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Abstract of dissertation

Singular Integral Operators, Contraction
Operators and Principal Currents

by
Shaojie Zhou
Doctor of Philosophy
in

Mathematics

state University of New York at Stony Brook

1992

In this dissertation we study the relation between unitary invariants of the
:_generator of certain almost commuting C*-algebras and the metric geometry
of the associated principal currents to the generators,

We explicitly construct a principal current for an operator triple {P, W, H,}
'o_rf:_equivalently for the unitary-normal operator pair {W, P -+ ¢ H,}, where W
a unitary operator, H; is a self-adjoint operator and P is the projection to
absolutely continuous spectral subspace of H,.

The determinant of the characteristic operator function of the contraction




operator T' = PWP is calculated in term of the intersection geometry of

the principal current of {P, W-Hg}. It turns out that extracting the unitary
invariant information of T depends on the metric geometry of the principal
current, not merely the topology.

As application, we study singular integral operators with unimodular sym-
bols. A necessary and sufficient condition is given for such operators to be
unitary operators. And an index theorem for contractive singular integral

operators is derived.
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Chapter 1

Introduction

Principal current theory was invented by J. Pincus in order to study
certain almost commuting C*-algebras with a finite number of generators.
In this work, we explore the relation between the unitary invariants of the
generators and metric and intersection geometry of the associated principal
currents, which is beyond the scope of K-theory.

The following singular integral operator in L,(F) was studied in [24], [26],

28], [29]:

LFO) = AT + K () [ %ﬂ_f&—t)dt. (1.1)

where F is a bounded measurable set on the real line, A(A) is a real measur-
'éBle function and k(A) € Ly(E). L is a bounded self-adjoint operator if the
.e.fﬁcients A(A), k(X) are bounded. It was the diagonalization of this operator
whi%:h lead to the discovery of the principal function theory. However, L is in
enieral (cf. [28]) an unbounded operator if the coefficients are unbounded.

é’cégsary and sufficient conditions were given for L to be an unbounded self-




adjoint operator in [33]. In [24], it was shown that L defines a symmetric
operator on a dense domain in L,(#) when k(X) is square integrable, and the
deficiency indices of the symmetric operator in terms of the singularities of the

symbols A(X) 4 |k(A)[%

Let g(z, A) be the characteristic function of the set D = {(z,)) | A()) —
[E(A)]? < & < A(X) + |E(\)[?}. Then g(z, ) is the principal function of a
unbounded pair of self-adjoint operators {Hy, H,}, see [24]. Let G(r,)) be
the characteristic function of the image of D on the cylinder B x S! under
the Cayley transform in the z variable, ie. G(7,)) = glz,A) for 7 = (z +
i)(2 —1)"'. By the general canonical model construction (see [4], [6]), there is,
up to unitary equivalence, a unique pair of unitary and self-adjoint operators
{W, H;} having rank one commutator and G(7, A) as its principal function. In
fact, W is the Cayley transform of H; (see [24]). And the symmetric operator
defined by (1.1) then is the inverse Cayley transform of the compression of W

to a certain canonical subspace found by J. Pincus.

It 1s an early result of J. Pincus that the von Neumann multiplicity func-
_tions of W and H, are given by the intersection geometry of the principal
._fiinction G(r,A). That is, the multiplicity of W at 7 is computed by the
niiimber of intervals formed when a level line ar 7 intersects the support of
_('T, A) while the multiplicity of H; at X is computed by the number of inter-
formed when a horizontal circle at ) intersects the support of G(,A). See

6] Therefore H; has almost everywhere multiplicity one.

et P be the projection to the absolutely continuous spectral subspace of




Hy, T = PWP and

) = — [ G(r, N

2me

— 2
i (12)
be the average of G(r,A). Then by a result of Verblunsky [38], there are

positive Borel measures p* defined on the real line so that for Sz # 0

R(A) ,, 1 1 +
exp/)\wzdz\—l-l-ﬂ_f/\_zd,u (A). (1.3)
and
(A 1 1 -
exp — )\—zd)\_l_fﬂr//\—zd'u (A). (1.4)

Let uF be the singular parts of z* in the Lebesgue decomposition. It
was shown in [24] that the dimension of Lo(p]), Lo(p] ) give the the deficiency
indices of the contraction operator T as well as of the symmetric operator L.
In this work, we are mainly interested in the case when p¥ have only a finite
number of atoms, i.e. T has finite deficiency indices. Therefore we assume
that gt has atoms at {A\f,Af,..., At} and p; has atoms at {A7,A7,..., A}

As a projection to the absolutely continuous subspace of Hz, P is a func-
tion of Hj, but not a smooth funcfion. The C*-algebra C*{ P, W, H,), generated
by {P, W, H,}, is contained in the von Neuman algebra W*(W, H,) generated
by W and H,. In this respect, we are studying a proper C*-subalgebra of
W*(W, H,), which contains the generators.

Principal currents have been constructed previously by Carey and Pincus
_for pairs of operators consisting of a normal operator N and a bounded self
adjoint operator X with commutator [N, X] in trace class. The main ideas of
t]:.“lat unpublished work are recounted in [35]. A special case was used in the

discussion of Toeplitz operators on multiply connected domains in [35]. The




present work relates to a normal operator P +{H; and a unitary operator W.
The interest of the present theorem is both that P is not a smooth function
of H;, and that the spectrum of W is the full unit circle.

In chapter 3, we construct a principal current T p ., w) supported on the
product spectrum o(P) x o(W) x o(Hy) for the operator triple {P,W, H,} or
the normal and unitary operator pair {P + 1 H,, W}. And the projections of
the current to each coordinate plane give the principal currents of the corre-
sponding operator pairs. The support of the current is a certain minimal span
of the joint essential spectrum of the generators and certain circles erected
over the point spectrum of H,, the singular numbers {)\;t}

The fact that the principal current T(pm,wy for the operator triple
: {P,W, H,} has the form indicated below was stated by Pincus (without proof)
in [25]. But the proof given here, which has benefited from the advice of Pincus,
:;'rovides a more detailed understanding of the structure of the current that
as previously available.

‘Theorem 1.1 There is a rectifiable current Tipmwy with support in
1] x (W) % o(Hz) such that
Tiram,wy(df A db) = [ f(P,W, Hy), h(P, W, Hy)]

1 2
= //E(df/\dh,n)G(a:,r,A)d% , (1.5)
2 is & Hausdorf] two measure rectifiable subset of R x S* x R; namely,

'X.{.é.ﬁpportof(}'(r,)\)}u( r= [0, 1) xS AR Hu( j=1(0,1]x ST {A7 )

G, A), Glz, 7, A}) = G(x, T, A7) =1,0 <z < 1. The orient-

of ¥ is the outward unit normal on {1} x {support of G(7,A)}, it




is the inward unit normal on [0,1] x S x {AF}, that is it points to the negative

z-azxis and on [0,1] x ST X {7} it points o the positive z-axis.
The Lifshitz characteristic operator function of a contraction is defined as

Or(z) = (~T 4 Dp-(1 — 2T*)' Dy)|Dr (1.6)

where Dy = (I — T*T)3 and Dp. = (I — TT*)%, and Dy is the closure of
the range of Dy. ©r(z) is a completely unitary invariant for T' when T is
completely non-unitary. For convenience, we suppose now that W has almost
everywhere finite multiplicity. this is not essential, as we will see later. We
know that the multiplicity of W at 7 can be read off from the principal function
G(7,A) by counting the number of intervals formed when a level line at 7
intersects the support of G(r,)), see [26]. Now we denote these intervals

by {(AF,A7),i = 1,2,...,m(7)} where m(7) is the multiplicity function of

Il

W. A fundamental lemma in [24] shows that the set of atoms {A} : r
1,2,...,n} C {M(7),s = 1,2,...,m(7)} while {}; : j = 1,2,...,m} C
{37 {r)i=1,2,...,m(r)}. Weform {a;(r)} = {AF(7)}—{A}} and {b;(7)}

{27 (r)} —={)\} by removing the smaller sets from the larger ones. In the case
m = n, we arrange these points in such a way that the intervals {(a;(7), 5;(7))}
are the intersection of a level line at height 7 on the cylinder with the support
of Gp(7, X), where G'r(7,A) = G(7,A) + {# of Aj 1 A] < A} —{# of A} :
A} < A} That is, we let F* = {: Gp(r,\) > k}. Then F* is a union of
= X, I*(7). We arrange a;(7) and b;(r) so that {I¥()} =

_Now we can define the following “Riemann-Hilbert barrier” :




-1
m(7) m |bk A+| m(T} m 7_) I

S(r) = HH — A ' HH

k1r~1|ak k1;,1 ar(T} — |

(1.7)

Theorem 1.2 T with deficiency indices (m,m) is a weak contraction
o(T) = S, the unit circle, and we have det O4(7)O¢(r) = S(7), for |7| = 1.

In [34] Pincus and Daoxing Xia showed that a different class of contrac-
tion operators had the property that det©z(7) is determined purely from the
intersection geometry of an associated principal current.

One of the main goals of this thesis was to establish that such results hold
also for the singular integral contractions by completing the analysis of [24],
[25]. This was a conjecture of Pincus, and the analysis has benefited at many
stages from his suggestions.

The above result together with a result of Sz. Nagy and C. Foias show
that the class of contractions of our form consists of operators quasi-similar but
not similar to unitary operators. The proof of Theorem 1.2 will be presented
in chapter 4.

Motivated by [25] for Wiener-hopf operators and Toeplitz operators, a
Wlder class of contraction operators as well as contraction operator pair are
onsidered in a joint paper ( preprint [37] ) with J. Pincus. There, the con-
ction operators could be similar to unitary operators. These contraction
: .a.fsors will include the Cayley transform of Wiener-hopf operators as well
éplitz operators with unimodular symbols.

is interesting that such unitary invariants of 7" are determined entirely
etric geometry of the intersections (slices) of “the horizontal line cur-

helght 7" with the principal current of Theorem 1.1. In this respect




the results achieved here are exactly parallel to those in [34] where intersec-
tions with a family of lines through the origin played the role of the horizontal
lines here. Again it is the metric geometry of the principal current ( rather
than merely the topology of the spectrum) that enters once we pass to the
analysis of structure beyond the index theory. Recall that the principal cur-
rent is invariant under trace class perturbations of the generating operators,
and is not generally invariant under compact perturbations. Note also that in
[7] it was discovered that the necessary and sufficient conditions for two self-
adjoint operators to be unitarily equivalent modulo the trace class involves
metric conditions on their spectra.

