GY), and suppose Nk, X (=) = {1}
If ¢ is a coset representative of F*/Nx and & = diag(e,1,...,1) isin G,

then )
£M1

M* T2
7e = Indgx, gx x..xG¥

Tk
is in &|prx for some o € 82(1\;{ ), and T, restricts irreducibly to a member of

£2(M). Conversely assume o is In £,(M) and & is an element of (M) such
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that o C &|p. Let

X = X(5) = {¢ € (F*)V | (@5 =5}

Then there exists m; € E(GLX) for 1 < i < k such that

€1
olpmx = é Iﬂdg{fx...xckx " . ) (1)
=1 .
Tk
where {¢;} is a set of coset representatives for F* /Nx, €; = diag(e;,1,...,1)

in Gy, 7 = |X|, and NE_, X(m;) = {1}. BEach summand on the right hand
side of (1) restricts irreducibly to M. Consequently o is determined by the

set {=;} and some ¢;.

REMARKS.

(1) The condition that NX(m;) = {1} ensures that all of the reducibility
of & is accounted for on M*X.

(2) As in the example, the €; factors can, equivalently, be written
in several places. This fact follows from Lemma 4.1.3 and the diagonal
expression for ;.

(3) In the case of a single block (M = GLn)r, the irreducible con-
stituents of &|psx restrict to give members of £:(SL,), as remarked earlier. In

this case, the theorem is a restatement of parts (a) and (c) of the Restriction

Theorem, with G = GL,, H = GX,and m =5.
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(4) The second half of the theorem does not determine exactly which ¢;
is associated with o. Instead the classification provides a form for members
of £3(M) by describing the unordeced set of constituents of &|p; the set of

these constituents is often referred to as a packet or L-packet.

PROOF. Let X be a finite subgroup of (F*)V, and let II a set of representa-
tions as in the hypotheses, By Corollary 3.2.5, there exists p in &; (é;) such
that my C p[G;:. The Restriction Theorem 3.2.1¢ and Multiplicity One of p
imply that p| ax = @ém, the direct sum taken over coset representatives €
of F* /N, and that my % ém, for any € € Nx. Using Corollary 3.2.4, we see

that
gﬂ'l

.
Mx 2

e =IndgR,  ox

Tk

is irreducible. Moreover T¢|pr is irreducible by our condition on the X ().
Hence .|y € E2(M).

Now let o be in £(M), and let & be in SQ(M) such that &|y 2 0.
Write & = Q§; for 6; € &(G). Let X = X(§). If r = |X(&)], then
&|px contains r constituents, each occurring with multiplicity one, by the
Restriction Theorem 3.2.1b. For any ¢ € X, Lemma 4.1.1 says that ( is also
in X(;), and then &i|gx has r constituents. Consequently the restriction of
Fto GE xGF x...x G¥ yields r¥ representations, and a counting argument
gives us the desired result. Specifically the index of Gf x G x ... x Gy
in MX is r*~!, and the representations of &]G{:x___ka are partitioned into

sets of r¥—1 constituents that induce equivalently to MX. Inducing one of
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the representations from each set produces r inequivalent irreducible repre-
sentations on MX which are the constituents of |y x. Fix a constituent 7
of &|prx and a constituent 7 @ 72 ® ... ® ™ of TIG{:X_‘_fo. Applying the

Restriction Theorem 3.2.1c allows us to write

™
r ?1-2
~ v = MX
Flpx = @s :Ind 1
M JHCeX .G . ’ (1)

i=1 .

Tk

where {¢;} is a complete set of coset representatives for F*/Nx. Asin
Remark (2), the &; pass through to the inducing representation by Lemma
4.1.3. We know that all of the reducibility of & occurs on M* (Lemma
3.4.2), and therefore each member of £;(M) contained in &|ar is obtained by

restricting some representation on the right hand side of (1) to M. Q.E.D.

§4.3. Discrete Series with a Given R group: the Case M = M,.
Suppose that M = M) is the Levi component for the standard minimal
parabolic of G, and fhat M = Mj is the corresponding Levi component in
G,. Let G = G,, and let G =G, Ioisin &(M), we want to use
the R group of o to describe the elements of £2(M) that contain ¢ in their
restriction to M.
Since M is the diagonal subgroup, o is a unitary character of M, and

if & is an element of 52(]\;[) such that &|p 2 o, then &|y = ¢. Thus & can
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be written

&gfl ®€2®---®£n1

with & in (F*)Y. Moreover X() = {1} since o is one-dimensional, and
therefore R = R{o) = L(5).

By Lemma 3.1.3 we may reorder the blocks of M and consequently the
¢; without affecting the class of the induced representation. Since R = R(o)
is contained in Wg(M) = WG(M ), it is a subgroup of the permutations on
the blocks of M. Let @ € R, and let r be the corresponding permutation
on {1,2,...,n}. In particular the (1 x 1) blocks can be reordered so that
is the product of disjoint cycles that are in increasing numerical order, with
the 1-cycles of r all occurring at the end. Such a reordering is the restriction
of an automorphism ¢ on G. Let ©(&) denote the representation achieved
by the same reordering of the £;. Then @(NG(M)) acts on (&)

Choose as the coset representative for (@) the standard permutation

matrix corresponding to r. Specifically suppose
T‘:(l-.-nl)(n1+14..n2)...(ne_1+1...n£)’ (1)

and let w; be the matrix in G\, _n,_, defined by

(oo...o1\
10 0 0
w;=10 1 ... 0 0],

\0 0 ...

1 0/




where we take ng to be 0. Then the block diagonal matrix
w =(w1,w2,...,wg,l,...,1)

is a coset representative of ¢() and is the permutation matrix corresponding

to r.

Let ' = (&). Recall from the definition in Section 4.1 that & is
“similar” to &', and we write & &~ &'. For simplicity, rewrite &' 2 ®¥_, &,

Using w as defined above, we compute that

wa’(gls.()'?: <o '.\gn) = &'(gr“l(l)agr_l@): s 1gr—1(n))

= &1(gr-1(1)) © E2(gr-1(2)) ® .. @ En(gr—1(m))-

Since &' is one-dimensional, this is

= &1(gr-11))€2(gr-1(2)) - - - €nlgr-1(m))
=£)(91) @ &r2)(92) @ -+ @ &rgny(gn)-
If 7 is the character in L(#) associated to @, then ¢ ™' (w) is in %, and the
condition that @& = ¢~ (w)d forces n® &' = wo' under the automorphism
. Therefore Lemma 4.1.4 implies that
(®&(9:1)®... 8 (@ &nlgn)) = (1® ') (g1, 1 9n)
= w6' (g1, s gn)
=£m){91) ® ... @ Lriny(gn),
and thus

néi = &riy forall i (2)
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Proposition 4.3.1. Let M = M be the Levi component for the standard
minimal parabolic of G. Let ¢ be in &(M). Let & in £,(M) have the
property that &|yr = ¢. Suppose @ in R has order m for some m > 1,
and suppose 7 is the corresponding character of order m in L(#). Let the
permutation r associated to @ be written as in equation (1). Then r is the
product of £ disjoint m cycles, where £ = n/m. Consequently there exist

characters k; € (F*)Y for 1 <i < £ such that

el (m@...@(nm_lm)) @...@(ﬂg@...@(?’]m_lfﬁg)).

PROOF. Let &' be the representation on (M) determined by reordering the
blocks of M so that r can be written as in (1), and write &' = @t & By

equation (2), we can write ' as

¢
= ® (En,,_1+1 @... ®(n";‘§nh_1+1)) ® bnyr1 ® .- @ &n,
h=1

where ng = 0, and n}, = np —np—1. We claim that each nj, = m and that
ne = n. In fact since nQR (", 11) = n™ €., 41, equation (2) implies that
7 ® (1™ s 1) = N €np_r+1 = Enu_y+1, but this implies that p™h = 1.
Thus m divides n),. But the pErrﬁutation r has order m; so n}, divides m, and
we must have m = n/,. Similarly equation (2) implies that 7€, 4+ = €ny+j for
each j with 1 < j < n — ng, which is not possible since 5 # 1, and therefore

ne = n. Let K = En,_,+1, and the result follows. Q.E.D.

REMARK. When the R group is cyclic, this proposition fully describes the
possibilities for the ¢’s in Sg(M ) containing ¢ in their restriction to M, up

to similarity.
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We use the proposition to describe fully the elements of Sg(ﬂ;f ) that
contain ¢ in their restriction to M. The following definition simplifies the
final expression for & determined in Proposition 4.3.2 below. When studying

the generalized principal series, we shall make an analogous definition.

