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Abstract of the Dissertation

Transition Functions for Monopole-Free
Abelian Lattice Gauge Fields on the Torus

by
Janet Cecelia Woodland
Doctor of Philosophy
in
Mathématics
State University of New York at Stony Brook

1993

A lattice gauge field (under certain conditions) represents a
principal bundle with a connection. In this dissertation we show
how such a bundle may be constructed by producing transition
functions for a coordinate bundle based on the lattice gauge field
data. We focus on the case of a continuous, monopole-free lattice
gauge field defined on a cubical lattice on the n-torus for arbitrary
n.

We formulate an Ansatz for the form of the transition func-
tions as they depend on the lattice data: each one is defined in

terms of a linear combination of nearby plaquette products, where

1il




the coefficients only depend on n and on the remoteness of the

plaquette from the site in question. Applying the relevant cocycle
conditions produces a system of linear equations in these unknown
coefficients. The monopole-free condition is shown to be neces-
sary and sufficient for the existence of a solution to this system.

Furthermore we show, using the theory of continuants, that the

coefficients satisfy a certain recursion relation which allows them

to be generated independently of the linear algebra.
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Chapter 1

Introduction

In all contemporary theories, the forces between elementary particles are
mediated by quantum gauge fields. The classical example of a gauge theory
is electromagnetism, which is the theory of interactions of charged particles
~ with the electromagnetic field. Here the gauge group is U, corresponding
to the internal symmetry (the phase) of a charged paiticle. In geometric
language, an electromagnetic field in a region R of space-time is a connection
in the bundle of phases over R, a principal U;-bundle. In fact, the connection
form may be exactly identified with the vector 4-potential A,. As a particle
moves along a path in R, its phase undergoes parallel transport by A, in
proportion to its charge. The primacy of A, over the usual electomagnetic
field (whose six components are the six components of dA,) [5] is illustrated
by the Aharnov-Bohm effect. Yang-Mills fields generalize this interpretation of
electromagnetism to connections in principal G-bundles, where (G is the group

of internal symmetries of particles in the theory in question.

Quantizing the theory means that we no long consider a single path joining




two points. If we want to know what the change of phase will be when a
charged particle moves from point X to point Y in space-time, we average
the parallel transport along all possible paths from X to Y, weighting the
contribution of each path by the action along that path. This is the path-
integral procedure [6]. An analogous procedure is used to determine expected
values of quantities associated to gauge fields, when (for example) the fields
are required to satisfy certain boundary conditions. Now the “path integral”
is taken over the space of all connections satisfying the boundary conditions.
Note that in general this space is non-compact and infinite-dimensional.

For electromagnetism the results of the path-integral procedure can be
calculated by perturbative methods. This has led to a highly successful theory.
But for general gauge fields, and in particular for the gauge theory of the
strong force, these methods do not work. A non-perturbative approach became
possible with Kenneth Wilson's invention -of lattice gauge fields in 1974 [17].

The lattice approach substitutes a finite-dimensional, compact model for
the infinite-dimensional and non-compact spaces mentioned above. For ex-
ample, instead of integrating over the space of all connections in principal
G-bundles over a space X, we integrate over the space of all G-valued LGFs
on a cell-decomposition A of X. When G and X are compact, this space
is compact (although in general so large that refined Monte-Carlo methods
must be used to evaluate the integrals). By definition, a G-valued LGF on a
simplicial complex is a collection of group elements, one uqg for each oriented

1-simplex < a8 > in the complex, with ug, = u,4. A G-valued LGF repre-

sents a (continuum) gauge field, i.e. a connection in a principal GG-bundle over




a domain in space-time, in the following sense: Suppose the relevant domain
has been triangulated as a simplicial complex A, and that a trivialization has
been chosen at each vertex of A; this identifies the fiber over that vertex with
G. Let a and 8 be adjacent vertices in A. If we start at the identity element
in the fiber over a and use the connection to parallel-transport this element
to the fiber over 3, we should arrive at the group element u,g in that fiber. It
turns out [14] that if X is a compact manifold, certain conditions on the LGF
(essentially, bounds on the “plaquette angles”, the products of group elements
around the edges of 2—simp1exesj lead to the possibility of reconstructing the
bundle and an approximation to the original connection. Then the bundle
and connection allow us to compute characteristic numbers, or charges, which
can be used in the lattice computation of the expected value of topological
invariants of the system in question. Recovering the bundle from the LGF
allows such numbers to be computed from discrete information; for example,
the “topological charge”, an invariant of SU(n)-gauge fields on 4-manifolds,
admits a lattice computation [10],[14].

