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1992

In this dissertation we study Toeplitz and Hankel operators on the Bergman

“space of bounded symmetric domains. We employ the Jordan triple product

_associated to those domains to obtain a precise formula for the Bergman met-

ric near the boundary of such domains, and we are able to characterize the

'Hankel operators Hy and Hy with integrrable symbol f which are in p-Schatten




On the unit ball of n-dimensional complex space we study properties of
semi-commutators of Toeplitz operators and also commuting Toeplitz opera-
tors with bounded pluritharmonic symbols on the Bergman space.

On n-dimensional complex space, we use the Berezin transform to define
the mean oscillation of square integrable functions. We discuss certain spaces
BMQO, and V_ﬂ_/f Oy. Using BM O, VMO, and an associated mean oscil-
lation, we ch.ara',t.:.térizzé .th.oé.e Hankel .ai)ze.l"é,tor_s H; and Hy on the Bargman-
Fock-Segal space which a,re..ei:t].:l.(:ér: b:o'u.f;c.led: or compact or belong in to the
p-Schatten class for 2 < p < oo. A conjecture of Bergér—Coburn is established.

On the unit disk, the theory of Toeplitz operators and Hankel operators
has a deep relationship with function algebras. We study the Bourgain algebras
of some subalgebras on the unit disk to shed light on the theory of ﬁhese

algebras on the disk.
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Introduction

In this chapter Wewﬂl glve somebackground “i:hf"o'rr'ﬁafic'm and list the
major results of this thesis. Thethes1scon51stsof f(:){ir ﬁéﬁs.

On Bounded Symmetric Domains

Let D be a domain in a finite dimensional complex vector space C™,
for dA(w) the usual Euclidean volume measure on C"=R?", normalized so
that A(D)=1, we consider the Hilbert space of square-integrable complex-
~valued functions L? = L*(D,dA) and the Bergman space L2 = Lg(D,dAl) of
: ilolomorphic functions in L?. Since the evaluation at any fixed point of Dis a
bounded functional on L2, there is a function K(z,w), the so-called Bergman

reproducing kernel, in L2 such that
&)=< £ K@E)> (1)

for all fin L2.

As is well known, for any orthogonal basis {e,(w)} of the Bergman space,

K(z,w) can be represented as

K(z,w) = i:o:;(;)-en(w) (02)

where the sum converges pointwise to K(z,w). The Bergman kernel K(z,w) is

"'l'iolc:)morphic on D x D and clearly satisfies K(z,w) = K(w, z), K(z,2) > 0. A




fundamental property of the Bergman kernel is its transformation rule under

the action of automorphisms; namely,
J$(2) K ($(2), p(w))J$(w)) = K(2,w) (0.3)

for all $ € Aut(D) and z, w in D. Here J¢(z) = det(¢/(z)) is the complex

Jacobian of ¢ at z. B _
Suppose D is boundedThenK(z,z)>0,and the formula

hz(u,.v:) = Bua;,logK(z,z)

. (0.4)
defines a Kaehler metric on D, the Bergman metric ([Hel]). From (0.3) it
follows that h is invariant under the group Aut(D) of biholomorphic automor-
* phisms of D.

A bounded domain D in C™ is symmetric if every point z in D is an

isolated fixed point of a biholomorphic automorphism ¢, of D of period two




subgroups of points in D. The evaluation map G — D by — ¢(0) realizes D
a5 the quotient G/K.

| A domain in C™ is called circled {with respect to 0 } if 0 € D, and
ze't € D for all z € D, t € R. E. Cartan first proved that every bounded
symmetric domain in C™ is isomorphic to a bounded symmetric and circled

jdoma.m which is unique up to a llnear 1som0rphlsrn of C™. D 1s reducible if

it is blholomorphlcally 1somorphlc to a product of two nontr1v1a1 domains.

Otherwme D is irreducible. The 1rredu(:1b1e bounded symmetrlc domains were
completely classified up to a blholomorphm'1Sbmorphlsm by E. Cartan.

The following is a list of Cartan domains:

e Type I n(n <m) ={Z € Mpxm; 2*Z2 < I},

Type I, (5<n)={Z € Mpoxn; 2" =2, Z2*Z < I, };

Type II1, (2<n) = {Z € Muxn; 2* = 2, Z2*Z < I)};

J:

<1l- 2?21 |zj12}3

Type V= {1 x 2 matrices z over the .8'-di1.nensiona1 Cayley algebra, with
YAVARS Iz};

Type VI= {3 x 3 Hermitian matrices z with entries in the 8-dimensional

Cayley algebra, with Z*Z < L;}.

The Cartan domains of type I-IV are called classical, while the domains
of types V-VI (of dimension 16 and 27 respectively) are exceptional. An im-

portant property of the Cartan domains is that they are convex. Therefore a

Type IV; (5 < n) (the Lie ball) = {z € C" (s |2 = (s 22 )2




Cartan domain is the open unit ball of a certain complex Banach space. So it
carries a unique triple product C™ x C™ x C™ — C™ which is induced by the
Bergman kernel as follows.

Let Ey,-.-, E, be the standard basis of C*. Define the structure constants

Cijka by
*logK (z, 2)

O —_— | 0.5
T 920z azka-,l ° (05)

and for u,v,w in V C" deﬁne the tnp product {uvw} by
{uvw} = Z C,J,Hu v,wkE', (0.6)

Hivkd

Clearly the triple product {uTw} is C-linear and symmetric in u and w and

C-antilinear in v. It turns out that it satisfies the Jordan triple identity
{z7{wvw}} — {uo{afw}} = {{aPulvw} — {u{yTv}w} (0.7)
and the positivity condition

{umu} = Au(Xr € C) = A>0 (0.8)

for all 0z#u inV. So (V,{., }) is a pos1t1ve hermltla,n Jordan triple system.

The automorphlsm groups of the classwa,l Cartan domams admit real-
izations as classical groups of matrices, see {Hu], [Kn], and [Py]. In a type
Lim, G=8U(n,m) and K = S(U(n-) x U{m)). The action of G on D is by

Potapov-Mobius transformations: If




is in SU(n,m) ( where a € M, ,(C), b € Mym(C), ¢ € M o(C), and d €
M, (C)) then for z in D

Az = (az + b)(cz + d)~ L. (0.9)

For a type 11, domain, G = SO(2n), and for type I1l,, G = Sp(n,R). In

a O [

both cases K = {[ - |;a € U(n)} and the action of G is via (0.9).
s el .

'The Bergman kernel is closely related to the determinant function as the

following examples show:

Type Lim: K(z,w) = det(I, I, — zw*)-("—m)

Type I1,: K(z,w) = det(I, — zw*)~(»-1)
Type 111,: K(z,w) = det(l, — zw*)~("+1)
Type IV, K(z,w) = (14 X5, 2} S5 W5 — 250, zw;) ™.
In the matrix factors of type I-III the triple product is given by
{abc} = (ab*c + cba)/2. (0.10)

n the Cartan factor of type IV, (the spin factor), the triple product is given

{abe} = (a,b)c + (¢, b)a — (a,T)b. (0.11)

Let us turn to operator theory on the Bergman space of bounded sym-

etric domains.




Let P be the self-adjoint projection from L% onto L%. For f and g in L?,

‘we consider the multiplication operator M; on L? given by

Mg = fg (0.12)
and the Hankel operator Hy on L2 given by
S Hp=(I=P)MP (0.13)

and the Toeplitz operator Ty on L? given by = .

Ty= PM;P. (0.14)
The commutator [My, P] = M;P — PMjy is densely defined on L? and it is
easy to check that

[My, Pl = Hy @(~H3). | (0.15)

- So studying the properties of [M;, P] is equivalent to studying the properties
of both Hy and Hy

An operator T on Hilbert space H is said to be in the Schatten p-class if
T*T is compact

Yot < oo - (0.16)
=1

where (T*T)Y/? = T.2° s;e; ® ; if {e;} are an orthogonal basis of H. We use S,
i;_o denote the set of all operators in Schatten p-class for p > 0.

Toeplitz operators on the unit disk have long been studied because of
their importance in the theory of integral equations ( Wiener-Hopf equations)
nd algebraic topology ( index theory [D]). More recently, Toeplitz operators
W_efe also considered over bounded symmetric domains {[U]IBBCZ]). The struc-

ture of Toeplitz operators and Toeplitz C*-algebras over symmetric domains




is closely related to the Jordan algebraic structure underlying these domains
({U).

In the first chapter we are going to study the behavior of the Bergman
metric near the boundary of D and to get a precise formula for h;,(z,2) in
terms of tripotéﬁt frame os follows.

Theorem 1 4 Suppose that ’D 182 bounded symmetric domain with
rank r in C™, If we a,ssocmte to D a Jordan palr as above Forzin D C C",

and t in [0,1] we have

7 I/\lZ
hi(z,2) = g/2 Z—;W

Jif z =377 Ase; and e; is primitive. So

< orp el
R e P,

Using the formula we characterize those functions f such that both H; and
Hz are in S, for 2 < p < +00. We obtain in this way a proof of a conjecture

of K. Zhu ([Zh1]). In order to state our result more precisely we define the

erezin transform of f in L? by
f(z) =< fhar ks, > (0.17)

here k, is the normalized Bergman kernel K(z,2)"'K(z,). It follows from
nown properties of k, that f is defined and smooth (C*) everywhere on D.
Using the boundedness of the k,, the Berezin transform extends to all f in L

: 'th___o_ formula

= [ Jw)ik.(w)dA(w) (0.18)




For f in L%, we define

MO(f)(2) = [If]2(2) — | f(=) "], (0.19)

Roughly speaking, MO(f)(z) is the mean oscillation under the Bergman metric
~on D. It is easy to check that the Berezin transform and MO(f) commutes

with the G-action L' in the sense that

(0.20)

Our result is stated precisely as the .fo'l"l.owi.ri.g"; theorem.
Theorem 1.17. Suppose 2 < p < +o0. For f in L2, then both H; and

Hy are in 5, if and only if

/D MO(fY(2)du(z) < +00

where du(z) is the volume in the Bergman metric, K(z, z)dA(z) .

On the Unit Ball B,

| Let us focus on bounded symmetric domains of rank 1. It is well-known
that these are isomorphic to the unit ball B, of (C™,]| |l2). So we consider
operator theory and fun_ctjf)n'the'qry’; _.oh' _‘i_;zhe ‘unit ball. The boundary of the
:n_it ball B, is the unit sphere 5,. S o
Let H*(S,) denote the subalgebra of L=(S,,) which contains the holomor—
phic functions in B,. For p > 1, H?(S,) is the Banach space of holomorphic

'ctipns in B, with norm defined by

171l = Supl [ 1f(r2)lPdo()]77;0 < r < 1}. (041)

fact H?(S,) is a subspace of the Hilbert, space L*(S,,do) which is called

Hardy space.




Let M be the maximal ideal space of H*(S,). This is defined to be
the set of multiplicative linear maps from H°(5,) onto the field of complex
‘numbers. Each multiplicative linear functional ¢ € M has norm 1 (as an
element of the dual of H%(S,)). If we think of M as a subset of the dual
space H*(S,) with weak-star topology then M becomes a compact Hausdoff

space. For z € B, the evaluation functional. .. ..

(0.22)

is a multiplicative functional. Se we can think of B, as a subset of AM.
For m, 1 € M the pseudohyperbolic distance between m and 7, denoted

by p(m, ), is defined by

pm,7) = Sup{[m(f)| : f € H®(B,), | f] < 1,7(f) = 0} (0.23)
For m in M, the Gleason part P(m) of m is defined by

P(m) ={r € M|p(m,7) < 1} (0.24)

For z in B,, we can think .o'f t:hé Mobmstransformatlon é. as a map from
. to M since B, is a subset of M. Because M is compact, Tychonoff ‘s
hgorem in topology tells us that for any net of maps {¢,_} there is a subnet
¢ } such that ¢,, converges to some ¢ which is a map from B, to M. Let

denote the set of limits of {¢.}.¢p, except {#,}.cp,. We define the ¢-part

G(¢) = ¢(Bn) (6.25)

€ .




On the unit disk Hoffman has shown that ¢ has many remarkable prop-

erties. For example, every Gleason part is a ¢-part, and ¢ is either constant
or injective. In the latter case G(¢) is called an analytic disk. However on
the unit ball for n > 1, it is not known what Gleason parts look like since the
Corona problem is unsolved o

A C% functlon f: B — C’ is sald to be plurlha.rmonlc if for every complex
line I = {a + bz} the functlon z—> f(a + bz) is harmonlc on the set (B,), =
{z€eC:a+bz€ B,}; fis said to M harmomc if Af = 0 1 is said to be

harmonic if Af = 0 where A is the usual Laplacian operator

A=4y — (0.26)

" .. L
A=319()5— (0.27)

. Cavpi 0% o 02
A - Cn(]. ”Z” )[; aZka-Z-k %Z;ZJ 821871] (0'28)
r some constant ¢, which depends on n.
For any f in C*(B,), the gradient of f is given by
Bf o)
VA1) = (5w, 2L ) (0.29)

Let f: B, — C be holomorphic function on B.. As in [T1], for z in B;,,,

Q1) = Supl(V. f, o)l Hulare) |0 £ c € O™ (0.30)

10




In the second chapter of this thesis we take up the subject of semicom-
mutators of Toeplitz operators and commuting Toeplitz operators with pluri-

harmonic symbols over the unit ball B,,.

As is well known . "¢ f and g in L*(5;)}, Axler, Chang and Sarason [ACS]
and Volberg [V] have shown that T7T, — T5, on the Hardy space H?*(S;) is
compact if ‘and only if either fls € Hbdtsljig' or gls € H®(Sy)|s for cach
support set S. In the case every functlon in L°°(5'1) extends as a bounded
harmonic furiction on the unit disk’ Bl via the Possmn mtegra,l formula. Axler,
Gorkin [AG1] and the author [Z1] have shown that for the bounded harmonic
functions f and g , 17T, — T5, on the Bergman space L2(By) is compact if and
only if f|g(m) € H°°(51)|G(m) or glgim) € H*(51)|g(m) for each Gleason part
' G(m).

On the Hardy space of the unit circle A. Brown and P. Halmos ([BH])
characterize commuting Toeplitz operators with symbols in L*°(S;) by exam-
ining the matrix products of Toeplitz operators on the Hardy space. On the
Bergman space LZ(B;) of the unit disk, Toeplitz operators do not have nice
trices. However S. Axler and P. Gorkin ..[AGI] used the theory of function
gebra to get some partial results on commuting Toeplitz operators on the
Bergman space of the unit disk. The author [Z1] also got some partial results
he problem by means of function theory on the unit disk. Recently, S.
:and Z. Cuckovic [AG1] completely characterized commuting Toeplitz
at s with bounded harmonic symbols on the Bergman space of the ueit

o f_nake use of the mean value property of harmonic functions.

We;will show that for the bounded pluriharmonic functions f and g, 7* 1y —

11




- T5, on the Bergman space L2(B,) if and only if flg € H®(8,) sy or
- 9la) € H*(Sn)lare) for each ¢-part. In the case of the unit disk the Gleason
part and the ¢-part are the same. Also by means of the characterization
- of M-harmonic function fig, for holomorphic functions fi and ¢; we prove
that for the bounded pluriharmonic functions f and g T5IT, = T, on the
Bergman space LZ(B,) or the Hardy space H*(S,) if and only if either f or g
is holomorphic in B,. e

Our main results in the .second'_ ':clié,ﬁté.r*}aré stated é,_s follows.

