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Abstract of the Dissertation
Structure Jumping in Holomorphic Families
by
Adam Harris
Doctor of Philosophy
in
Mathematics
State University of New York at Stony Brook

1993

In this thesis we establish criteria under which complex structure-
jumping may occur in certain holomorphic families of compact
manifolds. Further results are obtained for the converse problem
of extension of complex-analytic automorphisms on a given sub-
family, in the distinct cases of compact and strictly pseudoconvex
manifolds. A central role is played by the theory of deformation of
complex structures, developed by Kodaira and Spencer, in conjunc-

tion with the direct image theorem for coherent analytic sheaves,

and the theory of deformation of complex spaces, due to Grauert.
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Chapter 1

Introduction - Complex Deformations and

Structure-Jumping

1.1 A historical synopsis of the moduli prob-

lem

The possibility of defining a real, two-dimensional surface as the do-
main of holomorphy of a multivalued, or “algebraic” function was first realised
by Riemann around 1850. Such surfaces were commonly found to coincide with
the loci of algebraic curves, X, determined by the vanishing of a homogeneous
polynomial (ie., P{zo,1,22) = 0) on P3(C). By fixing a point, po € X,‘a,nd
projecting stereographically from X onto any line embedded in the complex
projective plane (which, in modern language, would correspond to defining a

meromorphic function, f: X — Pj), it was observed that the set of “branch

points” of the projection is associated with an important invariant. If d de-




notes the degree of the homogeneous polynomial, P, then, in the absence of
singular points, the “genus”, p, was found to be independent of the choice of
po € X, and is simply expressed by the formula, 2(d ~ 1)(d — 2). The corre-
sponding real surface was seen, via “cutting and pasting”, to be equivalent to a
“sphere with p handles”, thus introducing the modern topological conception
-of the “Riemann Surface”.

The underlying motive of these discoveries, however, came from the ques-
tion of complex-analytic equivalence of curves. In particular, when X 1s a
conic in Py (ie., d = 2,p = 0), Riemann easily demonstrated that all such
curves are conformally equivalent to Py. When X is a cubic (or “elliptic”)
curve (ie., d = 3,p = 1), Abel had already proved that there exists some
number, 7 € I (the complex upper half-plane), such that X = C/G;, where
G, = {ar+b| a,b € Z} corresponds to a discrete group of affine transforma-
tions of C. In fact, there are as many conformal equivalence classes of elliptic
X as there are points in the space, Hy/FPS5L(2,Z). The general classification
of such “moduli spaces” for algebraic curves led Riemann to conclude that all
non-singular curves of genus, p > 2, are parametrised, up to conformal equiva-
lence, by spaces of complex dimension, g = 3p — 3. We may pre-empt modern
terminology by remarking that 3p —3 =2p — 2+ p— 1, where 2p — 2 = ¢(K)
(the Chern class of the canonical line bundle), and p = dimcH°(X, 1} (the
space of global holomorphic 1-forms). Note, for X of complex dimension one,
that K = Q%.

An analogous result for algebraic surfaces, ¥ «— Pj, was partiaily found

by M. Noether about 1870. The “postulation formula”, 4 = 10(p, + 1) — 2},




where p, denotes the “arithmetic genus”, corresponding to dimch(E,K ) —
dimc HO(X, 0}), while ¢ is the second “cup-power” of the first Chern class,
was shown to hold only for surfaces of degree at most four, however, and was
later corrected through the work of Enriques and the Italian school. While
no further advances were made on moduli of higher-dimensional manifolds for
over half a century, the study of Riemann surfaces underwent further develop-
ment with Klein, who extended Riemann’s formula to moduli of non-compact
(Riemann) surfaces with boundary. The approach introduced by Klein has led
ultimately to the theory of “quasi-conformal” mappings, and the construction

of metrics on the moduli space, initiated by Teichmiiller.

1.2 Infinitesimal deformation

The modern notion of deformation of complex structures for compact
manifolds of higher dimension first appeared in a paper of Frolicher and Nijen-
huis, about 1957. The germ implicit in this work, however, was taken up and
developed fully as a theory by Kodaira and Spencer, who had already been
considering problems related to the variation of almost complex structures.
The idea of “complex-analytic {or holomorphic) family” provides the foun-
dation of this thedry, and signals its radical departure from the approach to
the classical moduli problem. Consider a differentiable map, M 4 D, wheré

D € R™is a domain containing the origin, and M is a differentiable manifold,

such that for all £ € D, the preimage, f~!(t) = M,, is a compact, complex




manifold of constant dimension. M is therefore a fiber space over D, having
complex structure in the direction of each fiber, and differentiable structure
in the normal direction, and is termed a “differéntiable family” of compact,
complex manifolds. M L D is said to be a “holomorphic family” when the
stronger requirements that D C C™, M is a complex manifold, and f holomor-
phic, are satisfied. Under these circumstances, the constancy of dimension for
M, is guaranteed by the regularity condition, rankc{J(f)), = dimc(D), for
all ¢ € M, where J(f) denotes the Jacobian matrix. For the moment, how-
ever, the distinction between differentiable and holomorphic families need not
be stressed. Let U;,U; € U be charts on M, and consider complex coordinate
functions, z};(t),z,f;(t),l < k < dimgM,;, such that the restriction to U; N M;
(resp. U; N M,) is holomorphic. The holomorphic transition map between U;

and U; is assumed to preserve the complex structure of the fibers, hence
zi(t) = ffj(zi(t),t), 1 <k < dimeM,.

For simplicity of notation, let gg'denote a differentiable vector field on D
(the parameter, ¢, may be either real or complex). Denote by (%)i, the natural
pullback, f*(£) |v;, and similarly, (£); = f(Z) |u,- From the chain rule, it

follows that
d af:!fj a ad
(37)i = B, FE (5

Hence, for each t € D,

9 d
()= (5 € CYU; N U; O M,. ©,),

where Oy is the notation used by Kodaira to represent the sheaf of holomorphic

sections of T'M, (cf. [10]). Note that the sets, U; N M,, define an open cover




of M,. Passing to the direct limit. if necessary, we obtain a map,
P T;D — H.l(ﬂ'fg,eg‘), :

such that

P2 = )i~ (i)l

Though introduced by Frolicher and Nijenhuis, p; is commonly known as the

“Kodaira-Spencer map”, which measures the “rate of variation” of complex

structure in the parameter, ¢. In particular, pg(‘%) =0 =

(D)= (2 = oil(0,0) = (0, 0)

for some sections, o; € I'(U; N M. 0,),0; € T(U; N M, @), The equations,
o — (%)i =0 — (%)j»

define a global, holomorphic vector field, ¢, along M,. It is by no means clear,
however, that ¢ is holomorphic, or even continuous, in {, ie., pt(%) = 0 for
all t € U C D does not automatically imply that g—t lifts to a holomorphic
(resp. differentiable) vector field on f~'(U) € M. For Kodaira and Spencer,
the solution of this problem required elliptic methods of partial differential
equations, applied to the variation of almost complex structures, along with
the assumption that dimcH*(M,,0,),i = 0,1, is constant for lall te U (cf
[10], [12]).

A somewhat different approach, modelled on work of Grothendieck in the

algebraic category, was adopted by Grauert, who considered the “direct im-

age sheaves”, ' f,(0), where O denotes that subsheaf of 7 M whose sections




lie parallel to the fibers, M, over D. Now, if M is a holomorphic family of
complex spaces, admitting arbitrary singularities, and M L Disa proper
holomorphic map (hence the fibers, f~1(t), are all compact), Grauert’s “di-
rect image theorem” states that Rif.(F),i > 0, is coherent, for any coherent
analytic sheaf, 7 — M (cf. [7]). In particular, when the infinitesimal Kodaira-

Spencer maps, p;, are replaced by a sheaf homomorphism,

p:TD — R £(0),

and % represents a holomorphic section of 7 D, then from the coherence of

R £.(0), p(£ |v) = 0 implies that 2 lifts holomorphically to f~!(U/), when M
is once more assummed to be a regular family of compact, complex manifolds.

Moreover, p [p= 0 if and only if there exists a biholomorphic map,
(I)t() :f—‘l(U) —¥ U X l"’[io,

for each to, € U, thereby defining a “local trivialization” of the family (cf.
[12]). Under these circumstances, integration of f “(£) induces ®,,. It should
be remarked that holomorphic triviality is a much stronger condition than
the requirement that the C°°-structure of the fibers be locally invariant. In
fact, by means of a partition of unity, it can be shown relatively directly, that
any smooth vector field on D may be lifted globally to A, hence inducing a
diffeomorphic trivialization of the family (cf. [12]).

Given a compact manifold, M, each embedding of M as a fiber, My, =

-f~'(to), of some holomorphic family, M, determines a linear subspace, or

“space of infinitesimal deformations”, Dy © H'(M,,, Oy,), corresponding to




the image of py,. M is then referred to as a “deformation” of M. Conversely,
given § € H'(M,©), does M ER D, such that § = pg(z-%), necessarily exist ?

If 8 = [{6; ;}], define

ik = (01,05l

the Lie bracket on U; N U; N Uy. It can be shown that
¢ = {¢n}] € HY(M, O)

defines an obstruction to the variation of complex structure in the parameter,
t, hence a necessary condition that § = pg(gt-), for some M L D, f~40) = M,

is given by ¢ = 0 (for a discussion of the general problem of existence, cf. [12]).

Definition 1: A holomorphic family, M is said to be “effectively

parametrised” at £, € D if p,, is injective.

Definition 2: M is said to be “versal” at t, € D, if any deformation,
N 5 B of M = g~'(sg) is such that there exists ¢ : B — D holomorphic,

with @(sg) = 6, and the diagram,

M <y N — M

S0 — B — D

commutes in a sufficiently small neighbourhood of .




(Remark: The term “complete” was originally used in this context by Ko-
daira and Spencer, who assumed that all parameter spaces are complex mani-
folds. The modern setting of definition 2 allows B and D to be “non-reduced”
complex spaces, to which a more general notion of infinitesimal deformation
applies (cf. chapter four). Under these conditions, “versality” entails that p is

surjective.)

Now if M 5 D is complete and effective at each ¢ € D, define the
“number of moduli”, p = dimc(D).
Much subsequent work in the development of Kodaira-Spencer deforma-

tion theory has centered on the “postulation formula”™,
p = dimcHY(M,,0,,)-

Agreement is found in many instances (cf. [10], [12]}, perhaps the simplest
being the case where M is a Riemann surface of genus, p. Note that ©;, = TM
implies ¢(0,) = ¢(TM) = 2 — 2p < 0, when p > 2, hence H°(M,,,0,) = 0.

It follows from Riemann-Roch that
dimcH'(My,,0,) =3 — 3p,

which coincides with the number of moduli determined classically. For defor-
mations of higher dimension, however, there are serious obstacles to the con-
struction of a metric on the space of moduli. In fact, as a topological space,

the set of biholomorphic equivalence classes need not even be Hausdorff, as

will be seen in the next section.




1.3 Structure-jumping

Prior to the appearance of their work on deformation theory m 1958,
Kodaira and Spencer had already demonstrated that dimgH'(M,, ) is an
upper semicontinuous function of ¢ (ef. chapter three). The following examples
illustrate holomorphic families, M 4, D, in which the restriction over D\ {0}
is locally trivial, ie., all fibers f~!(¢), are biholomorphically equivalent, ¢ #
0. However, f~1(0) % f~'(t), giving rise to the phenomenon of “structure-

jumping”.

Example 1{cf. [10]): Consider the one-parameter family of “Hopf Sur-
faces”, defined as folows. Let W = C*\ {0}, and let ¢, be an automorphism
of W, given by

(21,22) — (@21 + 22, a22),

where 0 < |a| < 1,t € C. Let
Go={g" | meZ}

be an infinite cyclic group, which acts on W in a properly discontinuous man-
ner, without fixed point, hence My = W/G, 1s a compact, complex surface.

Now the automorphism,
g (z1,29,8) — (azy + Lz, 05, L),

generates an infinite cyclic group, &', which acts on W x C 1n a similar manner,

hence M = (W x C)/G is a complex manifold. Since g commutes with the



projection: W x C -+ C, the induced map: M — C is holomorphic, and has

a Jacobian of rank one at each point of M.

Biholomorphic equivalence classes amongst fibers of M correspond to

orbits of the matrices, , under conjugation by elements in P.5 L(2,C)

0 «
(cf. [10}, [12}). In particular,

0t 0 « 0 ¢! 0 «

indicates that M, = M, for all ¢ # 0. It may be seen by explicit computation,
however, that dimcH%(M,,©,) = 2,t # 0, while dimc H°( Mo, ©g) = 4, hence
My % M, (cf. [10], [12]). Further discussion of deformation and structure-
jumping for families of Hopf surfaces will appear in the next chapter. The role
played by the Lie group of complex analytic automorphisins of My, and its Lie

algebra, H%(M,, ©,), will be a recurrent theme in the following chapters.

Example 2(cf. [10]): Let £ — P; be a line bundle, with base coordinates,
z1, 73 on Uy, Uy € Py, and corresponding fiber coordinates, (i, (a, such that
(1 = 233, hence £ = Op,(—3). Compactification of fibers yields a Py-bundle
over P;, commonly known as the Hirzebruch surface, X3 (cf. {10], [4]). It can
be shown explicitly that H'(Xs, 7 X3) is generated by :éd—(’lz = 1,2, hence the
deformation,

(= 25C+ ty22 + t12a,

10




detrmines a two-parameter family, M Lbp C C? such that

Since p is clearly surjective, it follows that M s D is versal at (iy,12) = (0,0).

Now for £t # 0, the holomorphic change of coordinates defined by

(22, +1)C — 3/t
2202 + 12

, (—a+ ':*f)ﬁ + 1 ,
C1 = 3 Cz =
-1+ 4

1

lmphes C{ = ZgCé, ie.', f_l(t) = El,t = (tl,tg') € 02 \ {tltg = O} For tg =

0,y # 0, or vice versa, the transformations,

€2
tiz8C + 1

’ ZICI - ti

Cl ttgl H ¥

!
Lo =

will achieve the same result. Note that the above is an explicit instance of
local trivialization over D\ {0}. In fact no one change of coordinates suffices
to trivialise the entire family over D'\ {0}. We remark, in particular, that
dimcH®(83,T%3) = 8, while dimcH®(%,,751) = 6, and it is clear that

FYH0) 2 F71(¢t) (cf. chapter two).

1.4 Complex spaces and structure-jumping

The concept of deformation theory introduced by Grothendieck extends

to complex spaces with arbitrary singularities, both as objects for deforma-

tion, and as parameter spaces. In this approach, an important role is played

by a notion of infinitesimal deformation in which the parameter space may




consist of a single point, but with a more complicated structure algebra than
before. The relationship between the theory of Kodaira and Spencer, and that
of Grothendieck, is partly analogous to the relationship between an analytic
function, and finite segments of its Taylor expansion at a given point. Further
details of this theory, including the fundamental definition of tangent coho-
mology for complex spaces, will be discussed in chapter four. By way of a
simple example, consider the following deformation, X %, Y, for which the
structure sheaf, Qy,, on each fiber, X, 1s equipped with nilpotent elements.
Let f correspond to the branched, two-fold covering of C given by w = 2z2.
Fibers corresponding to w 7# 0 consist of two points, hence the algebra of
“holomorphic functions” on these fibers is a space of two complex dimensions.
Xo = f71(0) is a one-point space, however, corresponding to 22 = 0. In order
to preserve the dimension of the structure sheaf on this fiber, it must there-

fore be viewed as a “fusion” of two simple points. Oy, is thus identified with

H/(z?), where H is the algebra of convergent power series in z, hence
Ox, = {a+be | abe C," =0}

(cf. [18]).

