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Abstract of the Dissertation
An Index Theorem on Foliated Bundles
by
Xinhui Jiang

Doctor of Philosophy

in
Mathematics
State University of New York at Stony Brook

1994

A leafwise elliptic operator on a foliation determines an index
map from the K-theory of the ambient manifold to that of the space
of leaves. In this thesis, we focus on certain operators on foliated
bundles, study this index map in the context of Kaéparov’s KK-

theory, and give a cohomological formula for this index map as it

is detected by certain homology classes on the space of leaves.
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Introduction

In this thesis we shall study an index proBlem for certain leafwise elliptic
operators on foliated bundles, We begin by reviewing some developments
which have motivated our research.

Index theory deals with the interplay between analytic and topological
invariants of certain operators on manifolds. In general, these operators are
naturally associated to the geomet.ric structures under consideration. In the
traditic;n of de Rham and Hodge, index theory reveals the underpinni'ng ana-
lytical structures of certain topological invariants of the manifold.

The simplest index problem appears on the unit circle T. Let L*(T)
denote the space of complex-valued, square-integrable functions on T, H*T)
the closed subspace spanned by {e2"*"?},.50, and P the orthonormal projection
from L*(T) onto H*(T). Any continuous function f on T gives rise to a

Toeplitz operator Ty on H*(T), defined to be

Ty(h) = P(f - 1)

for any h in H?(T). A result of Gohberg and Krein [29] in the late 50’s states
that 7' is a Fredholm operator if and only if its symbol f is nowhere vanishing

on T, and the Fredholm index of T is minus the vﬁnding number of f.




Elliptic differential operators on closed Riemannian manifolds are known
to be Fredholm and thus have an index. The celebrated Atiyah-Singer index
theorem [6] of the early 60’s calculates this index in terms of topological data

of the manifold and the principal symbol of the operator. Its importance

was recognized immediately and has become better appreciated since, partly

because of its growing number of far-reaching generalizations and unexpected,
deep applications in various fields of mathematics and theoretical physics.
One important line of development, which has inspired our research, o-rig«
inates from the above index result of Gohberg—Kréin [29] on T. Influenced by
the Atiyah-Singer index theorem, in the late 60°s Coburn, Douglas, Schaeffer
and Singer [14] sought to develop index theory for more general Toeplitz op-
erators, and they succeéded for a couple of classes of operators, which serve
as the prototypes for later developments. Particularly pertinent to this thesis
is the analogue of Gohberg—l(rein’s.work for the real line R instead of the
unit circle T. In this case, the space is the non-negative spectral subspace of
the operator V—i(d/dm) on R, and the symbols are almost periodic functions
on _R. They considered the algebra generated by the Toeplitz operators, and
showed that every Fredholm operator in this algebra is neceésa.fily invertible,
and therefore has index zero. waever, using an appropriate representation of
this algebr;, they were able to characterize the Td.eplitz operators which are
generalized Fredholm operators in the sense of Breuer, and to.ca,lculaté the
real-valued Breuer index in terms of the mean-motion of the function.

These works heralded the introduction of language and ideas from homo-

logical algebra into operator theory and operator algebra, which would soon




revolutionize the latter subjects. Among the next major triumphs along this
line was the work of Brown, Douglas and Fillmore {13] on the classification
of essentially normal operators. This great leap forward in operator theory
gave, in return, an explicit analytic realization éf K-homology that Atiyah
had proposed a few years before. Meanwhile it was realized that C*-algébra.s

provide a natural framework for K-cohomology. Out of these developments the

algebraic topology for C*-algebras, or “non-commutative topology”, came into

being and has been an active and fruitful new field (see, for example, [38], {3],
(1} and [40]). In particular, Kasparov unified K-homology and K—coho%néalogy
into the powerful KK-theory (see [10]) in his pursuit of the Novikov conjecture;
Baum and Douglas [8] developed the odd analogue of the Atiyah-Singer index
theorem, which exemplifies the importance of Toeplitz operators in this field;

Connes developed the index theory for measured foliations (see [46]) and ini-

tiated the study of non-commutative differential geometry [16] by introducing

cyclic cohomology of algeb'ras, which is a de Rham theory for operator alge-
bras; Connes and Moscovici {19] proved the Novikov conjecture for hyperbolic
groups; and localizations of topological Pontryagin classes have been obtained,
independently, by Connes, Sullivan and Teleman {22] and by Moscovici and
Wu [45].

Along with the development of such new high technologies, several authors
ha.ye taken another look at those classical results on Toeplitz operators. It

turns out that the work of CDSS [14] lends itself naturally to geometrically

interesting situations, which have led to the beautiful work ([26}) of Douglas, -

Hurder and Kaminker on index theorems for leafwise elliptic operators on a




foliation.

Let F be a smooth foliation structure on a closed manifold W. Connes
[15] first introduces a C*-algebra C, which recaptures the topology of the space
of leaves. Let Dy be a lealwise elliptic differential operator for the folia-
tion. Then it is “invertible” module C and defines a KK-element [Dg] in
KK, (C(W),C), where C(W) is the algebra of continuous functions on W (cf.
[15] [1.9]). The fundamental problem is to study this KK-element, or the map
[Ds] : K*(W) — K,(C) that it induces, and to relate this study with the
geometry and topology of the foliation. |

One basic tool is Connes’ cyclic cohomology ([16]). Any cyclic cocycle 7 on
an appropriat;e subalgebra of C induces a group homomorphism .. K.(C) = C
in K-theory. And an important way to understand the map [Dy] is to study
the composite 7, o [Dx]: K *(W) — C for various cyclic cocycles 7.

For example, a hcﬂdnoxﬁy invariant transverse measure p on the foliation
induces a trace 7, on C, which in turn induces a map [7,] : Ko(C) — R.
The composite (7, )« © [Df] in this case can be achieved by a longitudinal
cyclic cocycle defined on the algebra C°°(W}) of smooth functions on W in an.
explicit, analytic way, and has been calculated by Connes (see [15], [46}, [25])
in terms of the characteristic class of the symbol of Dz and the Ruelle-Sullivan
class of the measure p. When the operator is leafwise self-adjoint, Douglas,
Hurder and Kaminker [25] show that the pairing can be interpreted as the
Breuer index of a faﬁily of leafwise Toeplitz operators. |

Much more has been accomplished for foliations coming from a susi)ension

construction. Let M be a closed oriented Riemannian manifold, I a discrete




group and p : M — M a principal I-bundle over M. Let T' act on a closed
Riemannian manifold V isometrically and “essentially freely” (see §2.6). Then
there is a natural foliation structure on W = M xrV, each leaf being the image
of M x v for some v € V. Any (self-adjoint) elliptic differential operator D on
M Iiﬁs to become a leafwise (self—a&jo_int) elliptic operator D for the foliation.
In [26], under certain conditions which we shall not specify, the longitudinal
cyelic cocycle of D is related, through a (surprising) renormalization scheme,
to a “sharp transverse” cyclic cocycle defined on a smooth subalgebra of the
C*-algebra for the fibration M xp V - M. This renormalization scheme
provides a connection between Breuer indices of families of leafwise Toeplitz
operators and the relative n—invariants of Atiyah-Patodi-Singer [6], which had

been long sought after (cf. [57]).

Our motivation is to try to understand and exteﬁd the work of DHK. The
trace 7, on C defined by a holonomy-invariant transverse measure f for the
foliation is but a 0-cyclic cocycle for the algebra. So a natural program is to
construct other cyclic cocycles 7 on C , to calculate 7 o [D#] and to relate this

pairing to the transverse geometry and spectral data.

In some important cases, Douglas [23] [24] has constructed some higher
cyclic cocycles for the foliation algebra using partially elliptic operators and
renormalization schemes. This is an interesting subject in its own light and
deserves further study. The cyclic cocyclgs‘ that we shall study in this thesis,
hov;’ever,' are more tdpological in nature.l We began with an observation about

‘Connes’ work [17] on the fundamental transverse class, that his approach works




not only for the fundamental transverse class, but for any invariant closed form
on V as well. (This is also pointed out in a recent paper by Connes, Gromov
and Moscovici [18}.) This is very nice since we can put some (sometimes all)
cohomology classes of V into the picture in a natural way. From this we also
realized that it is convenient to shift our focus from the foliation algebra C to
the reduced crossed-product C*-algebra C(V) %, I', which is strongly Mofita
equivalent to C. It has been known (cf. [49]) that a cyclic cocycle 7, on
the algebraic crossed-product C(V) X,, I' can be constructed from a closed,
I-invariant form w on V and a group cocycle p for I'. We shall generalize some
ideas of Jolissant [36] to extend such a cyclic cocycle continuously to a smooth

subalgebra of C(V) x, I' under certain conditions, thus making it possible to

pair 7,,, with [Dry] = [D#] ® [Morita] € KK, (C(W),C(V) %, T).

Conceivably, the best framework to .carry out the computation of such
a pairing is the bivariant Chern character theory in bivariant cyclic theory.
Indeed, this has been introduced and developed in recent years and a very

satisfactory theory seems within reach thanks to the work of Kassel, Wang,

and especially Nistor (cf. [37], [58], [39], [50], and [51}). However, detailed

calculations still appear difficult.

Fortunately our present situation is very special in that the holonomy
covering of each leaf is canonically diffeomorphic to M and the lifting of the
leafwise elliptic operator on each holonomy covering is the lifting of D) on M.

This observation translates into a simple (and perhaps known) and illuminat-

ing decomposition of [Dr ] into two much simpler KK-elements:
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‘Theorem 0.1. [Drv] = V] ®con) D), where [D} € K1(C(M),C) is the

K-homology element determined by the elliptic operator D on M, ®@c(ar) is the

Kasparov product, and V] € KKo(C(W),C(M) ® C(V) %, T) is determined
purely by the covering structure and the action of I on V.

This résult seems to be related to the renormalization scheme in DHK’s |
ﬁork and we hope to have more to say about this in the near future. But for
the purpose of this thesis, its main advantage is that the bivariant characters
of [D] and [V] are either known or simple. This enables us to calculate the

pairing 7, , 0 [Dry]. The main result of this thesis is the following:

Theorem 0.2. For any [u] € K}(W):
(o © (D)) = ¢+ [ eh™([ul) A @*(w, A A cha(D)),

where c is a constant, w, is a form on M determined by the covering structure
and the group cocycle p (see §4.5), and ®" is the natural map sending 1'-
invariant forms on M x V to forms on W = M xp V.

This thesis is organized as follows: In §1 we outline certain aspects of
Kasparov’s KK-theory and Connes’ cyclic cohomology. We give details only
to those that can not be readily found in the existing literature. Although our
focus in this thesis is on foliated bundles, it turns out to be both convenient
and useful to work in the context of groﬁp actions. Therefore, in §2, we
mimic the construction of the longitudiﬁ;ﬂ KK-element to define a KK-element
[Dryv] € KK, (C(W),C(V) %, T), where ¢ is the parity of D.l This is done

without the “essential freeness” condition on the action of I on V. We then




compare this construction with the construction of the higher I'-index of D
by Miscenko and Fomenko (see [44}, [19] and [42]). On the other hand, with
the “essential freeness” condition, [Dr v} is equivalent to the longitudinal KK-
element on the foliated bundle. We then prove Theorem 0.1 {see Proposition
2.10 and Theorem 2.11) and discuss the element [V] in some detail. In §3 we
review the construction of cyclic cocycles 7, on C®(V) Xgy, I' and generalize
ideas in [36], [19] and [34] to show that, under certain conditions, these cyclic
cocycles can be extended to some smooth subalgebras of C(V) %, T and hence
can be paired with the K—theo.ry of C{V) x, I'. In §4 we calculate the pairing
;rw,p o{Dry] and prove the main result, Theorem 0.2 (see Theorem 4.7). In the
special case where V consists of one single point, our main result recovers the
work of Connes and Moscovici [19] on the Novikov conjecture (see, however,

Remark 5.5 of [19]). See also [42] and [60]. We then conclude this thesis with

some remarks on what remains to be done.




§1 Preliminaries

In this section we shall outline aspects of KK-theory of Kaspé‘rov and

cyclic cohomology theory of Connes that we shall use in this thesis.

We take Blackadar’s book [10] as the standard reference for KK-theory.

1.1 Definition. Let A be a C*-algebra. A pre-Hilbert module Jor R is a
right module H, over a dense *-subalgebra A, of A, equipped with an A-valued
“nner-product” < -, — > H. x H. — A, such that:

(1) < ~,— > is linear in the second variable;

(2) < hy,hy >*=< hy, by >, for any by, hy € H;

(3) < hy,hy-a >=<hy, hy > -a, for any by, hy € H, and any a € A,

(4) for any h € H,, < h,h >> 0 as an element in A; and if < h,h >=0,
then h = 0.

It is then easy to show that {|il| = || < h, b > ”1sz defines a norm on H,
(cf. {10] §13.1.3). H. is called a Hilbert module over A if it is complete with
respect to this norm. Note that in this case it is actually a right A-module
and (3) holds for any a € A.

~ As one can expect, the completion of a pre—Hilbert module for A is a

Hilbert module over A. In this thesis all Hilbert modules are separable as



normed spaces.

A Hilbert module over _the complex numbers .C is just a Hilbert space.
On the othér hand, any C*-algebra A is a Hilbert module over itself with the
inner product: < a,b >= a*b. Furthermore, if £} is the space of all sequences
(a;} in A such that 3_;a%a < co, then it is a‘ Hilbert module over A with the
inner product < (a;),(b;) >= ¥;arb;. {3 is the universal separable Hilbert
module over A in the sense that any separable Hilbert module over A can be

embedded into £4 (Absorption Theorem; cf. [10] §13.6.2).

