Darboux Theorems for Pairs of Submanifolds

A Dissgertation Presented
by
Alan Stuart McRae

to

The Graduate School
in Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy
in
Mathematics

State University of New York
at
Stony Brook

August 1994




State University of New York
at Stony Brook

The Graduate School

Alan Stuart McRae

We, the dissertation committee for the above candidate for the Doctor of
Philosophy degree, hereby recommend acceptance of the dissertation.

oG

Dusa McDuf#" {/
Professor of Mathematics
__Dissertation Director

e Gl —

Paul Kumpel /
Professor of Mathematics
Chairman of Delense

- Leon Ta,khlgj an

Professor of Mathematics

. Arpa/Basmajian
Associate Professor of Mathematics, University of Oklahoma
Outside Member

This dissertation is accepted by the Gradugte School.

Graduate School




Abstract of the Dissertation

S S

Darboux Theorems for Pairs of Submanifolds

by
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Doctor of Philosophy

—

n
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1994

A variety of fundamental results in symplectic geometry provide
for a local characterization of various geometric objects: symplectic
manifolds, submanifolds, foliations, etc., the most fundamental and
elementary of which is Darboux’s Theorem. This thesis examines
the extent to which the interior geometry of a pair of submanifolds
in a symplectic manifold determines the exterior geometry. Com-

plete results are given for a general case where the submanifolds

are symplectic.
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Chapter 1

Introduction

Definition 1.0.1 A symplectic manifold (V*",w) is an even-dimensional
real manifold V' with a closed, nondegenerate 2-form w called the symplectic

form.
Example 1.0.2 V = R? with the symplectic form
dey ANdxzy+ -+ + dxgp_q A dxy,

18 a symplectic manifold. This example will appear throughout this thesis; so

for convenience we label this space as (R**, 5,) (or simply (R**,7)).

Remark 1.0.3 Henceforward we assume V' to be compact and connected

(except when (V,w) = (R™,1)).

Symplectic manifolds play an important role in classical mechanics, geo-
metrical optics, representation theory, and Kahler geometry. A foundational
result is the celebrated Darboux’s Theorem, which gives a local characteriza~

tion for symplectic geometry.
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Theorem 1.0.4 (Darboux’s Theorem) Every point p of a symplectic man-

ifold (V®,w) has local coordinates (z;) (1 =1,...,2n) so that w = Tyy,.

Definition 1.0.5 U is a Darboux neighborhood, (z;) are Darboux co-

ordinates, and 7 is the standard symplectic form on R*".

Darboux’s Theorem shows that all 2n-dimensional symplectic manifolds
locally look like Example 1.0.1, and therefore dimension is the only local in-
variant. This gives symplectic geometry a markedly different flavor from that
of Riemannian geometry, where curvature is a local invariant.

Viewing a point in V as a submanifold, Darboux’s Theorem tells us what
the symplectic geometry is like near that submanifold. Two perspectives on
extending Darboux’s Theorem are: Characterize how the geometry of a sub-

manifold near a point (the intrinsic geometry) influences the geometry nearby

(the exterior geometry),

or characterize how the geometry of an entire submanifold (intrinsic) influences

the geometry nearby (exterior).




We will label such characterizations as Local and Global Darboux Theorems,
respectively. Again, it is interesting to contrast the symplectic case with the

Riemannian one, where the second fundamental form 1s an invariant.

Definition 1.0.6 If ¢ : U — V is a diffeomorphism between symplectic man-
ifolds (U,w) and (V, 1), then ¢ is a symplectomorphism iff ¢*r = w. If such
a symplectomorphism exists, then (U,w) and (V,7) are symplectomorphic

and have equivalent symplectic stuctures.

The most fundamental problem in symplectic geometry is determining
when two symplectic manifolds are symplectomorphic. Darboux’s Theorem
gives a partial answer by showing that any point of a symplectic manifold
(V,w) is locally symplectomorphic to a neighborhood of the origin in (R?", 7).

In this thesis we investigate conditions under which two germs of pairs of

submanifolds (in general po-s-ition) are transformable one into the other via a




A necesssary condition for the existence of this equivalence is for the intrin-
sic geometry of each pair to be symplectomorphic, and this condition will be
assumed throughout the thesis (we will say that the pairs are weakly allow-
able). The problem of sufficiency naturally arises, a problem which is the
driving force behind our work. The attack on this problem is broken-up into
two chapters, Chapters 2 and 3. Chapter 2 further assumes, in addition to
weak allowability, that the germs of the symplectic structures are equivalent
along their intersection: we will say in this case that the pairs are allowable.

Our main results then are

Local Darboux Theorem II Allowability locally defines a pair of sub-
manifolds (in general position) of a symplectic manifold V in a neighborhood

of any of its points up to & local symplectomorphism. {(See Theorem 2.2.3)

and




Global Darboux Theorem II If two germs of pairs of submanifolds
of the symplectic manifold V can be smoothly deformed one to the other via
allowable pairs in such a way that the induced forms have constant rank, then
there is a smooth family of symplectomorphisms between neighborhoods of the

pairs. {See Theorem 2.2.6)

Chapter 3 solves the local equivalence problem (for a generic case) when the

pairs are only weakly allowable.

Local Classification Theorem for Pairs Any pair in generic posi-
tion is locally symplectomorphic to a neighborhood of a standard model. (See
Corollary 3.5.6)

For simplicity we will assume that we are given one germ with two sym-
plectic structures inducing identical closed 2-forms on each submanifold. We
tackle the problem of equivalence for pairs in the next chapter, but for now

let us look at the analagous question for submanifold germs.

Definition 1.0.7 Write (V,wp,w) (or simply V) for an even-dimensional
manifold with two symplectic forms wy and w;. If N is a submanifold in
V, then NN is allowable iff the forms induced on N by wy and wy equal one
another (i.e. ijwg = iywi where iy : N — V is the inclusion map). If
f: U — W is a diffeomorphism between subsets U and W of V, then f is
allowable with respect to N {or just allowable) iff f |y is the identity

map.

Theorem 1.0.8 (Local Darboux Theorem I) (fA], [AG]) The restriction




of the symplectic structure lo @ submanifold N of a symplectic manifold V
defines N locally in a neighborhood of any of its points up to a local symplec-

tomorphism.

More specifically Theorem 1.0.8 says the following: If NV is an allowable
submanifold of {V,wo,w:), then for any point p € N there is an allowable
symplectomorphism ¢ : (Up,wo) — (Uh,wy) between two neighborhoods Up
and Uy of pin V.

Remark 1.0.9 If NV is a point (Darboux’s Theorem) then ijwo = tyw1 = 0
for all symplectic forms wo and w; and so any point 1s an allowable submanifold

(since its interior geometry is always trivial).

Local Darboux Theorem I (LDT I) shows that there are no local exterior
invariants of submanifolds, that the interior geometry controls the exterior one.
For the global case, however, the interior geometry does not always determine

the exterior.

Theorem 1.0.10 (Global Darboux Theorem I) (fA], [AG]) Let N be an
allowable submanifold of (V,wo,w1) (see Definition 1.0. 7). Suppose further that
wo and wy are smoothly deformable into one another in the class of symplectic
structures on V whose induced forms on N always equal one another (i.e.
5o = tywr where in : N« V is the inclusion map). Then there exists an

allowable symplectomorphism ¢ : (Uo,wo) — (U, wr) between neighborhoods

Uy and Uy of N in V.




Definition 1.0.11 A smooth path of symplectic forms w;, 0 < ¢t <1,0on V
whose cohomology classes [w,] are constant ( w;] = k V¢ € [0,1]) is an isotopy
of symplectic forms on V. An allowable isotopy of symplectic forms wy,

0 <t <1, on(V,N)is an isotopy of symplectic forms on V whose induced

forms on N, ijw;, are equal (i.e. tyw; = ihwe Vi € [0,1]).

Theorem 1.0.12 (Global Darboux Theorem I) (revisited) If, in addition
to the hypothesis given for Global Darbouz Theorem [ above, we assume that
the deformation of symplectic forms is, in fact, an allowable isotopy, then there

is an allowable symplectomorphism ¢:V — V.,

In general it 1s difficult to know when wy is homotopic to wy as required by
Global Darboux Theorem I (GDT I) because the forms induced on N can vary
in rank along N in complicated ways (see [Ma]). If the condition fjwo = ijuw
is strengthened to wy = wy on TV, then w; = wy + t{wy — wp) gives an
acceptable homotopy. The problem then arrises of how to go about finding an
allowable diffeomorphism ¢ : iy — U, such that ¢*w; = wy along N. If we
assume not only that ijwp = tjwy but that 3w, has constant rank along N

as well, then the next theorem gives the answer. But first some notation.

Definition 1.0.13 A symplectic vector space (V,{}) is a vector space V
with a non-degenerate, skew-symmetric bilinear form {2 called the symplectic

form. f W C V is a subspace of V' then

WL {veV | VweW, Qo,w) =0}



is the skew-orthogonal (or symplectically orthogonal) subspace of W.
The subspace W* C W defined by

W EWwawse

is the radical of W. Two symplectic vector spaces (V4,{l) and (V2,Q;) are
symplectomorphic iff there is a linear isomorphism ® : V; — V; such that

Mi(v,w) = Qa(D(v), ®(w)) Yv,w € V.

Remark 1.0.14 If p is a point in a symplectic manifold (V,w), then T,V
(the tangent space of V' at p) is a symplectic vector space with symplectic
form w(p). A symplectic manifold (V,w) is then a smooth manifold V' with a

smooth field w of symplectic forms defined on the fibers of the tangent bundle
TV.

Corollary 1.0.15 (/M]) Suppose that N is an allowable submanifold (see Def-

inition 1.0.7) of (V,wp,wy) such that the forms iywo and ijyw, have constant




rank along N. Then there is an a.llowqble symplectomorphism ¢ : (U, wp) —
(Uy,w,) between neighborhoods U, (a = 0,1) of N in V iff 1y (the identity map
on N ) can be lifted to a vector bundle symplectomorphism 1y : T*N/TeN —
TN/TN.

Remark 1.0.16 7**N denotes the vector bundle over N whose fibers at
points p € N consist of the skew-orthogonal subspaces (with respect to w,) of
T,N in T,V, and T%N is the subbundle of 7« N whose fibers are the radical

subspaces of T, N. Each fiber of T°* N/T"* N is a symplectic vector space.