Definition. Suppose 5y, ...,n¢ are characters in (F*)V with respective or-
ders my,...,me. Let m(i) = mymz---m;. Fix « in (F*)V, and define the
representation Q(ny,...,n, k) for 1 <i < Zon H;’ff_fi F* recursively by

Qm, k) =£®mr®..Qn" 'k

and
mi—1

Q’(nlu“'anian) = ® 77{ Q(nla"':ni—h“’)'

j=0

Proposition 4.3.2. Let M = M, be the Levi component of the standard
minimal parabolic subgroup of Gy, and let o be in &(M). Suppose that
R = R(o), and write

R2Z/miZx...xL/m,Z,
with each m; > 1. Write |R| = m. Let @y, Wz, . .., W, be a set of generators
for the respective factors of R, and let 71, ..., 17, be the associated generators

of L(5). Then

&zQ(Tlla---anv1C1)®---®Q(ﬂ11---;nv7Cs)a
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where s = n/m and (; is in (F*)Y for 1 < < s.

PROOF. Let S' be an ordered subset of S, and proceed by induction on
the number of characters in $'. Proposition 4.3.1 handles the case that S'
is a single character. Suppose the result holds for S = {n1,m2, .M —1}-
Then for some subsets C{ of §' with 1 < ¢ < £, and sets of discrete series

representations {r;}{_, and {pe}j_,, we can write

g = Q(T]l,.. . ,T]vr_l,fq) ®...® Q(Th,. . .,'f]vtdl,}w), (3)

where ¢ = n/m{(v' — 1). The right hand side of (3) is a representation of
some reordering of the blocks of M , say M.

Now suppose that S = {n1,m2,...,%w}. The character n, in L(3)
induces a permutation r,s on the blocks of M.

Fix j with 1 < j < . We show that for each such j the orbit of
Qn1, ..., Mw_1, k;) under the powers of ry is as claimed. Since equation (2)

‘implies that 7, #; is equal to its image under ryr, we have the following two
possibilities:

(1) n2k; = (k;, where (x; is contained in Q(71,. .., Mv—1,%;). But this
implies that 7, = (, which contradicts the assumption that 7, generates a
distinct factor of L(&). Therefore this can not happen.

(2) mk; = (rj for some j' # ; and for some ( such that {kj is

contained in (m, . .. ,Mv'—1, £jr). Then we must also have

nv‘C’K'j - CC'K']" € Q(nlv .o vnv‘wls'&j’)
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for any ('k; contained in Q(n1,...,%v—1,#;). Thus the length of the rep-
resentation (71, . ..,Nw~1,5;) is the same as that of Uy Tor—1s Kjt )y
and 7, sends 71, . ., pu—1, &) to Q0p1, - M1, kj+). The other powers

of r, force & to contain

QS w;) =, Moi=1,K) Q... ® n:f"'_lﬂ(m, ey =1, K5),

which by definition is similar to Q(n1,. .-, %, £5)-
We conclude that the orbit of Qn1,...,mw—1,K;) gives rise to the
representation (1, ..., N, ;) for each j. This representation has length

m(v'), hence & is similar to

Q(m,...,nv:,n'l)®...®Q(n1,...,n,,r,n}),

where ¢ = n/m(v') and &! is in (F*)V. The final result follows by induction.

Q.E.D.

We have completely described the possibilities for ¢ in E4(M) in terms
of the R group. When M is not the Levi component for the standard minimal
parabolic subgroup of G, the argument for determining the form of & is
similar. The results are slightly more complicated to formulate, however,
because we are unable to state exact equalities (as in equation (2)) when the
representations are not one-dimensional. Instead we must write things in
terms of equivalences, and more variation is possible. Details for this general

case are carried out in the next section.
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§4.4. Discrete Series with a Given R group: the General Case.

We now generalize the results of the previous section to encompass
the case that M is the Levi compoaent for an arbitrary standard parabolic
subgroup of G = Gn. The arguments are parallel to those in the case of
the principal series. Let o be in &(M), and let & be in £,(M) such that
&|m D 0. We describe & in terms of the R group of o.

Write M in block diagonal form as

M = GLz, x GLa, X ... X GLq,, (1)

and write & 2 ®*_,5;. By Lemma 3.1.3 we can reorder the blocks of M and
consequently the &; without affecting the class of the induced representation.
Since R = R(0) is contained in Wg(M) = Wg(M), it is a subgroup of the
permutations on the blocks of M. Let @ be in R, and let r be the correspond-
ing permutation on {1,2,...,k}. As in the previous section, rearrange the
blocks of M so that r is the product of disjoint cycles that are in increasing
numerical order, and so that the l-cycles of 7 all occur at the end. Such a
reordering is the restriction of an automorphism ¢ on G, and consequently

¢ can be seen as acting on K. Suppose

r=(1 - n)(n+1 cong)e - (ner A1 - ), (2)

with 1 < ny < --- < ng <k, and set ng = 1. Let w; be the matrix in
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G'(nt._n'.ﬂ)ﬁ‘. defined by

(0 0 ... O I,—,,..\
m 0 ... 0 0
w;=10 Iy ... ¢ 0],

\0 0 .. I, 0/

where 7; is the common size of the blocks permuted by (n;—1 +1 -+ n;).

Then the block diagonal matrix w = (w1,...,we,1,...,1) is in (w) and is
the permutation matrix corresponding to r.

The automorphism ¢ induces a reordering of the &; and produces a

representation on @{M). Denote this representation by &'. Recall from

. Section 4.1 that under this automorphism & is similar to 3', and we write
& = &'. For simplicity, rewrite &' & ®@F_,5;.

Moreover the coset representative w of ¢(w) acts on &' since w is in

Né(tp(M)). We compute that

Wf}’(gl,gh coe 1gk) = &’(gr"l(l)agr‘”‘l(Z)a s 1gr_1(k))

= G1(gr-1(1)) @ F2{gr-1(2)) @ ... @ F(gr-1(1) )»
and Lemma 4.1.4 implies that
wa' (g1, 925+ 9k) = Fr1){91) @ T2y (92) ® ... @ Fr(r)(gk)-

In this sense, we may think of w or r as acting on the set of representations

{Fi}1<i<k. If n is the character in L(5) associated to @ taken modulo
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X(5), then ¢~ '(w) is in w, and the condition that n ® & = w Y w)éd forces
n® & = wd' under the automorphism . Therefore Lemma 4.1.1 implies
that

n® i =0, for1 <:1<k. (3)

More explicitly, we have the following equivalences among the &;:

n® o =g, n®&m+1§&n1+2.1
n® oy =03, N®Gnyt2 = Ony43,

etc.
nR o, =01, N®Fn, = 0nis1,

The first column shows that &; 2 n* ' @ &, for 2 < i < n; and that
p™ is in X(&1). The second column shows that &; = Tl @ Gy, 4 for
ny +2 <1 < ny and that 27" isin X (8p,+1). And so on. In other words,

the hth nontrivial cycle in r corresponds to a set of representations of the

form {p/ ® Gn,_,+1} for all j with 0 < j <np —np-1.

Definition. Let H be a closed subgroup of GL(n', F'), and let 7 be in &(H).
If 7 is a character of F'¥, let ord(n) = ord,(n) be the order of 7 modulo X (7).
Define a representation §(n,7) of Hf;dl(") H by

Q) =TOOOT@... @ (T 8.
We say that (n,7) is generated by 7 and that it has length ord(n).
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Proposition 4.4.1. Let M be the Levi component for a standard parabolic
subgroup of G such that M = M N G, where M is written as in (1). Let
o be in E(M), and let & be in E:(M) such that G|y 2 0. Suppose w is
an element of R with order m > 1, let n be the corresponding character in
L(&) taken modﬁlo X(5). Rearrange the blocks of M so that the associated
permutation r can be written as in (2). Grouping together the blocks of M

that are in the same orbit of r, we rewrite

e (tileLﬁl) SO (EGM) X Gar % .. % Ga,.

Then there exist representations 7; € E(GLy;) for 1 < ¢ < £ and represen-
tations pj € £2(GLy) for 1 < j" < s such that the n;’s in the expression for

r satisfy n; — n;—; = ord,(n). Consequently
G ..U LT)R,M @ ... ] ps,

and p; Z @ pi.

PRrROOF. Let & be the representation similar to & that 1s determined by
reordering the blocks of M. The restrictions of equation (3) show that &'

can be written

(1o 0506 G- DY G, 11) ©P1®-. B

where the pj are fixed by r. Let 3 = Gn;_ 41 We claim that n; — n;—1

is actually the order of 5 modulo X(7;). Without loss of generality, assume
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that the order of n modulo X(7) is less than ny, say nj. Then M QT T,
and n} divides n;. Write ny = jn} for some j.