1.2 Hilbert modules over C(X)x,I'. Let X beacompact Hausdorfl space
on which a discrete group T' acts by homeomorphisms and let C(X) x, I be the
reduced crossed product C*-algebra, which can be constructed by introducing
a Borel measure on X and representing C(X) and I' on the Hilbert space

LA X)® kz(T), as follows:
F(NE®e) =7 (NEB ey

(M) @ey) =£® Cyrly

for any f € C(X) and any v, 11 € T, where {¢,}er is the standard basis

for £(I'). C(X) %, T is the C*-algebra generated by {r(f) : f € C(X)} and
{r(v}:veT}
To construct Hilbert modules over C{X) %, I', we consider a I'-equivariant

Hilbert bundle H — X. Thus, each fibre H; is a Hilbert space and each map

v : H, — H_., is unitary. A continuous field of Hilbert spaces for the system

10




(X,T) (cf. [15]) is such a bundle together with a linear space S of sections of

the bundle such that:

(1)
1(&)(x) € '(( )

(2) S is a C(X)-bimodule: f-¢ € S for any ¢ € § and any f € C(X),
where (f - €)(@) ¥ f(=)é(x);

(3) < &,y > Yy < €,7(n) >y € C(X) X, T forany £, g € S, where

S is [-invariant: 4(¢) € & for any £ € S and any ~ & T, where

< E,’y(n) > (z) =< é(z), vy (n(z - v)) >n., which implies, in particular, that
the functlon z < ||€(z)|g, is continuous for any £ € S;

(4) if K is the completion of § with respect to the following scalar inner-

product:
enl = [, < €(e)n(z) > de,

then the map T;(f ® e,) = f - v(£) extends to a bounded operator from
L2(X) ® &(T) to K.
We now make $ into a pre-Hilbert module for C{X) x, I'. It follows from

(1) and (2) that S is a right module over C'(X) xa, I' if we define
EAf =770

| for any ¢ E S, f € C(X) and any v € T. It is routine to show that < —, — >

defined in (3) satisfies conditions (1), (2) and (3) in Definition 1.1. On the

other hand, by a straightforward calculation, we have

Ti(m) =D <7 €)1 > ®e,,

11




and hence,

<&>=TT,

which verifies condition (4) in Definition 1.1. Therefore, S gives a pre-Hilbert
module for C(X) %, I'. Its completion is a Hilbert module over C(X) x, T.
In fact, any Hilbert module over C(X) %, I can be constructed in this fashion

(see [15], where the discussion applies to any topological groupoid).

1.3. We now consider certain classes of operators between Hilbert modules.
If Hy, H; are two Hilibert modules over A, then B(H,,H;) denotes the space
of all operators T' : H; — H; which have an adjoint 7™ : Hy — H; such that
< T(hy),he >=< hy,T*(h;) > for any h; € ‘H,-. Such operators are automat-
ically bounded module homomorphisms. However, unlike the Hilbert space
situation, a bounded module homomorphism between two Hilbert modules
over A does not necessarily have an adjoint.

For any h; € H; and hy € Hz, we can deﬁﬁe a “rank one” operator

Thyny = Hy — Hg by letting
Thz.h} (h) = hy < hy, h >_ .

One can easily check that T}, o, = Th, n,; therefore, Ty, 5, € B{H1,Ha). The
closed linear space spanned by all such operators will be denoted by K(H;, H,).
This is the space of compact operators. In particular, let B(H) : B(H,H) and
K(H) = K(H,H). Then B(H) is a C*-algebra and K(H) is a two-sided ideal in
B(H). - |

A graded Hilbert module H over A is a Hilbert module H over A together



‘with an operator g € B(H) which is a symmetry (that is, ¢ = ¢* and ¢* = 1).
In other words, H = H* @ H™, where H* are Hilbert modules over A, g =1
on H* and ¢ = —1 on H™. This induces a grading on B(H): T € B,(H) if
T.g=g - T,and T € B_(H)ifT-g=—g-T.

1.4 Kasparov modules. Let A;, A; be two (separable) C*-algebras. An
odd Kasparov module for (A;, A;) ié a triple (H, ¢, F'), where H is a Hilbert

" module over Ay, ¢ is a C*-homomorphism from A; into B(H), F' = F* € B(H), .

and ¢(a)F — F¢(a) € K(H), (F? —1)¢(a) € K(H) for any a € A;. The set of
all odd Kasparov modules for (A;, A;) will be denoted by E,(A;, Ag).

An even Kasparov module for (A1, Ay) is a quadruple (H, g, 6, F), where
(H, ¢, F) € E1(A1,A;), and g is a grading on H, under which ¢(a) € B4 (H)
for any a € A; and F € B_(H). Let Eq(A1,A;) denote the set of all even

Kasparov modules for (A, A,).

The KK-groups are defined by: K K.(Ay,As) = E.(A1,Az)/ ~, (see [10],

§17 for the definition of the equivalence relation ~).

In particular, if X is a compact metrizable space, then K K,(C,C(X)) is

isomorphic to K*(X), the K-theory of Atiyah-Hirzebruch, constructed from
vector bundles over X, while K K,(C(X),C) is isomorphic to K,.(X); the K-
homology of X. The analytic realization of the latte-r theory, that is, the use
of elliptic operators as cycles for that theory, was proposed by Atiyah [4],
accomplished by Brown-Douglas-Fillmore[13] and has played a central role in

index theory. We now very briefly discuss a class of elliptic operators.
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1.5 Dirac operators and K-homology. Let M be a closed Riemannian
manifold. A (smooth) hermitian vector bundle E over M is called a Clifford
bundle, if | |
(1) each fibre E,, of E is a left module over the complexified Clifford
algebra CL(TmM ® C); o |
(2) the action of a vector v € T,,M on E,, is skew-adjoint: that is,
<vb,b >+ <b,v € >=01or any § € E,; and
| (3) there is a connection V on E which is compatible with the Levi-Civita

connection on the tangent bundle TM of M, that is,
Vx(Y € =Vx(Y) £+Y - Vx({),

for any vector fields X, Y on M é.nd for any smooth section £ of E.
Civen a Clifford bundle B over M, the associated Dirac operator D is the

first order differential operator on C*(E) given by:

(DE)m) = 3 ea (Veo£)(m),

where {ea} is any orthonormal basis for T, M.

It can be shown (cf. for example [54]) that [} is formally self-adjoint.
Using the Hermitian metric on E and the Riemannian metric on M, we con-
struct the Hilbert.space Lz(E). Let ¢ be the representation of the algebra
C'(M) on L%(E)} as multiplication operators and set A(D) = D(1 + D)1/
using the functional calculus of Dr. Then it can be shown (cf. [4]) that the
triple (L2(E), ¢, (D)) is an odd Kasparov module over (C(M),C). When
E ‘ha.s a(n often natural) grading under which D is odd, L*(E) inherits the

grading under which A(D) is odd, and we get an even Kasparov module.

14
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1.6 Kasparov product. Let A; be C*-algebras. Then there is thq Kasparov

product:
KK, (R,A) x KK, (A, Ag) s KK, ,,(R,A;3),

for o; € Z,. In most references (cf. [10], [19]), this is treated in detail‘ for more
general (graded) C*-algebras but only for the case when o; = 0. The general
case follows from thzit discussion but we believe it is of interest to give some
details here. We now discuss the two cases where o, = (. .

If (H, 01, 61, 1) € Eo(Ay,Az), and (Ha, ¢a, F3) € Ex(Ag, Ay), then the
product (H, g1, é1, F1) ®a, (Hz, ¢2, F3) is given by any (H, ¢, F) € E1(AR1,A3)
satisfying:

(1) H = H; ®4, H2, which is constructed from the algebraic tensor product

H; ®a, H together with the following inner-product:
< hl & hg,h’l ® h; >=< h2,¢2(< h],h; >1)h’2 >a,

where < —, — >, is the inner product on H,-;
(2) ¢ = 61 ®p, 1;
3) Ha)[(FLy®1) - F+ F-(F;®1)]¢(a)* = 0 mod K(H) for any a € Ay;
(4) F-T,,, ~ T,

Ty, € -B(Hg, H) is defined by:

() F € K{Hg, H) for any by € Hy, where for any h; € Hy,

Thy(h2) = k1 @y, ha.

If (Hi,¢1,¢1,F1) € Eo(A1,A2) and (Hs, 92, ¢2, F2) € Eo(A2,A3), then
(H1,91, 61, F1)®a,(Hz, 92, ¢2, F2) is given by any (H, g, ¢, F) € Eo(Ay, As) such



that (H, ¢, F') satisfies the same conditions (1) - (4) as above, and g = g1 ®¢, g2,

that is, the corresponding grading on H is given by
HT = H{ ®, H] © HT &y,

and
H™ = Hf ®4, H; @ Hf @, H3.

.The Kasparov product is well—deﬁﬁed, enjoys some functorial properties,
and has many powerful applications. See [10] for a full treatment of KK-fheory.

We now turn to cyclic cohomology, which was introduced by Connes [16]
as a non-commutative analogue of the de Rham theory.

Let A be a locally convex topological algebra. This means that there is a
family {p”} of semi-norms on A which defines its (Hausdorff) topology, under
which the product on A is jointly-continuous, that is, for any p € {p,}, there
is p’ € {p,} such that |

pla-b) < p'(a)p'(),
for any a, b € A. If, furthermore, the family {p,} is countable and the topology
is complete, then A is called a Fréchet algebra. All topological algebras that
we shall encounter in this thesis will be Iréchet. |

For m > 0, let CT*(A) be the ‘space of all continuous multi-linear maps 7:

AXAx---x A— C which are cyclic, that 1s:
m+1

T(aﬂaalr' " iam) = (_1)mT(am7 g, :a'm—l)
for any a; € A. For any 7 € CA (A), we define

(b‘r)(aﬂa a1,y am-i-l aﬂaala MR/ M PR aam+1)+

"MS

16
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+(—1)m+17—(am+1a{37 a’l) v -,\.a'm,)

for any a; € A. Then it is easy to show that br € CF1(A4) and b = 0.

1.7 Definition. The cyclic cohomology of A, denoted by HC*(A), is the

homology of the following cochain complez:
0 — CO(A) —2 CL(A) 5 CHA) Lo -

The space of cyclic cocycles of degree m will be denoted by Z(A).
Consider the algebra C of complex numbers. It follows from the cyclicity
that CI™(C) & C, and CJ"*(C) = {0}. Therefore, HC*™(C) = C and

HC*™41(C) = {0}. For a; € C, let
olai,as, a3) = 2mWid1a2as.

Then o is a generator for HC?(C), which will be used t.o define the suspension
map (see §1.8 below).
There is a11§the1' basic cyclic cocycle that we shall use later. Let T'ry be
the trace on M(C): |
k
Tri(a) = D _ay for any a = (a;) € My(C).
' i=1
Then it is easy to show that T'r; € Z3(M;(C)).
In fact, for any algebra A, Z3(A) consists of traces on A. For this reason,

higher degree cyclic cocycles are called higher traces on A. One way to make

this more precise is as follows:
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Let (A) = Lmso 2™(A) be the (topological) universal graded differential

algebra over A (see [15] and [27] for details). A continuous linear functional

on 1™(A) is called a closed graded trace of degree m if:
1). T(daldag - +day) = 0 for any ¢; € A; and : , ‘
2). 7wy - wy) = (=1)2@) (0w, - wy), for any w; € QA) such that

wy - wy € (A,

For any closed graded trace 7 of degree m, we define |
T(GUJ G1y - 1a'm) = %(aoda1 T dam)

for any a; € A. It is easy to show that 7 € Z7*(A). Conversely, any 7 € Z7*(A)
induces a closed graded trace of degree m in an obvious way. Therefore, we

shall use these two descriptions interchangeably.

1.8 Cup product. Let A, B be locally convex topological algebras, and
A ® B their projective tensor product ([55]). Then A ® B is again a locally
convex topological algebra. If ¢ € Z7*(A) and v € Z}{(B), let ¢ : 4™(A) — C
and @ : 2*(B) — C be the corresponding closed grddéd t_raceé. Let ¢#3 be

the composite of the following maps:

>

QA @ B) — Q™(A) ® Q*(B) ¥ C,

where the first map comes from the universality of }(A ® B). Then Pt is ' |
a closed graded trace and determines a cyclic cocycle ¢#p € Zy (A ® B).

This construction defines the cup product in cyclic cohomology: .

#: HC™(A) x HCY(B) — HC™™(A® B)
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See [16] for details.
Recall, from §1.7, that ¢ € Z}(C), determined by o(1,1,1) = 21, 1s a

generator for HC?(C). Therefore, S(7) 4+ induces a map:
S: HC™(A) — HC™?(A® C) = HC™?(A).

This is the suspensioh map in cyclic cohomology.

1.9 Pairing with K-theory. Suppose that A is unital. Let Ko(A) be the
algebraic Ko-group of A, that is, the (Grothendieck) group associated to the
semi-group of algebraically equivalent idempotents in matrix algebras over A.
“ Let K1{A) be the quotient of GLs(A) by the equivalence relation u ~ v which
holds when u can be connected to v by a pilecewise linear path in G L, (A)
(cf. [17], [48]). If A is a C*-algebra, then K;(A) is naturally isomorphic to
KKi(C, A) (see [10]). |
For any idempotent ¢ € My(A) and any 7 € Z§™(A), we define:

1
(2me)™ - m!

(r#Tri)(e e, - €).

< €T >=

And if u € GLy(A) and 7 € Z2™1(A), we define:

“m!
(2ri)mtl . (2m 4+ 1)

<u, T >= ’-(T#Trk)(u'l—1,u-w1,u_1—1,-.-7-,u'~—1).

1.10 Theorem. (Connes[17]) (1) These maps induce well-defined pair-
ngs:

Ko(A) x HC?™(A) — C,

and

Ky(A) x HC?™1(A) — C.



(2) < z,7 >=<z,5(r) > for any x € K.(A) and 7 € HC*(A).

1.11 Remarks. (1) When A is not unital, Ko(A) is defined to be the kernel
of the natural map Ko(At) — Ko(C), where At is the unitization of A, and
K,(A) is defined to be K;(A%). On the other hand, for any 'rlE ZF(A), we
define | | |

T+(GU+CO'I,"‘,ak+Ck'I)ZT(CEQ,"‘,ak),

where a; € A, ¢; € C, and I is the unit in A*. Then it follows easily that

Tt € ZF(A*). The pa,irihgs in Theorem 1.10 then extend to this case.

