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Abstract of the Dissertation

Homology of
Generalized Piecewise Differentiable Currents

on a Combinatorial Manifold
by
Steven Joseph Kraseski
Doctor of Philosophy
in
Mathematics

State University of New York
at Stony Brook

1994

In two papers which appeared in the 1991 Journal of Functional Analy-
sis, N. Teleman introduced the complex of generalized piecewise differentiable
currents on a smooth manifold. The homology of this complex contains an
isomorphic image of the deRham homology, and the Chern-Weil construction
applied to any piecewise differentiable metric produces currents which repre-
sent the characteristic classes. In this dissertation, the definition of general-
ized piecewise differentiable currents is extended to combinatorial manifolds
and the homology of the resulting complex is computed. The homology of
this complex is shown to be isomorphic to the relative homology of a pair of

subcomplexes lying in some power of the manifold. The simplicial homology

i




of the manifold does not inject into the homology of the pair. A modifica-
tion of the definition produces a new complex whose homology agrees with
the homology of the manifold. A multiplication on this complex induces a
multiplication on homology which is related to the intersection pairing on

simplicial homology.




Table of Contents

Acknowledgments vii
INTRODUCTION 1
Chapter 1: PRELIMINARIES 8
1.1 The Sullivan complex of piecewise differentiable forms 9
1.2 Currents 11
1.3 Piecewise differentiable distributions 13
1.4 Piecewise differentiable currents ) 14
1.5 The canonical volume form 18
1.6 A representation for piecewise differentiable currents 19
1.7 The cell complex M} 22
1.8 Piecewige differential currents on M, 24
Chapter 2. PIECEWISE DIFFERENTIABLE CURRENTS 33
2.1 The deRham boundary on the complex C*({ M) 33
2.2 Unique representation of the elements of C*(M}) 37
2.3 Functions with zero transverse derivatives 41
2.4 Proof of uniqueness 43

Chapter 3: GENERALIZED PIECEWISE DIFFERENTIABLE

CURRENTS 48
3.1 Definitions and elementary properties 48
3.2 Characterization of the elements of I*( M) 51
3.3 Combinatorial transversality HH

3.4 Transverse polysimplices and currents 59




3.5 Characterization of the elements of V*( M)
Chapter 4 HOMOLOGY OF THE COMPLEX C*(M;)

4.1 The chain homotopy H,,

4.2 The isomorphism induced by H,
4.3 The chain homotopy H;

4.4 The isomorphism induced by H;
4.5 The chain homotopy H;

4.6 The isomorphism induced by H,
4.7 Homology of the complex C*(X, 8%)
4.8 The spectral sequence

4.9 Dependence on the combinatorial structure
Chapter 5: HOMOLOGY OF THE COMPLEX N*(M;)

5.1 Definitions
5.2 Multiplicative structure
5.3 Induced multiplication on homology

5.4 Intersection pairing and homology of N*(M})

References

Appendix

63

70

70
73
7

78

80
82
86
87
93

96

97
97
101
103

114
115




Acknowledgments

There are a number of people I would like to thank for their help and
encouragement throughout my career at Stony Brook. Among the past and
current faculty I would like to give thank Jeff Cheeger, John Thorpe, Anthony
Phillips, Blaine Lawson, Marie-Louise Michelsohn, Claude LeBrun, Anthony
Knapp, and Leon Takhtajan.

1 would also like to thank Lucille Meci, Barbara Wichard, and especially

Joann Debis, the Graduate Secretary.

Among my fellow graduate students it is impossible to include everyone
who should be mentioned. There are two friends I would like to single out

for special thanks: Helen Moore and Derek Gordon.

For being on by Dissertation Defense Committee, I would like to thank

Ram Srivastav and Anthony Phillips (again).

There are two faculty members whose help and encouragement was es-

sential. To these last two friends I owe much thanks, and it is with great

pleasure that T take this occasion to express my deep graditude.

Special thanks goes to my thesis advisor Nicolae Teleman. The time and
effort he spent in directing my research is greatly appreciated. There were
many times we met during "vacations” and much productive work was done
during these times. He was also very understanding during those periods

when results came slowly. Without his time, effort, help and encouragement,




this dissertation could not have been completed.

Special thanks also goes to Detlef Gromoll. Without the inspiration I

have received from his confidence in me, I would not had enough confidence

to overcome those difficult times when things do not go well.




INTRODUCTION

In 1989, Nicolae Teleman introduced the concept of generealized piece-
wise differentiable currents on a triangulated smooth manifold M (compact,
orientable, with M = (). They are equivalence clagses of piecewise differen-
tiable currents on a k-fold product My of M modulo currents which "vanish
on the diagonal". The exterior derivative of currents makes the set of gener-
alized piecewise differentiable currents into a complex, denoted C*(Mg). In
two papers in the 1991 Journal of Functional Analysis (Teleman [T3], [T3]),
he develops the properties of the complex C*(My). In [T3], he computes the
homology of the complex C*(My) in terms of a relative homology group of
the pair (T, N } where T' is a triangulation of M}, and N is the subcomplex
of T' consisting of simplices which are not transverse to the diagonal Vs in

M.

When all simplices of the triangulation which intersect the diagonal are
trangverse to the diagonal, the homology of the complex C*(Mj}) agrees with
the real simplicial homology of M. This implies that the homological infor-

mation of M is contained in the complex C*(My).

By taking a cell structure on My consisting of polysimpliceg (the natural
structure arising from a product of the triangulations of the factors of M),
an operation on the tensor product C*(M;} & C*(M;) — C*(Mpy;) is shown

to induce an operation on the corresponding exterior algebra making it into
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a differential algebra. From this algebra, a Chern-Weil construction can be
made to obtain the characteristic classes from a (discontinuous) piecewise

differentiable metric on M.

In this dissertation the corresponding object on combinatorial manifolds

will be studied.

Combinatorial manifolds are a natural setting for piecewise differentiable
currents. There are natural coordinates (barycentric coordinates), a natural
meagure on the simplices {from the differentials of the barycentric coordinate
functions), and a triangulation. This is exactly the information needed to

define piecewise differentiable currents.
Chapter 1 makes precige the the preliminary notions summarized below.

A piecewise differentiable distribution is a distribution 7" which can be

represented as a finite sum of terms of the form
T.(¢) = [ 3 wale) Dbl
o o

where o is a simplex in M, DY = (8/0z1)*™ - - - (8/9z,,)*, w, is a C-function
on o, and do is the measure on o. o is called the carrier of the distribution

7.

The Sullivan complex of piecewise differentiable forms, denoted Q*(M)
and defined in Chapter 1, replaces the deRham complex, and a current is

defined as a continuous linear functional U : Q* (M) — R.

A simplicial chain ¢ defines a current by

o) = [ ¢




for ¢ € Q*(M).

Differential forms also define currents by

wl@) ~ [wns
M
A piecewise differentiable current is a piecewise differentiable form with

piecewise differentiable distributions as coefficients.

The k-fold product My = M x -+ x M inherits the cell structure given
by polysimplices ¥ = oy X --+ X o3, from the combinatorial structure on M.
The concept of a piecewise differentiable current with carrier ¥ generalizes,

in a straightforward manner, to M;.

In Chapter 2 the complex of piecewise differentiable currents C*( M)
is defined, an explicit formula for the deRham 1t')ounclary b C*(M) —
C*(My) (defined by bU{(¢) = U(d¢) for ¢ € *(My)) is obtained, and a
unique representation for the elements of C*(My) is given. An element
U of C*(My) decomposes uniquely into a sum U = } 5 3 > pox Upy for
each pair of polysimplices (P,3) with P containing ¥ and where Upy is
a piecewise differentiable current on P with carrier 3. Let C*(X) denote
the subcomplex of C*{M}) consisting of carrents with carrier 3 or a face
of %, and let C*(%,9%) = C*(E)}/C*(9%) denote the quotient complex.
The subcomplex containing the terms corresponding to P will be denoted
C*(P : %,0%), and C*(P;3,0%) will denote the sum of the complexes
C*(P' : 31,0%)) for polysimplices P’ contained in P. V*(P; X, 9%) will denote
C(P; 3, 85) N V*{(My).

The proof of uniqueness of the decomposition of the complex C*{Mk)
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requires the construction of functions in 2*(M},) whose transverse derivatives

to 3 are zero along a given compact subset of X..

Chapter 3 introduces the definition of a generalized piecewise differen-
tiable current. For any positive integer k, let ¢+ : M — M}, be the diagonal
embedding, where M}, is the k-fold product of M. The diagonal in M; will
be denoted by V. Let I*(My) be the ideal in £2*(My) consisting of forms w
which satisfy i*w = 0 and let

V(M) = €D IP(My) - CUMy).
phg=r

The quotient complex
C'(My) = C"(My) V" (M)

is called the complex of generalized piecewise differentiable currents on M

(iIl Mk)

The study of this complex begins with finding an explicit representation

of the ideal I*(My,) in terms of functions and differentials which generate it.

The next step is to introduce the notion of combinatorial transversality.
A pair of polysimplices (P, X) are transverse to the diagonal, written (P, X) 11
Vs, if every linear function on P which is zero on ¥ and zero on PN Vyy is
zero on all of P. A polysimplex ¥ is transverse to the diagonal if (P, ) is
transverse to the diagonal for every polysimplex P containing .. Proposition
3.3.8 gives a characterization of those polysimplices > = oy x -+« X o3, which

are transverse to the diagonal in terms of the simplices oy, for j ==1,--- k.

It is important to notice that the usual notion of transversality for com-

binatorial manifolds is not useful in this case.
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Let V*(X) = C*{X) n V*(M;) and C*(X) denote the quotient com-
plex of C*(X) = C*(X)/V*E. C*(%,9%)} will denote the quotient complex
C*(X)/C*(8%). Chapter 3 establishes C*(2,0%) = 0if X NVy =0or if ¥ is

not transverse to the diagonal.

To determine the complex C*(%, 9%) when ¥ is transverse to the diagonal
is more involved. Chapter 3 concludes with a complete characterization of
the elements of the complex V*(P; 3, 0%) = C*(P;3,9%8) N V*(M). With
this result, the case X II Vs is solved. This is used to determine C*(X, 9%)
in the remaining cases.

In Chapter 4 the homology of the complex C*(M;) is computed. The
first six sections are devoted to the construction of three chain homotopies
on the complexes C*(P; 35,031 and V*(P; X, 0%). The first chain homotopy
is in the directions along 3. except for the variables which.correspond to
N V. The second chain homotopy acts on the variables which correspond
to 32N V. These two homotopies are variations of the homotopy used in

the Poincaré lemma.

The third chain homotopy is the transpose of the chain homotopy acting

in the directions transverse to 3.

From the explicit formulas, the effect of the above chain homotopies on

the complexes C*(P, Y, 8%) and V*(P, X, 8%) can be followed. They show
H,(C*(%,05)) =0, it 5 IV,

H,(C*(%,0%)) =0, if X1l Vi and p # 0,

Ho(CH(Z,05)) =R [I],, f S1L V.
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The homology of these complexes is related to the homology of C*(My)

by the spectral sequence corresponding to the filtration
P — C*(Kp+q(Mk))

where K7(M),) is the r-skeleton of My, p is the degree of the current, and ¢
is the filtration index. The homology of the complexes C*(3, 9%) are exactly
the £y terms of the spectral sequence determined by the filtration F74. From

this there follows

®n'= @ R[E
codim(%) = p
Y0 Vu

BM =0, if g +0.

As the operator d; is shown to correspond to the connecting homomorphism
of the pair (X,9%), it follows that the homology of the complex C*(Mj)
corresponds (after a flip of indices) to the homology of the pair (M, N)
where N is the subcomplex of polysimplices of M; which are not transverse

to the diagonal. More precisely, it follows that
Hy(C*(My)} = Hpm—p(Mg, N) for 0 < p < dimM,
H,(C*(My)} =0, otherwise.

The final section of this chapter gives an example where the the homol-
ogy of the complex C*(My) does not agree with the simplicial homology of
M. The barycentric subdivision of a compact orientable 2-manifold with-

out boundary produces a combinatorial manifold M with C?(M) = 0 unless
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p = 2 dim(M). This shows the homology of the complex does not agree
(after a flip of indices} to the homology of M.

In Chapter 5 the complex A*(M) is introduced. Tt is defined as the
quotient complex C*( My} /C*(No(My)) where Ny(Mjy) is the subcomplex con-
sisting of those currents whose carriers do not intersect the diagonal. Using
the techniques developed in Chapters 3 and 4, it is shown that the homology
of the complex N*(M}) agrees with H,(M), the real simplicial homology of

M, (after a flip of indices). There is a multiplication
i N (M) QQN™ (i) — N (M)

which induces a multiplication on homology. The induced multiplication on
homology is related to the intersection pairing on H,{(M) under the identifi-
cation of H (N*(M)) with H.(M).

This chapter concludes with an example of a current Uz on N'* (M) with

the property Ug(u) = x(M) where p is the canonical volume form on M,
and x(M) is the Euler characteristic of M.




Chapter 1

PRELIMINARIES

This chapter will give the basic definitions, establish notation, and col-
lect the standard results about the basic objects that will be used. It consists
entirely of known material and its straightforward generalization to combi-
natorial manifolds. The main goal of this chapter is express a piecewise
differentiable current in convenient form. In the next chapter, this form will
be used to obtain a unique representation. General references for this chapter

are deRham [dR], and Teleman [T] and [T).

Throughout this work M will denote a compact oriented combinatorial
manifold of dimension m (a simplicial complex which is locally homeomorphic
to B™) without boundary. For p =0,1,2,---,m, KP(M) will denote the p-
skeleton of M, and | M | will denote the underlying polyhedron of M. The
term simplex will mean a closed simplex, and the closed p-simplex o will also

be denoted by (v°,---,v?) where v* € K%¢) for a =0,1,2,---,p.

Each simplex o in M has a natural differentiable structure arising from
an afline embedding of o into B™. The differentiable structure is independent

of the choice of the embedding.



1.1 The Sullivan Complex of Piecewise Differentiable Forms
Let p be a nonnegative integer.

Definition 1.1.1: A piecewise differentiable p-form on M is a function
w which associates to any maximal simplex ¢ € M a real-valued C°° p-form
w, on o such that the collection {w,} satisfies the following compatibility

condition:

If p and o are two maximal polysimplices of M with pn o # 0, and
i 1 pNco — pand i, : pNo — o are the inclusions of pN o into p and o

respectively, then

(5, 0p = (i0)
Definition 1.1.2: QP(M) = { piecewise differentiable p-forms w on M}.

Definition 1.1.3: If w € Q"(M), € € Q*(M), then w A 8 is the form of
degree r+ s defined by (w A #), =w, A 8,.

Definition 1.1.4: If w € (M), we define the differential of w to be the
form dw which assigns to a maximal simplex o € M the (p + 1)-form d(w,).
Symbolically, (dw), = d(w,}. Note thai dw € QPY(M) as the compatibility
condition d(ifw,) = i}dw, is satisfied.

Remark 1.1.5: For w € (M), 8 € Q*(M),

(a) wA B e (M),

(b) dw € Q+H{M),

(¢) d*w = 0.
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These three properties imply *(M) = {Q"(M), d}ren is a graded dif-

ferential algebra.

Definition 1.1.6: The graded differential algebra

d d d d d
(M) = {Q°(M) ~ Q' (M) - QM) - -5 QM) 50— -}

is called the Sullivan complex of piecewise differentiable forms on M.

Let o be a p-simplex in M with (y!,---,4?) a smooth coordinate system

on o. The symbol Dy will represent the differential operator

e a (24} 8 o
Py Gy ()™
where a = (ay,---, a) is a multi-index.

Q*(M) is given the Fréchet space topology associated to the family of
semi-norms || w ||a,g, defined on w = {w,} € Q*(M) by

Wy = ng,g(y)dyﬁ
on maximal simplices o of M, by
” W “Oﬁ:ﬁ: SUpy o | D;lwﬁ,ﬁ(y) |:

the supremum is taken with respect to all maximal simplices ¢ € M, and

y €| o | where
W, = Zwa,ﬁ(y)dyﬁ

on maximal simplices o of M.
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1.2 Currents
Definition 1.2.1; A continuous linear functional

T: Q™ P(M) — R

will be called a current of degree p on M.