For simplicity denote by W'(a), ctc. again the image of W'(o) under
@, where ¢ is the automorphism implementing this reordering of blocks.
By the realization of W'(o) in equation 2 of Section 3.3, the elements
of Wg(M) corresponding to the transpositions (1 n{), (n  2n}),..., and
((j—2)n (5 —1)n}) are all in W'(o). Therefore the cosets ®W' and w' W'

are equal, where @' corresponds to the permutation

(I_I(hn'l+1 (h—l—l)n'l))((nl—}-l ceng) e ng—y +1 - ng)).
h=0

Thus we can take @' to be the coset representative in W(a)/W'. Therefore
if % is taken modulo W'(a), then n; —n;—; = ord, (%), and consequently the

permutation r corresponding to @ in R can be written in the asserted form.

The conclusion follows. Q.E.D.

REMARK. When R is cyclic, the proposition describes all of the possible &’s

(up to similarity} in £2(M) that contain ¢ in their restriction to M.

Definition. Let H be a closed subgroup of GL(n', F), let 7 be in &(H), and
suppose 7y, . . . , ¢ are characters in (F*)¥ with respective orders my, ..., my
modulo X (7). Set m(z) = mymy---m;. Let Q(m,7) be as in the previous
definition, and define the representation §(ny,...,n:,7) of H?T_(_f} H recur-

sively by

mi—1

QNyye e My T) = ® nf Q1,3 0im1,T)

=0

We say that Q(m,...,7:,7) has length m(3).
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Definition. Let M' = Hle Ga, for some k, and suppose that we can also
write M' = M, x M,. Let 7 be in &(M"), and let p be in £,(M;). Then T
is said to contain the representation p if the isomorphism M = M, x M,

induces

!
TRPRT,

for some 7' in £3(M,). Also if 7; is in £:(Ga,) for 1 < i < s, then we say

that {r;} contains p if p is contained in @7;.

EXAMPLE. The context in which we use the above definition is as follows.
Suppose that in the situation we are considering M2=G, x G,y x Gy, and
assume that & = 7 ® 7’ ® 7 for some 7 in £(G,), T in £2(Gpnr), and 5 in
(F*)Y. Let My = Gp X Gy, and let My = Gpr. Then M = M, x Mz, and

under this isomorphism & =~ 7 ®@nT ®7'. Thus we say that & contains 7@ n7.

Moreover the set {7,7',n77} is said to contain 7 & 7.

Let o be in (M), and let & be in & (M) with G|y 2 0. We know
that R is a finite abelian group and therefore is the product of cyclic groups.

Write
R2EZ/m\Z x Z{maZ x ... X L{m,ZL,
with each m; > 1, and let wy,...,w, be elements of R that generate the

respective factors of R. Let S = {n1,...,7} be a set of characters in L(5)

taken modulo X{(&) such that #; is associated with w;.
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Proposition 4.4.2. In the above situation, there exist subsets C; of S with
1 <1 < K for some k', and sets of discrete series representations {'r,-}f':;i and

{pzw}§:=1 such that
T~ Q(C'l-:""—l) & 9(0237-2) ®...0 Q(Ck'7T’c') QM ®R... 38 py,

where every n; is in some C;. The representations pp and 7; are characterized
by the properties:
(a) n isin X(pp) forall t and & with1 <t <wvand 1< ¢ < s

(b) Tf 5, is not in C; for some ¢ with 1 < ¢ < v, then 7 is in X(r;).

REMARK. This proposition reduces to Proposition 4.4.1 when R is a cyclic

group. In that situation, C; = S = {5} for all 7.

PROOF. Let S’ be an ordered subset of S, and proceed by induction on
the number of characters in §'. Proposition 4.4.1 handles the case that S’
is a single character. Suppose the result holds for S’ = {n1,72,... Tl 1}
Then for some subsets C! of S with 1 < ¢ < {, and sets of discrete series

representations {r;}¢_, and {pe}§_,, we can write
FQUCLT®...RUCHLT)O M Q... B psy (4)

such that properties (a) and (b) are satisfied, and every #; in 5’ is in some
C!. Let ¢ be the automorphism of G implementing this similarity.
Now suppose that $' = {n1,72,...,7v}. The character 7, in L(&)

corresponds to a permutation r,» on the blocks of o(M ). We do not choose
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a specific form for r,» because we are trying to refine further the expression
in equation (4). We want to show that the orbit of each of the Q(C},7]) and
each of the pp under the powers of r,s contains representations only of the
asserted form.

First fix j with 1 < j < £. We show that for each such j the orbit of
QC%, 7}) is as claimed. Since equation (3) implies that 1,/ 7] is equivalent to
its image under 7., we have the following four possibilities:

(1) 5y ® T:; = ¢ ® 7}, for some character  such that { @ 7/, is contained
in Q(Cl,14) (ie., ¢ is some product of the characters in C},), and with 1 # ;.

Suppose (' ® 7] be contained in Q(C%, 7). Then 5, ® 7} = ( @ 7/, forces
e ®(('® 15 = ® T € QCh, T

Since permutations are one-one and onto, the length of Q(Cj, 7}) is equal to
the length of Q(C},, 7})). Thus Q(C}, 7)) = 7y @ Q(C}, 7;), and therefore 7y

sends Q(C},7;) to Q(Cl,7;). The other powers of r,s force G to contain

o UC) 7)) = ACH ) (00 ©UCH ™) 0. @ (n7 @ ACH ™)),

where u = Ofdr;(??u')- Property (b) holds by the induction hypothesis.
(2) nw ®7n; = ( ® 7} for some ( ® 7 contained in Q(C%,7;). Then
("' ® 7} is also contained in §(C7,7}), where ¢! is taken modulo X(r}).

Therefore

nv'®(C QT )’—T
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and 5, is in X((T'® 7/). Since each of the , € C; implements a permuta-

tion, we have
v @ Q(CY, 75) & UCj, 7)) = QCS, T @ 7)),

and n, satisfies property (b) for Q(C, (7' @ 7).

(3) v ® 7} = 7). Then 7, is in X(7}), and property (b) is satisfied by
Nyt

(4) nw @ 7} = pp for some ¢ with 1 < ¢ < 5. This, in fact, can
not happen. If such an equivalence were true, then we would also have
Ny ® (e ® 7}) = pp for any ny € C}, since n¢ € X(pw) by the induction
hypothesis. But then 7, can not implement a permutation.

We conclude from each of these possibilities that the orbit of 2(C3, 7})
contains only representations of the asserted type for each 7 with 1 < j < 4.
Now fix 7/ with 1 < j' < 5. We want to see that the representations contained
in the orbit of pj: under the powers of r, also satisfy the proposition. For
pj there are two possibilities:

(1) nw @ pj = pir for some i # j'. Considering the full orbit of p;
under the powers of r,, shows that & contains the représenta,tion QN pit)s
and property (b) is satisfied by the induction hypothesis.

(2) 7y ® pjr = pjr. In this case, gy is in X(pj), and property (a) is
satisfied.

We have shown that & contains only representations of the required
form for S' = {n1.m2,-- -, }. If ny is not in any of the C;, then it fixes all

of the 7; and py by properties (a) and (b). Hence 7, has order 1 modulo
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X (&), which contradicts the hypothesis that it generates a distinct factor in

- L(#). The final result follows by induction. G.E.D.

Later we will want to distinguish between two distinct types of discrete
series. For the first type, we are able to give explicit realizations for the
irreducible constituents (Section 5.2). The second type is more complicated

and is studied in Chapter 6.

Definition. Let o be in £,(M), and let & € £,(M) be such that &|y 2 0.

The discrete series representation o or & is said to be a Class I representation

if either
a) the R group of o is cyclic, or
b) when & is written as in Proposition 4.4.2, all of the C; contain a single

character.

Otherwise we say that ¢ or & is a Class II representation.
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V. CONSTITUENTS OF THE GENERALIZED PRINCIPAL SERIES

§5.1. Cyclic R group.

We are interested in gaining information about the irreducible con-
stituents of the generalized principal series representations with a cyclic R
group. To do so, we combine the classification of £he discrete series with
Mackey theory, and express the constituents in terms of the constituents of
some basic representations, called “building block representations”.

To define these representations, first suppose that M is the Levi com-
ponent of G given by a product of k blocks of equal size ¢. Moreover
assume that o is in &(M) and that R(o) = Z/kZ, and let X = X(5). Let
ii be a generator for L(5)/X(&). Then we know from Theorem 4.2.2 and

Proposition 4.4.1 that

T

. nRT
o= Iﬂdﬁég{ . ] (1)

nk—ul RT M

for some T € EQ(G;( ) and some coset representative ¢ of F*[Nx. The
representation on the right hand side of (1) can be parabolically induced to
G¥,, and the restriction of the resulting representation to G, is equivalent

to Ind§; 5 (¢) by Lemma 3.4.1. This motivates the following definition.

Definition. Let X be a subset of (F*)Y, and let 1 be in (F*)Y withn ¢ X.

Ifrisin Ez(Gg() and ¢ is a coset representative for F* /Nx,let £ = ord.(n),
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and define the representation §2,(&, 7) of Hf=1 G by
Q&) =renen®...an ™ @)

The representation Q of G‘;g achieved by parabolically inducing Q4(&,7) is

called a building block representation:

ax x .
@ = Indy%  (ndffox (20(E,7))) -

REMARKS.