(2) For any algebra A, we can repeat the discussions in §1.7 -§1.10, drop-
ping all continuity conditions along the way, and get the algebraic cyclic co-
homology of A, which pairs with the algebraic K-theory Ko(A), K1(A) of A.

" But in this thesis, we shall focus on the (topological) cyclic cohomology.
In‘ fact, the topological algebras we shall encounter will be certain special sub-
algebras of C*-algebras. Recall that (cf. [10], [17], [48]) a dense subalgebra
A% of a C*-algebra A is called smooth, if |

(1) for each k > 0, M;(A*) is closed under the holomorphic functional

calculus in M (A); and

2) A% is a Fréchet algebra under a certain topology which is finer than
gy ‘

the norm topology it inherits from A.

1.12 Theorem:. If A* is a smooth subalgebra of A, then the natural inclu-

stons I{;(A*) — K;(R), i = 0, 1, are isomorphisms. Therefore, we have the
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following pairings:

Ki(R) x HC*™(A*) — C,

wheret =0, 1 and m 2> 0.

Proof. For the proof of the first statement, see [10}], {17]. The second state-
ment then follows from Theorem 1.10. , 0O
We now look at an example. Let X be a smooth closed manifold, A =
C(X), and A® = C*(X) with the usual C'* topology to make it a Fréchet
~algebra. For any closed differential form w on X, let n = dim(X) — deg(w),

and deﬁﬁe
Tw(fo,fl,'“,fn)z/Xfodfl/\---/\dfn/\w,

for f; € C*(X). Then 7, € Z}(C*(X}), and

1.13 Proposition. For any z € K*(X) = K.(C(X)),
<&, T, >= f ch*(z) Aw,
X

where ch* : K*(X) — Hjp(X) is the Chern character map.

Proof. Suppose first that n = 2m. For any idempotent e € My(C=(M)), it
is well-known (cf. [17]) that

oy L TRRY
ch (e)_lzzn(gm)m Tri(e-de- de).

Since e-de-de e = e de- de, it follows immediately that

1
]Xch*(e)/\w: ———— Tre(e-de-de)" Aw =< e,7, >.

(2m2)mm!




Now suppose that n = 2m + 1. For any g € GLx{(C*(X)), we have

("‘”1)! &k -1 3 32
h*(g) = T 1,
ch*(g) g; G+ 1) ri(g™ dg)*
See [28] for a very nice discussion. It is easy to show that (dg - g¢7')* =
—dg - d(g™'), from which it follows that
* (=)™ - m! -1,7.\2
—_ T m+1
]xCh (g) A /X T @ £ 1) LT A9 A
-/ W et (dg AdgTY M Aw =< g, >
- X (27rz)m(2m -+ 1)' kL9 g g =<4 T .

This completes the proof. - - O
Finally we study the relation between tensor product in K-theory and cup
product in cyclic cohomology. Let A, B be C*-algebras and A @B their tensor

product with the maximum C*-norm. Then there is a product:
KR ® K;(B) 3 K.,;(A®B),
which can be defined by using the Kasparov product:
K(R)® K;(B) = KK(CA)®KK;C,B)

Kasparov KK;(C,A®B) = K;;(A®B).

1.14 Theorem. Let A%, B be smooth subalgebras of A, B respectively. If |
A® @ B® is smooth in A ® B , then for any z € Ki(R), y € K;(B)} and any

b € ZIH(A®), € Z7H (B%), we have:

<T@y, dHe >=<2,6> <y, p>.

. The proof of Theorem 1.14 will be achieved in several steps.



1.15 Lemma. Theorem 1.1/ holds when it = 35 = 0.

Proof. When A and B aré both unital,; the tensor product
Ko(R) @ Ko(B) — Ko(A @ras B)

is induced by the following obvious map:
M.(A) @ Mi(B) - M, (A®B).

Therefore, to prove Lemma 1.15 in this case, let e € M (A*), f € M;(B*) be

idempotents. Without loss of generality we assume k& = I = 1. Note that

e-de-e=0,e-de-de-e=e-de-de,

and
fodf - f=0,f-df-df - f = f-df - df.
Therefore, |
.1 ‘ |
<6®f ’ ¢#‘fo>: (271”.',)’“'*‘"(771-{—71)'((ﬁ#(’o)(f@f’e@{"e®f)

2m+42n+1

1 n
B (2mi)mtm  (m + n)! Cgn (o#p)e-de - -de@f - df - - - df)

2m 2
= <e¢> < fip>.
This proves Lemma 1.15 for this case.
When A is unital but B is not unital, recall that Ko(B) is defined to be
the kernel of the natural map g : Ko(B*) — Ko(C). Therefore, any y € Ko(B)
is of the form y = y; — y;, where y; € Ky(Bt) and ¢(v;) = g(yg) (cf. [10])..

Then for any z € Ko(A) and y = 1 ~ y2 € Ko(B), we define

TRQY=2Qh — QY.




Therefore, to check Lemma 1.15 for this case, it suffices to show that:

<z @y, ¢t >=<1,6> <y,p1 >

for y € Ko(Bt), where pt € Zf“(8¢9+) is as defined in Remark 1.11. But this
follows immediately from the first case. The same argument takes care of the
case when B is unital but A is not.

When both A and B are non unital, the proof is very similar to that of
tfle second case, but we shall compare things in Ko(A* @ Bt). Note that each

row or column in the following diagram is exact:
0 0

0
| | |
0 —— IK(A®B) —— KoAt®B) —— KoB) —— 0

b | l

0 —— Ko(A®BT) —— Ko(At @BY) —— Ko(BY) —— 0

L el !

0 —  KoA) ——  KgAT") —— Ky(C) — 0
0 0o 0
Hence, Ky(A ® B) can be identified with the subgroup kernel(q) N kernel(q;)
in Ko{AT ® B+). Then the map Ko{A) ® Ky(B) — Ko(A ® B) can be defined

and the proof of this case is almost identical to the proof of the second case.

We omit the details. _ O

The proof of the remaining cases of Theorem 1.14 can be reduced to

Lemma 1.15, by applying a well-known result in K-theory and its analogue in

cyclic cohomology. We first recall these results.




It is well-known that, for any C*-algebra A, there are natural isomor-
phisms ¢; : K;(R) - Ko(A ® Co(R)) (cf. [10], Theorem 8.2.2) and to
Ko(R) — K;(A ® Co(R)) (Bott periodicity, cf. [10], Theorem 9.2.1). We now
recall the analogue of thié result in cyclic cohomology.

Let S(R) be the Schwartz space of rapidly decreasing smooth functions on
R. With pointwise multiplication as its product, it is a subalgebra of Co(R).
In fact it is a smooth subalgebra, since it carries a natural Fréchet topology,

which is determined by the following sequence of semi-norms: for any &, € N,

k
pralf) = Supeer (1 + 2l - (ZD)@)

for any f € S(R). For any fo, fi € S(R), we define:

lfo, o) = [, fodi

Then ¢ € Z}(S(R)). Note that S(R) is nuclear in the category of 10(:5113!

convex topological spaces (cf. [55]). Therefore, for any smooth subalgebra A®

t

of A, the projective tensor product A% @ S(R) can be realized as an algebra
of certain functions on R with values in A®. With this interpretation, it is
not difficult to show that A*® ® S(R) is smooth in A @ Co(R). Therefore, for
any ¢ € ZImHi(A®), (}5#-6 can be paired with K,-.,;l (A® Cy(R)). The following

result is due to Elliott, Natsume and Nest [27):

1.16 Theorem. ([27]) For anyz € K;(R) and any ¢ € Z™+(R), we have:

<z, ¢ >=< ti(x), dfte > .




Proof of Theorem 1.14. We can now complete the proof of Theorem 1.14.
 We will treat in tietail only the case where i = j = 1, since the proofs of the
other two cases are similar but easier. For any = € K1(A), y € K1(B) and any
¢ € ZF(A®), p € ZI"TH(B™), we have:
<z, ¢p>-<y,p>
= <ti(z), pfe > - <ti(y), pHe >
= <thle) @Uly), (d#e)#{p#e) >,

where the first equation follows from Theorem 1.16 and the second from

Lemma 1.15. Let 8 be the isomorphism from A ® Cy(R) @ B @ Cu(R) onto

A ®B ® Co(R) ® Co(R), determined by
Pla®@fB®IRg)=aBbBgR [
Then it can be shown that:
5.(1(2) ® y) = (1 0 1)z B 1),

and
B (d#eftodte) = bt odtedte.
Therefore, using Theorem 1.16 twice, we have:
<z, > <y, p>
= < (tioto)(z @y), pH#pfteste >

= <zQy, e >.

This completes the proof of Theorem 1.14.




§2 K-theory for an index map

In this section we shall construct an interesting KK-element, modeled
closely after the construction of longitudinal KK-elements on foliations. 1t is
the KK-theoretic version of ‘the construction in Miscenko and Fomenko [44]. As
we shall see, this KK-element, or the index map it induces, pia&s a fundamental
rolé in cértain index problems.. .We shall then decompose this index map
into the .p;"oduct of two simpler factors. This decomposition will be basic in
calculating the pairing of.the index map with cyclic cocycles in this thesis.
Finally, we shall study in some detail a KK-element in the decomposition
which is determined by a covering structure.

We start with the following input data:

M is a closed oriented Riemannian manifold;

p: M —M isa Galois covering with deck transformation group T;

D is a,Ageometric (first order elliptic diffe.rentia,l) operator,
operating on sections C*°{E) of a Clifford bundle F — A;

|4 is a closed manifold on which I' acts smoothly on the right.

The covering map p induces canonically amap 7 : M xV — M. f E = ()

is the pull-back bundle on M x V, then D has a canonical lifting D acting on




smooth sections of £, Let W = M er~ V. For X = M, M xV or W, let Ey,
Dx denote the pull-back (lifting) on X of E and D, respectively.
- Some maps that we shall need later are named in the following diagram:
Mxv 2 Mxv
B [
W=MxrV — M.

The orientation and the Riemannian metric on M determine a volume
form dvolps on M and a volume form dvolyz on M. Tt is also convenient to fix
a Borel measure on V. -

We now begin to construct a Kasparov module (&, ¥, A(D)) representing
an element in K K,(C(W), A), where o € Z, is the parity of D, and where
A= C’(VV) X, I' 1s the reduced (;rossed—product (C*-algebra. For convenience,
we shall treat only the odd case in detail, so we assume that D is self-adjoint.
The even case is similar (see Remark 2.3 below).

The Hilbert module £ over A will be constructed from the I'equivariant

bundle £ — V (see §1.2).

2.1 Lemma. Let £ = CX(E) be the space of smooth sections with compact
support of the bundle E over M x V. Then &, const.z'tutes a conlinuous fields
of Hilbert spaces for the system (V,T) (see §1.2), and he.nce gives rise lo a
Hilbert module £ over A. |

Proof. Recall, from §1.2, that




for any € € £, and for any v € I‘ Obviously v(¢) € & and & is I'-invariant.
Thus, condition (1) in §1.2 is satisfied. Conditions (2) and (3) are also very
easy to check. We now turn to condition (4).

In our present situation K = L*(E, M x V). For any ¢ € £, the operator
Te : (V)Y@ 2(T) — K is defined by:

Zf1®e‘¥ T, v) Zf'v(v)fm YU Y),

~yel’

where f, € L*(V) and {e,} is the standard basis for £*(T'). We need to show
that T; is a bounded operator. Without loss of generality, we assume that the
support of £ is contained in the interior of My x V', where My is a fundamental
domain for the covering M — M. In particular, {Supp(7(€))}er is pairwise

disjoint. Therefore,
]|T€ wa

HZf-vf (©Oll -Z|If Y(Ellk
< (Vol(M) - mam{[|§fn ”} Z”fw]lL?(V)

Il

This establishes condition (4). , O
For reference we recall, from §1.2, that the right action of C®(V) x4, I’
on &, is given by:
Ex(f-7) =7 (Mp(£))
for any € € &, f € C®(V) and.'y € I', where f € Cm(ﬁﬂ/f x V) is the lifting
of f from V to M x V (that is, fT(s2,v) = f(v) ) and Mq is the pointwise

(scalar) multiplication operator. The inner product on &, is given by:

<&n>=3 [ < £l ) vn)(, ) > dvol () -
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for any f,vj € &, where < -, >% is the Hermitian metric on the bundle E.
Note that < £,7 € C®(V) 44, . £ is the completion of £, with respect to
the norm induced by this inner product.

The representation W of C(W) on £ is determined by:

V(N = Mn(8)

for an& f € C=(W) and any { € £, where fT = p}(f) € C(M % V) is the
pull-back of f and M;q is again the multiplication operator. '
To show that W(f) is boundedk, again we use the operator T defined in
§1.2. Note that for any £ € &, |[£ll, = ||T¢] (see §1.2). It is easy to check
that Ty(sye = Mo - T; for any £ € £ and any f € C®(W), where My is the

multiplication operator on K. Therefore,

1EC)el = ITacel

= | Mo - Tl < I N2l = 7N €L
So ¥ : C°(W) — B(£) is a bounded homomorphism. On the other hand,

since f1 is I-invariant,

< U()() >=< U(F)(n),é >

for any €,9 € &, and f € C(W). Therefore, ¥ extends to be a C*-algebra
homomorphism. |

To define the “Fredholm” operator A(D), note that the lifting I, when
restricted to each leaf M X v for any v € V, enjoys very pleasant properties

(cf. for example, {51, [9]); for example, it is essentially self-adjoint. Let A(t) =

t- (1412712 and let A(D) be the leafwise functional calculus of D.
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2.2 Proposition. ,\(5) is a well-defined operator in B(E), and the triple
(£, U, M(D)) defines a KK-element in KKi(C(W), A).