Remark 1.2.2: A linear functional 7' : Q™ (M) — R is continuous in the
Fréchet space topology if, and only if, there exist a natural number N (which

depends on T'), and a positive constant C, such that for all w € Q™ ?(M)

|Tw |S C SUPg.y | Dgwd,ﬁ(y) |:

where the supremum is with respect to:
(a) any partial derivative DF, |« |< N,
(b) any maximal simplex &, and any y €| 7 |,
(c) any w,g where w, = 37 5w, 5(y)dy”.

This characterization of currents ig from | Ty|, as are the following re-

marks.

Remark 1.2.3: As in the smooth case, any form 6 € QP{ M) or any chain

v of dimension m — p defines a current of degree p by

fw)= fwAb,we Q" P(M),
/

() = ] W, we QmP(M).

Y
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Let T' be a current of degree p. If f € Q% M), then fT is a current
of degree p defined by (f7T){w) = T{fw). This makes the set of currents of
degree p into a module over Q%M ). More generally, if § € Q9(M), then the

exterior product T' A @ is a current of degree p + g defined as

(TA0)(w)=TOAw),weQ"PIM).

This makes the set of currents (of all degrees) into a module over * (M),

Definition 1.2.4: If T'is a current of degree p, then the deRham bound-
ary of the current T is the current &7 of degree p + 1 defined by

(BT w) = T{dw) , w € Q™1 M).

Remark 1.2.5: As b* = 0, and for currents T' of degree p, w € (M),
(I Aw)= (1T Aw+T Abw,

it follows that the operator b makes the vector space of currents into a dif-

ferential graded module over (2*(M).

Definition 1.2.6: If T is a current of degree p, the exterior derivative

of the current 7" is the current d1' of degree p+ 1 defined by

(dT)(w) = (- 1P T(dw) , w & Q™ PH(M).

Remark 1.2.7 : As d? =0, and as

d(I'AG)=dT NG+ (1T A dB
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for currents T of degree p, the operator d also makes the vector space of

currents into a differential graded module over *(M).

Remark 1.2.8: As M is compact and orientable, for any w € Q™ (M),
it follows by Stokes’ Theorem (pairwise cancellation of the forms on the

boundaries of the simplices) that [, dw = 0.

1.3 Piecewise Differentiable Distributions
Let (p, o) be a pair of simplices in M with o C p, and let » = dim(p).

Definition 1.3.1: A piecewise differentiable distribution on p with
carrier ¢ is a linear functional 7" : Q°(M) — R which has a representation

of the form
7(6) = [ Y mly) - Dyslw)io , for § € 2°(3)

where
1. the sum is over a finite collection of multi-indices «,
2. y = (y',---,y") are smooth local coordinates for p, (r = dim(p)),
3. do =dyt A---AdyT,
4. o is given the orientation such that [ do > 0, and

5. 1o € C®(a).

Remark 1.3.2: By the chain rule and the convention that the simplices
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are closed, it follows that a distribution which has a representation in the
above form in some coordinate system has such a representation in any other

smooth coordinate system.

Definition 1.3.3: A piecewise differentiable distribution on M with
carrier o is a linear functional 7" : Q°(M) — R which hag a representation

of the form

T(p) =Y T, , for ¢ € Q°(M)

poT

where T, represents a piecewise differentiable distribution on p with carrier

o, and where the sum is over all simplices p containing o.

Definition 1.3.4: A piecewise differentiable distribution on M is a
linear functional T : Q°(M) — R which can be expressed as a sum of piece-

wise differentiable distributions which have carriers consisting of simplices of

M.

Remark 1.3.5: Tf Q°(M) is topologized as the Fréchet space of currents
of degree zero, then the compactness of M and the continuity of n, imply
that piecewise differentiable distributions are continuous linear functionals

on the Fréchet space §1°(M).

1.4 Piecewise Differentiable Currents

A piecewise differentiable current on M is a piecewise differential form
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having piecewise differentiable distributions as coefficients. More precisely,

one has the following definition.

Definition 1.4.1: A piecewise differentiable current of degree p on

M is a continuous linear functional
U:.0°(M)— R

which has a representation as a double sum

U=22 U

aC M pDo

where the first sum is over all simplices o of M, the second sum is over all
maximal simplices p which contain ¢, and where U, , are currents which have

a representation as

Upaﬂ'(qb) — Z Ta(ﬁba(y))
on a form ¢ such that j,¢ has a representation as
gab =Y doly)dy®

where y = (y*,+++,y™) are local coordinates for p, Jp i p — M is the inclusion,

and 73, is a piccewise differentiable digtribution on p with carrier .

Using local coordinates (as in the definition of a piecewise differential

distribution), U, , can be expressed as

Uaeld) = [ 3 o) - D§(a(w))de , or ¢ € 02
o @



16

where jid =37, daly)dy® as above.

Remark 1.4.2: Any linear functional of the form
73 Y0,
oCM pDo

is continuous in the Fréchet space topology as the constant C' can be chogen
to be the sum (over the finite sets o, p, @, and 3) of the maximum of the

continuous functions | w, g(y) | on the compact set o.

Definition 1.4.3: C?(M) will denote the vector space of piecewise differ-

entiable currents on M of degree p under the operation + given by
U+ U)(w) =U(w) + U'(w),
and scalar multiplication by real numbers.

Definition 1.4.4: For each vertex v* € M, let b* denote the barycentric
coordinate function which has value 1 at ©®, and is zero on the other vertices
of star(v®). Extend b* to M, by defining b* to be zero on the complement
of star(v®). These functions are in the Sullivan complex of piecewise differ-

entiable functions on M.

Definition 1.4.5: Associated to a p-simplex o, there are the sets of

barycentric coordinate functions
B(o) = {b" | star(v) D o},

T(o)={b"eBlo) | ®"=0ono},and
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L{oc)=B(o)—T{o)={V" € B(og) | b*#£0on o}

The elements of T will be called transverse barycentric coordinates to o,
and the elements of L will be called longitudinal barycentric coordinates.
It is convenient to denote the elements 6 which lie in T ag 1%, and to denote

the elements b* which lie in I as %,

Definition 1.4.6: An origin O for a simplex ¢ is a choice of a vertex v*

of o.

Remark 1.4.7: Choose an origin O for o, and let L' = L'(o) denote the
set
(o) = L(o) - {i*}

where {* ig the longitudinal barycentric coordinate function associated to the
vertex corresponding to the origin O for o. Then the elements z of | o | have
a unique representation as ¢ = (li(x),---,l,(=}) in terms of (some ordering

of} the elements of L/, p = dim(a).

For any simplex p of M containing o, by ordering the subset A C B(o)
defined by
A=L(a)u{t* € T(o) | " #£0 on p},

one obtains a coordinate system for p.

Remark 1.4.8: The values of the barycentric coordinate functions at a

point P in p are independent of the choice of origin O for o.

Remark 1.4.9: The differentials db® of the barycentric coordinate func-

tions are piccewise differentiable 1-forms, db* € Q(M). Once an origin O
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for ¢ has been chosen, then for any g¢-simplex p containing o, an element
¢ € j,80 (M) (where j, : p — M is the inclusion), has a unique represen-
tation as ¢ = >, ¢a{b*, -, b9)db* where « is a multi-index with o® = 0 if
v & por v® = 0.

1.5 The Canonical Volume Form

Remark 1.5.1: For any ordering of the vertices v°,---,v? of a p-simplex
o of M, there canonically corresponds the p-form db' A - -+ A dbP where db is
the differential of the barycentric coordinate corresponding to the vertex v7,

for j =1,---,p. This form has the property that given any permutation
(o0 vP) — (00 L T
of the vertices, then
db™W Ao A dDT®) = sgn(m)dbt A - A dBP.

This follows by the skew-symmetry of the exterior product and the relation

Zﬂaea b* = 1 (which implies ZUEEU db® = 0).

Definition 1.5.2: If ¢ is an oriented simplex and the orientation of o
can be represented by the ordered (p + 1)-tuple (v°,---,v?), then the form
db' A -+ A dbP associated to the oriented p-simplex o will be denoted do.

As the orientation for M determines an orientation for each m-simplex

p of M, the above procedure produces a nonvanishing m-form dp on each
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maximal m-simplex p of M. As the pull-back of an m-form to an (m — 1)-
face is zero, it follows that these forms combine to give an element u € Q™ (M)

defined by p |,= dp for maximal simplices p € K™(M).

Definition 1.5.3: The element p € Q™ (M) with g |,= dp for maximal
simplices p € K™(M) will be called the canonical volume form on M

asssociated to the orientation of M.

1.6 A Representation for Piecewise Differentiable Currents

Let p be a maximal simplex of M with J, : p — M the inclusion, let o
be a face of p, and n = dim(c). Choose a coordinate system (b!,---, ™) for
p consisting of barycentric coordinate functions such that (b',---,b") forms

a coordinate system on o. Set
dp = dbt A -+ A dbT,

do = db' A -« A db™.
Definition 1.6.1: [], : 5;00* (M) — R will denote the current defined by
[olo( /qsp e B do

if ¢ =g (b, -, b™)db A - Adb™ = ¢, (b, -+, b")dp is a form of degree m,

and

[7]o(¢)
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if ¢ is a form of lower degree.

Definition 1.6.2: [o] : ™(M) — R will denote the current

lle) = > lolu(9)

poa, dim(p}=m

Let Uy, be a piecewise differentiable current on p with carrier o, then
for any ¢ € Q*(M) on M, U, ;(¢) = U, -(j;¢). In the coordinate system for

p, 75¢ has a representation as
gab = dp(bt, -, b™)db".
A
Definition 1.6.3: The partial differential opertators D§ operate on forms
by
26 = (DEa(b), 5 for =3 4t 6™l on p.
8 A

Definition 1.6.4: The partial differential operators D' operate on cur-

rents by the formula

(DpU)(¢) = (—1)* . U(Df ).

If db® represents a differential form which is not identically zero on p,

let db® denote the differential form defined by

db? AdbP =dp=db' A--- A dB™.
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Remark 1.6.5: Let ¢ € Q*(M}, then j¢ = 4 dg(bl, -, b™)db -in
terms of the local coordinates for p. A piecewise differentiable current U, ,

on p with carrier o can be expressed as
Uns(8) = [ S DFGR) B B (0, 8o
o o

Define a differential form w, on p by setting
Wa = ¥ wap(d', -, b™)db”
a
Then U, ; can be written as
Upor = Y Di{wa Alo]} o 5

where w, € 0*(p) is a differential form on p and o is a face of p.

From this we conclude U € C?(M) can be expressed as

U= Y Dl Alel) o

geM pDo @

where the first sum is over all simplices ¢ of M, the second sum is over all
maximal simplices p which contain ¢, the third sum is over a finite collection
of multi-indices relative to a coordinate system on p, w, € £2*(p), and where
jp + p — M is the inclusion. This is the basic representation for a piecewise

differentiable current,

To introduce a product structure on piecewise differentiable currents as

in [T3], it is necessary to consider piecewise differentiable currents defined on

products M x --- x M of M.
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1.7 The Cell Complex M;

Definition 1.7.1: For a positive integer k&, M; will denote the k-fold
product of M,

My =M x --- x M (k factors).

Definition 1.7.2: A polysimplex ¥ in M} is a closed subspace of | M} |
which is of the form ¥ =| oy | x -+ x| o} |, where oy, - -, o} are simplices of
M. A polysimplex of dimension &m (m = dim(M)) in M), will be called a

maximal polysimplex.

Remark 1.7.3: M, together with the collection of all polysimplices con-
tained in Mj, makes M; into a cell complex, where the cells in My are

polysimplices.
Let N be a subcomplex of M.

Definition 1.7.4: Let P{N) denote the free abelian group with generators
the polysimplices P of N, and let P;(N} denote the the subgroup of P(N)
consisting of polysimplices of dimension j. Set P;(N) = 0 for j < 0 and for
j > dim{N).

For a polysimplex P = p; X --- X g, and for integers § = 0,---, k, let

n; = dim(p;), and let pj. denote the i-face of p; with respect to some ordering
of the vertices of the simplices pj, i.e., pi = p; — v* where v is the " vertex
of p;, and where p; — v* is the simplex spanned by all vertices of p; except
i

vt pb =0 if p; consists of a single vertex.

J
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Definition 1.7.5:For an integer j, 1 < § < k, and integers i, 1 < i <
dim(p;), let
_P;:,O]_ XKoo X pia xpg.ij,,‘l XKoo X P

Definition 1.7.6: For an integer j, S;(N) will denote the vector space

d: S;(N)— 5;,_4(N)

is the linear map defined on generators P of S;(IV) by

Define 8 : S;{N) — S§;_1(N) to be the zero homomorphism, if § < 1 or
g > dim(N). Sy (N) = P(N)®, R, and let

Definition 1.7.7: The Real Cellular Chain Complex of N is the

complex

S.(N) = (6P S;(N), ).

jez

Tt is immediate that 8% = 0.

Definition 1.7.8: If (Ny, Na) are a pair of subcomplexes of My, with Ny D
Na, then, for integers j, S;(N1, N3) will denote the quotient space

Sj (N1, No) = S;(N1)/5;(Na)
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and S,(Ny, N3) will denote the quotient complex

S*(N].:NZ) == (@ Sj(NiaNZ)aa)'

JE€Z

1.8 Piecewise Differential Currents on A,

This section is devoted to generalizing the material given above from
M to M. It concludes with a remark that shows a piecewise differentiable

current on Mj can be expressed in a certain form.

Definition 1.8.1: A piecewise differentiable p-form on M} is a func-
tion w which associates to any maximal polysimplex > € M a real-valued
U p-form wy, on % such that the collection {wx} satisfies the following com-
patibility condition: if 3 and P are two maximal polysimplices of M with
¥NP # §, and iy and ip are the inclusions of ZNP into X and P respectively,
then (ix)*ws = (ip)*wp. OP{M;) will denote the set

(M) ={w | wis a piecewise differential p-form on My}.
Definition 1.8.2: Tf w € P (M), we define the differential of w to be

the form dw which assigns to a maximal polysimplex ¥ € My, the (p+1)-form
d(wg).

Definition 1.8.3: If w € Q"(My), 0 € Q°(My,), then w A 8 is the form of
degree r + s defined by (w A 8)y = wx A O5.
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Definition 1.8.4: The graded differential algebra
QY (M) = {8V (M), d}ren

is called the Sullivan complex of piecewise differentiable forms on M.

It is given the Fréchet space topology from the family of semi-norms || w ||a,g,

defined on w &€ (M), with
wls="Y wsp(y)dy”’
on maximal polysimplices 2 of My, by
| @ [lap= supys | Dywss(y) |,

where the supremum is taken with respect to all maximal simplices 3 € M,

and y €| X |.
Definition 1.8.5: The canonical volume form on M; is
p* = profip A« A projip
where proj; : My =M x .- x M — M is projection onto the §** factor.
Definition 1.8.6: A continuous linear functional
T: Q" (M) — R
will be called a current of degree p on M.

Remark 1.8.7: Any 6 € QP(My,) or ¥ € Spm_p(My) defines a current of
degree p by

0(w) = fw A, w e DTP(M),
M
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M@o=]@,wenMﬂmay

Remark 1.8.8: If T" is a current of degree p and 8 € QY (M), then T'A 0
is a current of degree p + ¢ defined by

(L AO)w) =T(O Aw) , w € P77 9(M).
This makes the set of currents of degree p into a module over Q°(M}).

Definition 1.8.9: The deRham boundary of a current 7" of degree p is
the current bT is of degree p + 1 defined by

(bT)(w) = T(dw) , w € QP+ (Ag,).

Remark 1.8.10: It follows that b> = 0, and for currents T' of degree p,
w e Qq(Mk),
(T Aw)= (-7 bT Aw+T A bw.

Definition 1.8.11: The exterior derivative of a current 7" of degree p

is the current dT is of degree p + 1 defined by
(dT)(w) = (- PN (dw) |, w € QPP ).
Remark 1.8.12: It follows that d®> — 0, and for currents T of degree p,

w e Qq(Mk),
AT AG) =dT AG | (1T Ad6
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and bT" = (—1)P . 4T

Definition 1.8.13: A piecewise differentiable current of degree p on

My, is a continuous linear functional
U: Q" P(M,) - R

which has a representation of the form

U= 3 S s

SCM, IO

where the first sum is over all polysimplices ¥ of M}, the second sum is
over all maximal polysimplices Il which contain ¥, and where Upy: denotes
a piecewise differentiable currents on P with carrier 3, i.e. each Upy can be

represented as

Ups = ) Di{wa A 2]} o jy
(44
where the sum is over a finite collection of multi-indices «, = = (=, - - -, )
are local coordinates for TI, w, € 2*(P), and gy : T — My, is the inclusion.