Theoren:l 2.20. Suppose that ¢ é,;ld :.?,b: .aré bdﬁnded plﬁrihé.ﬁndnic func-

. tions on the unit ball. Then
TsTy = TyTy

on the Bergman space LZ(B,) of the unit ball if and only if ¢ and 1 satisfy

~one of the following conditions:

{1) Both ¢ and % are holomorphic on the unit ball By

(2) Both ¢ and “J_a,re holomorphic on the unit ball B,;

(3) Either ¢ or v is constant; |

(4) There is a nonzero constant b such that ¢ -by is constant.

It is important to note that Theorem 2.20 does not hold if “pluritharmonic”
replaced by “ measurable ” or even “continuous”. For example, it is easy to
tend P. Bourdan’s example in [AG1] on the unit ball of C™. i.e. If ¢ and
e bounded measurable on the unit ball B, and invariant under the action of
lﬁ_ia,ry matrices, then TyT, = T, 7.

Theorem 2.22. Let f and g be two bounded pluriharmonic functions on
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By. Then T5T, = T%, on the Bergman space if and only if f or g is holomorphic
on B,.

Theorem 2.24. Let f and g be two bounded pluriharmonic functions on
B,,. Then the following are equivalent:

(1) 51, — T%, is compact;

(2) H}H, is compact;

(3)

lim min{mazse (1~ o)) [V.F (), mazsgen (1 — DIV} = 0

f=l|—1

for all fixedr, 0 <r < 1;

(4)

Lim min{[|fo ¢, — P(fo¢,)llallgo ¢, — P(go )|z} =0;

l|=fl—1

(5)
lim min{Qp7(2), Qrz(z)} = 0;

llz]{—1

(6) Either fog or gog is holorﬁérphic for every ¢ € ® where @ is the set
of ¢-parts. o

Since the Hardy space H?(S,) is a subspace of L(S,,), there is an orthog-
onal projection P from H?*(S,) onto L2(S,), the so-called Szego projection. As
1 the Bergman space we can define Toeplitz operators and Hankel operators
1 the Hardy spaces.

-_'i‘_heorem 2.25. Let f and g be two bounded pluriharmonic functions on

Then T#T; = T;, on the Hardy space if and only if f or g is holomorphic
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Theorem 2.26. Suppose that ¢ and ¢ are bounded pluriharmonic func-

tions on the unit ball. Then
T¢T¢ = T,',',Té

on the Hardy space of the unit sphere if and only if ¢ and ¢ satisfy one of the
following conditions: . . .. oo

(1) Both ¢ and 4 are Holqrﬁérii}iié 0'111'._ the unlt ball By;

(2) Both ¢ and % are holornorphlcontheunltball B,.;

(3) Either ¢ or % is constant; -

(4) There is a nonzero constant b such that ¢ -by is constant,.

On the Bargman-Fock-Segal Space

Let C™ be the n-dimensional complex space, du(z)=e 1 /2dV(z)/(27)",
the Gaussian measure where dV(z) is the Lebesgue measure on C*. The
Bérgman-Fock—Segal space H%(C™, dy) is the space of Gaussian square-integrable
entire functions on C". Clearly H?(C",du) is a closed subspace of L2(C™, dy)

With Bergman rgprodqcing kernel fup:c.tii(.)ns.

K(z,w) = e<*w>/? (0.31)
nd orthogonal projection from L%(C™,du) onto H*(C™, du) is given by
Pf(2) = [ J(w)K (2 w)du(w). (0:52)

For g so that gK(.,a) is in L*(C™, dy) for all a in C™ we can consider the

pli:t_z operator T, with symbol g on H*(C",du)

T,f(2) = | g(w)K (z,w)f(w)du(w),




and the Hankel operator H, with symbol g is defined by

Hyf = [ (9() = g(w)) K (z,w)f(w)du(w) (0:34)

Generally speaking, both Toeplitz operator and Hankel operator may be un-
bounded. Our starting point is the observation that there is a natural isome-
try B from L*(R",dV) onto H }en, dp), called the Bargman transform under
which o T R IR

B[M,. + ii]B‘l =T: (0.36)
7 Dz ST : '

The Bargman transform is represented as

Bf(2) :jf(x)B(z,w)dm (0.37)

‘where B(z, x) is the Bargman kernel. It is easy to check that

d
T3, = 25;;. (0.38)

The complex representation of the Hamiltonian of the harmonic oscillator on

LX(R",dV) is

1 ~ n
BE{_A—I_ M‘xp —-nI}B b= I/QZTzJ-TE,-- (039)

i=1

The commutator of the unbounded operator T,
[T.;,T5,] = Hi H,. (0.40)

an be extended a bounded operator even though T, is not bounded since it

easy to check that Hz, are bounded operator with unbounded symbol Z; on

15




The rigorous development of the representation of the Heisenberg group
on H*(C™,dyu) and the intertwining operator B is due to Bargman [Bar]; the
same ideas also appear in work of Segal [Se], independently at about the same
time.

The map ¢ — T} is a nai_;t_xra,l “quantization” and has been studied by
Berezin, Befger—Coburn, Guill_c.ma_un, quq, Shubin and Folland [Bel], [BC1,2],
(Gu], [How], [Sh], and [F]. N

On the other ha.ﬁd, as observed by Berezin and Guilleman [Ber2), [Gu],

there is a natural identification
BW, B1=T; (0.41)

between the Berezin quantization 7 and the Weyl (pseudo-differential ) quan-

tization Wf'} where

fila) = (anty™ [ ()T av (z) (0.42)

is the heat semigroup and Wy is a pseudo-differential operator with symbol

F(z) = F(x + i£) given by

Wrh(=) = /]F(if+ %(w Ty EN ) dyde,  (0.43)

for h in L*(R™).
The problem of deciding if Wrpg — WrWs (F, G smooth) is compact
was studied by Hormander [Hor]. But the Weyl and Toeplitz symbol calculus

problems are not simply equivalent because (fg): # fig:. Berger and Coburn

studied the compactness problem of both Tj;p — T¢Ty and Tjpp — T7Ty for f in
Le(Cm,dV).

16
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We will study when 7jsp — Ty T5 and Ts2 — TfT; are bounded or compact
or in p-Schatten class for p> 1 in the third chapter.
Recall that
ka(2) = €722~ 1t/ (0.44)

is the normalized reproducing kernel for the functional of “evaluation at a” on
H2(C™, dp). For fin LY(C™, dp) such that flka|* is in LY(C™, dy) for all a in

C™, we define the Berezin transfqrm. | |
OO = e 0
The Berezin transform yields a measure of mean oscillation,
MO(f)(a) = {[FP(e) = 1f(@)}/* (0.46)

We say that a function fis in BMO, if

sup MO(f)(a) < oo (0.47)
and fisin VMO, iffis iH_BMOoc a__z___l_d. -

i MO(f)(a) | AR (0.48)

400

We are able to prove the following;:
Theorem 3.1. Suppose that f(z) and f(z+w) are in L*(C™, dy) for every

w in C*. Then both H; and Hy are bounded if and only if

Supzeon MO([)(2) < +o0,

namely , fis in BMO,,



Theorem 3.14. Suppose that f is in BMO,,. Both Tisp — TyT5 and
Tijp — T5T; are compact if and only if lim, ., MO(f)(2) = 0, ie. fisin
VMO.

Now applying Theorems 3.1 and 3.14 to Hankel operators with symbols
in the conjugate of entire functions we have

Theorem 3.15.  Suppose that for any fixed w in C™ , f(2) and f(z4+w)
are in H*(C™,dy). Then

1). H? is bounded if only if { is an affine funcfion, i.e. there are a constant
vector A and a constant B such that f(z)=(z,A)+B.

2). Hy is compact if and only if f is constant.

Theorem 3.21. Suppose that fis in BMO,,. For p 2 1, both Tjsp. Tyl
and Tjsp — Ty are in p-Schatten class if and only if

- MO(f)*(2)dV(z) < oo.

Some Function Algebras on the Unit Disk

On the unit disk the theory of Tbe']ilit"z: 'opératofs and Hankel operators
has a deep relation with Finction #lgébré.s.. Inthefourth cha,pter we study
some function algebras on the unit disk.

Let A be a Banach algebra and B be a linear subspace of A. Recall that A
has the Dunford-Pettis property if whenever f, — 0 weakly in A and z, — 0
weakly in A* then z,(f,) -+ 0. Bourgain [Bou] showed that H* has the
Dunford-Pettis property using the theory of ultraproducts. The Dunford-

Pettis Property is related to the notion of Bourgain algebra. In [CT], Cima

and Timoney introduced the concept of Bourgain algebra B, of a linear space

18




B of a Banach algebra A, which is the set of f in A such that if f, — 0 weakly
in B, then dist(ff,, B) — 0, and they showed that if B is an algebra then
B C By. In [CJY], Cima, Janson and Yale described the Bourgain algebra of
H>®(8D) in L*(dD) using Fefferman’s duality theorem. Gorkin, Izuchi and
Morntini [GIM] studied the Bourgain algebras of Douglas algebras in L*°(9D).
There has been further study.'.df..Bourgain algebras on the bi-torus and the
polydisk [Y]. '

Let H*(D) be the algebra of bounded analytic funictions on the unit disk
D. Let M denote the maximal ideal space of H*(D). Then H*(D) can be
thought of as a subalgebra of the algebra C(M) of continuous functions on
M. Sometimes we use H® to denote H>°(D) for simplicity. In [GSZ] we
described the Bourgain algebras of H®(D) and H*(D) + UC(D) in C(M).
In the fourth chapter we study the Bourgain algebras on the disk in order to
shed light on the vic...; . vras on the disk. So far on the unit disk there
is no any analogy to Chang-Marshall’s Theorem on the circle [Ch], [Mar] , it
is more difficult to study :thé:.a..l.g'éﬁrds on the disk than to study the Douglas
algebras on the circle. However there are some interesting results on some
algebras on the disk [AG1,2]. In fact there are very important relationships
between some algebras on the disk and operator theory on the Bergman space

[AG1,Z1, Z2).

As defined in [AG1], AOP ( which stands for “analytic on parts”) is the

closed algebra defined by

AQOP = {ue C(M):uolL,€ H®, for every p € M — D} (0.49)
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COP ( which stands for “constant on parts” ) is the algebra defined by

COP = {u € C{M) : u is constant on P(p) for ;e M~ D}.  (0.50)

Now we define another algebra HCOP which is given by

HCOP = {u e C(M) :uo L, € H® + UC(D)) (0.51)

for all thin parts m in M: i

We [Z2] proved that for f in C(

M) Hy s compact iff {is in AOP, and
both H; and Hy are compact iff f is iﬁ COP.

Theorem 4.5. Suppose that f is in . If its complex conjugate f is
in either (AOP), or (H™ 4+ COP);, then

(1 = 2 f/(z) = 0.

lim

z—8D
Theorem 4.9. (H* + COP), and (AOP), are proper subset of HCOP.
Theorem 4.10. (HCOP), = HCOP.

Theorem 4.15. Supposeé that' A'is a subalgebra of C(M) and contains
H*>. If its Bourgain algebra A, is C(M), then A|x must be L=(dD).
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Chapter 1
Operators on Boundedsymmetrlc Domains

Let D be a bounded symmetric (Cartan) domain of rank r with its stan-
dard (Harish-Chandra) realization in C* ([Hel],[Hua},[Sa]). We may assume
that D is circled, irreducible and contains the origin 0 € C™. Let G denote
the connected component of the biholomorphic automorphism group of D and
K its isotropic group at 0 in G. Then D = G/K. For a suitable subspace C”
of C", as in [Kob] DN C" is a polydisk D™ and D can be written as a union
“of polydisks KD, where K is considered as a subgroup of U(n) of C*. So we

Have S

D" <D< D" (1.1)

‘where i:D7 <« D is a holomorphic embedding.

We recall that the Bergman metric h (u,v) for z in D and u, v in C" is

a 0
hz(u,”u) = Za—za—z_JlogK(Z,Z)uzﬁj (12)
] i

D is a complete Hermitian symmetric space of noncompact type with

ergman metric which gives the usual topology on D. By definition, the




Bergman distance f(z,w) is given by

B(z,0) = infy [ hate (70, 7 (D) (13

where the inf is taken over all geodesics in D which connect z and w.
For a bounded symmetric domain, for fixed w in D, as z goes to the

topological boundary, . .

L K () (1.4
and | cl |
B(z,w) = 4oo. (1.5)
Moreover K(z,w) and §(z,w) have the following invariance properties
K(ka,kb) = K(a,b) (1.6)
for all k in K and
Blga, gb) = B(a,d) (1.7)

for all g in G. For each a in D, there is a biholomorphic automorphism ¢, of

’D_ (¢o in G') with the properties -
(1) dula) =0 a9

(2) ¢ © ¢ = Id.

is determined uniquely up to composition with an element of K.

In this chapter we study the Bergman ﬁetric and characterize those func-
-éuch that both H; and Hy are in S, for 2 < p < 4o00. We prové a
‘of K.Zhu, established by him for the special case of unit ball in

‘It was shown in [AFP] that for holomorphic function f on the unit disk
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D, Hyisin S, for 1 < p < oo if and only if f is in the Besov space B,. We will
present two proofs. One proof uses the Jordan theoretic characterization of
bounded symmetric domains. i.e., every bounded symmetric domain D can be
realized as the open unit ball of a uniquely determined Jordan triple system
V 2 C™ for the so called spectral norm ([L1],[Sa]) . The second proof will re-
duce the problem to the polydisk case using the Schwarz Lemma. In this way,
inspired by Zhu’s method in [Zhl], we can completely. prove his conjecture on

bounded symmetric domains.

1.1 Jordan triple systems and bounded sym-
metric domains

In order to get a formula for the Bergman metric on bounded symmetric
domain we need some more Jordan theoretic tools. The material presented
here is studied in detail in [L1,2] and [U].

As defined in Chapter 0 we can associated a Jordan triple system with
a bounded symmetric d.omain on V = C™. Then the Jordan triple system

satisfies the following properties.
e {uvw} is bilinear and symmetric in u, w and conjugate linear in v,
e for all x,y, u,v,w€ V the Jordan triple identity holds:
{wowlye} + {{wozlyw} — {uv{wyz}} = {wivuy}a}. (1.9)
We define operators D(z,7) and Q(x,z) by

D(z,5)z = Q(a, 2)y = {z72}. (1.10)
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llows from (1) that Q(x,z) is bilinear and symmetric in x and z, and D(x,7)

1¢ endomorphism z — {27z} of V. Define

) =3Q2), (L.11)
e:ra,:tor D(v) by
D(U)z D(?)_, v);i (1.12)

d the Bergman operator or the_opefat@i‘ triple normof V..

B(z,y) = 1d-D(e, ) ¥Q=0G)  (L13)

,y, zin V.

Then it is obvious that D(x,7),Q(x,2} and the Jordan triple system com-
‘létel& determine each other. The following theorem gives the relations be-
en the Bergman metric, Bergman kernel and Jordan triple system, this is

'y useful in computing the Bergman metric.