Sketch of Proof. The existence of the vector bundle symplectomorphism
1y allows us to locally deform wo so that it equals w; on TyV (use the tubular
neighborhood theorem to equate the vector bundles 7% N/T"« N with tubular
neighborhoods of N). Putting w; = wqy + {{wy — wo) allows us to apply GDT I
(Theorem 1.0.10) and finish the proof. B

In general it is difficult to know when 1y exists. One particularly nice case
is when N is a Lagrangian submanifold (i.e. T**N = TN for a = 0,1). In this
case 1y always exists since T*s N/T% N = 0. As a result some neighborhood of
any Lagrangian submanifold in any symplectic manifold is symplectomorphic
to some neighborhood of this Lagrangian submanifeld in any other symplectic
manifold. In general T%N is a proper subbundle of T**N and there may be

obstructions to the existence of ;:r\;

According to Melrose and Arnold ({A], [Me]) Riemannian geometry is

a special case of the symplectic geometry of pairs in symplectic manifolds.
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Gomp!’s construction of pairwise symplectic sums ([Go]) depends on a sym-
plectic neighborhood theorem for pairs. For these and other reasons it is
advantageous to develop Darboux-type theorems for pairs, and in the next
chapter we state and prove results analagous to the ones given above for sub-
manifolds. We will see that for pairs there is a rich local structure akin to the

Riemannian case.

Note to the reader. The adjective allowable is used frequently
throughout this thesis, refering to special maps and symplectic forms. A map
is allowable iff it induces the identity map on any and all marked submanifolds.

Two symplectic forms wy and w, are allowable iff

1. they induce the same intrinsic geometry on each submanifold, and

2. wo(p) = wi(p) if p lies in the intersection of two or more submanifolds.

Weakly allowable maps are those which preserve each submanifold, and
weakly allowable forms wy and w, are those which necessarily only satisfy

. condition 1.

’ Allowable and weakly allowable have the obvious meaning for smooth

1-parameter families of maps or forms.
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Chapter 2

Darboux Theorems for Pairs of Submanifolds

2.1 The Homotopy Method

Moser [M] developed a powerful, elegant technique showing that a sym-

plectic structure can not be perturbed within its cohomology class.

Theorem 2.1.1 ([MS]) Let w; be an isotopy of symplectic forms on V (see
Definition 1.0.11). Then there is a smooth family ¢, of diffeomorphisms of V

such that ¢;"w; = wyp.
Definition 2.1.2 The identity map will always be denoted by 1.

Proof. This proof will illustrate Moser’s technique.

We show below that the family ¢, exists if we can find a smooth family

of 1-forms o, such that

W = dO’t.

dt




Finding the forms oy Since the forms wy, 0 < ¥ < 1, are cohomologous to

each other, each form w; — Wo is exact, and so then are the forms

d
T = — .

T dt

We are looking for a smooth family of 1-forms p; such that
dpt =Tt

which we can find by Hodge theory: Let g be any Riemannian metric on V and
let d* : A2 — A! denote the associated L2 adjoint operator of d. According
to Hodge theory [G] d restricts to an isomorphism from the range of d* to the
exact 2-forms on N. Thus we can choose p; € range d* such that dp; = i
The diffeomorphisms ¢, are now determined by representing them as the

time-dependent flow of a smooth family of vector fields X; on V,

d
’(E‘»bt:XtoQﬁt: do=1

go that ¢;*w; is constant, Le. (—?;qﬁt*wt =0(so pop=1= ¢"wy = wo)- Differen-

tiating ¢,"w; with respect to time yields {[V])

d ., ,d ) :
0 = ;ﬁff?t wy b: '(Ewt +ix,dwy + d(ixw)

= ﬁbt*dat + 0 + d(iXth)

(here ix,w; denotes the contraction of w; by plugging X, into the first slot) and

so we only require that d( xwi) = —¢i doe Now define X; by the equation

1y, W = —J4.

12




The non-degeneracy of w; guarantees that X, is uniquely defined, and the proof

is finished. a

Applications of Moser’s technique rely on deforming one symplectic form

to another in a “nice” way. For example:

Lemma 2.1.3 Suppose that wy, wy are symplectic forms on (V,N) so that
wp = wy on TxV. Then there is an allowable symplectomorphism (see Defini-

tion 1.0.7) ¢ : Uy — Uy between neighborhoods Uy and Uy of N in V.

Proof. On a tubular neighborhood iy of N define a local isotopy w,

0 < ¢ <1, connecting wp with w; by setting

Wy = Wy + t(w1 - wg).

w; is then a smooth family of closed 2-forms, and shrinking I4; if necessary we
can assume w; to be non-degenerate for every ¢ (since w; = wp on TyV). The
Relative Poincaré Lemma (Appendix A) guarantees the existence of a smooth

family of 1-forms o, defined on Uy (shrink again if necessary) where

Wy = dO’t

and oy = 0 on TyV. o can be chosen to vary smoothly since the homotopy
operator H used in the proof of the Relative Poincaré Lemma is a linear (and
therefore smooth) operator from A*(2) — AF1(Lh).

Thus w, is an isotopy of symplectic forms defined on Up. Defining the

vector fields X; by

13




tx W = —0y,

these fields are seen to vanish on N since the 1-forms ¢; vanish there. Moser’s
method now constructs the allowable symplectomorphisms ¢;. [Note: We may

have to shrink i, again in order for ¢; to be defined for all ¢.] a

The above Lemma is a special case of GDT I (see below). It also implies
Darboux’s Theorem since we can deform any symplectic form to any other at
a specified point (this follows from the Linear Darboux Theorem, Theorem

C.0.17). Let’s go ahead now and prove:

Theorem 2.1.4 Global Darboux Theorem I [MS] Ifw;,, 0 <t <1, is
a smooth family of symplectic forms on (V,N) which induce equal forms on
N, then there is an allowable family G, of embeddings (see Definition 1.0.7)
of a tubular neighborhood U of N in V such that Gfw, = wg. Furthermore, if
the cohomology classes [w;] are constant (i.e. wy, 0 <t < 1 is an isolopy of

symplectic forms), then U can be taken as all of V.

Proof. The family of 2-forms w; — wy satisfies

o d(wi—we)=0

o ix(w—wo) =0

so the Relative Poincaré Lemma guarantees the existence of a smooth family

of 1-forms o; such that

14




L] wt—wO:dO’g

e o;=0onTyV.

Moser’s method can now be applied to construct Gy with G = 1.

For the case where w; is an isotopy we begin as above and then extend
the family of embeddings G; to a smooth family of diffeomorphisms H; of V
(via the isotopy extension theorem, see [H]) so that Hy = 1. Put Q; = Hfw;.

Then Q, is an isotopy of symplectic forms where §2; = )y near N.

Remark 2.1.5 Since [w;] = ¢ and H, is homotopic to Hy = 1, [Q] = [Hiw,] =
[Hiw] = [wi] = ¢ (see [BT]). Thus €, is an isotopy of symplectic forms as

claimed.

Hodge theory (see proof of Theorem 2.1.1) allows us to write dp; = 7, where
7 = 20, and p; is a smooth family of 1-forms (defined on V') which vanish

on N. Moser’s method now gives the desired family of symplectomorphisms

of V. ]

Moser’s method can also be put to good use solving various extension

problems,

Theorem 2.1.6 (V) Let N be an embedded submanifold of a manifold V,
and let w be a skewsymmetric bilinear form on TV whose induced form on

N is closed. Then w extends to a closed 2-form on @ neighborhood U of N in

V. Moreover, if w is a symplectic form, then so is its extension.

15



Remark 2.1.7 The proof of this theorem is similar to the proof of Theorem
2.2.4 below.

Definition 2.1.8 Let N C V be an embedded submanifold. A smooth family
of embeddings f; : N — V, 0 < ¢ < 1, which start at the inclusion is an
isotopy of N in V. If f; preserves a symplectic form it is a symplectic

isotopy.

Lemma 2.1.9 Let f; be a symplectic isotopy of N in (V,w). Then f, can be

extended to a symplectic isotopy F; of a tubular neighborhood U of N in V.

Proof. Extend f; to an isotopy ft of V. By assumption, ft*wi is a smooth
family of symplectic forms on (V, N) which induce equal forms on N. By
GDT I (Theorem 2.1.4) there is an allowable isotopy G} of a tubular neigh-
borhood U of N in V such that (GF o f, )w; = wq. Set F, = J; 0 G, to finish

the proof. m

Lemma 2.1.9 raises the question: When is a symplectic isotopy of N
extendablé to a symplectic isotopy of all of V7 Such an extension may not
be possible as there are cohomological obstructions. For example, if N is
the unit circle of (R?,7) and f; is a dilation of N, then since f;(N) is a
lagrangian submanifold for all values of ¢, f; extends to a symplectic isotopy
F; of some annulus of N. If f; could in fact be extended to a symplectic isotopy

of all of R* then the area inside fi{N) would necessarilly remain constant,

contradicting the fact that f; is a dilation of N.

16




Theorem 2.1.10 (/B]) Given (V,w), suppose that f, : U — V is a symplectic

isotopy of an open neighborhood U of a compact neighborhood N, and also

suppose that
H*V,N;R) = 0.

Then there exists a neighborhood ¥ C U of N and a symplectic isotopy
Fo: V=V such that

Fi:ft Onv

for every t.

Proof. (See [MS]) Let V be a neighborhood contained by & which retracts
onto N. So H*(V,N;R) = 0 and the cohomology exact sequence of the triple
(N,V,V) shows that H*(V,V;R) = 0. Choose any extension G; of f; to all of
V and define w; = G}w, noting that w; agrees with w in V. Hence the forms

T = j‘%wt vanish in V and so represent relative cohomology classes

[7) € H*(V,V;R) = 0.

17




Apply relative Hodge theory to the compact manifold V' \ V to construct

1-forms o; on V vanishing on V and satisfying do, = 7. By Moser’s. method
these forms o, give rise to diffeomorphisms f; of V restricting to the identity
on V and satisfying Hw, = wg = w for all {. Thus H; o G; is the desired

extenston Fj. |

I hope the above applications of Moser’s technique simply illustrate the
power and versatility of his method. We turn our attention now to the more

complicated case of submanifold pairs.

2.2 Pairs

Definition 2.2.1 (V,T') denotes a manifold V containing two embedded,
transversal submanifolds M and N, where I' £ M U N. Furthermore M, N,
and K £ M N N are assumed connected. If wy and w, are symplectic forms
on V, then (V,T') is weakly allowable iff wy and w; induce equal forms on
both M and on N. (V,T) is allowable iff wp and w; are weakly allowable and
wo = wy on TxV. A diffeomorphism ¢ : Uy — U; between subsets of V is
weakly allowable iff ¢ preserves both M and N, and allowabie iff =1o0n
UnNr.