Proof. See[53],[25]. A élightly different way to say this is that D is a regular
unbounded operator on £, and (£,¥,D) is an (odd) unbounded Kasparov
module in‘the sense of Baaj and Julg {7] (see also [10], §1’f.11). Therefore,
AD) = D(1 + D?)~1/? makes sense as an operator in B(€) and the triple
(€,9, \(D)) defines a KK-element in K Ky(C(W), A). s

2.3 Remark: the even case. If D*: C°‘5(E+) — C°(E~) is a geometric
(first order elliptic differential} operator, a typical trick is to set £ = E7 G E-

and

Dt 0
Then one repeats the above constructions (2.1 - 2.2). The canonical Z; grading

on E induces a grading g on &, under which MD) is 0odd. Therefore, the
quadruple (E,g,W,A(Fﬁ)) defines an element in K Ko(C{W}, A).

2.4 The index map. In either case, this KK-element will be denoted by

[Drlv]; Through the Kasparov product it induces a map in K-theory:
(W) 2 Ko (A), | |

where ¢ is the parity of D. We shall abuse the notation and denote this map

also by [Drv]. The goal of this thesis is to study this map. To see that this




map is interesting, we compare this map with two well-known constructions.
First, we recall the construction of a higher I'-index of elliptic operators
by Miscenko and Fomenké [44]. Thus we deal with the even case (see Remark
2.3). | |
Note that ' acts on A in an robvious way: for any a € A and any v € I
v(a) = 7 - a, where the "rilght hand side is the product in A. Let M x A be
the trivial A-bundle over M. 1t is T-equivariant and descends to an A-bundle

V = M xp A over M. Then Dt extends to an operator
Dt@1:C®(MET®V)—= CO(M,E”Q@V).

According to Miscenko and Fomenko [44], this operator is A-elliptic and Tas -
an index in Kq(A). We denote this index element by In.d.Mp(D*',P, VY. Then

we have the following:

2.5 Proposition. Indpyp(DT, T, VY = [Dpyvi([lw]), where the right hand
side is the index map in §2.4 applied to the the class [lw] of the trivial line

bundle on W.

Proof. Let & = e (M, Ee® A denote the space of smooth I'-invariant
sections of the bundle Eg®Aover M. £! can be identified with C** (7M., L©:V)
‘in an obvious way. Upon this identification, D ® 1 becomes Dy @ 1 (recall

that D is defined from D* as in Remark 2.3 and Dy is the lifting of D on

M). Let £ be the Hilbert module over A made from £ which is isometri-

cally isomorphic to L*(M, E ® V) under the same identification. Then, as an

element in Ko(A) = KKy(C, A), Indyr(D¥,T, V) can be represented by the




even Kasparov module (€', ¢',1,A(Dy; ®1)), where g' is the canonical grading
inherited from the grading of E, and 1 is the obvious unital map from C to
B(E). |

On the other hand, it is easy to see that [Drv]({1w]) can be represented
by (£,9,1,A(D)), where £ and D are as in §2.1 and §2.2, ¢ the canonical
grading inherited from the grading of E, and 1 is the obvious unital map from

C to B(£). Given any ¢ € & as in §2.1, let
€0m) =2 &l -y,0-9) 7,
¥

which we regard as a smooth section of the bundle EA";, ® A over M. Note
that for any given i1, the sum in the definition of £ is in fact a finite sum
since the support 6f!;' is compact. Then with a careful bookkeeping of the
induced T'-actions, £’ can be shown to be I'-invariant, and therefore, £’ € £".
It is not difficult to show that this map extends to an isomorphism between
£ and &', under which (8,9,1,,\(5)) is identified with (&€',¢',1,AM(D5 @ 1)).
This completes the proof. ' . 0

Of particular interest is the case where V = {*} consists of one single
point, I' = 7;(M) is the fundamental group of an even dimensional manifold
M, and D = d + d* is the signature operator on M. In this case the pairing
of Indpyp(d + d*,m (M), {*}) with appropriate cyclic cocycles on the group
algebra C[I'} plays a fundamental role in Connes-Moscovici’s approach to the
Novikov conjecture on the homotopy invariance of higher signatures. See [19].

(44} for more details.

The main result of this thesis will recover that of Connes-Moscovici [19} on

33




34

the Novikov conjecture. However, our motivation and approach are different.
The focus of this thesis is on longitudinal KK-elements on foliated bundles.
Note that there are two natural product foliation structures on H x V which
are both I'-equivariant and thus induce two foliation structures on W: The first
one, whose leaves are copies of V, is in fact given by the fibration ¢; : W — M.
The second foliation, denoted by (W, F), whose leaves are images of M x v for
v € V, is more interesting and has attracted the attention of several authors -
(see, for example, [26], [47]). We will focus on the second foliation in this
thesis. |

Dyw is a leafwise elliptic (self-adjoint) differential operator for the second
foliation. It is weﬂ-known (cf. [15] [19])) that Dy induces an element in
KK I(W,C), where C is the fol.ia,tion algebra with coeflicients in Ew. However,
to relate this longitudinal KK-element to the .index element [Dry] defined in

§2.2, we need to put one additional condition on the group action, which is:

2.6 Copdition. If the fized point set of ¥ € T contains a nonempty open
set, then v = 1. See [{6], [33] and .[47].

Under this condition, the graph G (cf. [47]) of the foliation (W,F) is
(M x M x V)/T. Recall that T acts on M x M x V diagonally, that is,

(T’hra'fhs:”)")f = 7y« ¥, Y, )

The image of (n,,7,,v) in G will be denoted by [rh,, fh,, v].

The source map s and the range map r from ¢ to W are obvious from

our choice of notation.




Let C = C*(W, F, Ew) be the foliation algebra with coefficients in Ey.. It
is constructed from the space C2°(¢,r"(Ew) ® (s*(Ew))*) of smooth sections
with compact support. (Cf. [47] for details in this case.) A well-known result
of Hilsum and Skandalis [32] (see also [46], Theorem 6.14) states that C is
strongly Morita equivalent to the reduced crossed product A. We need to
make this more concrete. Note that there is a representation ¥, of C on £,

defined by: for any k € C=(G,(Ew) ® (s*(Ew))*) and any £ € &,.:

(U (k)E) (i, v) = /ﬂ k[, fa, 0]€ (1, v)dvol 5 (12,).

2.7 Proposition. ([47], Proposition 2.4) U, is an isomorphism between
C and the C*-algebra K(E) of compact operators on £. In particular, C is

strongly Morita equivalent to A.

Therefore, the triple (£, ¥;,0) defines an element in KKo(C,A). (€ is
trivially graded!) Recall ({10], §19.1) that a KK-element z € KK, (A,B)is a
KK—eqﬁivalence if there is a KK-element y € K K;(B, A) such that 2@y = 1a,
andy®@az=1p. Hzisa KK-equivalence, then the map K;(A) B3 K;y;(B) is

an isomorphism.
2.8 Proposition. (&, ¥,,0) defines a KK-equivalence.

Proof. Let {5,}nen be an orthonormal basis for L?( E) consisting of smooth

sections. This can be chosen from, for example, eigensections of D. We then
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fix a fundamental domain M, for the covering M — M, and define:

(
T (p(r)) i€ Mo

0 otherwise.

\

In general, , ¢ £. But a standard approximation argument shows that

fin € £. Tt is then straightforward to show that the following map:
€ €& — (<< "’?naé >>)n€N € Eil

induces an isometric isomorphism between £ and £%. Therefore, K(€) = ARK,
where K is the C*-algebra of compact operators on the Hilbert space (% (cf.
[10], §13.2.4). Under this identification, (€, V3, 0) is the KK-element associated
to the identity map 1 : A® K — A ® K, which is well-known to be a KK-
equivalence (cf. {10, §17.8.2(c) and §19.1). _ O

We now recall the construction of the KK-element associated to the leaf-
wise elliptic operator Dy, which is the central ingredient for analysis on the
foliated bundle. See [25] for a more detailed treatment. For any T € B(£) and

any k € C, we define:
Us(T)k = U (T - Uy(k)) € C. .

A direct computation shows that W, is a C*-monomorphism from B(&) to
B(C), where C is regarded as a Hilbert module over itself. In fact ¥y is also

onto, since the multiplier algebra M{K(£)) is canonically isomorphic to B(£)

(cf. [10], Theorem 13.4.1, although in our case this can be proved directly).
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Set ¥’ =Wy 0¥ and A(D) = W3(A(D)). Then the longitudinal KK-element

[Dw] associated to the leafwise elliptic operator Dy is given by the triple.

(C, ¥, M(D)"), where C is thought of as a Hilbert module over itself.

2.9 Remarks. (1) Although eacli leaf of the foliation may or may not be
diffecmnorphic to M , the hollonomy covering of it always is. And when we
construct a KK-element from a leafwise elliptic operator, only the lifting on
the holonomy covering matters. This explains the (apparent} simplicity of the
construction of the longitudinal KK-element in our case.

(2) This construction is slightly different from the one in [25]. In [25]
the foliation algebra C is repreéented faifhfully on L*(G). In this thesis the
same algebra is represented, again faithfully, on £. It is clear that either way
the induced representations of C{W) on C are identical. The same is true for

MDY Therefore, the resulting Kasparov modules are identical.

2.10 Proposition. [Dry] = [Dw]| ®c [€, ¥,,0], where Q¢ is the Kasparov

produc_t' in KK-theory.

Proof, Straightforward. ' O
This, together with Proposition 2.8, shows that, as far as K-theory is
.concerned, [Dr,v] and [Dw] are equivalent.
Now if V admits a I-invariant (nontrivial) measure g, then u induces a
holonomy-invariant transverse measure for the foliation (W, F), which in turn

induces a trace on C and a group homomorphism Tr, : Ko(C) — R. The

study of the composition Tr, o [Dy] : K} (W) — R, as expressed in terms of a
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longitudinal cyclic cocycle on C®(W), is very important in the work of DHK
(cf. [26] and references therein).

As the discussions above clearly suggest, one important way to study
[Dr,v] is to study the pairing of this element (map) with cyclic cocycles on
“nice” subalgebras of 4. The work in this thesis is one step along this line.

Our approach is based on the following simple observation. Note that
E, as a [-invariant, leafwise elliptic operator on M x V, is very special: the
restriction of D to each leal M x v does not depend upon v € V, and is
the same as the lifting of D on M. KK-theory provides the right framework
where we can express this observation more succinctly. This is the content of
Theorem 2.11 below.

The Miscenko-Fomenko construction (cf. §2.5) provides yet another clue,
Recall that the higher index is constructed from two “seemingly unrelated”
pieces: an elliptic operator D) on M and an A-bundle ¥V on M. It turns out
to be fruitful to look at V frorﬁ a slightly different point of view, by turning it
into a Kasparov module (H, ®,0) for (C(W),C(M x V) x, T').

For brevity, let B = C(M x V)%, T and B, = C°(M x V) Xa, . Tt is
well-known that C'(M x V)%, T is canonically isomorphic to C(M)@C(V} =, T,
that is, B= C(M) ® A (cf. [52]).

The. Hilbert module H over B will be constructed from the principal I'-

bundle M x V — M x V. From this principal bundle we construct an infinite

dimensional Hermitian bundle over M x V: for any (m,v) € M x V, the -

Hilbert space over (m,v) is £2({(#h,v) : p(fh) = m}). Let H, = C®(M x V)

be the space of smooth functions on M x V with compact support. The proof

38




39

of Lemma 2.1 can then be repeated to show that H, determines a continuous
field of Hilbert spaces for the system (M x V,T'), and gives rise to a Hilbert
module H over B.

For reference, we recall that H, is a right B.-module: for any h € H., any

g€ C®MxV)and any y € I':

(h* (g M)A, v) = g(p(),v -y (i -y v-y7).

To define the inner product on H,, we first note that any h € M, has a
canonical push-forward ¥ in C(M x V):
Wmv)= 3 h(,v),
p(m)=m

which enjoys the following basic property:

fﬁh - dvol gy = /Mhu'dvolM

as functions in C*°(V). Then the inner product on H, is defined as follows:
for any hy,hy € H,,

K hyy by = > (hy - y(ha))Y -,

o

where hy ié the complex conjugate of hy. H is the completion of H, with
respect to the norm induced by this inner product. It is a finitely generated,
projective Hilbert module over B (we shall justify this in detail in Lemma
2.14). |

- We now define a representation ® of C(W) on H. For anyrf € C=(W),

and any h € H.:

®(f)h = Msu(h),




where f = pi(f) € _C°°(I\>f X V) is the lifting of f and My is the scalar-
multiplication operator.

The KK-element [V] for V is given by the triple (H, ®,0), together with
the trivial grading on H.

Note that this construction is purely topological: We could have used
continuous functions instead.

Let [D] € KY(M) = KK;(C(M),C) be the K-h‘omology element associ-

ated to D (cf. [8] or §1.5). Then we have the following basic decomposition:

2.11 Theorem. [Df,v] = (V] ®cay [D], where @c(ary denotes the Kasparov

product.

Proof. Recall -that [D] € KK(C(M),C) is represented by the Kasparov
module (L*(E), 4, \(D)), where A(D) = D(1 + D*)~'/* and ¢ is the obvious
representation of C(M) on L*(E) by scalar multiplications. Therefore, the
triple (L3(E) @ A,% ® 1, M(D)® 1) represents {D] ® 14 in KK,(B, A). Again
rfor brevity, we let & = L%(E) ® A and £ = H ®5 & as Hilbert modules over
A.

By definition, £ is the module for the Kasparov product [V] ®car (D).
We claim that there is a natural module :ﬁorphism 0 : & — £ Indeed, for
any h € H,, any { € C°(E) and any b € C°(V) Mg, I, since C®(V) ¥y, T

embeds into B, in a canonical way, h * b € H, makes sense, and we define:

Oh®E®b) = Muy(6M) = (hxb)- £,

4(




41

where £0 = 7*(¢) € C°(E) is the lifting of ¢ from a section of E over M to
a section of E over M x V. Note that @ is obviously a C*®(V) Xaiy T module
morphism. Therefore, to check that © is isometric, it suffices to check it for

any hy, hy € .'Hc and any &;,&; € C(E). This can be done as follows:

< a(hl ® {1), e(h2 ® 62) >>
= <hehh > (by def. of ©)
= Zfﬁ < hy -E&’Y(hg-f?) > dvolﬁ-’y (by def. of < +,- >¢)
’y -
= 5[, <ttt ) >4 doolys 7
B ZfM(ﬁﬂ(hz))g' < &1,&s > dvolpyy -y
’T -
- ZjM <<-£11 (,]_?‘1’.}'(}12))5\'l ' E? >>E d’UO!M Y
Y
= £, K by by >y b >y, (by def. of < -, >4)

= K h Q&>

Therefore, @ extends to be an isometric isomorphism. [t is also surjective
since C°(E) @q1, C(V) is dense in . From now on, we use © to identify £
and €.