Versality of deformations of isolated singular points was treated by G. N.
Tjurina, [24]. In particular, the versal deformation of the smooth compact
surface, T3, examined in the previous section, has its singular analogue in the
following construction. Recall £ = Op,(—3), and consider the holomorphic

functions,

w; = z; y = 213‘{(:1, such that w; € Of,0 <1 < 3.

i
:
|



Here £ is considered as the non-compact manifold corresponding to the total

space. The induced holomorphic map,
o L CY (2,()— (wo,...,ws),

is proper, such that ¢~1(0) = E, the exceptional curve in s, corresponding
to the zero section of £. Hence o is identified with a “blowing-down” of ¥,

for which the image is a singular surface in C*, defined by the relations,

The versal deformation of this surface (cf. [24]) corresponds to the rela-

tions,

weg wytiln  wetis

wy Wa w3

such that, for t; # 0, each fiber is a smooth surface, biholomorphically equiva-
lent to Op, (—1), while ¢; = 0,2, # 0 yields a one-parameter family of smooth

surfaces, isomorphic to Op (+1).

1.5 Summary of Results

The following thesis is divided into four parts :
(1) (cf. chapter two) Given a holomorphic family, M 4, D, where D
is a domain containing the origin in C" , such that the restriction over the

punctured domain D \ {0} is locally trivial, under what circumstances does

f define a trivial deformation over D ? {An example of this type of problem




is a conjecture of Kodaira and Spencer [12], recently proved by Siu {22]: if
D C C, and f1(t) = P,,, the complex projective space, for alt t € D \ {0},
then f~1(0) 2 P,,.) The results of this chapter may be summarised in the

following

Theorem: If M S Disa holomorphic family of compact, complex
surfaces, locally trivial over D \ {0}, such that f~!(t) is isomorphic to a fiber

bundle over Py, for allt € D\ {0}, then [71(t) ¥ f71(0) = dim(D) < 3.

The above result applies moreover to locally trivial families of certain

quadratic transforms (ie., “blow-ups”) of fiber bundles over P;. Note that the

term “fiber” refers here to a Riemann surface of genus g, and is not to be

confused with the two-dimensional fibers, f~1(t), of the family, M 4, D.

(2) (cf. chapter three) For a holomorphic family, M ER D, D CC* et
© denote the subsheaf of the tangent sheaf, 7 M, having sections which lie
parallel to the fibers, f~'(t). R f.(©) will then denote the i-th direct image of
O over D. It was originally remarked by Mumford, in the case D C C, having
a single structure jump at the origin, that the vector field, %, is mapped by

the Kodaira-Spencer homomorphism,
p:TD = R(O),

to a non-trivial section which vanishes on D\ {0}, with a pole of finite order
at ¢ = 0. Muliiplication by a suitable power of ¢ provides a lifting of %

to TM, which is tangent to My = f~'(0), hence inducing an eﬁceptional

14




automorphism on that fiber. Via the theory of “jump-cocycles”, [8], Griffiths

translated Mumford’s idea from the algebraic category to the holomorphic.

The results of this chapter refer to structurejmnping over an analytic
subvariety, A C D, such that the restricted family, M\ f~1(A) L \ A, is
locally trivial. After establishing an appropriate generalisation of [8], theorem

1.1 (cf. chapter three - main theorem), there are two main applications:

Theorem: Let H C D be ¢ smooth analytic hypersurface containing A,
then each o € I'(H, R°f.(O ) eatends to a vector field & € T'(M, T M) such
that if v(6), denotes the projection of & |, onto the normal bundle, Ny, in

M, then v(&) vanishes to order k{o)on f~H{H) C M.

(For the definition of k{c¢), see chapter three). Note that ¢ corresponds
to a family of automorphisms on fibers above H.) The second application
involves a regularity criterion for structure jumping, when A = {0} C D,

under different assumptions from those of part (1):

Theorem: Suppose

H

(I) Hl(Mt,Ot) =0 fOT all t 7£ 0,
(1) dimc H?*(M,,0,) is constant for all t € D, and
(ili) M is effectively parametrised at 0, ie., the infinitesimal Kodaire-

Spencer map po : ToD — H'(My, ©p) is injective, then My % M, =

either dim(D) <2, or 3<dim(D)<r




(Here ~ denotes the constant rank of R°f.(©) |p\jo, corresponding to the

dimension of the Lie algebra, H%(M;, ©,), for all ¢ # 0.)

(3)(cf. chapter four) We now turn to the case of a family, X, of germs
of deformations of a singular curve, C, defined in C? by the zero locus of a

weighted homogeneous polynomial,

k

$(z,y) = [I" — ha?).

t=1

Here, the C*-action, defined by
(z,y) = (", %),

is the unique automorphism of €, and does not extend to neighbouring fibers.
Methods applied to the family of simultaneous resolutions of fibers of X, which
are pseudoconvex rather than compact, differ in certain respects from the
smooth case {cf. [15], [16]). In particular, we explicitly construct the space
of “infinitesimal deformations”, D, of the embedded resolution, (M, C), of C,
such that

D= (P H'(A,L),

1<k<n

where A, denotes that irreducible component of the exceptional set in M for
which the self-intersection is minus one. The line bundles, £y, 1 < &k < n, will
be defined in chapter four. The relationship between structure-jumping in the
resultant family, M, of resolutions, and the C*-action of C is also examined,

though a conclusive answer is not reached.

(4) (cf. Appendix). The cohomology group, H*(D\ {0}, R°f.(0)), plays

16




a central role in the results of chapters two and three. Since R®f.(©) is a co-
herent sheal, it follows from work of Andreotti and Grauert, {1}, that the above
cohomology, is finite-dimensional aver C. We are led to consider a relatively
compact domain, D, inside a complex manifold, M, for which the boundary,
dD, consists of multiple components, C;, of varying pseudoconvexity, ¢, as
well as components, C;, of varying pseudoconcavity, ¢;. The natural extension

of {1}, theorem 11, is then
Theorem: If F — M is a coherent analytic sheaf, ¢ = supi<ici¢i,§ =
SUPr41<i<sGs, then
dimcH (D, F) < 400, ¢<k<dh{F)—§—1,
where dh(F) = in foemdh,(F), denotes the homological dimension of F.
A straightforward extension of Andreotti-Tomassini, [2], theorem 4, on

the vanishing of certain cohomology groups, is also obtained for D cc M

above:

Theorem: If D = Micpcs Dy M= Uicpcs Dy, where D; is a “strictly
gi-complete space”, 1 < i < r, and D; is a “strictly ¢;-pseudoconcave space”,

r+ 1<y < s, then for any metrically pseudoconvez line bundle, L — M, and

any coherent sheaf, F — M, there exists v € 7, such that

HYD,F 2 O(L7) =0, q¢<k<dh(F)—§ 2

(For the definition of all terms above, see the appendix).

v



Chapter 2

A Regularity Theorem for Deformations of

Compact Surfaces

2.1 Locally trivial families on a punctured

domain

In questions related to the theory of deformation of complex structures
on a complex manifold, it is usual to start with a fixed manifold M, and con-
sider.a. family M 4 P, with fibers f~(p) = M, corresponding to structures
which neighbour M, = M. If M is a compact Riemann Surface, small, non-
trivial deformations yield a continuum of different Riemann Surfaces. Kodaira
and Spencer [12} observed, in their paper of 1958, that for compact, complex
manifolds of higher dimension. however, small deformations might yield only
one biholomorphically distinct structure, a phenomenon known as ‘structure

jumping’. The main emphasis of this chapter is on a question of the converse




type: given a holomorphic family M ER D, where D is a domain containing
the origin in C™ , such that the restriction over the punctured domain D'\ {0}
is locally trivial, under what circumstances does f define a trivial deforma-
tion over D 7 An example of this type of problem is a conjecture of Kodaira
and Spencer [12], recently proved by Siu [22]: if D C C, and f(¢) =~ P,,
(the complex projective space), for all t € D\ {0}, then f~1(0) = P,,. Local
triviality implies that over sufficiently small neighbourhoods, U C D \ {0},
holomorphic vector fields in 1) may be lifted (non-uniquely) to the total space
M, inducing a local equivalence of structures along the fibers. If the. parame-
ter space D) has dimension at least two, ‘patching together’ these local liftings
gives rise to obstructions in H*(D\ {0}, R°f.(©)), where R°£.(©) denotes the
direct image of the sheaf of germs of holomorphic vector fields lying parallel to
the fibers of M. When the obstruction vanishes. the lifting extends globally
from D\ {0} to M\ M. But the holomorphic vector field so defined on the total
space musf now extend across codimension at least two, by Hartogs’ Theorem,
hence M % D is trivial. In the following sections, a class of compact, complex
surfaces will be examined, for which an important subsheaf of R°f,(©) |p\jo}
is shown to have the structure of a Whitney sum of holomorphic line bun-
dles when dimg(D) > 4. The class considered is that of holomorphic fiber
bundles over Py. The essential idea is to show that on each fiber of f |\,
an element of the appropriate Lie Algebra (ie., a holomorphic vector field), is

determined by its ‘values’ at a finite number of uniformly marked points. This

condition implies vanishing of the obstructions, via Scheja’s work on extension




of cohomology groups [20]. It will then follow that locally trivial deformations
of these surfaces over D\ {0} extend trivially to D when dimc(D) 2 4. In
section two, this result will be established for bundles in which the fibers have
genus zero, namely the Hirzebruch Surfaces, while section three will cover the
case of .Cartesian Products. Section four will be devoted to non-trivial bundles
with elliptic and hyperelliptic fibers. The treatment of the elliptic case will in
fact be applied to the family of (primary) Hopf Surfaces, in which many of the
former are contained. In section five, the preceding results will be extended to
deformations in which the generic fiber is a swrface of one of the above types,
blown up at- one or more distinct points, under certain restrictions. F inally,
section six treats an example of a locally trivial family of compact, complex
surfaces over D \ {0}, with non-trivial extension to D, where dime(D) = 2.

No example of this behaviour when dimg(D) = 3 is known to the author.

2.2 Bundles with projective fibers

Let £, denote the n-th Hirzebruch Surface, and G the Lie Algebra of
Aut(%,), ie ¢ = H%(%,,TE,), where T, represents ‘the tangent sheaf of
%.. Given that 7 : £, — E corresponds to the fiberwise compactification of
Opl(——n), where E denotes the base space (isomorphic to P1), let Gp represent

the Lie subalgebra corresponding to vector fields parallel to the fibers of 2.

(Remark: Gp is in fact canonical, for suppose F' C X, 1s a holomorphic




curve corresponding to a fiber, hence F- F =0,F . E =1,E-F = —n. Let F’
denote the image of F under some biholomorphism of ¥,,. Now I, ¥ generate
Hy(2,,2) = F' = I[F+mE, for some l,m € Z. Since intersection numbers are
preserved under biholomorphism, it follows that - /" = 0, F'-E = 1 (note £
is canonical, since it 1s the‘unique holomorphic curve of self-intersection, —n

in ¥,,). From these follow the relations,

2Am —nm? =0, [—nm=1.

e

Now n = 0 implies either [ = 0orm =0. n 2 1 = m =0,orm = -2, = ~1.

2

The latter situation, however, is impossible, since it {ollows that F'- ' = —= < |

0. Hence £ must represent the same homology class, and is therefore a fiber.)

Now the sequence
0—Gr —G "0 —0

is exact [10], and for all ¢ € G,0 = op + o, where op € Gp,m.(0g) € Gg.
Explicitly,

2

ac’ a;, € C, and

.
7r = (Seoais’ ) + B¢
G
d 0
op = (az’ 4 bz + ¢)5- —az(a—g_, a,b,c € C,
with respect to a coordinate system (z,() on YX,. In the following, “£™ will
also be understood to refer to the rational curve lying in ¥, which corresponds

to E above. For all p € £,,F, will denote the subspace of T,X, lying parallel

to the fiber through p.




Proposition 1 There exist points, p; € .\ FE,1 <1 < n+2, such that for all
o € Gr, the vector field is uniquely determined by {o(p;) € Fp, | 1 <1 < n+2},
Conversely, given s; € F,,,1 <1 < n+ 2, there exists 0 € Gf such that

a(pi) = s;.

Proof: Assume for the moment that it is suflicient to choose the first n + 1
points on distinct fibers of ¥, \ E,ile, 1 # j = =o{(p;)) # 7(p;),1 <4, <n+1.

Choose ¢ € G, and define
U, :Grpx X, —C.

such that

Vo (r,p) = 7(p) — olp).
Let W,; = W, (*,p;),1 <1 <n+1,and let G; C Gr denote the Lie subalgebra
corresponding to the kernel of W,;. Note that dim¢c(Gr) = n + 2, hence
dima(G;) = n+1,1 <1 < n+1. Moreover, suppose that the initial assumption
implies

dimc(Micicny1Gi) = 1.
Now choose £, a generator of Mi<ic,41Gi, and let A denote the zero locus: of
£. Note that A C X, is a divisor, hence p,» € T, \ A, 7 € Micicu1Gi N

ker(W,u12) = 7 — 0 =0, le., 7 = ¢, from which the uniqueness of ¢ follows.

The sufficiency assumption for the first n + 1 points will now be justified,
and at the same time, it will be observed that ANY, \ & is a smooth hypersur-

face, a fact which will be required presently. To show this, let N C ¥, be a co-

ordinate neighbourhood, with p; = (2i,Gi) E N\E, 1 <1< n+t1,pase = (2,()




(note (; # 0,1 £ j = =z # z;). Let &, as defined above, be given by

d
2 .
(a()C" + 85
where a(z) = £7_q;27 in the above notation. Then «; = o(z) = a2+ B¢ =

0,1 <: < n+1. Note that a(z) is uniquely determined by the a;, via the

interpolation formula
o) = Epad(s), M) =

and P(z) = (z — z1)..{z — zp41). Clearly p; € A,1 < ¢ < n+ 1. Hence, if
Pnt2 € A, we may write the values {(p;) = 0,1 <i<n4+2in N, in terms of
a linear system of equations

AX =0,

where X = (ay, ..., any1,8),0 = (0, ...,0,0), and A is given by

(2 0 0 ¢

0 ¢ 0 (2

0 0 R Cnt1
M) Aa(2) . Aapa(2) ¢

Note that dimcker(A) < 1. If p, 4, is chosen so that det(A) # 0, then X = 0.

Conversely, p,; satisfies det(A) = 0 = ker(A) contains non-trivial solutions




of the form (ay, ..., 4nt1, B), ie., € # 0. Hence det(A) = 0 corresponds precisely

to the defining equation of AN N.
Lemma 1

det(A) = kC(CA(2) + &),

where
K

& =74, A(z) = ET'H_I((.