‘Theorem 1.1. ( a) The Bergman kernel function of D is

K(z,y) = det B(z,y)™"; - (1.14)

The Bergman metric at 0 is |

ho(u,v) = traceD{u,) (115)
;a’f._a.n arbitrary point z € D

ha(u,v) = ho(B(2,2)  u, v); (1.16)

The curvature tensor of the Bergman metric at 0 is

Ro(u, v)w = —{uvw} + {vaw}; (1.17)
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d) K acts by antomorphisms of the Jordan structure. Namely, for x,y € D

K(Q()7) = Q(kz)ky (1.18)
g .)'For x,y € D, g € G, we have

b .(9 v gy) :dg ("”)B(”)g (y) I )

 An element vin V is trip"cq_téﬁ_t'. 1f{mw} o

I11 the tripotents are simply the pdrti'ai isometries. Two 't'r'i].é)otents v, u are

D(v)(2D(v) — I)(D(v) — I) = 0. (1.20)

ollows that the spectrum of D(v) is contained in {0,1/2,1} and V admits

1rct sum decomposition
V = V(o) @ Vi(v) @ Vo(v) - (1.21)

d'_z-_the Peirce decomposition associated with v, where V;(v) is the eigen

e of D(v) corresponding to the eigenvalue j/2, j = 0,1,2. So every x in V

a “spectral decomposition”
s et (122)

the e; are orthogonal tripotéhts”aﬁd" i:;}ié;":é'i:genva.lues A; are positive.

er, the spectral norm ||z|| = maz|);| is a norm on V.
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Theorem 1.2 (Peirce decomposition). Let (V,V) be a Jordan pair with
hermitain involution 7, and let e be a tripotent of V.

(a) V decomposes
Vv=1Hnhwn
where V, is the a-eigenspace'of D(e,€). In fact the V,, are orthogonal with

respect to any a,ssociativé:'s'célé,rﬁp:'r'b"duictl' and satisfy the multiplication rules

{(Vo,Vo,V} = {W, V2, V} = 0 - (1.24)
(b) let ey, -, en be orthogonal tripotents of V. Then
V= > V (1.25)

0<i<i<n

(the direct sum of subspaces) where

Vi = Va(e)

v, SV =TVile)NVile)
Vio = Vo = Viles) n(ﬂj;&i%(ej))

Voo = Vo(er) N+ - - NVolen)-
=Aje; 4+« + Ane, where A; € O, set Ag = 0. Let y;; € Vi;. Then
D(z,T)yi; = (] + M Dys (1.26)

B(z,w)yi; = (L= MDA — 2Dy



A tripotent is called primitive if it cannot be written as a sum of orthogo-
‘nal tripotents in a non-trivial way. A tripotent v in V is minimal if Valv) = Cw.
Since V is finite dimensional it contains minimal tripotents. A maximal farmily
of orthogonal minimal tripotents is called a frame. It is known that if {e;}i,
“and {vj}j=1 are two frames then r = s and there is k in K so that ke; = v,

or all 1 < j < ». TInfact the rank of the bounded symmetric domain is r.

The following theorem tells us that a trlpotent i prlmltlve iff a tripotent v is

“minimal.

Theorem 1.3. (a) A tripotent e is primitive if and only if Va(e) =
Re ® Re.
(b) If 7(D) = r, there is an orthogonal system of tripotents {e;,-+-,e,}

uch that e; are primitive and Re; + --- + Re, is a maximal flat subspace of

Moreover every z in D can be represented as
$=A1€1+"'+)\TCT

here {eg,---,e,}isa orthogonal system of tripote_nts and A; are real numbers.
Fix a frame {e;}7_,; and let ¢ = 37_ .1 €. Clearly, e is a maximal tripotent.
Yogic<i<r DVi; be the joint Pierce decomposition associated with
. We define a parameter ¢ = ¢(D) bya =0ifr = 1 and a = dime(V; ;)
ome 1 <1 < j < rifr > 1. The parameter a is well defined and
pendent of (2, 7 ) and of the frame {ej}§=1 because of transitivity of the
lon of K on the frames.

We define a pararmeter b = b(D) by b = dim(V; ;). Again, b is well defined
arniant of D. The genus of D is g = g(D) = (r — 1)a+ b + 2.
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For every x in V, let ||z|| denote the largest eigenvalue of x. Then ||.|} is an
Aut(V)-invariant norm on V, called the spectral norm. So a circled bounded
symmetric domain is the open unit ball of the associated Jordan pair with
involution. Thus it is convex,

Now we are going to prove the following theorem which gives a precise

formula for the Bergman metrlc on a bounded symmetrlc domain.

Theorem 1.4. Suppose that ’D is’ a bounded symmetr}c domain with

rank t in V=C". We assomate to D a Jordan paxr :as. above. Forzin D CV,
and t in [0,1] we have
he(z,2) = g/2 Z P (1.28)
w BN '
if z =371, Aie; and e; is primitive. So
hi(z,2) < gr/?—”z—”i—— (1.29)
N N R '
Proof. It follows from (b) of Theorem 1.1 that for any z in D
hir(2,2) = ho(B(tz,tz) 12, 2).
1ce for any z in D, there is an orthogonal system {e;,---,e,} of primitive

potents such that

r
zZ = Z )\,‘61'
i=1

mg (c) of Theorem 1.2 we get

Bltz,tz)e; = (1 — £} A %) %e;
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since e; is in Va(e;). So
B(tz,tz) " e; = (1 — #I\]?) 2es.

Thus
B(tz,tz)“lz = Z/\;(l - t2|/\i]2)_26§.

Therefore

hee(2,2) = Ty A (1 — 2IAJ2) k(e €;)

=Y ,\;\?(1 — A% *traceD(e;, E)

= 5GP = 2P HraceD (e, &)

since ¢; is orthogonal to e; if 7 # j. Now we turn to computing ¢rD(e;, €).

From Theorems 1.2 and 1.3 we can decompose V as

and Vgo = 0. Tor a2y € Vi
Tr! k%i,l:i O?‘]CZZ.,I#Z‘

D{ei,&)zp = <

I
—
H
o .

1
5Tkl k

0 " otherwise

.

Moreover Theorem 1.3 (a) tells us that dim¢Vs{e;) = 1. Thus

trD(e;, &) =1+ %dimng(e,-)
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Since
Vi(e;) = DocjpiVij ® Voi
then
— 1 g
trD(e;, &) =1+ -2-((7' —1)a+b) = 3
Thus

(1-2i2*)?

AL
Sk

since A; < ||z||-

1.2 Schatten p-class Hankel operators

First we collect some known results.

Lemma 1.5. Suppose A is a positive or trace class operator on L2, then
tr(A) = ]D < Ak, by > K(z,2)dA(z) (1.30)

The above result was proved in [AFP] fo.r.gth'e.' unit disk. But it is easy to

xtend the proof to any Bergman spaces.

Proposition 1.6. Suppose A is a positive operator on L2 and f is a unit

< Af, f >P<< AP, f > (1.31)

This result was proven in [AFP]. It follows directly from the spectral

mposition of the positive operator A.




Proposition 1.7. If fis in L2 and z € D, then
12(| Hyk: || + [| Hpk: ) < MO(S)(2) < [[Hyk:|| + || Hk|. (1.32)

It follows directly from the proof of Theorem F in [BBCZ] that

Proposition 1.8. Suppose (1) (t €[0,1]) is a smooth curve in D, then

4F )] < 2PMON G meTOA ) (133)
where h,(u,v) is the Be* metllc deﬁned mSectIon 1

Proposition 1.9. Suppose f ?_0 andlg p < 400, then f(z) €
L*(D,dp) if and only if T} is in S).
Proposition 1.9 was proved in [Zh2].
Proposition 1.10. Suppose 2< p < 400 and Ag is the integral operator

_on L? defined by

Acflz) = fv Gz, 0)K (=, w) f(w)dA(w)

L 1G (2, w)P| K (2, w) [P A(2)dA(w) < +o0 (1.34)

__.__e_n“'AG isin S, .

Proof. The case p=2 is well known. If G(z,w) is bounded on D x D, it
IIOWS from the proof of Theorem 21 of [BBCZ] that Ag is a bounded linear
f«'_i:.ffor on L% In order to make this clear, we give the details of the proof

is bounded. First we show that

Af(e) = [ 1Kz 0)l|f(w)ldA(w)
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is bounded on L*. Tn fact from the proof of Theorem 21 of [BBCZ] we can see

that for small € > 0, the integral operator with kernel

K(po(w), = (w))"| K (2, w)|

s bounded on L?.

Since

K (2, 0)] < K(2, ) /2K (w, w)?,

K (ip-(w), g (w)y* = (222K (00)

| K (2, w)|?

) > 1.

AF() < [ K(pa(0), 0.(w)|K (2, w)] flw0)ld Aw).

hus A is bounded on L2,

Now we consider the lincar mapping

F:L*DxD,dn) + L=(D x D, dn) — DB(L?)
F(G)= Ag

cre dnp = |K(z,w)[*dA(2)dA(w). Then

F:LYDxD,dp) — 5,

F:L®(D xD,dng) — Seo
oth bounded. By interpolation [BL], we have

F: (D xD,dp) — S,
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is also bounded for all 2 < p < oo. In particular if

fp fv |G(z,0)P| K (z,w)|*dA(2)d A(w) < oo

then Ag is in Sp
Theorem 1.11 will be used in the proof of Theorem 1.12. ‘:
Theorem 1.11. Let Tf(z) - f(z) for fin L2, Then T can be extended
to be a bounded linear opéréﬁaf from Lp 'tf_). L_’." fé_f 2<p<oo.

Proof. For f € L*™(D,dA), we have o |

THE S 1 [ Flk.PdA] < | flle (1.35)

and moreover for f € L2

T/ (2)] < J1f(w)]|k:(w)]*dA(w)

= J | £(w)| 5220 d Aw).

Since K(z,w) = -}%(ﬁzm and K{z,w)™! is continuous on D x D, there is a

constant C' > 0 such that

K(z,w)
— ) <, |
| K(z,2) IsC |

Therefore
1) < C [17(0)I|K(2,w)|dA(w).

According to the proof of Proposition 1.10, T' is a bounded operator on L%

Now we define a linear mapping

F: L¥(D,dA) + I°(D, dA) — L¥(D,dA) + I=(D, dA)




we just show that

F: I}D,dA) - LYD,dA)

and

F 1 L®(D,dA) — L=(D,dA)

are bounded. By interpolation [BL] "

F: I(D,dA) - L*(D, dA)

is bounded for 2< p < oco.

Theorem 1.12. If 2 < p € co and

If 09: — P(f o)

is in L?(D, dp), then H;_j is in Sp.

Proof. It is easy to check that

HTHQ = Tgp — 1515 < L

for all gin L% Let g = f — J, wen..

9= = fo |£(0) — Fao)2lk.(w)2dA

= fp | o w.{w) = i o p,(w)]?dA

<Nfowe = P(Fog) + o l(P(f o 0) — £ o p.)(w)[dA.

It follows from Theorem 1.11 that there is a positive constant C such that

912(2) < 1+ O)||f 0 0. — P(f o )i (1.36)




Then
[92(2)V2 < C||f o — P(f o )|l

So if |f 0 0, — P(f 0,)| is in LP(D, dy), then [g[2(2)"/? is in L*(D, dp).
It follows from Proposition 3.6 that Tigpz 1s in Spya. Therefore H P 15 in Sp.

Combining the above theorem with Proposition 3.3 we have the following
corollary ST SR

Corollary. For 2 < p < o0, it MO(f)(z) is in L?(D,dp), then H,_; and
Hs_= are both in Sp. S S

Theorem 1.13. For any 1 < p < oo there exists a positive constant C,

(independent of f) such that

L1 = feopaa<c, [ [ Mo(f)(wple|-edAw) (137

where ||.|| denotes the Hilbert norm of C™.

This theorem is the key for us to prove Theorem 1.17. Here we give two
proofs. One is based on the estimate of the Bergman metric through an analyse
of the Jordan structure on bounded symmetric. domains. Another depends
on an integration formula in poiar coordi'm;téé' and the Schwarz Lemma on
bounded symmetric domains.

Proof 1. First we use Theorem 1.6 to prove the theorem. Suppose D is
a bounded symmetric circled domain. We associate to D a Jordan pair as in
Section 1. So for every point z in D we can Write.z

» = 'A'Iel + ' '-_..' +A"er

where {eq,- -+, e, } is a maximal orthogonal system of tripotents of V=(C™, {,.}).
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Then Theorem 1.4 says that

bl 2 042 =)

Since D is convex, we define a curve in D, which connects 0 and 7, given
by
7(#):0,1]-D
and y(t) = tz.

It follows from Proposition 18that S

[dF(4(D)] < 222 MO(F)(v(8)y/ Byt (7' (2), 7'(D)) dt

= 222 MO(f)(t2)/ hus(z, 2)dt
< V2grMO(f)(tz) il
Therefore
/(=) - f(U)l < fo Idf('v(t))l
< VT 2 MO(f) (tz)l—kH,L,,—Qd
For the case 1 < p < oo, we write
L—tflzll = (1 — tl|z[))/*P(L — ¢ z]|y1/2e+1/2

where 1/q + 1/q =1, and apply the Holder inequality to get

) ) 1 || 2|t i/a L MO(f)(tz) d!15119
) - ol < U] ryppn // Stz "
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Simplifying the right hand side of the above inequality we get

L MO(f tz)pdt

17z P <
(&)= 70) \/1—||z1|f \/1—tnz||

So

Jo If(z)_. f(U)["dA(z ERaE

s Mo(f)(tz)p .
CID fo V- |2|I)(1—t]]z|;)dA(Z)dt

<o p MO(f)(2)?P d
SClopk \/(1_||z||/t)\/(1—t“z“) (Z)M

< 1 MO(f)(z)P St
= CI'D -ﬁizll \/(1_||z||/t)\/(1—t||z||)dA(Z)

— (O [ MO(A)(z)PdA(z) 11 dt '
S = S e my ey

A change of variable shows tha,t_ —

J. @ i
(B t?nm “z”(Zn—l)-__

Thereflore

o lF(2) = F(O)PdA(2)

MO(f)(z)PdA(z) 24/1~|lz]|
<C/ N

< C fp MO (=) ks
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For the case p=1, we consider

Io 1f(2) = F(0)|dA(z)
<3 M_O_(f)(tz);_%%&’qﬁdA(z)dt

= ft‘D fo MO(f)(z || “2 ( )dt/tzn+1

=p f||lz;; MO(f)( : ) ':.'_.|:|:,.-;|:|.2 <lez‘1(z)dlf/tz"‘+1

_ MO 1l
=Jo g e AL

< C fp MO(f)(2)dA(2)/ |2}~

Since any two norms on C™ are equivalent we have finished the proof.

Before going to the second proof we need an integration formula and the
Schwarz Lemma on bounded symmetric. domains. As in ([FK], {BBCZ]), let
D = G/K be a symmetric boundec_l;dg.)_r.nz.m__i;i of .ra,nk r in C™ (in its natural
realization ). We may assume t.h‘é,'f, ’DhC”'.is' a.polydisk D™ and D can be
written as a union of polydisks KD", where K is considered as a subgroup of
U(n) of C™.

There is a formula for integration in polar coordinates, a technique de-

veloped in [Hua) for the classical Cartan domains and in [Hel] in the case of
bounded symmetric domains and homogeneous cones. We state the formula
as follows.