It is then easy to see that under this identification of modules, the repre-
sentation ¥ of C(W) on £ is identical to the representation ® ®z 1 of C(W)
on £. | '

Since the “Fredholm” operator for [V] is 0, té prove the theorem it remains

to show that A(D) is a A(D) ® 1-connexion, in other words,

—

ADYo T, —T) o (MD) ® 1) € K(&,E)



for any h € H, where T, € B(s, €) is defined by T4(€) = h ® ¢ for any £ € &
(see §1.6, or [10]). Since C=(M) ®u1, C*(V) is dense in H, it suffices to check
this statement for b = . g, where g € C®(V), f € C=(M) , and Supp(f)
is contained in an open ball U C M sufficiently small that p|, : U — M is
one-to-one. Let f € C**(M) be the push-forward of f: £(m) = Symyen F (7).
Then, following [9], we make some choices: |

Choose § > 0, such that dist(Supp(F),U) > 26.

Cho‘ose x € C®(M), such that

r

1 if dist( Supp(f), ;) < 6
x(m) = < '

0 if dist(Supp(f), ) > 26.

.

Now choose smooth functions A; and A; on R such that A; is in the
Schwartz space, Supp(:\o) C (—6,6) (where Xo is the Fourier transform of Ag)
and Ap + Ay = t(1 4 t%)71/2

Then we have the following basic facts:

(1) A(D) and [Ao(D), M[] are in K(L%*(E)) for any f € C®(M);

(2) (D) € C = K(€) (cf. [53], [9)) |

(3) M(DYM; = MM (D)M; = Myp*(M(D)M;) on C2(Ely, ) for each
v € V (see (2.25) and (2.26) in [9]);

(4) Tho{(M(D)Y® 1) = Ty, 0 (MsAo(D) ®1); and

(5) M(D) 0 Ty = Ty, 0 (Mo(D)M; ® 1).

(1) is well-known. We now check (5) in detail, the proof for (4) is similar.

Note that both sides of (5} are bounded morphisms from the Hilbert 4-module
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&, to £. Therefore, it suffices to check (5) on C(E)®1. For any £ € C®(E),
we have: |
,\O(I_)’) oTh(6®1) = Xo(D)Yh®E@1) - (by def. of T})
— (D)) (by the map ©)
= 2(B)(ME" = Mo(D) (e,
which, by (3) and the fact that f-y(f) = 0if 1 # v € T, implies that
Xo(D) o Th(€ ® 1) = My (Ao(D)M;£)"

= (Tox o ((D)M; @ 1))E® 1),

This establishes (5). And we are ready to prove that A(D) is a A(D) ® 1-

connexion:

MDYoT, —Tho(MD)®1)

—

MD)oT, —Tho(o(D)®1) Mod K(E, ) (by (1) and (2))

= Tpo Qo(D)M; @ 1) =Ty 0 (MiAo(D)®1)  (by (4) and (5))

ES TQX (o] ([)\D(D), Mf] & 1)

H;

0 Mod K(€,8) | (by (1)).

This completes the proof. , . O

The even version of Theorem 2.11 is also true and can be proved in exactly

the same way.

2.12 Remark. We believe that this theorem is closely related to the renor-

malization scheme in the work of DHK [26]. We plan to explore this point

further in the future.




The element [D] has been the focal point of index theory. In the rest of
this section we shall study the KK-element [V} € K Ko(C(W), B). One of the
main points we want to make in this thesis is that this element deserves closer
attention. This study also paves the road for the detailed calculations in §4. -

For this purpose we. choose, once and for all, a finite opén cover U =
{UL, for M such that each U, is contractable. Then for each i, My, =
p~YU;) — U; is a trivial T-bundle over U;, and we fix a trivialization by
choosing one connected component U; of p‘lr(Ug-). Therefore, for each i, p
maps U; diffeomorphically onto U; and {U; - v}, is a partition of p~}(U%;), that
is, _ 7

rp‘l(Ui) =U,0; v and U;-v 0 U; - v=0 i 7 #7

Let {y;} be a partition of unity on M subordinate to {. We require that

/@i be smooth for each i (otherwise we take ¢} = ¢}/ YN tpﬁ as the new

partition of unity). Then we “partially lift” these functions by defining
f

pi(p()) if i € T

0 otherwise.

\

Obviously, for each z, Supp(@;) is compact and is contained in U; x V; thus

@ € H..

2.13 Lemma. For any h e H,

b= 3o < ok >
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Proof. Since {U; - 7}, is a partition of p~MU;) for each i, it is clear that
{v{(¢i)}4, is a partition of unity for M x V. Therefore, for any h € H., we

have:

h=3 7)) h,

iy

which, by the fact that Supp(\/3: - v(R)) € Ui x V, in}lplies that
ho= ;vl{\/a (i (1))
= ;JE *(;(\/%-v(h))“-v)
=3 N << Bih > .

The general case follows from the continuity. O

Recall that B = C(M x V) %, T, Let

BY=BaBo---0B.

a
N times

Then BY becomes a trivial Hilbert module over B in a canonical way (cf. [10])
There is a Hilbert module morphism ©; : H — BV, defined as follows: for any
h € H,

O1(h) = (€ /@1, h >y, € {/y, h ).

2.14 Lemma. ©; is isometric and H is a finitely generated projective module

over B.

Proof. For any h,h' € H,:

N .
<Kkl ES> = <> \/sg:* L /@i, h >, k' >  (by Lemma 2.13)

i=1

’

i
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N =
= z<<\/;é::h>>'<< ‘ﬁi?h'>>
i=1

= <« ©(h),0,(K) >pn .

Therefore, © is isometric and H can be thought of as a submodule of BV, On

the other hand, there is a natural projection ©, from BY onto H:

N
92(513"' 7bN) = Z \,/"151 * by.
=1

Therefore, H is; a finitely generated projective module over B. 0

Under the standard basis for BY, 0, is given by a matrix ¢ = (6;;)nxn
in My(B), where 8;; =< \/@;,+/$; >. It is easy to check that § = 6* = %,
Clearly [6] can be identified with {1y} ® [V].

2.15 Example. Wé now consider a very simple yet interesting example. Let
V = {#} consist of one single point, M = T = R/Z the unit circle, and
I'=m(T) ¢ Z. Wetake U; = (3,2)/Z, U, = .(—%,%)/Z as an open cover
for T and take any partition of unity {v1,p2} subordinate to this cover. Set
Uy =--(%,%) and U, = (—%,%), and then define @; accordingly. Then an easy

calculation shows that:
¥ . VP1Pz - (X072 + X(1/21) - )

\/. o192 * (x(0,172) + u - X(1/2.1)) P2

where x(,) is the characteristic function on (a,0)/Z C T'! and u = 1€ 2.
It can be shown that [1] and 8 generate Ko(C(T) ® C*(2)) = K°%(T?) = Z?,

where [1] corresponds to the trivial line bundle on T?, the two-torus.




2.16 Remark. In general, since # is actually in My(C(M) @ C(I')), it is
clear that [Dr,v]({1w]), which (by Proposition 2.5) equals Indyr(D,I', V), lies
in the image of the natural inclusion map: K*(C}(I')) — K*(A). However,
by introducing the I’ action on the manifold V, we gain at least two important
advantages. We can pair [Dry] with more interesting elements in K*(W),

which is crucial for the work of Douglas, Hurder and Kaminker [26]. And we

can pull back cyclic cocycles, for example cocycles corresponding to secondary -

classes, on smooth subalgebras of .4 to get new, interesting cocycles on smooth

subalgebras of C3{(T') (cf. [18]).
From Lemma 2.14, the representation ® : C(W) — B(H) = IC(H) can he

rewritten as a C* -algebra homomorphism @ : C(W) — Mpy(B). To make this

more precise, we need to define a “partial transfer” operation, which depends

upon the map ¢; defined in the following diagram to make it commute:
Uy xV —— U xV

m ls Po la‘

~ N

U xpV — U; x V.
We then define, ®;(f) = (qgfl)*(f) for any f € C(W). In o£her words, given
any function f on W, we first lift it to M x V and restrict it to U; x V, then
push forward to get a function @;(f) on U; x V. The same definition works
for differential forms and we have ®; : Q*(W) — Q*(U; x V) as a morphism
between two graded differential algebras and ¢;®;{w) € £*(M x V) for any
w€ Q"‘(W) |

From now on in this thesis we require that the cover U for M be good.

Recall ([11]) that a cover i = {U;} is good if for any multi-index 7y, 42, -

.-,
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ik, the set ﬂ;-;l Uy is either empty or contractible. A finite good (open) cover
exists on any closed manifold. It follows that if U; N U; # @, then there exists
a unique element 4 € ' such that (U, - 70 5’,- # 0. Denote this element by

~:;. Then {v;;} satisfies the cocycle condition:
Yii e =y L Ui U; NU # 0.

2.17 Lemma. (1) If by, hs € He, Supp(h) € U;xV and Supp(hs) € U;xV,
then for any f € C(W):

hY - ®(f) i by fUNU; #0
L by, O(f)hy = o :

0 otherwise.

\

- In particular, ®(f) = (Qi5)wxn is given by:
Ci5(f) = Vi - ©i(f) - i - i
(2) For any function f on W, if Us0Us # U, then on (U N Uj) X V
7i5(2;(f)) = :(f).

The same is true for differential forms.
(3) For any ' invariant form w € Q*(M x V), lel &*(w) = Z,-.qzﬁf(cpgw).

Then pp(®*(w)) = pi(w) and ®*(w) is the only form satisfying this condilion.

Proof. (1) follows from a straightforward calculation. Note that I acts riv-

ially on (v@)* = /@i Each (/i is a function on M, but here and in what




follows, we use the same notation to denote a function on M and its pull-

back function on M x V via the map go. Also note that if U; N U; = @, then

®;;(f) = 0. Although in this case -;; is not defined, we will still write:
@:(f) = Vioi - ©ulf) - Vi - vig

since in this case @; - p; = 0 anyway.

(2) It follows from the following commutative diagram:

, inclusion et . 1 _
(U{ﬂUj)XV—-&U,‘XV—)U@XV—)MXFV
l”"j lidentity
inclusion et .

(UihUj)XV _— Uj'XV e} UjXV L) MXFV
That is, if m € U; N Uj;, then there is a unique 71 € U; such that p(h) = m. Tt

follows that ry;; € ffj. Therefore, for any v € V,

7 (@i (£))m, v) = &;(f)(m, ¥;'v)

= £(pa(is25'9)) = (a0 0) = &,(f)(m, v).

(3) If  is a T-invariant differential form on M x V, then P3(Q) is a I
invariant form on M x V, which can be pushed down to gét a differential form
on W. The content of (3) is to identify this form using local data. To prove it,
note that by the definition of ¢;, we have py = qﬁi.o py on U; x V, from which
the conclusion follows readily. ‘ O

~ For the calculation in §4, another representation = of C(W) on My{A)

seems more convenient. It corresponds to another realization of H as a direct

summand of BN, (As far as K-theory is concerned, we are free to do this.)
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To construct this, we need a family of auxiliary functions on M, which are
basically smooth variations of characteristic functions on Supp(e:). So for
each i, x; is a smooth function on M,0<yx; <1, Supp(x;) C U;, and x; =1
on Supp(p;). And again we will partially lift these functions to get elements

in H.:

)Ef(?:h') v) = 4

0 otherwise,

\

1
54
&

The construction and main properties of the new representation

summarized in the following lemma:

2.18 Lemma. (1) For any h € H,

N
h:Zil*<<(15Hh>>

i=1

(2) The map O3 : H — B, given by:
63(h) = (<<¢1:h>>,"'a<<¢Nah>>);

is an embedding of H into BY as a direct summand. 7
(38) The corresponding representation = of C(W) on BY, is given by
E(f) = (Eii(f))nxn where Zii(F) = @i - Di(F) - x5+ i

Proof. (1) It is easy to check that < @i, h >= Jfoir € /@i, h .>>, and

therefore,

N N
Yok € @i h>=) ik (Vo € /i b >)
i=1

1=1




i=1 i=1

which, by Lemma 2.13, equals k.
(2) For any h € H:

N
< O4(k), 05(h) =3 < g, b > - K G, h >

i=1 .

N
= Y <Pk > e < o b
' i=1

N ‘
< Y < Buh> <\ fouh>  (incepi<1)
i=1

= & hh>p.

Therefore, |@s(k)]} < ||k| for any A. Furthermore; it has a partial inverse:

©, : BN — H defined by
64(‘51,1)2: e abN) - Zi: * b;.
: 1=1

And we have

N
Hefl(.bhb?v' ’ 'JbN)“ = “ Zii * bi”

i=1

N N .
2olxi bl < 3 - 1)
i=1 i=1

[A

= Ylull (since ||zl =1)

=1

S N ”(blabZ)' v '.\bN)”

Since ©4 003 = 1y, we have ||©;]] > N™! and O3 has closed range. Note

also that ©3 and 8, are B-module morphisms and BY = 03(H) @ Ker(@;).

This proves (2).

o1
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2

(3) By Lemma 2.21:

Eilf) =< @i, Mpa(%5) 2= 0:i®i( )i - vis-

Note that = is a bounded representation but not a *-representation.



83 E)ttending some cyclic cocycles on

OOO(V) Nalg r

In this section we shall review the construction of séme cyclic cocycles
on A, = C®(V) %y, I from closed I'-invariant differential forms on V' and
group cocycles for ' (see [49], [34] for more discussions). We then generalize
some ideas in Jolissaint [36] (see also [19] and [34]) to show that, under certain
conditions, these cocycles can be extended to some smdoth subalgebras of
A = C(V) %, T. In §4 we shall calculate the pairing of these (extended) cyclic

cocycles with [Dry].