It is shown in [24] that the contraction T has the following singular integral

representation:

Tf(/\):A(A)-I-Ik(AN -I-if(A)_iH(—é,)/\)-/H]_g((é;)t)t F(t)dt L8

AD) + RO = 2ri k(A — (X~

where H(—i,\) and H(i,\) are certain functions such that “T—éztf)il-éﬂ are
square integrable. 7' has unimodular symbols. Let V be the unitary operator
_on Lp{E} obtained by multiplying by the unimodular function (A())+ |E(M)?+

(AN 4 k(M2 = i)72. Then the operator V*T has the following form:

dt

U = )+ ~a(A) | B —r5— 755 (1.9)

some square infegrable functions a(X), B(A).

- In chapter 5, we study general singular integral operators of form (1.9)
ith unimodular symbols. That is 1 — 2¢a(A)B(X) are of absolute value one.

'_Ch an operator, we give necessary and sufficient condition for it to have




a unitary operator closure. Therefore we have obtained an inversion formula
for such a singular integral operator. And we also give conditions for U to
be the compression of the wave operator coming from certain one dimensional
self-adjoint operator perturbation problem.

In the classical index theory of singular integral operators with discon-
tinuous coeflicients, for example when the coefficients have a finite number of
jumps, the essential spectrum of the operators is calculated from the range of
the symbols together with the straight line segments which fill in the jumps.
The index is then the winding number of the quotient of the modified symbols,
see [19], [21]. Here, the singular integral operators we study are of a different
type. First, the symbols of (1.9) have the product form &(A)B(}A). Therefore,
unlike the classical case, the symbols do not determine the operator uniquely.
The operator U in (1.9) is unitary or the compression of a wave operator and
corresponds to a kind of symmetric decomposition of the product &(A}B(A}.
Secondly, we have no smoothness assumptions on the symbols. But the essen-
tial spe(;trum of the operator is still the range of the symbols on the unit circle
together with arcs on the unit circle, which connect the jumps of the symbols.
And the index is the winding number computed with a certain weighting of

the modified symbols. The proof of these results is an application of results in

[24].




Chapter 2

Preliminaries

In this chapter, we first recall some basic properties of the principal func-

tion theory and prove some preliminary results we need later. We mainly

adopt the notations from [5] and [24].

2.1 Symbol Homomorphism

We recall that the principal function for a pair of unitary and self-adjoint

operators can be constructed from the symbols. The abstract symbols were

first introduced in [2]. The symbols of a bounded operator A relative to a

self-adjoint operator H are defined by

Sy(H,A) = s~ lim e A H P (H). (2.1)

whenever the limits exist and P,(H) represents the projection to the abso-
lutely continuous subspace of H. It is shown in [2] that the symbols of A exist
T A s in C*-algebra M(H) generated by the collection of operators having

commutator in trace class with . The symbol is an algebraic homomorphism




from M(H) to the algebra of all bounded operators and the symbols com-
mute with H. The kernel of the symbol homomorphism contains the ideal of
compact operators, cf [2].

In particular, the symbols of W relative to H, exist since the commutator
[W, H,] is in trace class. Since the symbols of W commute with H,, in the

direct integral space diagonalizing H,, they are decomposable. So we can write
Se(Hy W) = / DSs(Ha, WA, (2.2)

Furthermore, Sy (fz, W){A) are unimodular complex numbers since H,
hias multiplicity one and W is unitary. The principal function G(7, A) then are
determined by the symbols of W in the following way: For a fixed A, G{7, )
was defined by Pincus to be the characteristic function of the positive arc on

the unit circle with endpoints S (H2, W)(A). So we have the relation:

= exp/G(’r, )\);_-—dz— {2.3)

— W

S_(Ha, AY(A) — w
S(Hyy AYA) —w

for w # 0.

Since we also have the relation G((z + i)(z — 1)L A) = gl=z, A), we see
that the symbols Sy{H,, W)(A) are the Cayley transforms of the symbols
A(X) £ [E(X)[? of the singular integral (1.1).

Instead of the symbols relative to a self-adjoint operator, we also have the
symbols relative to a unitary operator, the so-called polar symbols. The polar
symbols will have the same properties which the regular symbols satisfy. For
example, the symbols Si(Hy, W) = limg, .q0 W "H,W"P,(W) exist when
the commutator [W, H,] is in trace class and is decomposable in the direct

integral space diagonalizing W.

10




2. 92 One Dimensional Perturbation Problem

For a one-dimensional self-adjoint operator perturbation problem H —

H 4 2d ® d, there is a scalar function h(X) taking values between 0 and 1, the

so called phase shift function [17] , such that

1 du( )
det(H + —d @ d— 2)(H —2)7 = 1+ ] ”“( ]/\ i (2.4
where du()\) = d(E\d,d) and E) is the spectral resolution of H. For a differ-
entiable function F, the following displacement formula of Lifshitz and M. G.

krein (cf. [17]}) is valid:
P +—d@d)~ [() = [ FOVHND, (2.5)

The spectral properties of H are completely determined by the phase shift

function. In particular, a point Xp is in the continuous spectrum of H if and

only if ([1}, [33]):

() 1—h(})
A —_ = . .
~/;>)\0 A— )\od A<Xo )\0 — A @ = (2 6)

The wave operators of the perturbation problem are defined by (see {15]})

Wy = lim e ®H3d8d it p (), (2.7)

1—zkco
The wave operators Wy exist and are complete. That is, Wy are partial
metries with initial space H,(H )-the absolutely continuous subspace of H,

d final space H,(H -+ %d ® d)- the absolutely continuous subspace of H +

These operators Wy intertwine the operator pair H and H + %d & d:

11
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In the case that H has multiplicity one, it was shown in [5] that any
isometry which intertwines the operator pair ff and H -+ 2d®d is of the form
W_f(A), where £(A) is a unimodular function in the absolutely continuous part
of the spectral representation space of H. Furthermore, it was also shown that

W has the following singular integral representation:

W_g{)\):g()\)—i»%c?a(k) / det‘;:(f_)m) . _gg)ftw)‘ (2.9)

where det(t — 40) is the boundary value of the perturbation determinant apnd

d,(A) is the representative of dq-the projection of d to the absolutely continuous ’3

subspace of H-in the spectral representation space of H.

In this section, we introduce a certain smooth functional calculus for the
non-commutative operator triplet {P,W, H,}. In order to define it, we need
__h_c_a fact that all the commutators of the triplet {P, W, H,} are in trace class.
. act, the commutator [I7, Hy] is a rank one operator and so is in trace class.

2.3 Smooth Functional Calculus
11
|

nd Hy commute. And we will see (Lemma 2.1 below) that [P, M] is also
;f‘a;cg class.

Let M(R x 5% x R) be the collection of all finite complex measure se-
es {wm 1m =0,41,42 .. .} which satisfy the following condition:

> Il (4 1D+ ) dfon(, £)] < . (2.10)

M=—0C0

uence {wy, :m = 0,41,42,...} in M(R x 51 x R), the characteristic




function of {w,,} is defined by

flz,nX)= > e"mﬂl/eim""i“dwm(t,s). (2.11)

M=—00

Denote all the characteristic functions by M(R x S x R). Then for any

flz,7,)) € M(R x S* x R), we follow [8] and define the functional calculus

by the following:
FPW H)= 3 wn f Pz g, (1 ). (2.12)

This functional calculus is well defined modulo the trace class ideal when
all the commutators of {P, W, H;} are in trace class. That is, the map f —
F(P,W,H) is a *-homomorphism from M(R x S x R) to the algebra of all
bounded operators modulo the trace class ideal. It follows from the homo-
morphism property that the commutator [f(P, W, H,), h(P, W, H;)] is in trace
class for two arbitrary elements f, A in ./\;I(R x St x R).

There is a similar smooth functional calculus for a pair of contraction
and sell-adjoint operators, which we will need in this work. Let Hj, be the
restriction of H; to its absolutely continuous subspace. One notes that [T, 7]
and [T, H,] are in trace class by Lemma 2.1 below. Let Mp({S? x S x R} be

the family of functions of the form:
£, 6 z) = i —iltming) /e"“dwm‘n(t),
mn=0

where {w, () : m,n =0,1,2,...} are complex measures satisfying

S (4w T [0 )l (2) < oo

m,n=0

13




We define

FT*, T Hy) = S 1™ / etHeadu, (1), (2.13)

This is also a *-homomorphism from M(S Tx 51 x E) to the algebra of

bounded operators modulo the trace ideal class ideal.

2.4 The structure of W

Let

1 de  dA
E(l,z):exp—z—’}r—if/g(w,)\)m_“\_z. (2.14)

Then there is a pair of possibly unbounded self-adjoint operators {Hy, Hy} on

a Hilbert space M having g(x, ) as its principal function, See [26], such that
E(l,2) = 1+ —k(H, — )~ (Hy — 2)-'k*, (2.15)
)

where £* is a map of the complex numbers into a one dimensional subspace
of the Hilbert space H and k is the adjoint of &* which maps H back into the
complex numbers.

Furthermore, the resolvent of {Hy, H,} has one dimensional commutator,

A = NI - )T = (M — )T Hy - 1)

= }%(Ifz — z)-l(ﬁrl — l)_lk*k(Hl _ l)_l(Hg N Z)_l. (216)

the pair is determined up to unitary equivalence by g(z, A), the principal
tion of {Hy,H,}. Let H, be the absolutely subspace of H,. Then it

see [24]) that H, is the smallest invariant subspace of H, which

14




contains the range of k*. And there is a unitary map of H, to Lo(E) which
takes Hj|y, to M, the multiplication operator by the position function on
Ly(E). That unitary map carries k* into the multiplication operator by k(}A),
and carries k to the integral operator [-k(A)dA. In this representation, k()
is a basis for the range of the commutator [Hy, H2}. This result is from [26].