In this work we address the problem of reconstructing abelian (U;) gauge
fields from lattice data on rectangular complexes of arbitrary dimension. The
expected values of quantities associated with abelian fields have recently be-
come of renewed interest in topological quantum field theories [2], [18]. For
U;-valued LGF's it is not only possible to show that the corresponding bundles

exist; it is possible to repesent them explicitly as coordinate bundles, whose

transition functions are given by universal formulas in terms of the lattice

data. This procedure works for all LGFs off a set of measure zero, except that




in dimensions 3 and above the “monopole-free” condition must be satisfied.

This condition is necessary for the existence of a bundle.

Our procedure for reconstructing the bundle follows an Ansatz which

may be summarized as follows (see Chapter 3). We construct the bundle via

a representative coordinate bundle, given by a set of transition functions on
overlaps of local trivializations. For the case of U;-valued LGF's on a cubical
lattice on an n-dimensional torus, we have verified a pattern which was known
for n = 2,3,4 [13]; this work gives an explicit algorithm for the transition
functions for all n > 2. The sticking point in this problem is determining
the value of transition functions on multiple intersections, where they must
satisfy certain cocycle conditions. Extension to the rest of the domain may be
achieved through linear interpolation. The exponent of the transition function
consists of a certain linear combination whose coefficients are determined by

solving an n X n system of equations. The results are stated below:

Theorem 1 Let u be a continuous LGF on a (periodic) cubical lattice A on
the torus T+, and a a vertex of the lattice. If u is monopole-free, then there
is a set of coefficients {a7*'} such that all relevant cocycle conditions at the

given point are satisfied by the transition function given by:

1,. . . ‘ . .
Vagjo (0 + 5(31 +j24 o+ In)) = togs, - ezp(1O(e; Jo)), (L.1)
where
& jo) Zaffll 3 K (0) (12)

m#E0




Theorem 2 There is a recursive relationship among the coefficients for T"t1:
—(n =0 + (n+3)dD, - - 1P =0

for1 <£<n.

Theorem 3 The following relationship holds between the coefficients for T"
and T™+1;

o0 = 0+ a3,




Chapter 2

Preliminaries

2.1 Fiber Bundles

The following definitions are adapted from Steenrod [S}.

A principal coordinate bundle (X, G, U = {Us}, {gap: Ua NUs = G})
consists of a topological space X, a Lie group G, a covering U of X by open
sets U, (so X = U,U,) and a continuous map gag: Uy N Ug — (G whenever
U, NUs # ¥, satisfying the following cocycle condition: if z € U, NUs N U,,
then

Jor (%) = Gap(z)gs~(T).

The total space E of the bundie is defined as
E=JUsx G~

where (,¢.) € U, x G is identified with (z,95) € U x G iff g, = Jap{®)gs.
The projection p: E — X takes (z,g.) to z. The global right action of G on

E is defined on U, x G by (z,94) - § = (z,949); since it commutes with the




identifications, it extends to E. Clearly, X = E/G. We can interpret the
obvious map hy: Uy X G — p~U, as a local coordinate on F; over U, N Uy
the two coordinates are related by ho(z,9a) = hp(z,gp) if and only if g, =
Jop (m)gb; hence the name transition functions for the gqgs.

If'V is a refinement of 2 with say V,, C Uy, for each p, then the coordinate
bundle with covering V and transition functions defined by ¢/, = gn(o)n(o)IV.ovs
is considered equivalent to (X ,G, U, {gsp}). So to compare two principal co-
ordinate bundles (X, G, U = {U,}, {gas}) and (X, G, U’ = {Ui}.{g),}) with
same base X and group (¢ we may supposc that &’ = U by passing to a
common refinement if necessary. Then the two bundles are considered equiv-
alent if there exists a family of continuous functions A,:U, — G such that
gotha = Aahp-

A principal G-bundle is an equivalence class of principal coordinate
G-bundles under this relation.

