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Abstract of the Dissertation

Critical metrics for the L%-norm of the
curvature tensor

by
Francois Lamontagne

Doctor of Philosophy

n

Mathematics
State University of New York at Stony Brook

1993

Given a compact, differentiable manifold M™, the L?-norm of

the curvature tensor,

R(g) = /M |R|? dvol,
defines a Riemannian functional on the space of metrics of fixed
volume on M. In dimension four Einstein metrics are critical
for R. Our first result is a partial converse to this statement,
namely given a R-critical metric ¢ of non-positive sectional curva-
ture on a four dimensional manifold then g is Einstein. Next we
offer a partial classification of three and four dimensional homoge-

neous spaces that are R-critical. Essentially if the isotropy group. -




is non-trivial or the dimension is equal to three, thé classification
is complete. It remains to classify R-critical, left invariant metrics
on four dimensional Lie groups. Under the assumption that the
group is unimodular and has a non-trivial center we can complete

the classification. This dissertation was written under Professor

Michael Anderson.




To my mother.
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Chapter 1

Motivation and Results

This thesis outgrew from a rather vague question posed by René Thom,
“Given a differentiable manifold M™ is there a canonical Riemannian metric
living on 1477,

The notion of “canonical” should be loose enough not to overdetermine
the topological type of M, while it should be restrictive enough that the mod-
uli space of such metrics be finite dimensional. Metrics of constant sectional
curvature are definitely “canonical” but they impose too many restr;ctlons on
the topology to satisfy the first requirement. On the other ha.nd metrlcs of
constant scalar curvature on a given manifold tend to form mﬁmte dimen-
sional families, thereby breaking the second requiréméht.' As a middle ground
one could look for metrics of constant r1cc1curvature, the so-called Einstein
metrics. These do satisfy the above requiféinéﬁts-.;-"‘

So far we have defined “canonical” i'ﬁ;terms of the local geometry. As
- Hilbert and Einstein pointed out Einstein metrics also occur as the critical

points of the scalar curvature functional. Here a metric is canonical provided




it is critical for some energy functional, namely the integral of the scalar curva-
ture. One could define other Riemannian functionals, thereby obtaining new
meanings to the word canonical. It is this perspective we shall adopt. The

present work is a very partial study of the L%-norm of the curvature tensor

Rg) = fM |R|? dvol,.

Metrics that are critical for this functional, are called R-critical. We
should mention at least one other functional, the [.2-norm of the Weyl tensor,
which has been studied by both mathematicians and physicists . In chapter one
we'll see how, in dimension four, the above functionals relate to one another.
These are well known facts but deﬁ’nitel.y' worth mentioning; in particular
Einstein metrics are R-critical. The converse is not true. Even in dimension
four there are metrics which are R-critical but are not Finstein. On the other
hand, if the metric is R-critical and has non- positive sectional curvature we

have the following

Theorem 1 Let (M*,g) be a four dimensional Riemannian manifold. Sup-
pose that g is R-critical and has non-positive sectional curvature. Then g is

FEinstein.

The proof of this statement will conclude our first chapter.

The second chapter consists of a partial classification of three and four
dimensional R-critical, homogeneous spaces.

In dimension three, starting with the Cartan’s classification of homoge-

neous Riemannian spaces, we obtain the following classification




Theorem 2 Let (M, g) be a three-dimensional, simply connected, R-ecritical
homogeneous space. Then (M, g) is one of the following: Ci(3), or a three

dimensional Lie group with an R-critical, left invariant metric.

Theorem 3 Let (M, g) be a three-dimensional, simply connected unimodular
Lie group with a left invariant, R-critical meiric. Then (M,g) is one of the
following: R® or E(2) with a flat metric, or SU(2) with the round metric or
SU(2) with a Berger-type metric (one rescales the length of the fibers in the

Hopf fibration to have length %)

In dimension four, Gary Jensen in [Jen69] has already provided us with a
complete classification of four dimensional homogeneous Einstein spaces. His
classification is based on the earlier work of Ishihara [Ish35] and as we’ll see
this work is more than enough to handle all homogeneous spaces with non-
trivial isotropy group. We are left with the problem of classifying R-critical
left invariant metrics on four dimensional Lie groups. As in [Jen69] the analysis
required to handle the group manifold situation is reduced to solving a number
of algebraic equations. Unfortunately these are of degree four and are far more
complicated than the Einstein equations for left invariant metrics. Modulo the
assumption that the group. is unimodular and has a non-trivial center we have

obtained the following

Theorem 4 Let (M,g) be a four dimensional, simply connected, R-critical
homogeneous space. Then (M,g) is one of the following: Ci(4), Ci(2) X
Cr(2), CPy, CHy or a four dimensional Lie group with a R-critical lefi-

invariant metric.




Theorem 5 Let (M, g) be a four dimensional, unimodular, simply connected
Lie group with a non-trivial center and g a left invariant, R-critical metric,

Then (M, g) is one of the following: R* or E(2) x R with a flat metric.

Here Cy(n} is the simply connected space form of curvature k and dimen-
sion n, CP; is the complex projective plane and CHy is the complex hyperbolic
space. Finally £(2) is the group of Fuclidean motions on RZ.

We have used the Mathematica package for most of the symbolic manip-

ulations.




Chapter 2

A theorem of rigidity

2.1 Review of differential geometry

Given a Riemannian manifold of dimension n, (M™, g}, one defines the
Levi-Civita connection V and from it the Riemann curvature tensor and ifs

contractions.

Definition 1 Let X,Y,Z,W be vector fields on M, {e;}7, an orthonormal

frame at a given point; define

1. The Riemann curvature tensor
R(X, Y)Z — V{X’y]z b [VX,V]/]Z

R(X,Y,Z,W) = g(R(X,Y)Z, W)

2, The Ricci tensor

n

r(X,Y) =3 R(X e, Y, ;)

1=1




3. The scalar curvature

«

= Z r(e,', '32')

=1

4. The traceless Ricei tensor

2.1.1 Tensors of curvature type
The Riemann curvature tensor satisfies three fundamental identities.
1. R(X,Y,Z,W)=~R(Y,X,2,W)=—R(X,Y,W,Z)
2. R(X,Y,Z,W)+ R(Z,X,Y,W) + R(Y, Z, X, W) = 0
3. R(X,Y,Z,W)=R(Z,W,X,Y)

Let us point out that the third identity is a formal consequence of the

first two and the second identity is called the first Bianchi identity.

Definition 2 A four-tensor satisfying the above identities is said to be of cur-

vature type.

Observation 1 Let T be of curvature type, ab € T,M and {e;} be an or-

thonormal basis for the tangent space at p. Then T yields
1. an endomorphism of the space of symmetric two-tensors
T:SHM) — S;;’(M)

Ts (a,8) =D T{a, e, b, e;)s(a,b)
¥




2. an endomorphism of the space of two forms |
T : AYM) — AX(M)
Tw(a,b) = 3" T(a,b, e, ¢;) wei, ;)

£
3. a bilinear form ‘

T(a,b) = Z T(a,e;,e5,ex) T (b, e, 65, e1)

i,k
Finally we recall the Kulkarni-Nomizu product & on two-tensors.
Definition 8 Define © : T*(M) x T*(M) — T4M) by
s @ t{a,b,c,d) = s(a,c)t(b,d) + s(b,d) t(a,c) — s{a,d) t(b, c) — s(b, ) t(a, d)

The remarkable fact about the Kulkarni-Nomizu product is that: if s, ¢

are symmetric then s ® ¢ is of curvature type.