Now form the Cayley transform W; = (Hy — I)(H, — )7, and put T; =
PW,P. By the resulis of [24] we know that W) is the minimal unitary dilation
of T;. We note that W, = W and T; = T'.

According to [22], the minimal unitary dilation W; of T; has the following

matrix representation:

Wi=1 00 T, Dy 0 .. (2.17)

H=..0D"aDi" o1, oDy oD oD @. ..,

ere Df(n—n) and ’D(’F) are respectively the ranges of Dy, = (I — Tl*ﬂ)% and
D7e = (I — T\T7)2, and H, is the absolutely continuous subspace of H,. The

derlined element or operator indicates the center element or operator.

15



Lemma 2.1 [P, W] is of finite rank, and therefore is in trace class .

Proof: It follows immedjately from the matrix representation above that
[P, W] is of finite rank because Dy, and Dry have finite dimensional range. See
[24].

We will let Q({) denote the smallest invariant subspace of H, which con-
tains the vector (H, — )~'k*, where k* corresponds to the function f_c()\) in-
troduced earlier as the representative of k in the spectral representation space
of the absolutely continuous subspace of H. 1t is known from [24] that {—1)

contains the the absolutely continuous subspace H, of Hy. Then we have

Lemma 2.2

QU =DV @H, for <0

and

Q(l):Ha@D%) for S 0.

Proof: We will give the proof for [ = —i.
First we prove that Dé«hl) ® H, C Q(—i). It is clear from the matrix

representation (1.17) of W) that

WiH, 0 Di) =DV @M, and WD c A,

1

Thus it is enough to prove W/H, C Q(—1) since H, C Q(-1). Recall
| rom [24] that {H}&*,n = 0,1,...} is dense in H,. Thus we need only prove
2t (Hy i) Hyk* € Q(—i), because WHSk* = (Hy + D)(Hy — i) HR k" =
I3k + 2i(Hy — i) Hpk*, and Hok* € Lo(E) = H, Q(—1). See [24].

To prove that (Hy — )~ H2k* € Q(i) we will use induction on n. This is

fial for n = 0. For n > 1 assume that (Hy — 1) Hy 7k € Q(—0).

16




Now

(Hy =) HE — HP(Hy — i)™

= (0 = )N Hy (Hy ~ 1) — (Hy — i) Hy)(H — i)™

= (Hy— )7 (Hp Hy — HyHP)(H, — 1)~

= (Hy — 1)~ (Hy [ H,, Hi) + Hj —Q[Hz,Hl]Hz + -
—f—[Hz,Hl]HS_l)(Hl — 7)™,

Thus, by the commutator relation (2.16), we have

(Hy — i) ke = Hp(Hy =)™k + L (Hy — i) H R h(Hy — i)k +
me(Hy = ) HE R Ry (Hy — 07 R 4 oo 4 L (Hy — i) HybkHP~?(H, —
7N+ S (Hy — kR HP T ke

In the above expression, (H, — 1)~ 1k* ¢ Q(—1), and Q(—1) is invariant
under Hz. Thus, the first term above, HP(H1~i)7'k* € Q(—i). The remaining
terms are just constants times the factor ( Hy —1)=1 [ k* for j < n. By induction
(Hy =) Hik* € Q(—i). Therefore (H, — i)~ Hr* € Q(—1).

The other inclusion Q(—i) C D™ &M, is proved using the same identity,

hich gives an expression for HP(H, —4)7'k* in “lower” order terms. Also

note that {H7(H; —1)7'k*} generates Q(—4). This concludes the proof.

Recall that it was shown in [24] that it is possible to choose an orthogonal
"Si's.: {eg_l),...,e,(;“} for D:(If"l) such that Hzeg-_l) = )\J,,-“eg-_l). We now fix
{/\;} and define eghn) =W ”eg"l) for n > 0. Then we have

L'éfnma 2.3 If z € H is an eigenvector of Hy wilh ergenvalue Ag.

W;r: is also an eigenvector of H, having eigenvalue Ay In particular

: _)\-'eg-_"), forn >0,




Proof: To prove this lemma, we need another representation for W and
H, given in [24].

Let Hy = H,((H2+Di)|g(-iy) and Hr = H(Hz|g(-4)), where H, denotes
the spectrally singular subspace of the indicated operator; and D_; = d_;®d_;
with d_; = 1(H; — i)'k~

Then let

H= @H,OHL O N~ DHROHrD -+ (2.18)

For any z € H of the form & = (...,z_3,%_1, %0, %1,...), where Pg is the

projection of Q{—17) to Hpg, let

Wi' = ( cey X9y T3, + W/()J;O’PRI[), L1 .), (219)
where Wy = W_f, W_ = lim;_. etH2+D—i) =it P {5 {he wave operator of

the perturbation problem H, — H; + D_;, and f(A) = S_{H,, W)(}) is the

symbol of W, which is a unimeodular function. Also define H, by setting
ﬁg.’i‘ = ( sy (H2 + Dﬁi)ﬂﬁ_z, (Hg + D_g)m_l,Hzmg, H2$1, HQCCQ, ‘. )

Then it follows, again from the basic fact that the principal function

ans that there is a unitary operator U : H — 'H such that UWU* = W and

04 0,0, 29,21, ...). Thus Hyz; = Agz; for 7 = 0,1,2,.. ..
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But Wi = (...,0, Wozo, Prao,21,...) = (..., 0, Wozy, 0,1, ...) while
H,W3a = (...,0, HaWazg, Hoz, Hyzy,...) = (..., 0, HyWozg, Ao, Aoy, . . ).
Set yo = Uzg and note that W = U*WU. Thus UwWui...,0,zg,...) =
U Wyy. But yg € Dén_l) M@ H,. And because Ay is an eigenvalue of ﬁz, Yo 18 an
eigenvector of Hy on H. So yo € D). By the matrix representafion (1.10),
Wyo € DY Y. This implies that (Wyg,y(-1)) = 0, for any y_y) € D& and
(Wyg,y) = 0 for any y € H,. Thus (UWU*yo,y(_l)) =0 and (Wao, U*y) = 0.
Therefore (Wmg, U*(y(_1)+y)) = (W, U*y(_1)) +(Wazo, U*y) = 0. Since Y(~1)
and y are arbitrary we will have (Waxg,2) = 0, for any = € Q(—i).
But Wz, = (,...,0,Wozg, 20,...), and for any = € Q(—i), we have
(Woo, &) = (Wag, ) = 0. Thus Wozo = 0. And finally we have
HWi = Xo(...,0,0,20,21,...) = Ao(....,0, Wozg, €0, 71, ...) = AW
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Chapter 3

The Principal Current for {P, W, H,}

In this chapter, we first compute the principal function Gp(z,7) for the
self-adjoint and unitary operator pair {P, W}, and then use the principal func-
tions Gp(z,7) and G(r, A) to explicitly construct the principal current for the
operétor triple {P,W, H,}. Then, we derive a normal operator perturbation
problem and compute the phase shift for this perturbation problem as well as

a displacement formula similar to (2.5) in the introduction.

3.1 The principal function of {P,W}
We still fix Aq to be one of {A7} as in section 2.4. Let P, be the projection
o the eigenspace of 7, with eigenvalue Ag. By Lemma 2.3, P, has the following

atrix representation

2= ... 0P OP®000®0. ..
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where
( I 0 0
0 0 0
fJO — (3.2)
0 0 0

mxm

PoW — WP, = L 00 0 0 o . |- (3.3)
0 0 0 0 0
0 0 0 0 o -

Because B, is a one dimensional projection, FyW — W F, is of finite rank.
‘herefore there is a principal function Gy(z,7) associated to the self-adjoint
nd unitary operator pair {5, W} which is supported on the cylinder R x S.

> wish to calculate this principal function.

Let us therefore examine the polar symbols of P relative to W
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Se(W,Fo) = s — lim W™"PW™"E,(W). (3.4)

where F,(W) is the projection to the absolutely continuous subspace of W.
Let 0 be the one dimensional subspace of H generated by e[()_l). We may
then form M(Qo) = P> WQ,.

Note that 2 is a wandering subspace of W since 0 C D}“” which is
a wandering subspace of W. See [22]. Now we will prove the validity of the

following observation.

Lemma 3.1 S_(W,Fy) = Pq,, where Py, is the projection to M(Qy)
and S, (W, Py) = 0.

ki

Proof: Because W is absolutely continuous (see [28] and [24]), we have

S{(W, By) = s — lim,, oo, W P,W ™", By direct matrix calculation we see that

WPhW == Bel,a0a0d0....

T ZeTOS

WrRW ™=, . Phobaolal.. . p0e0qmo0....

'.Thus it is clear that S.(W, Py) = 0, since the limit we are taking is in the

ong operator topology and PG 1s a finite dimensional projection.

Ori-the other hand




0 0 00O
B0 000
WHERW =10 By ox o x| (3.5)
0 0 * * %
0 0 * % =%

It follows immediately that S_(W, Py)|g, = £ = Pa, [q,.
But both S_(W, ) and Py, commute with W. Thus S_(W, Po)lary =
Foylarao) = Pa,.
Now take z € M,z L M(Qy). That is, (z, Wme[()_l)) = 0 for any integer
m. Fix n > 0 and for any y € H, consider the inner product (W PBWng, y).
| %
(W= LW s, y) = (2, W™ PW™y) = lim ;(az, W By,
. {7 location)
Wherefsé_‘y):...$ }30 @0...0080....
 Bu WP = WrwiBTY and BOWy € Qy, for any n. Thus
: g:,W""IBé_j)W”y) = (3;,%’“”“}3&_1}147%) = 0, because we have assumed
h_at (z, W"'e((fl)) = 0. and the range of the projection Pé_l) is e((fl). Thus we
ave shown that lim,_,., W= P,W"| M)+ = U, and thus we have proved that
(W, Fy) = Py,.