Remark The dual cells, and their pairwise intersections, are closed; usually
open sets are used for local trivializations. This was justified in [P]; for a

construction which corresponds to this one but uses open sets, see [GKSW].

2.2 Connections

There are several equivalent ways of defining a connection in a principal
G-bundle ¢ = (m: E — X). For our purposes the most convenient is the
following one defining connection in terms of parallel transport. A connection

associates to each piecewise smooth curve ¢:{0,1} — X and to each element




e € p~le(0) an element ¢’ € p~l¢(1) in such a way that 1) e’ varies continuously
with ¢, and 2) considering the right action of g € G on E, (e-g) =¢ - g. We

say that e’ is obtained from parallel transport of e along ¢ by the connection.

2.3 Lattice Gauge Fields

In the case of U;-valued LGFs on tori, it is natural to let A be a periodic,
cubical lattice. Working on 7™}, let us denote by {jo, 71, . - Jn} unit vectors
parallel to the coordinate axes (and by —j, the unit vector in the direction
opposite jg, etc.), so that given a vertex a € A, a + ji is the adjacent vertex
in the lattice in the kth direction. A Uj-valued lattice gauge field u is
the assignment of an element of /; to each oriented 1-cell in the lattice. It
assigns U, to the l-cell going from a to « + j;. The definition requires
Untjimii = Uan;» We call a square (2-cell) P in the lattice a plaquette,

and we will use the notation P;(c) for the plaquette with vertices listed

counterclockwise as «, a + j;, @ + J; + jx, @ + Jx. The plaquette product is

-1 -1
Yot jxidi Yasge

then the product uaj; Yt of the transporters assigned to each
edge of the square, and this element of U; is denqted UP 4(a)- I8 argument
(using the branch of the logarithm between —r and ) is called the plaquette
angle and denoted Kp, (o) OF K; x(a). The LGF u is said to be continuous
if no up = —1; then Kp is unambiguously defined and never takes the values

7 or —7. Some useful plaquette product identities are

K,-,k(a) = —Kk,;(a) = Kk,_,-(a +j‘) (2.1)




Having chosen « and two directions j; and jj, it will turn out to be convenient
to have a concise notation for sums of angles of plaquettes “parallel” to P; ()
(i.e. also involving the same two directions}. We will group them by their

remoteness from a as follows:

K@) = Kix(a)

K(Z) Z I{tk 05+Jm)
m#t,k

= 3 Y Kipla+jm+ie)

m#ik {Fikm

I{(4)( ) Z E Z I{i,k(a + jm + jﬂ + JP)

mik GEikm piiktm

Eie)= Y ¥ Kple+ 3 )

maEk l#4km pELEkLm
K(n 1) z Kip(a+ E 7e)
miLk L#Eikm

KW () = Kigla+ 3 jm)

m#ik
We also set

K%)= K@), €=1,...,n
ki

In the higher-dimensional cases, there is another important property which

we must require in addition to the continuity condition. It is convenient to




describe a cube (3-cell) by a starting vertex and the three directions one travels
to trace the cube; for example, (5; J;, jx, j¢). The monopole-free condition
states that the following relationship holds for the faces (plaquettes or 2-cells)

of that cube:

Kiiw(B) — KB+ 7e) = Kep(B+ 7)) — Ko B) + Kio(B) — Kip(B + ji) (2.2)

The monopole-free condition is necessary for the existence of the bundle, as

it guarantees that we can extend our construction from the 2-skeleton to the

3-skeleton of the lattice. In fact, according to [13], the sum

Kip(B) = Kix(B+3e) = Ko B+ 7:) + Kio(8) — Kip(B) + Kio(B + k)

is 27 times the first Chern number C; of the bundle defined by the lattice
gauge field u on the boundary of the cube (topologically a 2-sphere). This
bundle can be extended to the interior of the cube if and only if it is trivial,
which is equivalent to Cy = 0 {8].