(1) Notice that §2,(&, ) is a generalization of the representation Q(n, 1)
introduced in Chapter 4. The £ is a necessary factor arising from the classi-
fication of the discrete series of M (Theorem 4.2.2).

(2) The representation ¢ as in equation (1) produces a building block
representation in the obvious fashion, and by Theorem 4.2.2 and Lemma
3.4.1 the reducibility of Indf/,“]'v (o) is the same as that of Q|g, where {} is the
respective building block representation. We shall see in Section 3 that these
representations are exactly the generalized principal series whose constituents
are “elliptic”. Notice, however, that the definition does not allow us to go
backwards; that is to say, not every building block representation restricts
to a generalized principal series representation. This is because X(7) is not
necessarily trivial, as is required by Theorem 4.2.2 in order to lead to an
element of the generalized principal series.

(3) Our main theorems describe the reducibility of the Ind$;y (o) in

terms of the reducibility of the building block representations when o has
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a cyclic R group or, more generally, when o is a Class I representation as
defined in Section 4.4. We shall see that each such generalized principal

series gives rise to some set of building block representations.

Now let M be the Levi component for a standard parabolic subgroup
of G = Gn, and let o be in E(M). Suppose that R(o) & Z/mZ as 2
permutation group and that 7 is a generator of L(c)/X(5). Let M be the
corresponding Levi component of G = G, and let & be in £,( M) such that

5ly 2 0. Recall from Proposition 4.4.1 that
5 Q)@ @UNTE) O PO B P (2)

where m = LCM({ordn(T,-)}le). Moreover we have a classification of the
discrete series representations in the packet of o (Theorem 4.2.2). v is the
permutation on the blocks of M induced by n, we can write r as the product
of k disjoint cycles with the sth cycle permuting the blocks corresponding to
Q(n, ;). We first study the case that r is a single m cycle (ie., k=1). The
general case of a cyclic K group then follows from similar arguments.

Let o be in & (M) with R(o) & L[mZ, and suppose that 7 is a single

m cycle. Then we can write

and expression (2) can be rewritten

GO ®. . 8P (3)
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with 7 € Sg(éq), pi € &(GL,,), and p; = 1 ® pi. Furthermore from the
description of the discrete series of M, if X = X(&), we know that there
exists o' on MX such that ¢'|y = o. In particular expression (3) says that

for some coset representative ¢ of F* /Nx we must have
Q,(& ")

M
O" ~ Indﬁ: qu x T, G{_ . ] (4)

=]

where o} and p) are irreducible constituents of TlG-qX and ple.—’ respectively.
Then associated to o is the representation 2,(£,7'). Let © be the
respective building block representation on Gﬁq. Since [Gvirlr,q : Gﬁq] = m,

there are m irreducible constituents in Q|5z . Write this reduction as
mgq
Qe, =21 DD P

We will implement double induction and Mackey theory to express the re-
ducibility of Indf;; v (0") | = Ind§ v (o) in terms of the ®; and constituents

of pj|an . The following example displays all of the necessary ingredients.

Example. Let M be a Levi component of G,, whose corresponding M is of
the form M = G X G x G.. Suppose o is in &(M) with R(o) = Z/2Z,
and suppose & is in & (M) with &y D o. In this case, (4) can be rewritten

£y
X
f M

T2
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with ( # 1 € (F*)Y and (? = 1. We want to describe explicitly the irre-
ducible constituents of Indg’;( ~ (@) 1E. Form Q,(&,m), and let

X
Gy

Q= IndeNIndﬁ)((}‘g‘ (Q,,(é", T))

be the corresponding building block representation.
Let L = L(5). Since L/ X is generated by ¢, we must have GX:¢ = GL

for any size n. By the Restriction Theorem and the definition of X (02),

Qlgr = IndG:f,g"xGﬁ ~Aq B.
Cﬂ-l fe??
If we set M' = Gom ¥ é’r, then
Gy
Ind, 7y (o)
el
gﬂ'l
~ Gx + X X
= Iner:XN, Ind%XNIndgﬁxG’}ngi( CTfl
T2 ar (5)
Ind% (Q.(2
o1 dG;"( I dMax n Gixcﬁ( C(Evﬂ'))
= Mppxys | MAGX gx
(6)
Q
~ G£ MJX
™~ IndM,EN, IndGa“meZ‘ ) (7)

e ML
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are irreducible and not equivalent, and hence by equation(7), induce to the
two irreducible constituents of Indg;; v (6")|gz. Therefore when restricted

to M, they are the constituents of Ind$, (o), i.e,

. A
G, ~ Gﬁ M;E ¢ 'L
Indyfy (o) = IndM,L N IndM2 ) @ Ind%2

[

+ L A ' L
Ind§,y | Ind3" RIS Ind} "

REMARKS.
(1) Notice that if we restrict ® all the way down to Mz, we get four

inequivalent representations, written

A A B B
1]’ 2}’ 17’ and 2
Ty w3 9 (37

According to Mackey theory, these matrices induce to M 'L in pairs l.e.,

A

IR
5
=™

=

MJE
Insz

and

Mrﬁ A ~ M:I:
111sz . = Insz L
T2 2
This shows two things. First our pieces are not achieved by inducing the

constituents of @]z, ; this actually gives us twice our representation. Second

we could also write

+F A +L
¢ = Indl‘ﬂ'}?L @Indﬁ;
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(2) Also notice that if X{x) # {1}, then Q|g,,, is not equivalent to a

generalized principal series representation, by Tueorem 4.2.2.

Let us return the situation that r is a single m cycle. Let ¢’ be the
representation described in equation (4). Form Q,(¢,7'), and let § be the
associated building block representation. The proposition below describes

the reducibility of Ind§, y, (¢) in a fashion analogous to the example.

Theorem 5.1.1. In the above situation, if Qg ZX @, & D Py and
myq

M’gquXGn’nl x"'Xéna,then

%,
©1

m
GX . ~ @ Gt ML
a = I 8
IndPx ( )‘GL ndP'LInngaqXH.’=1 G‘g‘- . ’
1

Ps

where M'" = M' N G¥ and each ¢; is an irreducible constituent of p}|qz
nj
The representations on the right hand side of this equation restrict irre-

ducibly to G and are equivalent to the constituents of Ind%;y (7).

PROOF. Our goal is to show that all of the reducibility of Ind?;; ~ (@] G
actually occurs on the Levi component M I of GL. We have the following
series of equivalences:

(1)

Ind§ y (0') | 2 1dSx s (Indifwy (o)

el
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Qq(6,7')
= IndS Ind¥x Indfn xupp_ ox & _
P GEL (2)
Q
~ d%;, ., IndM"‘ Il G g . (3)
Ps/ lapie
P;
~ nd%,, @IndM“" e, GF. - - (4)
Ps

Equivalences (1) and (2) are given by double induction, and (3) follows from
Lemma 3.4.1. The final equivalence, given in (4), will come from Mackey
theory and the group X (Ind(¢")).

Let the inducing representation in (3) be written

Q

_ M!X
T = Inde e

If we restrict » down to GL % H‘_l GL the Restriction Theorem tells us

that we have m*t?! irreducible constituents. Mackey theory says that these
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constituents must come from the restri(;.ion of the constituents of 7|z, and
therefore the irreducible constituents of 7|,z can be recovered by inducing
constituents of TI(G{:” Tz, GE,)- In particular the irreducible constituents
on the smaller group induce equivalently in sets of m® to M L gince the index
of G,‘T;,q X [Ti=s GEI_ in M'Y is m®. Moreover the Restriction Theorem tells us
that if 7' is an irreducible constituent of 7|, z, then the other constituents
are given by 7' where ¢ runs through a complete set of coset representatives
for F*/N;. By Lemma 4.1.3, the £ factor passes through to the inducing
representation and can be seen as acting on ®,. Thus if we fix ¢; in p’ilgg‘.,
we have
2;
w1

m
Mfli
T|apr = @Ind ¢ .
M ! GEL, xIIi= GF, .. ?
J: .

¥Ys
and the result follows. Q.E.D.
REMARK. Notice that we can write our final result in several ways by choos-

ing a different fixed constituent of 7|ge ,p_ L - For example
maq

i=1 L

®,

m
GX ' ~ GE‘ M!L )
ndSx y (o )lGL = (D Indg; Inddy e or _ ,
=1

where @, is a fixed constituent of Q|r and ) ranges through the m con-

stituents of p,lge -
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Now consider the case in which r may contain more than one cycle.