‘Theorem 3.2 The principal function, Golz, 1), of the pair {Py, W} is
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the negative of the characteristic function of the set D = {(z,7):0< 2 < 1}
on R x St

Proof: We first note that W restricted to M (£20) is a bilateral shift of
multiplicity one. Now note that in the direct integral diagonalizing space for
W, Ss(W, By) = [o1 ®S+(W, Py)(7)dr. By Lemma, 3.1, S_(W, Po){(7) = 0, and
S4+{W, Po}{7) is a one dimensional projection.

Consider the perturbation : S.(W, By)(r) — S_(W, By)(r) and denote
the corresponding phase shift by 6,(z), in the fiber space of the direct integral

Hilbert space for W. Thus we have

det(S_(W, Fo)(7) — 2)(S4 (W, Po)(7) — 2)™ = exp 1 6T—($—)~d$. (3.6}

0T —z
Through this perturbation, the dimension of the eigenspace increases by
one at the eigenvalue 0, while it decreases by one at the eigenvalue 1, cf.
[15], The known relationship between the phase shift for symbol perturbation
problems and principal functions then gives us that Go(z,7) = —é,(z) = —1
for0 <z <1.
We note that here we use the ordering (z,7) as providing the orientation
for the pair {F,, W} and this is the opposite from the orientation which is
used in [5] for the self-adjoint unitary operator pair {W, Py}

fiemark It is clear that if we replace Ay by one of the {AF} we will get

Principal function for the new pair {Py, W} which takes the value one for

envalues MY, (A7), Then P = I - 5, P = ¥ Py and Sy (W, P) = I -

7
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Theorem 8.3 The principal function Gp(x,7) for the pair {P,W} is
~(m —n) times the characteristic function of the set {(z,7):0 <z < 1} on
R x St

Proof: If we consider the fiber perturbation problem Sy (W, P}{(r) ——
S_(W,P)(r), we see immediately that the principal function for the pair
{P, W} is the negative of the algebraic sums of the principal function for the
pairs { P, W} and {P;,W}. That is, Gp(a,7) = —(m —n) for 0 < z < 1.

3.2 Trace Identities

In this section, we prove certain trace identities which we will need in
order to prove the main theorem of this chapter.

Suppose f1(7), h1{7) and fa(A), hy(A) are smooth functions on the unit
circle and real line respectively. The functional calculus fi(W), hi(W), fo( Hz)
and hy(H;) are defined in the sense of section 2.2. In the following calculations
of this and next section, we will use f;, h; to denote both the scalar valued
functions and the corresponding operators under the functional calculus. The
context will make the meaning clear.

Lemma 3.5

{i) tr[Pfifa, Phihs] = tx[Pfi fo, hihs)

(i) te{P fifo, kol = tx[Pfy, hyhol fo + tr[fo, hiho) P o

(i) tx[Pfi, hikolfo = [P fi, halho fo + t2[P 1, ho) fohy

tr(f1fe, haha) = trlf1, ko] fahy + trlf2, ha)hafi
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(i) tr [Pfifa, Phahy] — te[Pfi fo, by
=Ar[PfifaPlhihg — PhihoPfify — Pfifahihy + hiho Py fo]
= tr(LPfLfz(P — Dhihy) + tr((I — P)hihy P fifo)
+r((P — I)h1hoP fi fo) + te((I — PVhy By P i fy)

= 0.
(i) tr[Pfifa, hiho] — 2P fi, hiko) fo — [ fo, hiho] P fi
= {{P fi fahahy — haha P f1fo — Pfihihofy

Fh1hoPfifo — fahaha P fi + hiby fo P fy)
=P fi{ fahihe — hika fo) + tr(hihafo — fohihs)Pfy
= 0.
(i)  tr[Pf1, hihs)fo — tr[Pf, hilhofo — [P f1, ha) fohy
= (P frhyhafo — hiho Pfifo — Pfihihofo

+h P frhofo — Pfihofoh + haoPfifahy)
= trhy (P frhofo — hoPFLfo) + tr(ho P Sy fy — Pfihafo)hy
=0
In the last step, we used the fact that [fy, k] = 0 and [f,, ha] = 0.
(v} te{fifo, haho] — o[y, Ba) fohy — tx[fo, halhofy
= te[f1fa, hiha) — tx[fu, hal ok — ko fil fo, b B fy
=tr(fifahiha — hahofifo — fihafohy + hafrhafa)
tefi(fahihe — hofohy) + tr(hyfihy — hitofi)fe
= br(fafuky — hofoh) fy + 41 fo(hafihy — hyho 1)

ill need to express the above traces in another form which involves
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Lemma 3.6
() te[Pf, hilhafs = tr[Pfr, ba](1 — PYhofot
te{Phy, fil(1 = P)foha + tx(I — P) f1 Plha fo, h1]
(i) telhofs, ha)(I — P) AP = telfy, ha)(I — P)f1Phy
+trlhg, k] fo(I — P) L P
(iti) te[P f1, hol fohatir(I~P) fy Plhafo, hal-+trlfa, by kol P fi—tx[fy fo, o]

= trfo(l = P)lha, h](1 = P)hy — tr[fa, Ba](I = P)f1(I — P)ho.
Proof:
(i) wlPfi, )kt
= te[Pf1, hJ(I = P)hofy + t1[Pfy, ha]Phsfo
But, for the second term in the above expression, we have
tr[P f1, ha]Phyfy = txP(fihy — hiPfy) fohs
= ttPhy(I ~ P)fi fohs
= t2(I — P) fuPha fohs + t:(I — P)f, Plhsfo, ]
= ~t2{Ph1, 1)1 — P)fohy + te(I — P)fi Plhafa, bal.
(i) trlhy fo, A (I = P i P —tr[fa, h)(1 = P) fi Pho —tx| by, ] fo(I = P) o P
= tel[ha fo, bal(1 — P)fLP —trholfo, h](I = P)foP —talha, hal fo(] — P)f, P
=0.

(ili) Let & denote the left hand of (iii). By using {iv) of lemma 3.5 and

i1) above, and noting that P commutes with Ay, we will have

S = tx[fu, holfolua P + [ fo, hi)(I — P) f1Phy + trfhg, hy] fo(I — P)f, P
Hrfa, halha P fi = tx[f1, bl fol — tr[fa, halhafi

= —tr[f1, ko] fohi (1 — P) — trl fo, a}ha{ — P) o

e[ fa, hi)(I — PYfiPhy + telhy, ba)fo(I — P)f1 P.
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Now we write
trfa, halha(l — P)f1 = telfo, (I = P)f1fa + tx[fa, i) (T — P)[ho, fi].
Then
S = —trlfy, ko) f2hi(d = P) — tr[fo, k(I — P) (1 — P)
—trlfz, hj( — P)[ho, fi] + trfhy, hi]fo(1 — P)f P

= —telf1, ha|(I = P)f3ha(I — P) — tx[fo, ] (1 - P)[ha, fi]
—tr[fo, M)(I = P)fi(1 — P)fa + telhy, bl fo(1 — P)fi P

= —tr{fo, a](I = PYA(I = PYhy — txlfo, ](1 — P)f1(I — P)f;
+tr[hg, ba] fo(f — PY 1 P

= —trlfo, ma}(] = P)Fi(L = P)hy + tr(I = P)(ho frhy — frhoby
+fiPhohy — fiPhiko) ]y

= —tr[fo, b]({ — P)fi{(I — P)hy + trfo(l — P)(hofiPhy + ho fi(1 — P)hy
—fi(I — P)hohy — fiPhyhy)

= —tr[fo, )T = P)A(T — Py + tefo(T — P)hofyPhy

 A2fo(I = PYfPhyby + tefo(I — P)(hofy — fuha)(T — P)hy

= trfo(l = P)lh2, A1 — P)hy — tr[fo, b)(I — P) f1(1 — P)hs.

Let Aj = Ay forj =1,2....,m, and let A; = A forj = m+ 1,m+
2,..,m + n. Similarly, set P; = Pifor j < m and P; = P, for j =
m 4 Lm42,...,m+n. Then I — P = ywbe p,

Lemma 3.7

telha, )T = PYhafoll — P)— talfo, ba)(I — P)fiho(I — P)

= i ha (M) (A e (A PR P — [Py sl fy — fLPRF).
Proof:

br((ha, AJ(L = Py fo(I = P)) ~ tx([fa, ha)(I — P) fiho(I — P))




= tr( 2 j(hafr — fihe) Piba fo Py — 325 i (faha — hafo) Pif1Pjhe)
= Yoo te((Ra( M) AL P — Py frPiha( X)) ha f2(A;) B
tr( P (f2(Ag) bl — Pihy fo( M) PifLPiha(A;))
= t1 T i(Ba fo) (X)) Fi Pihy Py — tr s ha(Aa) ol X)) Py L Pl
b1 T (B2 f2)(A3) o Piba Py = Ty tx(ha fo) (3 ) Pk P fo }
= Yilhafo)Mi)te fi(d — P — Pi)ha Py — X5 (Ra f2) (M)t fr Piha (I — P — ;)
o Ej(h2f2)(Aj)t1‘(f1Pjh1P — fiPhyP; — [P;, half1).

Using Lemmas 3.5, 3.6 and 3.7, we can now prove another trace identity.
Lemma 3.8
tr[P f1 fa, haha] = te[fifa, haha] — Z(hzfz)()\j)tf[ijh ha).

Proof:
tr[P f1f2, h1ha)
= [P f1, }(I — P)fohg — tx[Phy, fi](1 ~ P} fohy + tx[fif2, haho]

+trlhe, fil(d = PYhifo(f = P) — tr{fo, j({ — P)ild — P)f2
= trlf1f2, baha] 4 T fa)(A) [P f1, ha] Py — Tj(haf2)(Ai)IPh1, AP

2 i(f2ha}(A;)(FLPihi P = f1 PRy Py — [Py f1, b))

=Ar[fif2, hata] — 5(ha f2)(A)tx{ Py, b fi
= tr{fifo, hrha} — (ke f2) (At P fi, bl
We prove another lemma to complete this section,
Lemma 3.9

tr[P; fi, hi] = —trace [f1, Pjhy).