This topological fact will have an algebraic manifestaton when we carry
out the implementation of our Ansatz in Chapter 3. The Ansatz leads to
a certain system of linear equations which is overdetermined and admits no
solution. At a corner z of a dual cube on the (n + 1)-torus, enforcing the
cocycle condition around a plaquette P leads to an inhomogeneous system of
(2n — 1) linear equations in the n weights assigned to K,-(l)(a),...,Ki(")(a).
Applying the monopole-free condition to each of the (n — 1) 3-cubes in the

link of # which have P as a face will reduce the system to one with a unique

solution.

10




2.4 Continuants

We now include some material from linear algebra which will be useful in
the proof of the main theorems. We refer the reader to Muir [M] for further

details.

A continuant is a determinant all of whose elements are zero except
those on the main diagonal and in the two adjacent minor diagonals. We will
adopt the notation D(1,n) for the n x n determinant with a;,b1 and ¢; in the

upper left corner and a,,b,—1 and ¢,_1 in the lower right corner:

a4 b] 0 O P 0 0
Cc1  dg bg 0 . 0 0
0 Cy; Q3 b3 0 ‘e 0
g0 ... 0 0 Cp—2 Qn_ b'n,—l
0 0 0 0 Cn1 .y,

11




or,

(
by b ... by
D aq dy ... n— 1 (429
C1 Cy s Cn-1
\ /
Theorem 1 Let A, be the following n X n continuant:
(
b 2b . (n—1)b
a a—{b+c) a—(n—1)b+c¢)
—{n — 1)c —(n—2) ... —c
\

Then A, = [a — (n—1)¢jla — (n —2)c—bjla — (n —3)c~2b] -+« [a — (n — 1)b].

12




Chapter 3

Ansatz

In this chapter we explain the Ansatz we employ for constructing a coordi-
nate bundle {i.e. a set of transition functions satisfying the cocycle condition)
from a Uy-valued latiice gauge field on a cubical complex. This is a general-
ization and systematization of a procedure used in {13] for dimensions 2,3 and
4. As we proceed, we will illustrate the Ansatz by carrying it out completely

in dimensions 2 and 3.

3.1 Beginning of the Ansatz

To construct the coordinate bundle, we first form the dual complex to A
(we denote the n-cell dual to the vertex o € A by ¢,). The top-dimensional
dual cells will be our “trivializing sets”, and we will define the transition
functions on pairwise intersections (codimension-1 faces of dual cubes), e.g.
Vajs ¢ Co N Capj; — Uy. At triple intersections cy M €ayj; N Casjy (codimension-

2 cells in the dual complex) we must ensure that the product of the four

13




_ = — = e e —g

-~ *
4 s O+
. , |7 x*Je

Figure 3.1: ¢y N oqio N Capjy i dual to the plaquette Poi(a) (dim 3)

transition functions (corresponding to the four incident codimension-1 cells)
is the identity. This is a cocycle condition, and there is one for each dual
codimension-2 cell; i.e. for each plaquette in A, since the triple intersection
Co N Capji Moty is dual to the plaquette P;4(a) (see Figure 3.1).

We will define the transition functions inductively on dimension. At
cach stage v is already defined on intersections of the dual face with lower-
dimensional lattices. We will define v at the far corners of the dual intersection,
and interpolate to match the definitions established at the center and from the
previous stages. The general procedure will be to define v from the center value
and from the plaquette angles of certain 2-faces related to the point in ques-

tion. To take advantage of lattice symmetries, all plaquettes equally distant

from this point will be weighted equally in our formula.

14




Note: It is important to remark that the Ansatz uses only the geomet-
ric relations between its various ingredients. We will use specific coordinate
directions to illustrate its operation and to calculate the values of certain a
priori unknown coefficients, but the calculation is completely invariant under
symmetries of the lattice. In particular it will only be necessary to define the
transition function at one new corner of one particular face in each dimension,
and in each dimension it will only be necessary to check one cocycle condition.

We will construct the transition functions to agree with u in the following
obvious sense: since the 1-cell (in A) labelled «;j; runs through the center

1. IERR
a + 2§ of ¢4 N cayj;, We set Vogii (0371} = oy,

3.2 In dimension 2

We will construct vy, : €o N Capjo — Ur. The domain of this transition
function is one-dimensional. We have defined it at the midpoint of the inter-
section; now to define it at either endpoint (the “corners” a + 3(jo & f1)) is
sufficient, for we can use linear interpolation to extend v,;;, to the rest of the

intersection (sece Figure 3.2). We will define

1. 1. :
Vagjo(er + 0 + 1) = thasi xp(i63 Ko (@) (3.1)

5" is universal {the subscript indicates the dimension of the lattice, and

where a
will be omitted when there is no confusion; the superscript indexing ensures

compatibility with the higher levels of the algorithm).