Proposition 1.14. i D is a bounded symmetric domain with rank r in



(™, then there is a function G(z) on D such that

f f(w)dA(w f , f F(k2)G(2)dkd A(z) (1.38)
where

o) = Tl TNl = et (139

TR RN B 1<5<Igr
and dA(w) is the Eucl:dean volume elernent of C", and dk the normalized

Haar measure of K. &

Proposition 1.15. Let D’" be a polydlsk of dlmensmn r with Bergman
metric ds%, and let M an n- dlmensmnal Herrmtza,n mamfold whose holomor-
phic sectional curvature is bounded above by a negative constant -B . Then

every holomorphic mapping j: D" —» M satisfies

7*(ds%y) < A/Bds), (1.40)
where -A is the curvature of ds%,.

Proposition 1.15 is just Theorem 3.1 in [Kob]. If D is a bounded symmetric
“domain with Bergman metric, then D is a Hermitian manifold. Also
i:D"es D

‘holomorphic. With respect to a canonical Hermitian metric, the holomor-

phic sectional curvature of D lies between -A and -A/r for a suitable positive

stant A. So D satisfies the condition of Proposition 1.15. Therefore
i*ds% < A/Bds%,.

oof 2. Suppose that D can be written as a union of polydisks KD,
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and

(D",0) =D[)C" %0

be the holomorphic embedding and every element k in K is unitary with respect,
to the norm ||.||z of C™.

Fix kin K and z in D7, let
() = tz. ..
Proposition 1.8 implies
|F o Ky (0)] < 222MO(f 0 B)(7(t)\/i*dsh.

Since the Berezin trar " ~ommutes with the K-action, we have

|df (ky(@)] < 2/ MO(f)(ky (1)) ivdsh.

Since ¢ : D" «+ D is holomorphic, Proposition 1.15 implies
|df(ky(0)] < 2°PCMO(f)(kv(t))y/ dshr.

It is easy to check that

" dz;dz;
2 tlosy
dSDr = ; mﬁ'}; (141)
Then

/ 2 < p1/2 12/l oo
d‘SD (7(0) =r 1— t2”2“<230

Therefore

|f(k2) - fo)l < jo 1 MO( f)(tkz)r%dt.
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As in Proof 1 , in the case 1 < p < oo, we have

L MO(f)(tkz)?

B \/1 - uzum/ V1 =120

|f(kz) —

So

‘ fpr | (k2) - f (Oj IpG(z)dA (z) el

<O [n [ _MONCRNGE) g 400\ di
<Clor ks V1~1lzllco\/1~||}len (=)

< C [ [} MONNENGEI) 3 A¢ gt /227,
S Chor Jo V1-lfzllosn/1=lizl oo /2 (2)dt/ .

Since G(z/t) = t~"=)(3(z), then we have

for 1F(k2) = FOPG()dAR)

< [V MOWUNR)PG(z) g a( gy /on
<Clipfo V1~ |lzlloo/1=][2lloo /¢ (2)dt]

MO{f){(k2)PG(2) 2n
< Clor Jittes e AR

MO(f)(k2)PG(2) /1 -llofle
< .
<Clb N EPE n“- dA(2)

< C fp. MO(f )(kz)P”dﬁ‘,,f .



In addition, in the case p=1, we have

for 1§ (k2) = F(0)]G(2)dA(2)
C fpr fy MO(f)(tk2)G(2 )r%a?gquA( z)dt

C fior s MO (EC: )Tﬂﬁ%dA(z)g;_/w

= C Jpr Syt MO( f)(kz)G( )T”%“‘l’l%dfl( )dt /2t

< C fpr MO” T )G g A( 2

Combining the above two estimates with Proposition 2.1 implies that

f | F(w) — FO)PdA(w) < C / dk Mo(ﬁ’jﬁgfffa(z)m(z).

Since any two norms of C™ are equivalent and ||z||2 is the K-invariant norm,

then
f 1f(w0) = fO)PdA(w) < c/ “TEF]E——JM( ).
So we have completed Proof 2. e L

Proposition 1.16. There is a positive constant M such that

_dA(w)
o et < (1:42)

for all z in D.
Proof. Since the Bergman metric induces the usual topology on D for any

€ > 0, there are positive constants ; and 8, such that

{w: w2 < 61} CT{w: Blo,w) <e} C{w:||w|] < &}
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Moreover since the Bergman metric is complete on D, on any compact set K of
D, the Bergman distance is equivalent to Euclidean distance, and {w, 8(0,w) <

¢} is compact. Thus
dA(w)
'f,ﬁ(z,w)(s Ik_z(w)2| few(z)[Rr—T

< C o< _lkz..(._“")zlﬁ(o,;f G

< C fatzwy<e |kz(w)2|ﬁ(ii)l;".‘-‘

dA!w!
< C fa(omy<e [k(w)? lgmmygm=

dA(w
Jotzy<e |kz(w)2fm§ﬁ¥m

_ dA{w)
= fﬁ(ﬂ,w)(c ”w”gﬂ-—i < Cl'

Also
b ()2 [ n
L e
dA(w)
= ky(w)?|—m—2
ﬂ(ww(z).o»s' () Illww(z)llz”"1

N L G
n«aw(z}u»s:' () Illww(z |1

<574 [ ha(w)dA(w) = 67

So we choose M > 67! + () to complete the proof.

Now we are ready to prove our main result.




Theorem 1.17. Suppose 2 < p < +oc. For {in L?, both Hy and Hy are
in S, if and only if
dLMOUV&MMﬂ<+m> | (1.43)
where dj(z) is the volume in the Bergman metric, which is K(z,z)dA(z) .
Proof. The only if part is easy using Propositions 1.5 and 1.6. For com-
pleteness we give a proof hereSmcerE S,, Propesition 1.5 says

[ < T3 Hy PP, k> d = tr{(HFH}PP) < 00

Since p/2 > 1, and each k, is a unit vector, Proposition 1_'.'16 implies

fD < H3Hyks b, > dp < o0

ie.

[P2dp < oo,

JRLT

Similarly we can get
[ N7k PP2dp < oo.
Combining Proposition 1.7 with above two estimates implies that M O(f)(z)
is in LP(D, dp). S
' Now we turn to the proof of sufficiency. By means of H; = H, 7+ H;
and Theorem 1.12, it suffices to prove that H; and H? are in S, if MO(f) is

in LP(D, dp). In fact Hj is an integral operator represented as

Hig(e) = [ (Flw) = FK (2 w)dA(w)

By Proposition 1.10 Hy will be in 5, if we can show that

M= [ [ 1Fw) = [P IK (2 w)PdA@w)dAz) < oo
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Using Fubini’s theorem and making a change of variable in the inner integral,

we get
M = f du(z f 150 9:(0) = f o pu(w)PdA(w).
By means of Theorem 1.13, we have

M<cj@ fmwwmmﬁ%%

il wp wz__,ﬂu.))_
<c/d;y/Mo (Hk(ﬂw$qu

3 wwz_,_d_A(’_z_)_
= Cy [, 1Atw) J, MO IK o ) e

<G, [, dutw) [ MOUN @Ikl T iy

By Proposition 1.16 we have

M<C /D MO(f)(w)dp(w) < o

Thus Hj is in S,. Similarly we can prove that H? is in S,. So the proof is

completed.
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Chapter 2

Operator theory and function theory on the
unit ball
In this chapter we consider the question of when the semi-commutator

T5T,—T, of the Toeplitz operators T% and T, on the Bergman space L2(B,,, dA)

is compact for bounded pluriharmonic functions f and g. [Pirst we want to

mention that our problem can be reformuiated as a problem about Hankel op- 3

erators for which the product H7H, of two Hankel operators on the Bergman

space LE(BH, dA) is compact si__nq_e_ 'it is ea,_s:_y:'_.tq. _c_he__(_:k that o
T5T, — T;g = H}"Hg.' (20

We will also study commuting Toeplitz operators on the Bergman space of

the unit ball or on the Hardy space of the unit sphere in higher dimensional

complex space.

Although there are some results on commuting Toeplitz operators and
compact semicommutators of Toeplitz operators on the unit disk, translating

those results from the unit disk to the unit ball is more involved than merely .




saying “ Now let n> 1”. The transition from statements and their proofs on the
Hardy space on the unit circle and the Bergman space on the unit disk to the
unit ball involves many remarkable properties of the harmonic functions such
as maximal property and the méa,.r.i'v'la.lﬁe' property , and the theory of function
algebras. On the unit ball there are three different concepts harmonicity, M-
harmonicity and p]urlharmomcty On the dlsk those concepts coincide and
harmonic functions have a very specml relatlonshxp with holomorphic func-
tions. On the unlt ball, the plurlharmomc functlons en]oy an elevated status,
but the M- harmonlc functions do not have any useful specml rela,tlonshlps
with holomorphic functions, neither do the harmonic functions. In addition
the theory of function algebra on the sphere S, is very complicated and even
it is not known whether the Corona theorem is true for H*(5,) and what the
Gleason parts of I/*(S,) look like, for n > 1. So it seems that it is very hard
to use , "soft analysis”, the theory of function algebras to work on the Toeplitz
operators and the Hankel operators in several dimensions complex space. The
theory of several complex variabléa plajs a very important role in this chapter.
Motivated by the results on the unit disk we just consider the Toeplitz opera-
tors and Hankel operators with pluriharmonic symbols. However the invariant
mean value property does not completely characterize the pluriharmonic func-
tions. But it completely characterizes M-harmonic functions. So we have to

study the M-harmonic functions.
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2.1  Function theory on the unit ball

This section contains the ma.terials on the function theory of the unit ball

, which will be needed later on. Good references for this are Rudin’s book [R]

and Krantz's book [Kra.]

For z in B, there i is a Moebms transformatlon ¢.: B, — B, given by

z —géw'— (1 )”262 w

$elw) = b ('w z)

(2.2)
where P, is the orthogonal prolectmn frorn O’" onto the subspace of C™ spanned
by z,and Q, = I — P,.

Since each ¢ € Aut(B,) acts on B, as an isometry in the Bergman metric,

we have

Qrop(20) = Q($(20)) (2.3)

for any ¢ € Aut(B,) and 2 in B,. A holomorphic function f is said to be a
Bloch function if

"f”s = S”Pfo(z) <o (2.4)

Timoney ({T1] and [T2]) proved that on the umt bal] |] f [[,3 is eq_ulvalent to

Sup,(1 — ||z V. £. - (2:5)

Although the definition of A in Chapter 0 is slightly different from the

so-called invariant Laplacian operator in [R], the concept of M-harmonic func-

tions here is the same as in [R].
The Moebius transformation has the following properties:

Proposition 2.1. For every a € B,, 4, has the following properties
(1.1) $4(0) = a and @4(a) = 0;




(1.2) ¢.(0) = —s?P, — sQ, and ¢,(a) = —s 2P, — s7'Q, where 5 =
(1= laf)7

(1.3) ¢, is an involution; ¢.(¢(2)) = z;

(14) ¢ is a homeomorphlsm of B, onto By, and ¢, € Aut(B,). Morcover
Aut(B,) ={d,0U:z € Bn,UEL{( )}

For a € B, fixed 1, 0" < r < 1 and deﬁne

(a 1") = %(T’B ) |

Since ¢, is an involution, z in E(a,:r) 'i'f "and oilljf if' |¢a(2)] < r. Tt is easy to

check that
|P < — [ IQaz|2
Ela,r)={z€ B, e "y < 1} (2.6)
where
(1 —rHa 11— |a]?

€= 1—r2|a|2’p_ 1—r2|af?

Thus E(a,r) is an ellipsoid with center at ¢, this is close to a when r is small
and the volume of E(a, r) equals to rz"p““‘l
There are other several cha,ra,cterlzatloné bf plurlharmoﬁic functlons whlch
give a relation between plurlharmomc functlons and holomorphlc functmns
Proposition 2.2. The function u is plurlharmonlc if and only 1f u satlsﬁes
one of the following conditions:

(a) There are two holomorphic functions f and g on B, such that
u=f+7, : S {27)

(b) u satisfies the n?-differential equations

62

wz—ju = 0. (2.8)
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M-harmonic functions have many useful properties, we state some of
them.

Proposition 2.3. (1) Maximum Principle. Suppose G is an open
subset of B, and u € C(G),Au=0in G and u £ 0 on 8 G. Then v < 0 in G.

(2) The invariant mean value property. Suppose fisin C*(B,). Then
t 18 M-harmonic if ahd'o.ﬁ.ljtr_' 1f f '._ha';v_,."'th'éf'ixi_ira;ria;nt mean value property. i.e.

for every ¥ € Aut(B,) and 0 <r <1
Fp0) = [ f0b(ro))do(c). (2.9)
(3) The volume version of invariant mean value property. If f is

in C(B,) and has the mean-valued property

Fp() = [ Foyav (210)

for every ¥ € Aut(B,), then f is M-harmonic on B,.

Let «{ = U (n) be the group of all unitary operators on the Hilbert space
C™. Clearly, U is a compact subgrotp of O(2n). It is well-known that there
is a Haar measure di{ on . Since U(n) a.cts transitively on the unit ball or
sphere we can represent an integration of afunctlon 'd\'féf'.tﬁé"" unit sphere as
an integration over the compact group U(n).

Proposition 2.4. If f is measurable function on 5, the identity

/S fdo = fu fmad (2.11)

holds for any n € S,.

We will need the following proposition to identify a holomorphic function

in the Hardy space H%(S,).
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Proposition 2.5. For every multi-index o

o2 _ (n =1l
[ ) Potn) = = (2.12)

Proposition 2.6, If f 1sa, bounded pluriharmonic function on By, then

there are functions f, and f2 mboththeBlochspace and HP(S,) for allp > 1

such that

Proof. Without loss of generality we consider just the case that f is real-
valued. It follows from Proposition 2.2 that there is a holoinorphic function

fr en By, such that

f=Hh+F-
Because f is in L®(B,) then f is in L2(B,). In addition it is known that
the Bergman projection P is a map from L%(B,) to the Bloch space. Thus

fi+f1(0) = P(f) is a Bloch functi_on_.-__This implies that f; is a Bloch function.

Now we consider functions f,(¢) = f(r¢) on § for O;j<' r< .1-.._'Then;. ,

1Flleo 2 [ N (©)]dr(6).
Thus f; is in H%(S). Since
f=h+1

fi(2)+ f1(0) = S(f)(2). It is well-known that the Hardy projection is bounded

“on LP(S,) for any p > 1. Because f is bounded, f; is in H?(S,) for any p > 1.




2.2 Maximal ideal space of H™(S,) and ¢-

parts

The structure of the maximal ideal space of H *(B,) is very complicated
The Corona problem is thequestxon ‘Is the unit ball dense in the maximal
ideal space M7 This is stlllanopenproblemforn > 1. In the case of the

unit disk, Carleson solved theproblem [Car]] SR

By urio the Gelfand transform; we can thmkof H>(S,) as a subset of
C(M), the continuous, complex-valued functions on the maximal ideal space

of H(8,). Explicitly, for f&€ H®(S,), we extend { from B, to M by defining

flr)=r(f) (2.13)
for every 7 € M. Note that this definition is consistent with our earlier iden-
tification of B, with a subset of M. Now we will prove that each bounded
complex-valued pluriharmonic function on B, can be extended to a continu-
ous complex-valued functions on the maximal ideal space M. The following
proposition extends Lemma 4.4 in [H].

Proposition 2.7. The following a,Igeb}'ras of c'é’mplex—valued functions on
B, are identical.

(1) The algebra of {bounded continuous) functions on B, which admit
continuous extensions to M;

(2) The complex algebra generated by H*(B,) and the conjugate of
H>®(Bn) in C(M);

(3) The complex algebra generated by bounded pluriharmonic functions

on B,,.