The polysimplex ¥ will be called the carrier of the current Upy.

Remark 1.8.14: Any functional of the above form is continuous in the
Fréchet space topology as the constant C can be chosen to be the sum (over
the finite sets X, 11, and «) of the maximum of the continuous functions

| we(x) | on 3.

Definition 1.8.15: For any nonnegative integer v, C"(M}) denote the

vector space of piecewise differentiable currents on My of degree » under the
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operation +, given by (U + U} {(w) = U(w) + U’'(w), and real multiplication
(r-U)(w) =17 U(w). Define C"(My) = 0 for negative integers r.

Definition 1.8.16: C*(My) will denote the direct sum

0" (M) = D O (M),
reZ
Definition 1.8.17: If N C My is a subcomplex of M, then C7(N) will
denote the subspace of piecewise differentiable currents in My with carrier
contained in N. For a pair of subcomplexes (Ny, No) of M with Ny C Ny,
C"(Ny, N3) will denote the quotient space

C"(Ny, Ny) = C"(N1)/C"{N3).
We also adopt the notation

CH(N) = D (N,
reZ
C* (N1, Ny) = (P CT (N1, Ny).
resd
As we will need to perform some calculations involving piecewise differen-

tiable currents, it will be useful to introduce the generalization of barycentric

coordinates to the cell complex M.

Let proj;: My =M x--- x M — M be projection onto the Ft factor.

Definition 1.8.18: A barycentric coordinate function b} : My — [0,1]
on the cell complex My is a piecewige differentiable function on M; of the

form

b3 (X) = b*{ proj;(X)) for X € M.
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Definition 1.8.19: Associated to a polysimplex Y = gy X « - - X g, are the

sets of barycentric coordinates
B;(%) ={b] | star(v”) D o;} for 1 <5 <k,

B(X) = Ui B; (%),

T(3) = {02 € B(X) | B =0o0n3}, and

The elements of T'(%) will be called transverse coordinates to X, and the

elements of L(X) will be called longitudinal coordinates.

Definition 1.8.20: An origin O for a polysimplex >: =g X -+ X o} is a

k-tuple of vertices O = (vy,-- -, v;;) with v; € o;.

Remark 1.8.21: The choice of an origin O = {wvy,---, v} for a polysim-
plex ¥ of dimension n determines a set L'(3) defined by

IE={g=00 | BlcL,v" v forl<j<k},

then the elements z of | & | have a unique representation as (I!(x), - --,"(z))

in terms of the elements of L'(¥).

For any polysimplex P of M} containing ¥, the subset A C B defined
by
A={t;eTX) | bj#0on P}UL

forms a system of coordinates for P.
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\ .
Definition 1.8.22: If (I',---,I") is a system of longitudinal barycentic
coordinates for ‘an oriented polysimplex »; in M, then d>: will represent the

the differential fo r\n d¥ = +dl' A -+ A dl™ where the sign is chosen so that

JECE

z

Remark 1.8.23: By choosing an origin O for each polysimplex > of Mj,
elements of C"(M},) can be expressed in terms of the elements of i, and

Tiy, and it has a representation of the form

U= Y Yt

nCM IIDE

where
U = DyD{{was A BN} 0 57,
a,d
where the coordinate functions {1, ..., (4™ ¢ ... ghm—din(®) gre the longi-

tudinal and transverse coordinate functions to ¥ in II, and where gi7 : Il —

M;, is the inclusion.
The following remark is a restatement of Proposition 1.1 of | T3]

Remark 1.8.24: If § + 0, express D as Df = DyD{. Then for any
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¢ € QT (M)
Uns(d)= Z; DD {was A [B]} 0 jiid
:ciy_;(_nlaiﬂﬁl - [EH{was A DED] (516)}
- %;[z](_&)lalﬂﬁ - Dy {was A DEDE (1)}

— (=)l N S Dywas A DEDY i}
a,d

_ Zw[zi](*l)lalﬂé‘ Awas A Df‘Df’jﬁé}
a,d

— (=D)L N " g [0 {ways A DEDY Gié}
_ a0
— [E}(=1)lH . {(DEDE ) A Diwe,s}

= — 3" DD i - was A S }(56)

o, d

+ Y DED v - was A [Z1HG16)
a,d

+ DEDY {Diwys A [E] k)

where 3¢ is the polysimplex obtained from ¥ by collapsing the polysimplex
with respect to the vertex v} (with b = "), X° is obtained from o by col-
lapsing with respect to the vertex v; (the j* coordinate vertex of the origin
0), and where v; and vy are +1 depending on the orientation given to [¥]

and [%°] respectively (with v; = —1 if dX = dI* A dTY)).

This implies U € C*(My) has a representation of the form

=Y Y v

SCM IIOE
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with
Uns = Y Di{way Adt? A[E]} o i,

a’f}‘

with wy ., € Q¥ (P).

Thig expression only involves transverse derivatives. In the next chapter

a unique representation will be obtained.




33

Chapter 2

PIECEWISE DIFFERENTIABLE CURRENTS

This chapter is devoted to establishing a unique way of representing
piecewise differentiable currents on My in a form similar to that given in
the previous chapter. An explicit formula for the deRham boundary on
the complex of piecewise differentiable currents is calculated. It is shown
that the complex C*(M}) decomposes into a sum of subcomplexes. These

subcomplexes will be used to obtain homology results in subsequent chapters.

2.1 The deRham Boundary on the Complex C*(M;)

This section will be devoted to calculating an explicit formula for the
deRham boundary b : CP(M;)} — CPYL(M;) and the exterior derivative d :
CP(My) — CP™(My). These formulas will express the deRham boundary and
exterior derivative of a piecewise differentiable current in the form required
by the definition of a piecewise differentiable current. As a consequence, it

will follow that

C* (M) = (6D CP(My,), b)

PEZL

is a chain complex. The formulas obtained in this section will be used in the
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computation of homology in Chapter 4.

Let 3 = oy - - - X 0y, be a polysimplex in My, n = dim(X), n; = dim(o;)

for1 <j <k,

Let Il be a maximal polysimplex in M containing ¥, and let U ¢
C?( M) be of the form

U=> Di{wn 3}

Let O = (v,+--,v;) be an origin for %, and n' = km —n. (14, ,1,)
and (t!,---,¢") will denote the corresponding longitudinal and trangverse

coordinates to X in 1I.

Express d as d; + d;, where

SN
di =) di'n -
i ol

n' . 9
i=

dU=(d; + d)U

1

— (—=1)"- i DEDy{w A di A X}

+ D {(diw) A3}
+ (1P Di{w A di[31}

To compute the last term, express

n k
d; :Zdli/\ Ea% as dy = Zdzj
i=1 g=1
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where
h
Z dr’ azh

dl? will denote the differential of the longitudinal coordinate correspond-
ing to the vertex of o; chosen as the 7% vertex in the origin O. For ¢ €

‘kaip#l (Mk ):

(=1 - Df{w A di[E]}g=(-1)* - dz[E]{w A D“¢}

= (=) Z Z c‘ﬂh [Z]{dl" Aw A D}

i=1 h;=1
k

= (=D 3l O (a% nw A DE).

=1 hi=t

For j = 1,---,k, the identity >} 1F = 1 implies > )% ( di = 0. This
implies dl? =—5, cll;?. Let [Z;‘] denote the polysimplex obtained from X
by collapsing to the face opposite the vertex v# with the induced orientation.

]
Then

[2]0/818(0) - [EAdi A0 — [SMdIh A6 for  6€ OFL(M)

where [E?] is the face opposite the vertex corresponding to the v; € O.
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Integration along the directions parallel to the %" face yields
(1Y OIS] ! Aw A DESR= - (1) S (S A w A DE}
h=1 7 h=1

+ (=1 Zj:{zg?»]{dz;.‘ Aw A D2}
A1

= (- D)[E{dIS Aw A DEG}

+ (—1)le Zj:[E?]{dl;-‘ Aw A DEG}
h=1

— (=1 Zj:[zg]{dz; AwA DEP}
h=0

= DAY dtt Aw A [SYH)

h=0

= (1) - DH{w A Y dt} A[SHHA)
h=0

where dl;% is changed to dt;? as the barycentric coordinate represented by dl?

is a transverse barycentic coordinate to the face 2?.

Definition 2.1.1: Let 9{%] denote the current
a[x] = dt A X
5

where the sum is over all codimension one faces of 3, and d#* is the transverse
coordinate to the i-face of 2 which is a longitudinal barycentric coordinate
to ¥, and [¥¢] denotes the i-face of ¥ with the induced orientation. With
this notation,

(1% D{w A di[X]} = Di{w A O15] )
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Combining the above results,

I

dU=(—1)? - i DZDyd{w A dt? A [S]}

+ Df{{dw) A [X]}

+ Di{w A 9[X]}

and

TL’

bU=— Y DfDy{w Adt? A ]}
i=1
+ (=17 D{(dw) A 3]}
+ (=17 DiH{w A 9[X]}.
These expressions show d/ and b/ have representations in the form required
for a piecewise differential current on M. As any element of CP(My) is a

linear combination of currents which have the form of the current 7 chosen

above, it follows that the deRham boundary makes C*(M}) into a complex.

2.2 Unique Representation of the Elements of C*{M})

In the previous chapter it was shown any U ¢ C*(M3) can be expressed

as

U=, 2.0 Unzap

TeM; IOF a8

where

Uiisos = Df{wa,s A dt? A [Z]} o gf
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with wag = 37 weay(l, 0)dl? € Q*(11), (,£) denoting the longitudinal and

transverse barycentric coordinates to ¥ in 11, and 757 : Il — Mj, the inclusion.

Definition 2.2.1: For each polysimplex > of M;, and for each maximal
polysimplex IT = 7y x .-+ X 7, containing ¥, the representation for Uy s a4
determines a unique polysimplex P = p; x -+ X pp where for y =1,---,k, p;

is the simplex whose verices are the union of:
1. the vertices of oy,
2. the vertices v* which correspond to af # 0.
3. the vertices v* which correspond to 87 = 0.

the polysimplex P produced by this procedure will be called the polysim-
plex associated to the pair (o, 8). A pair («, 8) of multi-indices will be called
assigned to the polysimplex P, if P is the polysimplex determined by the
pair (o, ) by the above procedure.

Remark 2.2.2: For a pair (II, X} of polysimplices of My with I1 D ¥ and

H maximal, and a current U, s of the form
Uwp = Di{waps A dt? A[Z]} o g1,

as above, let P be the polysimplex determined by («, ). Let n = dim(X),
n' = dim(P) —n, n" = km —n —n' and let the barycentric coordinates ({, )
of ¥ in II be ordered so that (¢!, --,#") are the transverse coordinates to P

in IT. Define 8 =60 p as 8 = dit A A dE

By the construction of P, 8% = 1 whenever v* € m; — p;. This implies

dt? = vdt? A0 where v = 1 and dt¥ contains only those differentials of
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dt? which correspond coordinate functions whose partial derivatives appear

in the multi-index a. Express U, s as
Upp = DMv -waps Adt? AOA[Z]}
and let U}, 4 be the current,

Ul g =Dy wag Adt* NOA[E]}ogh = Usgosh
where jp : P — Mj is the inclusion.
Then, for ¢ € OP(My),
Un,p(8)=(— 1) - [S](wa,g A dt? A Dg9)

— (D) [B)(v - wap A dtP AO A DEjhe)

= Di{v - wa Adt” A A[E]} 0 jb(9)

= Up5(9)
as any term in ¢ which contains a differential of a transverse barycentric

coordinate to P is annihilated when multiplied by 6.

Hence, U, g = Uy p © jp where P is the polysimplex determined by the
pair (a, ).

Remark 2.2.3: By construction, P is the smallest polysimplex with this
property. This will follow from Proposition 2.3.6.

Definition 2.2.4: Given a pair (P, 3J) of polysimplices in M}, with P D> X
and a choice of orientation for P, let dP denote the volume form on P as in

1.8.20. Let 6p denote the form defined by

dP A 8p = pt
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and define the current [¥]p) : Q*(F) — R by

[Ele(6) = [X]{jpé A Op}-

Remark 2.2.5: For each polysimplex 3 of My, the above procedure shows

currents Us, which can be represented ag

Us = Z Z Uns.a,p

LY of
decompose into a sum of currents, each naturally defined on a polysimplex

P containing 3. By defining

U_P)E - Z UH,E,C\:,,B
(e, 8)CP

where the sum is over all pairs (o, ) assigned to P, it follows that any

U € C*(My) has a representation of the form

U= Z Z(z D {wag A dt? A [S]p} o 4p),

YeM; POY of
where the first sum is over all polysimplices of M, the second sum is over all
polysimplices P which contain ¥, the third sum is over all multi-indices which

are associated to P, (I,t) are the longitudinal and transverse barycentric

coordinates to 3 in P, and wag = ). wa,p,4(1, 0)dlY € Q*(P).

Proposition 2.2.6: Let p be a nonnegative integer. Any element

U € C?(My) has a unique representation of the form

U= Z E(Z D {wpsap A dt” A [S]p}ip)

TeM; POY (a,8)
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where the first sum is over all polysimplices X of M}, the second
sum is over all polysimplices P of M} containing >, the third sum is
over pairs of multi-indices assigned to P, (I,t) represent logitudinal

and transverse barycentric coordinates to X in P, and wpy,.g =

Jwas (T € QF(P).

Existence of this type of representation was proved above. Uniqueness
will require the congtruction of special elements in Q*(My). The proof of

uniqueness will be supplied immediately following this construction.

Remark 2.2.7: This is a global result. This result should be compared
with the corresponding result (Proposition 1.2 of [13]) on smooth mani-
folds. In that paper, Teleman gives a uniqueness statement for the complex
C*(%,0%). In the combinatorial case, the global statement of Proposition
2.2.6 can be proved.

2.3 Functions with Zero Transverse Derivatives

Let ¥ = 01 X -+ x o3 be a polysimplex in M}, O an origin for X, and
let L' be the coordinate system on X determined by O. For any polysimplex
P = py x -+ X pg, let T" denote the set of transverse coordinates to X in P.

Let d = dim(X), p = codimp(X). Set § = Int( star(O)), i.e., the interior

of the union of all closed polysimplices of M}, containing O.
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Deﬁnefr:P—>§-}by

where a®,---,a" are the L' coordinates of p € P, and b!,-.. b are the T

coordinates of p.

For integers j, 1 < § <k, proj;: My =M x --- x M — M will denote

projection onto the j th factor, and m; : P — o will be proj, o .

Given the choice of O, these projection mappings are "independent of
the choice of P”, i.e. if P’ is another polysimplex which contains ¥, and

7' P' — 3 is the corresponding projection map, then w |prp= 7' |pap.

Hence, this produces is a projection map  : Up-nP — 3.

By composition with p;, the projections n; are also well-defined on

UPDEP-

Let K be any compact set in the interior of %, then proj;(K) is a
compact subset contained in the interior of gy, let U; be an open set in o;
containing proj;(K) with the closure of U; contained in the interior of o;.
Let V; be w{l(Uj), and let V be an open set in §. Set U =V NVin-.-NV;.
Let ® : § — R* be a pieccewise linear embedding which is linear on each
simplex of § < Mj,. Let ¢ : B¥ — [0,1] be a smooth function with « = 1
on &(U), and 9 = 0 in the complement of the image of ®. Let Ui : My — 1
be defined by Wg =4 o ® on §, and Ug = 0 in the complement of S.

Any smooth function F' on 3 with support contained in the interior of

%, can be extended to function F' € Q%(M},) with zero transverse derivatives
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by defining
F(P) :\II(P) F(’J’Tl(P),,W}C(P)) ,fOI'P GUPDEP:
F(P)ZO,fOI‘PEMk—UPDEP.

As ¥ is identically zero on any polysimplex P’ of Up P’ when P’ does

not contain 3, this gives a piecewise differentiable function on Mj.