=1

YA:(2).

Proof: Compute det{A) above.

Let 9(2,¢) = (A(2)+x, then 32 = (A'(2), % = A(z),x # 0 = AN(N\E)
is smooth. Since the above argument applies to any neighbourhdod, N, such
that p; € N\ E,1 < i < n+ 2, it follows that AN X, \E is a smooth
hypersurface. Moreover, the existence of a o such that o(pi) = s;,1 <i<nt2,

follows from the invertibility of A. The proof of proposition 1 is now complete.

Now consider a holomorphic family, M 4, D0 e D C C™ with fibers
M, = f7'(t) = X, such that f |snas, is locally trivial, ie., there exists a cover

U = {Ui}ier of D\ {0}, such that for each i € I, there is a biholomorphism
¢, : U,' X Y, — le(U,'),

with ®;(¢,2,) = M, forallt e U;. Let ¢ € T{U;,TD) bea holomorphié vector

field, then the vanishing of the Kodaira-Spencer map,
p: DU, TD) — R'f.(0) lu,,

implies the existence of a local lifting, (@) e T(f~HU;), T M), which induces

D,




Let E, = (I),'(t, E) forallt e Ui ¢ 1,€ = Utep\{g}Et. Since £, C M, 1s
the unique curve such that the self-intersection, E; - F; = —n, it follows that
E, is stable under biholomorphism, hence £ C M\ M, is a smooth subvariety

of codimension one.

Lemma 2 If m = dim(D) > 4, then the closure £ of £ in M is an analytic

subvariety. Moreover Ey = £ N My is a proper subvariety of My.

Proof: That £ is analytic follows immediately from the Remmert-Stein Ex-
tension Lemma (9], since £ is a hypersurface, and m-z 2. Note that £ is also

a hypersurface. Suppose My C &, ie the ideal

IF g IA’IU = (t1p1tm)

<

For any element g € Zg, it follows that g,gg,gfg € (ty,...,1,n), where z,y
represent any local system of coordinate functions along the fibers of M. Now
let g be a generator for Zz. I £ denotes the locus of (g, g, gy ), then it follows
that My C £;. But £, is smooth for all ¢ # 0, hence & N M\ M, = 0, ie
& = M,. Now codimag(&;) < 3, while codima(My) = m > 4, which is a

contradiction. This completes the proof of lemma 2.

Our aim now is to apply proposition 1 uniformly to the fibers of M\ My,
for which the following “marking” procedure is needed. Choose p € M, \ E,,
and a neighbourhood V of p which is relatively compact in M \ £, moreover
assume tha,f dim(D) =m > 4.

Step one: Consider Uy = f(V), and define a holomorphic map ¢; : Uy —

V such that f o ¢y = idy,. Recall that each Af, is a P;-bundle ox%er L, for




t % 0, hence let Fi(t) denote the unique fiber of M, containing ¢,(¢). Now
Fi = Ucup\joy F1() is another smooth hypersurface in V' \ My, to which the
argument of lemma 2 applies, hence the closure £} N My is a proper subvariety.

Step 2: Define ¢4 : Uy — V'\ Fj such that fo ¢, = id, and for all t # 0 let
F,(t) denote the unique fiber containing ¢;(¢). The corresponding subvariety
F3 is once again smooth in V' \ My, hence it extends appropriately across the
central fiber of M....

Step n-+1: Define ¢ppy 2 Up — V'\ Ulc_(anFj such that f 0 ¢py1 = 1d, and
Fr accbrdingly.

Step n + 2: Recall A C 3, from the proof of proposition 1. Define A;(t)
analogously in terms of the points p; (1) = ®7(4;()),1 <j <n-1forallt e
U;NUs,i € 1, and let Aj(1) = ;(t, Ay(t)), and A" = (Uger\ (o) A1) NV \ M.
A’ 50 defined is a hypersurface in V \ My, hence smoothness of A;(t) = A’
1s also smooth, and consequently lemma 2 applies once more to its closure in
V. Finally, consider ¢,12 : Uy — V \ A Ut<i<ntt F_‘j, which completes the

marking of each fiber in M \ M.

The above procedure is preliminary to a discussion of the group of ob-
structions to a global trivialization of the deformation M \ M,. Recall that
for each 2 € I, the biholomorphism ®; is induced by a lifting f7(#) for some

v € I'(Uy, TD). Now, for ¢t € U; N Uy, consider
(1) = ($)u (V1)) — [T (D)) € TopiyMey 1 <k <42,

Recall the Lie Algebra, G, of ¥, and the decomposition, o = gg + o for all
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o € §. Choose any three of the points, ¢x(1) (eg., let £ = 1,2,3), and for all
t € UinNUp,t € I, let ¢; denote a holomorphic t-parameter family of vector

fields in G such that
oi(pe(t)) = (@I (&(), k=1,2,3.
Now f#(%) = f2(¥) + (®:).(0%) Lias the property that
(61)o(5(8) = f7(Doey = 8(t), 1<k < ’-';Jr 2,

where &(t) = 0,k = 1,2,3. Similarly, let f3(7) = f(5) + (®;).(0;) for j € I
such that U; N U; 75 @, then for all ¢ e hnU;nUy,

(1) = F 0w = L @ out) — (80)< (0] = [F2(B)piy — (64, (5(2))] = 0,

k= 1,2,3. Consider W = (Urcrcsor(Up)) NV \ My, Then if R°f,(0) de-
notes the zeroth direct image of the subsheafl of 7M corresponding to germs
of vector fields parallel to the fibers of M, let W represent the subsheal of
R%f.(0©) lo\(oy having sections 7 such that 7 |p= 0. It follows that the

cocycle determined by

“

Ji(@) = F () € T 0 U5, W),
for all 4,5 € I, determines an obstruction in HY{U, \ {0}, W).
Proposition 2 W is free.

Proof: Recall the Lie subalgebé&, Gr, of proposition 1, and let Gy denote the

t-parameter family of Lie algebras determined by (D). (Gr),t e Ui U@,i c 1.




'Consequently, each stalk W; = {0 € Gruy | o{ow(t)) = 0,k = 1,2,3}. Now let
Fr(t) = Ty, (n Fi(t),4 < k <n+ 2, then F; defines a locally free sheaf of rank
one on Uy \ {0}. By proposition 1, there exists an isomorphism

W, = @ Flt)
4<k<n+2

for all t € Uy \ {0}, hence W = Dicr<nt2 Fr. considered as the Whitney sum
of line bundles F,. If Uy C C™,m > 4, is assumed éxpiicitly to be a ball, then
a well known result, due to Scheja [20], indicates that H'(Uj \ {Uf}, Q)y=10."
Moreover, since U \ {0} has the homotopy type of a sphere, 8?1 it follows

that H?(Uy \ {0},2) = 0, and hence exactness of the sequence
H'(Up \ {0}, 0) — H' (U \ {0},07) — H*(Lo\ {0},2)

implies that H'(U, \ {0},07) = 0, ie., every line bundle over U \ {0} is
trivial, and extends freely, via Hartogs’ theorem. to L. It follows at once that
F = @uci<n+z Fr also extends freely across the origin, but now F lvov(oy = W,

and the result is proven.

An immediate corollary of proposition 2, and the results of Scheja cited
above, is that HY (U \ {0}, W) = 0. Tt now remains simply to state the main

result of this note.

Theorem 1 If M L Disa holomorphic family of compact surfaces, locally

trivial over D\ {0}, such that f1({) = £,,n > 1, for all t € D\ {0}, then
F7HE) 2 F7Y0) = dim(D) < 3.




Proof: Suppose dim(D) > 4, then since H'(Uy \ {0}, W) = 0, it follows
that the obstruction to a global lifting, f*{v), of ¥ € T'(U, 7 D) to M \ M,
vanishes. But then Hartogs’ theorem implies that the holomorphic vector field
f*(¥) must extend uniquely across My, thereby negating structure jumping,

which is a contradiction.

2.3 Cartesian products

We turn now to the case of holomorphic families, the generic fibers of
which all have the structure of a Cartesian product, X x Py, where X denotes
a Riemann Surface of genus ¢. The following simplified marking of M \ M,
is required. As before, consider p € My, a relatively compact neighbourhood
V C M, and Uy = f(V). Given a holomorphic map ¢, : Uy — V, fo ¢y =1,
then for each t € U \ {0}, let x:1(¢) denote the unique pair of intersecting
lines in f71(¢) containing ¢,(¢). If V' = V \ ¢1(Us), then the hypersurface,
X1 = Usetp\ 13 X1(2) C M\ My, is such that x; N (V'\ M,) is smooth. By the
argument of lemma 2, it follows that the topological closure of y; in V' extends
properly, as a hypersurface, across My N V' when dim(D) > 4. Now let ¥
denote the closure in V, and define ¢, : Uy — V\¥1, and ¢3: Uy — V\(1Uxs)

accordingly.

Theorem 2 If M L Disa holomorphic familyzof compact surfaces, locally
trivial over D\ {0}, such that f~'(1) = X x Py for allt £ 0, then f71(t) 2

F7Y0) = dim(D) < 3.




Proof: Consider the following cases.

(i)r g = 0. Note that for Py x Py, the Lie Algebra G = Gp, @ Gp,, hence
each o € G is uniquely determined by its “values” at three points (z;,(;) in
a coordinate neighbourhood of Py x Py, such that i # 7 = =z # z;,( # (.
The sheaf W, analogous to the one defined in section two, is consequently
trivial (ie., W = 0), and the obstruction to a global lifting f*(%) vanishes

automatically.

(ii) ¢ = 1. Here X represents an elliptic curve, hence ¢ = Gp, @ C.
With respect to the marking procedure above, W, = T, yP, @ T}, P;, where
pr(t) = @7 (@u(t)),i € I,t € U; Ny, and hence W is shown to be free by the

argument of proposition 2, section two.

(iif) g > 2. For the case where X is hyperelliptic, G = Gp,,

Rf(©) =W = @ TPy,

1<k <3

fort € U;NUp,7 € I, and W is once more free by the argument of proposition

2, section two.

It will be remarked in the following section that in fact all hyperelliptic -

bundles over P, are of this type.




2.4 Hopf surfaces and bundles with hyperel-

liptic fibers

The case of elliptic fiber bundles, oth.er than Cartesian products, is par-
tially treated in the following discussion of holomorphic families, the generic
fibers of which are {primary) Hopf Surfaces (ie., homeomorphic to 8 x §?).
In general, all non-trivial elliptic bundles over Py are Hopf Surfaces, though
these may only admit a finite, unramified cover which is primary. Kodaira and
Spencer treat the family of Hopf Surfaces, {12], as a fundamental example of
structure jumping. Bach fiber is determined as the quotient of W == C%\ {0}

modulo the action of an infinite cyclic group, G, generated by a matrix

such that |a + 6] > 3, (@ — §)? + 47| < 1, (these inequalities ensure that the
eigenvalues of p have norm greater than one). The parameter space P C C4,
so defined, is then fibered over ) C C* by the map ¥(u) = (¢, A), where
e = 1(a+6),A = {{a— 8"+ By, hence Q is defined by [e| > 2 1AL < 4.
Modulo conjugation with elements in GL{2,C), the elements of P fall into

three equivalence classes:
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A # 0. Yor fixed ¢ € @, 9 '(¢, A) consists of matrices p equivalent to

e+\//:\- 0

0 6—\/3

This constitutes the largest equivalence class.
A = 0. TFor fixed (¢,0) € Q,¥(¢,0) corresponds to a quadratic surface

S, C P, defined by the equations

a+6—2e=0, (o~ 67448y =0,

with a singular point corresponding to , which lies in its own equiv-

alence class. Each smooth point, s € S., however, is equivalent to
0 ¢

It is proven, moreover, in [12], theorem 15.1, that the three equivalence classes
on P correspond precisely to biholomorphic equivalence classes on the fibers
of the family, ie.if M, = W/G 4y, and M, = W/G ), then M, = M, if and
only if there exists ¢ € (GL(2,C) such that u(¢) = ¢ ' p(s)g. There are con-
sequently three cases to be considered in the discussion of a family M EN D,
locally trivial over D\ {0}, for which the generic fiber M, = f ~1(¢) is a Hopf

Surface. It should be remarked, however, that the above family does not cor-

respond to a complete classification. Within the versal family (cf. Wehler,




[26]), the following cases correspond to Hopf Surfaces of types IV, II,, and

IL..

(a) M, = H, = W/G,, where p = , for some fixed e. Here

0 €
¢ belongs to the center of GL(2,C) = M, = W/G, for all 1 # 0. The
complex structure is strictly constant, ie., M \ My = My, x D\ {0}, for each
to # 0. Hence, for 7 € (D, T D), the natural lifting f*(#) to M \ My is both
holomorphic and bounded, and extends to M when dim(D) > 1, via a simple

application of the Riemann Extension Theoren.

(b) M, = W/G,, where p = . Holomorphic vector fields, o,
0 ¢
on W/G, are determined as vector fields on W, the universal covering space,

which are invariant under the action of G, (cf. [10], [12]). Hence

o= (a5 + c2z2)w— + azer, c,¢ € C.
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Let p = (u;,up) € W, then o(p) = na—zl —I—CQ—'Z2 = ¢, ¢y are uniquely determined
if u; # 0. Note that under the covering map # : W — W/(G,, the image of
the line 2, = 0 is an elliptic curve embedded in this surface (cf [4], [12]). Now
in each fiber, M, = W/G , of M\ My, the elliptic curve, C, is canonically
determined as the image of the corresponding eigenspace, in W, of p(t) =

g: '1g:. Hence Uwepr03C, = C determines a smooth analytic subvariety of

M \ M,, which extends properly to C C M by the argument of proposition 2,




when dim(D) > 4.

Now let p € My \ Co,V C M\ C be a relatively compact neighbourhood
of p, and Uy = f(V). Consider a holomorphic map ¢ : Uy - V, and for
v € T(Uy, T D), define

§(t) = ¢u((2)) — fi (Vg € ToyM:
for t € U;N Uy, i € I, by analogy with the argument of section two. Similarly,
if
G, - U x I’V/G# — fml(Ug)
is the biholomorphism induced by the lifting f7(¥), and p(Z) = d7Hp(1)) €

W/G,, let o; denote a holomorphic ¢-parameter family of vector fields on

W/G, such that a;(p(f)) = (9:)71(6(1)), for all t € U; N Uy, € 1. Hence

FHT) + (9:).(0:)

=
A+
-
=1
-
!

has the property that

~

$u(¥) = F (D)o = 0-
Once again, by analogy with the argument of section two, for { € UyNU;NU; #

@, it follows that

~

(-fi*(g) — f7(0))sy = 0.