Then we can write

and we write & as in equation (2). Let X = X(&). Then there exists o' such
that o'|p = o by Theorem 4.2.2. Let H = @le (Hﬁ"___l G > [Ty G

Then using the expression above, we can write o' as
/(7 \
n,72)

X
o'~ Ind¥ Qn, 1)

\ o/

for some coset representative ¢ of F*/Nx. Here 7} C Tilgx and p; € plax. -
Notice that Q(n, 7)) = Q,(1,7!), and let ; be the building block represen-
tation on G, with £; = ord,(7)). .Ea,ch, of the Q; has m constituents when
restricted to Gf", g BY a proof analogous to the proposition, we have the

following result.

71




Theorem 5.1.2. In the above situation, assume Ql'G{ . 2P D DO,
191 .

and let

k 7 3
J.M’ = Héfiq:' X Héﬂi'
i=1

=1
|

X
Then the irreducible constituents of IndﬂG/["x ~ (')} | are given by

Ind{gA (")) 5
(® )

wa

L L Wk
b il Gt"q" XHG GL ’

P=1 " m}

~ D Ind®", IndM."
=1

¥1

\ 0s/

where ¢; is a fixed constituent of pilgr and w; is a fixed constituent of

] G - Consequently the irreducible constituents of Ind§;y (o) are given

(R

by the irreducible restriction of these representations to G.

result.

|
REMARK. Once again there are several different ways we can write the same




§5.2, Class I Representations.
Let M be a Levi component of G = G, ard suppose o in £&(M) is a
Class I representation. By Proposition 4.4.1 this means that if & is in E(M)

with &|a 2 o, f,hen
&~ QCL,m)®NCHT)R ... ACKT)OMD...0ps, (1)
where each C; is a single character. Write
R2Z[/myZ x ... X Lfm,Z | (2)

with each m; > 1, and let @, ...,1, be generators for the distinct factors
of R. Then the nontrivial orbits of the @; are disjoint. This fact allows us to
give an explicit realization for the irreducible constituents of 7 = Ind$; y (o)
in the same way as for the cyclic R group case.

Let X = X(&), and let 7y,...,7m, be characters in L = L(&) corre-
sponding to wy,. .., t,, respectively. By the classification of discrete series
(Theorem 4.2.2), there exists o' € E,(MX) such that o'|ys = 0. Moreover
using (1), we can write
/90,E07)) \
A0, 73)

o ACk,7h) . ®

%
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where ¢ is some coset representative for F* /Nx. We can write

£ £ ‘
M = (ﬂé’ql) X ... X (fl@qk) X Gp X ... X G,

i=1 i=1
Let ©; be the building block representation corresponding to (C;, 7!) for
2 < i <k, and let Q; be the building block representation corresponding
to Q¢,(€,7). Suppose C; = n;. Then 5 is in X(r;) for all i’ # i by
Proposition 4.4.1, and therefore there are my = ord,,, (&) constituents when
£); is restricted to GZ}';J,, using equation (2). Moreover when §); is restricted
to GZ," g 1t has m; irreducible constituents, according to the theory of the
R group and the Restriction Theorem. Thus leGf,- y has |R| irreducible

constituents. Denote the reducibility of £2; on Gg’l ¢, bY
Ql]qlfl g ¢1 EB e @ (I)m’
where |R| = m.

Theorem 5.2.1. In the above situation, we can express irreducible con-

stituents of IndflxxN (") |G£ by

Ind$px (7" e

& )

weg

m -

leld M'E

o EB Ind®, ; Ind, GL, XTI, GF Wk ,
. ite = ﬂ"




where M' = H,’;l Ggt; X ;= G, the representations w; are a fixed con-

stituents of Q"!Gf-;.’ and @y is a fixed constituent of pl|;z ' for 1 <3¢ <.

Therefore the irreducible constituents of Ind§,y (¢) are given by the irre-
ducible restriction of the representations on the right hand side of this equa-

tion to G.

PROOF. The key fact in this result is that if C; = #;, then 5y is in X(7;)
for all ¢" # ¢. Then the proof is essentially the same as that for Theorem
5.1.2. By the Restriction Theorem, Indf;;N (c") IGE has m = |R| irreducible
constituents. As in Theorem 5.1.2, we enlarge the Levi component to M’
through double induction and apply Lemma 3.4.1. Thus we are interested

in the reducibﬂity of
(th \

Q

' X
IndM," .«
X
=1 Gq‘-t‘- x ?:1 Gn,' {

\ Pfg/ ML

This representation also has m constituents by the Restriction Theorem,

and if we restrict all the way down to Hle GgE;t.- x [T, G,I;l. there are m*t*

irreducible constituents. We then apply Mackey theory, using the fact that
the index of HLl Gg,-e,- x [T, GE.- in M'" is equal to mf+*71, {o see that

the constituents on the smaller group induce equivalently in sets of m*+s=1

to give the constituents on M L By the Restriction Theorem, if T is one
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constituent of this representation on M ’i', then the other constituents are

given by &7, where ¢ runs through a complete set of coset representatives for

F*/Nj. Fix the constituent

& \

Wy

I deL
T =1in k r w
i=1 Gq‘-(i XH‘ GE‘ k ’

i=1

¥1

\ 05/

and the result follows since the & factor passes through to the inducing rep-

resentation by Lemma 4.1.3.  Q.E.D.

§5.3. Elliptic Representations.

Let G be a totally disconnected group. An element x of G is said
to be elliptic if its centralizer is compact, modulo Z(G). The set of all
elliptic elements within G is denoted G°. Suppose that is a tempered
representation of G and that its global character is ©,. It is known that
@, is a locally integrable function [H-C2], and we can therefore consider its
restriction to G°. If O|ge # 0, we say that 7 is elliptic.

Let P = MN be a standard parabolic subgroup of G, and let A be

the split component of M. Suppose that o is in Eo(M ) and that R = R(0)
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is the R group of o. Let X(M) be the group of F-rational characters of M.
Define the real lie algebra of 4 as a = Hom(X(M),Z) ® R. The group
We(A) = Wa(M) acts on X(A) and consequently on a. I @ is in R(o),
let a5 = {H € a | wH = H}. Furthermore let ap = Nay, the intersection
taken over @ € R(o). Let 3 denote the real lie algebra of Z. If G = G, then
3 = {0}. Write r = Ind§; 5 (o).

Theorem 5.3.1 (Arthur [Ar]). Suppose that C(r) = C[R] and R is
abelian. Then the following are equivalent:

(a) m = Ind§, (o) has an elliptic constituent,

(b) all of the constituents of Ind$;y () are elliptic,

(c) There is a w € R with ag = ag.

Theorem 5.3.2 (Herb [H]). Suppose that C(7) = C{R] and R is abelian. If
p be an irreducible constituent of Ind$; y (o), then p & Ind§y, y (7) for some
proper Levi subgroup M' and some irreducible tempered representation 7 of
M'" if and only if ag # 3. Moreover M’ and 7 can be chosen with 7 elliptic

if and only if there is a Wy € R with ag = ag,.

Goldberg {Gol] has made an extensive study of the role of the R group
in the theory of elliptic representations for SL,(F") . His theorems rely on the
results of Arthur and Herb cited above. Throughout this section we consider
the following situation. Let P = M N be a standard parabolic subgroup of

G, = SL,(F), and write the corresponding M in “block diagonal” form.
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Consequently

=
IR

Gmy X ... X GLpm, .

Let ¢ € £;(M) and G € & (M) such that &|p D o. Suppose R = R(a) be
the R group of o, and write R & L(5)/X(3).

Goldberg showed that the irreducible constituents of 7 = Ind$ y (o)
are elliptic if and only if & ~ Q,(7) and that the constituents are neither

elliptic nor induced from elliptic if & is a Class II representation (see Section

5.4); see [Gol].

Proposition 5.3.3. Let o be in £(M), and let & be in £2(M) such that
&|am = 0. Then the irreducible constituents of Ind§, 5 (o) are induced from
elliptic representations if and only if either

(1) R(o) is cyclic and & % Q,(r) for any discrete series representation 7,

or

(2) R(o) is not cyclic and & is a Class I representation.

PROOF. The proof follows from calculating ap and applying Theorem 5.3.2.
In the first case, agp = 6p where @ generates R(c). In the second case,
a,ti = Og,..w;, Where {w;} is a complete set of generators for the distinct
factors of R(c), since the nontrivial orbits of the %; are disjoint. Let % be in
R(0), and let r be the corresponding permutation on the blocks of M. Then
the Lie algebra ag consists of the diagonal (n X n) matrices of trace 0 that

have the same scalar on all of the blocks within each orbit of r. Therefore if
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we write & as in Proposition 4.4.1 or Proposition 4.4.2, respectively, then

1 (dlIhnl \ )
d2I82n2

(\ .d;/,

where £; is the length of the ¢th cycle in r and n; is the common size of
the blocks permuted by the t¢th cycle. Since s > 1, we have ag # 3 = {0}.

Thus the irreducible constituents are induced from elliptic representations.

Q.E.D.