Proof: We note that P; is one of the P, P;7. By Theorem 3.2 and the

M

'mark after the theorem, the principal function of the pair {£;, W} is either
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~1 or +1 on the cylinder [0,1] x §'. Without loss of generality, consider the

second case. Note that we are integrating on the unit circle S'. We have |
wlBifi bl = [ [ AR (e dr = [ A (r)dr
= fi(T)ha(7)

I R INOT,

= /S 1 /0 P ha(r)de dr = —te[fy, Pihy).

3.3 Proof of Theorem 1.1

We are now able to begin the proof of Theorem 1.1. Suppose that
F(z,7,)), H(z,7,A) are smooth functions in M(R x 5! x R). We start
To evaluate tr[F(z,7,A), H(z,7,A)]. It is enough to take special functions
of the form F(z,7,A) = fo(2)fi(7)f2(}) and H(z,7,)) = ho(2)hs(r)ha(})
since these functions are dense in the algebra M(R x S1 x R). Further, for
the same reason we can assume hg, fy are polynomials. Then it is clear that
fo(P) :. a1+ P, ho(P) = dy + doP, where ¢, co,d; and dy are constants.

Therefore we only need to examine

T = tr[(er + e2P)fi(W) fo(Hs), (dy + do PYhy(W)ho(IT5)).

Now
I ztr[(cl + CgP)flfg, (dl -+ dgp)hlhg]
= cldltr[f1f259192] + Cldi.)tr[flfthlgz]

+Czd1tr[P,f1f2,919‘2] + Czd‘zti‘[Pﬁfzanlgz]
L+ Ty + I3 + 1y




7, can be computed immediately from the principal function of the pair
{wW, 1,}.
Z3 and T, are equal according to Lemma 3.5.
Lemma 3.5 and 3.8 imply that
Ty = cydotr[f1 fo, Phihy] = —cydatz[Phyha, fifo]
= —crdytr[hy b, f1fa] — crda o5 (faha) (M) te[Piha, f1)
= ¢1datr(f1 f2, hiha] + crdy 5 ( F2h2)(X5)te[P; 1, Ryl

Thus
I=05+L+1:+1,4
== erdatr[fifa, baha] + exdate[fy fa, hiho] 4 erdy 325 (faho)(A)4[E; i, b
+eadytr[fy fo, hyha] 4+ cady T faha) (AP fr, ha
+eadatr[fif2, hiho) + cade 5 foha)(Ai) 6] Py f1, ha
= (crds + 1y + 2y + cada)tr 1 fo, B
+(erdy + cady + €ady)) 3o (f2ha) (M) [ P fu, ha
= fo(1)}ho(1)tx[f1.f2, h1hs]
+ Z5(fo(1)ha(1) — fo(0)ho(0))(f2ha)(A;)tr[P; fr, b
Ji + Tz

Now we have

Ji = 2 1)ho(1 // flfz’hlhg)G(T,)\)d'rd/\

_ %/f%(LT,,\)G(T,A)M/\.

71 be the orientation (the unit normal) vector of the support of G(7, )

der S x R embedded in R x S' x R as the surface {1} x S' x R.



Then
1
J} = ﬂ_// < dF/\dH,’rh > G(T, )\)d’rd/\ (37)

Now we take another normalized orienting vector n; on the surface {A;} x
S' % [0,1] in R x S* x R such that 7, points - in the negative A-axis direction
when A; = AF, and #; points to the positive A-axis direction when A; = A7.
Then if G;(z,7) denotes the principal function for the pair {F;, W} we will

have

i, = 2( Fah) O (Foho)(1) = (foho)(0 f AR G2, 7) de dr

:Z(fzhz)(/\j)/ﬂl( Fal@)ho(z)+ fol2)hy(2)) da- ]fl () [ Gie,m)d) dr.

Note that

-1 for 7 <m

1
/ Gi(z,7)dz =
)

1 for j3>m

Thus :
wido= 3 [ [ (@) i) 200 hol )b ()ha(3y)

@ F Rl (r)ha(,)) - Gy, ) dod
—Z/] BFH 7, A;)Gi(z, 7) dz dr.

- I welet G{z,7,A) = Gj(=z,7) for \; = A}, while G(z,7,)) = —G(z,7)
fO? Aj = A7, then

1 .
To = ﬂf/a(dF A dH, ) Gz, 7, A) dH?, (3:8)
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trace [f(T, T, Hza), h(T,T", Ha,)]

( iﬂ, e—ig, .'L'), h(eié’, 6—’i9, CC))
T o .// a0, x) dwdo, (3.10)

where f,h € Mp(S' x §' X R), and Gr(7,\) = G, \) + {# of Aj : A}
A} —={# of M AP <A}

Proof: We first look at tr[#(T, Hy ), H{T, Hy,)]. As before it will be
enough to prove the theorem in the case where F(7,A) = fi(7)f2(A), H(T,A) =
Ri{7)ha(A) and f;, h; are real analytic in 7.

In this case, because we know from [24] that W is the minimal unitary

dilation of T, we have
F(T,Hy,) = PfL(W)Pfo(H,,) and H{T, Hy,) = Phy(W)Phy(Hy,).

Thus by noting that [P, W] is in trace class
 G[F(T, Hyy), B(T, Hy,)]

= tr[PL(W)P fa Hau), PRy (W) Phy(Hy))

= ir[PA(W)f2(Haa), Pha(W)ha(H,,)).

For simplicity, and without real loss of generality, we can now examine
just the case where T" is a (1,1) contraction, and A~ < A+,

In this case, Theorem 1.1 asserts that

2mitr [F(T, H2,aj7 (T, Hy,)l

//aFH' (r, N drdh+ S\ ha(*) [ f(r)B(7) dr

—ﬁu)mu-/ﬁfh,rw.
On the other hand

f,\i A7) fa{ Ayhy (7Y Ri{m)drd
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At
= [ BN [ () ha(r)ar

- (fz(z\"*)hg(m — OO - [ fé(A)hg(A)d)\) [ R@)in(r)ar

After a 7 integration by parts, taking the periodicity into account, this

becomes

((aha)) = (faha) W) [ A () + [ [ £ B (P)ha(N)dran.

Thus
(Fha)(0) = (o) (A7) [ fulr

_f/ fle T ’\) &) )(T} ))G(T,)\)d’rd/\,

where G(T,A) =1 for A~ < A < A+,

Setting Gr(r,A) = G(r, X) + G(r, A), we see that Gr{r, A) is the principal

function defined in the introduction and we will obtain

G[F(T, Hy,.), H(T, Hy,)] = % /] %’Tf?é(r,)\)&d/\

1 O(F, H)
+5— [ / Do) Clr Adraa
aF, H
= [ f GT (7, A)drdA.

To complete the proof of Theorem 3.10, it is only necessary to note that

(

___T*,T s My} = F(T', Hy ) for some function ' in two variables because T —
WP, T —

PW*P, [P,W] is in trace class, and the functional calculus
'___IY defined modulo the trace class. Thus, for f = f(e*,e'®,)) and h =
7,€9,0) in K451 x ST % R), we let F(r,)) = F(e, =9, 1), and H(r,\) =

T A); for 7 = ¢, Since I — 1T and I — TT™ are in trace class, we




have that both f(T',1*, H,,) — F(T, Hy,) and (T, T*, Hs,) ~ H(T, Hy,) are
in trace class.

Thus

tr[f(1, T*, Hyo), (T, 1%, Hy )]

- tr[F(T, Haa), H(T, Hy,)]

a(F H)
= / f GT(T Ndrd).

But an elementary direct calculation shows that

AF), )

e T 0dr (3.11)

We have therefore established the asserted equality.

We will call G{z,7, ) the full principal function for the operator triplet
{P,W, H,}. In an obvious sense, usual for the principal current theory, the
“projection” of this function { we mean the principal function associated to
the projected principal current here and in the following sentences) to the
(7,A) cylinder will give the principal function of the original pair {W/, H,}
while the “projection” to the (z,7) also gives a principal fuﬁction Gp(z, 7).

‘The “projection” of the full principal function to the (z,A) plane is almost

everywhere equal 1o zero. This reflects the fact that the operators 7 and H,
commute.

In this connection we remark that there is a normal perturbation problem
in the (z, ) plane that deserves some discussion. Let C be the curve in the
(2,) plane which consists of the points (1,A) for A € o(H);), together with
the segments connecting (0, A;) to (1, A;); where A; runs through {A} and

{27}, that is the projection of the full current to the {z, A} plane.
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Define §(z, A) as follows:

1 dr

27 1 2w dr
5(;.3,)\3-):-2-;/9 Gla,m )= & 6(1,)\):-2—7rf0 G(1,m T (312)

Consider the normal perturbation problem P+iH, —» W(P+iH,)W*. Al-
ternatively consider the trace class perturbation problem for pair of operators:
(P, Hy) — (WPW* W H,W™).

Theorem 8.11
w(f(P, Ha) — J(WPW* W H W) = [ < df,0 > 8w, NP,

where dH* is Hausdorff one measure, and o is the tangent vector to C chosen

in a way compatible with the orientation vector in Theorem 1.1

Proof:

tl‘(f(P, Hg) —_ f(I’VP‘/V*, WHQW*)) = tI‘[f(P, HQ)W*, W]
- é—%j]ﬁu,,\)au,fr,,\)%dm
5 Zf/fm 2, )Gz, T )\+)d:d:1:

" omi fofm(m A7) (-‘T»T,/\;)é;dm

=1

- /C < df,o > §(z, \)dH.



Chapter 4

The Characteristic Operator function and its

Determinant

In this chapter, we compute the characteristic operator function of 7'
defined by (1.6). If T has equal deficiency indices, we express the determinant
of the characteristic function in terms of the metric intersection geometry of
the principal current. Then we conclude that the class of contraction operators
we study are quasi-similar but not similar to unitary operators. We note that
in a paper [37} with Pincus, a wider class of contraction operators is studied

which includes operators similar to unitary operators.