F has the property D.F7 = ( along ¥ for any transverse barycentric
coordinate function ¢. F also has the property that F' = 0 in a neighborhood

of any polysimplex of M} which does not contain ..

Remark 2.3.1: The projection 7 : P — X may be replaced by any other
projection 7' : P — ¥ as long as the projections 7' : P —» Sand«’ : Py, — 3

agree on Py N Py when P, N Py # 0.

2.4 Proof of Uniqueness

Any U € CP{M,;) can be represented as

U= >, 2 Ues

YCM, PO

where each Upy, can be expressed as

Upyz = Y, Df{wap,(Ddl? A dt? A [S|ipi}ip
o,y
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in terms of coordinates (I,t) € L' U T, corresponding to a choice of origin O

for each polysimplex ¥ of M.

Suppose U € CP(M,) has two representations of the above type. If
the representations are not identical, there exist polysimplices P and X, and
multi-indices o, (3, v such that the corresponding functions w,g.(l) and

Wo (1) do not agree. Let

na:.ﬁs'}'(l) = wasﬁs":"(l) - a’aaﬁﬂ'(l)'

Let 2 € % be a point in the interior of X where n(z) = nyp,,(2) # 0, and let
V be a neighborhood of z in ¥ where 1 has the same sign. Let U’ be the

current which is represented by
0 Y Y Ui
NCM, PO
where Upy; is given by
Ups = Y Di{(wapy () = Bapy (DA A & A [S]p}is.
o,y
As this current represents U — U it should vanish on all forms ¢ € Q¥ 2(M),).

Given the pair (P, X)) and the triple (o, 3,7) as above, let 85, € Q" (M)
denote a form & = dt* defined by dI7 A dt? A 85, = (—1)"55u®, where p*
is the canonical volume form on M;, jp : P — M; is the inclusion, and

U= (_1)(kmfp)(kmfdim(P)'

Let F' : ¥ — R be a nonnegative smooth function on 3 with support

contained in V and which is positive at . By the previous section, F has an
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extension F'to Mj, with the property that D,F =0 along 3. for all transverse

directions.
Define
P = % - F(l,8)85, € QF™ 2 (M),
Then

U'(¢)= > D 1> Di{lwasq(l) — oy (DA A dt® A S }ipe]

NeMy, POY a,fyy

= Z [Z Di{[wa,p,7(1) — G, (1)dl” A dt” A Z] iy ]

POY a3,
- 1, =
= 3 DF{ [t (1) ~ B (DI At A (S} -t B0, 005,)
B,y )

1 o

o FL )}

= (_1)‘04 ) [Z]{Z na,ﬁ,fy(l) ) Df(

= (—1)k . /naﬁ,n,(z,o) - F(lyds: # 0.

bH

This contradiction completes the proof of Proposition 2.2.6.

Remark 2.4.1: The same result holds for any choice of transverse coor-

dinates which satisfy the conditions of Remark 2.3.1.

Remark 2.4.2: If U € C*(My) and (P,X) are a pair of polysimplices
with P © %, then Upy can be determined as follows: By induction on the

dimengsion of X, define ﬁp}g by

Ups(¢) = Ugpe) — Z Ups: (73p¢) for ¢ c QFm72(My).
ey

Then, by induction on dimension of P, define

Ups = ﬁp,z(ﬁn@ - Z Up s(jpd).
PCP
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This shows that Upy can be determined without using the coordinate

description given in Definition 2.2.1.

Definition 2.4.3: For integers r, let C"(P : X) denote the subspace of
CT (%)) consisting of those currents associated to the polysimplex P with car-

rier X by the procedure of definition 2.2.1.

Definition 2.4.4: For integers r, CT(P; X)) will denote the vector space
C(PX)={UecC(E)|U=Uojp}
C*(P; %) will denote the complex

C'(Py%) =P Crp;x).

res

Definition 2.4.5: For integers », C"(P; 33, 83]) will denote to be the quo-
tient space

Cr (%, 85) = CT(P;X)/CT(P; 0%)

and C*(P; %, 0%) will denote the direct sum

C*'(P; %, 0%) = €P C"(P; T)/CT(P; 8Y%).
red

Remark 2.4.6: From the explict formula for the deRham boundary b, it
follows that each of the groups C*{F; %, 83%) becomes a complex under the

action of the deRham boundary. If P/ C P is a subpolysimplex of P which
contains X, then the image of C*(P': ) in C*(P;%,9%) is a subcomplex,
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denoted C*(P' : 35, 0%), and there is a bijection C*(P’ : ) — C*(P : X, 9%).
With these definitions,

cHp;3,o%) = @ CHP':%,0%).

BCP/CP

In the next chapter, the complex of generalized piecewise differentiable

currents will be defined, and some of its basic properties will be explored.
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Chapter 3

GENERALIZED PIECEWISE DIFFERENTIABLE CURRENTS

A generalized piecewise differential current on M}, is an equivalence class
of piecewise differential currents on Mj, where the equivalence relation be-
tween currents is that their difference "vanishes” on the diagonal. This chap-
ter will be devoted to characterizing the elements of subcomplex of C*(M;)
corresponding to the zero element. The chapter closely parallels the ideas
introduced by Teleman in [T3] with the exception of the notion of combi-

natoral transversality. The notion of combinatorial transversality will be

defined below.

3.1 Definitions and Elementary Properties

We begin by making the above ideas more precise with the following

definitions:

Let Vs denote the diagonal in My, i.e.

VMZ{(Z:,---,.’B)EMX--'XM=Mk|£BEM}.

Definition 3.1.1: Let ¢ : Vi — Mj be the inclusion map. I*(My) will
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denote the subcomplex of (*(M}) defined by

I*(My) = {w € Q* (M) | i*w = 0},

Definition 3.1.2: For any integer r, V" (M) will denote the subspace

V(M) = (D) (M) - C(My),
pg=r
and V*(M}) C C*{My) will denote the subcomplex
V(M) = D V' (My).

reZ
Definition 3.1.3: For any integer r, C" (M) will denote the quotient space
CT(My) = C"(My)/ V7 (My),
and C*(Mpy) will denote the quotient complex

C*(My) = (D C(M4),0)

rcd

where b is the deRham boundary.

An element of C*(M;) will be called a generalized piecewise differ-

entiable current on M.

Definition 3.1.4: For subcomplexes K of M} and integers r, the following
standard notation is adopted. C7(K) will denote the subspace of C"( M)
consisting of the currents with carriers in the subcomplex K, V™(K) will

denote

V' (K) = C"(K) N V" (M;)
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and C"( K} will denote
C'(K)=C"(K)/V'(K).

C*(K), V¥K), C*(K) will denote the subcomplexes of C*(My), V*(My),

C*( My}, congisting of those currents with carriers contained in K.

Definition 3.1.5: If (K, L) is a pair of complexes with K = L, then for

integers r,

C"(K, L) = CT(K)/C7(L)),
V'K, L) = V' (K)/V"(L)),
C'(K, L) =C"(K)/C"(L))
will denote the quotient spaces, and

CHE, L) = CH(K)/C*(L),

VYK, L) =V*(K)/V*(L)
CHK,L)=C*"(K)/C"(L)
will denote the quotient complexes.

Remark 3.1.6: The complex C*(M;) is given the structure of a Q*(M)-
module in the following manner: for any w € Q*(M), for any U € C"(My),
and for any integer 1 < i <k, let

w, =18 21wl - &1 Q" (M),
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with w as the it*-factor, and define

wAU =w; AU modV"(My).

The class of this current does not depend on the choice of i as w; —w; €

I*(My).

. The remainder of this chapter will be to characterize the elements of

V*(My). The first step is to characterize the elements of I*{Mj).

3.2 Characterization of the Elements of I*(A;)

We determine the elements of I*(My) by determining §f.1* (M) for max-
imal polysimplices Il = @y X -+ X 7 in M}, where 57 : II — M, is the

inclusion.

Proposition 3.2.1:
(D) If k=1, I*(M) =0.

(2) If £ > 2, I*(M;) is the ideal generated by

{wf,dwf |wi =b] —b] ,2<5 <k, c KY(M)}.
Furthermore, for every vertex v® ¢ M, one is free to choose

an index h(a) with 1 < h(a) < k, and use b}, in place of b in the

above characterization of the elements wf, i.e., I"(My) is also the
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ideal generated by

{wf, dwf | w§ = b — by, 0" € KO(M) ,1 <5 <k, j#h(a)}

Proof: (1) is immediate. Assume k > 2.

Let w} : My — [0,1] for 2 < § <k, v* € K°(M), be defined by

a __ pa _ 1a
w? = b — b

As the functions w§ vanish on the diagonal Vyy, it follows that w} and

dw? lie in the ideal 1*(M}) for all (j, a).

Remark: For any a, and for any 1 < 4,5 <k with i £ 3,
wf—w?:bf—b?,
and from this it follows that the collection
{w§,dw] | wi =07 —bf ,2<j <k}
generates the same ideal as the collection

{w;-‘,dw;-"|w§=b§9~ ﬁ(a) , 157 <k,j#h(a)}

where 1 < h(a) < k is arbitrary.

Let II = 7 x - -+ x 7y, is a maximal polysimplex in M, and let j: IT —

M. denote the inclusion.
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For thoses polysimplices Il with IINVy # 0, let # = m N---Nmy
be represented by (v2@, ..., v®) where v*©® ... v*P) are the vertices of .

Then
MV ={{z-,z)|zex}

Let O = (v ... %) be an origin for TI, and let L' denote the correspond-

ing set of longitudinal coordinates for II.
Let

B={s"" =i |1 <h<p}.

Define w? =% — bf, for 1 < j <k, all a except a(0).
Let

A =A{w§ | wy |n# 0}.

Then the collection

{w?, 5% | wl € A, s € B}

forms a system of linear coordinates for 1L

Any C*®-function f(w,s) on II which vanishes on V), can be expressed

as

Flw, sy = > wl-gi(w,s)

w(ja}ed

for smooth functions gj‘(w,s) on II. The functions g? can be computed as

follows (Cf. Milnor [M], page 5): As (0,0} € Vyr, f(0,0) =0, and as ITis a

convex set, it follows that




o4

1
P
o ftw, ts) “dt—l—fz i Ftw, ts) - s7dt
0 .

{ja)eAd w:" =1 BSJ
1
u d
= E wj/ — f(tw, ts)dt
; da?
(J:G‘)EA 0 1

The last equality follows as f = 0 on ITN Vs, which implies B_ag f=0. Take

1
gjws:/
0

Conversely, any function which can be expressed as

Fw,s)= > wi-g(w,s)

w{fa)eA

f(tw, ts)dt

w

vanishes on the diagonal.

The diflerentials dwj, for wi € A, vanish on the diagonal, and the dif-
ferentials ds®, 1 < a < p span the cotangent space of II N V,. This implies
that

¢ = Z fap(rw, 8)dw™ A ds”
o, f

vanishes on the diagonal if, and only if, for each pair (a, 3) either f,3 =0
on ILNVyy, or a # 0.

If IINVy = 0, then, for each vertex v® € m;, there is an index ¢ with

v* € m;. Define w} by wj = 67 — b7. Then b7 = jpwf?. Hence all differentials
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forms of degree > 0 belong to jHI*{My). Also, any function f is in the ideal
FI*(My,), if, any only if, it is of the form

flw) = Z'w;‘gj,a('w).
Je
It is only necessary to take
1

g;-”(w) = / d:)j“ ftw)dt.

0

This implies j;.* (M) is the ideal generated by the functions and 1-forms

{w§, dw§ | wf € A}.

As the above holds for all maximal polysimplices II of My, it follows that
T*(My,) is the ideal generated by

{w§, dw] | wf = b7 -8 ,2<j <k, v*ec K'(M)}.
This completes the proof of Proposition 3.2.1.

The next step is to characterize the elements of V*(M}). The character-
ization of the elements will depend on the notion of combinatorial transver-

sality, which will be developed in the next section.

3.3 Combinatorial Transversality

Definition 3.3.1: Let A be a linear simplex contained in some polysimplex

of My, and let 3, P be a pair of polysimplices in My with 3 C P. The pair
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(P,%) is combinatorially transverse to A, written
(P, ITA

in Mj, if, and only if, X N A # @, and every linear function y : P — R with
y(2 U A) = 0 vanishes identically on P.

Definition 3.3.2: A polysimplex X is combinatorially transverse to

A, written

SIA,
if (P,%)ITA for every maximal polysimplex P containing .

Remark 3.3.3: If P is a polysimplex containing ¥, then (P, X} 11V, and
P11 Vs does not imply 3 11 V. Nevertheless, for any polysimplex P D X,
it follows that ¥ AIV s implies that either P 1TV or (P, X) 11V .

Definition 3.3.4: For a polysimplex P = p; x --- x p of My, and an
integer § with 1 < j < k, let A(P,7) be the set of all vertices v in star(p;)
satisfying

1. » & p;, and

2ovCp N NP1 Npj 0N pg

A(P, j) will be called the set of admissible transverse vertices asso-

ciated to the pair (2, 5).

Remark 3.3.5; As p; NA(P,7) =0 and A(P,§) C p; for i # j, it follows
that the sets A(P,5) are disjoint.
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Remark 3.3.6: As A(P,j) C p1N---Npj1Npje1N---Npy, the set A(P, 7)

determines a simplex in M.

Definition 3.3.7: Let p be a simplex in M. Let B{p) denote

Blp) ={ve K¥ M) K%p) |ve K¥nm) forw D p,m e K™(M)}.

The next proposition relates the definition of combinatorial transversal-
ity (of a polysimplex P = p; X - - - X py, to the diagonal Vjs) with the geometric
condition that all nearby vertices to the simplices p; are admissible transverse

vertices, where nearby means that the vertex lies in B(p;).

Proposition 3.3.8: A polysimplex P = p; x -+ X p in M, of

positive codimension, is transverse to Vs if, and only if,

B(p;) C A(P,j),for 1<j<k.

Proof: As PNVy # 0, PNVy = {(z,---,2) | = € p} where p =
prN---Npi. As P is not a rﬁaximal polysimplex, some p; is not maximal.
Assume py is not maximal. Let v be a vertex of M such that there exists
a maximal simplex m of M which contains both p; and v. Let wg,---,my
be any set of maximal simplices of M with m; D p,; for j = 2,--- k. Let

II=m; x - xm.

Let ¢ be the barycentric coordinate function on 7 with ¢{v) = 1, and
extend ¢ to all of II by ¢(X) = #{ proj, (X)), where X € I and proj, is
projection onto the first factor. Then #(P) = 0, and (11, P) I Vs implies
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there exists a point X = (z,---,2) € V; with £(X) # 0. This implies
t(X) # 0 where ¢ is a function on 7y, and note z € p. As p is a simplex which
contains a point x with #(x) # 0, p contains v. This implies (v,---,v) € Vyy,

and hence v € w9 N+ -+ N wy.

Since this holds for all «; with m; D p;, § = 2,---, &, it follows that
v € paN---Npg. Hence v lies in the required set A(P,1). As this is true for all
v in any maximal simplex 7 which contains p;, and as the argument can be
repeated for the other simplices p;, it follows that any maximal polysimplex

IT which contains P is of the required form.

For the converse, suppose B(p;) C A(P,7). It will be shown that any
choice of codim(p;) elements of A(P,§) which completes p; to a maximal
simplex 7; in M, produces a maximal polysimplex IT = m X --- x 7 such

that (TI, P} is transverse to V.

This follows by induction. Assume (II, P) is transverse to ¥V, and that
IT" has been constructed from P by steps consisting of joining vertices from
A(P, j) to p;. Let II be the polysimplex obtained from TF by the addition
of a vertex from A(P, §) to some m;ofII'. Then dim II — dim P = 1, and

dim(TI N V) = dim(Il' N V) + 1.

Let L be a linear function on II with L(P) = 0 and L(Vjs) = 0. Then
L(II') = 0. Since II is a polysimplex containing I’ of codimension one, any
linear function on IT is determined by its value on IT' and one other point
in II. However, the diagonal in II is not contained in II', and the value

of L on the diagonal is zero. This implies L = 0 on II. The assumption

B(p;) € A(P, j} guarentees that any maximal polysimplex II which contains
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P can be obtained by the above procedure. This completes the induction

step, and the propogition.