Theorems 5.1.2 and 5.2.1 give concrete realizations of this proposi-
tion, and we can check, in fact, that the inducing representations of the
constituents are elliptic. This follows by combining the fact that discrete
series are elliptic (ref. [Clo]), that finite induction preserves ellipticity, and
Goldberg’s result on elliptic constituents (ref. [Gol]). We shall sce in the
next chapter that while the irreducible constituents of generalized principal
series induced from Class II representations are neither elliptic nor induced
from elliptic representations, the characters in many cases can be written as

a linear combination of characters that are induced from elliptic characters.




VL. Crass IT REPRESENTATIONS:
AN APPROACH THROUGH CHARACTERS

Let M be the Levi component for a standard parabolic subgroup of
G = G, and let M be the corresponding Levi component of G = Gn. Let
o be in £(M), and let & be in (M) such that &|p D o. Suppose o is a
Class II representation, i.e., R = R(o) is not cyclic and & has the property

that if we write
FrUCL,T)QUCE,)®...0 UKL, )R, ® ... ® ps, (1)

according to Proposition 4.4.2, then not all of the C; are single characters.
In this case, we are unable to determine the constituents of 7 = Ind$; y (o)
using only the methods of Mackey theory and the Restriction Theorem as
in Chapter 5. Instead we approach the problem through characters, and we
are led to a system of linear equations defined over the characters of the
irreducible constituents of 7 = Ind§;, (o). This .a,lternate approach proves
to be partially successful.

We introduce the notions of a “bottom layer” and an “intermediate
layer” of subgroups within G. If Cq(a) is the set of characters of the con-
stituents of 7, then we shall see that the bottom layer provides a linear
system of equations over Cg(e). To solve for the characters in Cg(o) we
need a subset of |R| linearly independent equations. Dependency within the
equations occurs because of character identities on subgroups in the inter-
mediate layer. These relations may make it impossible to solve for Cg(o)

by using only the equations from the bottom layer. We find, however, that
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in many cases the system is solvable, and other cases illustrate the problems
faced in trying to solve such a system. A seri.s of examples are found in
Section 3.

We have seen in Section 5.3 that the characters in Cg(o) are not el-
liptic, nor are they induced from elliptics. In the situations we can handle,
however, these characters are a linear combinations of characters induced

from elliptics.

§6.1. System of Linear Equations.
Let R = R(o) be the R group of o, and write

R2Z/mZ X Zim,Z % ... X L/m,Z,

with each m; > 1. Let wy,...,w, be elements of R that generate the re-
spective factors of R, and let S = {n1,...,7,} be a set of characters in L(5)
taken modulo X(#) such that n; is associated with @;. Then the sets Cj
in equation (1) are subsets of S. Let X = X(&). By the classification of
discrete series (Theorem 4.2.2), there exists a representation o' of M X such

that o'|p = 0. Using (1), we can write
o mEQCL )@ NUCE,T)® ... UCk, )M ®...0p, (2)

where the 7/ are irreducible constituents of ilgx and the p’ are irreducible

constituents of p;|gx . Here £ is the matrix diag(e, 1,...,1) in Gy, 4, for some
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coset representative £ of F* /Nx. Then Lemma 3.4.1 says that
X
IndglxN (0”) |G‘ = Ind?/[N (U)a

and Proposition 3.4.2 says that the reducibility on the left hand side of this
equivalence actually occurs on G¥, where I = L(&). Let «’ = Indf,;( N ().
To simplify notation, the phrase “characters of 7'|y,” where H is a subgroup
of GX, refers to the characters of the irreducible constituents of 7| f. Der-lote
the set of characters of 7’|y by Cg(o).

According to the Restriction Theorem and the theory of the R group,
we have GX/GL = R. Subgroups R’ of R correspond in the following way
to closed normal subgroups G’ of GX such that GL C (. Using the isomor-

phism R(c) 2 L(¢)/X(&), consider R' as a subgroup of characters. Then

G'={g € G* | det(g) € keré, forall £ € R'}

is a closed normal subgroup of GX containing GE, and GX/G' = R'. Con-
sequently the subgroup lattice of R, as a finite abelian group, determines a
similar subgroup lattice inside of GX. The structure of this lattice determines

whether or not equations can be found for the characters of #'{gr.

Definition. A bottom layer subgroup H, within the subgroup lattice
determined by R, is one such that GX/H is cyclic and for any other closed
normal subgroup G’ with GL C G' C H the group GX /G’ is not cyclic. The

set of bottom layer subgroups is called the bottom layer and is denoted B.
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The subgroups in B correspond to maximal cyclic subgroups of R. The
rationale behind choosing B in this manner will be made clear in the next

section. First we show how to obtain a linear system of equations over Cg(0o)

from the groups in B, and the following example is used as a template for

the theory.

EXAMPLE. Let G = SL4(F), and let x and n be ﬁontrivial characters of F'*
such that x* = n? = 1. Define a representation of My by 0 = 1® K @n Bk,
where My is the Levi component of the standard minimal parabolic subgroup
of G. Then R = R(o) is isomorphic to Z/2Z x Z/2Z, and o is a Class II
representation. If & is in Sg(M) such that &|p D o, then &y = o and
X (&) = {1}. Thus R = L(&). For this particular o, we can choose & = o.

We have the group lattices

L(5) G
VAR BN /1N
{1,} {L,gs} {1,n} and G G"™ G"
N NS
{1} G*

Then B = {G*,G",G™}. Let & = Ind%  (5), and denote the irre-

ducible constituents of #|,r by
Tl =T B exT BegT B EnEnT,

where ¢, and €, are coset representatives for G /G" and G /G", respectively.

If we write #|g« = 7. ® 72, then by the Restriction Theorem 72 = g,m}..
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Denote the characters of these constituents by ©L and €.,0L. If 6, is the

character of 7, then we have the equations
OL =6, +e,0r

and

£,OL = .0, + i

The groups G" and G"* determine four more equations, which we write as

Op =0, + .0, Onk = 0, +epents

£qOy = &40, + €440- €qOnx = €q8r +exbr,

where we take €, as the nontrivial coset representative of G /G (note that
gnEx 18 not a nontrivial coset rep‘resentative). This linear system of 6 equa-
tions has rank 4, and therefore we can solve for 8,, etc. We find, for example,

that

1 .
91- = 5(@5 + e,, - 6,7@"5),

and we have an understanding of O, ©,, and ©,, from Theorem 5.1.2.
Each of these characters is induced from elliptic ones (see Section 5.3), and

therefore we can express @, etc. as a linear combination of characters that

are induced from elliptics.




Now return to the general situation. Write o’ as in equation (2), and
form the subgroup lattice in G¥X related to R. Let n' = Indf;; y(e'). HHis
in the bottom layer B, then write |GX/H| = b and Ry C R for the group of
characters associated to H. By multiplicity one and the Restriction Theorem,
7| & has b irreducible constituents. From our results on cyclic R groups, we
understand the constituents of #'|y, and consequently their characters. Our

equations come from the relationships between these characters and those

for the constituents of #'|;z. Since all of the reducibility of #'|g occurs on

the group G, we are interested in studying n'|gc. Write

GX/H ={1,(,¢,....¢7")

where |R| = mb.

If & is an irreducible constituent of 7’|y, then the Restriction Theorem

says that

m—1
@IG;‘, = @E,‘T, (3)

i=0

where T is a fixed constituent of ®];z. As usual ;7 refers to the representa-
tion of GL given by e;7(g) = r(¢; " ge;). With equation (3) in mind, to each
® C n'|y we associate a set of constituents in 7'|gr. More importantly if ©

is the character of ®, we associate the corresponding set Syr(©) of characters
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of m'|gz. Let ¢;8; be the character of the representation ¢;7, and write this

set as
SH(G) = {5591-}05:'9:—1. (4)

, The relationship of equation (3) implies that

m—1
Olge = Y &b (5)

=0
According to the Restriction Theorem, the other constituents of ='|p

are given by (7® for 1 < j < b— 1, and consequently

Su(¢70) = {£i(76; Yocicm1- (6)

Let C(o) = Cp (o) denote the set of characters for the constituents of x| gL
Then C(o) = J'Zy Sr(¢70) and Sp(('©) N Sy((/O) = § whenever i # j.
Thus the Sy(©) form a partition of C(o) that is independent of the choice
of 7.

Every irreducible constituent ¢ of 7’|y determines a linear equation
over C(o) as in equation (5). By multiplicity one, the characters of the ir-
reducible constituents are linearly independent {Sil}, and therefore the linear
equations given by (5) are necessarily independent. Considering the restric-
tion of 7 to each of the bottom layer subgroups, we obtain a linear system
of equations. If we can find a linearly independent subset of |R| = mb equa-
tions within this collection, we can obtain an expression for the characters

of 7'| 4z, and consequently for the characters of the irreducible constituents

of Ind$, v (o).
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The subgroup lattices in our earlier example are very simple and there
is no real “intermediate layer” inhibiting the independence of our equations.
In general this intermediate layer plays a significant role, which is explained

in the next section.