3.1 Construction of the cyclic cocycle 7, , on A.. Recall that the group

cohomology [12] of T is the homology of the following cochain complex:
0 — C -2 CYT) 2 C¥I) s .

where C™(I') is the set of all maps p : I' xI'x ... x ' = C which are both

n-:’}-_l
I-invariant and antisymmetric, and where
n+1 .
(6/9)(70, T, -"")’n+1) = E(—l)ip(’)fo, Ty eees ’?i; ---1711-{«1)
) 1=0
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for any «v; € I'. Here, as usual, 4 means deleting ;. By deﬁnitidn, p is
T-invariant if |

PFY0s YY1 s ¥ Yn) =7,0(7o,'h, s Tn)

for any ~,; € I'; p is antisymmetric if

P(Va(0)r Yo (1)s - Ta(n)) = (1) p(70, V15 -+ Yn)

for any «; € ' and any o in the permutation group Sy of {0,1,---,n}.
There is a canonical morphism 7 from this cochain complex C*(I") to the

cochain ¢complex C*(C[I']) for the cyclic cohomology of the group algebra C[I']:

AL YL M Y2y s V2 Yn) Y01 =1
TP(F}’U”YI"'W’}’R) = 9 '

0 otherwise

\
for any p € C*(I'). This morphism p — 7, induces a map from the group
cohomology of T' to the cyclic cohomology of C[T']. It is not surprising that if
p is a group cocycle, then 7, enjoys some interesting antisymmetry properties.

We shall be more épeciﬁc about this in §4.

Similarly, any closed differential form w on V produces, in a canonical

way, a cyclic cocycle on C®(V), as follows:

Tw(gO1gla---1gm) = Lgodgl...dgm Aw

for any g; € C°(V), where m = dim(V) — deg(w). Therefore, given any group

cocycle p and any closed differential form w on V, we can construct a cup-

product 7,#7, on C®(V) @4y C[I'] (see §1.8). Then a multilinear functional




7 on (A )87+ can be defined as follows: for any go, Gis s Ymtn € C(V)

and any Yo, ¥iy ., Yman € Iy let

7(907019171: -":gm+n7m+'n) = Tw#Tp(hO ® Yo, hl ® Y1s ey hm+‘n ® 7m+n):

where

ho = g0, h1= ’70(91)1 ooy hk =0 "’}’k—l(gk) for any k > 0.

When w is T-invariant, it is straightforward to check that the r thus defined
is a cyclic (m + n)-cocycle on A,. We shall denote this cyclic cocycle by 7.,
when it is desirable to specify w and p.

However, as we have discussed in §1.9, to do the pairing with K-theory,
‘we have to extend 7,,, 10 a suitable smooth subalgebra of the reduced crossed
product A. The purpose of this section is to genefalize some ideas in [36] (cf.
also [19] [34]) to show that, under certain conditions (see (3.5), (3.10) and
(3.11)), the cyclic cocycle 7., can be extended to a smooth subalgebra of A,
In §4, we shall calculate the pairing of the extended cyclic cocycle with the

index map [Dry] defined in §2.4.

3.2 Closable derivations and smooth subalgebras. We now review a

few well-known facts concerning closable operators and closable derivations.

Let ¥ be a closable operator on a Banach space B and V be its closure.

Then by definition,

Dom(V) = {be B:3b, € Dom(V),b, — b,and {V(5,)} is a Cauchy sequence}.




In other words, Dom(V) is the completion of Dom(V) under the graph norm
p:

p(b) = [Itll + [V(®)]-

Furthermore, if V' is densely defined, then a derivation D can be defined on
B(B), the algebra of bounded linear operators on B, as follows: Let Dom(D)
‘be the set of allroperators S € B(B) such that S(Dom(V)) € Dom(V) and
VS — SV extends to an element of B(B); and for any S € Dom(D), let
D(S) € B(B) be the extension of V.§ — SV. Then D is a closable derivation
on B(B). If D is its closure, then Dorm(D) is the completion of Dom (D) under

the graph norm:

p(S) = 1151+ 1D{S)]]-

3.3 Convention: ordered product. [In the rest of this thesis, in particular

in §4, we shall use the following convention: If {D;} is a sequenée of elements

in ¢ (non-commutative) unital algebra, and if I is a finite subset of Z, then we

deﬁne:.

1 ifI=10

Dﬁ -D,'2 . -D,’k if I = {il,...,ik} and 11 < 19 < ... < 1.

\

Now let A be a unital C*-algebra, and let Dy, D, ... , D, be closed

derivations on A. We always assume that each Dom(D;) is a unital subalgebra

2
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of A. Let ' | - }

D= [\ Dom(Dy).
IC{1,2,..,n}

Then we have the following known fact (compare Theorem 1.2 in [34]):

3.4 Proposition. D is a unitel Banach algebra under the graph norm:

pl@y= > |IDa)lla,

IC{1,2,..,n}

and it 1s ¢ smmooth subalgebra of its closure in A.

Proof. In this proof, “an index set I” means a subset I of {1,2,...,n}. Let
us first show that D is complete under the graph norm. Indeed, if a sequence
{a;} is Cauchy with respect to the graph norm, then for each index set I, there

is an element b; in A, such that:

Jim [D1(as) — billa = 0.
By induction it is easy to see that by € D and by = Di(by). So {D,p} is a
Banach space.

It is in fact a Banach algebra. Obviously 1 € D and p(1) = L. If @, b are

in D, we have, for any index set I, that

DI(G, 4 b) = E DJ(G)DI\J(b).
JCr

Therefore,

pla-b) = XI: 1D1(e - b)]la
= XI:H Y Di(a) - Dna(b)]4

JCI

< ZI:ZJ: 1D1(a)]|a - 1D (0)}.4 = pla) - p(b).
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This shows that D 1s a unital Banach algebra.

Now we follow a standard way to show that D is smooth in its closure in
A. Suppose a is an element in D and {ja||4 < 1. We need to show that 1 — a
is invertible in D. For this purpose, we note that for any index set f, and for
any integer N bigger than n, we have:
Di(a") = 2 Dy(a)- Duy(a) - Dyy(a),
Jirrndy & partition of T

where J; =  for at least N — |I] of the set {J;}. Hence,

IDiaMla < 3 1D (@) 1D @) 1 Doy (@)

J1yeeyfy & partition of I

S OF pla) el = (Vo) -l

Therefore,
S D) < S (Wpla)): - el < oo,
N=0 N=0 )

and

o0
> p(a) < oo,
N=0

So ¥—p e converges in D in p—nérm, and (1 —a)™ ' € D.

.From this it is routine to check that for any @ € D,0p(a) = op(a), and
D is closed under the holomorphic functional calculus (see, for example, [34]).

To show that D is smooth in D, consider, for each integer m > 0, a new

derivation:

Di(ai;) = (De(aiz)) on A® Mn(C)

and repeat the previous argument. - O
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Of course these D;’s do not have to be different. And by taking inter-
section, one can restate Proposition 3.4 in a slightly more general form. In

particular, taking D, = D for any n € N, one recovers Theorem 1.2 in [34].

In the rest of this thesis, we assume that the following condition holds.

3.5 Condition. V isa closed oriented Riemannian manifolds, and the action

of I' on V is isometric and orientation-preserving. .

We now represent .4 = C(V) X, I" on a Hilbert space Hr and construct

two derivations on B{Hr). Let:

M?® = C*(V) be the space of smooth functions on V;

M = QYV) be the space of smooth 1-forms on V, which is a bi-module

over M? in a canonical way;

Mn’ :M@MDM ®M0 "‘®M0 M, a-nd Moo = E:?’SEUMH
n times

Now using the Riemannian metric and the volume form on V, we get |

some L%-spaces:

H, = the L*-completion of M™,

and
&

H=)> H,, Hr=H®c/T).
n>0
Note that C(V) can be canonically represented on H as multiplication

operators, which induces a canonical faithful representation 7 of A on K,

namely:

T(f)w®ey) =7 (o @ e,




60

and
T wBey) =w® eyry
' for any f € C(V), any w € H, and any «, v € I, where {e, : v € '} is the

standard basis for £2(I'). This is a so-called regular representation of A (cf.
2. |

In fact, 7 has a natural extension. Note that with tensor product as
multiplication, M® is an algebra. The action of I' on V induces a canonical
action on M. On the other hand, the natural tensor product on M®:
M= x M= & A induces a canonical representation of M* on H. The
corresponding regular representation of M™ x,;,, I' on the Hilbert space Hr
extends the regular representation 7 of .A. We shall denote this extension
again by 7.

We now start to construct derivations on B(Hr). The first derivation

comes from the canonical connection V1 on the cotangent bundle of V,
M5 M@ pe M,

which is dual to the Levi-Civita connection on the tangent bundle. It also has

a natural extension:

M™ T Mt

for any n > 0, which satisfies the Leibnitz rule:
Vi{wy ® we) = Vi(wr) @ we + w1 @ Vi(ws).

Note that when n =0, V; : M°% — M! is by definition the exterior derivative

d on V. Moreover, since I' acts on V isometrically, V, is I'-invariant. In other
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words, the following diagram is commutative

Mr Iy g

[ I

Mr 2, gt

for any v € T.
Viisa closable operator on H, and we extend it to a closable operator
on Hr by declaring:
| Vilw®e) = Vi) @ e,

Let D; be the closable derivation associated to V; (see §3.2), and D; be its
closure.
Since V; is I'-invariant and satisfies the Leibnitz rule, we have the follow-

ing easy facts:

3.6 Lemma. (1) For any v € T, T(v) € Dom(Dy), and D1(7T(y)) = 0.
(2) For any w € M*, T(w) € Dom(D;), and Dy(T (w)) = To,(u)-
(8) T(M® x4, ') C Dom(D%) for any k.

Proof. Straightforward calculations. O
The second derivation D, comes from the group I' and the construction
is very much the same as that of D;. (Cf.. [17, 34].) We first fix a length
fﬁnction (cf. [36], [34]), called ¢, on I'. This is a nonnegative function on T
satisfying ¢(1) = 0 and the triangular inequality ¢(y; - 72) < o(m1) + ¢(v2). It

can be used to define an operator V, on Hr, as follows:

Valw @ er) = ) -w D,




62

Let Dy be the closable derivation associated fo Vs, and .Dz be its closure,

Then we have:

3.7 Lemma. T(M® Xy, ) C Dom(D¥) for any k. And for anyw € M*

and anyy €T,
DY(T(w- 7)) = T(w)- 0()* - T(v),

where 0(v) is the operator on Hy defined by:

07w @ ey) = [e(y) = ol 7)) w @ ey

Proof. A bounded operator L on Hr will be called bdlock-diagonal, if L maps
the subspace H ® e, into itself for each v € T, that is, if we can write L =
diag(Lq)ayer‘l, where L, € B(H) for each v € T'. It is easy to see that for any
block-diagonal operator L on Hy, L € Dom(D;) and D,(L) = 0.

In particular, for any w € M, T(w) is block-diagonal. Therefore, 7 (w)
is in Dom(D;) and Dy(7 (w)) = 0. On the other hand, it i;*s straightforward to
show that if v € T, then 7(y) € Dom(D;) and

Note that for any v € T, 6(y) is block-diagonal. The lemma now follows from
the Leibnitz rule. ' | i
Now for any f € C*°(V), we define:

IfI] = maz{[f(v)| : v € V},




and
df || = maz{||df(v}|| : v € V},

where |[df{v)|| is the metric on TV determined by the Riemannian metric on
V. And, of course, for any w € M™, ||lw||z2 shall denote the norm of w in the

L*-space H,.

3.8 Global Sobolev Lemma. For anyl > 1+ 1dim(V), there is a constant

¢, such that
.
A1l + [1df ]l < C;HVUHL?

for. any f € C=(V).

Proof. See [30]. Note that _; ||V fl|z2 is a norm used to define the global
Sobolev space on V. | O

Now let || - ||x; be the graph norm in Proposition 3.4 associated to Ds,
Dy, -+, Dy, Dy, Dy, ---, Dy with k copies of D; and I copies of Dy. Let A,

be the completion of A, with respect to the graph norm || - ||,

3.9 Proposition. For any integers k, | > 0, Ag; is a smooth subalgebra of
A. And for any given integer t, one can choose k, | and a constant ¢ > 0 large

enough, such that:

SO+ KR - (4 dn)® < e 111

oy

for any f € Ay
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Proof. The first statement follows directly from Proposition 3.4, On the
other hand, combining Lemmas 3.6 and 3.7, we have: T(w-v) € Dom{D¥ l—)i)
“and |

(D3 - DT (w-m) = T(V'(w)) - 0(7)" - T (),

for any integers k, I > 0, and for any w -y € M®™ xg, I'. In particular, if

f=2yer fr-7 € A, then

1
Vol(V)

ﬁiﬁiszmmmfmw.

|DEDY(T (1)) NDEDYA (1 @ )l

“ B(Hp) 2

This, together with Lemma 3.8, implies that for any fixed integer ¢, we can

always take k, [ large enough such that for any f,

2 A+ UL - (1 + () < el fIIE,

v

.for some constant ¢ independent of f. This completes the proof. O

Recall that in §3.1 a cyclic cocycle 7,,, on A. was constructed from a
group cocycle p and a closed, I'-invariant differential form w on V. We are
now ready to show that, under certain conditions, this ¢yclic cocycle can be

extended to Ay, for some k, [. These conditions are:

3.10 Condition. T is rapidly decaying: that is, there evists a length function

¢ on I’ and fized constants ¢ and r such that forany 3, ay -7y E‘C[I‘]:

13 ay "Y]]zc"(r) < CZ lay [2(1 + (v ).
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3.11 Condition. The group cocycle p is of polynomial growth, that is, there
are fized constants c and s such that:

i

oo, ) € e TT0+e(w)*

i=1
Jor any yo,- -+, € I', where 7, is defined from p as in §3.1 and ¢ is the length
function as in Condition 3.10. | | '

Keep in mind that the action of T on V is assumed to be isometric and
orientation-preserving (cf. Condition 3.5) throughout this section and §4.