This product allows us to write with ease the well-known orthogonal de-

R=W+Z+U

composition of the Riemann curvature tensor. ’
|

|

|

|

where Z = (2 @ 9)/(n —2),U = s{g ® g)/2n{n — 1) and W is the Weyl

tensor.

2.1.2 Riemannian geometry in dimension four

In dimension four the Hodge star operator yields an endomorphism of the
space of two forms. Moreover it has two eigenvalues {+1,—1} which decom-
pose the space of two forms as a direct sum of the corresponding eigensPaceé.:. S

These are of equal dimensions. -~




1. AX(M) = AL(M) & A2 (M)

3. % |y ay= —1d

Under this decomposition the curvature operator has the following matrix

decomposition.

A

Id Z
12

W, +

S
i

|

i

where |
|

|

|

1

|

|

|

This decomposition has numerous consequences. From our perspective
the most saliant are the Chern-Weil integrands for the signature and the Euler

characteristic. Precisely,

|
1 2 w 2 32 1 sz ! - ‘
Lox(M) = g5 [ (W P W P — 2 | Z e,

1
2 T(M) =5 [ (1 Wa | = | W_[dvol,




2.2 Riemannian functionals

Given a compact differentiable manifold M™ we consider the space M of
metrics on M™ . M is an open cone in the space of bilinear forms oﬁ M™.

Yor technical reasons M is often endowed with a Sobolev type topology.
That is, one fixes a metric on M and defines a Ly g norm on the space of
bilinear forms with K" > 2 4 1. Since K is large enough, this topology is finer
than the compact-open topology. We will interchangeably use M for the space
of smooth metrics and its Ly g completion. For a thorough treatment of the

space of metrics we refer to [Bes87] and [Ebi68].

Definition 4 A Riemannian functional F is o real valued function over the

space of metrics invariant under the diffeomorphism group.
F:M—R
F(y*g) = F(g)

where g € M and ¢ € diffeo(M).

Definition 5 F is said to be differentiable at g provided there exists a linear

Junctional F'(g) on S*(M), such that
. Flg+h)— Flg) — F'(g)h

Uz, s~ 1A ll2

={

Definition 6 We say thai F has a gradient at g if F'(g) can be represented

by a smooth bilinear form a such that
Fi(g)h= [ o(a, h)duol,

a is denoted by grad, F.




We shall consider Riemannian functionals that are given as polynomial

expressions of the curvature tensor.

F(g) = /M P(R)dvol,

All functionals of this type are differentiable and admit a gradient at all

points.

Note 1 The gradient is often called the Euler-Lagrange operator and the equa-

tion grady,F' = 0 the Euler-Lagrange equation.

2.2.1 Examples of Riemannian functionals

We will restrict ourselves to list three functionals, the integral of the scalar
curvature, the L®-norm of the Weyl tensor and the L2%-norm of the curvature
tensor, The first one has been extensively studied in the context of Lorentzian
geometry, for its Euler-Lagrange equation yields the Einstein equations of
General Relativity. It is now deeply studied in Riemannian geometry as a
mean to induce “canonical geometries” on differentiable manifolds. The second
one also takes its origin in physics and serves a similar purpose in Riemannian
geometry.

The L*-norm of the curvature tensor is a newcomer in Riemannian ge-
ometry but we will see that in dimension four these functiona,ls. are deeply
interrelated.

Let us now list the functionals with their Euler-Lagrange equation - -

10

(since these are matrix equations, perhapswe should" say- “Euler-,Lagra.ngéf'.:if_' T




11

|
|
|
,

equations 7. We will use singular and plural interchangeably). We refer to

[Bes87] t for a thorough treatment of these functionals.

1. The S-functional,

S(g) = /M s dvol,

grad,S = -;;g —r

.2. The W-functional

Wig) = [ [W dv,

grad,W = 46 D*W — QW(T)

3. The R-functional

R{g) = /M | R|* dvol,

|Ef

grad,R = 46PdPr — 2R — g

Here D is the Levi-Civita connection and D* is its formal adjoint. The
definitions of d” and §P are more involved. In general, given a connection D
on a vector bundle £ — M, we can define the following operators on E-valued,

k-forms.

'In [Bes87] p.131 the inner product induced on the space of symmetric 2—ten361js'_'

is twice the definition we use, see also [Bou81). .- - =i




12

o d¥: QF (M, E) — Q¥Y(M, E)
koo X -
dDw(Xo,---,Xk) = Z(_l)t(DXiw)(Xﬂa e ,X{, v 1Xk)
1=0
o 67 QMY M, E) — QNM, E)

k
5DLU(X1,___,Xk) = — Z(Deiw)(e,-,Xl, e ,Xk)

jz=1

P

{e:} is an orthonormal frame for the tangent space.

In general these functionals are not invariant under scaling of the metric.
'To remedy this problem one usually considers their restrictions to metrics of
fixed volume. But in dimension four the W-functional and the R-functional
are invariant under scaling. Hence their Euler-Lagrange equations remain
unchanged when restricted to volume one metrics. On the other hand, the

S-functional is sensitive to scaling. Its normalised Euler-Lagrange equation in

dimension n is

s
_ 2, = 2.
r——g 0 (2.1)

These are the famous Einstein’s equations. If ¢ satisfies (2.1) then it is

called an Einstein metric.

2.2.2 Interplay between the S, W and R functionals m

dimension four

- Due to Pontryagin numbers
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L= (W p e wpa s o e, ?
' 8rr T -T2 8 g .
1

2 7(M) = oz [ | W [P = | WL ] dwol,,

one may rewrite the expression for the R-functional in the following Ways_-';
(see [Bes87), [Leb93]).

1
1272

1
2. R(g) = ;r;fM | Wy |2 +

1. R{g) = /M | Z |? dvol, + 2x(M) N

g—;—dvolg — (2x(M) £ 37(M)).
Metrics for which W, or W_ vanishes are called "half-conformally flat”,
These correspond to absolute minimum of the W-functional.
Similarly metrics that are either Einstein or half-conformally flat with
zero scalar curvature éorrespond to absolute minimum of the R-functional.
From the above formulas one easily derives topological obstructions to the

existence of Einstein metrics or half-conformally flat metrics. Despite these

examples there is no known obstructions to the existence of R-critical metrics. |

As mentioned above in dimension four Einstein metrics are R-critical, the

following theorem is a partial converse to this statement.

Theorem 1 Let (M, gq) be a four dimensional Riemannian manifold such that

g s R-critical. If g has non-positive sectional curvature then g is Einstein.