§6.2. Intermediate Layer M.

Retain the notation of the previous section. If G' is a subgroup of
GX with GF C G', then we can consider the restriction of 7' to G'. Let
H be in B with I} C G'. As in the previous section, we can write the
characters of the constituents of 7'|g:, when restricted to G*1, as a sum of
characters for certain constituents of n'|g,. Thus G' determines a partition
of the characters in 7'|g,. Suppose that H» # Hy is in B and that Hy is
contained in . Then we can also write the characters of the constituents of
7'lcr, when restricted to G2, as a sum of certain characters for constituents
of #'|m,. Therefore if ® is an irreducible constituent of 7' | with character

© we have

Oly, =61 +e161 + - +exth : (1)

and

Olg, =82+ p182 + - + peby, (2)
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where 8; is the character for an irreducible constituent of ®|y;, the &; are a
complete set of coset representatives of G/Hj, and the p; are a complete set
of coset representatives of G/H,. The restriction of equations (1) and (2) to
GL give character identities relating the characters in «'|g, and |k, and
consequently serves to limit the independence of the equations determined
by Hy and Hz. These relationships are maximized by the groups in the

“intermediate layer” defined below.

Definition. For any two elements H; and Hj in B, the smallest subgroup
of GX in the lattice of R containing both H; and H} is said to be an inter-
mediate group. The set of such groups is referred to as the intermediate

layer and is denoted M.

Let o be in & (M), and form the subgroup lattice in GX determined
by the R group of o. Let J be in the intermediate layer, and let H, and
H, be in the bottom layer. We have |G*X/J| character identities relating
the characters of 7'}y, and the characters of '|,. These identities conse-
quently limit the number of independent equations arising from H; and Hy.
Dependence among equations occurs in two principal situations, described
below as (R-1) and (R-2) restrictions.

Fix the following notation. Let o in £,(M) be a Class II representation,
and let R be the R group of o. Let & be in £2(M) such that 6]y 2 0. Write
X = X(6) and L = L(5). Form the subgroup lattice within GX determined

by R. Let ¢’ be as in equation (2) of Section 1, and let n' = Indg[}; ~ (')
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(R-1) RESTRICTIONS. Suppose we have a sublattice within the lattice de-

termined by R with the diagram:

GX

no |

J\
Hy

where H; and H, are in B, and J is in M. Then H; provides m;n linear

(R-1)

H,

equations and H, provides mqn equations, as described in Section 1. The
character identities on J, however, limit the independence of these equations.
Specifically let R, and R, be the subgroups of R such that GX [Hy 2 Ry
and GX/H, = R,. Alsolet GX/J = R' C R. Since H; C J and GX/H,
is cyclic, so is GX /J. Suppose £ is a coset representative for a generator of

G*X/J. Then
Ty eDER D PO

for any constituent & of 7’| ;. We can fix ¢ and ¢ in ®|y, and ®|n,, respec-

tively, and write
Dy, TpDerp® - Bep Ty

and

By, TeDep @ Dl g,

Y
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where &; generates J/H;, and &, generates J/Hz. Each of the ¥y and ££¢
provides an equation over C(o), as described in Section 1. Let 8 be the
character of o, and let # be the character of ¢. If © is the character of @

then we have the character identity

Olgr = blgr +e18lgz + - + e 8lge

= Olgr +e2blgr + - + €5 G (3)

The relationship in (3) limits the independence of the equations associated
to e¥6 and egé to at most my +ms, —1 independent equations. By considering
all n of the irreducible constituents in ='|z, we see that there are at most

n{m; + mz — 1) independent equations in those determined by Hy and H,.

(R-2) RESTRICTIONS. This situation must occur in conjunction with an
(R-1) restriction and is significantly more subtle. It shows the relationship
between character identities on certain subgroups in the intermediate layer.

Suppose we have the sublattice

GX
msN
ba A (R-2)
nfmy AN /n/mz
H

with Jy, Jp in M and H € B. Suppose Ry =< 77 >, and choose £ € GX such

that n(¢) is a primitive nth root of unity. Then GX/H =< £ >. Consider
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the constraints on the possibilities for J; and Jy. Assume that my > my.
We write Ry = Ry, =< 7™ > and R; = Rp, =< /™ >. We want
J» € Ji and this is true if and only if By € R;. This happens exactly when
m; does not divide mg.

Write our quotient groups as:

Let d = ged{my, my), and write my = de and my = df. Since my does not
divide m,, we know that f > e > 1.

Recall that Cy(o) is the set of characters for the constituents of ' i,
The above remarks show that there are two partitions of ¢ u(o) given by Jy
and Jp. Fix ¢ C n'|y with character §. Without loss of generality, we can
choose ®; C 7'| 5, and €, C 7'| s, so that their respective characters ©; and

0, satisfy

Oilg=0+E™0+..-+£"™0
and

Oali = 6+ €m0+ + £, (4)
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Write S, (0;) for the characters in Cy (o) that are given by ©;]y. In relation
to the character identities given in (4), we write 51(01) = 57(0;) and
5,(0,) = 57,(0;). Then S;(0;) contains n/m; characters in Cy(o).

The other elements of C, (o) are given by £*@, for 1 < k < mg —1,
while those in Cg,(0) are £0, for 1 < £ < m; — 1. We want to see the
connection between these two sets that prevents some degree of independence

among the equations determined by B. Define
Up = S1(0)U 51(£%0) U --- U Sy (¢t Vdgy).

This contains e(n/m;) = f(n/my) characters in Cgy (o). If r is the smallest
positive integer such that (r + 1)e > f, then ¢™28 = g4/—rel¢rmig is in U,

since n/m; > r. Using multiples of r we see that, in fact,
Us = 52(02)} U 52(£%02) U - - - U S5(¢F120y),
and more generally, if we define U; = |J$1(£71%40,) for 0 <1 <d — 1, then

U; = $1(£'01) U S1(67720,) U - - U Sy (eHeDdg,)

= $5(£70,) U S,(6H40,) U - - U Sy(eHUF~1dQy), (5)

Thus Cy(o) = Uf;ol U;. As in Section 1, each £%F in Cy(o) determines a
linear equation over C(a), and the U; give another partition of C(¢). Because
of the relations in (5), the U; translate to relations between the equations
arising from the £%9, and therefore inhibit their independence. Since the

exact nature of this restriction is not obvious, we provide a few detailed

examples.




Example of (R-2) Restriction. Consider the situation where the lattice

in GX determined by R contains the following sublattice:

VN
AAAN

H, Hj

with ged{mi,mq) = 1, {Hy,Hy, H3} C B and {J1,J2} € M. Let us count
the maximal number of independent equations coming from this sublattice.

We can get myn; equations from H;. This gives all the character
identities determined by J; (as in equation (3)), and by (R-1) we have at
most ni(n; — 1) independent equations from H,. From ([i-2) we sec that
these equations give ny — 1 of the character identities determined by Jz, as
in equation (4), and we are limited to (nz — 1)(mq — 1) equations from Hj.
Therefore the maximum number of independent equations determined by
{Hy, Hy, H3) is miny +n1(ng — 1)+ (ny — 1)(mz — 1). Notice thét we could

have started by taking nyms equations on Hz or nyn, equations on Hs.

These relationships make the process of determining a linearly in-
dependent subset of equations significantly more complex. The previous

example illustrates the simplest case. Now consider the situation where
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R = Z/6Z x Z[6Z, which provides very nice insight into the complexity that
can OCCUr.

Another Example of (R-2) Restriction. Let o € & (M) with
R(c) = Z/6Z x Z/6Z. Under the realization R(a) = L(o)/X(5), write
the coset representatives for generators of the distinct factors of R(o) as 7
and k. Form the subgroup lattice of R, and form the associated one inside
of GX. There are twelve subgroups in B corresponding to maximal cyclic
subgroups of R and seven subgroups in M. Fix £,p € GX such that n(€)

and «{p) are primitive 6th roots of unity, and let
G5 = Gn'e = {g € GX | nik?(det g) = 1}
Then we have

B = {Gu0, G(S,Z)aG(1,2)1G(1,4):G(3,1)aG(1,3)1G(1,5)3G(1,1)a

Gy, G G Gunlt

and

M = {G3,00, Gz, Gos) Go2)s G20y G22), G}

Each subgroup in B is contained in two elements of M, once with index
2 and once with index 3. The elements of M have index 2 or 3 in GX
and they correspond to subgroups of R which are isomorphic to Z/2Z or
Z./37. Consequently we have two character identities on those intermediate

subgroups corresponding to a Z/27, and we have three character identities
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on those intermediate subgroups corresponding to a Z/3Z. Moreover the
elements of B correspond to subgroups of R which are isomorphic to Z/6Z,
and thus we have six equations determined by each bottom layer subgroup,

giving a total of 72 equations over C(g). We want to see that 36 of these are

independent.