Definition 2.2.2 An allowable family of symplectic forms on (V,I') is a
smooth family wy, 0 < ¢t < 1, of symplectic forms on V where w; = wy on

TxV and where w,; induces equal forms on both M and on N. An allowable

isotopy of symplectic forms on (V,I'} is an allowable family whose cohomology

18




classes [w;] are constant. If the condition wy = wgp on TwV is removed, then

allowable is replaced by weakly allowable.
We are now in a position to prove a version of LDT I for pairs.

Theorem 2.2.3 (Local Darboux Theorem II) Let A = (M,N ) be an
ordered set of subspaces in V = R?" (A is an arrangement in V) and suppose
that w; is an allowable family of symplectic forms on V. Then there is a
smooth, allowable family . of embeddings of a tubular neighborhood U of T

such that $jw; = wo.

Proof. The closed forms w; — Wo induce zero forms on TM and on TN,
and w, — wo = 0 on TxV. By the Local Poincaré Lemma (see Appendix B)

there exists a smooth family of 1-forms o, defined on V such that

d d
L Eg(wt — LJJQ) = —Ji(wt) = dO’t

® a; = OonItV
Moser’s method finishes the proof. a

We also have a local extension theorem for pairs.

Theorem 2.2.4 Let A= (M, N) be an ordered set of subspaces in V = R*
(A is an arrangement inV) withl' = MU N. Suppose that w is @ smooth

skew-symmetric 2-form on TV whose restriction to TM (and to TN) is a

closed form of M (and of N), and suppose that dw = 0 on TxV. Then w

19
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extends to o closed 2-form en V. Moreover, if w is a symplectic form then so

is the extension, at least in some tubular neighborhood of T'.

Proof. Let & denote a smooth extension of w to all of V such that

di = 0 on TxV. The Local Poincaré Lemma guarantees the existence of
a smooth 2-form o which vanishes on 7TpV such that da = di> everywhere.
Define © = & — «. Then Q is the desired extension of w. If w is symplectic,
then since § is a smooth extension of w, () must also be symplectic, at least

near I'. =

Qur next goal is to prove a version of GDT I (Theorem 1.0.10) for pairs.

2.2.1 Global Darboux Theorem 1 for Pairs

Definition 2.2.5 Given (V,T') we can find a bundle neighbothood O of M in
V whose fibers over K lie in N: O is called an allowable neighborhood of
M in V. Allowable neighborhoods can always be constructed as follows: By
the tubular neighborhood theorem there exists a neighborhood O of M in V
which is diffeornorphic to the normal bundle of M. By choosing a metric such
that N is totally geodesic near K we may choose the diffeomorphism so that
the fibers over K lie in N. Similarly we define an allowable neighborhood

. of N in V. (See figure on top of next page.)

Theorem 2.2.6 (Global Darboux Theorem I) Let wy, 0 <t <1, be

an allowable family of symplectic forms on (V,T) (see Definition 2.2.2) which

induce forms of constant rank on N (or on M) near K. Then there exists @




smooth, allowable family ¢, of embeddings (see Definition 2.2.1) of a tubular

neighborhood U of T' such that $fw, = wo. If the cohomology classes fw] are

constant, then U can be taken as all of V.

If we could find a smooth family of I-forms 7; defined on some neighbor-

hood I{ of T’ wherein

d
[ ] - = d’)’t

dt
s v =0o0niIyV
then the usual homotopy argument would finish the proof. What we need here
is a Relative Poincaré Lemma. for pairs, which as far as I know is nonexistent.
Below we construct 4, at least near K (which is all we really need), in a series

of steps, reducing the general case to one handled by the Main Lemma below.

In effect we prove a special case of the Relative Poincaré Lemma for pairs.

21




The following technical result proves GD'T II for the special case when

wy = wo on Ty'V (at least near K).

Lemmma 2.2.7 (Main Lemma) Suppose that w,, 0 <t < 1, is an allowable

family of symplectic forms on (V,T') where

w; =wp on TV

near K. Then there exists a smooth, allowable family ¢, of embeddings of a
tubular neighborhood U of T' such that ¢jw, = wy. If the family is also an

isotopy then U can be taken as all of V.

Proof. Let Wi be a tubular neighborhood of K in M, and let O be an
allowable neighborhood of Wy in V' (see Definition 2.2.5). Define a smooth

deformation retraction f; of O onto W by contracting along the fibers, where

f1 1s the identity map and f, is a smooth retraction onto Wy,.

22
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Note that w; —wq is a smooth family of closed 2-forms whose pull-backs to

Wi vanish (i.e. they vanish on the subspace of vectors tangent to Wys). By
the Relative Poincaré Lemma (see Appendix A} there exists a smooth family
of 1-forms ~; defined on © which vanish on Wy, N O such that w; —wy = dy
(on O).

Let’s rexamine how the 1-forms ; are defined (sce Appendix A): Let

Fo(f+{p)) (or simply f,) denote the time-dependent vector field £ fo(p) lo=s-

Then for pe O and v € T,V,

(P, 0 = [ 61,000 = 0) i ((dp £)(0) s

Since the forms w; — wp vanish on T,V for p € NN O, 4, also vanish on NN O.

We can now define a time dependent vector field X; on O by setting

ngwt == _’Yt

'm0

and so X; = 0 on I'N O. Since time dependent vector fields can be integrated

locally just like usual vector fields, and X; =0 on T N QO V¢t € [0, 1], we can




say that the integral curves of X are defined for all ¢t € [0,1] on a perhaps
smaller neighborhood O of the origin. Let 4, be the corresponding reduced
flow. X; =00onTNO = yup) = pforal pe 'NO. Taking the time

derivative of ¥fw; yields

d * *dw . .
a‘/& wy = d—tt + (ix,dw:) + d(ix,wr)
= (w1~ wo) + 0~ ¢idy

= 0

and so [ d%ib;"wt = th*w, — Piwy = 0 or Yrw, = wp, and thus ¥, is a smooth,

allowable family of symplectic embeddings of @ into V.

The isotopy extension theorem ([H]) allows us to extend %y to an allow-
able isotopy W, of all of V. Putting ), = Y;w; gives us an allowable family
(or isotopy) of symplectic forms on V such that (; = (p near Wy. Two
applications of GDT 1 (Theorem 1.0.10), once for M and once for N, allow
us to deform £2; in an allowable fashion so that ; = Qg near I'. If 2, is also
an isotopy (which it will be if w, was an isotopy) then the usual homotopy

argument applies. [

The idea now is to transform the general situation into one where the
symplectic forms w, are equal on TV, at least near K, and then to apply

the Main Lemma (Lemma 2.2.7). We will first do this for the case where N is

symplectic.
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Symplectic Pairs

Definition 2.2.8 A pair (V,T') is called symplectic if K, M, and N are all

symplectic submanifolds.

Remark 2.2.9 If M and N are symplectic it does not necessarilly follow that
K is symplectic. For example, let M and N be the symplectic subspaces of the
symplectic vector space (R®, 7) defined by letting M be those points satisfying
Ty — 5 = 24 — e = 0 and N those satislying x5 = 2¢ = 0. Then M and N

are symplectic but K = M N N is isotropic.

Definition 2.2.10 Given a symplectic pair (V,I',w) we say that N is
w-orthogonal to M if Vp € K, T;M C T,N. [Note: w-orthogonality is a

reflexive property.}

N
T,N

P
" T, M

The next result is the first step toward generalizing the Main Lemma.




Lemma 2.2.11 Lef wy and w; be allowable symplectic forms on the symplectic
pair (V,I') so that M is wy- and wy-orthogonal to N. Then there exists an
allowable diffeomorphism ¢ : V — V so that (¢*wy)(p) = wo(p) for allp € N

near K.
Remark 2.2.12 Since ¢ is allowable, (d¢)(p) = Iz, for all p € K.

Proof. Let Wy denote a neighborhood of K in N which is smoothly
contractible onto K. The symplectic normal bundles Wy and T Wy can
be identified with bundle neighborhoods of Wy via the tubular neighborhood
theorem, and so any bundle isomorphism gives rise to a diffeomorphism be-
tween these two tubular neighborhoods. w-orthogonality allows us to choose
these bundle neighborhoods so that the fibers of the symplectic normal bun-
dles over points in K are mapped into M. This fact is used below {o guarantee
the allowability of the map ¢. (See figure on top of next page.)

By assumption Wy has codimension equal to 2r in V, and thus 17 Wy
are 2r-dimensional vector bundles over Wy. Let ESp(2r) — BSp(2r) denote
the classifying space for 2r-dimensional symplectic vector bundles. Then there

are maps hg, by : Wy — BSp(2r) so that

T*Wy = hi(ESp(2r))
and

T* Wy = hi(ESp(2r))

Since wy = wy on TV and Wy is smoothly contractible onto K, we can assume

that ko = hy on K and that hg is homotopic to hy. Thus T°Wy 22 T* Wy and
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/T

so there is an allowable diffeomorphism ¢ (see remarks in the first paragraph)
between neighborhoods of K so that (¢*w;)(p) = wo(p) for all p € N near K.

By the isotopy extension theorem ([H]) there is a smooth extension ¢ of ¢ to

all of V., ]

In general, when M and N are not symplectically orthogonal, the map
¢ constructed in Lemma 2.2.11 will not be allowable since M may not be
preserved (12N ¢ M). However, we still have ¢(M) tangent to M along K
since d¢(p) = Iz, (for p € K).

To solve this general case we begin as in Lemma 2.2.11 but then bend

$(M) back onto M (details follow). This gives us Corollary 2.2.15, which is

precisely Global Darboux Theorem II (GDT 1II) for symplectic pairs.
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Remark 2.2.13 In constructing ¢ we only require that wp and wy induce

symplectic forms on N near K.

Lemma 2.2.14 Let wy and wy be allowable symplectic forms on (V,I') such
that the forms induced on N near K are symplectic. Then there is an allowable

symplectomorphism between neighborhoods of 1.

Proof. Construct ¢ as in Lemma 2.2.11. Let Wi C M be a tubular
neighborhood of K, and let O be an allowable neighborhood of Wy in V,
chosen small enough so that ¢ is defined on . We can choose local coordinates
(x,¥,2) for O so that the linear fiber coordinates are z and the 0-section
(identified with W) is given by z = 0. By the Implicit Function Theorem

there are smooth locally defined functions fi,..., fa—r—s) such that

¢(M) n O = (X, Y, fl(x) Y): ey f2(n—r——s)(xa y))

(shrink O if necessary).