Proof

In dimension four the Euler-Lagrange equation for the R—function'al__’if_

given by

grad, R = 46P 4Py —




A critical metric ¢ is therefore a solution for the following equa,tmn

250 dPp = 2W(z) 4+ -g-z

By taking the trace of Equation (2.3) we see that the scalar curvature is

constant, see [Bes87]. Therefore

/ < édr,z > dvol, = / < dz,dz > dvol,
M M

Hence

/M < dz,dz > dvol, = /M < QW(Z) + :;-z, z > dvol,
We will show that non-positive sectional curvature implies that
. s
<2W(z) + 3% % >

“1s non-positive. A local computation will then yield the theorem.

Let {e;} be an orthonormal frame of eigenvectors for the ricci tensor r as

well as for z.

Let {s;} and {\;} be the eigenvalues (respectively) of r and z, and oy =

R(ei, e, €;,65).

We first show that,

2W(z)

4
r= e ®e

=1

4
2= Z,\;e; & e;.

=1

+S
—
3

4

>+ A0y

1.1

o




Let’s compute

2 < W(z),z >

To compute

we recall that

w

Thus,

< W(e; [5%4] 6,'), €; [§%4] £; >

Therefore,

<2W(z)+§z,z>

Where © is the Kulkarni-Nomizu product on symmetric two tensors

.4 4 .
= 2<W(Q Nei®e;),y dje; @ e; >
i=1

=1

4
= 2 E )\,‘/\j <W(e,~®e;),ej®ej> .

tyg=1
< W(e; & 6,'),65,' X e; >

s i
—R—ﬁg;’@g—é—z@g.

4

ey

= W(G,‘, ej, €y ej)

S
= R(eiaejvei’ ej) - ?2"4_9 Gg(eia €7y €, ej) -

5% 99(6i,63‘;6i,€j)

3 1
= i = 5721 &5) = S (i 4 X)(1 - 6)

4
S
= 22 Midi(oy; — 51 —8) -

Ly=1

1 : o
SO =8N +230
9 37




. 4
Now, since 37,

= 22)\/\%“—2/\/\(1—
1J+ EA?

1,7=1 Gy=1
4
Yo+ A0~

=1

N =0,

t-l

<2W(z)+ =z,2> =2 (Z/\/\Uu‘l' Z)«Z—I-E)\S

,J"‘I ;-—1 =1

= 2(ZAAG,J+Z/\ i+ 7))

1,_71

= 2(2 XA O‘,J“FE/\z‘UL,

1,7=1

= Q(ZZA;AJG;J' +Z’\?(ZJU))

i<y =1

i#]

= 2032005 + Y (A 4+ AYay;)

i<i i<
= 22 (M +A) ey
i<y
4
= D (At X))oy

‘l’,j:l

A quick calculations shows that

4

> i+ A)oy;

1]

We recall from the Euler-Lagrange equation that

(012 — 03g) o1 + 034) + (013 — 024)2(0"13 + og4) +

(014 — 023)2(014 + 093)

fM < dz,dz > dvol; = fM <2W(z)+ 34 % > d”"[y :

(2.4) .
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If the sectional curvature is non-positive, Equation (2.4) impl

< 2W(z)+-§-z,z >< 0

but Equation (2.5) makes it impossible for < 2 W(z) — 22,2 > to ta,ke afy

negative values. Hence < 2 W(z) — £z, z > vanishes identically, from Equation

(2.4) we conclude that g is Einstein.




Chapter 3

Homogeneous R-critical metrics

3.1 Introduction

The purpose of this chapter is to understand the geometry of homoge-
neous, R-critical metrics in dimension three and four. Our work follows quite

closely the work of Jensen [Jen69] on homogeneous Einstein metrics. We start

with the classifications of Cartan [Car46} and Ishihara [Ish55] (respectively)
of three dimensional and four dimensional Riemannian homogeneous spaces
(see also [Ber81]). This essentially reduces the problem of classifying homoge-
neous, R-critical metrics to the problem of classifying left invariant, R-critical

metrics on a three or four dimensional Lie group.

To simplify the exposition we will allow M to be non-compact and take the
Buler-Lagrange equation for R-critical metrics as derived in the compact case

to be the definition of R-criticality (since the examples under consideration

the definition of R-criticality). We will denote by Ci(n) the simply connected

all admit a co-compact discrete group of isometries this is.a minor twist to -




space form of dimension n and of curvature k. Finally all the jj%oduc_ts nvolved

are Riemannian products. We have obtained the following results _

Theorem 2 Let (M,g) be a three dimensional, stimply connected, R-Cr'z.'iz"éa.!'_.f!'
homogeneous space. Then (M,g) is one of the following: C(3), or a three

dimensional Lie group with an R-critical, left invariant metric.

Theorem 3 Let (M,g) be a three dimensional, simply connected unimodular
Lie group with a left invariant, R-critical metric. Then (M,g) is one of the
following: R® or E(2) with a flat metric, or SU(2) with the round metric or
SU(2) with o Berger type metric (one rescales the length of the fibers in the

Hopf fibration to have lenght 74%)

Theorem 4 Let (M, g) be a four dimensional, simply connected, R-critical
homogeneous space. Then (M,g) is one of the following: Ci(4), Cy(2) x
C1(2), CPy, CHy or a four dimensional Lie group with a R-critical lefi-

invariant metric.

Theorem 5 Let (M,g) be a four dimensional, unimodular, simply connected
Lie group with a non-trivial center and g a left invariant, R-critical metric.

Then (M, g) is one of the following: R* or E(2) x R with a flat metric.

The chapter is organised as follows. First we recall the Euler-Lagrange
equation for the R- functional. Second we use Cartan’s and Ishihara’s classifi-
cations to obtain theorem 2 and theorem 4. Third we tackle the éla.ssiﬁca.tion
of Lie groups with R-critical left-invariant metrics in. dimension three and -

four.




Most of the symbolic manipulations needed in this artiéie:we-
by the computer program Mathematica.._ Nevertheless we have. checke

computations by hand in the three dimensional case.

3.2 The Euler-Lagrange equation for R-critical
metrics

In this chapter we are concerned with three dimensional as well as four

dimensional Riemannian compact manifolds. It is therefore natural to consider

— 1 2
Rol9) = Foramyomar J,, 1 BI* dvol,

'The gradient of R,, simply amounts to the gradient of R restricted to metrics
of fixed volume. Recall from chapter 2,
2

Grad, R = 46PdPr — oR + —L%—-

Hence
- 2 po. 5. LRI
Grady B, = Vol(Myo—ym (207 d7r = I+ —g) -
n—4

QRVOI(M)(2n-4)/n(fM | R dvol,)g

If | R |? is a constant function on M then the equation Grad R, = 0is-

equivalent to:




IRP . (n—4)Vol(M) |RP
n (26DdDr - R + 1 9) - 4nVOl(M)(2“'4”r_i:_'__'a' :

1
Vol(M)—

0=

g (3.1)

_ - 2
0=26PdPr — R - ”il

Since we will be dealing with homogeneous Riemannian manifolds having com-

pact quotient, we may take Equation (3.1) as the definition of R-criticality

independently of M being compact or not.

Note 2 If M is a Riemannian product of two manifolds, M = My x M, then

§PdPr = (8PdPr)m, @ (6°d°r)n,

]

R = RM], @RMQ

This has the obvious consequence that a product of space forms Ci{m) x
Ci(n) are R-critical if and only if £ = %I Also if M = N X F and F' is flat

then N must be flat, assuming the metric is R-critical.