W = ¢(Up) NV \ My, and W C R°£.(O) |\ (o} is the subsheaf of sections,
o, such that o |w= 0, then {f:(ﬁ') - f;‘(f)')}i,je[ determines an obstruction in

HY(Us\ {0}, W). But since o is uniquely determined by its values at ¢(t) € W,

it follows that W = 0, and so all obstructions in H'(U, \ {0}, W) vanish




automatically. Thus there exists a global lifting, f7(&), to M \ Mo, which
extends to M when dimn(D) > 4.
e+ VA 0
(c) My =2 W/G,, where p = , for (e, A) fixed. Let
0 e—vVA

k1 = €+ VA, Ky = € — \/A__, then it is proven, for example, in [4], that
W/G, is an elliptic fiber bundle over Py, if and only if k¥ = rb, for some
k,! € Z. Otherwise W/G, contains precisely two irreducible curves, namely
the images of z; = 0,2, = 0 under the covering map, = : W — W/G,. A
simple calculation shows that vector fields on W, which are invariant under

G, are of the form

o=zt 6z
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—, ¢, ¢ € C.

If p = (uy,us) € W, then clearly o(p) determines ¢y, c; uniquely when uq, us #
0. Let C,,C, denote the canonically determined elliptic curves in M, corre-
sponding to the eigenspaces of u(t) = ¢; 'pg, in W, and let C = UizoCr, C' =
Ut?g()C;. Note that C; 1 C; = 0, for all £ # 0, hence £ N =0 forifCcuc
were connected, the fibers, C; U (', over D \ {0} would determine topologi-
cally a double covering. But D\ {0} is simply connected when dem(D) > 2,
hence the covering must be trivial, which is a contradiction. Under the as-
sumption that dim{D) > 4, the smooth subvarieties, C,C' T M\ M, extend
properly to M by the argument of proposition 1, section two. Now consider

VcM\CUC,¢:Uy— V,and ¥ € T(Up, TD), as before. From here, the

argument of case (b) may be followed verbatim. We conclude




Theorem 3 If M 4, D is a holomorphic family of compact surfaces, locally
trivial over D\ {0}, such that f~'(t) & W/G,,, where p is of type (b) or (¢,
for all t # 0, then f~1(t) % F710) = dim(D) < 3. If u is of type (a), then
0 = 7 (0)

We turn, finally, to bundles for which the fiber has genus at least two. It 1s
known that for hyperelliptic bundles, E, with base space, B, there exists an
unramified cover, B', of B, such that the pullback of £ over B’ is a Cartesian
product (cf., for example, [4]). But B = P; is simply connected, hence the
corresponding bundle is automatically of this type, ie., trivial, and has been

dealt with in section three.

2.5 Quadratic transforms

The essential idea of the preceding sections was to characterise elements of
the (finite dimensional) Lie Algebra of M, in terms of some finite configuration
of points, ¢(t), uniformly marked on the fibers of M 4, D. Note that if o €
HO(M,,©,), such that o(¢(t)) = 0, then, replacing ¢;(¢) by an exceptional
curve , A(t), of the first kind, we find that o lifts to a vector field, &, on
M, #P,. Conversely, if M -f—& D is a holomorphic family, locally trivial over
D\ {0}, such that f‘l(t) ~ M#P,,t # 0, with M a compact surface of one

of the above types, the classification of vector fields on f ~}¢) would reduce to

those on M which vanish at the blow-down, ¢, of the exceptional curve, A. Let




N 2 Op,(—1) denote the normal bundle of A in M #P;. It follows from [11],
theorem 1, that since H'(A, M) = 0, A is a “stable submanifold” of M#P,.
In particular, this implies that the family A(t) C f~'(t),t € Uii € I, is
preserved by the biholomorphisms, @;, of the local trivialization. Suppose now
that f ~1(%) contains r disjoint exceptional curves, A(t), of the first kind. Let
A = UgoAr(t), A = Urcer Ag. If dim(D) > 2. then each A; is a connected
component of A, for if not, then the fibers, Uj<t<, Ax(f), would determine an
r-fold topological cover of D \ {0} with fewer than r connected components,
which is impossible, since the latter is simply connected. Hence the A, are
smooth analytic subvarieties of M \ f—l({)). Now, when M, is a non-trivial
fiber bundle over Py, for each Ag(t),? # 0,1 < k < r, there is a unique fiber,
Fi(t) € M,, such that the strict transform, Fk(t). mtersects Ag{t), and so a
smooth subvariety, Boc M \ f ~1{0), is similarly determined. We will refer to

this situation by saying that the correspondence, Ay F is one to one.

Theorem 4 If M L Disa holomorphic family of compact surfaces, locally
trivial over D\ {0}, with f‘l(t) > Y #PH#-#Ps,n > 1,t £ 0, and the
correspondence, Aj < i is one to one, 1 < k < r < n+1, then _f_l(t) #

f‘l(U) = dim(D) <3, Ifr 2 n+2, then dim(D) < 1.

Proof: Suppose dim(D) > 4. The Lie Algebra of f‘l(t) corresponds to vector
fields on M, = ¥, which vanish at ¢;(¢), the blow- down of A.(t),1 <k <.
If 1 <r <3, then the sheal W, the analogue of W in section two, is similarly
isomorphic to a direct sum of n—1 holomorphic line bundles. If 4 <r <n+1,

then W = R°f,(©) lus\fo}, and is isomorphic to a direct sum of n +2 — r
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line bundles. Note that r > n + 2 = ROf,.(@) Ip\oy= 0, in which case,
for ¥ € T(Uy, T D), there exists a global lifting, (7)€ T{f~1(Up), TM),

which extends across codimension two by Hartogs’ Theorem. Hence =Yty ¢

F-1(0) = dim(D) < 1.

Now, when M; is a Cartesian product, t # 0, each Ai(#) intersects the
strict transform, ©4(t), of a unique pair of fibers, according to the notation of
theorem 2. Given M, = X x Py, where X is a Riemann Surface of genus g,
let v denote the rank of W, the associated direct sum of line bundles. Recall

that (i) v = 0if g = 0; (i) v =2 i g = 1; (i) v =3 if g > 2.

Theorem 5 If M Iy D is a holomorphic family of compact surfaces, locally
trivial over D\ {0}, with fit) = (X x P.)#P#. #P3,t # 0, and the
correspondence, A, & Xg, 15 one to one, 1 < E<r <2 where x;Nx2 =0,

then f='(1) % F10) = dim(D}Y < 3. If r 2 3, then dim(D) < 1.

Proof: Suppose dim(D) > 4. (i) If g = 0, then 7, the rank of W, is
zero, ie., W =0. (i) g =1, then # = 3 —r, and W = R°£.(0) |\
(i) T g > 2, then # = 3 —r, and W = R° £.(®) |pyjoy- Note that r >3 =
ROF.(®) |pyjoy= 0, in which case, for & € I'(Up, 7 D), there exists a global
lifting, f*(¥) € I(f=Y(Us), T M), which extends across codimension two by

Hartogs’ Theorem. Hence L) 2 f7H0) = dim(D) < 1.

Finally, recall that when M, = W/G,, a Hopf Surface of type (b) or {c) (cf.
section fdur), the families, C,C , of elliptic curves, C,,C’tr c M, form smooth

subvarietics in the corresponding total space. Now let A = UrzoA(f) be the
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subvariety of M \ f~1(0) generated by a single exceptional curve, A(t), on
f=1@) = W/GQ,#P,, and let C,C' denote the smooth families generated by

the strict transforms of Cy, C, above.

Theorem 6 If M 5 D is a holomorphic family of compact surfaces, locally
trivial over D\ {0}, with f~Y(t) = W/G,#P;, where p is of type (b) or
(),t #0, and ANC =B, ANC =0, then f~1(t) % f~1(0) = dim(D) < 1.

Proof: Let ¢(t) denote the blow-down of A(%),t # 0, then if o is an element
of the Lie Algebra of M; such that o(g(t)) =0, it follows from theorem 3 that
o = 0. Hence [~1(t) = W/G,#P5, ANC,ANC =0 = R[.(O) Ipy@= 0,
therefore f~1(t) 2 f~3(0) = dim(D) < 1.

(Remark: Suppose that instead of a single exceptional curve, A(t), f“l(t)
contains several disjoint curves, Ag(t), of the first kind. Then, provided the
corresponding subvarieties, Ay, are such that A; N C,Ak Ne = 0,1 <k<r,

the above theorem still holds.)

2.6 An example of structure jumping in codi-

mension two

Let My = X3, the third Hirzebruch Surface (ie., the fiberwise compacti-

fication of Op, (—3)), with coordinate systems (zy, (1), (22,(2), such that z; =

39



1/22,(1 = 23(;. Now define a holomorphic family, M ENY)! C C?, such that
on f~1(t), the coordinate systems are related by
2 = 1/22, Cl = 23<2+t25§+t1227

where t = (4,,t2) € D. M 4, D is in fact the versal deformation of T3
(cf. [10], [11]), where, for all  # (0,0), fH(t) = & = P,#P;. Moreover,
let A C M\ M, denote the subvariety generated by the exceptional curves
A(t) C fHt)t # 0. If. A is the closure of Ain M, it can be shown that
M, C A, ie., A(0) is not a proper subvariety. Recall the discussion of the
versal deformation of 3 in chapter one. In particular, A may be represented

locally by the defining equation,
i2

—21C1 +'£"'C1+t1 :0, tlf-}_ 7&0
1

Now consider any one-parameter subfamily corresponding to the relation, t; =

My, A € C*, and the associated subvariety, Ay, defined by
721G+ A+ = 0.
The extension, A » N My is therefore determined by
}}E%(ZIC1 + MG+t =6+ A) =0,

Now

A(0) D Usec- Ay N Mo,

hence it cannot be a proper subvariety of My. The marking argument of section

two would consequently fail in this case.
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Chapter 3

Structure-Jumping across Analytic Subsets

3.1 The extension problem for holomorphic

families

At this point, it will be appropriate to place the phenomena of deformation
and structure-jumping in a broader context. Given a domain, D € C*, and
A C D, an analytic subset, it may be asked under what conditions certain an-
alytic data, such as functions, sheaves or cohomology classes, can be extended
from D\ A to D. A classical instance of this problem is the “Riemann Ex-
tension Theorem”, which states that a holomorphic function extends uniquely
when A has codimension at least two. Another example is the Remmert-Stein
lemma for extei-lsion of analytic subsets, already encountered in chapter two.

In the case of a sheaf, F, of abelian groups, the exact cohomology sequence,

.— HYD,F) — HYD\ A, F) — HYYD,F) — ...




indicates that obstructions to extension of k-cohomology classes of F are de-
termined by (k 4 1)-classes “with supports in A” (cf. {3}, {23}). In particular,
when F is a coherent sheafl of Op-modules, Cartan’s “Theorem B” implies
that H¥(D,F) =0,k > 1, hence H*(D\ A, F) = H5T(D, F).

Another type of extension problem is the following. Let M ERY) repre-
sent a holomorphic family of compact, complex manifolds, and consider the
restriction, H = f~'(H), where H C D is a smooth hypersurface contain-
ing A. Given analytic data on H, what are the obstructions to defining an
extension of these data to M, or at least to a “formal neighbourcod” of H
in M7 More precisely, let 73y C Op be the sheaf of ideals having ‘H as lo-
cus. The sheaf of “jets of order £”, in parameters normal to H, will then
correspond to Oam /5, k = 1,2,3.... The pairs, (H, (Om/I5) |»), form a se-
quence of ringed spaces, H(k), which comprise the formal, or “infinitesimal”
neighbourhood of H (cf. [8], and chapter 4, in which “non-reduced” complex
spaces are discussed). For example, if ¥V denotes the sheaf of sections of a
holomorphic vector bundle on H, then extension of V to H(k) is obstructed by
HY(H,End(V)QN ™) = Ext), (V\VON),1 <1<k, where N = (I /I3)"
is the invertible normal sheaf of H in M (cf. [8]). If ¢ € H7(H(k),V),
then extension of ¢ to H(k + 1), assuming V itself extends, is obstructed by
HYYYH(E),V | QA Y,

The significance of this last example will be examined more carefully. Let
0 € A C D, and suppose the ideal sheaf of H to be generated locally by

€ Opg. I f: M — D is assumed to be proper, and everywhere regular,

ie., rankc(J(f)), = dimc(D), for all ¢ € M, then M has the structure of a




holomorphic fiber space on D, ie., each M, = f~(p)is a comiya.ct, complex
manifold, with trivial normal bundle in M. Consequently, the subfamily,
H = f~Y(H) is a complex submanifold with trivial normal bundle, since f =
p o f provides a global generator for T, Under the assumption that V is a
holomorphic vector bundle on M, let U C M be an arbitrary open set. The

short exact sequence of O p-modules,
0 DU, V) 5 TLY) S TWNHY |3) — 0,
gives rise, in the direct limit, to a short exact sequence,
00—V, 5V, 5V s, 0.

of sheaves, for all g € HNU. Let R f.(V) denote the ~-th direct image sheaf.

Then there is a corresponding pair of long exact sequences,

= REW) S RLWY ) D RV OV) >

)

. — T(DNH, R £.(V) &) S T(DNH, R £.(V |n)) -5 T(DNH, R f.(V) |5) — -

on H. The following theorems are fundamental to the results of this chapter:

Theorem-a  {Upper Semi-Continuity of Cohomology):
(cf. [7]) For every d > 0, the set, A, g = {p € D| dimcH"(M,,V,) > d},

where V, =V |u,, 15 an analytic subset of D.

Theorem-3  {cf. [7]) If dimcHY(M,,V,) is independent of p, then

R f.(V) is locally free, and ranko, (R f.(V)) = dimcHY(Mp, V,).




(By the mnk. of a coherent sheaf, F, at a point, p, is understood the C-
rank of the module, F/m, - F, where m, denotes the maximal ideal in Op
corresponding to p.)

Now let d(v) = infrepdimcHY(M,,V,), and suppose A 2 A, 4341, for
all integers, v > 0, ie., the shea&es, R f.(V) are locally free on D VA If
o € T(DNH,Rf,(V |3)), then the image of §, above, will be shown to
correspoﬁd to a torsion module, obstructing extension of ¢ to ), namely,
Ta(DNH, R™ f,(V)) (cf. theorem 7 of the following section). In this way, the
second type of extension problem discussed here is seen also to be connected
with cohomology supported on A. Theorem 7, which constitutes the main
result of this chapter, is in fact a generalisation, via different techniques, of a
result due to Griffiths, [8], when dimcD = 1.

Now let V = © denote the subsheaf of the tangent sheaf, 7 M, having
sections which lie parallel to the fibers, M. RYf.{Q) will then denote the v-th
direct image of © over . It was originally remarked by Mumford, in the case
of a parameter space, D C C, having a single structure-jump at the origin,

that the vector field, 5‘9;, is mapped by the Kodaira-Spencer homomorphism,

p:TD — R'£.(0),

to a non-trivial section which vanishes on D\ {0}, with a pole of finite order at
t = 0. Multiplication by a suitable power of ¢ provides a lifting of -5% to T'M,
which is tangent to Mj, hence inducing an exceptional antomorphism on that
fiber. Via the theory of “jump cocycles”, [8], Griffiths translated Mumford’s

idea from the algebraic category to the holomorphic.
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The emphasis of this chapter is on the extension of Griffiths’ work to
parameter spaces of higher dimension. Structure jumping is considered to
occur with respect to an analytic subvariety, A C D), such that the restricted
family, M\ f~1(A) ENY) \ A, is locally trivial. The following section will be
devoted to a generalisation of [8}, theorem 1.1, using sheaf theoretic techniques
drawn from [21], [23]. This result has two distinct applications in section
three : first, to the problem of extending exceptional automorphisms from
fibers above a hypersurface containing A, to the ambient deformation space,
M, and secondly, to the special case of A = {0} C D, with the additional
requirement that RB'f.(0) |p\(oy= 0. Under these conditions, a regularity
criterion is derived for M % D, relating dimg(D) to the dimension of the Lie

algebra, ¢ = H°(M,,0,), for all p # 0.