Begin by taking six equations from G(; ¢y € B. As in equation (3),
these six equations give us the two character identities on G(3,9) € M and
they also give the three character identities on G ¢y € M. The subgroups
G(3,2), G1,2), and Gy 4y are also contained in G; gy, and they are of index
3 in G(3,0). Since we already have the character identities on G(3 ), we can
take only 4 equations from each of these subgroups; specifically we take two
equations within each of the character identities. At this point, we have 18

independent equations.

Now use the (R-2) restriction. The group G(32) is in G(p ), as well as
G (3 ,0), and the four equations we took on G(3 2y sum to give two of the three
character identities on G(g 2). This fact limits the number of equations we
can take from any other G' C G(g 2). Similarly the equations from Gy ) and

G(1,4) complete two character identities on Gz 4y and G (3 2), respectively.

The subgroup G,y € B is contained in Gg ) with index 2, and
our equations frmﬁ G(3,2) have given us two of the character identities on
G(o,2)- Hence we can take only 3 equations from G(35), each being part of a
different character identity on G(p 2). By the (12-2) relation, they sum to give
one character identity on G(3 3). The intermediate group G(s,3) also contains

the bottom layer subgroups G ,3), G(1,5), and G(,1). By the constraints
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of this containment, and their containment within a subgroup in M with
index 2, there are only two additional independent equations from each of
these subgroups in B. Therefore the bottom layer subgroups within G, 3)
contribute 9 equations, giving 27 equations thus far.

The elements of B that are contained in G(p3) are in an analogous
situation to those contained in G(3 3). There are four such groups, providing
an additional 9 equations. As a result, we have 36 linearly independent
equations over C(o) that we can write down explicitly and use to determine

the characters of the irreducible constituents in Ind$, (o).

Since each H € B provides |GX /H] equations, it may appear more
constructive to take B to correspond to maximal proper subgroups of R,
rather than only maximal cyclic subgroups. We define B in this way because
in order to make use of the equations given by a bottom layer subgroup in
the lattice for R, they need to be genuine character identities. Even when
we are able to obtain useful character identities on an H with GX/H not
cyclic, the identities do not provide any additional independent equations,

ag the following lemma shows.

Lemma 6.2.1. Let o € £&(M) be a Class II representation of M, and let
= IndAG;; ~ (0'), where ¢’ is defined as in Section 1 (equation (2)). Let R
be the R group of o, and let B be the bottom layer in the subgroup lattice
determined by R. Suppose H is a subgroup of GX containing G¥ and such
that G /H is not cyclic. Assume that the characters of the irreducible con-

stituents in 7’|z are understood. Then the number of independent equations
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determined by B U H is the same as the number determined by B.

PROOF. Let Ry be the subgrou.p. éf R associated to H , and form the group
lattice within GX determined by Ry. Then we can consider the bottom
layer B' of this lattice. Since we know the characters of n'|g, the bottom
layer subgroups in B' provide |GX/H| independent character identities in
terms of the characters of x'| i and, consequently in terms of the characters
of 7|gr. Thus all the equations over C(¢) coming from H can, in fact, be

given by equations coming from B, which is contained in B by construction.

Q.E.D.

§6.3. Examples.

“Let F be a p-adic field, and recall that F is a finite extension of the
p-adic number field Qp; see Section 2.1. Suppose that [F : Q] = m, and
let & be a Class II discrete series representation of M, where M is the Levi
component for a standard parabolic subgroup of G = SL,(F). Form the
corresponding Levi component M of G = GLn(F), and let & be in E(M)
such that {3 2 0. The character group L(&) corresponds to a finite abelian

Galois extension of F' in the following way. Let

This is a closed subgroup of finite index in F* and, according to the funda-

mental theorem of Local Class Field theory, is therefore the norm group of
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a finite Galois extension K of F. Since the R group of ¢ is a quotient group |
of L(#), we can determine the possible R groups by determining the closed

subgroups of finite index in F.

Theorem 6.3.1 (Ref. Hasse [Has|). In the above situation, the following

group isomorphism holds
F*=7Zx M x Hy,

where M is the roots of unity in F* and Hy is a free abelian group of rank

n= [F: Q.

Retain the notation of the previous sections. Let o be a Class II
representation of M, and let R be the R group of o. Recall that C(o) is
the set of characters for the irreducible constituents of #'|4z, and form the
linear system of equations determined by the bottom layer B over C{o). We
seek a linearly independent subset of |R| equations. The remainder of this
section consists of examples, three of which are solvable and one that is not

solvable.

Example 1. Suppose R & Z/pZ x Z[p"Z with n =2 1. Let n and & be
characters of F'* whose cosets generate the distinct factors of R and such

that 7? = 1 and k?" = 1 modulo X(5). Define subgroups Gy; ;) of G* by

Gujy=G"" ={geG"| n's’(det g) = 1}.
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Then B is the set of distinct subgroups whose quotient groups in GX are

isomorphic to Z/pZ, Z/p*Z, . . ., Z/p"Z. Specifically

B ={G1,0), Gi1,pm-1), Ga,2pn-1)5 - - - . G, p—-1)pr-1), Gapn-2)5 - - -

G, (p—1)p7=2)r- - G195+ - G, (p=1)p)> G0,1), G135 - - - - Gp—1,0 h

and M = {GX, G ), Gop2),- - Gopn-1)}. Each Gy iy € M contains
those groups in B whose quotients in GX are isomorphic to Z/ p(r =97 and
G¥X is the intermediate subgroup for those bottom layer subgroups whose
quotients in GX are isomorphic to Z/pZ. We can then compute that the

number of independent equations from B is

P+ Hp—1)(p—D)+p" 2 (p—1)(p— 1)+ - -+p(p—1)(p~1)+p(p—1) = p" ™,

and therefore we can compute the characters of 7'z, and consequently the

characters of Ind$, (o).

Example 2. Suppose R = Z/pqZ x Z/pgZ with p and q distinct primes,
and take p < ¢. By counting arguments, we have (p + 1){gq 4 1) subgroups
of R isomorphic to Z/pgZ; the associated subgroups in G* comprise B
Moreover R contains p+1 subgroups isomorphic to Z/pZ and ¢+ 1 subgroups
isomorphic to Z/qZ; the associated subgroups in GX comprise M. To count
independent equations, notice that the elements of B are given by nontrivial

intersections of those in M. We consider the equations on these intersections,

100




-

=

as we vary through the Z/pZ and Z/qZ subgroups of M. The number of

independent equations is then

g+1 pt+1 g+1
pa+ Y pla—D+ Y lap—1)+ D (p+Dlg+1)
=1 =2 j::‘)
= p’¢’ = |R)|,

and we can solve for the characters of 7'|gr, and consequently for those of

Ind§, v (o).

Example 3. Suppose R = Z/p?Z x Z[/p*Z. Let n and & be in (F>)Y such

that their cosets generate the distinct factors of R. Define
Gij =G¥" ={g€G¥ | w'r'(detg) =1}

Then the bottom layer and intermediate layer in the subgroup lattice deter-

mined by R are equal to

B={Gufori€ Z/p*T; G(pj1) for j € ZfpZ} and

M= {G(p,pi) for 1 € Z/pZ; G(g,p)',GX}.

The bottom layer subgroups are isomorphic to 7./p*Z, while the inter-

mediate layer subgroups are isomorphic to Z/pZ. Each intermediate layer

subgroup contains p bottom layer subgroups. Starting with Go,p) we can
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obtain p? + (p — 1)%p equations from the p groups in B that are also t:oj:';-"."'* B
tained in G(g,p). The bottom layer groups contained in each of the renrmjnin‘l.é,r '

p intermediate groups provide (p® — 1) + (p — 1)?p equations. Thus we have

P +p—1)p+p((p* —1)+(p—1)°p) =p"

independent equations, and we can solve for the characters in 7'|5z.

Example 4. It is not true that being able to determine character equations
on every sublattice of the lattice for R implies that the character equations
for Ind(e) can be determined. An example of this phenomenon occurs when
R=Z/AZ x Z/6Z.

Consider R as a group of characters, generated by the cosets of x and

n where k* =1 and #° = 1 modulo X(5). If we define G; ;) as above, then

B = {G(l,s), G(1,2)1 G(0,1), G(z,s)}

and M = {G(2,0),G0,2),G*}. We can compute that B provides only 18
independent equations over C(¢). Consequently we can not determine the
characters of the constituents of Ind$;, (o) by this method alone. One the
other hand, we can compute the characters of 7’| for every H C G prop-
erly containing GL. This example shows that while the R group is isomorphic

to a group of characters, it is in fact intricately attached to both & and GX.
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