3.3 Homogeneous metrics in low dimensions

Cartan has classified all the simply connected, three dimensional, homo-
geneous Riemannian manifolds. These are Cy(3), Cx(2) X R and three dimen-
sional Lie groups endowed of a left-invariant metric. As noted above it follows

almost immediately from Equation (3.1) that Cy(3) are R-critical spaces while




Ci(2) x R is not (unless k = 0). In the next section we will cl'é',ss'i_
metrics on three dimensional Lie groups. ..

In dimension four, Ishihara has furthered the work of Cartan. He obt
the following classification of simply connected, four dimensional hom@éh:'
Riemannian manifolds, these are: Ci(4), Ci(3) x R, Ci(2) x Ci(2), CPQ,.:C.HZ
and four dimensional Lie groups with left invariant metrics. Since Ci(4), CPQ’,‘
CH, are Einstein spaces, they are R-critical. On the other hand Cy(2) x C,(Qj :
is R-critical iff k = +I and Ci(3) x R is R-critical only if £ = 0. Following
this section we will classify R-critical metrics on four dimensional unimodular

Lie groups having a non-trivial center.

Note 3 In the following sections, we have written our equations up to a con-
stant multiple e.g.
0 = 5{(a + b)(a — ¥°)

is replaced by
0 = (a+b)(a-b?)

without any warning.

3.4 Background on left invariant metrics

Let M be a Lie group and g a left invariant metric on M. Let {X;} be

a left invariant orthonormal frame for g. Define C{} to be the set of structure =

constants corresponding to this frame.

I we are to compute the Christoffel symbols in this frame,




T = (VxX;, X)

1
= {X{X; Xi) + X5(Xe, Xi) - Xi(Xi, X;)

(X5, [X5, Xa]) + (X, [Xeo Xi) + (X [Xi, X))

i.e.
kg _ 1 i ] k
I's= —2{_Cjk +C + ci,‘}

We see that the Christoffel symbols are constant, linear expressions of the
structure constants. It follows that the Riemann curvature tensor, its contrac-
tions (ricci and scalar curvature tensors) as well as any differential operator
defined in terms of the connection (e.g 4V or §¥) can solely be expressed in
terms of the structure constants.

For instance,

RB(X:, X;)Xe = Vix,x3Xe — [Vx,, Vx;] Xk

= CLiTiXm ~ThIT X + r:,,r;.';xm

It is clear as how to proceed to compute expressions like édr, R — J%Eg,
etc... It should also be clear that one may get lost in a sea of symbols doing so.
In the next sections we have fully avoided the actual computations involved in
translating the Euler-Lagrange equation into a system of polynomial equations

on the structure constants. The interested reader is urged to get hold of a



5 = (V. Xj,Xx)

1
= "2'{X-‘(Xj, Xe) + X{ X, Xi) — Xie{Xi, X;)

— (X, [X5 Xa]) + (X5, [ Xy Xi)) + (X, [ X3, X))

i = ={-Ch + CL + Ck}

DO e

We see that the Christoffel symbols are constant, linear expressions of the
structure constants. It follows that the Riemann curvature tensor, its contrac-
tions (ricci and scalar curvature tensors) .a.s well as any differential operator
defined in terms of the connection (e.g d¥ or 6Y) can solely be expressed in
terms of the structure constants.

For instance,

R(X:, X)X = Vixix ) Xe = [Vx,, Vi, 1 X

- c{jr;g - Pfkl‘;-’,“Xm + Fékr;-’}Xm

It is clear as how to proceed to compute expressions like édr, R — J—?‘Eg,
etc... It should also be clear that one may get lost in a sea of symbols doing so.
In the next sections we have fully avoided the actual computations involved in
translating the Euler-Lagrange equation into a system of polynomial equations

on the structure constants. The interested reader is urged to get hold of a




computer and the appropriate software to derive in an instant the necessa.ry

formulas.

3.5 Left invariant metrics on three dimen-
sional, unimodular Lie groups

Let (M,g) be a three dimensional, simply connected, unimodular Lie
group with a left invariant metric g. It can be shown (see~’[ﬁi176]) that the
Lie algebra of M admits an orthonormal basis €1, €3, €3 satisfying the following

comrmutator relations

lex, €2] = Azes
[625 6’3] = A1*‘31
[63, 6’1] = '\282

In this frame the Euler-Lagrange equation for R-critical metrics becomes

a system of three polynomial equations in );. That is 0 = 26dr — B — L%E

translates as:

0 = 22X} +15A02; — AZAZ — 3003 + 1104 +

15X3As — 6ATA2 )5 + 3A; A2A5 — 120305 — AZAZ 4

3A1A2A3 + 20503 — BAAS — 120,23 + 118 (3.2)
0 = "11A1—3A3% — AIAZ + 15,03 — 2204 —

122080 +300A2ds — 60000 As + 15230 + 202A+




3hdoA] — AA] — 120,22 — 30,023 + 1124 .
0 = 11A{—12A3%z + 20233 — 122,03 + 1104 — 323, +

Dk + SMAD — 3 — A — AN —

APA3 4 15A008 + 152,03 — 228 (3.4)

We will make the following change of variables : A, = potpa, Ay = py+ps,

Az = 1 + py. We obtain the following system of equations,

0 = Bpip; +6pps — 10pipaps + S pdps — 6pdus + 3p2ud +
Spipapy — Spaps + 613 — 6papd (3.5)

0 = 6uips+3piu] — 6pdus + 5pdpops — 10 p2us — 6p2p2 +

Spapaps + Spiud — pap3 + Gpapd (3.6)
0 = —6uips — 6uip] — 6y + 6pdps + 5pduapa + Spapdus + i
6pts + 3p3pd — 10p1papsd + 3ulpl (3.7) \

We form a new system of equations, namely Equations (3.5) - (3.6), (3.8) ‘
- (3.7), (3.7) - (3.5)

0 = (—p1+p)2uiuz + 2mp] — 2pips + 3papiopss — 2sdps — Bpad —

Buaul — 4423) (3.8)

0 = (—p2+ pa)(—4p1 — 3pits — 2uipd — 3p2ps + 3y propta + 2123 — .
21425+ 2p03) (39 1

(=1 + pa) 20l + 313 + 4453 — 22 p, ~ 3papiapia + Suipa —




2p143 + 2papd)

equal. Then one has to solve the following set of equations:

0 = 2uips +2p1p] — 2p3ps + Bpaprais — 2u3ps —

1 pt3 — papy — 43 ' (3.11)
0 = —4pf —3udus — 2ppl — 3uius + Jp1paps +
2pzpts — 2ppi3 + 2ot (3.12)

0 = 2puipg + 3ppd + 443 — 23 ps — Spapiaps +

Suzpa — 2u1 3 + 2p2483 (3.13)

If we take the difference between the first two equations (3.11), (3.12), we

obtain:

0 = (p1— pa)(4pf + Spapz + 4p3 + Bpapa + Spops + 4p13),  (3.14)

but modulo the initial hypothesis that none of the variables are pairwise

equal. We obtain from Equation (3.14), the following equation:

0 = 4pd+5pipa + 4415 + Spaps + Spaps + 4u13 (3.15)

equivalently

Let us assume for the time being that none of the variables afepa.lrwlse




0 = Sl +ptus) + (1 +u3+ ). (3.16)

This last equation equals zero iff all the variables are equal to zero.