4.1 The characteristic operator function

We require some further results from [24]. Recall that in chapter 1, we
ntroduced the operator H;. Now let d; = (jl—gﬂ)%(ﬂl — D7k for & > 0. Then

..ef__i'l'le the rank one operator Dty = %d; ® d;, and consider the perturbation
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problem

Hy — Hy + D(I). (4.1)

Let hy(t) be the corresponding phase shift function. Then there will be

unique positive measures dui such that

fu(t) d
exp/tf dt =14 = f t'ui - (4.2)
and
hy(t) d
exp—/tf dt=1- w/ fi_(z) (4.3)

The measures p*, u~ are the spectral measures of Hy and H, + D(I)
respectively. In [24], the phase shift function hi(A) is calculated in terms of
the symbols A(X) 1 [k(A)[? for | = (¢ + in:

mO) = L tan i AR =6 L AQ) = )P ¢

}— —tan

" - " ) (44)

Note that uf = p* in the notation of chapter 1. It is part of lemma 2
n {1] that the singular parts of it all consist of atoms at {AF} and {X;}.

Furthermore, in [24], basis vectors {w.} and {wi;} for Dg» and for Dy, were

constructed from the principal function, so that

- L& Oy .
(@) Twp, = - ATLT;LU,"'; J=1,...,m.
m —)‘—
6 = S e
_;n =] T -

We are thus able to state




Theorem 4.1 For |u| < 1, det ©*(1)O () = det (@slg(p)) , where
s,i=1
_ L w8 s (D)
Ol =3 2 BF )07 —3)
and | = z'l + '[:L
1—g

Proof: For any x4 € D, the unit disc, let T(p) = (T — w1 — gT).
We know, see [22], that there exist isomeiries Z (#) : Dryy — Dy, and

YNIME Dre(uy — Dy+ such that

200 (@) 27 (1) = Oz (). (4.5)

a—+ p
!+ pa
But T'(p) = (T — p)(1 — g7)' = P(W — p) (1 — pW)™1P, since W is the

minimal unitary dilation of 7. Thus

for & =

=l

1
T(p) = 1—_-—%2} for [= zi—t—-— (4.6)

=

Therefore by (4.5) and (4.6), we obtain
O (1)0(1) = Z(1)07,)(0) Zu(1)* Zu (1) O7() (0) 2% (1)
= Z(1) 07y (0)O1(0) Z (1)* = Z ()T (1) T (1) Z*(11).

Thus we have proved

det ©*(1)O(p) = det 17T,

But (a) and (8) above together gives us

L &&0 i) w (A7)
) Z (Af — AT )(AF ;/\-‘)w“’j'
=1 r & T 2

=1lr=

* - —_—
T} ﬂw!,s -

This completes the proof
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For the remainder of this section we will take the case where T has equal
deficiency indices i.e. m = n.
Theorem 4.2 If T has equal deficiency indices (m,m), then we have,

forl= ii——}_—‘g,

m o ARR(OT = A7)2
det ©° ()0 (1) = ;r—i,;; I1 (#?L(/\f)#z’(*?)) 11 O (;i)_(i})z L

ri=1 s#r
' t#j)

Proof: We first decompose the determinant into the product of two sim-
pler determinants.

Let

AT-ar Moy Af A
Am(."‘la'-'aﬂ'm) = ‘ (47)
\ Ah=AT AL mln,\,;
Then it is clear that
N 1 . _
det @ (p)O{u) = o det A} (p7,. oy o) Am(pf, ., pt). (4.8)

Let B,, = A,(1,1,...,1). This is a nice enough classical determinant,
the so called double alternate of Sylvester. The determinant B, is evaluated,

for example, in [20]. We can also easily verify, by induction on m say, that

det B, = ﬁ Lo (A ‘“;\E) ﬂ:fj(’\f:_ — )\;).
T

T!J:]‘

(4.9)




Since

det A (pk, ... ut) = ,u;-k)det B..,

s

=1

we are done.

4.2 The proof of Theorem 1.2

We give the proof of Theorem 1.2 in this section. Through out this section,
we always assume that T has equal deficiency indices, that is, m = n. We start
with a lemma.

Lemma 4.3 Let [ = ( +in. then

‘u+()\+)=7rlimyexp/h¢().) AN d
! T y—0 ()\—)\;.}')2—'_2;2
and
A— AT
(A7) = i - ’ '
(A7) = mlimy exp /h‘()\)(/\— 5y Y

Proof: Consider the first equation. We let

B 1ordw(t) di
¢I(z)—1+w./ PR _eAp/h,(t)thz. {4.10)
By the Stieltjes inversion formula.
s (AF) = limy_o(~iy)¢i(z)
L A=At . Y
- zlllgr%]yexp(/hg(A)()‘_/\:r)2+y2 d/\+tht((\)()\—/\f)2+92 d).

But it was proved in {24] that A(-) has left Lebesgue value 0 and right

Lebesgue value 1 at At. Thus by the Fatou theorem for Poissson integrals we
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. Y T
thg(/\)ﬁ'W dl — 23.

Hence

A—F

1o
1 _ . S Y
—m(A)) iﬁ%eXP/h’(’\)(/\aAj)Hyz )

The second equation can be proven in the same way.

Lemma 4.4 For ] = ¢+ in we have

g IOk A -t
1 7 _
B L T - O TR B =

for almost all ¢. A corresponding result holds for A7

Proof: For the proof we first note that for any € < 0, there is an open set

{2 such that K, C 0 and m(K,) < ¢ for almost al] ¢ when K, = {) . A(A) =

CorAQ) —¢ = {k()P),

In fact, let Fy = {¢ . m(K) > §). 1t A(") and k(.)

K, is closed and K, # K i ¢ # ¢'. Thus m(Fy) =

= 0. On the other hand
Fs CFlLifé <& Therefore m(F5) = Hmg_,q m(Fs) = 0. Thus for almost all
C, m(ffg) = 0.

are continuous, then

If A()

k() are not continuous, then by Lusin’s theorem they can be

approXimated uniformly by continuous functions outside a set of arbitra,rily-___ i
small measure. .

Thus, without loss of generality, we can assume that (=0and K, C Q |

nd m(Q) < ¢ for arbitrary small e.

Furthermore we can assume that A} ¢ O by adjusting €1 a little,



Now we let

(
_ 2n]k(A)[?
tan™? for A€ o(H,)
. 2 2 _ 4
hﬂ()\) _ e+ A(A) |k()\),
4] for A = O’(Hg),
then
/ h( M) AN d)\’ < ] dA < Cm(Q) < e. (4.11)
a (A= ARy T g

where (' is a constant. We will let ' denote different constants throughout

the following.

Now we need only show that

; Ao A
I r .
y@é/m WO P < (4.12)

when 7 is small enough.

We know from lemma 2 of [24] that |k())|? has left Lebesgue value 0 at

At As A — At — 0, we can estimate tan™! (2} by z and write

(A} < nlk(A)?]. (4.13)
Also for a range of N > 0, by the eigenvalue criterion (2.6), we have

/f k(A2

;"—N-/{t)\_jd)‘ < 00 (414)
MHN 1 p
f” R /\f < . (4.15)

Therefore there exists a b1 > 0 such that

¥ Ao () A d) 4.16
~/)t,1"—51 Tn‘( )(/\ _ )\7_!_)2 +y2 ( < € ( o )
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We also know from [24] that A(A) & |k())]* has right Lebesgue value o0
as A — AF + 0. Thus

kP C
kKOO = TROOP

in some interval to the right of A}, Now (4.15) and (4.17) imply that there is

b, (N)] < C (4.17)

a 62 > 0 such that

L\ [<e (4.18)

A$+527 \ X — At
fe OGS

Finally for A € V = R\(QU (A} — &, A} + 62)), we have |A(AY — [k(N)]* > C

and

CHRY[p— L)

=T AR - R < SO 19

Thus as 5 — 0
i/ /\) R dh <ep <e (4.20)
A— )\+ I)\ A2
The proof is completed by combining (4.16), (4.18), and (4.20).

Now we come to the proof of Theorem 1.2.

Define 8(1) = {A: |h(A)| = 2}, for I = ¢ + iy, 5 > 0.
By (4.4) and the difference of two angles formula for the tangent function,

we get the following

hi(A) for A& 8(1)
hi(X) =

7+ k(X)) for A e &(0).

\
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But when > 0, we have

1 AQ) 4+ [R()E —¢ 1 AR — B -

> tan
) Ui

Therefore §(I) = {A: hy(A) > Z}.

tan

Thus if we let

SO ={AM) + M~ ¢ 2 0 U A AQ) = RO~ ¢ <0}, (4.21)

Then as 4 — 0 we have
8(I) — 8(¢).

It is clear that &(¢) is the intersection of the line y = ¢ with the essential
support of the principal function 9(¢, A} for the pair {II,, H,}.

But the transformation law of principal functions gives us G(g{—:,/\) =
9(¢, A). So we see that §(¢) is the A-support, R, , of G(7,A) at height 7 = E'_"—:

If we use the notations of the introduction, we can write

§(¢) = m(T)(A+(T) A7 (7). But because §(1) — 6(¢) as I — ¢, we can assume,
for { close enough to ¢ that

8(0) = Uaai(1,27) U (U, (AF, b5(0) U (207 (i (1), 3 (1)

where 4;(0) =+ a;(¢) = ay(r) and b(1) - bi(¢) = by(r).
Denote §(¢) = mm “™{aj(r),4;(r)). Then by Lemmas 4.3 and 4.4 above -

we have

l A— At
lim i (AF) = - -
Sy u) = lim b exp - [ M e
.f_

. A= A7
=]
10 il*r'% P /(:) A—AF)2 42 dA.