To determine agl), we apply the only relevant cocycle condition at the




Figure 3.2: dim(A) =2

chosen point, which is the one corresponding to the plaquette (o, 1) I

1. 1.
A=valat 3J0 + 531)

1. 1. . 1. 1,
B = vajpsin (@ + 270 + 531) = Varpjoiin (@ + Jo — 570 + -2'31)
1. 1. ) . 1. 1.
C = 'Ua+jo+j1§—jo(a + 5]0 + 5]1) = Ua+j0+j1;_.je(a + Jo + h— -2-]0 —_ 5‘71)

1. 1. 1.1,
D = vayjp-p(a+ oJ0 + '2’,?1) = Vasii—p (@ + 71+ 570~ 5]1)

(using the plaquette identities 2.1} then the cocycle condition is ABCD = 1.

By the equation 3.1,
B = tjois oxp(iay Ku—o{a + jo))

C = Uariotisimio €¥P(105 K _o_1(a + jo + j1))

D =usyj- exp(iagl)l{—l.o(a + Jl))

16




Now we set ABC'D = 1 and regroup the u’s and K’s:

L = oo Uartjosjs Yok jo+ins=jo Yok qrs—j1 X
exp(ia$)[Kox(a) + K1 _ola + jo) + K_o-1(a+ jo + j1) + K_10(a + j1)]-
But the product of the u's is exp(iKo1(«)); and the plaquette identities 2.1

reveal that each of the terms in the exponent is also this plaquette angle.

Therefore, we have

1 = exp(iKo1(a))(1 + 4ad"),

which determines the coefficient: @}’ = —1/4.

3.3 In dimension 3; monopole-free condition

We now move to dimension 3, where the monopole-free condition first
appears. We will show that this condition is necessary and sufficient for de-
termining the coefficients used in the transition functions. Here, the domain
of the transition function is 2-dimensional. We will begin with the same con-

struction developed for dimension 2 - i.e.
Vasj (0 + §j0) = Uaijp

1., . : .
asio (@ + 5 (jo £ k) = Uasio exP(—1/4Kozx(ei Jo)), b = 1,2

Next we calculate the value of v,j, at the corners of ¢4 N €aqj, (Which are

a+1(jotji£j2)) and interpolate. Because of the symmetries of the lattice and

the expression, it will suffice to provide the construction for only one of these;

17




—_— e -y

Xtk

Figure 3.3: dim(A) =3

it is convenient to use the one with all positive directions, which is the center
of the 3-cube (a; jo, j1,J2)- It is convenient to restrict our choices of plaquettes
to this cube; and we will further restrict ourselves to those plaquettes involving
the direction jo, since it is the determining direction for the transition function
in question. In that cube there are the “nearer” plaquettes (which contain the
edge a;jo), to which we give the weight agl), and We‘give the weight agz) to

the two “farther” plaquettes, so that

Ve (%0) = ey €xp(E){a) Ko (@) +Koa(e)]+a5” [Kou (atja) + Kopla+ii)]}

At this corner, there are two cocycle conditions to be satisfied, corre-

sponding to the two codimension 2 faces of the intersection which meet there.

18
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The cocycle condition (e; jo, jx), & = 1,2 requires that

Vasdo (mﬂ)va+jo:jk (5"'0)”;41-3'1;360 (wo)v;;}k (330) =1,

i.e. (taking k=1, for example)

_ ) B | -1
1 = (ua'.mua+:ro;21ua+j1;joua;jo)x

exp{i (a8 Ko, () + Koa(@) + Ky, -ole + jo) + Kia(e+ jo)
—Ko_1(a+ j1) = Koalo + 1) — Kyo(e) — K1 2(a)]
+a§?[Koa(e+ jo) + Koa(e + 1) + Ki,-o(e + jo + 52) + Kna(e + jo — jo)