Now consider the case where two of the variables are pairwise equal, say
ft2 = pg3. Since the equation is homogeneous, we can assume that for a non-

trivial solution gy = 1. Substituting in (3.5) gy = 1, g = 1, u3 = t we obtain:

0 = 3(-1+t)(-2+90) (3.17)

One can easily check that, up to permutation, the following triples
(1, 12, 1) = {(1,1,1),(1,2/9,2/9),(1,0,0),(0,0,0)}

are solutions for the Euler-Lagrange equation and as we’ve shown above,
these are all the solutions. We can restate these solutions in terms of the

structure constants (\;). We obtain (1,1,1),(11/9,11/9,4/9),(1,1,0),(0,0,0).

The Lie group and metrics correponding to these structure constant are
given in [Mil76). It follows that the triple (1,1,1) corresponds to SU(2) with
the round metric, (11/9,11/9,4/9) corresponds to SU(2) with a Berger type
metric, (1,1,0) corresponds to F(2) with a flat metric and (0,0,0) is simply R®

with its flat metric.




3.6 Remarks on the geometry of é{'Be_;:-_ggrf
sphere

Recall that a Berger sphere is obtained from the Hopf fibration §2 —, &2
by rescaling the length of the S'-fibers by a constant.

In order to see how the SU(2)-left invariant metric corresponding to the
triple (A1, Az, As) = (11/9,11/9,4/9) is actually realised as Berger metric we
need a clear correspondance between SU(2) and $3. This is achieved by the
identifying 5° with the unit quaternions, the isomorphism between SU (2) and
S? writes as follows (here (z,w) e C?. In real coordinates the pair (2, w) will

be written as (2, 22, wy, w)):

SU(2) — §°
z —w
— 2 + jw.
w oz

It follows that SU(2) acts on C? the same way S° acts on R? by quater-
nionic multiplication, i.e,

(

= (2 +jw)(a +jb)

This isomorphism makes it easy to find a left invariant orthonqrma.l frame

on S? with its canonical metric.




Take

8 9 8 \
322, 3w1 ? 3w2 GT'(I'O’O'O)S

define their left translates by
| 9
ey = dL(,_.,w) (“55;;)

a
€z = dL(zu) (BT:I)

9 .
€3 = dL(z,w) (5‘;)

Here dL; ., has the following real form

( )

21 —=2p —Un —We

22 4] wy -~
ALy =

w —un 21 Z9

w, Wy —Zy 4]

\ /

a a i)

The Hopf fibration may be obtained by a right S action on 3.
3 x St — 53

(z,w) x €+ (2%, w €)

The vector field e3 is tangent to this action. Indeed o

Since 327 3u7 gy form an orthonormal basis for T(1,000)5° and dL; ) € SO(4).

It follows that e, e;, €3 is a left invariant orthonormal frame for (53, gean )-




; 0 ;
(e 300 omo = L y((1,0) ) omo

= dL(z,w)(-c,%(sinﬂ, 6030, 0, O) |9=0)

Now consider the Berger metric:

. ‘ 4
g‘“—'¢1®61+82®62+1—1'63®63

An orthonormal frame for § would be & = €1, €2 = €9, €3 = A@ea

.

Since the structure constants of the frame (€1, €2,€3) are (2,2,2)

. We

obtain

Bl = —i
1,C2 - \/1—1 3
(62,85 = V11§

[63561] = \/1_1-62

These structure constants (v/11, /11, 4//11) are a multiple of (11/9,11/9,4/9).

g
Hence they define the same metric up to dilation. Therefore 7 is the required .

(up to dilation) R-critical metric. i
We conclude by giving some idea of the geometry of §.

In [Mil76], one has a formula to compute the sectional curvatures gi; from
the triple (z\l, AQ, x\3)
Define

1
Hi = E(Al + A2+ A3) — A




then

T12 = —hpa+ pipiz + popia

013 = fhpha — pafia + pajis

O23 = [apiz + flafia — piapiz

For the metric § in the basis {¢;}, we obtain

2 2 9
(u11“2aﬂ3) - ( 11’ 11’ 11)
32 4 4
(012,013, 023) = H,'ﬁ',l—l—)
Therefore,
Vol() = —a=Vol(S?)
Vi1
Pinching(§) = -;—

= 4.44621...Vol(S?)"°

This metric comes a bit of a surprised, for it doesn’t have constant sec-
tional curvature (hence it’s not Einstein). It has positive sectional curvature.
Finally it has more“energy” than the round metric R,(gs:) = _3__Vol(-5'3)4/ 3,
The metric is obviously of Berger type, it is obtained by shrinkii:'l.gi-théi':-s.l--ﬁbers
by a factor of 2/4/11. s




3.7 Left invariant, R-critical meti-lc's-. in
mension four

In this section we classify R-critical left invariant metrics ¢ on four di-
mensional, unimodular Lie groups M having non-trivial center.,

Let A be the Lie algebra of M and take X4 to be in the center of A, Let
7 be the orthogonal complement of X4. By restricting ¢ to T we induce an
inner product § on the quotient algebra 7 = A/(Xy). T being unimodular,
the pair (i’ ,§) admits a canonical frame X, X2, Xs. Each X; comes from a

unique vector X; lying in 7. The commutator relations of A written in the

basis Xy, X;, X3, X, become:

{Xi,X‘l] =0
[X1,Xa] = AaXs+ X,
[X2, Xs] = MX, +6,X,

[X5, X)) = A Xy + £ X,

Note 4 Observe that the Jacobi identities put no restrictions on the variables
M, Ag, Aa, &, & and €. Also the relations admit a cyclic permutation of
the indices and if we are ready to let a variable absord a minus sign, we can
interchange two indices. This comment is behind the more or less obvious
“w.l.o.g.” that will be used below. As in the previous section all the- equations

are derived up to a constant multiple.




3.7.1 The Euler-Lagrange equations

2

The Euler-Lagrange equation 0 = 26dr — R — L%L when Wl‘ltten]na,

left invariant orthonormal frame yields a matrix equation whose entries are

polynomial expressions of the structure constants.