Let us look at the integral in the exponential:
)+
_/ A—A; I\
50 (A= AP +y?

by (1) A—AF
= a dA
(Z /O,J(I) = ./ ~/ot.her) (/\ — )\;}')2 + y2

— M)+ l AP 4y
(Zlog ,\+)) . +Z;l /\+))+y32)

Ao
T4
+ fgther D)2+ 52
= 1Ogly|+10gH 7= ANHE —log [I((Af — A2 497}
J=1 IFr
bj(l) /\ _ /\+) (A — /‘\+)
d) )
32/%(1) YR 52 T o V= AT 447

[T

_ 17 (O = A0+ A= Af
= log (|y|I’IJ¢T(( M- Ay +y2)%)+/5(1) (A — A2 4 y2 d/\)'

Thus
;}g&m(ﬁ) T Ik\j — ;\\:H X /S(l)"% (4.22)
Or . ‘
st - EREEL TG SE o ‘
where T, = gt:

'Thus we have proved {1.7) in Theorem 1.2. By Theorem 4.2, det T*T =
det ©*(0)0O(0) # 0. So a resuit of Sz. Nagy and C. Foias implies that T is
invertible. Now because T' has finite deficiency indices, 7" is a weak contraé_tion

~and o(T') C S*. On the other hand, 7' is a finite perturbation of an iso_rhétr’y

~with finite deficiency indices. Therefore the essential spectrum of 7' is the full

circle and (T") C 0.(T) = S'. Thus o(T) = 5.




This completes the proof of Theorem 1.2.

At the end of this section, we remark that the finiteness assumption for
the multiplicity of W is not essential. It is made only for the convenience
of expressing the Riemann-Hilbert barrier (1.7) in terms of the qu;)tient of
certain distances explicitly. Indeed, if we form the following Riemann-Hilbert
barrier in general:

st)=en (LT fyo) oo (XL [, 7o) 020

r=1 k=1 i=1k=1

where F* are defined in the introduction and the sum over k is a finite sum

because we only have a finite number eigenvalues {)\f} Without essential
change for the proof given above, one can easily see that Theorem 1.2 is still

true for new ba.rrier (4.24).

4.3 Some Consequences l
|

Iﬁ this last section of this chapter we derive a few consequences from the
determinant expression of 7' in Theorem 1.2. |
Theorem 4.5 Suppose that the deficiency indices of T are (m,m),m < i
co. Then Or(e®) is an outer function. |
Proof: By a well known theorem in [22], it suffices to show, since @p(e't) is !
invertible, that det ©7(e™) is outer. This is an almost immediate consequence
of the preceding analysis. It is well known [14] that an analytic functi_dfl '.on

the unit disc, F'(4), is outer if and only if

1 27 .
In [F(0)] =§j0 In |#(e)} d8.




Thus, setting F'(¢) = Op(u),for |u| < 1 and by Theorem 1.2, we have

F@W = T it OHur (307,

=1
where C is constant in g, and { = (1 + 2)(1 — g)~*
From this, we see that F'(u) has no zeros in the unit disc. Therefore it

will suffice for us to demonstrate simply that

My = [T 0F) do 4.26
O = 5= [ O (4:26)
and

) = = [ (A7) do

#_;(j)—g/[) Mc(j) . (4.27)

where ¢ = (1 + e ) (1 — 7)1, and pF(AF) = limy_o pfOF) forl = ¢ +
i, > 0. The proof of the first of these assertions follows at once from the

observation that
FAT) = lim(—iy)di(z) (4.28)
with z = AF 4 iy.
But by (2.15)

d dt -
a(e) =14 [ e [y = B9,
— =z
where G(v, u1) is the characteristic function of the set

() s AQp) ~ v — ()i < v < AQp) — v + [K()*}.

Clearly ¢;(z) is harmonic in ! and an easy estimate shows that the lnmt

above is uniform on any compact [ - set in the upper half plane. Thus ,ul()\'*)

1s harmonic.




Theorem 4.6 T is a weak contraction and is quasi-similar to a unitary
operator, o(T) = S*; and T is not similar to a unitary operator.

Proof: By the previous theorems ©(u) is invertible for all |u] < 1. Thus
o(T) C §'. Indeed by [22] T is quasi-similar to the residual part of its minimal
unitary dilation. But by the theorem above and lemma 2 in [24] Wé know that
det ©*(u)}O(g) — 0 as ¢ — 1. Thus by the well known criterion of Sz-Nagy
and C. Foias, T' is not similar to a unitary operator.

Finally we have

Theorem 4.7 T is complelely non unitary if and only if m = m(r).

Proof: The proof is quite simple. The spectral multiplicity, see [22], of the
minimal dilation W of a completely non-unitary 7" is related to the deficiency
index m by m(r) = m 4 rank F(r), where F?(7) = I — ©*(7)O(7). But
Theorem 1.2 and its proof show that F(7) must have full rank, m, for almost
all 7. Thus when 7' is completely non-unitary we have m(r) = m + m. Of
course if there were a unitary part to 7" this would produce additional spectral

multiplicity in W so the converse also follows.




Chapter 5

Unimodular Singular Integral Operators

The contraction T' has the the singular integral representation (1.8). It has
unimodular symbols and is the product of the compression of the wave operator

and a unitary operator. In this chapter we study more genera) singular integral

operators (1.9) with unimodular symbols.

5.1 unitary singular integral operators

Let afA),B(A) be square integrable functions. Consider the following

formal singular integral operator in Lo(E):

dt
t— (A —10)’

UFO) = 1) + a0 [ B S0

where
dt _ dt
/g(t)t— (A — i0) “11—133/9(”15— (X —ie)

In general a domain can be found so that U/ is densely deﬁ_ﬂéd B

certain cases, the closure may be bounded and have Ly(E) as its doma n.

this section, we determine when the closure is defined everywher and




unitary operator, In the following, when we say U is unitary we always mean

the closure of U is unitary.

Using the Plemelj formula, U can be equivalently written as:
1 dt
U = (= ia(BONSN) + 280 [AOMO7. (652

Let C? = |laff - [I8]|* , and &/(X) = C~la()), #(N) = CB(X). Then we
rewrite (5.1) as
t
UIA) = f0) + 2a'0) [ BOF 0y (5.3)
where o/(X), #/()) have equal ©y—norm, Therefore, throughout this chapter

we assume that ||| = ||8]] in (5.1).

Theorem 5.1 [fU is q unitary operator, then one of the following is

true:

(¢) |1 — 2ia8| = 1 and

(1+?r fe () a1 — 2 [IBAE (5.4)

t—z T t— 2z

() |1 — 2iap) = 1 and

flth_z (1+%f—-——|f(j)2'2dt):1. (5.5)

Proof: Let M be the multiplication operator by the position funct:on ons'
La(E), ie. MF(A)=Af()\). Then M is a simple self-adjoint operator.: |

Suppose now that I/ is a unitary operator. Then

(MUl =UM - MU = -1—(-,;3)& = la@ﬁ,
w T




that is

UM = (M - 2(,UB)&)U. (5.6)

m

Let D = —2(-,UB)a&. Then D = UMU* — M is a self-adjoint operator.
But D* = —1(,,&)UpB. Thus U = Ca for some real number C. But the fact
that U is unitary and |jo|| = |8|| imply that ||{UB]| = ||8]] = |la||. Therefore
we conclude that C = £1.

We first assume that ¢’ = —1. In this case ) = 1(-, @) is a positive rank
one operator. For the triplet {U, M, D}, by a result of Pincus, c¢f. (5], there
is a principal function G(({,A) for the triplet, which is a completly unitary
invariant, Furthermore, since D) > 0, for fixed A, G((,A) is the characteristic
function of the positive arc extended from Sy.(M,U)(X) to S_(M,U)(X).

But it is clear that:

Sy (M, U)X =1—2a8 and S_(M,U)() =L (5.7)
Let
o) =5 [ GENT (5.8)

be the average of G({,A). Then §(}) is the phase shift function of the pertur-
bation problem

M->M+la®&. (5.9)
i

By (5.8), we have Si (M, U)(}) = ¢~ 2mi6(N),

Porming the perturbation determinant, we get

det(M+ D —2)(M —2) =14 = / E,\o:a

where E) is the spectral resolution of M.




Since M 1s simple absolutely continuous, d{Ex&, &) = |a(A)[*dX. So we

conclude
ler( A
14— / d)\ = expf (5.10)

On the other hand, we can rewrite the commutator relation (5.6) as
D 1

Now consider the perturbation problem

Mo M-=33.

A | =

By a similar argument to the above, we get

1—%—/#(—?@ :exp/f—(_)\);d,\. (5.12)

- 1 - d .
where 6()) = 50 fG’(C, A)?g and G((, A) is the principal function associated

the triplet {U*, M, —18® B}. By the transformation property of the principal
function, we sec that G(¢,A) = G(,A). Thus (1) = —§(A) and

- %fm(/\)]?% - exp_]fi_’-\lz-d)\. (5.13)

Combining (5.10) and (5.11), we get (i).
In the case C' = 1, a similar argument applies and we conclude that (ii)

1s satisfied.

In the proof of the above Theorem, we see that if U is unitary , then
UB=a& or UB=—a.

Actually this characterizes the unitary property of U.




Theorem 5.2 U is unitary if and only if one of the following are true:
(i) UB=—a and U*a = — 4.

(1) UB = & and U*a = B.

Proof: The necessarity is proved in Theorem 5.1. We only need to prove

the sufficiency here.

Suppose (i) is true, then U*UB = A. We will prove the following by

induction on n:
UUM"38=M"8 n>0 (5.14)

(5.14) is true for n = 0 by the assumption. Now assume it is true for .
Then by the commutator relation (5.6), (5.11), we have

U-UM™M'\B = U"(MU — 1(-, f)a) M3 = U*MUM" 5 + 1,8)M"3

= (MU* +3(, )D)UM"8 + (475, §)F = M+15.