The main result in this section is the following:

3.12 Theorem. If Conditions 3.5, 5.10 and 3.11 are sat-z'sﬁed, then the cyclic
cocycle 1,, constructed in §3.1 can be extended to the smooth subalgebra Ay,
of A when k, | are largé enough. |

Before the proof, we recall that each element of the reduced group C*-
algebra C7(I') can be written uniquely in the form ., a, - v, where e, € C,

and we have:
laa] <1122 ey - Yory.
R
The map: Y, a, -y — a; is the so-called conditional expectation on C}{T').

See [52].

Proof of Theorem 3.12. For the integers r in Condition 3.10 and s in Con-
dition 3.11, we choose integers k, [ > 0 such that the inequality in Proposition

3.9 holds for t = r + s. Then for any fi = 3, fin v € Ac, we have

|Tw,p(f6afla e ,fm-i-n)]
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< E |Tw.p(f0;’afo"'70;fl;-n N T '?fm+n;'¥m+n '7m+ﬁ)|-
Yoy s Fmin

By the definition of 7, , in §3.1, we have

s (or Fise s Frn)|

Z !Tw®p(gﬂ;~m @ Y0, 917 @ 'Yi, S Gt nimen @ Ymin )

Yoy Yman |
S Z 1 / goﬂ‘o [H gJ:’YJ H d g.?a’)‘g A i'.dl
YO YL Ympn 1<51 <0 <Jn<m+n JEJ jed
'ITp(7071 7:1—1(d')’31)’)'31+1 """ | (Convention (3-9))
m+4n
S const. Y0 lgonll H [(Ngses 1} + “d(g:m,)”) (14 1))

Y0 Y1 “Ym4n=1
m+n

= const. Z ”fﬁ;'ro” 1:[ [(”f:'?;” + ”d(fj;’)'j)”) (T4 HCTNP

Yo V1 Vmn=1

since the I' action is isometric. Now we define ap = 3., || foy|| - ¥ € C[I'], and

= LIl + 11D+ (14 ()] 7 € O]

for 3 > 0. Then
. mtn
> ol TEIC S F a5 1) - (L + 1))
Vo1 ¥mpn=1 J=1

is the conditional expectation of the product ao - a; -+ apyn € CHT). There-

fore,
IT(fO:fla T afm+n)|

. m+n

< const. 30 N foroll TN sl + Nd(Fim)l) - (X + 1(75))°]
| TN Fmn=1 - 3=l

< const.][ao “ay -am+an*(F)
< const.aollcyr) - Jarflor@y - - - [@manllerm
< const.( Z i forr 2 (1 + (7)) 2(H's))ll2
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m+n :
L TT W Sialt + BT+ 1)HH02) (by 3.10)
i=1
< const.[ folles - [ filleg- - Wmanlleg  (by 3.9).
Therefore, 7,,, can be extended to A 1

3.13 Remark. If T is word hyperbolic in the sense of Gromov, then I' is
rapidly decaying and each gfoup cohomology class of ' has a representative p
which is of pélynomial growth (cf., for example, [19]). Therefore, if the action
of I' on V is isometric, the cyclic cocycle 7,,, for that chosen. representative
p and any closed, I-invariant form w on V, can be extended to a smooth

subalgebra of A.




§4 An Index Theorem

Recall, from §1.9, that any cyclic cocycle 7 on a smooth subalgebra of

A = C(V) %, I" induces a map:
7. : K. (A) - C.

Furthermore, from §2 we have come to realize that it is important to calculate
the composite:

[Drv]
—

B*W) "5 K(4) B C,

where W = M xr V. In this section we shall calculate this composite for those
cyclic cocycles 7,,, discussed in §3. The calculations we have to perform here
are largely algebraic and should be useful in more general situations.

Let us remark that, although a natural way to calculate this composite

would be to calculate the bivariant character of [Dr y] in the bivariant cyclic

theory (cf. [41], [58], [59] and [50] [51]), it appears difficult to do that (see,
however, [60]). To demonstrate the simplicity of our situation, in this thesis we
shall work within the framework of fhe ordinary topo]ogical cyclic cohomology.

We assume that I' is rapidly decreasing (cf. §3.10), the action of I'on V is
isometric and orientation-preserving, w is a closed T-invariant differential form

of degree degw on V, and p is a group n-cocycle for I' which is of polynomial
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growth (cf. §3.11). By Proposition 3.12, the cyclic cocycle 7, defined in §3.1
can be extended to the subalgebra Ag; of A when k, [ are large enough.

The geometric operator ) on M determines a K-homology element [D]
in K°(M) & KK,(C(M),C), where o is the parity of D. Using the Kasparov

product [D] induces the map:
K°(M) = KK,(C,0(M)) % K Ky(C,C) 2 Z.

The classical Atiyah-Singer index theorem [6] and its odd analogue due to

Baum-Douglas [8] have 1dentified this map in a more concrete way:

4.1 Theorem. There is a formal sum Ch(D) of closed differential forms on

M of different degrees, such that
z®[D] = /M ch*(c) A Ch(D)

for any x € K°(M), where ch*(x) is the Chern character of z in the de Rham

cohomology of M.

4.2 Remarks. (1) In fact, the Atiyah-Singer index theorem and the Baum-
Douglas index theorem are much stronger than Theorem 4.1. Besides giving
better analytic interpretations of the index, they actually give the recipe to
construct Ch(D) from the principal symbol of D, the Thom isomorphism in
topological K—theofy and the characteristic classes of the tangent bundle on
M. See [6], [8] for more details.

(2) Ch(D), or more pfecisely its Poincaré dual, is the character of D in

the de Rham theory of M. Iis character in the cyclic cohomology of C'*(M)
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has also been developed: D determines a finitely-summable Fredholm module
over C°(M), and hence has a character in the cyclic cohomology of C*(M)
(cf. {16] {20]), which has been calculated, at least for some special but most
typical cases, by several authors (see, for example, [16}, and the paper by Fox

and Haskell in [40]).

Let 7., ,, be the formal sum of cyclic cocycles on C'*(M) corresponding

to Ch(D) (see §1.12), then Theorem 4.1 translates into:

4.3 Lemma. For anyz € K°(M),

¢ ® [D] =< ch*{z), T >

» ' Ch(D) '

By Theorem 2.11, ‘[Dr‘,v] is the composite of the following maps:
5 ™M k,8) B k,,.(A).
(Recall that B € C(M x V) x,T = C(M)® A.) Now given 7,,,, our first step

is to calculate the composition 7, , 0 [D]: K.(B) — C. We have the following:

4.4 Proposition. Lel 1 acnp), be the formal sum of eyclic cocycles on
C(M X V) Xq, I defined as in §3.1. Then Toaonp), extends to a smooth

subalgebra of B and

Tupp O [D] — (__1)dz'm(M)-dim(V}+an(n+degw)TWACh'(D),p

as maps from K. (B) to C.
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Probf. Note that T’ acts on M trivially. Therefore, if the action of I’ on V
is isometric and orientation-preserving, so is the action of I' on M x V. This,
together w;th conditions (3.10) and (8.11), implies that 7, ack(p),, extends to
‘a smooth subalgebra of B by Theorem 3.12.

Now for any z € K,(A) and any y € K*(M), since y @ [D] is an integer,

- we have

Tws(2 @y @ [D]) = Tw(z) - {y ® [D])

= To(2) <R (Y), Tonpy >=< T O Ys TwoF Tonpy >

where the last equality follows from Theorem 1.14. Recall (see §1.14) that the

Kasparov product defines a natural map:
K., (A)® K.(C(M)) — K.(B).

It follows, for example, from Schochet’s Kinneth Theorem fof tensor product

(cf. [10]) that this map becomes an isomorphism after tensoring both sides by

C. Therefore, for any z € K.(B), we have

Twp(z ® [D]) =< Z,Tw,p#TCh(D) > .

Then by a direct but tedious calculation, we have

dim (M) dim{V )+o-(n+degw)

Tw,p#TCh(b) = (-]-) TwACh(D),p

This completes the proof. . o m

Our next step is to calculate T,ach(D),p © Ev, where Z : C(W) — My(B) is

as in Lemma 2.24 and =, : K*(W) — K,(B) is the induced map in K-theory.




For this purpose we now assume that (2 is any closed, T-invariant form
on M xV. Repeating the discussion in §3.1, we construct a cyclic cocycle TQ,p
on B, = C®(M x V) 3., . (With conditions 3.5, 3.10 and 3.11, it can be
extended to a smooth algebra of B. But we shall ignore this for awhile.) Then

we define a pull-back cyclic cocycle Z*(7) on C®°(W), as follows:

= (rap)(for -5 fe) = 10, (E(f), -+, Z(fi)

for any f; € C*°(W}). Note that =*(r,,) is well-defined as a cyclic cocycle on
C*(W) since = maps C°(W) into My(B,).

In therres't of this section we shall seek a better formula for =X(7q,). To
formulate the result, we first review the characteristic map ¢ (cf. [31]) from

the group cohomology of T to the Cech cohomology of M,
c:CNT) —» C*'(U,C),

where the right hand side is the Cech complex associated with the cover .

For any group cochain p, the corresponding Cech cochain is given by

é(P)(iO! ily veey zﬂ) = p(’riéio;"rioij yreey 7:'0@}1) )

for any z'o,ih....,z'n such that Ui, NU,N...NT;, # 8. Note that c(p) is an-
tisymmetric since p is. Then & induces a map: H*(T') — H*(M) which is
determined by the covering structure and is independent of the specific triv-
ialization of it. Now using an explicit collating formula and with the help of
a partition of unity, we can identify Cech cohomology with de Rham coho-

mology(cf. [11]). For the Cech cocycle constructed above, the corresponding
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differential form is:

wp=_(—1)"' Y Piadepiyedipin p(Yiios YViciss --0s Yioin)-

10,8 10oepin .
To summarize, for each group cocycle p, we can construct a cyclic cocycle
7, (see §3.1) for the group algebra C[I'] and a differential form w, on M. They
are intimately related. For later reference, we write down one formula which

relates them:

4.5 Lemma. For each iy, the restriction of w, on U, is given by:

N :
wp’U;O = [ Z dipi]"'dtloilnTP(T‘i—oiJ1-751'.‘2373.‘23.3)"'?71'113.0)]]{}50'
' 11,dn=1
Proof. A direct calculation. See [11]. 0

The main result of this section is the following: ' ' 1

4.6 Theorem. Suppose that p is a group n-cocycle of T' and Q is a closed,

I-invariant differential form on M x V. Let 7, be the cyclic cocycle on B,,
constructed from the reci'pe in §3.1, then:

. (_1)71(11-}-1)/2 o
= (Tn:P) = (27”).””’; T (Tap—(wpnn))s

where ®* is as defined in Lemma £.17, S is the suspension operator in cyclic
cohomology (cf. §1.8 or [16]) and TQ;(prn} is the eyclic cocycle on C(W)

given by

artopntnfor o i) = [ fodfy - dfi A @%(w, A QD).
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Our main result of this thesis then follows immediately:

4.7 Theorem. If the group I' is rapidly de.cayz'ng and its action on V iso-
metric and orientation-preserving, if w is any closed T'-invariant differential
form on V, and if p is a group n-cocycle of polynomial growth, then the cyclic
cocycle 7, on A., constructed from p and w in a canonical way (see §3.1),

can be extended to a smooth subalgebra of A, and for any z € K*(W),
< [-DP,V] 0, Tyyp »=C* /W Ch*(l‘) A q)*(wp ANw A Ch(D)),
where

(_-_ 1)d'im(M)-dim(V)—Fa-(n+degw}+n(n+1)/2
(2mi)" - n!

cC =

Proof of‘Theorem 4.7. With all these conditions, by Theorem 3.12, 7,

and T,acw(D),, can be continuously extended to a sinooth subalgebra of A and

B, respectively. On the other hand, 7

o (wpawacn(py 18 certainly a cyclic cocycle

on C%(W).

Now for any « € K*(W), we have,

< [DF,V] OZ,Tu,p »
= < (V] ® [D)yoz,7,, > (Theorem 2.11)

= ¢ < [V]oz,Tunchp), > (Prop. 4.4)

= ¢ < Z(2), Turon(D)p >




= ¢ <7, Z(Tunch(D)) >

= ¢ /W ch™(z) A @*(w, Aw A Ch(D)) {Theorem 4.6)

This proves the theorem, : 0

4.8 Remarks. (1) Recall that ¢, : W = M xp V > M. It is easy to show

that:

O*(w, A Ch(D) Aw) = gi(w, ACh(D)) A ®*(w),

where ¢f : (M) — Q*(X) is the pull-back map of differential forms. *(w)
is the push-forward (on W) of the I'-invariant form w on M x V (cf. Lemma

2.17).

(2) When w is a volume form on V, it induces a holonomy-invariant
transverse measure for the foliation (W, F), and the pairing in this case has

been calculated in [19], {25].

(3) When V consists of one single point, Theorem 4.7 is the higher I-index
theorem of Connés and Moscovici ([19], Theorem 5.4). See also [42]. Recently,
and independently, F. Wu [60] has given another proof of the same theorem.

His calculation and the one to be presented below have some overlap.

The rest of this section is devoted to the proof of Theorem 4.6. First we
shall point out some antisymmetry properties of the cyclic cocycle 7,, which
will be used to simplify the calculation. To be more specific, it is convenient

to introduce a standing convention for this section:

In the following calculation, we shall use the differential algebra notation

5




for cyclic cohomology (¢f. §1.7 or [16]). Note that by definition:

T{ag - day -+ -day} = t(ag, -~ , ag).

Now recall tha,{: we have fixed the connecting data {v;;} for the covering

space in §2. We then have:

4.9 Lemma. Given any group cocycle p, for any ig, %1, ..., 3 {1,2,...,N}:

(1) TodViniy *[[T3=1 d(v;j;j+lj]} is antisymmetric in {0, 1, ,n} where i, =
io. . |

(2) 7{[TTe d(3isi )]} = 0.