3.2 Jump-cocycles and extension of automor-

phisms

Consider a holomorphic vector bundle V on M, of rank r, and let V,, de-
note the restriction of V to M,. If V represents the (O 4-module corresponding
to the sheaf of holomorphic sections, then the v — th direct image sheaf will

be a coherent Op-module, denoted by R (V).

Suppose that A C D is an analytic subvariety such that B f, (V) restricted

to D\ A is locally free for all v, and H C D any hypersurface confaining A.




For any relatively compact subdomain, D’ of D, let H = f~'(H N D') be the

corresponding hypersurface in M, and
Gy =THND, R f(V n)),
the Op,-module of global sections of Rf,(V |n). -
By, =T(HND, B f(V) |HnD')‘ C G,

will then correspond to those sections of R f.(V ] ) which extend to a neigh-
bourhood of H in D'. Finally, let J, represent I'4(D', R? f.(V)}, the module

of global sections of K7 f.(V) with support contained in A.
Theorem 7 G, /E, =2 J,11 as graded Op- modules.

Proof: Choose pp € Ops such that Zgnpr = (p¢) is the ideal sheaf of HN LY. The
assumption that My, is trivial in M for all p € D = Tyy = (po f). Let U be a
Leray cover for M, and for all ¢ € G, let @ be an extension to a y-cochain on
the nerve of . If § denotes the coboundary map, then §(7) |n= 0 => (po f)*
divides 6(7) for some maximal k < oo {unless & € E.). hence @;1?)—,;-6(5) will
represent a section of cohomology classes in J, 44, since RY*! f, (V) is assumed

to be locally free on D \ A. For convenience, let F denote R f,(V), and

define a sheaf homomorphisim
¢x : F — Homo,(Tinp: F)
as follows. At the presheaf level, for all /' C D, and for all

e T(U,F)=H™(f1(U),V),
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let ¢i{¢) be an Op-module homomorphism sending ¢ to (g o f) - £, where
g€ (U, I%.p/), and then pass to the direct limit. If F; is taken to denote

ker(dy), then the ascending chain of coherent sheaves :
FiCFC..CFy

is locally stationary (cf. [21]). Moreover, that F; # @ for some k, is guaranteed
by the Nullstellensatz for coherent analytic sheaves (cf. 7], {23]). Hence if D'

is a relatively compact subdomain, there exists ko such that Fy [p= Fi, 1pr

for all k > ky. Moreover J,, = Cu(D',F)=T(D', F.) (cf. [23]}, hence
ko T, (D', RHLF(V)) = 0.

Consequently, if 3@ is a cochain extension of o to 2 N f~1(D'), then (po f)»+!
divides §(¢’) = ¢ € E,.

Now, since H is a hypersurface in f~'(D'), for which the normal line
bundle A corresponds to (Zy/Z7)", the cohomology of ¥V may be expanded in

a power series about H, 1.e. consider

D H(H,V [x @A),
k=0

in which each direct summand will henceforth be abbreviated to HZ“. In

particular there is a well defined, Op-linear map

w:Gy— @Hgﬁ

k=0

such that w(o) = [6(F)). Moreover, if

Pk . EBH;+1 _— HZ.Y“H

k=0




is the k-th canonical projection, then define k(o) = inf{k | Pilw(0)) # 0},
where k(o) < ko for all 0 € G,/ F,, and is defined to be ky + 1 for 0 € L.

Hence, for all ¢ € G,

(—uEl"?)‘kw(o) € Ty C HFI(FHD), V).

Now let £.,(k) = {c € G4 | k(o) > k}, so that

G, =5,(1) 25,(2) 2 ... 2 By(ko + 1),
and TL, (k) = {£ € Jy41 | g5 < € = 0}, so that

IL,(1) C T,(2) C ... €I, (ko) = Jyt1.

The following is now a straightforward consequence:
Lemma: %, (k)/Z,(k+ 1) = IL(k)/11,(k - 1).

Proof: Consider
Pyt By(k) — IL(k)/IL, (k= 1)

such that 1,[4.(0)_ = (—’-‘JT};;W(J). 1y is linear, and ker(v¢y) = £,(k+1). Suppose
¢ € IL,(k)/TL,(k — 1), then p* - £ = 0,u*" - £ # 0 => { can be represented by
cocycles of the form (Tol}rﬁa(ﬁ)» for some y-cochain & on M. Since §(7) |[x= 0,
it follows that @ |x= o € Y,(k) C G, such that ¢y{g) = €. hence ¥ is
surjective. Q.I.D.

Finally, let £* = S.(k)/S,(k + 1),[1% = ,(k)/IL,{k —1). Then, as

Opr-modules,

ko
Gy = @EEEBEW(ké +1),
k=1




the last direct summand being equal to E.,, and
ko .
J‘H-l = @Hq = ¢ : G“.’/E"{ = ‘]"H-la
k=1

where 1 is the linear extension of the homomorphisms .. This completes the

proof of Theorem 7.

3.3 Application to complex deformations
Consider V = O o, corresponding to the subsheaf of T M having sections
which lie parallel to the fibers M,,. Triviality of Ny, in M, combined with the

compactness of M, for all p € D implies that the canonical exact sequence
OHGME—PTM—%TM/@M — 0
induces a long exact sequence of the form :
0 — ROF(Ou) — Rf(TM) JoTD L R(Opm)

where p is the Kodaira-5pencer map. M now corresponds to the deformation
space of holomorphic structures on a compact, complex manifold My. Tt will be
assumed here that M 1s a versal deformation space, and that H?*(My,0) =0
(hence, by upper semicontinuity of cohomology, R2f.(Op) = 0 on D suffi-
ciently small), which together imply that p is surjective {cf. [T}, [10], and
Nakayama’s lemma). Moreover, as regards the minimal number of generators

for the first direct 1mage,

ranko, (B fu(Om)) = dimc H'(M,, 0,)
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for all p € D. This fact is due to R*f.(©) being, a fortiori, torsion-free,
and hence follows from the proof of Theorem-3, even though R' £,(©a) is not

locally free (cf. [7]).

Corollary 1 Each o € Gy = I'(H N D, R°f.(Om)) exlends lo a vector field
& € D(f~Y(D), TM) such that if v(5), denotes the projection of & |, onto

Ny, then v(&) vanishes to order k(o) on H.

Proof: Let K C 7D be the subsheaf of germs of holomorphic vector fields ¥

such that p(#) = 0. Since R%f.(7 M) is coherent, there exists a free resolution
OF — 07 25 ROf(TM) — 0.

Moreover, T D is free, therefore isomorphic to O*, D € C", from which follows

the resolution
O — 07 225 0" 2 R (Om) — 0.
But im(f, o o) = im(f.) = kerp = K, therefore
O — 0T L5 K — 0

implies K is coherent. Now consider £ € J; = ['4(D, R' f.(O.u1)). Since p is

surjective, for all p € D there exists a neighbourhood U, and v € T'(U,7 D)

such that p(%) = ¢ |y. Given %;,%; such that £ |y,= p(%;), { |v;= p(¥;), then

U;nU; ?éwfr"ﬁ}—-ﬁj e U, NnU;,K).

Passing to a refinement, if necessary, assume U;, U; € U to be a Stein cover

of D. Then {{; — 7,}.;] € Hl(D,lC), which vanishes by Cartan’s Theorem B,




hence there exists ¢ € I'(D,7 D) such that £ = p(¥). Now. A C H implies
pp(¥) = 0 for all p € D\ H, hence there exists a neighbourhood U; of pin D\ H,
and a local lifting f7(¢) to T(f~1(U), T M). Moreover, UiNU; # § = {f1{7)—
f1(9)}:; determines an obstruction class in H'(D\ H, R°f(Oum}). But D\ H#
is Stein, and R f,(O 1) is coherent, so once again the cohomology vanishes by
the Theorem B, and there is a global lifting f*(¢) € T(f~Y(D\H),TM). Now,
given o € Gy/E,, let o0 = L% Aoy be the direct sum decomposition, where
or € Bk, and A\, € Op . By theorem 7, there exists unique £ = Eif(;lf\kfk e J;
such that ¢ = (o). Moreover, by the above argument, there exist vector fields
¥k such that & = p(%),1 < k < &y, and hence holomorphic liftings f*(7;) to
M\ H. But pfloxd . g = 0 = pFOr £2(4,) extends holomorphically across H,
hence

& = D, pMOW ().

By construction, & |y= Etg:ll\ko-k = ¢. Moreover, the normal component, vy,
of p*ex) f*(%,) vanishes to order k(o) on M, hence the order of vanishing of
v(&) corresponds to k(o) = inf{k(ox)|Ar # 0}. This completes the proof of

corollary 1.

It may be asked whether some analogue of corollary 1 may be extended to

any subvariety S, of codimension greater than or equal to two in D, such that

A C S. Inparticular,if £ € T 4(D, R' f.(© sm)), then there exists ¥ € T'(D, T D)

such that { = p(v), and for all p € D\ 5, there exists a neighbourhood Uj,

and a local lifting f(¥) to T(f~1(U), T M). The obstruction to global lifting




lies in HY(D\ S, R°f.(O ), but D\ S is no longer Stein, and in fact for the

case dirm(A) > L
Corollary 2 If T4(D, R f.(Oum)) # 0, then
dimcHY(D\ S, R°f.(Bum)) = +o0

Proof: Given

0= K—TD-L Rf(O4y) — 0,

let X[S] denote the “relative gap-sheaf” in 7D with respect to S, ie., coming
from the presheaf, I/ — {7 € T(U, TD){ ¥ |ins€ DU\ S,K)}, foral U € D

(cf. [23]). Consider
p:T(D,K[S]) — Ta(D, R'£.(Op)) — 0,

where ker(p) = T(D,K). Let 4 = {U;}ier be a Leray cover of D\ S, and
for ¥ € D(D\ S,K), let f*(¥) = {f7(¥)}ier € COU, R°[.(T M)) represent a

lifting. Finally, consider the coboundary operator,
§: COU, ROf(TM)) — CHU, R£.(Ou)).

The composition § o f* determines a well defined map

Ay :T(D\ $.K) — H\(D\ S, BL.(Op).

for which & € kerA; implies there exists a global lifting f*() to f71(D\
S). Moreover, codimp(S) > 2 implies f*(¥)} extends holomorphically across

F7Y(S), by Hartogs’ theorem, and hence there exists an extension % € I'(D,K[S))




such that ¥ € kerp, therefore kerA; C kerp. Let Q = I(D,K)/kerA;, then

from the exact sequence
0 — I'(D,K) — I(D,K[S]) = Ta(D, B £.(01)) — 0
is induced the sequence
0 — Q — I(D,K[S])/kerAs — Ta(D, R f.(Op)) — 0.

Now ['(D,K[S])/kerA; = im(A;) C HY D\ S,R°f.(Ou)). But A is a Stein
space of positive dimension, hence I’A(D,R]f,,(@M)) s a Fréchet space of

infinite dimension over C. Moreover

zm(Af) — I‘A(D, le*(@,w)) — 0

implies dimg(im(Af)) = +oo, hence dimcH*(D\ S, R f.{O 1)) = +oo. This

completes the proof of corollary 2.

For the case dim(A) = 0, let T be the torsion subsheaf of R'f,.(Oum);
then supp(T) = A = {0} = dimcla(D, R f.(O0)) = dimcD(D,T) <
ranko(7), which is finite, since 7 is coherent. In addition, if A = § = {0},
then dimcH"(D\ {0}, F) is finite, for any coherent sheal ,0 < r < dh(F)—1,
under the assumption that the boundary, 9D, is strictly psendoconvex (cf. [1],
and chapter five), If F is locally free on D\ {0}, then di(F) = n = dim(D);
moreover, when F corresponds to a vector bundle, V, over D \ {0}, equipped

with a holomorphic connection,

ViV — QYV),




then H(D\ {0},V) =0 for 0 <r <n —1 (cf. [5]). The existence of a free
extension of V across the origin in C™ then becomes a relevant question, since

the group of obstructions to global existence of a connection on V, ie.
HY(D\ {0}, Q! (End(V))) = Estl, . (V,2}(V)),

is similarly finite dimensional.
A theorem of Grauert implies that any holomorphic vector bundle on a

contractible Stein space is trivial, hence
0+#[V]e HY(C*\ {0},GL.(C)), rank(V)=r,

implies V does not extend freely across {0}. For example, consider L corre-
sponding to the total space of the tautological line bundle on P,_q, for which
the sheaf of holomorphic sections is denoted Op,_,(—1). Let U = {U, }ier be
a Stein cover of P,,_;. For all p € P,,_;, the complex dimension of the fiber
7~1(p) (where r is the canonical projection of the line bundle to its base} is one,
hence 7~ (p)\ {p} is Stein, and so is the Cartesian product U; x {z~'(p)\ {p}),
from which a Stein cover of L \ P,_; is generated. Now the cohomology of
a vector bundle V over L \ P,_1 may be expanded 1n a Laurent series about

Pn——l: le.

H(L\P,_;,V)= P H'(P,..,Vlp,_, SN F),

k=—ca

‘where A, the normal bundle of P,,_; in L, is essentially the same as Op__, (-1).

—

In particular, if V = #*(Q} _ ), then for r = 1, the Bott formula (cf. [17])

indicates that dimcH(P,_1,p

hence dimcH'(L\ P,_;,V) = 1. But now, under blowing down, L\ P,_, =

(£)) = 1 1if & = 0, and zero otherwise,

n—1




C"\ {0}, and 1% lLP

.y is mapped biholomorphically to a vector bundle V
on C™\ {0}, such that dimcH'(C"\ {0},V) = 1. This means, in particular,
that V is non-free when n > 3, since H'(C™\ {0},O0") & H{(C*,0") = 0 (cf.
[20)).

Consider finally the case of a holomorphic family of compact manifolds,
M L D, where once more A = {0},V = R°£.(O) |p\(oj- Under the following
conditions, it is possible to determine an upper bound for dimg(D) in terms

of the (constant) rank, r, of R°/.(@) |p\(0}, corresponding to the dimension

of the Lie algebra, H*(M,,0,),p # 0.

Corollary 3 Suppose
(i) H'(M,,0,) =0 for allp £0,
(ii) dimcH*(M,,©,) is constant for allp € D, and
(iti) M is effectively paramelrised at 0, ie., the infinitesimal Kodaira-
Spencer map po : ToD — H'(My,0q) is injective, then My # M, =
either dim(D) < 2, or 3 <dim(D)<r.
Proof: H'(M,,0,) =0.p# 0,= R'f.(O) |p\(0)= 0, therefore

Jy = Toy(D, B £.(8)) = (D, R' £.(©)).