As stated above the plan is to bend (M) back onto M in a “nice” way.

To this end locally define a map © on O by
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(M)

(X: Y, Z) = (X, .21 — fl(x-; Y); ce oy B n—r—s) — fZ(n—r—s)(xa Y))-

O is actually well-defined globally, at least on a smaller @. Put @' = ¢~1(0)
(shrink © if necessary), put O” = ©(0), and define a map ¢ by setting it
equal to @ o ¢ : @ — 0. Then ¢ is a local diffeomorphism near K which
preserves I' and induces the identity map on N N (Y, and which has the nice
property that (*w;)(p) = wo(p) for p € N N O. This last equality is justified
as follows:

By construction, (¢*w;)(p) = wo(p) for p € N N . Tt only remains to
show that the map © does not destroy this property. To this end, note that if

p € O then

I2(r+a) 0
dO(p) = )

w GF
8z Oy 12(”'_7'_3)

where I denotes the k x k identity matrix. Since ¢(M) is tangent to M along

K, dO(p) is the identity matrix for p € NN O. Thus dqz(p) =d(O o ¢)(p) =
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dé(p) (recall that ¢(p) = p), and that’s why (¢*w)(p) = wo(p) for p € NN
The only drawback to ¢ is that, although it induces the inclusion map

on N, 1t may not even preserve M. We can correct this by composing qNS with
another local diffeomorphism @ constructed as follows.

Let ¢ denote the map ¢ restricted to M. Then % maps M into itself (near
K) and induces the identity map on K. Since d¢(p) is the identity matrix for
p € KN, then so is dyp(p) and therefore dip=1 (p) also (recall that ¢ induces
the identity map on N, and so ¢(p) = p and therefore ¥(p) = p). Now locally
define ¥ by

(%,y,2) = (Y7 (%, ¥), - Yo (%, Y), 7).

U is well-defined globally and, for p € N N ¢, d¥(p) is the identity matrix.
Thus ((¥ 0 ¢)*w1)(p) = wo(p)-

In conclusion ¥ o ¢ is a local, allowable diffeomorphism around K, con-
structed so that the forms (¥ o ¢)*w; and wy equal on TynoV and induce the
same forms on M NO (since Wo poip = 1). The Main Lemma (Lemma 2.2.7)

allows us to finish the proof. a

Corollary 2.2.15 Suppose that w,, 0 < t < 1, is an allowable family of
symplectic forms on (V,T') which induce equal symplectic forms on N near K.
Then there is a smooth, allowable family ¢;, embedding a tubular neighborhood

U of Tinto V so that ¢*w; = wy. If the family is also an isotopy, then U can

be taken as all of V.
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The General Case

GDT II (Theorem 2.2.6) has now been proved for the case where w, induce
symplectic forms on N near K. To finish the proof we need to construct the
map ¢ used to prove Lemma 2.2.14 for the case where w; induce forms of
constant rank on N near K. The construction of ¢ below is analogous to

the one given previously.

Proof of GDT II. Let Wy (W for simplicity) denote a tubular neigh-
borhood of K in N. If W is sufliciently small then we can decompose the
tangent bundle TV into a smooth family of direct-sum decompositions (see

Appendix C for an explanation of the notation used below)
TwV = (TwN)* ©; BY(TwN) @s C*(TwN)

where

(TwN)"* ~ (TwN)* ® Q'(TwN),
CYTwN) = (TwN)* \ (TwN)*,

Bt(Tw.N) ~ TwN \ (TwN)i‘,

and where @Q*(Tw N) is a smooth family of isotropic, supplementary subbundles
of TwN + (TwN)* in Ty V.

There is a smooth family of symplectic bundle isomorphisms




which preserve the direct-sum decompositions. Because the forms w; induce
identical constant forms on N, we may assume B°N = B'N and

ToN = TN Vt € [0,1]. So the bundle isomorphisms f; induce a smooth
family of symplectic bundle isomorphisms

Fo: C°(TwN) © Q°(TwN) — C'(TwN) ® Q(TwN)

descending to a smooth family F; : ¢/ — V of embeddings of a tubular neigh-
borhood U of W in V, a family which induces the identity map on N N
and whose derivative dFy(p) is the identity transformation for p € K (since
wo(p) = wi(p)). Additionally, o = 1. Fy(N NU) is tangent to M and the
type of argument used to prove Lemma 2.2.14 can now be used to construct
an allowable family of embeddings G, : «f — V where Giw; = wpon U NT
with Gy = 1. By the isotopy extension theorem ([H]), G is extendable to an

allowable family H; of diffeomorphisms of V with Hy = 1. Putting Q, = H]w;

gives us an allowable family (isotopy) of symplectic forms @, upon which the
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usual homotopy argument can now be applied, finishing the proof. a

Definition 2.2.16 An isotopy of I in V is a smooth family of maps
fe : T'— V which may be extended to a smooth family of embeddings f; of a
neighborhood U of I' in V. If f*w is an allowable family of symplectic forms

on (U,I'), then f; is an allowable isotopy.

Does Definition 2.2.16 depend on the choice of extension? That is, can
one extension be allowable while another one is not? The answer is no, because

( ];t) ,(p) is uniquely defined for any p € K.

Corollary 2.2.17 Suppose f; is an allowable isotopy of I’ in V. Then fi can
be extended to a symplectic isotopy of a tubular neighborhood of I' in V (see
Definition 2.1.8).

Proof. The proof is similar to that given for Lemma 2.1.9. |

Conjecture 2.2.18 GDT II (Theorem 2.2.6) is still valid if the constant rank

conditions are removed.

Is GDT II still true if allowable is replaced by weakly allowable? The
answer is definitely no since M and N can be symplectically orthogonal with
respect to wy but not w, (sée Example 3.3.4). The next section gives two

reasonable versions of GDI.I for the weakly allowable scenario: Either I' is

preserved or there is a smooth family of symplectomorphisms, but not both.
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2.2.2 Weakly Allowable Pairs

Theorem 2.2.19 Suppose that y, 0 <t <1, w5 a weakly allowable isotopy
of symplectic forms on (V,T) (see Definition 2.2.2). For every tubular neigh-

borhood U of K there is an isotopy I, 1V — V such that

o F(I)=T oulsideU

o F() =%

Proof. Let W = I'\ Y. Equate Ty M U Ty N with some tubular neigh-
borhood A of W in V, and define a family of embeddings G, of A into V via

a smooth family of bundle isomorphisms (shrink A if necessary).

By the isotopy extension theorem ([H]) the isotopy of A x I can be extended
to V x I or, in other words, the following commutatative diagram can be filled

in.




P
ix1
/ N
~
0~
Note that H; () = £ on W and that Hy(T') = I' outside . In fact, we can

Ax()——Ax1
X

</
X

ix1
14

1x
V
>< I

)

assume (GDT I, Theorem 2.1.4) that H}{({2,) = Qo on A. Putting X, = H;}(€;)
gives us an isotopy of symplectic forms inducing equal forms near W. Moser’s

method can now be applied to construct Fj. a

Conjecture 2.2.20 Suppose that Q;, 0 <t <1, is a weakly allowable isotopy
of symplectic forms on (V,T') (see Definition 2.2.2). For every tubular neigh-
borhood U of K there is a smooth family of diffeomorphisms Fy:V — V such

that

o FI)=T

e IT(Q) =g outside U

McDuff and Polterovich [MP] have proved this conjecture under some

mild restrictions, and Gompf [Go| has a similar result.

We have seen that stronger results are obtainable when w; is assumed to
be allowable as opposed to merely weakly allowable. The next chapter begins

to answer the question: When can a weakly allowable family of symplectic

forms be perturbed to an allowable one?
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Chapter 3

Arrangements

3.1 Introduction

When can a weakly allowable pair (V, I') (see Definition 2.2.1) be deformed
‘(preserving both M and N) into an allowable one? This turns out to be a
difficult question to answer, and there are many obstructions to the existence
of such a deformation. In order to make the problem more tractable we first

linearize the problem and then answer the question locally.

Given any points p, ¢ € K we may choose Darboux neighborhoods (U, po)

containing p and (I, p1) containing ¢ so that pe(p) = p1(g) = 0.

Problem 3.1.1 When does a symplectomorphism ¢ = (U, p) — (U1, q), pre-

serving both M and N, exist?

The tangent space of p,(lf,) at the origin is the symplectic vector space

(R?",13,). Name the tangent planes of po(Up N M) and po(Lly N N) at the

origin by A%(p) and A(p) respectively. Similarly define A}(p) and Aj(p).
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e - > A, (p)

p,(U,AN) Y
A(p)

Let Sp(2n;R) denote the real matrix group consisting of all linear sym-
plectomorphisms of (R*",73,) (see Definition C.0.12). Now supposing that ¢
does indeed exist, evaluating the Jacobian of py 0 ¢o pg! at 0 gives an element
of Sp(2n; R) mapping AJ(p) onto Aj(q) and AJ(p) onto A}(q). (Example 3.3.4
shows that there may be an obstruction to the existence of ¢).

An ordered set of tangent planes such as A%(p) = (Af(p), A5(p)) in
(R, 75,) above is called a 2-arrangement in (R?", 73,) (see Definition 3.1.2).
We are looking for necessary and sufficient conditions for the existence of an
element of Sp(2n;R) which maps the 2-arrangement A%(p) = (A3(p), A3(p))
onto A'(q) = (Al(q), Al(q)). Note that the existence of such a linear equiva-
lence is independent of the Darboux coordinates choosen, but not the points

p and gq.

Definition 3.1.2 An m-arrangement A = (A, A,,..., Ay) in (R?,72,) is
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a finite collection of subspaces A; ( = 1,2,...,m) in R* where A; ¢ A; for all
i # j. Bach A; is an element of A. Two arrangements Ag = (A9, A3,..., AY, )
and A; = (A}, A,..., A} ) in (R*,73,) are said to be equivalent if
mo = my = m and there is an element of Sp(2n; R) mapping A} onto A} for
each j E- {1,2,...,m}.

For any m-arrangement A = (A1, As, ..., An), define I'y = UZ, A; (or
just T') and K4 = U,¢;{A; N Aj) (or just K). K is called the singular set of
.