52



53

Proof. Since M is maximal ideal space of H*(B, ), then H*(B,) sepa-
rates points of M. Thus the Stone-Weierstrass theorem guarantees that (1)
and (2) describe the same a,lgebra. Obviously (3) describes a larger algebra

than does (2). Therefore our task is merely to show that each bounded pluri-

harmonic function extends oontmuouqu to M. Because f is pluriharmonic if

and only if both real’ and nna,ge _a,rt of 'Ef .are bounded and pluriharmonic.

Now we can assume tha.t f 1s real va.lued' ' Proposntlon 2 2 lrnphes that there is

a holomorphic function g on B such that f—IERg Let

Then h is in H*(B,) and |A] is bounded away from 0. The continuous exten-
sion of f to M is
J = loglh|.

The following proposition tells us that ¢—maps are analytic in the sense
that f o #(2) is bounded and holomorphic if f is bounded and holomorphic on

Proposition 2.8. If a net {qua} C BB" MB" .conver.ges to some ¢5 E i}
then for any bounded pluriharmonic functlon f on Bn, f quﬂ( ) converges
..uniformly to fog(z) on every compact subset of B,. Conseque.ntly.f.ogb(z.) '.is
: pluriharmonic in B,.
Proof. Proposition 2.7 tells us that every bounded pluriharmonic functibn
caﬁ be approximated in the norm of 1.°°(B,,) by the sum of products of bounded
hol..o.m,orphic functions and the conjugate of bounded functions. Then it suffices

prove that for a holomorphic function g , go¢, normally converges to gog. It



is well-known that for any bounded holomorphic function g, there is a constant

C, > 0 depending only on g such that for any z and w in B,

lg9(2) — g(2)} < CyB(2, w).

Because the Bergman metric 8(z,w) is invariant under the action of the au-
tomorphism group Aut(B,), we have for any ¢ € Aut(B,),

9 0%(2) = 9.0 ()] < Cofi(z,w).
Hence {go ¢,,} is equicon.tinuous. and .uﬁiféfmly bounded. So g.oqﬂza normally

converges to goo.

2.3 Hankel operators as integral operators

In this section we study Hankel operators as integral operators to find a
sufficient condition for the compactness of H?Hg for the Bloch functions f and
gon B,. It is easy to chec}{ that .H?*H:q- is an .‘irl.l.te.gr_am'l operator

on the Bergman space L}(B,). Now we apply the Schur test [HS] as stated
in the following proposition to estimate the distance between T and the set of
compact operators.

Schur test. Let (X, dut) be a measure space and L(x,y) be a measurable
function on XxX. Suppose there is a positive measurable function u on X and

positive numbers a and 3 such that

[, 1L, 9)luy)duty) < au(z) (2.15)
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and

[, 1@ lu(@)du(e) < puty). (216)
Then

Af(e) = [ L(e,y)f@)duly) (217)

for f € L*(X, ) and z €X, deﬁnes a bounded linear operator from L2(X, )

into itself. Moreover, ]|A”2 < aﬁ

Theorem 2.9. Suppose’ that t and g are BIoch functions on B,. The

distance d(T, K) between T and the set of compact operators is bounded by

d(T,K) < Climsup [|(F 0 ¢, — F(=))(f 0 ¢ — f(2))]I3/ (2.18)

a1
for some p > 2 and the positive constant C which depend on f and g

Proof. For 0 < r < 1, it is easy to show that the following integral

operator T, defined by

Toh(z) = Bn('ﬁ( z) - (W))(f() Flw ))K(z W)xrsn( 2)h(w)dA(w)

is a Hilbert-Schmidt operator because the kernel of T is in Lz(B X B,) where
X¢/(2) denotes the characteristic functzon of the set C Then for any h in Lz(B )

and z in By,

(T~ T)h() = [ (5() = F)) () = F) KT 0)x1 (2)h(0)dA )

Now we are going to estimate the norm of T-7, by using the Schur test.

Let L(z,w) be the kernel of T-T,

(3(2) = g())(f(2) = f(W))K (2,w)X(1-r)5, (2).
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The Forelli-Rudin’s inequality {R] tells us that there are positive constants
g£,1 < p < 00 and C which depend on f and g such that u(z) = K{z, z)° satisfies

the conditions of the Schur test and

a < C'suppeze]| (G 0 ¢2 — F(2))(f © 62 — f(2))]les

and B is bounded. The Schur test gives

IT =T < Goupptor |70 6 =T o6 = JD

So
d(T,K) <limsup ||T — T3] £
z[[—1
C'lim sup ||(F 0 ¢ — G(2))}(f o b — f(z))”;)/z

lfz||—1
which completes the proof.
Immidiately we have following corollary which gives a sufficient condition

for the compactness of H3Hg.

Theorem 2.10. Suppose that f and g are Bloch functions on B,,. If

lim 1306 TN o b~ FD=0 (219

||z]|—1

for some p > 1 then H-‘,‘,—‘Hb- is compact.

Proof. Since any Bloch functions are in L?, for p > 1 and space of the
Bloch functions is invariant under the action of Aut{B,), then the family of

functions
{(7o ¢ —G(2))(f o d: = f(2))}

are uniformly bounded by some constant C, in L?.
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On the other hand for 1 < p < p; < o0, and any function he (L7, using

Holder inequality we have

”h”p < ||hfl,, < ”h”;/?l”h”(?’l—l)/pi

= g(p1—1)
where 1/p+1/g=1.
So

i 100 6~ 3 0 4~ ()l =0

H=Al—1

is equivalent to

im0 6 TS 0 b = Sy, =0
The result follows from Theorem 2.8.
Remark. In (I} Tzuchi gave a sufficient condition for the compactness of

H%Hg— for bounded holomorphic functions f and g.

We will use those results above to show several equivalent conditions about

f and g such that TT, — T4, is compact in Section 2.6.

2.4 M-harmonic functions

In this section we will characterize functions f, g b and lin H?(S,) such
that fg — Al is M-harmonic . From now on in this we assume that f, g h and
I are holomorphic on the unit ball B,,.

A polynomial P in C" is said to be homogeneous of degree s if P(tz)=t"P(z).
If f(z) is holomorphic in a neighborhood of the origin in C™, then the power

series of f can be written in the grouped form

f(z) = iﬂf,(z)




where f,(z) is homogeneous polynomial of degree s. This is the homogeneous
expansion of f.

For our convenience we define a differential operator by

ﬁ(f’ g,h,!zw) _ (é{z, 8_,)(; w, 310,-)
n Oh -T-——al_ ﬂ _ oy
559 g~ (& aa (220
for z and w in B,,. _ S _
Lemma 2.11. f7 — A is M-harmonic if and only if
L(f,g,hlzw)=0 (2.21)
Proof. First we claim that f§ — hl is M-harmonic if and only if
L(f,g,h,1z2)=0 (2.22)

It follows from the definition of A that

AT = W) = eall = [APVE(S, 9, by Lz.2)

sincef, g, h and | are holomorphic on B,. As the factor (1 — ||2]|?) is non-zero

on B, fg — hl is M-harmonic if and only if £(f,g,k,l.z.2) = 0.

Now write f, g, h and | as the homogeneous expansions

-fwzimmgm=imn

and
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Euler’s theorem implies that

Zz, g::j = sf,(2).

So the equation £(f,g, h,lzz)m 0 becomes

fe's] n a 8"8‘: ahS—EE
3 AT - D = 5 ST el

st=1 —_— S s,t—O i=1

Let z = éw for £ in the umt dlsk and w € B-: We have

5 stasmw)zm--'asm—w» -

8,t=1

oy —, Ofs Oqy  Oh, O
s=1gi—1 —
Z Zé { (810,' 8w; Bw; 811),' )

5,t=0 t=1

Comparing the coefficients of £2€* implies

— T “ 6fs+1 59t+1 . ahs+1 3lt+1
st(fo{w)gi(w) = hy(w)l(w)) = ;( B, o0, D O, )-

for any s and t. To take derivatives with respect to w® with |o| = ¢, we see

ad 3 8 ahs ol
o1 D3 — b D) = 32 Ot s Do Bl

Since for any homogeneous polynomial P of degree t

Pw)= 3 =DPu,

e
above equation implies

“ 8fs-j-1 a9\:+1 _ ahs+1 alt+1
St(f-’(w)g( ) h‘ (w)lt( )) - ZI 3w,' azi awi aZi '

To take the sum s and t we have the equation £(f,g,h,l.z.w) = 0 for any z

and w in B,,.



Lemma 2.12. For any unitary matrix U in U{n) and f holomorphic in

B, the gradient of foU is expressed as

V(fo U_)(;_)_-“-:- UT(Vf)oU(z) (2.23)

Proof. For U in U(n), U mduces a linear map from B, onto itself. Let

w=Uz. The chain rule give's-'_

Hence

= UT(VH(w) = UT(Vf) o U(z).

Lemma 2.13. Let H={a € C" : ¢*V f(w) =0 for w € C*}. Then H is

a subspace of C™ and there is an orthonormal base {ez41,-- -, e} of H which

extends as an orthonormal base {e;,---,e,} of C*. Let U = (eq,---,e,) which

is a unitary matrix. Then §_1£__Q =0fori >k and a(g o) ... 8((;‘ °Y) are linearly
i e 21 Zk

independent over C* -

Proof. From the definition of H we see that H is a subspace of C™. So there
is an orthonormal base {exy1,- -+, e,} of H which extends as an orthonormal
base {er,---,e,} of C*. Let U = (e,---,e,) which is a unitary matrix.
Lemma 2.12 tells us that Q%%_@ = ¢7(Vf) o (Uz) for any i . Hence 2 ;.U =0
for 7 > k. The rest is to show that i%f?, e ﬂ%{l are linearly independent

over C™. Suppose that there are constants ¢; such that

ko AfolV

i=1
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Then

Zc, (VA(Uz)=0.

Therefore 2%, Ge; € H, but e,-"is orthogonal to H for 2 = 1,-++ k. So ¢; =0
fore=1,---,k, Wthh completes the proof

Lemma 2.14. If c= (cl, ) E C’k and

e Eztﬂ (2.24)
1= 1 a i.._ i
then there is a unitary matrix_
U= U@L
such that
o U™
W90 Uy 02 = [ 1L (2:25)

Proof. It follows from linear algebra that there is a & x k unitary matrix

[/ such that )
(Uk)T (||C|1 0 re0,0).

Set

U = Ux P Ines. | | %

Lemma 2.13 implies
(UT9(f 0 UM)(Uz) = 7V f(2)

= (T, 00V (z) = (", 0)(U") V(] o U")(U=)

= (lell, )V (f 0 U*)(U2) = ucnm(if-;gi‘l.
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Lemma 2.15. The equation

ST
L5, T 2y, 2.26
does not have nontrivial solutions in' H?*(B,) if ¢ = (c1,+,¢,) is in the

closure of the unit ball Bn.

Proof. Case 1. If ¢ = (cl,:?" S in Bn; _suppose that the equation has

a holomorphic solutlon f on B Makmg the change of varlables W=2z-~CWwe

have

Zw, w+c)'—0

Set g(w) = f(w + ¢), then the above equation becomes

=1
Because { is holomorphic on B, and c is in B, there is a neighborhood N of
0 in B, such that g is holomorphic on N and satisfies
Zw, =0
i=1 i e
in N. If we write g as a homogeneous gk’pansiOu, Euler’s theorem tmplies
> sgs{w) =0
=0

or w in N. Hence g,(w) = 0 for s > 0. This means that g is constant on N.

_ij_j:ce f is holomorphic on B, and N is an open subset of B, { is constant on

(2.27)
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f has a homogeneous expansion

oo 00 i
=23 frelzas s 2)z
t=0 s=0
where fi (22, <, 2,) is homogeneous with degree s in 23, -, %,. The Euler’s

theorem and Equation (2 27) 1mply that

ZZ (s+¢ fts zz, Ly 2n) { Zth” Zay ey 2n)2i L

t=0 s=0 AT SN : E t"—O s:O

Comparing the coefﬁcient’s (_')f._; powersole in.__t___ '-_':ab'oife equation gives

(5 + ) funlzny - 20) = (6 1) fepnnlzay - 20).

So we have the following reduction formula for ¢

s+1
ft+1,s(zi’>"' :-=-n., t+1fts( 2, y 2 )
Iterating the formula we get
(S + t — 1)

ft.s(z'h"',zn) = f03(221 ",Zn).

Now f can be expressed as

7(2) = iimﬂra(zh )2,

o0 oo Y
= Z(Z (S_-{—%:it;—!——)zi)fﬂ,s(z%' o vzn)

ZfOs ZZJ"':z’n)-

s=0 ]' - zl)s
Fo the sake of simplicity, we let f; be fo,.
Since fy(z2,- -, 2,) is a homogeneous polynomial, we can write it as

fs(zz,...,zn) — Z aCXaz(O'a)‘

lot|=5



S_o .
118 =35 3 ST Dy itz

=0 ial——s =0

It follows from Propositic:. .53 tha_mt,._

o (n—1)lati!
lays
—1+s+¢)

=3 % S

8= 0|Q|—3t 1]

12, (2.28)

As t is very large,

((3+t_1)1) S Al
e (n—1+s+t)
is asymptotically equivalent to
1
fn—s+1 .

In order that the series (2.28) converges , the p-series theorem implies n — s +

1 > 1. Therefore

Z fa(z% " n).

a<sp<n (1 - 21)
On the other hand f™ isin H 2(Sn) However the term with the highest

degree of ﬁ in f* is

a2, 2)
(1 - Zl)so(n)

So spn < n, thus so = 0. This means that f is constant.

Lemma 2.16. The following equation

0 of dg
-3?3(2 (Z Bw, 8z3 Z Oz; Ow; (2.29)

=1 i=1

does not have solutions in H**(B,,) unless either % = 0 is zero or g is constant

for any fixed j.
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Prool. If g is not constant, then there is a vector a€ C™, which is orthog-

onal to A={ce C": c*Vga;_L_ =0} , such that
£

_ oo df
az,(g --n- V5J (2.30)

On the other ha.nd,"f.r..diﬂ ‘Equation (2.29) we see that

"’f(iw: )-V( rv v,

So
dqg
a;wlga - VQ( )

is in A for any w in the unit ball B,. Since a is orthogonal to A, we have

||a]|2 Ew;% — a"Vg(w) = 0.

Lemma 2.15 implies that ”:”2 is not in B, unless g is constant. If g is not

constant, then ”;’"2 is not in the closure ot the unit ball B,. This implies a is

in B,. However Equation (9) implies ik

5 5 T Vg =0

Making change of variables by w = z — @ we have

Z w—i—a) 0.

6w,
Set Fi(w) = f(w + @), then the above equation becomes

8 & OF
Wi 8?,01- (w) = 0.

dw; i=1




Since f is holomorphic on the unit ball B, and a is in B, there is a neighbor-

hood N of 0 in B, such that F is holomorphic on N and satisfies

8“ BF

on N. If we write F as a homogeneous _ex’panmon Euler’s theorem implies
Thus QE&( w) =0on N. Smce f is holomorphlc on the umt ba]l and N is an open

subset of the unit ball, then ~-J:(z) -—_-':'0 on the umt ba,ll So th1s completes the

proof.

Lemma 2.17. Suppose that neither gnor lis constant and £(f, g, A, { )
= 0. For any vector a in C", ¢*Vf = 0 ireplies a*Vh = 0.