But M™¥15 are dense in Ly(E), so the closure of U is a unitary operator,

Now we consider the converse of Theorem 5.1. Let’s define the conjugate

operator U’ of U as following:

dt
t—(A—10)

VSO =1 ~a()) [ B0 (5.15)

Theorem 5.3 If the coefficients of U satisfy the following;
(i) 11— 280N = 1,

1 , d\ 1 . dh
i) (142 [laPy=5)0 - - [1800Ps ) = 1.
Then U or U' is unitary.

Proof: Let §(A) be the unique real function 0 < 8(A) <1, such that

1 g dA ()
1~ [laPs= —exp/m—#z.

z



Then by {ii)
1 - %/W(A)]Z% = oxp- | % (5.17)

Suppose M is still the position operator on Ly(FE). Cousider the one
dimensional perturbation problem M — M = M + 1a ® @ By (5.16) and
(5.17), §(A) is the phase shift of the perturbation problem and —§(A) is the the
phase shift of the inverse perturbation problem. And [B(A\)[*d\ = d(E\B, B)
where E) is the spectral resolution of M. Thus M is absolutely continuous.
Therefore the wave operators W, defined by

Wi = lim ™™ p (M)

t—too

are unitary operators. Moreover W_ has the following singular integral repre-
sentation (see [5])

1) F(t)dt
+i0) L= (A —140)

Wf) = f0) + 25 [ det‘(";( (5.18)

where det(t 4 :0) = Hm,._odet(M — (t +ie) (M — (¢ —1¢))7".
Let A()) = a(A)(det(A + i0))~! and apply Theorem 5.1 to W_, we have

1= = [ B = ep— [ 2L (5.19)

Thus by assumption (ii), we have

1—;1;f|ﬁ(k)|2/\d—jz =1 —%/Iﬁ(A)IZA‘f\Z.
Taking the residues at infinity, we obtain [8(X)] = [B(3)].
Let .
BV = A, )
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Apply Theorem 5.1 to W_ again, we have
1= |1 = 2%a(M)BN)] = |1 — 2a(X)B(h)e ). (5.21)
But the assumption (i) says
(1 — 2ia(X)p(N)| = 1. (5.22)

By simple elementary geometry, (5.21) and (5.22) are true if and only if
(a) 6(A\) =0
or
(b) TEOVACY) = 2ia(\B(N)e 0.
If (a) is true, U = W_ is unitary.

If {(b) is true, we have
—a(N)B(A) = a(A)B(A)e ™.

So we let $(A) = B(A)B~1(A)e™H) = a(A)a~1(A) and M, be the multiplica-

tion operator by ¢(A) on Ly(E). Then M, is unitary since ¢(}) is a unimodular

function. Therefore
fagk 1 1 — —i(r46) dt
MU'M; =1 Wa(/\)]ﬁ()\)e P

1 , dt
= ~a —i(r+0) 2 W
1+ ﬂ_a()\)/ﬁ(,\)e PR .

Thus U’ is unita;ry and the proof is complete.

In the proof above, we see that U is unitary if / = W_.
B(0) = B(\). Then a(A)F~(A) = det(X — i0). Because det(z) he




the same coefficient a(A). So a(M)fH(A) = det(A —40) has positive ima;él._n;ﬁy_,_. ..

part.
Similarly, one can see that U’ is unitary if and only if a(A)B7*(X) has

negative imaginary part.
Therefore we conclude that

Theorem 5.4 Let U be the singular integral operator in (5.1) with coef-
ficients a(X), B(X) satisfying the conditions of Theorem 5.8, Then U is unitary
if and only if (X)B7(X) has positive imagz'nary-part. And U’ is unitary if and
only if a(X)B~1(A) has negative imaginary part. Furthermore, if U satisfies the
conditions of Theorem 5.3 and the imaginary part of a(X)B7HA) is posilive,

then we have the following inversion formula:

U ) = S0+ B0 [« 07— (5.23)

Now, we construct a unitary operator of the form (5.1) with a given a(A) €
L;(E). By a unitary transformation—the multiplication of the argument of
a(\) = U in (5.1) is unitarily equivalent to a singular integral operator of the
same form with coefficients |a{A)]. Therefore for the rest of this section we
assume that the o()) in (5.1) is always non-negative.

Suppose a()) is a Lo-integral function. Let §(A) be the uniq_ue__fu_npj}i__q_n

satistying:

1 dA
1+ 2 [P = ex




Let

1 , dA
‘I’(A)—1+;/|a().)| ; (5.25)
Solve for |a(A)|? by using the Plemelj formula to get
1 .
la(N)]? = 5; —(®(A +0) — ©() —40)). (5.26)
On the other hand, ®(z) = *¥&) for ¥(z
2m )\ — z
Let
Hf() f o dt | (5.27)

be the usual Hilbert transform. Then by apply the Plemelj formula to ¥(z).

We have
DA +i0) = ATIYOH0) _ miHE(\)mis(3)
Similarly
(I)(/\ _ ZO) — e?riHJ()\]—wiE()\).
Thus

]Ot()«)]z — 51;(,31-”‘}{5();)('earnis(,\) . 6—m5(,\)) — 67riH6(A) sin ,Mg()‘)_
Therefore
a()) = ("N ginw8(1))5.

Now we solve for B{A) in 1 — 2ia(A)B(A) = e~ 2780 1o get

B(A) = (e —miHE(A) o 7r6()\))% —mis(x)

It is clear that a(A), #(2) satisfy the assumption of Thedféi_il_-.5"

a(X)B1(A) = €2 has positive imaginary part. By Theorei.'ﬁ_'“f_f')';

gular integral operator ¥/ in 5.1 with coefficients a(A), A(A) construc



is unitary. In fact, it is of the following form:
f(t)dt

t— () —10)
(5.30)

UfiA) =1+ %(em'HE(A) sin 7r5()\))% f(e—m'HS(t) s ﬂ_(ﬁ(t))%e—m'&(z)

In particular, if () = ¢ < 1 and the measurable set £ = {(a,b), then
(5.30) gives a unitary operator since there is an a(A) € L(E) satislying (5.28).

In the case ¢ = £, (5.30) becomes

dt
t—(A—1d0)

US0) = S0+ L[R2 ) (531)

If we rewrite the singular integral above in terms of the principal value

by the Plemel; formula, we will get

1 A=b: — 1 dt
Ui = =I5l [ =S r0-= (5.32)

Let ¢/(}) = [2=2|% and M, be the multiplication operator by %()), that
is My f(A) = ¥(A)f(A). Then U = MyHM,". This says, by an “unbounded
similarity” transformation, the unitary operator U in (5.32) is transformed
into the Hilbert transform operator on the interval (a, ). One can also easily
see that in this case U’ = U and this is the only case that both U/ and U; are

unitary operators.

5.2 Contractive Singular Integral Operéto

In the last section, the unitary operator U is completely dete_i‘ﬁﬁ__

scalar function ¢ < §(A) < 1. But in order for U to be unitar'y_,}

satisfy (2.46) in chapter 2.




In general, for an arbitrary Li-function §(A) on E, we will have positive

measures ,u‘t such that

1+%/df—i_(3} :exp:l:/-;f%d)\. (5.33)

Then by the canonical model construction ([4], [5]), there is a rank one
self-adjoint operator perturbation problem H — H 41 @d with the given 6())
as its phase shift and dut()) = d(E\d,d). The absolutely continuous part of
I is represented as the multiplication by the position function on Ly(F). Let
us call the Radon-Nikodym derivative of ut with respect to Lebesgue measure
by |a{A)]* and let u; be the singular part of p. the wave operator W_ of
the perturbation problem H — H + 1d ® d with the given 6()) then has the

following singular integral representation on Ly(£)

2) F(t)dt
+40) A — (£ —i0)

Wi0) = F) + ~a(h) | det?t( (5.34)

where det(t—10) = lim._,¢ det(H—l—%d@d-—(t—i—ie))(H—(t—ie))“l. Furthermore,
the wave operator W_ has the dimensions of Ly(p7), Ly(ut) as its defliciency
indices, and 1 — 2ia(A)B(A) = ¢ 2™ since the symbols of W_ are 1 and

=283

Now we rewrite (5.33)

1+ % f [a(/\)|2% + 1 7dnA) expf)\i(_i);d,\. '(__:5_.';3'_5.)

TJ) A—z _
As in the last section, we solve |a(A)|? from (5.35) by Plemel; form}_l:lai'..to

get

le( V)P = (" F*N sin w6(A))3.




and solve for B(A) in 1 — 2i&A)B(A) = 20 to get:
BN) = (¢ ™HEN in w6( 1)) e,

Therefore by a unitary transform—the multiplication of the argument of
a(A)—we see that W_ is unitarily equivalent to the following singular integral

contraction operator

Uf(A) =1+ %(eﬂfﬂﬁm sin 78(1))7 f (e~ HE® gip Wé(t))%e_”s(t)%.
(5.36)
If we assume that the singular parts u* only consist of finite number of
- masses, then U has finite indices and by Theorem 1.1, o.(U} = S, the unit
circle. The index of U equals dim(Ly(dp™)) —dim(Lz(du™)). By the geometric
characterization of the eigenvalue criterion (lemma 2 in {24]), This number is
certain weighting winding number of the images of the symbols Sy (H, W_)
around the origin on the cylinder S* x R if the symbols are continuous. Of
course, here the function é(A) is an arbitrary L;-function and may not be
smooth. For example, if e ™™ has a jump at some point Ao, then we fill in
the jump by an arc on the cylinder.
The classical singular integral operator theory ([19], [21]) studies singular

integral operators of the form:

L) = a() +503) [ () (537)

isz)

The essential spectrum of such an operator is shown to be the i 1mage on

the symbols and the index is then the winding number of the 1mages of the@

quotient of symbols a(A)£b(A) around the origin if the symbols are con_tln_i;(jus.




If the symbols a()) :+ b(A) are discontinuous, but only have finite number of

jumps, then the index of L is computed by a modified symbols, which is the
original image together with segments connecting these jumps.

The class of singular integral operators in (5.1) we study is a different class.
Unlike the operator L in (5.37), the symbols in the singular integral operator
(5.1) does not determine the operator completely. The unitary property of the

operator U/ gives a symmetric decomposition of the symbols.
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