Problem 3.1.3 Given two arrangments Ay and Ay in (R*, 73,), under what

conditions are they equivalent?

Remark 3.1.4 Another perspective on this problem is: Let Gts‘n denote the
space of s-dimensional subspaces of (R*",r3,) with rank ¢. Problem 3.1.3 is
equivalent to the classification of the orbits of Sp(2n;R) acting on

Gl x G2, x--x G . Unfortunately very little is known about the spaces

G? ., the Lagrangian Grassmanian G, being the only widely studied example.

If we remove the symplectic geometry from this setup we get an old prob-
lem that is largely unsolved. In fact, until recently there was no effective way
to even compute the homology of the complement of an arrangement. (See

[GP]. Also see [O] and [FR] for general surveys on arrangements.)

The equivalence problem has been solved for some elementary arrange-

ments: For 1-arrangements the solution is given by Witt’s Theorem.
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Theorem 3.1.5 {(Witt’s Theorem) Let Ay = A and A; = Al be two
k-dimensional subspaces of the symplectic vector space (R*™,7p,). Then Ag

and Ay are equivalent iff they have the same rank.

Proof. See [V], for example. a

Some other partial solutions to Problem 3.1.3 include: Any two transver-
sal Lagrangian subspaces (i.e. transversal subspaces of dimension n in
(R*",13,) for which the induced form vanishes) can be mapped to any other
such pair. For three or more transversal Lagrangian subspaces there are ob-
structions ([GS1]). If each arrangement contains exactly two distinct hyper-
planes then there are two equivalence classes, distinguished by whether or not
the Hamiltonian subspace of each element is contained in the intersection of

the two elements.

Solving Problem 3.1.3 is the first step toward finding Darboux-type the-
orems for unions I' = U, M; of submanifolds M; in general position in a
symplectic manifold V. Typical results to date have been for special cases of

2-arrangements ([Me] and Theorem 16).

Theorem 3.1.6 ([LM]} Let (V,wp,w1) be a symplectic manifold of dimension
2n, and let k and | be integers (0 < k < [ < n). Suppose F' is a completely
integrable vector subbundle of TV with dimension 2n — k — 1. Assume further
that F*s is completely integrable for each a € {0,1} and that F' N F** is of

constant dimension I — k. Then for every point p € V there are neighborhoods

U, of p and a symplectomorphism ¢ : (Up,wo) — (Ur,wn) such that ¢(p) = p,
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where ¢ maps each leaf of the foliation of Uy defined by F (respectively, by
Fo FNF%, and F + F*) onto a leaf of Uy defined by F (respectively, by
Foo, FNF3, and F 4 F*).

Remark 3.1.7 This shows that the foliation of V defined by F (which has
constant rank 2n — 2{) may by locally identified with the foliation of (R**, 72,)
whose leaves are the affine subspaces of dimension 2n — k — I defined by equa-

tions of the form

T1 = €1,T3 = U2, T5 = @3,...,T2%-1 = k)
Ty = Gpp1, T4 = Gky2y T6 = Gki35- -+ 9 T2 = Skt
where dy, @2, 03, -+ Oky Q1 Okp2y Ght3, 0 -+ 5 k4l A€ constants.

Once Problem 3.1.3 (the linearization of Problem 3.1.1) has been solved
there may still be difficulties in finding a weakly allowable symplectomorphism
é between (Up,p) and (U, q): This difficulty is dealt with in the last section

of this chapter (see Corollary 3.5.6).

Conjecture 3.1.8 ([MP2]) Suppose that A is an arrangement in R*™ (see
Definition 3.1.2) and that we and w, are symplectic forms on R*™ which induce
equal forms on each element of A as well as being equal on Ty V. Then there is

an allowable symplectomorphism ¢ (Us,wo) — (Uy,w1) between neighborhoods

U, of I' in R*™,

Remark 3.1.9 This conjecture would be an easy corollary to a Local Poincaré

Lemma for arrangements.
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Lemma 3.1.10 ([E]) Let A= (Ay,...,An) be an arrangement of (R*™, 13,),
and let Ny, Ny, ..., N, be germs of submanifolds such that TyN; = A;,
Vi € {1,...,m}. Then there exists a smooth diffeomorphism ¢ : U — V

between neighborhoods of 0 such that d¢(0) =1 and ¢(A4;) = N,.

Definition 3.1.11 The above lemma shows that, given a finite collection
{N;}, of submanifolds in general position, it is always possible to choose
local coordinates so that the collection looks like an m-arrangement. Call

such a coordinate neighborhood normal.

Problem 3.1.12 Let {N;}2, be a finite collection of allowable submanifolds
in general position in the compact manifold (V,wy,wy). Let K denote the sin-
gular set of I' = U N;. Suﬁpose further that w; is an allowable family of
symplectic forms which deforms wo into wy. Is there an allowable symplecto-

morphism ¢ : (Up,wo) — (Ur,w) between neighborhoods U, of T in V¢
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Remark 3.1.13 Assuming Conjecture 3.1.8 to be true, an argument by
McDuff and Polterovich [MP] proves the existence of ¢ assuming
H'(M;,R)=0Vi€l,...,m.

This thesis is focused on exploring intrinsic/extrinsic symplectic geome-
tries of pairs of submanifolds, an exploration which has led to the problém of
equivalence for 2-arrangements. The next section takes a closer look at this

problem.

3.2 2-Arrangements

Suppose Ao = (A}, A) and A, = (A}, A}) are 2-arrangements in
(R*, 15,). Equivalence implies that the dimensions and ranks of the subspaces
A9, AP, K° equal those of the subspaces A}, A}, K' [Note: Weak allowability
alone gives us these equalities]. Example 3.3.4 below shows that these condi-
tions alone are not sufficient. However they do guarantee the existence. of an
L € GI(2n,R) such that L(A7) = A! and such that L7z, induces the same

0
form on A as Ta-

The equivalence problem for 9-arrangements can now be reduced in several

short steps to an equivalence problem for symplectic forms:

1. Define A™** = (M, N) (or just A) to be the standard 2-arrangement

in R2 = (&1, .0y Ep Yao e -2 Yoy 215 - 2o p—v) = (x,¥,7),

e, M =(x,y,0), N= (0,y,z), and K = (0,y,0).




N

2. Let gff'k’l k2 (or just G) denote the sef of all linear symplectic forms on
the vector space R** inducing standard forms on K, M, N (of A above)

with ranks ko, k1, ko respectively. Call these forms standard.

3. Let HFokh4 c GL(2n,R) (or just H) denote the subgroup preserving

Aand G, ie, H(M)=M, H(N)=N, and HYG) =0.

4. The problem then is this: Classify the orbits of the action of H on G for

a given A.

Definition 3.2.1 Suppose wo and w; belong to G. These symplectic forms

are said to be equivalent if and only if they lie on the same orbit.
For some set-ups this orbit classification problem is simple to solve:

Example 3.2.2 Suppose that M and N are Lagrangian: this means that
dimM = dimN = n, K = 0, and that k& = ky = 0. G*% is then the set

of all skew-symmetric bilinear forms with matrix representations (w/r to the

standard, ordered basis)
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0 C

—CcT 9

where C' is any element of GL(n,R), and H is the set of all linear transforma-

tions whose matrix representations are given by

A 0

0 B

where A, B are any elements of GL(n,R). If wy,w, € G are written as

0 C 0 D
Wy = s W =
-cT o -DT 0
then defining L € H by
cT 0
L =
0 D1
shows that L*w, = wq since
C 0 0 D ct o 0 C
[ ] L] =

0 (DY DT 0 6 D! —cT 0




Thus there is one and only one orbit of H in G, i.e., all forms in G are equivalent

to one another. B

Remark 3.2.3 This last example is no surprise since it is a well known fact
(as stated earlier) that any two transversal Lagrangian subspaces of (R**, 75,)

can be mapped to any other such pair by a linear symplectomorphism.

Similarly we could show that for the same 2-arrangement of Example 3.2.2
there is one and only one orbit in G%%?* (here n = 2k, M is Lagrangian, N is
symplectic, and K = 0).

As n increases, the variety of possible groups gf;""“""? grows arbitrarily
large, and the problem of establishing equivalence for each such group begs for
a general attack plan. Actually, it’s not clear that it’s possible in any given
case to find a finite number of invariants classifying the orbits of H.

The most difficult case should also be the generic one, because then M

and NV are symplectic. Generically K will also be symplectic, and this is the

set-up which will concern us for the rest of this thesis.

3.3 Symplectic 2-Arrangements

This section is concerned with solving the equivalence problem for two
2-arrangements Ay = (A%, A9) and A; = (A}, A}) in (R, 75,) where
¢ A%, K* are symplectic subspaces (such arrangements are called symplec-

tic 2-arrangements). This is equivalent to classifying the orbits of H on

G28:2r+5),2(n=7) for the standard arrangement A™?"%. We will give a complete
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classification of the orbit structure on an open, dense, invariant subset W of
G: To any element in § we associate a linear operator and show that any two
clements in W are equivalent iff their respective operators have identical ra-

tional canonical forms. (Please refer to [HK] for a review of rational canonical

forms.)

Let us now classify the standard linear symplectic forms that comprise G.

Definition 3.3.1 Let Jo; denote the 2k by 2k matrix whose diagonal 2 X 2

blocks are the matrices

—1 0

with 0’s elsewhere. Let Iy denote the 2k by 2k identity matrix.

{

Remark 3.3.2 Note that (Jox)? = —Jak-

Then in standard (ordered) coordinates the matrix representation of w is

( )

Jor 0 C

0 Ja 0

\ _CT 0 JZ(n-v-r—s) )

where (' is a 2r by 2(n — r — s) matrix.
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What are the possible choices for C?
To answer this question, break ¢ up into 2 X 2 blocks and write C' =

(ci;), 1<is<n1<j<n—1—5 WILOG r > n—r —s. Let S} denote the

set of all subsets of {1,2,3,...,{} with length 4. For I € 5, and J € 5

withl < p<n—r—s,let Cy.g be the 2p x 2p matrix

cng T ChJy
CI,.I =
\ Cr,i 0 Chudu }
Now define
n—r--5
Ko = Z Z det Cp 1.
u=1 Ies),
Jesy~re

Lemma 3.3.3 w is symplectic if and only if k¢ # 1.

Proof. w is symplectic if and only if

is a volume form. But w" = nl(1 — K ) Tan:

Lemma 3.3.3 classifies § exactly.