Proof. Lemma 2.13 implies that it suffices to show that 5-f- = 0 implies
3z = 0 since the space of M-harmonic functions is invariant under the action

of the unitary matrices. To take derivative with respect to z; in the equation

L(f,9,h,l,zw) = 0 we have
a n

3_:—:1(; Z (910, = 6z12

% =1

c'?z,l 8w.,

= 0. It follows from Lemma 2.16 that 3"' :.— 0 because 1 18 not

48(];;[]))(2 a(goU (i B(hoU))(Zw‘,?ﬁ_O_Ul) (2.31)

i=1 Zi i=1 dw;

Ef}’(foU AgolU) a(hoU)a(loU))
o Oz Ow; 0z; Ow;
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and {a(foUl ...,ﬂéf:fj)} are linearly independent and {Q%'LZ—IUI, RN Q%’gl} lin-

Az 7

early independent where 0 < r < n.

Proof. Lemma 2.13 says that there is a unitary matrix V such that

{BUW} R 8(foV) are imearly mde endent and ,_(.Ll = 0 for ¢ > ry. So
82,-1 P

8z1 ?

Lemma 2.17 implies

O(foV)

Q2 z«"(a—

Y

)(zw )

n foV a(goV)
_z( 327, Bw,—-

It {M SN %ﬁ:ﬂl} are linearly independent, then we are done. Other-
r1

Jwy ?

wise let A ={a € C™ : 3L a ﬂ’—-&j’fiﬁ = 0}. Repeating the argument in the

proof of Lemma 2.13 implies that there is a ry by r; unitary matrix U, such that

{ d(goV)olly ’_(L_)_a ‘;‘:’U:’Ul } are linearly independent and ﬂ%{"—r—& =0fori=r+

Ouny

Ltory where Uy = U, @ 1. Tt is also easy to check that ISR ,J%%ELU‘}

AN K

are linearly independent. Then I~

(g“—faﬂxz“—aﬂwiﬂ%ﬂm%‘%

(-3} i=1

a(f o U a(g o U) (h ;‘r}j :a'(z"o'U)
E 0z; ow; 0z ow; )

where U = V o U;.

Theorem 2.19. Suppose that f, g, h, and | are in H**(B,). Then fg— Al
is M-harmonic on the unit ball if and only if f, g, 1, and | satisfy one of the
following conditions
(1) Both f and h are constants;

(2) Both f and ] are constants;
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(3) Both g and 1 are constants;
(4) Both g and h are constants;
(5) There-is a nonzero constant b such that bg-1 and f — bk are constant.
Proof. It follows from Lemmas 1 a_ind 2 that fg — hl is M-harmonic if

and only if

£, g;ﬁ, fw)=0 .

[t 1s easy to see that if these four functlons satlsfy one of the conditions in the
theorem , they are solutions of E(f,g, h I 2z w) = 0 So we are going to show
that any solutions in H*"(B,) of L(f,g,h,l,z,w) = 0 must satisfy one of the

conditions in the theorem.

By Lemma 2.18 we may assume that {2 5a E%E} are linearly indepen-
dent and {2L Tyt aw =L} are linearly independent and

L(f,g, k1, 2,w) = 0

is equivalent to
) 8f I o
E « 0z Z: 810‘ Z az, Z: @w,

3f ag ah ol
Z 0z Bw, Bz Bw,)

Lot H = {c € C": 'V, € span{ -+, 22)) where V,f = (2, 24),
Now we consider three cases.

Case 1. If dimH; = r, there is a matrix A such that

V.f = AV,h.




The Jordan reduction to form implies that there is a unitary matrix U such

that
UTA(UT)* = @---@Jk

where J; is a s; by s; matrix "

.

e
S A |

0 00 - 1 ¢

\ /

and "% . s; = n. For the sake of simplicity we still use f, g, h, and | to denote
respectively foU,go U,ho U and lo U . So Combining Lemma 2.12 with

above equations gives

CB8f _ B8R
2z 1By
o e B OB
ey T €1 Oz2 + 8z

To take derivative with respect to z; we have the following equation

d clg oh o c1g——l)
(B_ZEQ'@ (Z Y Jwy - Z(‘)z, Hw;

It follows from Lemma 2.16 that either ¢;¢ — [ is constant or g :‘ = 0. Thus if
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c1g — | is not constant then -% = 0. So

af +  Oh
— = —.
6272_ . 322
Using induction we can show that both f and h are constants if ¢;g —{ are

not constants for all i. So fg h and I satlsfy (1)

In the case ¢;g — [ ] is constant for some: 3 a,nd g is not constant, then

L(f,g,h,l,z,w)=0 1mphes

(>

i=1

It follows again from Lemma 2.16 that f — €A is constant.

If the ¢; # 0 then f, g, h, and | satisfy (4).

If the ¢; = 0 then | is constant and either g or f is constant. i.e. f, g, I,
and 1 satisfy either (2) or (3).

(b) If r is zero then we have the following equation

i Bh i ol
— = 0.
Z 627,2 : Z 1,_ w awi:
So if neither g nor 1 is constant and neithé’r‘ fnorg is constant, there is a
nonzero constant b such that Sl

n

5

h

2

e af"_"‘
;Bz,- =b

s

i=1

and

" 0l
b Z Bw, i=1 Bw.;

Therefore Euler’s theorem implies that both bg-1 and f — bk are constant.

Therefore we consider the situation where these four functions satisfy one

of the conditions in the theorem.
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Case 2. dimH < r — 1. In the case we may assume that {az R azk}
are linearly independent of {gf;, TN Bz il and {2l v B %} are in the space
spaned by {821 '--,g—z"r} for some k > 1.

So there are vectors a , a', ¢, ¢’ and a matrix B such that

Zz.-ﬁ—zf___ =a*Vif 4+ V. h
=t '_ P

af  of ) = (V,h)TB*

aZk+1, ’ an
Since L{f,g,hk,1,z,w) =0, then

n‘ ag P 8[ _
ai;w,aw - a Zw,aw. = Vg

i =1 1
and
Jg Ow
¢ 'w, -—c w, =B RN -V, 1.
2 2 i (3wk+1 6wn)
From the above equations we see that { Bup } are in the span{-2L By 8—85:

So this case is reduced to case 1 1f we replace f a.nd h respectively by g and 1.

Case 3. dimH =r —1

In the case by L... nay assume that 5852 is ihdépendent of
21
{2L PR which are linearly independent, and there is a (r- l)xr matrix A
such that

of . Ofyr_
(g )" = AVsh.

Since L(f,g,h,1,z,w) = 0, if g and | are not affinely dependent, then

there are constants ¢;, ¢; and vectors a and a’ such that

-~ of df
Ez13z5_01321+ a’V:h



and

~ Ok Of
2 : , o — I * h

We will reduce this case to Case 1. Before doing this we extend a holo-

morphic function f on B, to a thofribrphic function f on Bpyq by

f(zla._'..' ' sznyzn-!-l)

f(zl, _.. - zn).
The following claim easily follows from Lemma, 2 11..

Claim. If fg - Kl is M harmomc, then f(g) — h(l) 1s M harmonic.

For ¢ in the unit disk we define

218 ZnS C— Znt1

-4 z — ea
Pel21, 2 2my 2n11) (1—Ezn+1’ "1 —2ng1’ 1 — Tz

where 5 = (1 — |c[?)"/2, thus ¢, € Aut(B,41). Since the space of M-harmonic
functions is invariant under the action of Aut(B,11), then fodpgogs—ho

bl 0 ¢ is M-harmonic.

On the other hand it is easy to check that

Nfog) & Tz Of

O2ppr £ (1 — Tzpq)? 32, © g
then
(fod) ¢ n, . 8f -
s~ T D (8 (8o, (Bl
Because }7, z2L e = C 5;[;- + a*V,h, we have

Z(qsc) (¢c( Dor- 1 (6el))e) = er oL Log4atTub(($ula))i -, (620

So
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Similarly we can show

Oho g _ T Fod) , Ty i

2
0z 31 § 7 O S

(a) e, # 0set F = fo };s;f; G=jo qSC, and H = hod,, L =10 ¢, then

the above two equations tell us that 6F IS 1n the span{ R gﬁf , 3z“+1} for

1=1,- ra,ndn+1and

.. n+1 Hn+1

"n.+1 _ :
L(F,G, H, L, Z,0) 22‘8":2 | 5?0, Z Z

& 1—1

_§OFDG _OHIT, or 3G oH —aL"'
=02z 0w Oz Ow; O0zp41 OWny1  Ozpg1 Owny

where Z = (2, z,41). So repeating the argument in Case 1 we see that F,G, H,
and G must satisfy one of the conditions of Theorem 2.19. Since f, g, h, and 1
are hblomorphic on the unit ball then they must satisfy one of the conditions
of the theorem.

(b) If ¢ = 0, then

Ohod. ¢, pugr i !
— 2\ h .
B 5\ VrRod):
So we have
o~ 09 09
cl ;w! awt aw]
and

ol
a Zi_l ’U), 6‘w —d 23"1 Wi g Qw;



Repeating the argument in (a) we have

zNGod) T Hgod)

8 Bwl

If neither { nor h 1s consta.nt 1t follows from Lemma 2.17 that

6wn+1

3(1 0 qSC)

awn+1 '
So S

2dlo¢)

3 (9w1

Therefore

;4;_—1 0 0 0
. -_z -1 0 0
2 _AYV,g= v,
1
: \ 2 o Qe —1
L&)
If

/

8
—1 # 0, from the above equatlons we sec that 2L - is in the span{-2L i RRRE vl ¥
so this is reduced to Case 1 for g and 1
If & — 1 = 0, it follows from above equations that
wd 0 % _,
1 0wy 2 Owq rl Ow,
Since {2L s —5@9—} are linearly independent then a; = 0 for ¢ = 2,---,7r.
Thus
of . 9f 7=
622, ’ 3z,.

(0, A(r—l)x(r—l))vr h.
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Repeating the argument in Cés_e 1, we see that either both g and | are con-

stants, or there is a nbﬁéérzo‘ﬁ't:b'n:'s'tant b such that bg — [ is constant, or

.:a
k)zl

f .. = —ai-_ By our hypothesm'that

Hzo

—~f-} are linearly indepen-

dent we have that hn’fh g and 1 are constants

2.5 Commuting Toeplitz operators on the
Bergman space

Theorem 2.20. Suppose that f, g, h and | are in H*(S) with the property

E(w)[fdA(w) = (fg - KD ow(z)  (2.32)

[, (73 = B o (w)

for all ¢y € Aut(B,). Then fg ~ Rl is M- harmonic on the unit ball B,.

Proof: Let dif be Haar meas+ :eﬂm} .t.]?.-'-' nnitary gTOQP ?/1 . Set
G = [ (73 D
for z in B,. For any fin H%(S), f can be éx..p:f.ésé.e.d. .in' p'ower:.s'éries
f(2) = L aal))"

with

Y- laa(N)(a) < +o0

where I(a) = ||2%[}zs)
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By the hypothesis we have

jB G(w)|k, (w)PdA(w) = G(2). (2.33)

It is easy to check that

z) j (f- ) (Ilzllf)do( )

= 2laa(Nale)s — an(WaD) 1@
where |a| = ¥ | ;. ERBDIE .
Since f , g, h and | are in H?(S) then G(z) is continuous on B, and
Aut(By) = {¢: B, — B,|¢(z) = Ug,(2)} where U is a n by n unitary matrix
and ¢, is a mobius transformation , which depends on é. The mean value
theorem tells us that AG = 0. In addition G(z) is constant on S. It follows
from Maximal Principle that G(z) is constant on B,. Thus
3 au(f)alg), — aa(B)a(l), = 0. (2.34)
|a=1 LR
For convenience we use a;(f) to denote a(o;....,.()‘.llgli..;(.}.}.( f ) Thern (_2_.34) be-

comes

S ai( f)alg); — ai(hya(D); = 0.

i

It is to easy check that a;(f) = 33:;{_-(0) . Set a;( f)(w) = Q%%f—‘”([])". Since:

Aut(B,) is a group, similarly we can prove that

Zaa(f )(2)a(g);(2) = ai(h)(z)a(l) (=) = 0. (2.35)

Computing a;(f)(w) implies that

o(f)(z) = s(1 = 8) 5V, f — sV, f (2.36)
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where

Replacing a;(f)(z) in (2.35) by the rlghthandSJdeof (2'}6) gives

0= [5(1 - 3)&‘729 - vzg]*[s(l - S)Pivzf
=SV f] = [s(1 = ) PeV 1 — sV, 1" [s(1 — 8) oV, h — sV, h]
=51 = 5)(—1 - 5)[Vg]* PV f + $2[Vyg]*V

—s*(1 — sj(—l - s)[VVfl]‘P;Vh + $*[VI*Vh

Thus

—s*(1—s%) <5, Vg >< Vf,"z:‘ > -|—32(1—32) <Vf,Vg >=
—$?(1 = %) < Z,VI>< VA, 7 > +s(1 — ) < Vh,Vi>
Multiplying by W;—ﬁf we get o
<Z Vg ><VfZI> —.< E,Vl >< Vh,Z >=

<Vf,Vg>-<VhVi>
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which is

Jh

2. Zj% (Z Zeé‘i,) -2 sz;)(E 2 )=

EEQE; o aT

sz azJ j__ -5;:5-2:

It follows from Lemma 2. 11 tha,t f" ..hl_ 1s M ha,rmomc

Theorem 2.21. Suppose that ¢5 and gb are bounded plurlha,rmomc func-

tions on the unit ball. Then .

T, =TyT, (@23

on the Bergman space LZ(B,) of the unit ball if and only if ¢ and ¢ satisfy
one of the following conditions:

(1) Both ¢ and # are holomorphic on the unit ball B,;

(2) Both ¢ and 7 are holomorphic on the unit ball B,

(3) Either ¢ or 1 is constant;

(4) There is a nonzero constant b such that ¢ b¢ is constant.

Proof. Suppose that ¢ and ¢ are bounded and plurlharmomc on the unit
ball. It follows from Proposition 9. 6 that there a,re four funct10ns f, g h, and
lin H*"(S,) such that T L
p=f+1
and

BT

First we prove that if ¢ and ¢ satisfy one of the conditions in the theorem

, then T commutes with Ty.




If ¢ is holomorphic on B, then T} is the operator on the Bergman space
L:(B,) of multiplication by ¢. So if ¢ and ¢ satisfy (1), then T}, commutes
with 73 Since the adjoint of T on the Bergman space is 7%, then T commutes

with Ty if ¢ and ¢ satisfy (2)

If ¢ and 9 satisly (3), mther qu or T,f, is a scalar operator, then Ty com-

mutes with 7y,

If § and  satisty (4), let e b?,b - ¢ be. a constant Thus Ta= Ty +e

So Ty commutes w1th T¢

Now we are going to prove “only if” part. First we prove that f, g, h, and
I satisy the hypothesis of Theorem 2.20. For every 7 € Aut(B,), we define a

unitary operators on the Bergman space L:(B,) by

Uw=uorJ(r) (2.38)
Immediately we see that
U = Ty (2.39)
For z in By, it is easy to check that
(UNTsTy — TyTy)Urks, k) = (TsorTor — Tyor Toor Yoz, k)
= Jp.(for{w)gor(w) -k OT(w)T#())lk (w)*dA(w)

—(for(2)gor(z) — ho () o 7(2)).
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So if T commutes with Ty, then

fs,(for(w)go T(w) — koo T{w)l o T(w))|k,(w)[*d A(w)
= for(z)go T(z)—-—- h_:_o T(z)lor(z)

Therefore Theorem 2, 20 1mphes that f“ hl is M- harmonic. On the other
hand £, g, h, and 1 are in HQ“(S ) So Theorem 2 19 tells us that {, g, h, and |
must satisfy one of the COIIdlthIIS in Theorem 2 19 It s’ easy to see that this

is equivalent to the statement that gb and 1,b sat1sfy one of the conditions (1)

o {4). So the proof of Theorem 2.21 is finished.