Since gradRy(g) is a symmetric two-tensor there are twelve equations to

solve, namely:

0 = —L1€] + 226767 + 33¢] + 2262¢2 + 66€2¢2 + 33¢2 —
66TAT + 26527 + 26207 — 5523 4 1220\, —
12630003 + 4630 A2 + 36030, — 26202 4 66£202
—6£303 — 2A2)2 — 12A1A§ + 3323 + 12620 Aa +
46000 — 1260000 + 3603)g + 46200)s — 366205 —
36¢30a)s — 122205 )5 + 12X, A5 — 36)3A; — 2622 —
64223 + 66£3A3 — 2XT0% + 12212502 + 6A2X2 —
12X1A3 — 362,03 + 338 (3.18)

0 = &&a(—116F ~ 1163 — 1167 — 1103 — 6A A, — 112 4 60, Ag +
8X2)s + A2) (3.19)

0 = &ids(—11€ — 1165 — 1163 — 1102 + 6M1 05 + A2 — 6A\g +
6dzhs — 1122) - (320
0 = &A(—1167 — 1162 — 1162 — 1102 4 6A 0, + A§+6A1A3
2225 + A2)




0 = 33¢ + 2260 — 116 + 66873 + 226363 +
3363 4+ 666207 — 2¢202 — 6£22% 43301
12620 A0 + 12630 A2 + 4€301 0, — 122305 + 2£302 -
66¢202 + 26222 — 20202 4+ 36X,)3 — 55)3 —

36201 0a + 46200 — 36620 A3 — 362305 + 4£20 05 +

12632203 ~ 12832203 + 12020503 = 122030205 + 36A3); —

BETAS — 26305 4 66303 + 6ATAF + 12240203 —

2A3A3 — 362143 — 12225 + 3373 (3.22)

0 = £ofa(—1162 — 1162 — 1162 + A2 46Xy — 1102 + 6\ hg —

6A2As — 11A3) (3.23)
0 = &Ap(~11€0 — 1182 — 1162 + A2 + 6025 — 112 — 20\ +

62z + A3) (3.24)

0 = 336) + 666167 + 33¢; + 226363 4 226362 -
1143 + 666302 — 66227 — 26203 1 3301 -
36E7A1 02 — 36£2 M0z 4+ 4E30 A — 36230, — 66202 +

66£2A2 — 28322 + 6)2A2 — 360,23 + 3308 —

1263028 + 420 s + 1283003 — 122325 + 4620505 —
1262050 + 1262255 +.12,\§,\2,\3 F 1220220 — 123305 + |
2202 4 26202 — 66£2A2 — 20222 — 120, M, A2 — |
22303 + 362103 + 36)223 — 5573 (3.25)

0 = Gao(—116] ~ 1163 = 1161 4+ X = 2hds + M+ 6hdat




623 — 11A3) : L (326)

0 = —556 — 1106867 — 5565 — 110623 — 110¢2¢2 -
5563 — 66E7AF + 6£20% 4 66203 — 1101 +
36£201 A2 + 36£301 0, — 1262010, + 12X3), + 6L2N% —
66£377 + 66202 — 2032 + 120,03 ~ 1104 +
3667 A1 s — 126300 05 + 36630103 + 122305 ~ 12620504 +
3663222 + 36830245 — 12A30505 — 12010215 + 1232, +
BEIA3 + 66222 — 6662X7 — 20203 — 12X, 2,42 —
2033 + 12023 + 122,23 — 1108 (3.27)
Our goal is to show that the only family of solutions to this system of
equations is, up to permutation, & = £ = & = A3 = 0,22 = A3. The

vanishing of &, £, ¢ implies that M is a Riemannian product of a three

dimensional Lie group and the real line, i.e.
M =G xR.
While A3 = 0, Ay = A, implies if A; = Ay = 0:
G =R
If A; = A; are non-zero, we get:
G = E(2)

with a flat metric.

The strategy is simple; one essentially assumes the. céi}ff?é.:r: :

a contradiction. We divide our analysis into three cases, first w




that none of the \A;’s vanish and show that no solutions are pos’siblé m 'fhé.t

case. Second we assume that only one of the );’s is zero and derive the above
solution. Third we assume that two or more A;’s are zero and derive that
all other variables must vanish. We will also establish, that in any case one

of the {;’s has to vanish; w.l.o.g. we will assume &1 = 0 through out all the

computations.

Assume none of the ¢;’s are zero. It follows from equations (3.19), (3.20),

(3.23) that

0 = —11£f —11£0 — 11€2 — 11A2 — 6)\, ), — 1123 + 62125 +
6z Az + A2
0 = -11512—1152—11§§~11Af+6,\1/\2+/\§—-6,\1/\3+

6Azhs — 1102

0 = _1153—1153—11§§+A3+6A1A2-11A§+6A,,\3—
6A2A3 — 112

Taking the sum we obtain:

O = —33¢7 —33¢] — 3362 — 15(A2 + A2 + A3) = 3(A\ - Ag)?
3(/\2 - A3)2 - 3(A3 - /\1)2

which vanishes only if all variables vanishes, consequently Wemayassume

that w.lo.g. & = 0.




3.7.2 Case 1: \; #0

Our goal is to show that all £’s vanish. W.lo.g. we may assume that

£ = 0. Suppose that £,,£; are both non-zero. Then Equation (3.23) and
Equation (3.24) imply:

0 = —116 — 116 + A} + 6 Ay — 1102 4+ 64,05 — 62323 — 11)23(3.28)
0 = 116 — 1165 + A] + 6210 — 1102 — 22, Ag + 6Aghs + Al (3.29)

Adding (3.28) to (3.29) we obtain:

0= As(=2X; 43X + 32g) (3.30)
Hence
At =3(Az + A3)/2
We make the following substitution in the Euler-Lagrange equations
A= 3/200; + A3)

Under that substitution the Euler-Lagrange equations become:

0 = 176 + 3526363 + 17664 + 2806202 + 24¢2)2 — 781\
—208£3 0523 — 208¢20503 — 37320205 + 24€203 + 280£322 —
1340303 — 37322573 — 7T81A}

0 = —1766] + 352663 + 528¢] — 840£2)] — 8862A2 + 19

432630003 — 1392630, 05 + 824403\, — 8E2X2 — 24202




9238)3A2 + 4308273 + 6095

0 = Eba(—44E% — 44€2 4+ A2+ 66X305 + A3)

0 = Eaho(—44€2 — 44€2 4+ 22 + 662303 + A})
0 = 528EY + 3526262 — 17663 — 24£207 — 8£2)% + 6094 —
1392620,A5 4 432622503 + 43082305 — 88£2)3 — 8404222 +

9238X2A2 4 82442, )3 + 193723 (3.35)
0 = —880&; — LT60£2¢3 — 880¢3 + 24£3)3 + 24£2)% — 203)5 +
1584£2 0,05 + 158483025 — 13562305 + 24£20% + 24£222 —

3074A2)2 — 1356),A3 — 20323 (3.36)

Modulo the assumption that £;,{3 are both non-zero, Equation (3.33)

implies

0 = —44£3 ~ 44€3 4+ A2 + 662,03 + A (3.37)

This allows us to make the substitution
E2 4 €2 - (A2 466203 + A2)/44

into the Equation (3.36). We obtain after simplifications:

0 = 27974 + 184873\, + 3682X20% + 184803 + 27

One can see eagily that the only solution to thi_é. equation is the tr_ﬁrial

one. Therefore another &; must vanish, say {3 =0




£la£2=0

Assume that £, £, = 0 then the Euler-Lagrange equations becdfﬁe:"_

0 = 336 +2650% — 550F + 46200, + 36220, — 66202 — 2222
120005 + 3375 — 12620125 + 362305 — 36620003 — 12X20)05 +
12X 2305 — 36A30s + 66£222 — 2A%A2 + 12X 2223 + 62303 —
122,23 — 363,03 + 3372 | (3.39)
0 = 3363 — 663A7 + 3301 + €30 A — 12030, + 26202 — 22202 4
36123 — 55X; — 36521 A3 — 36ATAs — 1262095 + 1202055 —
12012223 + 36230 + 666323 + 6A1A3 + 12010502 — 22327 —
360173 — 12053 + 3324 (3.40)
0 = —11£3— 26307 + 337 + 462,05 — 36030, — 26202 4+ 62272 —
36A1A7 + 33A7 4 12630 As — 120323 + 1262503 + 12X205 05 +
1200325 — 120325 — 666222 — 20202 — 12X, 2,42 — 2A2A2 4
36123 + 362203 — 55)4 (3.41)
0 = &Aa(—116 + AF — 2225 + A] + 60103 4+ 62505 — 11X2) (3.42)
0 = =553 466327 — 11A] — 1262020 + 12030, + 6£202 — 22222 +
12X A7 — 1143 + 366201 23 + 1223 X3 + 36622503 — 1_2)@_)‘«,_.)«3 —

1201082 + 120305 — 666203 — 20203 — 122,003 — 20303 4

120023 + 122,03 — 1178 3.43)

Equation (3.42) implies




& = (A = 22 0a + X] + 6015 + 63505 — 1103)/11
We can use the substitution
& = (A = 2102 + A3 + 62423 4 63g)g — 1103)/11

to obtain a new set of Euler-Lagrange equations. Namely,

o
il

—T5Af + 48235 — 20202 — 162,23 + 4503 + 5403\, —

18X2 005 + 180 A2 — 542325 — AZXZ 4 22,2002 + 30202 (3.45) |

0 = 4521 —16A3X; — 20122 4 482,23 — 75)3 — 5403,

F18AIAg A5 — 18X A20a + 54M3\s + BAZAZ + 24, A502 — A2X2(3.46)
0 = 45X¢ —48X3A; + 6AZMS — 48); A3 + 4528 — 18AD\s +

18A205 A3 + 18 A A2 hs — 18X325 — AZAZ — 2X, MpA2 — A2X2  (3.47)
0 = —15A7 +16A3A; — 22222 1 164,23 — 1522 + 18A3)5 —

18X22g)5 — 18A1A2)5 + 183345 — AZAZ — 20, X002 — A2A2  (3.48)

We form the equation (3.47)+3x(3.48):

0 = (A +2)A3(9A] — 18022 + 923 — Mids — A2k (3.49)

This equation strongly suggests the following chaxflg’é:.of-._vd._r_'l_able

M= (1 + p2)y Az — (g — f‘2



0 = pf—2prpia + 25y — 88p3 o — Hpdud + 3643 —
152p; 43 — 1645 (3.50)
0 = p?+2ups — 72030, + 88pdu, — 442l — 3643 +
1524, i — 1643 ‘ | (3.51)
0 = —puf—36p1p5+132ulp] + 48u; (3.52)
—p3 + 36papg — 44pipy — 164,

Equation (3.49) becomes:

0 = pi(184F — p) (3.54)

To finish “case 1”7, we will treat two different alternatives. First let us
assume py is non-zero then we can make the substitution
p1 — 1843

in equations (3.50), (3.51), (3.52), (3.53). We obtain:

0 = p3(72+ 5841y, — 132556u3)
0 = p3(90 — 5841y, + 125420p3) .
0 = p2(—27— 54y, + 3568u3):

pi(—81 4 162p, — 35683



A simple computation shows that 90 — 58414, + 1254202 admits no rea

roots. Therefore u; = 0 hence gy = 0 which contradicts the hypoiéﬁéjs_is_.th t .

none of the );’s vanish. The other possibility is that g, vanishes in wili.ch case a

(3.50), (3.51), (3.52), (3.53) yield:

0 = 386u; — 1643 (3.59)
0 = —36u5 — 164; (3.60)
0 = 48u; (3.61)
0 = —16u3 (3.62)

Which again contradicts the assumption that none of the ;s vanish.

Conclusion of case 1 Therefore if none of the \;’s vanish, all the £’s must
vanish. But this last possibility yields a Riemannian product between a three
manifold and a line. This product is R-critical iff the three manifold is flat.

This in turn is not possible if all the A;’s are non-zero (see [Mil76)).

3.7.3 Case 2: only one ); vanishes

We have established that one of the A; has to vanish, as well as one of
the £; has to vanish. In what follows we distinguish two cases: First A; = 0
and & = 0, second A\; = 0 and £, = 0. In both cases we shqw _tha__t solving
the Euler-Lagrange equations leads to the vanishing of th_é';t._)t é.'nd the

conclusion that A\; = A3 in the first case, Ay = Aa in the se'cg_o:ix_' "




situation where two of them vanish, is treated at the end.

A1=0,£1=0

In this case the Euler-Lagrange equations take the following form:

0 = 116 + 226363 + 1163 + 226202 — 26202 + 1124 — 1262054
12£30a)s ~ 120X — 26305 + 226373 + 20103 — 120,03 + 110{3.63)
0 = —1165 +22£263 + 33¢3 — 66£20% + 26202 — 55X8 +12£20,0; —

12650225 + 360325 — 26377 + 66£227 — 20207 — 122,03 + 33){3.64)

0 = £6(11€5 + 1167 + 1122 4+ 6205 + 11X3) (3.65)

0 = £aAa(—11€F — 1162 — 1122 + 62205 + A2)/4 (3.66)

0 = 3365 +2262¢2 — 1165 + 666302 — 26203 + 3303 — 1262250, +

12630203 — 123303 + 26222 — 66£2A2 — 20202 + 36A,A3 — 55)43.67)

0 = £aha(—1162 — 1182 4 A2+ 6)5h5 — 1102)/4 (3.68)

0 = —55¢; — 110£3¢2 — 5563 — 66£323 4 66322 — 112 + 36€2 0,05 +

36€3020s + 122303 + 6€2)2 — 66£2X2 — 20272 + 124,03 — 11A{3.69)

Under the assumption that no other variables vanish, eqﬁ_aﬁ_iOns (3.65) and

(3.66) imply that:

= 1162 + 1182 + 1172 46X hg £ 1172

0 = —11¢7 — 116 — 1103 + 6Xd3 + A3




0 = 2262 42262 + 2202 + 10X2

W.lo.g. let us assume that £, = 0.

AM=0,6=0,6=0"

If one considers the equation obtained by (3.70) —(3.71)l':._' o

| (3.72)

Hence one more variable should vanish, let us assume that it is one of the

&’s, we will treat in the next section the situation where two of A;’s vanish.

Under the assumption A; = 0,£;, = 0,£; = 0, we show that one more

variable has to vanish. For we have the following Euler-Lagrange system of

equations:

0 = 11£5 — 26203 + 11A] — 12620005 ~ 12X30g + 226202 +
2AI02 — 120,03 + 1108

0 = 3345426302 — 55X; — 12620,); + 36A3Xg + 66£222 —
20303 — 12253 + 332

0 = —11€3— 26373 + 3305 4 12€20505 — 12)3A; — 66£272 —
2A2)2 + 361,23 — 5518

0 = £3A3(—11£2 + A2 + 62323 — 1122)

0 = £Ag(—116] + A2 + 6dgA5 — 1102)

0 = —55£5 + 66302 — 1125 + 36£2X,0 + 12224, — 66€222 —

20303 + 122,43 — 1124

(3.73)
(3.74)
(3.75)
(3.76)

(3.77)

(3.78)




Equation (3.76) allows us to make the substitution:

£ — (A2 + 62305 — 1122)/11.