Before we continue with the problem of classifying H-orbits we can make

=(0,y,,0) € K, ther for any w € G the skew-orthogonal

a simplification: 1f p
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plane to K at the point (0,y,,0) is the affine plane given by (x,¥p,2). Call
this plane K. Since any clement I, € ‘H must preserve all planes K, we can

assume that K =0 (i.e. s =0).

Now the situation at hand is this: (V,T) is the standard 2-arrangement

A20 = (M, N) of R¥™ = (x,32) (M?* = (x,0) and N7} = (0,2))

S

and we have two 2-forms wp and w; inducing standard linear symplectic forms

on both M and N. Let us write
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J2'r O J2r -D

—CT Jagn-r) —DT Jynr)

where (' and D are any constant matrices such that k¢ and kp are not equal
to L.

The following simple example shows that wo may not be equivalent to wi.

Example 3.3.4 Put

wo — d(ﬂl A d-’l?g -+ le A ng,

w = d:L‘1 A d.’ﬂg + d21 A d22 + d:ﬂl N dzl.

Thus M and N are both symplectic 2-planes in R* with respect to either wo or
wy. If wp was equivalent to wy, then there would be an element L of GL(4,R)
mapping M™ onto M#. Since L would also map M onto M and N onto N,

M#* = N would map onto M* #N,a contradiction. u

Remark 3.3.5 Note that if we change the setup so that I mapped N onto
M and M onto N, then an obstruction would still exist: M3 would have to

map onto both M* # M and onto M.

Let 7 : R¥ — M denote the projection map defined by

Tl'(:l?l, cee g T2y B e ,Zg(n_,.,-)) = (ﬂ?l, . ,.’Bg,-).
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Put Q, = M** NN and B, = (M),

Necessary conditions for the existence of I would then include

(1) dimRo = dimk,

(43) rankRp = rankH,

(i1i) dimQo = dim@s

L (iv) rank@e = rank@

However, conditions () alone are not generally sufficient.

Recalling that L € H must preserve both M and N, writing L in matrix

notation (with respect to the standard coordinates) as
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(with A € GL(2r,R) and B € GL(2(n — r),R)) allows us to express the

condition L*wy = wp as

AT 0 Jor D A 0 Jor C
® ° =
0 BT —DT Jyn-r) 0 B —CT Jyn-r)
or
AT Iy A ATDB Jor C
—BTDTA BTJQ(H_T)B -7 Ja(n—r)
or

(3) AT.IgrA == Jgr

(**) - i (n) BTJz(n_g-)B = JZ('n—r)

{ (14i) ATDB=C
Conditions (#*) are necessary and sufficient for the equivalence of wq and w;.

Conditions (i) and (ii) of (**) are equivalent to A € Sp(2r, R) and
B € Sp(2(n — r),R) respectively. This is to be expected since L induces
linear symplectomorphisms with respect to the standard symplectic forms on

M and on N. Condition (iii) of (**) is more problematical, and its solution

will occupy us for the rest of this section.
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Theorem 3.3.6 Two elements of G lie on the same orbit iff there is a linear

symplectomorphism

(where A € Sp(2r,R) and B € Sp(2(n — r),R)) mapping M* onto M*.

Proof. We will prove this theorem by first establishing conditions (% *)

(see below) which are equivalent to those of (**).

Remark 3.3.7 From here on we will drop subscripts from notation such as

Jor o Ip(n_r). The setting will make clear the dimensions of these matrices.

Lemma 3.3.8 The column vectors of the 2n X 2r matrie

JC

~span M*. (A similor statement holds for M*'.)

Proof. Write

JC

= (Ula e 7”2(71——1-))
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where the set of column vectors {v;},1 < J < 2(n — r), are linearly indepen- |
|

dent. Since dimM® = 2n — dimM = 2(n —7), all that remains to be shown

is that v; € M® for each j.

Definition 3.3.9 If ¢ € N then define

.

i+ 1 ifiisodd

1 —1 if 115 even

\

Note that [[{]} = 2.

Definition 3.3.10 For (i,k) € N x N define the Kronecker function é on

N x N to be

0 ifi#tk
5(i,k): i,k:ﬁ
1 ifi=k

Let wy be the 2n x 1 vector with a 1 in the k-th slot and 0’s elsewhere (so

the set of vectors {wi},1 < k < 2r, span M). For 1 <1,k <2, wolw;, wr) =

81k, 50 wolwg), wi) = ik

Foralll <j<2(n-—r) and 1 <k <2r,




wolvy, we) = wol{waryj + 2 (—l)ici'jw[i]vwk)

1<i<2r

= Wﬂ(w2r+j:wk)+ Z (“Uicm WO(w[i}»wk)
1<i<2r
= ~Ckj T Chi

= 0
This shows that each vector v; € M*, and this completes the proof. @

Lemma 3.3.11 Conditions (i), (ii), and (iii) of (%) are equivalent to

4

() ATJA=J

(xx%) =9 @) BYJB=J

L (i12) AJCB ' = JD
Proof. L (%) & (* % %)

This follows from the following equivalent formulations. (Note: Condition

(i) of () = A= —JATJ)

Cc = A'DB

c = -JAT'JDB

AJCB™ = JD
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Although it seems more complicated to replace conditions (#%) by (* * *),
condition (iit) of (¥ *) has an interesting and simple geometrical meaning: If
the map L does indeed exist, L would necessarily map M* onto M*. Thus,

M?# is not only spanned by the column vectors of the 2n x 2r matrix

JD
I
but also by those of
A0 JC AJC
] =
0 B I B
Since
AJC AJCB™!
e Bl =
B 1
the column vectors of
AJCB™!
I

must also span M*®. Since the column vectors of each of the two matrices




AJCB™! JD

I 1

are in fact linearly independent (and so form a basis for M *1) we must have
AJCB™' =JD

In other words, to find the desired linear symplectomorphism

(where A € Sp(2r,R) and B € Sp(2(n —r), R)) we only need to find such an

L that maps M* onto M*.
This completes the proof of Theorem 3.3.6.

We can now reformulate conditions (* %) in terms of an equivalent set
of conditions involving the classification of skew-symmetric bilinear forms, a
problem which has been solved. To this end define a map p, : N — M by first
mapping N onto M** and then projecting onto M. Specifically, if e; denotes
the 2(n —r) x 1 vector with a 1 in the j-th row and 0's elsewhere, then p.(e;)
equals the j-th column vector of the matrix JC. Thus, M*e is the graph of p,.

We will assume from now on that Q. = 0, i.e. that M?e has trivial

intersection with N: In this case we say that (A,wo,w1) is generic. WLOG
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we may also assume that 2r > 2{n — r) (simply interchange M and N if it

isn’t).

Definition 3.3.12 The spectral data of (A, wo,wi) consists of the pair of

skew-symmetric bilinear forms (72(n—r), pi(Tar)) 2 (7,8°%).

Proposition 3.3.13 Given (A, wo,w1), wo and wy are equivalent if and only

if there is an endomorphism B € Sp(2(n —r),R) such that (B~ gt = .

Definition 3.3.14 In this case we say that the spectral data are equivalent.

=2(n—r)

Proof. Since p, is nonsingular (due to genericity), {(JCB)e;) P21
is a basis for Ro and {(JD)(e;)} 22" ™™ is a basis for Ry, for any
B € Sp(2(n — r),R). By Witt’s Theorem, AJCB™ = JD (for some
A € Sp(2r,R)) iff 7, (JOB™")(e;),(JOB™ Yew)) = Tor({(JD)(e5), (JD)(ex))
for all 1 < §,k < 2(n—r) iff (B71)*p" = f°. ]

Thus, two forms we'and wy are equivalent iff there is a linear automorphism

B of R*»=7) guch that
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e DB'r=r7
[ ] B*ﬂl = ﬂﬂ

and so we are interested in the simultaneous investigation of pairs of skew-
symmetric bilinear forms. The problem at hand is to simultaneously reduce
a pair of skew-symmetric bilinear forms («, ) defined on a vector space V to

an elementary, canonical form ([GZ]).

Definition 3.3.15 Call the pair («, 8) of skew-symmetric bilinear forms on
V decomposable if there exists two supplementary non-zero subspaces Vj
and V4 of V such that both forms o and B are direct sums of their restrictions
to V4 and Vi, i.e., the subspaces V; and V, are skew-orthogonal with respect
to both forms. The pair is indecomposable if it cannot be represented as a

direct sum.

We want to write V as a direct sum of indecomposable subspaces
V = @k, V; where V; are skew-orthogonal with respect to a and also 3, and
for this decomposition to be unique up to an isomorphism of V. To do this it
is useful to describe the pair (o, 3) as a pair of linear mappings, and to classify

pairs of linear mappings instead.
Theorem 3.3.16 ([GZ])

1. The list of indecomposable components (up to an isomorphism) of a pair

of skew-symmelric bilinear forms is uniquely defined, and the same is

true for a pair of linear mappings;
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2. If a pair of skew-symmetric bilinear forms a, B in a (finite-dimensional)
vector space V is indecomposable, then the vector space V can be repre-

sented as a direct sum of two subspaces Wy and Wy, where

(a) Both Wy and W, are isotropic with respect to both forms o and B;

(b) The pairings o and 8 determine two mappings & p: W, — Wy,
and this pair of mappings from one vector space to another is inde-

composable in the above sense;

2. On the other side, any indecomposable pair of mappings &,ﬁ Wy — Wy
determines an indecomposable pair of skewsymmetric bilinear forms

a, B in the vector space Wy @ Wa by the rule

a((u)lvw2)v (wflvw;)) = (&(wl)awlz) - (&(w1)1w2)7

B((wi, wa), (wh,w4)) = (Bwr), wh) — (B(wr), wa).