Example 3.3.9: Let M?* = 0A3, where A® = (2%, 0,02, v%). Let P =
prx - xpr, with pr = (0%, 0%), pp = -+ = pp = (0%, 01, 0?). I = 1y %+ - - xmy,
is a polysimplex with m; = p; for 2 < 5 < k, and m; D py, then the pair
(P,II) IT Vs for all choices of maximal simplices 7 containing p;, i.e. by

taking my = (0%, v, v?), or by taking m; = (¢°,v% v®). This shows P Il Vj.

Remark 3.3.10: The proof of the above proposition also shows (P, X} 11
Var for any polysimplex P which can be constructed from X by taking P =

1

p1 X -+ X pg, where p; is any simplex in M of the form o; *v' % .-« 0™ where

vi e A%, ) for 1 <i < m— dim(oy).

3.4 Transverse Polysimplices and Currents

Let > = oy X -+ X 0}, be a polysimplex in My, and let P be a polysimplex
in M}, containing ¥. C*(P : 3,83} denotes the subcomplex of C*(%, 9%)
given by

{Z D{wap Adt? A[Z]p}o s | (a, B) is assigned to P}.
a,f

Definition 3.4.1: V*(P : X, 8%) will denote the subcomplex of V*(3, %)
given by

V(P 5,8%) = V¥, 08) N CHP : %, 8%).
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The next proposition shows that
V(P :%,08)=C*P:%,0%)
unless (P,3) 11 Vi and P I1 V.

Proposition 3.4.2: Let P be a polysimplex in M, containing X.

(1) If XNV =0, then V*(5%,0%) = C*(%, 6%).

(2) If P 11V, then V*(P : %,0%) = C*(P : 3,0%).

(3) If (P, %) XV, then V¥{P : X,0%) = C*(P: X,9%).

Proof: Let X = oy X -+ X gy be a polysimplex in My, and let P be a
polysimplex in M}, containing ¥,

We first consider the case XN Vy = 0. For j = 1,---,k, let U; be
an open containing o; such that there exists a piecewise linear embedding
;U — B™ (linear on U; N ( a simplex of M)). Let U = U; x -+ x U, and
define ¥ : U — R¥" by

W(my, -, xp) = (1 (1), - -+, Pu(m)).

Let V C U be an open set contains ¥ and is disjoint from the diagonal V.
Let ¢ € C°(¥(V)) with ¢ =1 on ¥(X).

Let g : My — R*™ be defined by

g(z) = ¢(¥(x)) for z C V,

gz} =0Tfor z ¢ V.
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Then g € I9(My), and g |s= 1.
As U(p) = Ulge) for all ¢ € (M) and for all U € C*(3,9%), it
follows that _
O*(%,0%) = V*(E, 85) if £ Vi = 0.
This proves (1).
We now consider the cases with 3N Vs #£ 0.

Let Up € C*(X%, 8%) be represented as

Up = Y Di{we A [Xip)} © 43,

a4

where w,, are smooth forms on P and jp : P — M, is the inclusion.

Proof of (2): If P 1V, then there exists an integer 5,1 < j < k, and a
vertex v* € B(p,;) — A(P, 7). Let Il = | % - -+ X m, be a maximal polysimplex
in My with 7; 5 p; *v%. Let 7 = b = t7 as b is a transverse coordinate to
> C P. Then 7(P) =0, and (P NVy) =0. If (v°,---,2%) ¢ I[IN Vys take
y = 7. If (v% --,0%) € 1IN Vy then v* € B{p;) for all ¢, and v® ¢ p; for
some i # j, as v* € A(P, 7). In this case, take y = 7 — b?. Then y(P) = 0,
y(IINVuy) =0,y #£0, and D,y = 1. Hence for

Up = D{wa A [B]ip1} 0 55 € C*(E, 85)

this implies

y - DUp=y - D, D {ws A [E]jpr} o Jp

= DDy - wa A X} 0 5p — Di{wa A {E]ip} 0 55

= —Up.
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The last equality follows as
DDy - wa A [X]ip1} o jp

is the current which results in integrating the zero function on ¥ as y vanishes

on 2.

As y vanishes on the diagonal, y - D.Up € V*(X,9%). This implies
—Up € V*{(X%,8%). Hence

C*P 1 %,8%) C V'(Z,0%).

This completes case (2) and a similar argument can be made for case (3).

Assume (P, %) AIVay. By Remark 3.3.10, P is not obtained from ¥
by adjoining admissible transverse vertices. Hence there exists a transverse
barycentric coordinate 7 = tf to X in P, and 7(3) =0, 7(Vy N P) = 0. For
any maximal simplex IT in A} which contains P, choose y as above. Iixpress
Up as

Up = D D2 {w, A [E]jp|} 0 55,

where p = «of, and ol = ab) (i,b} # (4,a) and «;® = 0. This implies

Y- DTUp:y . D?r-Derl{wa A [2][}:’]} o .?;3
= DF D2y - wo A [B)py} 0 56
— (p+1) - DFD2{we A [S]ip)} 0 dp

= —(p—i— ]_)Up.

Note DZ DPH {y - w, A [3] (P} 0 Jp =0 as before.
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As y vanishes on the diagonal, y is in I°(P). This implies the current
~(p+1)-Up =y D, Up lies in V*(%,0%).

This shows C*(P : X,8%) C V*(2,8%), and completes the proof of
Proposition 3.4.2.

Corollary 3.4.3: Let ¥ be a polysimplex in M. If & /I[V,, then
VHE, 0%8) = C* (%, 9%).

Proof: As 3 AIV s implies for polysimplex P © 3 either P A1V or
(P,%) AtV )y, this is an immediate consequence of Proposition 3.4.2.

3.5 Characterization of the Elements of V*(M;)

By corollary 3.4.3, if 3 A1V, then V*(X,0%) = C*(%, 83). We now

consider the cagse 2 [1 V.

Suppose ¥ = o1 X -+« X gy is transverse to the diagonal, and set ¢ —
gy M- Noy. By Proposition 3.4.2, any polysimplex P O Y is of the form
P =p % -+ X py with p; = o; or pj = o; % v® with v* € A(X, ). As the sets
A(3, j) are disjoint, the index a determines the index j. Let j(a) denote the
index j corresponding to v* € A(L, 7).

To obtain a useful representation of the elements of V*(P; X, 9%), it is
useful to introduce as coordinate system similar to the one used by Teleman

in [T3]. Choose an origin O = (v,---,v) € XN Vy for X, and adopt a

coordinate system for P consisting of the coordinate functions
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¢ =1f for indices a with v* € K°(o) — {v},
% = 17 for indices j,a with j = j(a), and v* € p; — 0, and
wi = I — b, for indices j, a with j # j(a)

where b, = b] = 1" if v* € o, and bl =% if v" & 0.

Remark 3.5.1: As{* =1I{, t* = and w? = 1% — b;.‘(a), it follows that

a
j(cz)’ J J
di = diy , dt" = dtf , and dwf = dl — dbj,.
Using
1 =1%for v® € o,

= wf41° (for v* € 7 ),

I = wi +1* (for v* ¢ o ),
t;.‘(a) = ¢* for v® € p;,

the following formulas for the partial derivatives are obtained.

0 ot 9 oL 3+k aforv co
ara a7a 916 Gia [b . A/a Y
a — ale gt e 3! Blj ol Bl
9 ath o o o . )
—— —— + —_— 4+ E forv* & o
@ a ] e 6 1o la
ot " ot ot e Jd 8l 19, @ ale
) ot oL o
= = — for allw?
: a5t 2. soi9n = 3 ;
awz. — 8fw 815 v 8'w 81 ol

where 3, ;. means the sum over all barycentric coordinates which are trans-

verse to 3 in P, and where E(j,b)eL’ means the sum over all longitudinal
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barycentric coordinates to 3. in the coordinate system determined by the

choice of origin O for 3.

Remark 3.5.2: As /01" and §/0w} are linear combinations of the partial
derivatives 0/0l} of the longitudinal coordinates 1, it follows (as in 1.8.24)

any current in C*(X) can be represented by linear combinations of currents

of the form D*{w A dt? A [S]} o i where

W= wag(l,w)dwa AdlT e QY (P)
7,8

and P is a maximal simplex in M} containing 3.

Remark 3.5.3: If ¥ C P C P’ are polysimplices in M, with ¥ II Yy,
then the coordinate system (w,l,t) on P agrees with the coordinate system
on P C P’ obtained by eliminating the transverse coordinates to P in P’
This implies, by remarks 2.3.1 and 2.4.1, currents U € C*(¥) can be uniquely
expressed as U = pon Upx with

Ups = Y Di{wapys(w, Ddw® AdlY Adt? A [S]ip} o 45
a!ﬂ)r}‘)a

where P is the polysimplex determined by the pair («, 3).

Remark 3.5.4: If P is the polysimplex determined by the pair («, 3), then
P is the smallest polysimplex such that Ups, = Upy o 75. This follows as the
smallest polysimplex P’ = p} x- - x p} with the property that Ups = Ups:0}

must satisfy the following conditions for each vertex v® ¢ p;- — a;j.

(1) I Dg contains 9/0t%, then v € p.
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(2) If Df does not contain 8/8t% and dt? contains di?, then v* ¢ p}.

(3) Tf D¢ does not contain 8/8%} and dit® does not contain d¢?, then
v? € pl.

These are exactly the conditions defining the polysimplex P.

Hence, P = P'.

Remark 3.5.5: Let P be a polysimplex in Mj containing ¥, and let
n == dim(c) where ¢ = oy N - - Noy. Let N = dim{3) — n, and let

n' = dim(P) — dim(3).

To simplify notation, let

N
dy = Y du A9 /0w’
=1
dy = dI* AOJOI
i=1

dy = dt* NO/OF,
i=1

then d = dy, + d; + d;.
Tor Upx & CP(P; %, 3%) of the form Ups, = DMw A dt? A [2]},

‘."l."

dUpg=(-1)? Y DuD{{w A dt® Adt) A[5]}
=1

+ DX dyw A dt? A [B]}

+ D*{dw A dt? A [E]}
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in CP*1(3, 8%) as the terms ;%] and d,,[X] involve partial derivative longi-
tudinal to 3, and this implies these terms give currents in C*™1(4%). The
corresponding formula for bU in CPH (X, %) is

bUps=— Y DyD#{wndt® Adi? A 3]}

=1

o (1P DEdw A dEP A [Z]}

+ (=1 D {dyw A dtP A [T},

Definition 3.5.6: If P, 3} are polysimplices in M, with 3> C P and X1V,
then C (P : %, 0%) will denote the subcomplex in C*(X, %) generated by

currents of the form
U = Dg{w(w, Ddw’® AdlY Adt? A 2]}

where P is the polysimplex determined by the pair («, 3). The formula from

the above remark guarentees this is a complex.

Also define
ViI(P:%,8%)=C(P: %05 NV, o),

C(P:%,05)=C(P:%,05)/V(P:%,0%).

Remark 3.5.7: The ideal I*(My) is generated by {wf, dw} and as

wi - DHw A dtP AT} = DA{w? - w A dt? A [3]}

dwf A DXw A dt? A [Z]} = DP{dw? Aw A di? A 5]},
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it follows that V' (P : £,8%) € T'(P : ,0%) where I (P : 3, 85) denotes
the subcomplex of € (P : X, 8Y.) given by

T'(P:%,05) = {3 Df{was AdtP A[S]} € CH(P: 3,0%) | w € 551" (M)}
a,f

By reading the above formulag in the reverse order, one obtains

V(P55 > T(P;3, 0%)). These results combine to give

Proposition 3.5.8: If a polysimplex ¥ is combinatorially trans-

verse to the diagonal V,;, then
VI(P:%,08)=1(P:%,05)

where T (P : ,8%) denotes the subcomplex of C (P : X,8%) given
by

{3 DH{wap Adt® A[B]} € C7(P: 5,0%) |wap € 5pI* (M)},
o,

Remark 3.5.9: The above results imply
C*(3,0%) = V*(X,0%) for ¥ X[V,

C*(x,05) = P C(P':3,05) for 1L Vyy,
P el lad o

ViE,en)y = @ T (P 5,0%) for I V.
BCP/CP
In the next chapter, three homotopies will be constructed on the complex

C*(%, 0%). Using the above description of the complex V*(%, 9%}, it will be
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possible to show that these chain homotopies map V*(33, &%) into itself. This
will show that the chain homotopies induce chain homotopies on the quotient
complex, i.e. on the complex C*(3, 9%). A spectral sequence calculation then

gives the homology of the complex C*(My,).
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Chapter 4

HOMOLOGY OF THE COMPLEX C*(Mk)

This chapter will be devoted to computing the homology of the complex
C*(My) by relating it to the real cellular homology of the real relative cellular
chain complex S.{M}, Ny) introduced in 1.8., where Ny is the subcomplex of
M, consisting of the polysimplices which are not transverse to the diagonal.

For integers p, 0 < p <m,
HP(C* (Mk)) = Hkmfp(Mk, No; R)

The other homology groups of the complex C*(M}) are zero. We begin by
using chain homotopies on the complex C*(2, 8%) to show the homology of
this complex agrees with the homology of a real relative cellular complex
Sy(X,0%) if X is transverse to the diagonal in M. The next section intro-

duces the first chain homotopy.

4.1 The Chain Homotopy H,,

For each polysimplex ¥ = oy X -+« X o} in My with X II Vy, let o =

gy N Nog, and n = dim(o}. As 3NV # B, choose an origin O for X
with O € V.
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For each polysimplex P = p) x .-+ x py of M}, containing ¥ let p —

prN-Npg, n = dim(p), N = dim(P) —n —n', give P the coordinate
system

(wla"':wNallu'"7ln>t1:“':tn’)

introduced in Section 3.5,

To simplify notation, let

N
dy =) duw' A 8/ou
=1

dp =Y dl' A/
=1

nf

dy = dif ADJOE,
=1

then d = d,, + d; + d;.

If dw® = dw® A - A dw’, then for i = 1,--- p, let dw? *® denote the
form

duw® @ — du®t A A dw® A duwB A - A dul

Definition 4.1.1: Let Ay, : Q*(P) — Q*(P) be defined on forms

¢ = wlw, 1, t)dw’ A dIY A dt?

151 L
hwd =y (=11 w0 / AL (daw, 1, £)duw® 0@ A dI7 A di?
0

=1
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on forms 6 # 0, and define
hyd =0,

on forms ¢ with § = 0, and extend h,, to 2*(P) linearly.

Remark 4.1.2: This is a homotopy operator on 2*(P) which gives a chain
homotopy between the identity and the map

¢ w(0,D) A dlY A dt?
for6 #0,and ¢ — 0if 6§ =0.
Remark 4.1.3: Note that dih, + hyd; = 0 and dihy, + hydy = 0 as on

¢ € Q*(P) with
¢ — wlw, 1, )dw’ A dlY A dt?

then
51 !
dihyd=>> (—1)7" ). / NI (Aaw, 1, £)dw® 00 A dI? A dt?
=1 0
n |9 1
= (=P N 1) ) / Aﬁ—l%w(,\w,z,ﬂdwﬁ5(i)dzidndtﬁ
j=1 i=1 s
n |4 F
= — (1IN (—1)F O / J\‘*f—h(%w()\m,z,t)duﬁ—‘?@)dzfdwdtﬁ
=1 4=1 %
= —hydig.

An analogous calculation proves the statement d;h.,, + h,d; = 0.

Definition 4.1.4: Let Hy, : C (P : %,8%) » C (P : %,0%) be defined on

currents of the form

U=Di{wA[Z]p}ogp
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by
HyU = Df{hyw A [Z]ip)} 0 55

Let ,,: C'(P: %,0%) — C'(P : %, 8%) be defined by

Hy(U) = (-1 H,(U) for U ¢ C*(P : &, o%).

Remark 4.1.5: As H,, does not alter the pair (e, 8), it defines a map
C(P:%,0%) — C'(P:%,0x).

Remark 4.1.6: HU € V' (P : %,8%) = I' (P : %,8%) with & # 0, then

"HU V(P : %, &%) as w; contains a factor of w®®. If § = 0, then
H,U =0 ¢V (P:%,3d%). This implies H,, : V (P : %,8%) — V(P :
3, 8%), and thus induces a well-defined operator H,, on the quotient complex
C'(p:x,0%).