—Ko_1(a+ 71 +72) — Koala+ j1 — 1) — Kyola + 7o) — Ki2(a+ 70)])}

Now we apply the plaquette identities 2.1 and combine similar terms:

1 = exp(ify {a))exp(t) (agl)[4K0,1(a)

+Kop(a) + Kiz(a + jo) — Koz(a + j1) —~ Ki2(a)]

+aP[d Ko (e + j2) + Kopla + i1) + Kia(e) — Koa(e) — Kiple + j‘))])

1 = exp(z) ((1 + 4&:(31))1{0,1(0) + a;(f).[(o,l(a +]2)

+(af? — af)[Kon(a) — Koale + 51) + Kia(a +jo) = Kl,z(a)])




Figure 3.4: Plaquettes used in the four terms of the cocycle condition {«; jo, 71}



Thus we see (either from this expression or by examining Figure 3.3) that
to each face of the cube («;jo,71,7,) that links our corner is associated a
coefficient of 1 + 4ag1),4a§2), or ai”) — agz). Since the plaquette angles in thé
equation are arbitrary, these coefficients must be simulaneously zero for the

cocycle condition to balance. Thus our Ansatz leads to the system

1+4a) = 0
4ag2) = {
agl) — a.gz) = 0

which clearly admits no solutions.
The only way to continue with the Ansatz is to reduce the dimension of
the space of equations. Let us suppose that there is some linear relationship

among the plaquette angles of this cube: i.e.

6
Z/\,‘I({ = O,/\,‘ not all 0 (32)

i=1
(where we have abbreviated K = Ko 1(a), Ky = —Ko1(a+ j2), K3 = Ky 3(a),
Ky = —Kj2(a+ jo), Ks = —Koa(a), Ke = Koa(a + j1))
The cocycle condition («;jo, 1) shows that, because four of the plaquette
angles (namely, K3, K4, K5, and Kg) have the same coefficient, that ,\5_ : ,\4_—_
As = Ag; in exactly the same manner, applying the cocycle condition (a,go,h)
gives us Ay = A3 = A3 = Ay Therefore, all the A’s are equa,l,nOW

equation 3.2 becomes

I(1+I{2+K3+K4+I(5+I{6=0,




or

1(0'1 (Of) ot 1{0,1(05 + jz) + I(l'g(a) — 1{1'2((1 + jo) — I{D,z(a) + I{Q'g(a -|- _]1) = (},

which is precisely the monopole-free condition (2.2). Thus, the existence of a
solution for the coefficients (given this Ansatz) is equivalent to the imposition

of the monopole-free constraint.

Since the coefficients A; are all equal, we now have 1 + 4a§1) = 4a{P =
agl) - agz), yielding ag) = —5/24 and ag2) = —1/24 in the 3-dimensional case.

3.4 In dimension n+1

We now move to higher dimensions. On the interface between two top-
dimensional dual cells in an (n+1)-dimensional cubical lattice A we will we will
define v,,;, as above at the points a+1j and a+2jo+37k, and a+3(jotjet7e),
for 1 < k,¢ < n and we assume by induction that this pattern has been carried
out through dimension n. This defines v, at all the intersections of the

interface between ¢, and c,4;, with lower-dimensional sublattices of A.

At the furthest corners of ¢, N ¢ayjp, Which have the form a + 1(%jo £

... £ jn), we define
Varijo = Uansjo €XP(1)(linear combination of nearby plaquette angles),

where, as before, “nearby” will mean that a plaquette is a face of the top-

dimensional cube in A which has as its center the corner in question; those




plaquettes at the same relative distance will carry the same weight:

e . (f
Voo (2) = thaygo exp(i)3. 3l K (),

£=1m#0

using the notation from Section 2.3.

This completes the Ansatz. We will show in the next section that, using

the monopole-free condition, it can indeed be carried out.