4. Any indecomposable pair of mappings from a veclor space X, to a vector

space X, is isomorphic to exactly one pair from the list:

(a) The Jordan case Jik > 1 with eigenvalue X: here X = Xy,
dimXy = k,& = ix,, and B is a mapping from Xy to Xy with
exactly one Jordan block (of size k) with eigenvalue A;

(b) The Jordan case J°,k > 1 with eigenvalue co: here Xy = Xz,

dimX, = k, & is @ mapping from X1 to X4 with exactly one Jordan

block (of size k) with eigenvalue 0, and B =ix,;




60

(¢) The Kronecker case Ktk > 1: here X; = S* 'R, X, = S*R (i.e.,
the symmetrical powers), R is ¢ 2-dimensional vector space with o
basis {ry,r3},& = M,,, and B = M,,, where M, is the mapping of

multiplication by r from S* 'R to S*R;

(d) The Kronecker case K,k > 1: here X; = S*R, X, = S*7'R (i.e.,
the symmetrical powers), R is a 2-dimensional vector space with a

basis {ry,m2},& = D,,, and 8 = D,,, where

= -—a—,D1~2 = 2 : S* R — S*R;
Brl

D,
! 3?‘2

(e) The trivial Kronecker case Kg : dimX; = 0,dimX; = 1, and & =

ﬁIO;

(f) The trivial Kronecker case Ky : dimX; = 1, dimX, = 0, and & =

B:"OJ-

5. If a pair of skew-symmetric bilinear forms is in general position, then

(a) if the space V is even dimensional all the indecomposable compo-
nents are 2-dimensional, canonically defined and correspond to the
pairs of mappings J}, A € CU {c0};

(b) if the space V is odd dimensional, dimV = 2k - 1, then there is
only one indecomposable component (so the pair is indecomposable),
corresponding to the Kronecker case Kj, (or K, since K and Kif

lead to isomorphic pairs of skew-symmetric bilinear forms); |

6. If an indecomposable pair of skew-symmetric bilinear forms in an odd-

dimensional vector space V corresponds (as above) to the Kronecker pair




of mappings K : Wy — W5, then the subspace Wy C V is canonically
defined. It is spanned by 1-dimensional kernels (i.e., by the vectors which
are orthogonal to the whole space) of linear combinations a— A8 of forms
« and B. These kernels considered as points in the projectivization PW),
of the space Wy form a Veronese curve, i.e., a curve of minimal possible

degree (equal to dimPW, ) spanning the whole space PW;.

3.4 The Main Theorem

Let (7, ;) denote the spectral data for (T,V, wo(q),wi(q)). The existence
of ¢ would imply that the spectral data (7,87) and (7, ﬂ}b(q)) are equivalent
Vq € K 0 Uy. Turiel [T] gives a formulation different from Theorem 3.3.16 for
equivalence which is more utilitarian for our purpose although it is less general

in scope, corresponding only to the J ordan cases.

Theorem 3.4.1 (/T]) Let (o, ) be a pair of bilinear skew-symmetric forms
defined on an even-dimensional vector space V, and suppose that o is non-
degenerate. Let H be the endomorphism of V defined by the relation B{v,w) =
a(Hv,w) VYv,w € V. Then there exists a direct-sum decomposition

V = @7, V; into even-dimensional subspaces and a family of (not necessar-
ily distinet) polynomials Q... o (where each @; is irreducible and l; are

positive integers) such that

1. a(V;, Vi) = B(Vi, Vi) = 0 if § # k. If we put o L  restricted to Vj,

then a = @)L,y and § = BB
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2. If we define H; by the relation B;(v,w) = aj(Hjv,w) Yo, w € Vj, then

the elementary divisors of H; are {cpff,cp;-"}.

2. The elementary divisors of H are {(pi;'" ,gpi-j Ty

Consequently, the algebraic structure of (a, B) is complelely determined

by the rational canonical form for H.

Remark 3.4.2 If an endomorphism H of V2" has a set of elementary divisors
that can be written in the form {cpz-j a‘Pi‘j}T:u and if o is a linear symplectic

form on H, then the equation
Blv,w) = o Ho,w) VYo, w € V.
defines a skew-symmetric bilinear form BonV.

. The vector subspaces V; given by Theorem 3.4.1 (corresponding to the

spaces Xy @ X7 for the Jordan case of Theorem 3.3.16) are indecomposable.

Define endomorphisms H* of R by
B*(v,w) = T(H*v,w) Vv,w € R,
Turiel’s Theorem proves

Theorem 3.4.3 (The Main Theorem) Any two generic symplectic

2-arrangements Ag and Ay are equivalent (see Definilion 8.1.2) iff their asso-

ciated endomorphisms H® and H! have the same rational canonical form.
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3.5 A Moduli Space for the Local Classification of

Symplectic Pairs

Let us go back to the following situation (see Problem 3.1.1): (V,T") is
symplectic where wy and w; are weakly allowable symplectic forms on V, and

we are looking for a diffeomorphism ¢ : Uy — U; between neighborhoods of

points of I' in V such that ¢

1. preserves I,
2. ¢"wy = wg on TV, and

3. ¢*wy and wy induce equal forms on M and on V.

That is, we want to locally transform a weakly allowable pair into an allowable

one.

By Lemma 3.1.10 we may assume that the open sets If, are normal, and
that in fact K, M, and N are in standard position in R* (so K = (0,y,0),
M = (x,y,0),N = (0,y,2)). Now that we understand the linearization of
Problem 3.1.1 (see the Main Theorem, Theorem 3.4.3) it remains to be seen

how this knowledge can be patched together.

Applying the construction from Section 3.4 to each point ¢ of K gives
us the spectral data (7,87) of T,V and so defines a smooth section H® of

End(E), where E is the trivial bundle & = K with fibers F, (given by the

linear z-coordinates).
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Definition 3.5.1 Let Rg[t] denote the polynomial algebra of one variable
whose coefficents are smooth, real-valued functions defined on K. A polyno-
mial ¢ € Rx[t] is said to be irreducible iff it is irreducible at each point of

K. We similarly define ¢ to be prime iff it is prime at each point.

Definition 3.5.2 If H is a smooth section of End(E), then the algebraic
type of Il is constant iff there exist distinct, irreducible, prime polynomials
@1, .., € Ri[t] and if there exist positive integers I;;,1 <1 <1,

1 <5 < u, such that {tp;i’j,go;"j};=1 are the elementary divisors of H. The
coefficients )\? of w; (either p; = & + A} in which case §; = 1, or ; =

t* 4+ Alt 4+ A% in which case 1 < §; < 2) are called the eigenfunctions of H.

Note that the set of points in K where the algebraic type of H is locally

constant 1s open and dense.

Example 3.5.3 In R®, let M, N and K be as pictured below.

=

The symplectic form

w = Te+x1 stnyy dyy Adzy+x3 cos iy dyy Adzg+cosy, dey Adz +sinyy draAdzy
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induces the standard sympletic forms on M, N, and K. In fact, the matrix

representation of w with respect to the standard coordinates is

[ \

0 1 6 0 COS 1y 0
-1 0 0 0 0 SN Yy

0 0 0 1 —zmsinyr zycosyy

w =
0 0 -1 0 0 0
0 0 0 0 0 1
0 0 0 0 -1 0

\ /

and 50 K¢ = cosy; - siny; # 1 since

coS Uy 0

0 siny

For ¢ = {0,y,0) € K, the spectral data (r, 8,) = (dz; A dzy, ko d2y A dz3)

and




The elementary divisors of H are then {f — s¢,t — ¢} and so the
algebraic type of H is constant.

Note that the invariant here, k¢, is given by w® = 3Y(1 — k). In
general, though, it’s not so easy to determine the algebraic type of H. 1
suspect, however, that the eigenfuctions of H are polynomial functions whose

entries are products of the terms det Cy ; which define &¢ (see Section 3.3). m

Let f: Op — O, be a symplectomorphism between neighborhoods in K.
Solving Problem 3.1.1 amounts to finding necessary and sufficient conditions
for the existence of a bundle map f : £ — E lifting f in such a way that f is an

isomorphism between #7'(¢) and 771(f(q)) transforming H%(q) to H(f(q)).

Definition 3.5.4 If such an f exists we will say that the family of spectral
data (7, ﬂg) is f-deformable to (T, ﬂ}(q)).

Theorem 3.5.5 Let f: Oy — O, be a symplectomorphism between neighbor-
hoods in K. The spectral data (’r,ﬁg) is equivalent to (T, ﬁ}(q)) Vg € Oy iff
they are f-deformable to each other off H%(q) has the same rational canonical

form as H'(f(q)) for each q € Us.

Proof. This is a direct result of the Main Theorem, Theorem 3.4.3. =

Let
Py 1 <i<m,l<j<p

and
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T/);ni,jﬁlgz.g{jﬂls.jgy

form the elementary divisors of H° and H? respectively (see Definition 3.5.2).
Necessary conditions for f-deformability, independent of the choice of f, would

then include
p=v

) Y mi=& Viell,...,u}

li”.; =My ; Vj c {1,...,}1,}, Vi € {1,...,?]j}

.

Additionally there must exist a symplectomorphism f : Oy — Oy such that

(k%) @;(f(g)) = ¥i(g) V5 €{1,...,n}.

This last condition amounts to finding symplectic normal forms for families of

functions, a well-known, and unsolved, problem.

Corollary 3.5.6 Local Classification Theorem for Pairs Any generic,
weakly allowable, symplectic pair (V,I') is locally symplectomorphic to an al-

lowable one iff the spectral data are f-deformable for some local symplectomor-

phism f.

We thus have a Moduli space as the model for locally classifying generic

symplectic pairs.




Example 3.5.7 (2-Dimensional Case) Suppose that K is a codimension 2
submanifold of N. We can write (see Example 3.5.3) 8, = ¢ dz1 Adz,, where

q=(0,y,0) and k¢ = det C. H, is simply the 2 x 2 matrix

Bo 0

0 Ko

Two germs of spectral data (7, 8,(p)) and (7, 5,(¢)) are then f-deformable

iff there is a diffeomorphism f : Oy — O, between neighborhoods of p and ¢
in K such that

This depends entirely on giving local, symplectic nomal forms for smooth
real-valued functions. Assume that s¢(p) = kp(¢). If k¢ and kp are regular-
valued functions, then f exists. Otherwise the classification becomes much
more complicated. If these eigenfunctions have isolated, non-degenerate sin-
gularities at the points in question, then what we require is a symplectic Morse
theory (see [E]). It is interesting to note that there is no such theory for the

case where the co-dimension of K is greater than 2. |

Definition 3.5.8 Let H be a (1,1) tensor field on E. A point ¢ € K is said

to be a regular point for H (or just regular for short) if the algebraic type
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of H is locally constant at ¢ and if the eigenfunctions of H near ¢ are regular.

Let R denote the set of regular points of H.

Let R® and R! denote the set of regular points for H° and H'. Then
R° and R! are open, dense subsets of K. So if ¢ € R®, then the datum
of condition (%) are constant near ¢, and solving for f-deformability would

amount to finding some f that satisfied condition (xx). Example 4 shows that

this case can sometimes be solved.
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Appendix A

The Relative Poincaré Lemma

We give here the outlines of a proof for the Relative Poincaré Lemma.