Remark 4.1.7: This is the analogue of the chain homotopy used by Tele-
man [T3] on the Koszul complex which has been adapted to act on the com-

plex C'(P : &, %).

4.2 The Isomorphism Induced by H,,

Definition 4.2.1: Z (P : £,8%) C C'(P : %,0%) will denote the sub-

complex

Z(P:%,05) ={) DH{wap,(0,0)dl" AdtP A [E]} € T (P : 3,05}
; oy
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Z*(%;0%) will denote the complex

z'z,05) =Pz (P:x,0m).
P55

Definition 4.2.2: »: G (P;%,8%) — Z' (P; %, 8%) will denote the linear

map determined by
o D?{wa'ﬁ’r\f (w, l)dl'y A dt'@ N [2][13]}0_7‘;; — Df{waﬁﬁ (0, l)dlry Adt? A [E]{P]}Oj;)

on forms whose representation does not contain any differentials of the form

dw?®, and the condition
7 Di{wapys(w, D)dw’ A dlY A dt? A [E]ipi} o 55— 0
on currents with & # 0.

Leti: Z (P : %,0%) — Z'(P . 3.,0%) denote the identity homomor-
phism.

Proposition 4.2.3: Let & be a positive integer, and let ¥ be a
polysimplex in M; which is transverse to the diagonal Vj,, and let
P be any polysimplex in M; containing ¥, then

(1) Hy : C(P : %,0%) — O'(P : ¥,8%) is a chain homotopy
between r and i.

(2) Hy : V(P : %,85) — V(P : %,8%) is a chain homotopy

between the identity and the zero homomorphism.

(3) H, induces a chain homotopy I, : T'(P : %, X)) — Z'(P -

2, 0Y)) between the induced homomorphisms 7 and 7.
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(4) H,(C*(2,0%)) = H,(Z*(Z, %))

Proof: Let U € C*(P : X,0%) be a current of the form
U=Di{w A [Z]ip} o b}
= D {w(w, dw’ Adl" A dt? A [S)ip} o jb )

It follows immediately from the definition of H,, that bH,, = dH,, and
H,b = H,d. Hence
bH, + H,b = dH,, + H,d.

Let H denote H,, and we begin with the calculation of dH,, + H,d.
dHU=(d; + di + du) D {huw A [Elip1ip}

U

= (=1 " DuD{hyw A dt A [E]p5b}

i=]

+ D{dihyw A [S)} + (—1)PLDE{ hyw A di[E] e} 0 55
+ D {dyhyw AT} + (1P D2 hyw A dy[Slpr o p

Also,
H(dU)=HdU + HLU + Hd,U

= H((-1)" ) " DuDfH{w Adt' A [S]p)} o jb
i=1

+ H(DHdw A [Zlip}ip) + (- D H(DMw A di[S)e }ip)
+ H(DH{dww A [Slp}ip) + (D H(D#Hw A dy[Slip 1ib)

= (=1 DpDM{hyw A d A [S]p1}55)
=1
+ DY {hydiw A [Slip }o5) + (1) H(DMw A di[S]p}55)

+ D{huwduto A [B]ipi}ip) + (1) H(D{{w A dy[Z]p)}47)-
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As di and d,, involve only derivatives longitudinal to 2, it follows that
the terms involving d;[X] ip) and dy,[X]p) are zero in cyp:x, 9%)). The terms

involving dh,, and h,d; sum to zero.

Thus, by combining terms, we have

4

AHU + HAU = D{{(dyhy + hydy)w A [Z]p}ib

From the basic properties of the standard chain homotopy h.,, it follows that
dH,U + H,dU = U if § # 0, and dH,, U + HydU = U' — U if § = 0 where

U= DFH{w(0,)dl” A dt? A [E]ip) )5

This calculation proves (1).

The proof of (2) is the observation that H,, maps V' (P : %, 8%) to itself,
and that an element U € V' (P : ¥, %) which does not contain a differential

of the form dw’ must vanish on the diagonal.

The result follows as any function of the form w(0,1,t) only assumes
values that it assumes on the diagonal. This implies H,, is a chain homotopy

between the identity and zero homomorphism on the complex V' (P:3,0%).

Parts (3) is immediate, and part (4) follows as H, has the required B

properties when restricted to any polysimplex P in M; containing 3.
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4.3 The Chain Homotopy H;

The same procedure can be done for the variables along the diagonal in
3} (where 33 is a polysimplex transverse to the diagonal). As the calculations
are exactly the same, only the definitions and a statement of the result will

be given.

Let P be a polysimplex in Mj containing X, and let (w,l,t) be coor-
dinates on P as in sections 4.1 and 4.2. If dI” = dI"™ A --- A dl*, then for
i=1,-,p, let &I denote the form

AV = I A A A DA A D

Definition 4.3.1: Let A : Q*(P) — Q*(P) be defined on forms

¢ = wlw,l,t)dw’ A dl" A dt?

h f
P = (1)1 176 f N1 (w, AL £)dew® A IO A dt?
0

i=1
on forms «y +# 0, and define
hl¢ =0,

on forms ¢ with v = 0, and extend %; to Q*(P) linearly.

Remark 4.3.2: This is a homotopy operator on 2*(P) which gives a chain
homotopy between the identity and the map

¢ > w(w,0,t) AdlY A di?




78

for v # 0, and ¢ — 0 if vy = 0.

Definition 4.3.3: Let H; : C (P : %, %) — C'(P : ,8%) be defined on

currents of the form
U = DiH{w A [X]ip bip

by
HIU = D.E.I{h;w A [2]{}3]}3;’

Let H,: C*(P: %,0%) — C'(P : %,0%) be defined by
Hy(U) = (—1PH(U) for U € C'(P: %, 8%).

Remark 4.3.4: As H, does not alter the pair (cr, @), it defines a linear
transformation Hj : 6*‘(1) 0 20, 0%) — c (P : X,3%) by restriction.

4.4 The Isomorphism Induced by H,

Definition 4.4.1: D'(P : %,8%8) C Z'(P: %,0%) will denote the sub-

complex

D(P:%,08) = {> DHrdt’ A[Slip}ip € Z(P:5,05) |r ¢ R},
o3

D*(X, %) will denote the direct sum

DY(x,05) =P D(P:%,0%).
oy

T R e e TR
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Definition 4.4.2: s : 7*(13 : 5,0%) — D (P 33, 037) will denote the

linear map determined by
v DE{w(0,0)dl" A di? A [Zlip1}ip = DE{w(0,0)dt? A [X]p1 1P

on forms whose representation does not contain any differentials of the form

dl”?, and the condition
r DPH{w(0,D)dlY A dt’ A [S]ip} o §p 0
on currents with « £ 0.

Let i : D'(P : ,0%) — D'(P : %,8%) denote the identity homomor-
phism.

Proposition 4.4.3: Let k be a positive integer, and let 3 be a
polysimplex in M, which is transverse to the diagonal Vj,, and let
P be any polysimplex in M; containing ¥, then

(DH,:Z'(P;%,0%) > 2 (P;X,0%) is a chain homotopy between

s and 1.

(2) H: induces a chain homotopy H; : Z'(P : %,9%) - D(P :

3, 0%) between the induced homomorphisms 5 and 7.

(3) H.(2(%,0%)) = H,(D*(S, o%)).

Proof: Interchange the roles of I and w in Proposition 4.2.3.
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4.5 The Chain Homotopy H;

The chain homotopy constructed in this section is the transpose of the
homotopy operator h; defined on 2*(P). More precisely, let & = o7 X - - X 0%,
be a polysimplex in M}, which is combinatorially transverse to the diagonal,
and for polysimplices P = py x - -+ X p;, in M}, containing 3, let (w, 1, ) denote

the coordinate system introduced above.

Definition 4.5.1: h%, : *(P) — Q*(P) will denote the linear map deter-
mined by

J8| :
s = 30D (100 [Ny o, 1, ) 1 it a5,
§e i=1 0
for ¢ =375 dse(w, 1, t)dw’ A dl° A dt’ € QF(P) with § £ 0, and set RHg) =0
if§ =0,

Definition 4.5.2: For a pair (P, %) of polysimplices in Mj, with 3 combi-
natorially transverse to the diagonal, and for nonnegative integers p, define

HF . TP(P:%,6%) - 6P+1(P : X, 8%), on currents
U = D{w A dtP A S }op,

with 8 #0, w =37 swys(w, L t)dw’ A dlT € Q*(P) as

|31

1! @) = Y1) S Oy 90 w9115

=1
where for 1 < j <| v |, and a(8(j)) is the value of the multi-index a corre-
sponding to the variable t#) and N = codimp(¥)— | A |.

-
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If = 0, define HF(U) = 0.
Let H, : C'(P:%,05) — O (P : %,8%) be defined by

H (U) = (-1PH(U) for U € T'(P : %, 0%).
Remark 4.5.3: As H; only reduces D to D}’ “P0) in the terms it removes
the differential dt?Y) it follows that H; : 6*(13 0 8,0%) — 6*(13 . 2, 0%) by
the defining conditions of T (P : %, 8%).

Definition 4.5.6: Let H, : C*(%,9%) — C*(X,8%) be the linear map
determined by Hy | (P o) = EP

Remark 4.5.7: For each pair (P,3) with ¥ combinatorially transverse to

the diagonal, H; satisfies
HU(¢) = U(hyp) for U € (P : %,8%) , ¢ € U (My).

The proof of this remark is a calculation that will be given in the appendix.
From this remark it follows that H, is the chain homotopy claimed in Propo-
sition 4.6.3. This remark will not be used for any results. H; will be applied
to the complex D (P : X,0%) and it will be directly verified that H, has the

required properties.
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4.6 The Isomorphism Tnduced by 17,

Definition 4.6.1: For a polysimplex ¥ in Mj, which is transverse to the
diagonal, S (3, 8%) will denote the 1-dimensional subcomplex of D' (%, §%)
generated by the current {[X]yy}53,.

Definition 4.6.2: u: D*(X,8%) — § (%, %) will denote the linear map
w: Dy - dtg A[X]pp} o jp — 0, if a or A is not zero, and
u:{r-[Zxn}ojs s {r- [Zly}d%,, if o =0 and 8 =0.

Let @ : D*(33,0%) — D*(X%,85%]) denote the identity homomorphism,

Proposition 4.6.3: For polysimplices ¥ in M; which are trans-

verse to the diagonal

(1) H; is a chain homotopy between the identity on D*(X, 35),
and the chain map u: D*(%, 8%) — $*(%, %)

(2) If P # %, then the complex D'(P : X,8%) is acyclic.
Proof: As bH, = dH, and H;b = H.d, it suffices to show
AU + HdU =U
for U € D(P:%,0%) with P+ %, and
AHU + HtdU =U — U =0
for U ¢ D(P:%,0%) with P =X

Let H denote H,. For

U= Di{r-dt’ A[X|p}ip € D(P: %,05),
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with 8 £ 0, H(U) is given by

|8

H(U) = Z(“l)jﬁl%ﬁ"‘z—)'DE‘ﬂ(j){T . dgB—BG) A [E]{P]}j};,

j=1

where for 1 < j <| # |, and «(3(5)} is the value of the multi-index a corre-
sponding to the variable t°0), and N = codimp(Z)— | 4. Let N = dim(3).

Then the class of dHU in D(P : £,8%) is given by

|5 .
diU=d(3 (-1 2P po sy yp00) (5 0 42
(321( ) Nt o] { (Zlipy} o dp)
18w a(B(H))
=3 3 (-1 L B 1y, pe80) g p g4 VA [Slie }ih
J=1 i=1,i#§ N+| |

as di(r) and d,(r) are zero.

Let a(J'(7)) denote the value of ¢ of the 5 variable in (¢!, --, #*) with
the property that its differential does not appear in dt?.

Then, in D'(P : ¥, %)
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N.’
H(AU)=H()  DsDi{r - dt* A diP A [S)py} o 5b)
i=1
1+a(ﬁ'
= D“ rdt® A% X
JX; Nrla] P ASle} o)
N |8 o
(.?)) a—-3(7 i T ‘I
+ZZ N DuDF Pyt A dtFB9) A 5]} o
=1 j=1 +| | I
<14 a(f'(4))
=Y N2 Dot qtf A [5]p )4t
JZ_; N+ o 7{ [][P]}JP
N |8
( )) a—0(7 i T
+ZZ N DuDF POy dt A dtPPG) A [}
i=I j=1 +l [ [
Hence

L+ (@),

dHU + HdU= ZN Tt o]
+ |«

g=1
N8
)) a—p i *
+ZZ DuDE PO Lt A qrP P05, e tir
i=1 j=1 N+|

1A N
BUY) 1, pa-BO) [, i '
>y - DD rdit A dtP-POV ) p )
=1 =1 i N+| I o
. - 1 LN
— ENMU
N+ |al

i=1

18] - )
(—1)a(B(4)) a~BG) (. 1:6G) n 14—B "
+ Z Nilal Dy D777 {rdt?0)  atP P[5 3%

=1




N\ it ald )
—;N N+t |al v

[ -
LS «8d) Di{r - dt? A[S)ip} o 43

j:1ﬁ+|a|
__ N . e
N+ | a| N+ | o
=U.

This shows 2 # 0 implies (dH + Hd)(U) = U.

If =0, then H(U} = 0. Hence H(dU)+d(HU) = H{(dU), and if either

a# 0 or N' # 0, then, in D'(P : %, 0%),

NJ'
H(AU)=H()  DuD{r - dt* A [S]p} 0 55)
i=1

N+ |«
N+ |al
=U.

Di{rdt? A [S]p} o 4p

Ha=0,0=0,and N'=0, then U = {r - [¥lig1} © 75 Then

H(dU):OZU—{T[E][E]}Oj;]

This establishes the required properties of H, and completes the proof

of Proposition 4.6.3.
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4.7 Homology of the Complex C*(5, %)

Combining the above results gives

Theorem 4.7.1: Let M be a compact orientable manifold of

dimension m without boundary, k a positive integer. Let 3 denote

a polysimplex in M,.

(1) If 3} is combinatorially transverse to the diagonal in M,

then

H,(C*(Z,0%)) = H,(S"(, 8%)).

(2) If ¥ is not combinatorially transverse to the diagonal in M,

then
H.(C'(%,0%) =0,

Proof: In the propositions it has been established that

H,(C'(%,0%)) = H(2*(3,0%)) = H(D*(Z,0%)) = H,(S' (5, 65; R))

if 25 is combinatorially transverse to the diagonal in M.

If % is not combinatorially transverse to the diagonal, Corollary 3.4.3

implies C*(33, 0X%) = 0. This implies H,(C*(%, %) = 0.
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4.8 The spectral sequence

In this section, the spectral sequence argument is compléted and the
homology of the complex of piecewise differentiable currents is calculated in

terms of the combinatoral structure of the manifold A.

To compute the homology of the complex C*(My), introduce the filtra-
tion
FPA(C(My)) = CPHI(K™™ (M)
where K**P(My) is the (km — p)-skeleton of Mj. p is the filtration index
and p + ¢ is the degree of the currents.

{EP4,d, } will denote the corresponding spectral sequence.
Let 3 = ol x - -+ x o be a polysimplex in My, and let P be a polysimplex
in M; containing 3.

Adopt the following notation: P = gy X -+ X pg, ¢ = oy N -+ N oy,

p=p1N--Npg, d= dim(e), and p = dim(p).

For a positive integer h, let JS°R* denote the oco-jets of smooth functions

at the origin in R".

Definition 4.8.1: X*(R") will denote the Koszul complex of all co-jets
of smooth differential forms at 0 € R".

Definition 4.8.2: K*(P;3) will denote the Koszul complex of the pair
(P, %), defined by,

K'(P;%) =Y JCR"dz®
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where h = p — d = dim(p) — dim(c).
Definiton 4.8.3: The Dirac complex for the pair (P, %) is

D'PE)={U= ) Aw;DMdt" A[60]} | U € C*(P; %)}

ay

and [6y] represents the Dirac distribution at the origin in R* where A is the

codimension of ¥ in P.

Remark 4.8.4: From Proposition 3.4.2, following Teleman in [13], one
has: For k> 1,

C* (%, 0%) Z(Q* N Vi) @}c* P;%) @D*(P %))

where the sum is over all polysimplices P containing ¥, and satisfying (P, 31
Vum and P11 V.