Chapter 4

Main Theorem and Proof

Theorem 4 Let u be a continuous lattice gauge field on a periodic, cubical
lattice A on the torus T™, and « a vertex of the lattice. If u is monopole-
free, then there is a set of coefficients {a}™'} such that all relevant cocycle

conditions at the given point are satisfied by the transition function given by:

1., ) ) } }
Yoo (a + 5(31 +a2t... +.7n)) = Uesjo emp(z@(a;gg)), (4-1)
where
(a3 30) Za,(ﬂ_l > Km (4.2)
m#0 e

Remark Defining vg;, at a + % > 7-oJe is one of several possible choi_ée's,’_ :
given a cocycle; any one of the “corners” of the triple intersection cc')'uld” be._'__.;
used, as previously stated. If we choose the corner ¢ = a+2(T €i), ( : :i:l)

we can proceed with the stated formula, substituting e;j; for j;, and a,pplymg"':!

the plaquette identities (2.1). The same coeﬂicmnts will result. o
Proof: Assume that v, ,(z) has the form 4.1 where z = « 41 Ez h ]g

As remarked in Section 3.3, satisfying the cocycle condition commg from one-‘
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plaquette is equivalent, because of symmetry, to satisfyiﬁg all _cﬂ_iconditions,

so consider the cocycle condition from the plaquette (a';.' Jo, Je

Voo (%) Vark josin (€)V 2 g ()05, () = 1.

Subsituting the values from 4.1 and rearranging factors gives

1 = oo Uartjoisn Yot jusio Yo * €2P(1Ok) = exp(iKox{a))

B = O(a; jo) + O + jo; &) — O + Jr; Jo) —

Substituting the expressions 4.2 leads to an equation mth

al®) = aﬁﬂl and the various K(9’s. Let us write it as

1 = expli(Kox(e) + >_a¥Cy)).

Co = K@) + KO (e + o) — K (a + x) — K (@)

We will analyze these four terms separately.




E{(a) =

K+ jo)

z I{(f)

m#F0

K o)+ 3 Kin(@)
m#0,k

K@+ Y Y Komla

m#0,k P30,m
|Pi=¢-1

+ jp)

K@+ 1Y Komla+ir)

m#£0,k PFO,m.k
{Pl=e-1

+ Z Kom(a + Je + .71'5)]
.E;O,m,k
|PI=E—2

> K a+ jo)
m#k

K (atjo)+ 3 Kio(a+jo)
m¥E0k

EOa+i)+ S 3 Kim(a+io+ip)
MO 15&'31

KO a+j)+ [ Y Kimle

m#£0,k P30,m.k
IP!"_-f—l

+ jo+ jp)

+ Y. Kimla+jo—Jjo+ ig)l-
F’:\;O,m.k
1Pl=t-2
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And similarly

EQ(a+i) = Killa+i)+ 2 [ 2 Kom(at i+ ip)
Ao

+ 5 Koo+ je—ix+3p))
P0,m.k
|Pl=t—2

Ee) = K@)+ 1 S Kim(a+ir)

m#£0,k PF0,m.k
1P|=E—l

+ Y Kimla+jotip)l
Py, m &

|ﬁ|=f—2

Now substituting the last line of each of these computations in the ex-

pression for Cy, and applying the identities 2.1 yields
r 3
> Kom(e+jp)+ > Kom(a+ ik +7p)

P30 Bqowmss
—/—1 CFvm,
IP] IP|:£—2

+ 2 Kk,m(a + jD + JP) + E I{k,m(a + Jﬁ)
|};;1izlj; Pyo,m k

41{({]2(05) + Z ﬁ [|P|=¢-2

m#£0,k

— ¥ Komla+jr+ir)— D, Kom(a+ip)

PF0.m,k PFo,m k
Pl PF,m,
I l -1 |Pi=f—-2

-~ Y Kim(atjr)— > Kimla+jo+ip)

(Pore P30,m 4
- |Pi=¢-2 J

“

For each P, the left-hand column of this array is the sum of the plaquette

angles of the four “lateral” faces of the cube based at o + 7p with edges




along jo, jx, jm and oriented by that 3-frame. If this cube is not to contain a
monopole, this sum must be equal to minus the sum of the plaquette angles

of the top and bottom faces, i.e.
Kogla+jp) — Koo+ jp 4 jm)-

Similarly for the right-hand column, substituting P for P and noting that the

signs are reversed; the monopole-free condition requires the sum to equal
—Kor(a+iz) + Kowla+ jp + Jm)-

Replacing the column sums by these new values gives

+ Z Z [Kor(a+ jp) — Korla+ jm + ipr)]

m#£0,k P30.k,m

-3 Y [Koxla+ip) — Kopla+ jm + is)
m#0,k ﬁ;O,k,m ’

Now compare A = 3,0,k 2.P50,k;m Kox(a+jp) with K((,?c = 2Pyo,k Koo+

jp). Each term in Kgf,l appears once in A for each possible choice of m ¢

P U{0,k}. Since there are n +1 — (£ — 1) — 2 = (n — £) such choices, we have

A= (n—8KS. Similatly, Tgor Tpgosm Korla+ip) = (n—L£- K.