If dirncH*(M,,0,) is constant for all p € D, then R*f,(0) is locally free,
hence

rank(Jy) = ranko(R! f.(0)) = dimc H'(M,, ©y).
Now pg injective = dim(D) < dimcH* (Mo, O0) = rank(J;), hence if H ¢ D

is a hypersurface such that 0 € H,H = f~}(H), and Go = T'(H, R f.(© |x)),

5




then theorem 7 ( J1 =2 G/ Fy) implies tha.t-ranic(Jl) < rank(Go). I it is
assumed that dimn(D) > 3, then codimy({0}) > 2, hence since ROf,(O) is a

normal sheaf, it follows that
P(H\ {0}, B°£.(© |5)) 2= T'(H, B°£u(O [x)).
But R°f,(0) {0y is locally free, hence for all p € H \ {0},

rank(T(H \ {0}, B°£.(O ) [mo})) < rank,(R°£.(O |x)),

and R f,(©) |u\yoy locally free implies
rank,(R° (0 |n)) = dimcH(M,,0,) =7,

therefore dimn (D) < r.

Example: Consider M EA D for which M, = S1#P2#P,. It can be
shown (cf. [10]) that H*(M,,0,) = 0,k = 1,2, while r = dimcH°(M,,0,) =
2. Hence My 2% M, = dim(D) < 2, when H*(My.04) = 0. Otherwise,

theorem 4 of chapter two implies dim(D) < 3.

In the next chapter, an extension problem of a similar type will he dis-
cussed, with certain important differences. In particular, “A” will be seen
to signify a compact hypersurface, having non-trivial normal bundle within a
(non-compact) complex manifold, M. Infinitesimal neighbourhoods of A will
play a far more prominent role in the extension process, for which the “ana-
Iytic data” will correspond to certain sheaves of automorphisms supported on
A. Roughly speaking, these sheaves will stand in relation to the tangent sheaf

of A as a Lie group stands in relation to its Lie algebra.
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Chapter 4

Deformation and Resolution of Reducible

Plane Curves

4.1 Deformation and resolution of complex

spaces

The theory of deformation of complex spaces generalises the fundamental
concepts and definitions of the Kodaira-Spencer theory for compact complex
manifolds. In essence, the holomorphic map, f : M — D), between complex
manifolds (D is often assumed to be a domain in C") is replaced by a map,
7w : X — 5, of complex spaces. The regularity criterion for f, which ensures
that fibers, M, = f~'(p), are manifolds of constant dimension for all p € D,
is correspondingly replaced by the requirement that = be “flat” (cf. [18]). If

8o € S is a distinguished point, and Xy & 77'(sp) is a given complex space,
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then the family, (7, X, S) is said to define a “deformation” of X,. Moreover,
if 2o € Xg, and U is an open neighbourhood of g, the induced deformation

of U is said to represent a “germ of the deformation of X, at x,”.
p g

Further sophistication is required in generalising the notion of “tangent
sheaf” to complex spaces with singularities. Let / € X, correspond to a
reduced analytic subset, V, of a manifold, M, which is the locus of an ideal
sheaf, m C Oy, with 2}, denoting the sheaf of holomorphic 1-forms on M.
Let ' C 1}, denote the subsheaf generated by m - Q}, and df for f € m, ie.,
wy € QL if

wp = Nl + X g;df;,

where 8; € Q,,,9; € Opmg, and by, f; € m, (cf. [14]}. The sheaf, 0}, of
germs of holomorphic 1-forms on V, is therefore defined as 13,/§¥. More-
over, if Oy = (Op/m) |y, then the tangent sheaf, 7y, will correspond to
Hom(Q,, Ov). Higher cohomologies of the tangent sheaf will therefore corre-
spond to the groups, Extl, (4, Oy) = Smtfpxo(Q}(o, Ox, )z, Neighbourhoods
of non-singular points of Xy are rigid, in the sense of admitting only trivial
deformations, hence S;z:t"OXD(Qf\;n,C),\'O) 1s supported on the singular locus of

Xo.

In the case of 2o an isolated singular point, G.N. Tjurina constructed the

minimal, locally versal deformation, 7 : X — 5, of the germ of X, at zy, where

S is a complex manifold with distinguished point, xy. In addition, it was shown

that the canonical homomorphism, pp : 75,5 — & xt}pxo( 0%, Oxg)zo, the ana-

logue of the Kodaira-Spencer map for deformations of compact manifolds, is
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in fact an isomorphism when S:r:téxo (g, Oxg)ao =0 (cf. [24]). -

By a simultaneous resolution of the deformation, = : X — & , I8 meant a

commutative diagram of mappings of complex spaces,

X X

in which 7' is also a manifold with distinguished point, and ¢ is a proper
mapping, such that ¢~'(s) is a finite, non-empty set, for all s € 5. Moreover,
7 i regular, in the sense that the C-rank of #, is equal to dimc(T') at ecach
point of X, and the fiber, X, = T7Ht), is a resolution of =7 (H(t)) = Xg1), for

allteT.

When X is a complex space of dimension two, the topological type of the
singularity is determined by its minimal resolution. Hence, if A — X, is the
exceptional set, and A = U; A; its decomposition into irreducible components,
for each t € T', then the fibers of 7 : X — § are all of the same topological type
if and only if the intersection matrix, (A4;- A;); ;, is independent of £. Note that
the resolution, X, of X corresponds to a pseudoconvex neighbourhood of the
compact analytic subspace which is the preimage of z,. Deformation of X,
consequently involves a machinary which is in some respects intermediate to
the theory of local deformations of complex spaces, and the Kodaira-Spencer

theory for compact manifolds. In particular, the question of existence of a




versal deformation of X, (or, alternatively, the existence of a simultaneous
resolution of the fibers of X in the above sense) is quite separate from that
addressed in [24], and is treated, in the case of equitopological families of
two-dimensional normal singularities, in [15].

The approach taken is to choose a Riemann surface, A;, belonging to A,
deform the normal bundle, N;, in Xo, and hence the embedding of A; onto
the zero section of the total space (taking automorphisms of A into account).
Note that the Chern class of N;, corresponding to A; - A;, should remain in-
variant., Deformations, X;, of the resolution are then recovered via a plumbing
procedure on coordinate charts of the deformation of each N; (cf. [15]). Each
fiber, X,, determines a sequence of “non-reduced” spaces, for which formal
equivalence provides a sufficient condition of biholomorphic equivalence be-
tween fibers ([14], theorem 6.13). Recall that a non-reduced space, also called
an “analytic space with nilpotents”™, consists of a pair, (V, Oy ), where V is a
Hausdorff topological space, and the structure sheaf of C-algebras, Oy, has the
following property. For each p € V| there exist a neighbourhood, U, a subset,
Y of D (a polydiscin C"), corresponding to the locus of a sheaf of ideals, 7, and
a C-algebra isomorphism, ¥ : (O/T) |y — ¥*(Ov |v), where ¢ : ¥ — U is the
underlying homeomorphism. More specifically, suppose that each component,
A;, of the exceptional set in X, is the locus of an ideal, T;, in Og,. Any product
of higher powers of the Z; will then determine an ideal, 7, and a corresponding
non-reduced structure on A, denoted A(Z). Such spaces play a crucial role

in this branch of deformation theory, which generalises Kodaira’s treatment,

[11], of deformations of compact, complex manifolds with analyvtically “stable”




submanifolds. Note by comparison that the spaces, X}, being deformed here
are non-compact, and strongly pseudoconvex, containing a compact subspace
with singular points, corresponding to the transverse intersections of the A;
(cf. [6], [14], [15]). Modulo these discrepancies, however, the idea of defor-
mation is the same. On coordinate charts of A, the analytic structure of any
non-reduced space may be extended isomorphically. On intersections of these
charts, however, the difference hetween adjacent local extensions generates
1-cocycles associated with the following sheaves. Again consider products of
the form, I, Z]*, I, Z{, denoted by m,n respectively, where r; = s; for all r;
different from some chosen iy, while s;; = r;; + 1. Let Aut(n : m) denote
the sheaf of automorphisms, with stalkwise multiplication given by composi-
tion, determined by its presheaf of sections. Namely, if {# C A is open, then
a € T'(U, Aut(n : m)) => « is an isomorphism on A(n) |y (the underlying
homeomorphism being the identity), which preserves m/n stalkwise, and in-
duces the identity on A(m) {yC A(n) |y. Aut(n : m) is a sheaf of non-abelian
groups, hence the cohomology, I*(A, Aut(n : m)), will have the structure of
a group when k£ = @, but will simply be a set with distinguished element, or
“pointed set”, when & = 1. Passing reference has been made to deformation

of X, as a two-fold process, involving both the normal bundle, Nj, of each A;,

and automorphisms of A(n) which fix the points of AN 4;. More precisely,

Aut(n : m) may be decomposed via the following short exact sequence:

1 = Aut(n,m) — Aut(n: m) —» An{n,m) — 1,
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which induces an exact sequence,
o= HY( Ay, Aut(n,m)) — HY(A;,, Aut(n: m)) 5 H' (A, An(n, m)),

of pointed sets of cohomology. An{n,m) may be identified with a subsheaf,
O C O:h'o’ whose sections near A; N A4;, are of the form exp(Z{'). Moreover,

there is a short exact sequence,
2me €T, -
Oﬁzlﬂol—?oi—}l,

where Z’ is that subsheaf of the locally constant sheaf of integers having zero

stalks at A; N A;,, which induces the corresponding exact sequence,
- Hl(Aiovoi) - Hl(Ai'oa O;j _6} Hg(Aiof Z’)

(cf. [14], [15]). In particular, if A;, has genus zero, then HY O ) =0, H{O?) =~
H'(An(n, m)), implies that the map, § : H'(A4;,, An{n,m)) — H*(A;,, Z') is
injective. Now let [£] € H'(A;, Aut(n : m)) denote an obstruction class,
generated by local extensions of the analytic structure, between neighbouring
non-reduced fibers. ¢([¢]) then corresponds to the difference, N;, @ (N{ )71, of
the two normal bundles over an intersection of charts on A, But the Chern
classes, ¢(N;, ), ¢(N]) are assumed to be the sane, hence § o ¢([€]) = 0. There-
fore ¢([¢]) must be zero, since § is injective. We conclude that when 4;, & P,,
every [£] € H'(A;,, Aut(n : m)) may be pulled back to HY( A, Aut(n,m)).
The sheaf, Aut(n,m), is in fact 1somorphic to T4, ® m/n, where Ta;, is the
tangent sheaf, and m/n corresponds to N3 [-E], E being a divisor, as-

sociated with the points of AN A, , on which sections of m /n must vanish to




a certain order (cf. [14]). The crucial role of the set, H(A; Aut(n : m)), is
indicated by the following (cf. [6], [15])

lemma:

Let ® : A(m) — A(m’), ¥ : A(m) — A(rh) be distinct isornorphisms of
non-reduced spaces, such that local extensions of these jsomorphisms to A(n)
give Tise to obstruction classes, [£'],[€] € H'YA;,, Aut(n : m)). Then there
exists an isomorphism, © : A(n’) ~» A(f), which extends ¥ o &~ if and only
if [¢'] = [£]. In particular, ®(resp.¥) will extend globally to A(n) if and only

if [¢')(resp.[€]) = *, the distinguished element.

Hence, equivalence of non-reduced spaces, A(m), is a vanishing condition,
which must therefore be satisfied at each stage of the extension, A(my;) C
A(mz) C ..., corresponding to stepwise increments in the powers, r;, of the
ideal of each A;. In fact, if vanishing occurs for r; sufficiently large, (ie., an
isomorphism on A(m;) extends globally to A(myyy), for all ¥ < N), then
global extension follows automatically for all non-reduced A{mg),1 £k < 0.
In this case, it follows that the fibers, sa,y.)gg,)z’t, are actually biholomorphic

(cf. [14]. theorem 6.13).

In the following sections, the deformation theory of resolutions will be
applied, not to normal surface singularities, but to reducible plane curves, and
in particular to those for which the germ of the defining equation is wei ghted
homogeneous. Equitopological deformation of the resolution will give rise to
a family of non-reduced spaces, for which the non-trivial analytic structure is

concentrated on that vertex of I', the weighted dual graph, which has weight,




-1 (ie., Ajy» Ai, = —1). If the (weighted homogeneous) singularity, (C,0) C C2.
and its deformations are of type, (p,q), with v = ged(p, ¢), 8 = lem(p, q), then
the C*-action, (X,Y) — (tEX,t%Y) on C will induce 1-parameter families of
mutually isomorphic deformations. In particular, let W(X,Y) represent the
germ of (C,0), and (W + A)(X,Y) that of an arbitrary deformation, (C,,0)

(for reasons which will be made explicit in the next section, assume
A(X,Y) = 8 e, XYY,
such that 53’ + %j > 4 1). Then
(W + A)(t3 X, £7Y) = 1P(W +1,).

Moreover, if the deformation space of (C,0) is assumed to be minimal and
versal, in the sense of Tjurina, [24], then structure-jumping will occur within
each of these 1-parameter families when ¢ = 0. Aftef constructing the space
of infinitesimal deformations, an attempt is made to examine the parallel phe-
nomenon at the level of the resolution. In particular, it may be asked whether
those 1-parameter families induced by the C=-action give a complete picture

of structure-jumping in a neighbourhood of the central fiber.

4.2 The Versal Family

Let C' C C? be an algebraic curve, with a singular point at the origin, 0.

Let the ideal sheaf, T¢, be generated at 0 by a holomorphic function germ, such




that for any representative, f(X,Y"), f(0,Y) is divisible by Y7, and f(X,0)
is divisible by X% p,¢ > 1. Applying a theorem of G.N. Tjurina, [?.4], the
locally versal space of germs of complex analytic deformations, [f,], of [f] is

parametrised by a domain, D C C#, where

: af af
B = dzmc(Ocz/(-a-X;, 53‘;))0
1s minimal. If it is assumed that the Weierstrass Polynomial, W(X,Y),

associated with {f] is in fact weighted homogeneous, ie
W(X,Y) =5 a;; XY,

such that (2)i + (2)j = 8,7 = ged(p,q), 8 = lem(p,q), then from Euler’s
formula, it follows that W € (aﬁ_{r, 3%@)0. Moreover, the Fundamental Theorem

of Algebra implies that
WX, Y)=1T_, (Y7 - MX%), MeC,1<k<n.

Consequently, the intersection of C' with the unit sphere, 83, is homeomorphic
to a union of simple torus knots, of type (f, I). I it is further assumed that
Aky F Ayl < ky # ky < o, then Hensel’s Lemma implies that deformation
germs, [f.], whose locus preserves the topological type of the singularity in C,

may be represented by polynomials of the form, W + A, where
T AV P K q. .
A(X,Y) = 565 X°Y7, (;)3 + (;;) zp+1,

and : < ¢g— 2,7 < p—2 We will now consider the family of resolutions of

those germs parametrised by the domain, Dy = {¢ = (&;) € C*'}, defined

above.