Theorem A.0.9 (Relative Poincaré Lemma) Let N be a submanifold of
the smooth manifold V, and let U be a tubular neighborhood of N in V. Suppose
that X is a smooth, closed k-form on U such that the form induced on N by A

vanishes identically, i.e.

inA =0
Then there exists a smooth (k — 1)-form v on U which vanishes on TV such
that

dvy =\

If, in addition, A vanishes on TyV, we may choose 7 such that the first-
order partial derivatives of its components with respect to the local coordinates,

in any chart, vanish on TyV.

We describe below the tools needed to construct the proof.
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Lemma A.0.10 Let f; : V — V be a smooth 1-parameter family of mappings,
and let X; be the time-dependent tangent field of f;. Let Ay be a smooth

I-parameter family of k-forms on V. | Then the folowing formula holds good
d ., LA .
Zfihe=f=p +ixdh + d(ix)
For a proof, see [V] for example.

Lemma A.0.11 (Homotopy Lemma) Let U and V be smooth manifolds, and
let f be a smooth map from an open neighborhood [0,1] x U in R XU into V.
For every t € [0,1], let f; : U — V be the map p — fi(p) = f(t,p). For every
smooth k-form X on 'V, let H) be the smooth (k— 1)-form on U defined by the

Jormula

H/\(p)(vh ey 'Uk—l) = /01 A(ft(p))(%f(gvp) IG:h dpft(vl)a sy dpft(vkml))dt

where p €U and vy,. .., vy € L,V
The map H so defined is called the homotopy operator associated
with f, and is a linear map from the exterior algebra A(V) of the manifold

V into the exterior algebra A(U) of the manifold U which has the following

properties:

1. For every natural number k, H maps the space A*(V) of smooth k-forms
on V into the space A*¥Y(U) of smooth (k — 1)-forms on U, under the

“convention A1) = {0}.

2. The map H satisfies

ff—fo=Hod+doH
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For a proof, see [LM] for example. Now let us prove the Relative Poincaré

Lemma.

Proof. We may identify the tubular neighborhood U of N in V with
a normal bundle vy = N of N in V by the tubular neighborhood theorem
([H]). Let f; denote the map from ¢ into itself which is multiplication by (1—t)
on the fibers. The map f, is the identity map on &, and the map fi is the
composition iy o . Let H be the homotopy operator associated with the

homotopy f. Then every smooth k-form A on I may be written
A=7"(inA) — H(dA) — d(HM).
By hypothesis we obtain
A=d(—HX)

on U. Putting v = —H A, and writing

(x) HX= /O " (i A)dt

(f is the reduced flow of the time-dependent vector field X;) we see that
vanishes on TV (since X; vanishes on N). We also see that if A vanishes on
TxV, the components of ix,), in any chart and for any ¢ € [0,1], are sums
of products of two differentiable functions, both of which are zero on N. The
first-order partial derivatives of these components with respect to the local
coordinates therefore vanish on N, and formula () shows that the same is

true for the first-order partial derivatives of the components of v = —HA.

This finishes the proof of the Relative Poincaré Lemma. a
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Appendix B

The Relative Poincaré Lemma for

2-Arrangements

We will now prove a version of the Relative Poincaré Lemma for an ar-

rangement A = (M, N) in R* (see Definition 3.1.2).

WLOG we may assume that the elements M and N are transversal. We
may also suppose that R*™ = (x,y,2), M = (x,y,0), and N = (0,y,z). So
K=(0,y,0)and '=MUN.

Theorem B.0.12 (Local Poincaré Lemma) ([MP2]) Suppose that for the

arrangement A above there is a smooth, closed k-form A € H*(R™™) which has

the following properties:

? A =0 on Tk R™

o iyA=0,3A=0

Then there exists a smooth (k — 1)-form «y so that dy = A everywhere and




74

v = 0 on TYR*. Furthermore, if there is a smooth family of such k-forms
A, 0 < 1 < 1, then there is a smooth family of (k — 1)-forms 4, such that

dye = Ay, where v, = 0 on TrR?™.

Proof. As a first initial guess for v the Relative Poincaré Lemma gives
a {(k — 1)-form « defined on all of R*™ such that do = A everywhere, o = 0
on TxR*, and all first-order partial derivatives at K of the components of o
vanish with respect to any chart.

If we could write v = o+ dy where 7 is some smooth (k — 2)-form on R**
satisfying dn = —c on T', then we would be done. We are going to build 5 by
using the Relative Poincaré Lemma twice, one application for each plane M

and IV, and then piece our results together.

Let S!. denote the set of all subsets of {1,2,3,...,{} with length m.
HI={h,1LI,...,I,} €8, then dx; will denote dep Adzp Adep A - -Adzy,

(where we are assuming that m <land [ < L < L, <--- < I.). Write

o= arxdx; Adyg + > by dzs A dyx + > ek dxy Adzg Adyg

where ayy,byx and cryx denote smooth real-valued functions on R?".

Let’s focus our attention first on the element M. Note that 0 = ¢,(—)) =
ip(—do) = d(—14sa) and also that (—i},;e) = 0 on Tk R*. Working entirely
inside M the Relative Poincaré Lemma may be applied to the smooth (£ — 1)-

form —2},« to give us a smooth (k — 2)-form 7, such that

o 5 =0onTxM




o dp=—iya=—) ak(x,y,0)dx; Adyx
%?j—;— = %—7;1 =0onTpeM
(where, for example, 2 denotes all first-order partial derivatives with respect
to the z-coordinates).
There is, of course, a similar construction for the element N.
Define S*(dx;) (or just S(dx;) for short) to be the primitive
S *zydzy A--- A dg;ﬂ A -+ Adzy,, where the hat denotes exclusion.

Put

n(x,¥,2) = m(x,y,0) + 12(0,y,2) + > bix(x,¥,0) S(dzs) A dyk
JK

+ Y arx(0,y,2) S(dx;) A dyx + Z(—l)icUK(x,y, 0)dxy A S(dzy) A dyx
17 IJK

+ 2 ek (0,y,2) S(dx) A dzg A dyx
1TK
So

dn(x,y,2) = — Y ax(%,y,0) dx; Adyx — Y byk(0,y,2) dz; A dyx

- Za;K(O,y, z)dxy Adyg — Z bik(x,y,0)dzs A dyk

+Z__._~’Kg;y’ ) i A S(dzs) A dyx + Z—J%—y—) dy A S(dzs) A dyx

152 001(0:%,7) 4 0 5ass) A dyie + 3

dy A S{dx;) Adyx
Oz

dy
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. 0
+ Z(—l)‘gﬁ'mg?# dx Adxy A S(dzs) ANdyx

. 0
+ Z(q)‘*-acﬂ{—a(-’;y—’) dy A dxp A S(dzg) A dyx

+ E 8CIJK(0: Y. Z)

e dz A S(dxy) Adzy Adyg

43 9c1yk(0,y,2)

ay dy A S(dx;) ANdzy ANdyx — Z C[_]K(X, v, 0) dxrAdzyANdyg

= erx(0,y,2) dx; Adzy Adyx

So

dn(x? Y, 0) = - ZGIJ(X'} Y, O) de A dyK

- Z bJK(xa Y, 0) dzJ A dyK - ZCIJK(xv Y, 0) de A dZJ A dYK = —OL’(X, Y, 0)

gince

aGIK (Oy Yy, 0)
dy

and S(dz;) =0 on M.

= ark(0,y,0) = byx(0,y,0) = ciyx(0,y,0) =0

Similarly,

dn(0,y,z) = —a(0,y, z)

We have now constructed g, and putting v = « + dy finishes the proof,

noting that the existence of the path «, follows from a similar result for the

Relative Poincaré Lemma. A
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Appendix C

Symplectic Vector Spaces

Definition C.0.13 A symplectic vector space {(V,{Q) is a vector space V
with a non-degenerate, skew-symmetric bilinear form ) called the symplectic

form. If W C V is a subspace of V then
WL {veV | YweW, Q,w) =0}

is the skew-orthogonal (or symplectically orthogonal) subspace of W.
The subspace W* C W defined by

WiiWnwe

is the radical of W. Two symplectic vector spaces (V4,(4) and (V2,Q,) are
symplectomorphic iff there is a linear isomorphism ® : Vi — V, such that

(v, w) = Qa(P(v), D(w)) Vv, w € V.

We write V=W, @, Wo if V = W, ® W3 and W} = W,: in this case we

say that V is the skew-orthogonal direct sum of W, and W,. Note that  is

uniquely determined by W, W, and the forms it induces on them.

[




Below we give a (non-unique) direct sum decomposion of V into skew-

orthogonal terms given a subspace A of V.
Proposition C.0.14 Let A and B be subspaces of (V,§1). Then
1.LACB= B C A
2. A = A.
3. (A+ B)* = A*n B*.
4. (AN B) = A 4+ B,
Proof. Straightforward (4 denotes union of subspaces). B
Definition C.0.15 A*, the union subspace of A, is given as
A¥ = A+ A%
The reduced symplectic space A" is given as
' AT = AJAY

We may choose a subspace B C A symplectomorphic to A" and write A =
A*® B. Similarly we may choose a subspace ¢’ C A* symplectomorphic to the
symplectic space A* = A°/A" and write A* = A* @ C. Of course, the choice

of B and ' is not unique. Finally,

Theorem C.0.16 Given a subspace A C V, there is a (non-unique) isotropic
subspace () C V (isotropic means that Q C Q*), supplementary to A*, such

that A £ A @ () is a symplectic subspace of V and

V=A@, BO;C.




Proof. For a proof, see [V] for example.

Definition C.0.17 A symplectic vector bundle is a smooth vector bundle

equipped with a smooth field w of symplectic forms on its fibers.

If Ais a smooth sub-bundle of a symplectic vector bundle E of constant
fiberwise symplectic rank, than the above decomposition can be applied fiber-

wise to give

E = A° ®, B(A) @, C(A)

where A7, B(A), C(A) are all smooth, symplectic sub-bundles of F (see [V]

for details).

Finally, we have the linear version of [Jarboux’s Theorem.

Theorem C.0.18 (Linear Darboux Theorem) Let V be an n-dimensional
vector space over a subfield of the complex numbers, and let Q0 be a skew-
symmetric bilinear form on V. Then the rank r of ) is even, and if r = 2k

there is an ordered basis for V in which the matriz of Q is the direct sum of

the (n —r) X (n —r) zero matriz and k copies of the 2 X 2 matriz
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