(3) For any integer K, any index ig,- -, ik, and any oo, -, 0 € {0,1}.
Let i3 = ig. Then for any n, the following

n—1 : . K

Tﬂ{[H doj('_ﬁjij-u)] ‘ d(7inin+1) ' d(’ﬁn-{»:inw) ' [ H d’s (Tijij+1 )]}

7=0 i=n+2

is anti-symmetric with respect to the pair (i,,9,41). The same is true for:

n—1 K
TP{[H dai(%,‘:}ﬂ)] ’ d(%n"l'n-;-l) *Yingtingr [ H daj(’)"i,'i;‘ﬂ)]}'
i=0 7 F=n+2
Proof.
TP(')'%'o.z'u v Yinio )
= p(L,Yiyigs Virigs s Yigin) { by definition)
= p(?’ﬁt‘])’?iﬁg&?ﬁiaa'“375150) _ (71'1!'1 =1 )

= p(Vigins Vigizs +oos Vinio ) ( for any k, by T invariance of p)
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which is obviously antisymmetric on {0,1, ..., n} since p is antisymmetric. This
proves (1). To prove (2), note that 7i,u 76 Vinie = Yinio- U Yiyip 3 1, then
Tp(1yYirizy <oy Vinio) = 0 by definition of 7,. On the other hand, if ~;,;, = 1,
then (2) follows from (1). .

(3) Since 7, is a cyclic cocycle, 1t suffices to consider the following special

case:
n-—1

UL 47 G )] i) Ay}

But this is a linear combination of t-erms in (1) and (2); hence the result
follows. 0

From now on we let m = dim(M x V) - deg(§}), let | = (Z0y" " ylman) be
any index set such that 1 <i; < N for each j, and let 3 = (j1, 40, -, j.) be
any subset of {1,2,-+-,m 4 n} such that j, < j, < ... < j,. For any given J.
Ay denotes the characteristic function for J, oq(J) = (=1)m (/24
and oy(J) = (=1)mntnttin

For convenience, we introduce some auxiliary indices: Tmtnti def g for any
given | and jg o 0, Jns1 def J1 for any given J. And in any .gra.decl differential
algebra (%, d), we define ¢° = 1, fhat is, &(w} = w- for any w € Q.

FOI' any anfla"':fm+ﬂ € COO(I/V)‘I

ETYfor Frs oo frnin) = T(Z(fo), Z(f1)s s Z(frtn))
N ,
Z T(Eioil(fﬁ)?aiaii»(fl)a '“aE.im+nio(fm+n))'

iDv---l£m+n=1

Note that each Z(f;) is an N x N matrix. Let

it

S(a) = T(Efoix (fD)}Eiliz(fl)’ ey Eim+nio(f1n+n))-




Using the graded differential algebra notation, we have:

mtn

[I] - T{""O‘i H d ‘-"l;l_1+l)}

=1
m+n
= 7{i, - lo(fO Xiy " Yigir H d(ﬁoz, Y (fi)- Xize1 " Vijijpn '}
which, by the definition of 7, (see §3.1), equals to
m4n

TQ@P{‘Pt'o ’ q}io(fo) * Xiy @ Yigiy - H d[ﬁpi,' ) Wioi,'(q)i,(fj)) “Xijh @ Ti,i,-+1]}
i=1

= TQ@D{‘P:'o 8, (fo) - x4, ®710!1 ' _
Z H [dl AJ(J)((POU ‘Tmu( Jg(f.i')) : X*'J'+5) ® dAJ(j-)(’YiJiJ+l )]}

J g=1
m+n
= Eal ) {7 [H dAJU) 7‘;J:+1)] :
j=0
T A
malwie - @i(fo) - xi - T] €W (0s, - ¥ioi; (2i,(f3)) - X001}
=1
m+n Ny '
= Y oi(I) An[ ] O (vi5,0,)) -
o J=0
m+n A
Sy P Biolo) i [IT 40y, 7, (B3, (5)) X ) A 1)
MxV i=1

Note that the integration is, in fact, over ﬂ;’f_ja"U;J, and hence we can

apply Lemma 2.17(2) to get vi,;;(®:,(fi)} = @i, (f;). On the other hand, since

w; and x; appear in pairs, ;- Xi = @i, and ;- d(x;) = 0, it is easy to see that

we can delete these x;'s without changing anything at all. Therefore, we have:

m+n .
ZGI(J) A7l H dAJ(J)('ﬁ;'j;'H)] '
J J=0

m+n

AL AORNI Cans R EGDEE




Now let

m+n

P(li J) = Tp[ H dAJU)(’J’I’,‘jo )]3

J=0

- and

m+n

00 = [ Balfo) LT M0, (A S

Then we claim:

4.10 Claim. For any fired J, if 541 = ji + 1 for some k or if j, = m + n.

then Tp{p(1,J) - 2(1,3)} = 0.

Proof of the Claim. First we deal with the case where jyi, = j; + 1 for
some k. In this case {}(l, J) is symmetric with respeét t0 (2,-1,2,) but p(1, J) is
anti-syﬁmetz’ic by Lemma 49 Therefore, for any fixed ¢;,j = 0; 1,- 0t —
2,n+1,---,m+n, we have:
N
X {p0,9)-90,9)) =0
ine1rin=

Hence, the conclusion follows.

When j, = m + n, Q{1,J) is again symmetric with respect to (ig, im4n)-

because:

a1, J)
= Jomtnw,, Pio - Pio(fo) T Mgy, - 40 (£5)]} -

Pimin (I)io(fm+n) A

= fl‘l;r:a"U,'J ‘Pio ) ¢i1ﬂ+ﬂ(f0) ) {n;_":in-l dl—AJj[(pij ' @1m+ﬂ(f.?)l} E

79




we have

S(o(1,9)- 201, J))

R
- %

A

with respect to the pair (ka,ka_H) f01

n; k.-:'-_s'fherefore, if we ﬁk any such J,

k]

P9 [ V(H(@,; LGS

k=0

{ H i, 4(f3)ID) A0

T dle, - (i A

':..'-JQJU(J'{'”

(I J) T2 J) j z to(f())

n

T 0l i ‘;o(f,mn)) AR

k=1

= oy(J)- Z:fMV @io * Pio(fo) - ( H d(Z‘Pn'l @4 (S5) )

A

fo=1 JEJU(J'FI) tj=1

Z Z p(h,J) H{‘P!,k la ka) ..d[[fpijk+l ' (I)io(f.ikﬂ)]})) AQ

jEJU(I+1} ;=1




= o)X [ e vt (T d@aU) A

JEJU{I+1)

AT Ty (I es, -0l [Soa',»k»,:'q’iq(fjwﬂ]}))/\ﬂ

FEJU(J+1) 4;=1

= a3(J)- Z[ @i * P fo) ( I d(q’io(fj)))./\ ( > ip("‘j

io=1 FEIU(I+1) jEJU(IH1) (=1
H{(Pigk T Fip ka) [d(tp;jk“) ' q)io(fjk-i-i) + Pijer’ d(q’io(fjk'i'l))]})) A
N
= ©Vio * Pis d(®;,(f;)) ] A (1, J}-
.;::1 /M v (o) (jedglw) ( (fj))) (jEJUZ(J-I-l)iJz'—':lp

H{‘P:_,k ¥ ka 991';,;4»1) ) (I)t'o(fjk+1) +

+(’9'le ) (I)"G(fjk) ) S‘O‘Jk“ ’ d[q)io(fik+l)1})) AL
symmetric w.r.t. ( 2_,,‘, 2Jk+1)

= crg(J) Z/ Wiy {o(fo)'( H d(@io(fj)))/\

ig=1 Y MXV FEIU(I+1)

A S S0 (T s, - @il i) Palliern))) A0

jESU(I+1)i;=1

Once aga}n, this follows because p(l,J) is anti-symmetric. Before we

conclude the calculation, we need to establish a Lemma:

4.11 Lemma. [If Q*(I') is the space of “forms of degree n” in the universal
gmcfed differential algebra Q*(C(T)) and 7 any linear functional on Q"(I).

then

N
Z ( H @i;) H dyi, )-
{1.....ign=1 1=1,3,..,2n-1 7j=24,..,2n .

T(Vigis (DVizin Yinia (DVigin ) - (@Yign_rinn ) Yizmizngs )




oo
Lo

= (_1)11 Z: ( H d{foij) ) T(7ioizd7izf4d7i4is"'d'yizn-zizud'}'izniznﬂ );

12,84 iz J=2,4,...20

Note that, when T = 7, and i3n-1 = io, the right hand side is exactly wlu;

(see Lemma {.5).

Proof. This can be proved by induction on 7 and n. Instead of giving a

formal proof, we will look at the situation when n = 2.

LHS = 3 0a0iudeindei T(Yioi (d¥ii, Wigis (Visi ) Vieis)

ilt'“ril

= . Z ®i (aafadtpiad(lpfﬂ-(’fioh(d7i152)7i253 [d753i5 — Yiaiy d(7i4ib )])
11,0004

= 2 euisdei(dd )T (Vi (@i Mo (i)
11,12,43 4

- ‘X:i Piy (; iy ) d0i, di, T(Vioi, (490 i ) Yipi (d7i4is )
= 0~ Z "Pixd‘r’izd‘tgh?'(')’ion(d7£)ig)7igi4(d7i4i5)) (Sil?ce Y =1)
t1,12,4
= = Z @i dia i T (Yigiy [ Vit — Yinia (¥ii ) (disis )
11,802,104
= - Z ¥i (d}:, ®iy )di T (YVigis (d’i’i;:‘ir)(d')(ui;))
11,34 2
0 + ;(2 @iy )dpiy dpi, T (Yioia (471540 ) (dYisis )
= dpido;, T.('Vioiz(d')'igi; Wdvi,i)) = RHS.

12,44

With Lemma 4.11, we can now conclude the computation:
>(p(1,9) - (1, )
]

' N
= U2(J)‘Zfovsoiu@io(fo'( I m-0 I dsma

io=1 FEJU(J+1) FEIU(I+1)

N n
"( D ZP('v“’)(kT_I(%dws,—m)))AQ-

FEJU(I+1) 1;=1




O H O #)awan

S e )

= a(J) slen®lfo( IT ) dfi)] Aw, AQ
O o T 0T )

= o) | for Hfj)(]--[ df;) A (Z(qbz‘o(%w,,/\n)))

| JEIUIHD eI o |

_— UZ(J) . fw fo . ( H fJ)( H dfj) A @‘(wp A Q)

JEIUEH R

= a0 S [ eutalfe:

tig=1

Therefore:

E."(T)(fo, v ’fm_!_n)_... . .
= SaWa@ [ foC T - I d)Aewnn
J .

. S FEJUlIHT) _ FEIU(I41)
= (——l)n(n+1)/2 . Z . fO ‘( : H | fj) . ( H de) A ‘D'(w,, A Q]
a - jEJU(IFI) JEIUI+1)
(__1)n(n.+1]/2 e

- W ' Sn(T‘I"(wp/\.Q.))(.f(J? f.].a".'..'.:fm-l-n))

by the definition of S. This completes the proof of Theorem 4.6.




Concluding Remarks

1. In DHK [26), a longitudinal cyclic cocycle  on C°°(M xr V) is constructed
from Dy, such that the following diagram commutes:

KYM xp V) 17, Kq(C)

lf lT“

C — C.
On the other hand, a “sharp transverse” cyclic cocycle 7° is defined on a
smooth subalgebra of C(M) ® K, which is the C*-algebra for the fibration
M xrV — M. Then a renormalization scheme transfers the transverse co-
cycle 7% into a cyclic cocycle on C""’(I'Td’r xr V), which is in the same cyclic
cohomology class as the longitudinal cocycle 7. This should be compared with
Theorem 2.11. The character of D) in the cyclic cohomology of C*°(M ) should
be related to the transverse cocycle 7% of Dy, and the KK-element [V], or
the corresponding C*-homomorphism @ (see §2), somehow echoés the transfer

map in [26]. We believe this is interesting and it would be useful to make this

point more precise.

2. In this thesis we have calculated the pairing of [Dp yv] with certain natural,

extendable cyclic cocycles on C®(V'} %, I'. There are other natural cyclic
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cocycles to consider. For example, if I acts on the unit circle T and preserves
the orientation on T, Connes [17] has constructed a cyclic 2-cocycle on a
smooth subalgebra of C(T) X, I', which corresponds to the Godbillion-Vey
class. The pairing of this cocycle with Ind(D,T',V) has also been carried
out by Connes [17] and Moriyoshi and Natsume [47]. Our approach should
work for this cocycle. However, the problem is how to deal with more general
secondary invariants of the foliation. |

On the other hand, the algebraic cyclic cohomology of C®(V) x,, T is
largely known (see Nister[49]). However, it is .in general very difficult to decide
whether a cyclic cocycle on C®°(V} Xy, T’ can be extended. New techniques
have to be developed based on a ;f)etter uncierstanding of the‘dynamics of the

action of I on V. The work of Ji [35] might offer some hope.

3. An index theorem becomes infinitely more satisfying and powerful when
the significance of the analytic index is understood in a concrete way. The
- work of Douglas, Hurder and Kaminker [26] provides a model. In [26], the
corresponding cyclic cocycle in question is 7 = 7, ,, where w is a I-invariant

volume form on V and p is the trivial group O-cocycle on I': p(T') = 1 for any

v € I'. In this case [26], the pairing of 7 o [Dry] with a certain element in

KY(M xrV) gives rise to the relative n-invariant of D on M. The most impor-
tant task for us is to search for similar geometric/topological interpretations
for the more general cyclic cocycles that we have discussed in this thesis. This

should be related to works on higher n-invariants (cf. [43] [60}).

And eventually, the challenge is to put everything one can do for foliated
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bundles in a form which lends itself naturally to treating more general foli-
ations. It seems certain that renormalization schemes and super-connexions

will be indispensable tools in this quest. But, only time will tell.
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