2.6 Semi-commutators on the Bergman space

In this section we will prove Theorems 2.22 and 2.23.
Theorem 2.22. Let f and g be two bounded plumharmomc functions on
B,. Then T4T, = TT on the Bergman space 1f and only 1f f or g is holomorphlc

on B,.

Proof. Since f and g are boﬁnded olﬁrihermooieoﬁ'l:?,? 'th:el.*e are f1, fa, o1

and gy in H?(S) for p > 1 such that
f=h+Tm 9=09r+7s

First we prove that f, and ¢, satlsfy the hypothes1s of Theorem 2.20. For
every 1 € Aut(B,) we define a umtary operator on L*(R,) by

Ugh = hopJ ().




Immediately we see that

Thus

= (7, 0% — Gy 0 ¥)(2)k, (Fy 01.[’—72 °¢)(z)kz) :

= [Fyofao ¢|kz|2dA — Tz 0 P(2) fa 0 p(2).

Then
JTrovfioplkPdA =T, 0 (=) f2 0 ¥(2).

So it follows from Theorem 2.20 that fog7 is M-harmonic .

81

If in addition, f; and g; are in H*"(S,), Theorem 2.19 implies that either -

f2 or g is constant. This means that either f or g is holomorphic on B,

Now using remarkable properties of the ¢-map we will reduce the com- '

pactness of TTTQ — TTg to a statement that WTQ""& — ngmb = () for every. B

¢$-map since the Bergman kernel k, weakly converges to zero as z goes to t'he'__”-i“ "

boundary S, of B,.

Theorem 2.23. If f and g are bounded pluriharmonic on B,, and T?Tgm

1%, is compact then

T3 Ts08 — THopges = 0 - __ (240)



for every ¢ € 9.
Proof Since ¢ € ® there is a net {w,} C By such that {¢,,} converges
to ¢ as |lw,|| - 1.

For fixed z in B, and h m H>(B,) we have

((Tfo¢T9°¢ TTqugod:)kz’ h) =
(Hfoqugog‘okzy h)
- 1§UI§I(H}o¢w o)
= llium(H}‘Hg(kz 0 Pk )y b O Qo ku, ).
Since k, o ¢, k., weakly converges to zero, the compactness of i} H, implies
(TrsgTs0s = Tiopgop)kerh) =0
Because H®(B,) is dense in L2(B,) we have
(TfquI;O'ﬁ - T}-o.gﬁg;.oqﬁ)kz =0

Since {k,} span L?(B,) this means that

TrgTo0p = Thopgep = O

for every ¢ € ®. The proof is completed.

Theofem 2.24. Let f and g be two bounded pluriharmonic functions on
B,. Then the following are equivalent:

(1) 5T, — 1%, is compact;

2) H}H, is compact;
fHg
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thml min{mazg(1 — ”3“2)]le

Flmazpen (1 = 1HDIV.F@)} =0 (2.41)

for all fixedr, 0 <r < 1;

(4)

l|z]l=1

fe, il 0.~ P(7 o )l lg o6 = Ploo g1} =0 24

lim min{Qp7(2), Qrg(2)} = 0; (243)

Izl -1
(6) Either fos or gog is holomorphic for every ¢ € ® where ® is the set
of ¢-parts.
Proof. It is easy to see that (1) is equivalent to (2).
Since f and g are bounded and plurtharmonic, it follows from Proposition
2.6 that there are functions fi, fs, ¢1 and g, in both the Bloch space and the
Hardy space H?(S,) such that

F=h+F
and
g = g1+ 9y
First we prove that (2) = (6).
If the semi-commutator T57T, — T4, is cémpaét, it follows from Theorems

2.22 and 2.23 that either fod or go .qb is constant for every ¢ € 9.

Second we prove that (3) = (4) .
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For w €E(z,r), we have

filw) = fi(2) = | V. faltw + (1 — )2)(w — 2)dt.
Thus -
a(w) = ()] < Omazg (1 = [s2)IV- (o)

Therefore

: Wfod=P(foddla=Nfrod— i@

< C|l folls(1 = r*)1/2 4+ mazg, (1 = [s[2)V2 fals)].-

Similarly we can also get

|190¢z —P(g°¢2)|l2 S

Cllgalls(l = r**)/? + mazg, ., (1 = [Is|*)|Vag2(s)Il

So (3) implies

limy |z min{||f o ¢, - P(fo ¢'3)”2a |Ig°¢z“

Pgo )z}

< C(llfells + llg2lls)(1 — 22
for any 0 < r < 1. So (4) is true.
Third we want to show that (4) = (5)

Since the Bergman kernel K(z,w) = (1 — (w, 2))™""! is the reproducing

kernel of the Bergman space, for every function he L2(B,) and z€ B,

h(z) = j h(w) K (w0, 2)d A(w).
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Then
oh
520 - —(n+1) / h(w)w;:d A(w).
Therefore
Oh oo
5201 < 0+ DIl

So we have

VRO < n(n+ Dllhls.
It follows from the definition of Q h(z) thatthere 1sa 'p:'b.s.ii.:i_\.fé'cons.tant C such

@r(0) < C|lAl,

Replacing h by ko ¢, — h(z) gives

Qhos. (0) < Cllho ¢ — h(z)]|2.

Since
 Qhos(0) = Qu($:(0)) = Qu(2)
then o . |
QW2 S Cllho b= hle
So we have S

min{Qp7(2), Qra(2)} <
min{Qfa(z)s ng (Z)} S
Cmin{||fa0 ¢s — fo(2)||2, {lg2 © b5 — g2(2) |2}

Therefore (4) implies (5).

We are going to prove that (5) =(6)



It is easy to check that
Qp7(4:(N)) = QP(f)oqbz()‘) pMIV(P(F) 0 ¢:) (M2

,EMWmewm-

for z and X € B,,. So (5) n*nphes (6)

(2.44)

Let ¢ be in the closuré_._(_)f { net {qﬁzka} of {¢,,} converges to

$. Without loss genera.l?i't.j.[_:'_iv_\r‘e_' ass hat f o ¢1s holomorphic. Let wy, be

in E(z,,7) such that
(1 = o, 1)V o, ) &m;m—wmvmm

There are Ay, in 7B, such that

Since there is an g > 0 such that"':f:_; i

AR
for A in rB, and any unit vector u in C" then

Qpr0psy, (Aka ) “IIV(fzoqﬁzka)()\ka)ll-
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In addition, because the Bergman metric is invariant under the action of

Aut(B,)} we have

Qb () = Qs O) = Q1)

2 (o AT I~ o ).

Therefore

IVz(f 0 ¢o J(Aka) | 2 #(-*)”ﬂl(v fz)(wku)ll(l - Ilwallz)

2
n+1

Since rB,, is compact there is a subnet {)‘kaﬂ} of {Ak,} converging to

= ()" (V2 (wr, )1 = Jlwg, 7).

~ some A in 7B, and the subnet {$r..} converges ¢. It follows from Proposition

2.8 that
1zlam ”V‘;(fo ¢zkaﬁ)( zkaﬁ)” ”V—(f ¢ ()\)”
A iy

Since fog is holomorphic we have o Sl

Iim [Vz(f o ¢ch,ﬁ)( .zkaﬁ)” - 0

S0 limy,, || Vz f(w,.,ka M1 = |Jwa, ]2y = 0. Thls contradlcts (2 44)

Using the Cauchy-Schwarz inequality we have

S, V) = A()lga(w) = ga(2)iIk. () P dA(w)

S ”f? © ¢z - f2(z)”2||92 o ¢z _92('2)”2




< (Ifells + llg2lls)Cmin{||f2 © ¢= = fa(2)ll2, [lg2 © b= — g2(2)l|2}-

It follows from Theorem that (4) implies (2).

Combining Theorems 2.23 and 2.10 we have that (1) implies {6).

2.7  Toeplitz operators on the Hardy space

In this section we still uée Tf .:t(.a denote Toephtzoperatoron the Hardy
space. The main task is to prove Theorems 2.25.'a,nd:‘;2=.26'. Smceevery fﬁn.c.tion
in H?%(S,) extends holomorphicly on B, and the evaluation at z is a bounded
linear functional on IT*(S,), there is a function S, in the Hardy space H?(S,,)

such that
f(Z) =< f, S, >H2(Sn) (245)

5 1s called the Szego-Hardy kernel and is , in fact,

Si(w) = (1 "(w . (246)

for z in B, and w in S,,.

Theorem 2.25. Let f and g be two bdl.i:nc:l'é_df'p.lﬁ.'r'iha.rmonic functions on
B,.. Then T5T,—T5, = 0 on the Hardy space if and only if f or g is holomorphic
on B,,. |

Proof . Since f and g are bounded pluriharmonic on B, there are fy, f2, 01

and g; in H?(S) for p > 1 such that

f=f+Fn 9=0+7,
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If the semi-commutator T%Ty — T, = 0, then
<{TF1y = 1%,)5:, 5. >=0

for all zin B,,. It is easy to verify that the right hand side of the above equation

gives

e,
/fzgz 5 _fz(z)gz(z) G (247)

On the other hand, it follows from [R] that the a,bove equa,tmn deﬁnes a
M-harmonic on B,,. So fg(z)g (z ) is M harrnomc function on Bn. Smce f2
and g; are in H?(S,) for any p > 1, Theorem 2.20 tells us that either f, or ¢,

is constant.

This means that either f or g is holomorphic,

Theorem 2.26. Suppose that ¢ and 1 are bounded pluriharmonic func-

tions on the unit ball. Then
TyTy = TyTy (2.48)

on the Hardy space of the unit sphere 1f and only 1f¢5and {'[’.:s_'a_,.tisfj.__onei__of the

following conditions:

) Both ¢ and ¢ are holomorphic on the unit ball 33,;

(1
(2) Both ¢ and % are holomorphic on the unit ball B,;
(3) Either ¢ or 1 is constant;

(4) There is a nonzero constant b such that ¢ -bi is constant.

Proof. The proof of the “if” part is similar to that of Theorem 2.25, so it

is omitted. It remains to prove the “only if” part.
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Since ¢ and 1 are bounded and pluriharmonic on the unit ball, it follows
from Proposition 2.6 that there are four functions f, g, h, and 1 in H**(5,)
such that

and

Every functions in L?(S5, ) via the Posswn _mtegra,l extend M harmomc

functions on the unit ball. So for the ﬁxed 7 in the um't'baﬂ and u m H 2( S )

we have

S. S,

1S 1151

[ (T — TN o) = () - W)

< (TyTy — TyTy) >=

So if T commutes with T, then

RN TR} |Sz(w)|2 - o TN
[, 0)al) b))y g-do(w) = f(2)52) ~ ha)TCE)

We know that if the right hand side of the above equation defines an M-
harmonic function on the unit ball, then f§ — il is M-harmonic. In addition,
f, g, h, and 1 are in H?*(S,), so Theorem 2.19 implies that f, g, h, and 1 satisfy
one of the conditions in Theorem 2.19. This implies that ¢ and 3 satisfy one

of the conditions of the theorem.




Chapter 3
Operaﬁors on theBargman—Fock-Segal space

In t.ﬁis chapter we characterize those functions f, for which f and fo 7,
are in L*(C™,dp), such that both H; and H7 are bounded or compact or in p-
Schatten class for p> 2. In [BC1,BC2] Berger and Coburn considered Hankel
operators on the Bargman-Segal space using the Berezin transform and then
characterized bounded functions f such that both H; and Hy are compact.
However on the Bargman-Segal space it is more natural and important to
consider Hankel operators and Toeplitz opé_ra,_to._rs. With unbounded symbols.

The commutator of the unbounded operator T,
(15, 15,] = H Hz;. (3.1)

can be extended a bounded operator even though T, is not bounded since it

is easy to check that Hz,; are bounded operator with unbounded symbol Z; on

Ccn.
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3.1 Boundedness

Using the Berezin transform we define a measure of mean oscillation

MO(f)(z) = {IfP() ~ 1F()F}/? (3.2)

Our main result of the section is the following theorem
Theorem 3.1. Suppose _‘bh_at_ f and If_p_f,;- are in L*(C",du) for every z in
C". Then both H; and Hy are bounded if and ahly if

SupeecMO()(2) < +00. 53

This result was conjectured by L.A. Coburn in {C]. In order to prove the
theorem we need the following lemmas.

Lemma 3.2. Suppose that f and for, are in L(C™, dyt). Then

|Hpk: |l =[If o 7. — P(f o 7)]2- (3.4)

This lemma was proved in [Str].
Lemma 3.3. Suppose that f and for, are in L*(C™,dp). Then
MO(f)z) < || Hk:|| + [| H7k]|. (3.5)
Proof. It follows from Lemma 3.2 that

[Hyksl| = ||f o 72 — P(fom)l

[ Hzk:|| = T o m. = P(F o m2)la.

Also it is easy to check that

MO(f)(z) = ||f o7 — f(2)|l2-

92




93

Combining the above equations we have
MO(f)(z) < If o = P(fom)lz + | P(f 0 7) = F(2)]la
< [Hgkl + [P 0 72) = F)le

Oun the other hand, a chIAn.gie o_f varlables gives

Thus

IP(om) = = IPFor.—PFordle
<\ o~ PT o)l = | Hzhall

Hence

MO(f)(2) < || Hyk.|| + || Hzk||,

we complete the proof.
In order to prove our main results we have to vie estimates of f(z) from
works on the bounded symmetric domain [BBCZ], {Z3].

Theorem 3.4. For fixed z in C*, we have

I%f(tZ)l < MO(f)(t2)li=l|(ll=ll + ©) (3.6)

for some positive constant C which does not depend on f or z.

Proof. Since the reproducing kernel of the Bargman-Segal space can b_e_." i

written as e+ we can directly compute 4 f(tz). For t in [0,1], z in C",

D ft) = [ J()Re( = ) w)) ().
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Since
[, kea(o)Fesw)dnlw) = 1
then |
[.® (d’“”(wwm(w))d#(w) ~o.
So

jﬂtz) L (w)—* (tz))Re( tz(w)ktz(u’))d#()

Using Holder inequality we get .:f S s

dktz

4 fu2) = Mo(s )(tz)[j L (w)Pdﬂ(w)]‘”
Since
ktz(w) = ei%ﬂ“ﬁufﬁ,

then

dk, Zw + ] 2||?

M () = k(- 2220,
Hence

15 ) = )lelt(”w” e

. i

1L f(t2)] < MO(F)(82)]|2||[fom | ee () (Rl )2 g 172
< MO(F)(t2)||2]) fon(Letditlollyz g, g1/2

< MO )(t2)ellon(lel + ol /2Pdpt < MO +©)

for some positive constant C which does not depend on f or z.
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Consequently we have the following corollary

Corollary. For z and w in C?,
7()~ Fw)l <. [ MO(F o m)(tw - 1)tz = wl (|12 = wl) +©)

for some positive constant C. .~ o

Proof. It follows from Theorem34tha,t :
=2tz ~ wll(lz — w] +C). .

flw =)~ FOI < C [ MO

Replacing f by for, implies
17(@) = @)l £ € [ MO(F o m)(otw — 2))dellz —wil(lz = w]] +C).