Remark 4.8.5: By the above remark, it is possible to give the following

characterization of the Eg’q terms of the spectral sequence: for k > 1,

EEY — o Y. @@V QKNP D) R DHP; ).
codim(¥) =p PO % R R
YIUVy

Remark 4.8.6: In [T,], Teleman obtains a similar characterization. In

his decomposition, there is an isomorphism

C*(5,0%) = (NN V) QK (2) X D' (),
R R
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and he constructs chain homotopies on each of these three complexes.

In the approach given in this work, homotopies have been constructed
directly on each of the complexes C'(P : X,8%) (which restrict to chain
homotopies on V*(P : %,0%)). From the explicit formulas for the chain
homotopies, it follows that they combine to give a chain homotopies on the

complexes C*(3, 9%}, and V*(X, 8%).

This approach avoids using the explicit representation of the E; terms

of the spectral sequence. The E, terms were calculated directly.

From
EET = &P crra(x, %),
codim(3) = p
it follows that
EPY — HYED*) — &P H,(CPH(%, 8%)).
' codim(X) = p

Theorem 4.7.1 implies
Bi= @B Hlc(sen)
codim(¥) =p

catisfies

E¥=0,ifqg#0, and

B = D R {[X]m} o 3,
codim(X) = p
YUV
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Let N denote the subcomplex of M;, consisting of the polysimplices of
M, which are not transverse to the diagonal V. Let S.(My, N; R) denote
the relative cellular chain complex
Sr(My, N3 R) = 8,(My; R)/S.(N; R)
as defined in 1.8.17.

The isomorphisms between the vector space Stm—p{Mg, N; R) and the
vector space S (M) given by 3] — {[E]py} o 7% induce an isomorphism

between chain complexes
S (M) 22 St (M, N)
(after a flip of indices). This follows by showing the homomorphism
dy : I (C*(%,8%)) — H*(C*(%, 6%))
agrees with the boundary homomorphism on S, (M, N).

On an element {[Zliz }ogs of Ef’o, the homomorphism d; is the deRham
boundary b. It follows that

di{[Ewy} 0 Gng=b({[Ey} © 33)(¢)
= Pliz{sz(de)}
= Xlg{dline)}

~ (SHAGEH) A b5}
- f d(j4)

(2]

= / isnind

o[z
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where 0y, is defined by dX Ay = p* (as in Definition 2.2.4) and g5 : 95 — X

is the inclusion,
As

{105 o5y} 0 72 (6) = [OF15sd A s, = / i,
(o5
it follows that

di{[E]my } o 75 = {[0Z]jom } © Jis:
corresponds to the connecting homomorphism of the long exact homology se-

quence of the pair (3, %) (which is induced by the boundary homomorphism
of the complex S, (M, N}).

Hence, under the isomorphism
Ef’o = Skm—p(Mku N) R):
di corresponds to the boundary homomorphism on S, (M, N; R).
EP? = HUEDT).
As BP? =0, if ¢ # 0, and EP® = Sy, (My, N; R), it follows that
E2° = Hyp (M, N; R)
B2 =0 if g+ 0.
Theorem 4.8.7: For any positive integer k, the homology of

(C*(My),d), the complex of generalized piecewise differentiable cur-

rents associated to the k-fold product M; of a compact oriented

combinatorial manifold M with 8M = 0, is given by
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HP(C*(Mk)) = Hkm_p(Mk,N;R), 0<p< dim M,
HP(C*(Mk)) =0,p> dim M,

where N = {3 € M;, | 5 1[V,}.
Proof: As Hy(C'(My)) = @,z B it follows that
Hp(c*(Mk)) = Hkm_p(Mk, N; R).

To prove Hyy, (Mg, N; R} = 0 if p > m, it suffices to show N contains the
m(k — 1)-skeleton of M.

Assume k& > 2, and let ¥ = 0y X --- X 0} be a polysimplex in M
transverse to the diagonal and with dim(X) < km — 1. Immediately from
the definition of combinatorial transversality, it follows that any polysimplex
' = o] x --- x o}, which contains ¥ is transverse to the diagonal in M.
Choose ¥/ with dim(>') = km — 1. As each o7, 1 < j < k&, is obtained from
oj by taking the join of o; with elements of B(s;), and B(o;) C A%, 5), it
follows that

dim(oj N - n o) = dim{ey N - Noy) + dm(E) — dim(D).

Hence

dim(¥') — dim(X) < dim(efN---Not) <m—1 as X' is not maximal.
This implies dim(3} > dim(%') —~ m+ 1, and shows any polysimplex which

is transverse to the diagonal has dimension greater than m(k — 1).

Hence, N contains the m(k — 1)-skeleton of My. This implies

Hkm_p(N) o Hkm—p(Mk) if p > m.
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As this isomorphism is induced by the inclusion, it follows directly from the
long exact Sequence of the pair (My, N), that Hy,, (Mg, N;R) = 0if p > m.
This completes the proof of Theorem 4.8.7.

Remark 4.8.8: This theorem is the analogue of Theorem 2.6 from [ Ty].
It expresses the homology of the complex C*(My) as the relative homology
of the pair (Mz, N) which is obtained from M using only the combinatorial
structure of M. In | Ty], N. Teleman proceeds to show, in the case of smooth
manifolds, that these relative homology groups depend only on the underlying
topological structure of M, if the simplices of the triangualtion are transverse

to the diagonal.

In the final section of this chapter, it will shown that the corresponding

result does not hold in the combinatorial case.

4.9 Dependence on the Combinatorial Structure

In this section, it is shown that the relative homology groups obtained

in Theorem 4.8.7 are not invariant under subdivision.

Hence, the results of this work are strongly dependent on the combinato-
rial structure, and cannot be expressed in terms of the underlying piecewise-
linear structure. It will be shown that the derived complex M’ of any compact

orientable 2-manifold without boundary is a complex which does not have

any transverse polysimplices of positive codimension in any k-fold product
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of M; if k > 1. Hence, a single barycentric subdivision of a combinatorial
2-manifold distroys all of the homological data. We begin this section by
proving this fact.

Remark 4.9.1: Tf M is a combinatorial Z-manifold, and M’ is the derived
complex of M, then the star of any vertex contains at least four 2-simplices.
This follows by considering the barycentric subdivision of two neighboring

2-simplices in M,
With this observation, the following proposition is easily proved.

Proposition 4.9.2: Let M be a compact, orientable, combinato-
rial 2-manifold without boundary. Let M’ be the derived complex.
If k£ > 1, then M; contains no polysimplices 3 of positive codimen-

sion which satisfy ¥ II V.

Proof: Suppose X is a polysimplex in Mj, with 11V 7. Then $NVay #£ 0,
and let o be the simplex given by

YNVy={(z, - ,z) € Mj | = € o)}

Express ¥ as X =0y X -+ X 0.

First assume codim(¥) = 1 and o is a O-simplex, ¢ = (¢°). Then
some o; is 1-dimensional, and o; is of the form o; = (v9,4'). As M’ is a 2-
manifold, o; is a face of two 2-simplices of the form (¢, ¢!, v?) and (v°, v!, v%).

As S 1LV, it follows that o2, € A(S, 4).

Hence, the set of vertices {v°, v2, v®} is contained in a; for all § # 4. This

implies o; = (v%, 2 v®) for 5 £ 1.
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From this it follows that the star of v® in M’ contains only three 2-

simplices. This contradicts the above remark.

If o is a 1-simplex, o = (v%, v!), then o; = o. As ¢ is contained in two 2-
simplices (v, v!,v%) and (v?, v!, 4?), transversality of 3 to the diagonal would
imply that o; must contain the four vertices v9, v!, 42, v®. This is impossible.

This implies M has no polysimplices > with 211V ;; and codim(¥®) = 1.

Suppose ¥ is any polysimplex in M, 5 with 311V s and which has positive
codimension. Then, by adjoining codim(X) —1 admissible transverse vertices
to 3, one obtains a polysimplex P with P11V and codim{P) = 1. As there
do not exist polysimplices with these properties, there are no polysimplices

%, of positive codimension with ¥ IT V.

This establishes the proposition.

The next chapter will study a version of the concept of a generalized

piecewise differentiable current which does carry the homological information

of M.
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Chapter 5

HOMOLOGY OF THE COMPLEX N*(M;,)

In this chapter, a modification of the notion of a generalized piecewise
differentiable current is introduced. Using the Thom Isomorphism theorem,
it will be shown the homology of this new complex A*(M,) (defined in 5.1.2
below) agrees with the (real) simplicial homology of M. Moreover, there is

a natural multiplication
g - N7 (M) QN (M) - N™H5(1 1)
R
which induces an operation
e+ H (N (M) Q) Ho(N" (M) = Hoyy o (N (Mi))
R

for all integers r and s. The multiplication on homology is related to the
intersection pairing of the real simplicial homology classes of M by the Thom

isomorphism.
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5.1 Definitions

Let M be a compact orientable combinatorial manifold of dimension
m without boundary. For any positive integer k, M will denote the k-
fold product of M, and M; will be given the cell structure consisting of

polysimplices 3 = o X -+ X a3 with o; a simplex of M, for 1 < j<k.

Definition 5.1.1: For any integer & > 1, let No(Mj,) denote the subcom-

plex of My consisting of those simplices with do not intersect the diagonal

\% M in Mk
Definition 5.1.2: N”*(My) will denote the quotient complex

N (My)=C* (M) /C*{(No(My,))
= C*( My, No(My)).

The elements of AN*(My) are piecewise differentiable currents on M, with

carriers contained in the complement of No(My) in M.

5.2 Multiplicative Structure
Definition 5.2.1: For a pair of positive integers k, I,

iy CT (M) ® C*(My) — C™ (M), forr,s € Z,
R

be defined on elements

Uy = Dt {wi A [B4]} o 5 € CT(Mg))




Uy = Di™{wa A [B9]} 0 55 € C*(M)))

where P is a maximal polysimplex in M, k, and P’ is a maximal polysimplex

in M;, by
et (U, Uz) = D { (0" Y wy A (py)*wn A [5 x S}
Extend py; to C*(My,) & C*(M;) linearly.
For a positive integers &, I, let

" My = My x M; — M,
be projection onto the first factor, and let

i My = My x My — M,
be projection onto the second factor.

Proposition 5.2.2: For U, and Uy as above,

i1 (U, Un) = pn (AU, Ug) + (= 1) g 1 (U, dUy).
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Proof: Let ({,%) = (I!,... {Mitdh 41 .., ,t™7%) denote the longitudinal

and transverse barycentric coordinates to ¥y x 3y in P x P! chosen so that

()= (1, iV gt . e™) give the longitudinal and transverse barycen-

tric coordinates to ¥; in P under the identification of P as the first factor

in P x P'. This implies (1",¢") = ({M+1, ... [ [NitNe gm+l , FTm)

are the
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longitudinal and transverse barycentric coordinates to Yo in P’ under the

inclusion of P’ as the second factor of P x P’.

To simplify notation, let ¢ denote py,

Ny
dy = di' A8/

i=1 ’

Ni+No ) - ‘

dp = Z dl* A 3/351 |
i=1+N;

Also set
w1 = (p*)*w, :
Wy = (pr)*wy ; :
! ‘
|
di = dp + dl*u.
if
Then | :
|
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dﬂ(Ub U2)=d(D§£1+a2{{D1 Ny A [El X 22}})
11 +ng
= Z DtiD?IJraz{dti AWy A dog A [El X 22]}

i=1

+ D?I—l_az{d; (DTJ; AN Laz) A [El X 22]}

+ (—1)T+SD§£1+&2{&31 Nl A d;[Z}l * Eg]}

11
= ZDf-D;’“MZ{dti ANy A A D1 X Do}

i=1
1 +ng .
H (=17 ) DD AdE Ay A S % B}
:',:m—ll

+ DPF Ay Ay A [y x 5]}

+ (1) D iy Adpisg A Dy x T}

+ (1) DLy A s A dp[S] A [¥e]}

+ (=)D D) A g A [50] A dp[Sa)}

= p(dU1, Us) + (—1)" (U1, dUy).

This implies
A (Ur, Us} = pir g (dUL, Us) + (— 1) g (U1, dU)
and establishes the proposition.

As these elements generate C"(M;) and C* (M), the following corollary

is immediate.

Corollary 5.2.3: For all U; € C"(M3), and for all U, € C* (M)

Ape (U1, U) = pioa(dUy, Us) + (— 1) 1 (U, dU).
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bk {(Un, Us) = (—=1)° e 1 (WU, Us) + a1 (U1, dU).

5.3 Induced Multiplication on Homology

The next proposition establishes the induced multiplication on Homol-

ogy is well-defined.
Proposition 5.3.1: For any pair of positive integers £, I,
= CH(My) Q) C* (M) — O (My i)
R
induces linear transformations for integers r and s

p + H (N* (M) ®HB(N*(MJ)) = Hy o (N (M)
_ i

given by
e ([U1], [Oa]) = [(U1, Up)]

for [Uh] € H,(N*(My)), and [Us] € H,(N*(M)).

Proof: Let Uy € Z"(My, No(My)) represent (U] € H,(N*(My)), and let
Uz € Z*(M,, No(M;)) represent [Us] € H,(N*(M;)). Then

bl € OT+1(N0(Mk)), and bl € Cs+1(N0(M)).

By the above corollary,

bu(Ut, Uz) = (—1)"p(bUy, Us) + p(Uy, bU3).




102

As bUl e O'H_l (N(}(Mk)),

bUl e Z Uz.' Wlth UZ)’ = CT—H (2,) C CTJFI (NO(Mk))
TCNG (M)

However, as 3’ NV = 0 (in My), it follows that
(E’ X Mg) M VM == @ in Mk‘H'
This implies
p(bU, Uy) C CPH Y (No(Mya)),

Le, {u(dU1,Us)] = 0 in NTHL( My, ). "ff_
Similarly,

[1(U1, bU3)] = 0 in N7 (Ag ).

This implies ;

i Z7 (M, No(My)) @) Z° (M, No(My)) — Z7 (M1, No(Miy)).-
I

To show p is well-defined, suppose

Ul =Up +bU" + U" with U’ € C™7H(My) and U” € C" (No(My)).

Then

p(U]; Uz) = p(Us + U 4 U", Uy) = (U, Ug) + p(bU7, Us) + p(U”, Us).

However,
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(U, Us)=(—1)* u(bU", Uy) + w(U", bU)
= (=1)°n(bU", Uz) + u(U", UF) with U € C*(No(My)).

As Uy € C°(No(M;)) implies u(U",UY) ¢ C™H YNy (Myy 1)), it follows
that
(b0, Uy) = (—1)°bu(U", Uy) — (—1)° u(U", U2).

Also ‘M(U”,UQ) = OrJrB‘H(N(}(Mk_H)).

Hence
(UL U2) = u(Uh, Us) + (=2)°bu(U", U) + (U™, Us) — (1) (U, UZ)).
This implies
[1(U1, Uz)] = (U1, Us)] in Hyy o (N (Mi2)).

A similar argument holds for the second factor.

This completes the proof of Proposition 5.3.1.

5.4 Intersection Pairing and Homology of A™* (M)

The next theorem relates the homology of A/ *(My) to the homology of

M with real coefficients.
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Theorem 5.4.1: Let M be a compact oriented combinatorial
manifold of dimension m without boundary. Let k be a positive

integer. Then

Hy(N*(My)) = Hpp (M) for p c 2.

Proof: To compute the homology of the complex A* (My) introduce the
filiration FP9 on C*(My) used in Chapter 4. Given a pair of polysimplices
(P, %) in My, with 5 C P, let (I,¢) denote the longitudinal and transverse
barycentric coordinates of 3 in P. Let H; and H; denote the homotopy

operators associated to the longitudinal and transverse coordinates, i.e.,
H(DHw A [Blp}o jp) = (-1 Di{hw A [S]p} o 35,

where £; is the homotopy operator on {1*(P) formed by using all longitudina)

coordinates,

=1

bl 1
hyw =y (—1)" 11 . f A (A, 8 dAdl = A @i
J |

on forms w with jhw = w(l, t)dl7 A dt.