On the other hand, Yp0x >pyo,e,m Kokla + jm + jp) is clearly the same as

£ ok 2opgon Kogla + Jp) = ff(((f,jl) since there are £ different places to

insert the “m”, and similarly Smzok Lpgopm Kok(@+in +ip) = (€— K.

With these simplifications, the expression for Cy becomes:




Cy = 4K®O 4 [(n—- KO —(KED] _[(n— (£ - 1)KED — (- 1)KY)]
= KOd+n—040—-1]—eKE) _(n - £+ 1)KED

= —(n~€+1)KED 4 (n+ 3K — gD,

Now substituting into equation 4.3 gives

1 =exp{i(KV(a)+ Y aO[—(n — £ + KV 4 (n + 3)KO — LKD)}
[
and regrouping in terms of the K’s gives
n—1
1= exp{i(KW(a) + Y[ (£ — 1)at* V) + (n + 3)a® — (n — )N K )},
=1

A priori this means that the argument of the exponential is a multiple of 27¢;
but since the K’s are arbitrary the only way for a linear combination to be
constant is for all the coefficients to be zero, and then in fact the argument

must be zero:

n—1
0=K® 4+ 3 [-(£ - 1)a® I+ (n +3)a — (n — £)a** V] K.
=1

We can interpret this as an n X n system (1 < k £ n) of the form

0=K(B A+ &)
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where &, is the first standard basis vector for R”, A is the column vector of the
unknowns ag, K is the n X n matrix of plaquette product terms (K,; = K {gti),

and B is the n X n matrix

( )

n+3 —(n—1) 0 0 0
1 43 —(@m-2) 0 0
0 -2 n+3 —(n-3) 0
0 0 —(n—-2) n+3 -1
0 0 0 —(n—1) n+3
\ /

Since K is arbitrary, the solution requires 0 = B - A + €;, or
B-A = —¢. (4.4)

Now the matrix B has the special form of a centrosymmetric continuant; taking

a=n+3,b=-—1,¢c=11in Theorem 1 yields immediately
det B = 2"(n + 1)},

so the system has a unique solution. o

Theorem 5 The last two coefficients are
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and

S - —(n+3)
i 2%(n + )n(n — 1)

Furthermore the coefficients afﬁrl satisfy the recursion relation

(n—0)aP = (n+3)ad, — (¢ - et

Proof: This is clear from equation 4.4 and the form of B. <

Theorem 6 The coefficients for dimensions n and n+1 are related as follows:

af = s + ey,

Proof: For simplicity we relabel them as b; and ay, respectively. The proof
goes by induction, using the recursive relationship among the coefficients on

each level. We know that
—(f—Dagr +(n+3)ag—(n—Llagg; =0for 1 <L <n+l

and

—(f—- l)bg_l + (n-}-z)bg-—(n —1 —e)bg.n =0forl1 <{<n.

Assume that we know aey1 + aeq2 = bey1; we wish to show that a¢ + ae = be.

Consider

4 = f[bg - (a.g + a¢+1)].




Then

7 = by — fag — Lagyy
=(n+2)bgy1 —(n —€—1—1)bppy — ay — Lagy
=(n+Dagg +(n+2apa—(n—€—1=1Dago—(n—€—1-1)ays
—fay — Lagpr + apq1 — Gegq
= —Lag+ (n+ 3)ae — (0~ (£ + 1))ags

— (€4 Daert + (n + Baesz — (n — (£ + 2))agys

Therefore, Z = 0.

This allows the entire array of coefficients to be reconstructed from

a, = (=1)/2"(n + 1)n. The beginning of the table looks like this:
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