This yield the following system of equations:

0 = M(15)2 — 18323 + A2) (3.79)
0 = M(-T75)2 + 54005 — A2) (3.80)
0 = AZ(45)2 —18Xz)3 — A)) (3.81)
0 = AX(~15A24+ 18Xz — AD) (3.82)

- Let us point out that A; must vanish. If not we could set it to be one in
which case the resulting system doesn’t yield any solutions. Therefore if £; is
non-zero then A, must vanish, This will be treated in the next section. Let us
assume that £3 vanishes as well as &, £ and A;. We then obtain the following

Euler-Lagrange equations |

0 = (=Xz+A3)* (1123 + 102225 + 11A3) (3.83)
0 = (=A2+A3)(55A3 + 19A2X5 + 210372 4 33)3) (3.84)
0 = (A2 = A3)(33A3 4 212223 + 192,72 4 55A3) (3.85)
0 = (—=A24 2321123 + 10A,)5 + 11)2) (3.86)

It follows from (3.86) that the only solution is A, = Aa. .: ;_::__-' -




/\g=0and&=0

Under this assumption we obtain the following set of equations =~ -

0 = 3365 4666263 + 3365 + 26202 4 26202 — 5504 ¢
4630 0s — 12680 A5 + 3623X3 — 6£2A2 + 666202 — 20272 —

122,23 + 3323 (3.87)

0 = —11£4 +22¢7€3 + 33¢4 — 26277 — 6202 + 3304 +

46301 0s — 366301 A3 — 362305 — 26202 4+ 66£202 + 6AZA2 —
36223 + 3373 (3.88)
0 = &ba(—1182 —11€2 + A2 4 60103 — 11A2) (3.89)

0 = 33634226262 — 1164 — 6£202 — 26222 4 330 +

430025 4 128300 X3 — 1220305 + 26202 — 666202 — 27202 4

360,03 — 55A1 (3.90)
0 = &3Aa(—11€5 — 11€3 + A} + 6) 03 — 1102) (3.91)
0 = —55¢4 — 1106262 — 5562 + 6¢2A7 4 66207 — 1M —

12650 s + 3650 A + 120323 + 66222 — 666222 — 22202 +
120,03 — 1174 (3.92)

We will show that {3 must vanish. For Equation (3.91) allows us to make

the following substitution

3 = (=€ + A1/11 46X, 25/11 — AD)

back into the equations. We obtain,



0 = —T75Xxf—2262h 05 4+ 56230 + 99¢202 +

2A2A2 — 764,03 + 99! (3.93)
0 = 45X% — 22620 )3 ~ 52A3%5 + 336202 +
122222 — 40X, 23 + 3373 (3.94)

14X2)2 — 42,23 — 3308 (3.95) __ o
. B |
. o
0 = —15X% 46662054+ 120303 —99¢222 —
280302 + 120,23 — 9912 (3.96)

By considering (3.94)+3%(3.96) we obtain:

0 = A3(—2X1 +3X3)(—1165 + AT + 6A1 A3 — 11)3) (3.97)
Let us plug back in (3.93), (3.94), (3.95), (3.96) successively
Al = (3/2)A3,

£2 = X114 6 23/11 — A2

The situation A3 = 0 and A; = 0 is treated in next section.

A1 = (3/2)Aa yields:

N(35262 — 10737%)

0 = A




0 = A3(—352¢2 + 887)2) o (3.100)
0 = A} (3.101)
This implies the vanishing of all the variables, similarly

£2 = N2/11 46X 75/11 — A2

yields:
0 = M(-T75\% + B54M 25 — A2) (3.102)
0 = M(1502 - 18203 + AD) (3.103)
0 = A(452F — 18023 — AD) (3.104)
0 = M(—~15A2 + 182123 — A2) (3.105)

These equations have only one common solution, namely A; = 0. There-
fore let us assume that &3 = 0.
Therefore if €& = 0,y = 0 then &3 =0

Now in this situation the Euler-Lagrange system becomes:

0 = 3365 +26007 — 55X + 463003 4+ 360303 — 6€203 —

2M303 — 122,03 + 3323 (3.106)
0 = —1163 — 26202 + 33X 4+ 420,05 — 360305 — 26202 +
62203 — 36723 + 3373 (3.107)

0 = (3345 - 66302+ 3307 + 42003 — 120303 4 26202 -
2X2X2 + 362,23 — 5501 (3.108)

0 = —556 + 68323 — 1A} — 1262003 + 122303 + 6£20% —

2X2A2 + 122,23 ~ 1104 (3.109)
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| Let us make the following change of variables:

A= (a4 8),) — (a~b)

we obtain:

0 = —256a% — 128a28* — 448ab® — 48b* + 16abe? — .
86%¢2 + 33¢4 (3.11
0 = 384a%b% + 1445* — 812¢2 — 11¢} (3.111

0 = 256a°b— 128a%b* 4 448al® — 48" — 16abt? —

85262 + 3361 (3.112

0 = —128a%h% — 48b* + 246%¢2 — 55¢4 (B.i_I;ST_)_-._

It is clear from the last equation that the only possible solution is b

and £ = 0. b = 0 is on the other hand equivalent to Ay = As.

This closes the case £; = 0,X; = 0. We have exhausted all the POS:si_}ﬁié'f

cases, up to symmetry, and they all lead to & = 0 for all i and X; = ).

3.74 Case 3: \y=0and Xy =0

Under the assumption that only A; = 0 and A, = 0 the Euler-Lagrange

equation becomes:

0 = —11& + 226262 + 33¢5 + 2262¢2 + 66£2¢3 + 33¢5 —

26703 — 66202 + 66¢2)3 + 337§ (3.114)



0 = &&(-116 — 1147 — 1145+ Xg)

0 = &bs(—116 — 1167 ~ 1165 — 11X3)

0 = 33 +2263¢5 — 1163 + 66€7¢3 + 22¢3€3 + 33¢5
BEZNE — 2€272 + 66£202 + 3303

0 = &&(-114 - 116 — 1€ ~ 119

0 = 33¢ +66£362 + 33¢; + 226363 + 22£3¢3 ~ 1145 +
2INE 4 2620% — 66£2)% — 553

0 = £ha(—11£2 — 11€2 — 11€2 — 1122)

0 = —55¢f — 1106365 — 5563 — 110£163 — 1106363 — 5563 +

6E3A2 4 6£2X2 — 66£2A2 — 1103

(3.115)

(3.116)

(3.117)

(3.118)

(3.119)

(3.120)

(3.121)

It follows from Equation (3.121) that all the variables must vanish.

This concludes the analysis of the Euler-Lagrange equations for a left

invariant metric on a four dimensional, unimodular Lie group with non-trivial

center. We have shown that the only solutions, in terms of the structure

constants are (up to permutation) £ = 0 for all i’s while A} = A and A; = 0.

These correspond to R* if all variables vanish, to E(2) x R if A, is non-zero,

moreover the metric on E(2) is flat.
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