Bl vptiet o ars
Hy(D{rdt A[S]p}ogp) =Y ( I)N++ |c;(ff(3))

j=1

D PO L @tF=P0) A (5] p )4t

N = dim(P) — dim(X%)+ | 8 |, and a(B(5)) is the value of the multi-

index a at the variable corresponding to B(5) = ™ nonzero component of

the index 3.
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From these homotopy operators and the spectral sequence, there follows
Hy(N*(My)) % Hym—p(S* (M, No(Mp)) for 0 < p < m,

Hy(N* (M) =0 for p > m.

The next step is to construct a retraction r : My — Vyr — No(My,) and to

show it gives rise to an isomorphism

Hy(My, My, — Var) & Hy(My, No(My))
for each integer g.

For a polysimplex P = p; x -+ x py with P NV, #£ 0,
PHVM={(w,---,:E)EM><-~><M=Mk|9:€plﬂ---ﬂpk}.

Let p=p1 -+ N pg, and V, = PnNVy. Let b denote the barycenter of p.

~

Then (b, - -, 13) will be called the barycenter of V,.

A retraction r : My — Vi — N (M) can be constructed in the follow-

ing manner: For j = 1,---,km, let n; be the number of polysimplices of
dimension j which intersect the diagonal V,; in My and let N = ;“:’1 n;.

For j = 1,--- km, i = 1, ny, let Pf be an ordering of the set of

simplices of dimension j with P/ 1V, 5 0.

Forj=1,---,km,i:1«,---,nj,1et
si-’.:Pij—VM—Han—"VM

by radial projection from the barycenter b of Pij M Var, ie.

$(z) = (1 —t)b +t,z for x € P/ —Vy
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where ¢, > 0 is chosen so that s(z) € 8Pz-j . 'This depends continuously on =.

FOrj:]-’"',km)i=1,"',nj} deﬁne

rl i My — Vi — My — (Var U Int(P))

'rj(m) =z for x € My — (VU Int(P@.""))

2

ri(z) = §i(z) for = € PP (PP nVy)

1

As sf is the identity on BPE?' -~ (an —Vu), 'r'f is a continuous mapping.

A homotopy

Bl (Mg, — V) x [0,1] — My — Yy

between frg and the identity on My — Vjs is given by R
W(z,t) = (1—t)z+t-ri(z) forwe M, —Vy  te [0,1). [
For j=1,---,km, let r/ :Tij o---or{, Then

Tk My — Vg = My — (Var U U Int(PF™),

0 P My — Vg — My, — (Var UUZS Tnt(BF™) U U Tg(PE™).

Continuing in this manner, one has

rlorfo. . orpy, : My, — Vu — My — (ViU Uginl U, Int(Pil))'

As

My = (Var UUE U, Tnt(P)) = No(My),
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r=rlo..orbm. My —V, — No(My) is continuous.

7 is a retraction as r | Ny(M,y= identity, and a homotopy
ho (ngVM) x [0,1] — My — Vs

between r and the identity on My — Vs can be constructed as follows: Order
the set {rf} such that 7/ <+ if j > ¢, or J=tandi<s Order the set {h]}
in the same manner, i.e. h;'." <hLifj>torj=tandi<s.

Let 71 = 7™ and define 7; = rlj oT;_1 where ri represents the it* element

of {r]} with respect to the ordering. Define

h!(Mk—"VM)X[O,l]ﬁMk—vM

by .
Nt—i+1 i—1 ¢
t) = hy(Fiy(2), —— ) for ¢ —
Iz, t) = b (F;_y(z), ¥ Yfort e N ,N]
for i=1,--- N.
Then A is continuous, and h(z,0) = =, h(z,1) = r(z), and h | woas) =
identity.

This implies Ny(My) is a strong deformation retact of M, — V M, and
et Hy(My — Var) — Hy(No(My))

is an isomorphism for all integers q. The long exact sequence of the pair
(My, — Vs, No(My)) implies Hy(My —V 3, No(My)) = 0 for all integers q. By
the long exact sequence of the triple (Mj, My — V M, No(My)), it follows that

Hy(My, My, — Var) 2 Hy(My, No(My)) for q € Z.
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Remark: If one takes a triangulation of the cell structure on M}, which
gives a triangulation of the diagonal, then the second barycentric subdivision
of this triangulation produces a regular neighborhood W* ¢ M, of the di-
agonal (in the sense of Definition 6.3.1 of Stallings [S2]), and by Proposition
6.6.8 of [:5y], it follows that W* collapses to the diagonal.

As Vs has an open neighborhood M’ which retracts to the diagonal,
the Thom Isomorphism Theorem (Corollary 11.20 of Dold [D] with X = @)
implies

Hg—l—(k——l)m(Mk:Mk — VM) = Hq(M) for q e Z.

This establishes the isomorphism H, (A (M)} = Hp_o(M) for q € Z,

and completes the proof of theorem 5.4.1.

Remark 5.4.2: This implies the homology of the complex A/ (My) does
not depend on the combinatorial structure of M and is determined by the

underlying topological manifold.

Remark 5.4.3: The chain homotopies of Theorem 5.4.1 show any chain
¢ € C*(My) representing an element of H (N (M) of the form

= Z Cz‘,an{wi,oz A [Ez',oz]} € O*(Mk)
(e)cd
lies in the same homology class as a current of the form

a=) e{[Bmhi% € 5 (My)

jeJ

where the sets {[Ziel}imea and {[5;]},c7 contain the same clements, S (Mj,)

as defined in 4.6.1.
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To simplify notation, let ¥ denote the current 3 — {[Z]z} o 73, for
an oriented polysimplex ¥ in M. Also let (X x ¥'Y denote the current
(B X XV = {[Z x ¥z} 0 gt sv- (These is the same correspondence of
5" (My) with S,(Mz) as in 4.6).

If 3} is an oriented polysimplex in My, and X is an oriented polysimplex

in My, then the definition of u implies

p(E,5) = (S x 2.

If

k!

cp = Zcizi € Hym— (Mg),
=1
ng

co = ZC}Z} € Hypn_ (M),

=1
let
71
cL = ZQSZ S Or(Mk) , and
=1
?1,2 -
&= o3 e C*(M).
j=1
With this notation
g Mg
e )= 3 x5 ¢ 3y
i=1 j=1
= (Cl X Cz):

This shows the identification of ?(Mk,Ng(Mk)) with S, (M, No(My)) (de-

noted by”) gives an identification between p(él, ¢2) and ¢; X cy. This implies

p(lea], [c2]) corresponds to [e; X c3] in homology.
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Remark 5.4.4: Let 73, : My — VE Np(My) denote the retraction of
Theorem 5.4.1. In My = My x My, let Vyy, denote V’fu X VfM C M x M,
and let No(Mj, M;) denote the subcomplex of My x M, consisting of thoge
polysimplices which do not intersect VE x Vi, By defining the barycenter
of the polysimplex V, x V_ in V%,I x V%, as the pair (BJ, E)T), the procedure

of the theorem constructs a retraction
Tyt My x My — (V¥ x Vi) No(My, M)).
This implies, as in the theorem,
Hy (M1, My — Vag,) = H,(No(Mg, M;)).

It also follows that ¥y, has a regular neighborhood W#*! which retracts to
the submanifold Vy, (W*! can be taken as the interior of the subcomplex
consisting of simplices in the second barycentric subdivision of My which
intersect the diagonal). Let et WhE Vﬁd X Vﬂu denote this retraction,
and let v : Wi — Vs be the retraction associated to the collapse of W* to

Vi as in the remark of Theorem 5.4.1.

Remark 5.4.5: These observations imply (by 11.20 of Chapter 8 in Dold
[D])
Hy (M1, Miyt — (Vi X Vig) 2 Hy_gp (M)

by an isomorphism

Cr (ria)u(TNE) , for € € Hy(Miyr, My — (VE; x vio)

where 7 = T{c{ = Tﬁi’}f‘ ¢ HY (Mg, Myyr — V) is the Thom class of the

embedding of M, into My as V&, x Vi,




111

Remark 5.4.6: The results of this section give the following sequence of

isomorphisms

ic

Hy(N™(My)) — Hy(S" (My, No(My)) — H( My, No(M)) 2 Hy(My, M—Vy)

TN The d,

= Hy ey (WF) = Hy o 1y (Viar) < Hy_ 1y (M)

where the first two isomorphisms are from the chain homotopies and spectral
sequence of Theorem 5.4.1, 7% ;. are induced by the retractions, 7 is the

Thom class of the diagonal, and d : M — M, is the diagonal embedding.

Remark 5.4.7: Let d: M — M x M denote the diagonal embedding,
and let j : (M x M,0) — (M x M,M x M — V) be the inclusion. If
¢1 € Hi (M), c; € H,(M), then the intersection product crecy € Hoyy (M)

satisfies, (and is determined by)
di(c1 @ cp) = (—1)™Mm 2y, o 7 N j{er X ea)

where 7 is the Thom class of d. This follows immediately from the definitions

of 7 and the intersection pairing (as given in Dold (D]}

Remark 5.4.8: Let ¢; € S,(M), c; € S,(M) represent homology classes
[c1], [ea) € H(M). Let &, & denote the corresponding chains in §* (M), and
let

he 0 S (M) — S,(M)

denote the inverse to™: 8, (M) -» S " (M).
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Then
(lea] x [ea])=[(c1 x ea)]

= [51 X Eg]

= [N(Eia 62)]‘
Hence, (with the notation of 5.4.7)

d(fer] o [eal)=(=1)"0" Iy, o 7 0 (1] x [22)

= (O™, 070 Gy ([e] % lea]))

(D)™™ Dy, 071 g,y (7, &)

This establishes the relation between the intersection pairing on H,(M) and

i1 N*(M) X N*(M) —)N*(Mg)

Remark 5.4.9: For the general cage, let
[U1] € Hyy ooy N* (M)

[UZJ = Hs+(l—1)m(N*(M))'

Let ¢; € 5,.(M), ¢ € S,(M) represent homology classes in H,(M) corre-
sponding to [U)], [(/3] under the isomorphism of Theorem 5.4.1, i.e.

le1] = ras 0 7F N U]

[ea] =7y 0 Tf N [Us).

lea] X [ea=(rps 0 7 N [UL]) X (4, 0 74 (1 [T))

= (ri1)s o 3 N ([UL] X [Ty))

= (P41)s © lef N Uy x Uy)).
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Hence

de(lea] o [ea])=(~1) D (py ), 0 70 A (]  [ea])

Il

1™ ) o 0 (RO (U x U)]

(=17 (reg) o (" Uy 1 [w(Uy % Uy)]

()™ y1), 0 i [(Uy, Uy)]

i.e.

do(rf O [U) & (7 O [U]) = (—1)™™ ), 0 7 1 (T, Us)).

The equivalence of Tf Ly le’l‘l with 'rf g by Proposition 11.26, Chapter 8 of
Dold [D]. |

This expresses the relation between t, the intersection pairing, and the

Thom class.

Example 5.4.10: Let M be a compact oriented combinatorial manifold

without boundary. Define a current Up € C* (M) by the equation

- 1. P
e I S L
P=0 dim(or)=p
where the second sum is over all p-simplices o of M , and N (a?) is the number
of maximal simplices of M which contain o. When this current is evaluated
on the Sullivan form p, it gives the Euler characteristic of M. This example

shows how a current can contain information about the entire combinatorial

structure of the combinatorial manifold.
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Appendix

The Chain Homotopy 7.

This appendix is devoted to the proof of the claim made in Remark
4.5.7. The chain homotopy constructed in this appendix is the transpose
of the homotopy operator A, defined on *(P) where P is a polysimplex
containing Y. More precisely, let ¥ = oy x X 0% be a polysimplex in
My, and for polysimplices P = p1 X -+ X pp in My containing ¥, let (x,t)

denote a coordinate system with the z-coordinates longitudinal to ¥, and the

t-coordinates transverse to X.. Let N = dim(X).
Define A, : Q*(P) — Q*(P) by
|61 !
Ryd =) (—1)i0) / A=t s (a0, \t) AT 50 A dae,
e =1 0
for ¢ = 3 5 ds.(x,6)dt’ Adz® € Q(P) with 6 # 0, and set hi(p) = 0if 6§ = 0.
For each pair (P, X) define H, : C*(My) — C*(M;) by

HU(¢) = U(hkg) for U € C*(P,,0%) , ¢ € Q' (My)

Proposition A.1: For any nonnegative integer p,

H: CP(M}C) — Op+1(Mk),
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and for
U = Di{wss Adt? A ]} o 3,
with 8 # 0, H{U) is given by
18]

H(U) — Z(—l)j—l‘jéf—fjjﬂf“ﬁ@{wa,ﬂ A dEPP9) A [5]) o

=1
where for 1 <j <| v |, and a(8(5)) is the value of the multi-index o
corresponding to the variable t*U) and N = codimp(¥)— | 8 .

If 3 =0, then H(U) =0.
Proof: To show H maps CP(My) — CPY(My,), it is necessary to show
that H has a representation of a certain form. Hence, it is necessary to calcu-

late an explicit formula for H(U) for U € C*(My). Let (z,1) be coordinates
for the pair (P, )} as above.

Let
U = Di{w(z,t)dz? Adt’ A [S]} o 53 € CH(P, %, %),

6= peslw, t)dt® Adat € QF(P).
€,0

Remark: U(¢, sdt® A dz€) = 0 unless dt® A da A dz? A dtP — Tk, Let 4/,
A" denote the multi-indices with dt® A da? A dz? A dtP = p*. Hence

U(¢) = Uy gdt® A da?)

(after combining all terms of ¢ which can be expressed as a function times

dz? A dz?).
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Remark: If d#*=%() = ¢t then the differential dt%®) does not appear in
dt” . This implies the differentia) @50 appears in dt®. As dt® 90 = @## does
not contain any differentials in dt?, it follows that dtf = +dt5®) A d#¥ . Let
4 be such that dt®® — dtf0) and define v(j) = +1 and vg,, = +1 by the

conditions

dt’ A da? A dz? A dt? = v()dt 00 A de? A dPO A de? A de?

= (1) v () - ¥,

Set A = {j | t*0) = ¢ with o? £ 0}, and set NV = codimp(X)— | A |.
For an index j € A, 8/9t%Y) appears in the expression D and therefore
corresponds to some index a(h) occuring in D¢, Denote the corresponding

h by b = f(j), and the corresponding value of o by a(8(7)). With these

notational conventions,

ki !
HU($)=U U3 3 (1) / N1 (e, AYANGE 6D A o)
ed i=1 )
18] b
= U _w(j) - #70) / X gy (2, ) dAdE® A dz™)
i=1 o
lg] L
= v(i)[SHw(z, ) D (°0) / XY gdA)(w, 0)dt” A dx? A da” A dtP}
0

i=1

i N )
=3l Bl D70 [ san e, 0uct

g
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181
— Zyﬂ,,, - [EHw(w, )70 D2( / AV (2, MYAN) (, 0) %)

+ v (0) - (EHa(B()) - wiz ) DI PO [ AV, Me)dA) (m, )t}
A

—Zvﬂaq (1)) - [EHw(e, ) DO AV ¢z, t)dA) (x, 0) )

O\H O\M

= D s alBG B}t / X DP9 (3, 06)) ) a, 0) )

2
i

= 2w GNPt o / X4 (DR 3 (1, M)A (2, D))

5

1

= S s (3) - BG)) - [SHw(w,8) - ( / AT DEB gy (0, 0)4N) - )
A 0

=3 0sa () - dBGY) - [SHw(w, 1) - ( f AT+100) (D249 gy (, 0) - )
A

0

R e S T

=050 () - 2PUD st ) - (DR g (0 -
A

N+«
= 3 g3} 5P 3 te, (D i), 01
A
gl e
=) (19 ]é,ja) DI {0 A 00 A (5} 0 g,

Remark: }, can be replaced by Eﬁil as the terms with transverse

coordinates ¢ = ¢70) corresponding to the additional indices § are such that

the a{A(j)) corresponding to these terms are zero.
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For the last claim of the proposition, if
U= DH{w A [Z]} o jp € C*(My),

and ¢ € Q7 (M) with jpé = 37, dsc(z, t}dt® A da?, then H(U)(¢) = U(h'¢)
which is zero, as h'j}(¢) does not contain the differential dtf — dtLA- - A
As ¢ was an arbitrary element of *(My), it follows that H(U) = 0 if 8 = 0.

This completes the proof of the proposition.