Let U C C? be a neighbourhood of 0, and let & : A — I/ be the canonical
sequence of quadratic transformations which simultaneously resolves the loci,
C., of [f.], for all ¢ € D;. Denote by (M., C,) the neighbourhood of the
exceptional divisor, A = o~!(0), which is specifically ambient to the strict
transform, C’E, of C,. Hence there is a family, M, and a surjective, holomorphic
map, 7 : M — Dy, such that 77Y(g) = (M,,C.), for all ¢, ie., given M 7XL0s
U x D, }31 Dy, then 7 = Pp, 0o {0 x 1p,). If C* denotes the total transform,

o7 Y(C;), then the subvariety,
C* - Ugepi C: C J\/[,

induces a non-trivial family of embeddings, as will be seen in the next sec-
tion.The first step will be to return to the resolution of the initial fiber, and

construct its space of infinitesimal deformations.

4.3 Infinitesimal Deformations of the Reso-

lution

Let A = U;A; be the decomposition of the exceptional set into embedded
rational curves (ie., Py’s), with intersection matrix determined by relations
A+ Ay = 1,1 # j,A; - Aj = —¢; (the Chern class of the normal bundle of A,
in M). If Z; is the ideal sheaf of A;, let m = LT[, r; > 1. By A(m) will be

understood the non-reduced space with underlying topological space equal to




A, and structure sheaf, Ogan) = (On/m) |4. [V = (0 x 1p,)7H0,0),W =
(o x1p,)71(0,¢), then let Oy, Ow = Oy determine the corresponding non-
reduced spaces, (V,0y),(W,Ow). Recall that two such non-reduced spaces
are isomorphic if there is a homeomorphism, ¢ : ¥V — W, and an isomorphism,
® : Oy — ¢*(Ow), of sheaves of C-algebras over V. Let A; be the unique
component of A such that A, - A4y = —1, hence C. intersects A; transversely
at the points A;,1 < k < 4. Note that for r, = 1, each restriction, ¢ |4,,
is simply a Mdbius transformation, varying continuously with £ € Dy \ {0}.
The additional requirement that {A;} be fixed, however, forces ® | AJ to be
the identity. Extensions of ® must successively map formal neighbourhoods
of C* to neighbourhoods of Cr,c # 0. If i/ denotes-an open cover of ¥V, then
for U, U; € U, let 9;,®; be the appropriate local extensions to Oy = Oumy,

where n = I[,Z7 s, = r;,4 > 1,8y = r; + 1. Hence
D; : O:J |U.'g 45*(0;4;) IUH (I)j : O’V fUJ"—n;' Q{’*(OL‘V) IU,‘

implies { = {®;' 0 ©;};; determines an element of CH{U, Aut(m : n)). More
precisely, let 7 |, denote the ideal sheaf of C in Oy. Then the l-cocycle, £, is
derived from a subsheaf, F C Aut(m : n), consisting of automorphisms which
preserve the locus of 75 . The space of such cocycles will determine sets of

obstructions, D(r;) € H'(U, F), which may be computed explicitly as follows.

Let I denote the weighted dual graph of A, which in the case of a

weighted homogeneous curve, €, and its equitopological deformations, has

an unbranched, linear sequence of vertices, as illustrated below.




The natural Leray cover, i, of A is comprised of a union of Leray covers

on the A;, and may be represented in the following way.

As

Uy U

Ay 6
Ao YAy

Alternatively, if 1f; = {Uy, UL}, is the standard open cover of A, define
Ué =y U;,; AJ’, [,fréo = U, Uy ,f;i,r\v,

where the subindex, j, runs through all vertices of T lying to the left of A,
and k runs through all vertices lying to the right. U4, U, so defined, are open,
connected sets which form a cover, U’ of A, and though it is not Stein, it will
be seen presently that ¢’ is sufficient for computing infinitesimal deformations
of the resolution.

Once again, consider an isomorphism,

(2,4) : (V,O0) — (W, 0n),




and its local extensions, @, ., relative to U’, which map the formal neigh-
bourhood of C* to that of C¥,c # 0. Let Ay, Ay intersect transversely in
the neighbourhood Uy, and choose 2,y to be functions in O}, which generate
T4y L4y, respectively. m and n will then be represented locally by (z™y™)
and (z7y" ), and Zs, will be generated by w(z) = IIJ_ (z — Ax). Now

ap € T(U}, F) may be expressed locally by the relations,
ag(2) =z + 2"y w(z)g(x), aly) =1y + 2™y h(z).

Set r; = 1,7 # 1,2, and suppose A, Az intersect transversely in a neighbour-
hood of coordinate functions, w,z € O, such that in the intersection with

Up,y = 271, and ¢ = wz®, where ¢y = —A; - Ay. Now oy € D(UJ, F) =
ao(z) — &o(y)_l — y»-l(l -}—:L'szr’"lh(:v))_l
=z —wRzTTIQ),  mod(n),

since m = n = {w?z) locally, and eary — 1 +1 >0 & 1y > ’—ljl— Moreover,

cto(w) = ao()an(y)® = (& + &y w(@)g(2)) -y (1 +2y" " hz))>
=w+w?z??TT20(0)g(0),  mod(n),
&ﬂdCQ(T2~1)—T120<:>T221+%.
Similarly, consider A;, A4 intersecting transversely in the neighbourhood,
Uy, where m = (v™u™),n = (v™u"+) u = ay,v = 271 fe = —Ay -
Agyre = 1k # 1,4, then D(U/_, F) is non-trivial implies ry > ’—151— Con-

versely, 4 > 1 + 2t = I'(U,, F) is non-trivial. We therefore conclude that

I'(Ug, F),T(UL,, F) are non-trivial if 7, > 2 + (2], and ry > 2+ [2], where
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“[]" denotes the integer part of the given fraction. Note that the above com-
putation assumes at least one vertex on either side of A; in I'. Clearly, if no
vertices lie either to the right or left side, then ry 4 > 0 accordingly.

Now without loss of generality, assume Ay € Ay \ Us,1 < k < 7, and
choose extensions, ®o(z) = z+z 2y (), Poly) = T(y)+2y"((2), 7 = ® |4,
being a Mobius transformation which fixes A; N A, while &, = ®. Then

¢ =07l od, € CYU', F), such that
E(x) =z + 2y p(x), ) =y +27y"((2) = y(1 +o(z,y))

Denote by R(:) the Weierstrass remainder of (2} divided by w(z) in Oy.

Now let o € I'(Ug, F) such that
ao(w) =« + 2"y (1 +@(z,y)) 7" (R() = $).  aoly) =y(1 + ()7

It follows that
£ o aglz) = o+ 2"y R(4), Eoaply)=vy.

Finally, consider o, € T({72 , F), such that aZ}(v) = v+om™u™ 9 (v), et (u)
i, hence

1
al(z) =z — 27y (@), al(¥) =y,
z
where v =r{ +2 —ry — ry. Set 7 =0 if v < 0: otherwise, let
kD,
1, 1., 1d R(v)

ﬂ(") = “k:oﬁw(o)wk-

X

It now follows that

aZl o o ap(z) =z + 2"y R, 11 (¥), aZl o oa(y) =y,




where

.1 1dFR
Ropi() = sziﬂg—(:b‘)(e)ivk-

dx

Thus ¢’ € CH{U', F) determines a cohomology class, [¢'] € HY (U, F), repre-

sented uniquely by the polynomial, R,,;(i). For suppose [€;], [é5] are coho-

mology classes, represented by

§i(z) =z + 2y R (1),  &(z) = 2z + 2™y Roga ().

Then [£] = [&)] & & = a} o £ 0 ay, for some ap € UL, F),ae €
(UL, F). Note that £{, £}, ap all extend to U} implies a,, must also extend,

hence
al(z) =z —zy"0(z), deg(d) <v.

Moreover, ag({z) = z + 2"y w(z)g(z) = & (z) = = + a2y (0(z) +
Ropi(a) + w(z)g(z)) = = + 2™y Bupa (). But deg(Ro(h)) <v—-1=

g = 0, and hence the order, o(R,41(¥1)) > v+ 1 = 6 = 0, therefore

Ry (1) = Royi(1ha).
Let D'(ry) € HY(U', F) be the set of all such [¢’].

Proposition 3 If ry,ry are minimal with respect to ry, te., raq = 2 + [L&],

then D(ry) and D'(ry) are bijectively equivalent.

Proof: Define a map, x : D(ry} — D’'(ry) as follows. Note that the
support of F is contained in A, since for all p € A\ A;,m € n = Aut(m : n),

is trivial, ie., consists only of the identity. Hence if § = {<I):,-’1 o®;};;is a

cocycle determined by the set of local extensions, ®;, on I/, it follows that




[€] 14,57 # 1, is a coboundary, and the isomorphism, ®, may be extended

to ®g, oo, on Up, Ul respectively. Hence ¢ = &2} o @, will determine a

class, [¢'] = x([¢]) € D'(r1). To check that y is well defined, take & =
{@7' 0 ®,},,,6 = {7 o U;}i; to be distinct cocycles, such that [61] = [&],
le., for all 4, 7, there exist a; € (U}, F), a; € D(U;, F), such that ®;' o @, =
aj_l oWitoW; 00, Let ®g, Uy, D, ¥, be the correspondi_ug extensions on ',
then if 7y, r4 are minimal, it follows that Uslody = ay € L(USLF), ¥ lod,, =
oo € T(UL, F) = @ 0 @0 = ol 0 UZ! 0 Wy 0 ay, ie., (&1 = 1£).

Conversely, given [¢'] € T'(ry), any representative cocycle, o1 o Oy, may
be pulled back to a cocycle over If by taking restrictions, & = @, (,, ¢, =
Do |y, for all Uy, U; € U such that Uy C Uf, and similarly for &, restricted
to Uy C UL, . Hence {®;' 0 ®,},, = ¢, such that x([€]) = [€']. If now
®! o Py, Ul 0 Wy are distinct representati\-fes of [¢'], then &1 0 &y = ol o
U loWooay = ® 0@ = ot o U oWy 0y, where o = @ v, = A |y,
are the appropriate restrictions. Hence there is a well defined inverse map, and

X 1s & bijection.

From this point on, it will be assumed that 2,4 are minimal with respect
to 71, hence the distinction between D(ry) and D'(ry) will be dropped. Let

A correspond to the divisor, E;‘:@l niP; on Ay, where Py, = 0,P, = X;,1 <i <

Yy Pyy1 =00,ng =r2,m; = 1,n,yq = 14,

Proposition 4 D'(r;) = HY(A;, T4, ® [—AJ@N ™), where Ty, is the tangent

sheaf to Ay, and N is the normal sheaf, ie., N = (Z4,/73,)"




Proof: Consider the sheaf homomorphism, 5 : £ — F, L =Ty, @ [-A]©
N1 defined for all p € Ay by

() e = fr +df )y,

where ¢ denotes a given section-germ of £, and f, is any germ in O3, ,. Let
et H'(A, L) = HY U\ F)

be the induced map on cohomology. Note that UpNi/, = UINU,,, and that for
each {¢'] € D'(ry), there exists a unique cocycle of the form, 2™y™ Ry () €
C'(Uy, L), representing 757 1([¢']). Hence D'(rq) — H'(Ay, £), and inherits the
structure of a linear subspace.

Now count dimensions. Clearly, dimg(D(r,)) = deg(R(¥)) —v = v —

1 — v. Conversely, note that the Chern classes, ¢(74,) = 2,c(N ") = ry, |

and ¢([~A]) = —y—rp —rq, imply e(£) = 2411 -y —ra— Ty = v — 7

Now v > v—1 = [£] = 0, therefore v < v — 1 = HY(A,L) =0 =

—dimc(HY A, L)) = (L) + 1 — g4, =v — v+ 1, via Riemann-Roch, hence

dimc(H' (A4, L)) = dimc(D{r))=v—v — L.

Note that for r; sufficiently large, say r; > n 4 1, we have v(r,) = r; —
2 — (2]~ [2] = vy — 1, hence D(ry) = 0. As takes all positive integer
values from 1 to n, therefore, let £, denote the line bundle £ for the case

ry = k,1 € k < n. The space of infinitesimal deformations of (M, ) may now

be defined as

D= P D)= P H (A1, L)

1<k<n 1<k<n




4.4 The Infinitesimal Deformation Map

From the machinary of the previous section, a canonical linear homo-
morphism from D, = Tyl to D has been all but determined. For each
vector, £ € Tp0),, there is a deformation germ, W + A, with strict trans-
form, w+ 6, ie., W + A = o.(w + §), a corresponding locus, 7., and unique
cohomology class, [¢]; € H'(Ay,L,). Hence define [} = pi1(2). Now let
Dy = ker(p1), and define p, : Dy — HY(A),Ly), such that py(€) = [€], elc.
I pg: Dy/Dyyy — HYA,, L) are the corresponding inducéd isomorphisms,

1<k<n, then Ty D; & D1<i<n Dy./Dyyy allows us to define
po:ToDy — D, where pg=X7_, .

Note that D contains the image of pg, but need not coincide with it. pg is
injective, however, for suppose &'€ D, 41, ie., px(€) = 0,1 < k < n. Then there
exists an isomorphism, (®,¢) : (V,0p) —» (W,O), which extends formally
to & : O}, — ¢*(0O)y) (r = n+ 1,r; sufliciently large,7 # 1), and hence
between all formal neighbourhoods of V and W. From theorem 6.13 of [14],
it follows that there exists a biholomorphism, B : (M,C) — (M.,C.). But
now there is an induced biholomorphism, B : (U,C} — (U, C.), such that
B lonfoy= o0 Boo™! |U\{0};B(O) = 0, hence from the minimality of y, the
number of parameters of the local versal space, it follows that & = 0, ie.,
Dyya = {0}

We will conclude with a partial converse to the observation that the C*-

action: (X,Y) — (t?FX,t%Y ), induces one-parameter biholomorphic equiv-
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alence classes of fibers in M, having a structure jump at M. Suppose
B :(M.,C.) — (Mg,C.) is a biholomorphism, W = (o x 1p,)"10,8), X =
(o x 1p,)7Y(0,¢’), and let B : (W, Ow) — (X,0x}) be the induced isomor-
phism. Moreover, suppose ¢ : (V,@y) — (W,0w), T : (V,0y) — (X,O4)
are isomorphisms which map the formal neighbourhood, A(m), corresponding

to C*, to those of C*, C* respectively. As usual, let @y, Uy, @, ¥_, be the local

extensions to Oy, corresponding to A(n), and define wy = ¥; o Bo by, @

P! o Bo®,,, such that

w oVl oWyo0wm, = Pl o®y  (#).

Though automorphisms of O%,(1/}), p{(US) which restrict to the identity

on Oy,

Wo, Weo Need not belong to Aut(m : n). Now consider
‘13;01 o ®o(z) =z + 2"2y" R, i1(3n) \I’;Ol o Wo(z) = + z"2y" B ii(1hq),

etc.. Once again, these expressions, along with @o{2), extend to U}, hence, in

terms of local coordinates on 7. {”_| the relation (*) implies

wol{z) = z + J:r‘“‘y"‘w(:r)g(:z), woly) = 7(y) + ey h(2),
o () =T +a"y"0(z), w@y)=rl(y),
where deg(f) < v, and 7 € PSL(2,C),7(0) = 0. We therefore have

) o Bo(z) =« + 2y 0(2) + 2" 77 y) (R () + w(z)g(z))

=1+ ;Ifrzy“ RU+1('QIJ1).




Note ™77y} = 2™ y™  mod(n), where d;: (0) =t # 0. Now

deg( R, (1)) <y —1=¢g=0,0(Roq1(tn)) > v+ 1=0=0,

hence R, (1) = t" Ruy1(3p2). Finally, if £1,&, € Dy C Dy, such that L =
1, pa(€1) ~ R y1(¥1), po(€2) ~ R.41(3h2), it follows that & — t%&% € Dyy,y.

It should be remarked that the construction of T above yields a space of
deformations of My which only approximates the simultaneous resolution of
the minimal versal family of deformations of 0 € . The precise relationship

between D and Exty, (2, Oc)o is not yet understood.

6




Chapter 5

Appendix: Finite-Dimensional Cohomology

on a Complex Domain

5.1 Pseudoconvexity, pseudoconcavity, and the

finiteness theorems of Andreotti-Grauert

Let X initially be taken to be a complex manifold, dimc(X) = n, and con-
sider a relatively compact subdomain, D CC X , with smooth C*-boundary,
le., for all p € 9D, there exists an open neighbourhood, U, of p, and an

“exhaustion function”, ¢ € C?(I/), such that

(i) dDNU ={z €U | ¢(z) =0}, and

(i) DNU ={z €U | ¢(z) < 0}.
Note that U is diffeomorphic to an open subset of R?, and 8D N U is

a C?-submanifold, M, such that dimp(M) = 2n - 1. Moreover, suppose

dé, = O¢, + 5@, # 0, and consider the holomorphic tangent space to M at 2,
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ie.,
H (M) ={we C" | Ek=la_4(p)w’“ =0} = ker(94),.

Note dimc(H,(M)) = n — 1. The “Hessian Form” corresponds to

2

56¢ = El,k%d?a’g A (lfk e QQ(U),

and is invariant under holomorphic changes of coordinates in U (cf. eg.,

[9]). The “Levi Form” of ¢ then corresponds to

L(¢) = 90 lnqn) -

Note that L(#),, with respect to any system of coordinates, (z1,...,2,),

on U, is represented by an (n — 1) x (n — 1) Hermitian matrix. D is therefore
said to be “strictly ¢-pseudoconvex” at p if L(¢), has at least n — ¢ positive
eigenvalues. Conversely, D is “strictly gq-pseudoconcave” at p if L(¢), has at
least n — ¢ negative eigenvalues. Suppose L(¢), has precisely ¢(p) positive
(resp. negative) eigenvalues, and let C' be a connected boundary component
of D. Then C is said to be strictly (J-pseudoconvex (resp. 2-pseudoconcave) if
it is so at each p € C, and Q = sup,ecq(p). Note that D is relatively compact
implies €' is compact, hence consider a finite open cover, i = {Us}i<agn, of
C by domains of holomorphy, U, C X. Let ¢, € C*(U,) be an exhaustion
function such that d¢, # 0,1 < o < N. If {pa}i<acn denotes a partition
of unity subordinate to I, then there exists a function, & € C*(W), W =
Uica<nlUs, given by

O = exp(cEiL pata) — 1,




(cf. [1], proposition 15). ® has the following properties:

() C = (v e W | B(x) =0},

(i) DNW = {z € W | &(z) < 0},

(ii) d®, # 0, for all p € C, and

(iv) For all p € W, 899, corresponds to an n x n Hermitian matrix, having

at least n — @ 41 positive (resp. negative) eigenvalues, for ¢ sufficiently large.

In their paper, [1], Andreotti and Grauert introduced the notions of ¢-
pseudoconvexity and ¢-pseudoconcavity for a complex analytic space, X, and
proved that certain cohomology groups, H*(X,F), where F is an arbitrary
coherent sheaf, are finite dimensional. A key step in the argument developed
by these authors is to prove the result first for a relatively compact subdo-
main, D CC X, having boundary, dD, which is either g¢-pseudoconvex or
g-pseudoconcave. The main question addressed in this chapter is whether a
finiteness theorem holds for a domain, D, having boundary components, C;, of
varying convexity, as well as components, C;, of varying concavity. In section
two, it will be shown that the argument employed in [1] may be extended to
this case, when X is a manifold, or in so far as the intersection of @D with the
singular locus of X is empty . It will be assumed, for convenience, that each
C; and C; is a C*-submanifold of X, in order th_a.t the amount of convexity
or concavity may be defined intrinsically via a Levi form on the holomorphic
tangent bundle of the component (the result is not altered, however, if the

C; and C; are allowed to be singular). The third section will then contain

an extension of the vanishing theorem 4, of [2], with respect to a metrically




pseudoconvex line bundle on X,

5.2 Finiteness theorem

Consider 4D = 8’ 119", where &' = 1 <i<-Ci, such that C; 1s strictly Q-

pseudoconvex, and 8" = O, 1<;<sC;, such that C; is strictly (j-pseudoconcave.

~

Let Q@ = sup1<i<r @i, @ = Sup,y1<i<sd.
Theorem 8 If F — X is a cohevent analytic sheaf, then
dimcH*(D,F) < +oo0, Q<k<dh(F)-Q—1,
where dh(F) = infoexdh,(F), denotes the homological dimension of F.
Proof: The argument is divided into three lemmas, adapted from [1].
Lemma 3 (a) There exists an ascending sequence,
D =By, C B, C..C By,

of open sets, relatively compact in X, and a finite open cover, U = {Uy }1<asn
of @ by domains of holomorphy, such that
(i) By — By.1 CC U,, 1<a<N, and

(ii) H"(U, N Ba, F) =0, k>Q,1<a,8<N.

(b) There ezists an ascending sequence,

By =Ay CA C..C AN?




of open sets, relatively compact in X, and a finite open cover, U = {(Af’},}l‘(,ﬂ,@
of 8, such that

(UA’Y—A'V—I cC [Aj’)‘v 1<~
(i) HS(U, N A5, F)=0, 1<k

Proof: (a) Construct exhaustion functions, ®;, with respect to finite open
covers, U; = {Ul}1<acn,, of C;, 1 < i < r, such that supp(®; )N supp(®;,) = 0.
Now let

@ = E]str(-i)i:

and apply the following “bumping argument” to @ by means of &, If N =

Yi<icr Ni, then simply relabel,
U =UcicU; = {U <o,
so that ® will satisfy properties {i) - (iv) of the previous section. Now choose
U, CCU; CC W = UicacnlU]",

such that U;c,<nU, also covers @, and there is an isomorphism,

Yo : Uy — B(ba),
where B(6,) C C" is a ball of radius é,, such that

¢ U= Yo 0 Yu,

for some ¢, € C*(B(d,),1 < a < N. Moreover,

Ya(Ua) CC $a(U) = H*(ha(Ua N D), 4%5(F)) =




(cf. [1], theorem 5), hence H*(U, N D, F) = 0. Now take a partition of unity.

{Pahr<acn, on UrcacnUs, such that supp(p,) C U., and Yicacnpall) > 0,

for all £ € 0. Define p, g € C5°(B(8,)), with

Pa U= pas © Pa.
Now, for ¢4 sufficiently small, let
Pm = — Dicpemepps, 1S BN,
such that ®,, remains strictly @-psendoconvex. Similarly, define

Pm,a = Yo 215,69115_3[).1,,6,

so that if

B, ={zeW|&,(z) <0},

it follows that
HE(3po( B N UL) W5 (F)) = 0 = HY(B,, N U, F) =0,

k > (). Note that Em — Bm_1 CCU,, 1<m<N,hencedefine

B,=DUB,,
and the proof of part {(a) is complete.

(b) Similarly, construct exhaustion functions, qu with respect to each

Ciyr+1 <7 < s, and apply the bumping argument to & by means of

(1) = ST+ISJSS(I)1




In particular, if Uq, cC U,;‘ cC UI;*, 1 <~ <N, is the corresponding

open cover of é, with isomorphisms, 1,5., : Uj; — B(é&,}, such that

i

[},;‘: S‘o'y o TP’)H

for some ¢., € C°(B(é,)), then [1}, theorem 9, implies

H (U 0 By), d5(F)) = HX(U, N By, F) =0, 1<k <dh(F)-Q L.

Now choose a partition of unity, {'a“f}ls"rﬁf{’ and j, , € C°(B(6,)), such that
b, =+ Ticyntab  buy =Pyt L1<n<nEnPrms

for ¢, sufficiently small, remain strictly Q—pseudoconca.ve, 1 <n<N. Then

An={z € W | &u(x) >0} = H*(U,NALF) =0, 1<k<dh(F)—O-1.

Now let A, = /Lr U By,1 <+ < N, and the result for part (b) follows.

Lemma 4 (a) The homomorphism,
n: H*( By, F) — HYD,F),

induced by restriction, is surjective for k > Q. Similarly,

(b) The homomorphism,

ﬁ : I{A(AV1‘F) - I{k(BN:}—_)u
i

is surjective, for 1 < k < dh{(F)-Q —1.




Proof: Apply inductively the Mayer-Vietoris argument of [1], propositions 16
and 17. Note in particular that for part (a), Byy1 = B, U (B NU,441), B, N

By iNUyp) = B,NU,p, and B, NUL 4, BN are both acyclic. Hence
T+ T+ v Yt ¥ ¥ ) it

o = HY(Byy1, F) = HY(By, FYOHY(ByyaUyiy, F) = HY(By\Uypr, F) — ...

implies that H*(By41,F) ~ H*(B,,F) is surjective, and the result follows.

Similarly for part (b).
We conclude that D CC Ay, and

WOT}in(AN»f) _"H;‘(Daf)

A

is surjective, for Q <k < dh(F)— Q@ — 1.
Lemma 5 dimcH*(D,F) < +c0, ¢<k<dh(F)-§-1.

Proof: The result follows automatically from [1], theorem 11, which draws on
a fundamental theorem of L. Schwartz, concerning continuous linear mappings

of Fréchet spaces. Hence the proof of theorem 8 is now complete.

Theorem 8 may now be formally extended to the case of X a {reduced)
cornplex analytic space, D CC X. Consider p € 8D, and a neighbourhood, U,
of p, biholomorphically equivalent, under a map, ¥, to a subvariety, V = ¥({/),
of a domain, U” C C™. Let ¢ be defined on U such that ¢oy~! is the restriction

to V of an exhaustion function, ¢ € C2(U*), and suppose

HUND)Y={zeV|d) <0}
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D is then said to be strictly ¢-pseudoconvex (resp. g-pseudoconcave), if
L(qz”S)p = 094 |#,(p) has n — ¢ positive (resp. negative) eigenvalues, where
P(D NU) is assumed to be of the form, M N V', for some C?-submanifold,
M C U*, of real dimension 2n — 1. If C' is a connected component of 9D, let
U = {Us}1<axn once more be a finite open cover of domains of holomorphy,
and V, = 9,(U,) C U,1 < a < N. Suppose there exists a global exhaustion
function, @, on Uyca<nls, such that @ o ¢! is the restriction to V, of an
exhaustion function, ¢, € CHI7), having n — ¢ + 1 positive (resp. negative)
eigenvalues . With the help of [1}, theorems 5 and 9, the three lemmas of
theorem 8 may then be applied to the case of a complex analytic space, X,

without further modification.
Example: Let X = C® x P, x P, and
B€1 Z{ZECS | |z|<€1}'BCQI{(21(J-)EC5XP1 | ,(Z’C)|<62}1

B€3 = {(zicvf) € Cs X Pl X Pl | |(:'C:’£” < 63}1

with 0 < €3 < ¢y < %61. Let Béa be a translate of B,, such that

B, cCc{(B, xP); — B} x Py.

Now define D = (((B,, x P1)— B, ) x P1) — B.,. It follows that for any locally
free sheaf, F (therefore dh(F) = 7), over X,

dimcH (D, F) < o0, k=34

(Remark: When X = C" it [ollows from [1}. theorem 15, that the bound-

ary components, Cj,r +1 < j < s, may even be isolated points.)




5.3 Vanishing Theorem

Consider a holomorphic line bundle, L -+ X, over the (reduced) analytic
space, X, and a Hermitian metric, x, on the fibers of L, given locally by
C>-functions, h; : U; — Ry, such that h;(2*) = |g; ;(27)?h;(2?), where ¢, ; :
U;nU; - C* are the transition functions of L with respect to the cover,
U= {Ulier, of X. If ¥ = (z%,¢%) € #71(U;), where 2/ = 7(#),& € C, then
7]12 = Ri(2*)]€)? = x(2, '), represents in local coordmates the length of @
with respect to x. Following the terminology of (2], L is said to be “metrically
pseudoconvex” if y exists such that x(z*,€*) = ||]|? is a strictly pseudoconvex
function on {(z*,&) | €& # 0}, for each i+ € I. Correspondingly, the dual

bundle, L*, is then said to be “metrically pseudoconcave”.
) yp

Now consider X compact, and the domain, D CC X, with 8D = 9" 119",
defined as in the previous section. Let D = Ny¢,¢,D,, X = Ur<pcs Dy, where
D; is a “strictly g;-psendoconvex space”, 1 < ¢ < r, and D; is a “strictly
gj-pseudoconcave space”, r+1 < j < s. By these terms is meant that for each
7,7 there exist compact K; C D;,K; C D;, such that the exhaustion func-
tions, ®; |p,—x;, ®; |p,~k;, are strictly ¢;-pseudoconvex and g¢;-pseudoconcave
respectively. By [2], theorem 2, given a coherent sheaf, 7 — X, and a metri-
cally pseudoconvex line bundle, L -~ X there exists an integer, v; = v;(F, L),

such that

HYD;, F@O(L)) =0, v>v;l<k<dh(F)—q—1.




Moreover, since X is compact, there exists an integer, 1o = vo(F, L), such that
HYX, FQO(L*) =0, v>w,1<k<dh(F)-1,

(cf. 1], [2]). Now let ¥ = sup.y1cj<s{rvo, v}, and Fy = F @ O(L%). If
it is assumed that X = D U (Mupme1Du)y1 < M < s — 1, then from the

successive Mayer- Vietoris sequences,

HY (X, F1) = HH(Dpg, F)OH (s are 1D Fr) — HY (o D,y Fr) — HY(X, F)
1< M < s—1, 1t follows that

HYD,F)= P HYD,F)= P HYD:,F),

1<n<s 1<i<r
for 1 < k < dh{F) — § — 2. Now suppose that D; is “g;-complete”, ie., the
compact set, K, defined above, is empty, 1 <7 < r. By the corollary to [1],
theorem 14, it follows that H*(D;, Fi) = 0,k > ¢;, hence, as a straightforward

extension of [2], theorem 4, we have

Theorem 9 If D cC X, withdD = 8§ 119", as above, and each D; C X is
a g;-complete analytic space, 1 <1 < r, then for any metrically pseudoconvez
line bundle, L — X, and any coherent sheaf, F — X, there exists b € Z,

such that

HY (D, F@O(L*) =0, ¢q<k<dh(F)—§-2.
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