Theorem 3.5. If Sup,ecnMO(f)(2) is finite then both H; and Hz are
bounded.

Proof. For b in the domain of H, we have

Hib(2) = [ (F(2) = F(w)R.(w)bw)du(w)

which is an integral operator with kernel

K = (f(2) = f(w))K.(w)

By the corollary of Theorem 3.4, it suffices to check that the integral operator - .:' S -

T with kernel

M(z,w) = ||z — wl(lz — w]| + CIN K (w)
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is bounded. It is easy to verify
Jou Iz = wl|(l|z — wll + O)| K| Ku(w)* 2 dp(w)
= Kol fon 12 = w2 — w] + )™= dV (w)

= K o ol + ) ¥4V )

= O K, (2)1/?

where C; is a positive constant which does notdepend 011 sz the Schur
lemma, T is bounded. Thus H; is bounded. Similarly we can p.ro'v.e tha,tH};
is bounded.
As in [BC2], we define a unitary operator from L*(C™, du) to L*(C™, (%)2,,)
given by
Ug(z) = e~ g(2).3.7 (3.7)

The following lemma was proved in [BC2]: We will use it in the next sections.

Lemma 3.6. For b in L*(C7, (2;'5{‘;2—,, ,
UP My PU*b(z) = (2r)" " fc (|g|2 P w)b( )dV(

where

— _ ztw|2 L
o, zv0) = (2myme L [ gwpenp(AE T i = Sy ).

From the lemma we see that

)b(w)dv(w).:f i

|UPM,p PU*b(z)| < (27)" f el P




Theorem 3.7.  For f in L2(C",dp), if [f]? is bounded, then M,P is

bounded. Moreover

: llePnsom?Tuog 2.4

Proof. Let BN be the ball Wlth center. (- and radms N For any g in

L*(C™, dp), we are gomg to estlma,te the foHowmg 1ntegra..l. o
Sy [F121 § 9(w)e 2= 12y (o) 2~ eI 2y

= Jax [ l9()llg(w)l f(2)[2

ep{=lle = (wt w)/21/2 = Jlu — wl/8 = lul]*/4 — )/ 4)dV WV (w)av(z)

= [ T1g(u)llg(w)l fp, 1f(2)Pemp{—l|z — (x + w)/2]|2/2}dV (z)

exp{~|ju — wlf?/8 ~ luelj2/4 — ”w,|2/4}dv(u)dV(w) ST

S NFPllo £ S la(@)lg()] %
exp{—llu — w)2/8 — |Jull2/4 — [Ju||? /4}dy(u)dv(wj:__

< IPHllf £ lg(w) Peap{—|lu — w]?/8 — uu“?/g}dV(u)]l/?g' sih
T lg(w)Pep{=lu— w][*/8 — ||w|]*/2}dV (w)]/?

< N1 PllcolfetHP /2219 2.
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Let N go to +oo, then
15 PglI* < 7Pl le™ M2 1
50 My P is bounded and

04,2 < NP1
Theorem 3.8, If SupzechO(f)(Z)S 'ﬁn_i_te,__then both H,_7 and H}-_?

are bounded.

Proof. Let g=f-f, then -~ |
197(2) = fom 1 () = Flw) P 5 aV (w)
< fon |f(w) = J(@)2e 0V (w) + fon |F(2) - Fw) P dV (w)

< MO(£)(2)? + [on(Supuecn MO(f)(u))?

zewll?
.IJ_2Ld

Iz = wl*([}z — w|| + C)?e” V{w)

< C’lSupzegnMO(f)(z)z.

Hence Lq"__l5 is bounded. Tt follows from Theorem 3.7 thatMgPlsbounded So
is H, since H, = (I — P)M;P. Thus H, is bounded. Using the same method
we can prove that Hy is bounded.

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. If both H; and Hy are bounded, it follows

from Lemma 3.3 that

MO(f)(=2) < || Hyka|| + | Hzkall < | Hyll + || 5
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since k, is normalized.

On the other hand if Sup,ec» MO(f)(2) is finite, Theorem 3.5 says that
both 117 and H—: are bounded. In addition, Theorem 3.7 implies that both
H; ;and H 7 are bounded. So H 3 a.nd H— are bounded.

For our convenience in the next sect1ons we define BMO,,(C™) by

BMO.,(C") = {fefﬂ(c“ dmwupzemm( £)(z) < o0}

The seminorm for f in BMODO(C’"‘) ié déﬁhed by it

“f”BMO=SuPzeCnM(.)(f).(Z). - (3.9)

3.2 Compactness

First we need the following well-known lemma.

Lemma 3.9. For some measure dv on C*, if the integral operator on
L3(C",dv) with kernel K(z,w) is in Lz(C" x C™, dv x dv), then the integral
operator is a Hilbert- Schmidt operator

Consequently we immediately see tha_,t thefollowmg ihtégfal operator
h(e) = [ xr()(J(2) = F())e™ h(w)dp(w) (3.10)

is a Hilbert-Schimdt operator on L*(C™, d,u) where xr(z) denotes the charac-

teristic function of the ball in C* with center 0 and radius R.

Lemma 3.10. A convolution operator T on L#(R") is given by

— f K(z —w)h(w)dA(w) = K * h(z).



If K is in L}*( R™), then

KTl < (1K1

Lemma 3.11. Suppos_e' _th'a',_t fis in BMOoo(C™). If lim,eo MO(f)(2) =
0, then S

hm |f f|2(z) = 0 A (3.11)

Z2—00

Proof. For z € C™, we have

11 = T1z) < MOUNX(=) + [ 1(2) = Fw)Pe™ 5 dA(w).

Since

[ Tl + €55 dagw) < oo

then for any € > 0, there exists R> 0 such that -

fc,,, JBOR lw|*(lwll + €)% dA(w)

Using Theorem 3.4 we have

fou 1(2) = Fw)Pe™ 5" dA(w)

< Jon iz — w|f? (IIZ—WII + O)*supuels MO (f)(u)e

A )
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< fpem lhz — w]P(l|z = wl| + C)*x
SUPuele MOM f)(w)e™ 7 dA(w)+

Jor B 2 — w]l”(l_[_’é._.% wl| + 0% . s

.
Supue[z,w}Moz(f)(u)e o d.A

< fs.p) lwl*(wll + C)?x
- w“2
SUPnz—u;igﬁwHMO2(f)(“)e 2 dA(w)+
—Nlwll?
Jen o,y 0l (lw]] + C) supuecn MO*( F(w)e 5 dA(w)

< SUP”u—z]]gRMO(f)z(“)Cl + €|l fiBaro

where C; = [[[jw]|(fuo]l + C))llp- Thus

T soolf — FI2(2)

< EHf”%MO' :

Since ¢ is arbitrary, then
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Theorem 3.12. Suppose that f is in BMO,(C™). If

lim MO(f)(z) =0, (3.12)

then both H;_; and H~—-—. a,te'Compa‘ct
Proof. First we prove that Tlgl“ 18 compact prov1ded that |g|2 is bounded
and lim,_., |g]2(z) = 0. It follows from Lemma 3 6 that for b e L}(C™,dV),

Up M|9|2P U*b(z)= th(1g|2,z’w)b(w)dv(w) Y

Let Tg be the following operator

Trb(z) = fcn XR(z)h(|g|2,z,w)b(w)dv(w)..

It is easy to check that the integral operator has the kernel in L*(C™, dv).

Then Lemma 3.9 implies that T is compact for any R> 0. Now we estimate
(U PMygp PU* = Ta)b(2)| < (1= xn)(2) fom &5 [gP(52)|b(w) |dA ()
< (1= xr)(2) Jpiem € e P (2) b(w) | d A (w)+
(1 = xr)(2) Jon/Bam € S (g (252) ()| d A ()

Le=wl?

< (1= xR)(2)suPu-si<z 912 (w) fpmy e 3 |b(w)]dAw)+

(1 = xR) 8o Jom /805y e-“f'T”E|b(w)|dA(w_).

We know that the norm of the convolution opera,tor _ o S

/ Ly dA(w)




is Hﬁ’_lL;Jl llz. We choose r so large that

S 1
dA(w))? <e.
(/CWB(O_J)_?. :_4.:. (w))
Then
|(UP My PU* = Tr)|| < €lllgPloo + | Allsupys—uiriitizrlol* ()
Hence

T Rescol| (UP Mg PU* = TR} < ll{gPllon + oo CrlaP ()AL
< ellg1]loo-
Since ¢ is arbitrary, then

}LI'{.IO “(UPML‘JP PU* - TR)H = (.

In addition, Tg is compact, thus UPM|,2PU* is compact. This implies that -
Ty 18 compact.

Let g=f- f . Then Lemma 3.11 implies that
Jim lgP(=) = 0.
We have just shown that Ty is compact. On the ot‘her hand
HiH, = Tiyp — 1,15 < Tigp-

Then H, is compact. So H, ; is compact. Using the same method we can

prove that H}__j is compact
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Theorem 3.13. Suppose that fis in BMO,. If lim,_..o MO(f)(2) =0,
then both Hy and H? are compact.
Proof. For be Hz(C",d‘u), Hf can be written as

Hjb(z) = ](f(z) () ) ()

Since for any &, we can ﬁnd R> 0 such that E .

Jonsmom Hwn <||wn + c)w o) <e

using corollary of Theorem 3.4, we get S

XGn/B(o,R)(Z)IHfb(Z)! <
Jon s 12 = wl*(llz — w]] + C)2SupyezmM O(F)(w)|b(w)l|e T |dp(w)+
Xom1Bo.R)(2) fo(em 12 — w*(lz = wl| + C)* Supuezm M O(F)(w)b(w)ileF |du(w)

<||fllparoe’s fom(1 = X0 (2 = w))llz = wl|*(f}z = w]| + C)*Ib(w)| | i

w 2 Z—u 2
e e gy (w)+

Lz Sl e
SUP||z—u||<r |22 R fB(z,r) et [Jz — wi?(|lz — w|| + CYb(w)le™ "+ e 1 —dV(w).
Now we consider the following operators

Tb(z) = ™ [ (1o ()=l +OPbw)le 5 5 v (w)

and

Db(e) = % [z~ wlP(lz -l + CFlbw)le ¥ e v ()
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It is to check that these two operators T, and T, are equivalent to some con-

volution operators on LZ(C”,dV) w1ththe norms satisfying

and

Since for any €, we can ﬁnd r> 0 such that

fon/B(o " Hw“ (”w" + G)zdﬂc ]

we get ||T1]] < e. Let
Trb(z) = XR(Z)Hf'b(Z)

So Tr is a Hilbert-Schimdt integral operator. Thus
(H; — Ta)b(z) = (1 = xn(2)) [ (F(2) = flw))e™ bw)du(w)
We have shown above that
17— Trll < CSupyjs—uli<riizizrM O_(._f)(#_) + E_Ilf 820
-

EJR—H>O||I{_]F - TR”
< limyoyoo MO(f)(u) + €l flBmo

< ¢|| fllamo

Since ¢ is arbitrary we get limp .o [|[H;—Tg|| = 0. So Hj is compact. Similarly

we can prove that H? is compact.




Combining Lemma 3.3 with Theorem 3.12 and Theorem 3.13 we get the
main result in this section
Theorem 3.14. Suppose ..that fis in BMOs. Both H; and Hy are

compact if and only if hmz-—-»-oo M O(f (z) = 0.

Now we define VMO (c") { f e BMO |hmz_,oo MO(f)(z) = 0}. In
[BC2] it was proved that for fEL°°(C“ :d,u) f 1s in VMOOO if and only if H;
is compact. However this is not true for Ha,nkel operators Wlth unbounded
symbols, for example, MO(Z)(z) = o1/ 2, :.so H; is bounded but not compact
and H, is zero. This example shows that the Ha.nkel operators w1th unbounded
symbols are quite different from the Hankel operators with bounded sym‘ools

To end the section we deal with the Hankel operators with symbols co-
analytic on C".

Theorem 3.15. Suppose that f and for, are in H*(C",du). Then

1). H7 is bounded if only if f is an affine function, i.e. there are constant

vector A and constant B such that f(z)=(z,A)+B.

2). H— is compact if and only if f is constant

Proof. By Theorems 1.1 and 2.6 we are gomg to compute MO(f)(z) 1f f 1s-__

analytic on C",

Since f is analytic on C®, for any fixed z in C*, we can write f(z-l—w)as a

power series of w
fz+w) = Y f(w

where « is multiple index and {*(z) is the a derivative of f. Then

MO(f)= Zlf"‘ (@ Fllw]z — 1£(2)]
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So if Sup,ecn MO(f)(2) < co then

Supecn 3 1 () w?[l3 < oo.
) a#0

Therefore the norm of the gradient of f is bounded on C". So the gradient is

constant since there is not any bounded nonconstant analytic function on C™.

Thus there are constant vectorAandconsta,nt B such that

so we prove 1) since if f is an a.fﬁne functlon MO(f)(z) is bounded
I lim; 0o MO(f)(2z) = 0, then the gradient of { goes to 02 as 7 goes to 0.

Thus f is constant. It is easy to see that H; is zero if f is constant.

3.3 p-Schatten Class

Lemma 3.16. Suppose 2< p < 400 and Ag is the integral operator on
L*(C™,du) defined by

Agf(z) = jcn G(z,w)K.(z,w)f(w).'du(w) .
If
/ jc' |Gz, w)[P| K (z, w)|Pdp(z)dp(w) < +oo (3.13)
then Ag is in S, where K(z,w) is the reproducing kernel.
Proof. The case p=2 is well-known. If G(z,w) is bounded on C" x C™,

we are going to show that Ag is bounded. On H?*(C",du), we know that the

reproducing kernel

K(z,w)=e¥.
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So

l=4? _ el Iz — w]?

A6 £ () < Gl [ 1F(0)lezp(F- = v

As in Section 2, we have prc'):‘..r:éd that
el < IGlls [ eV (w)

Now we consider the linear md}iping i o

P X O+ 17(C X ) B )

given by

where dn = |K(z, w)|*du{z)dp(w). Then

F: LY D xD,dp) — 5,

PiIeDXDd) =S
are both bounded. By interpolation [BL], we have |
FiL(C" x G dn) — S,
is also bounded for all 2 € p < co. In particular if
L L 16 w)PIK (2,0} Pdu(2)du(w) < oo

then Ag isin 5,.

Similarly we can prove the following lemma
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Lemma 38.17. Suppose 2< p < 400 and Ag is the integral operator on
L*(C™,dV), defined by

Aaf(?) = [ 60z, 0) fw)d(w)
/ i fc lecs w)|Pe—L1—’”"3dV(z)dV(w) < oo (3.14)

then Ag isin S,. R e
Theorem 3.18. Suppose thatfls in BMOOO(C'") and p> 2. Iffc.n MO(f)r(z) <
o0, then both H, ;and H 7 are in 5, “class. . -
Proof It follows from Lemma 3.6 that for b in LZ(C’"‘ dV) a,ndg in
L*(Cm, dy)

UPMioe PUHE) < [ e S [gR ) ) Jav (),

In order to to show that Tig is in S, 75, we prove the integral operator

‘ Ae=wl2 o 2+ w
Th(z) = [ e S5

)dV (w)
to be in S,/;. From Lemma 3.17 it suﬂ'ices to show thai; _
// m 2“’) o dV(z)dV( w) < oo

Let g = f - f, then Theorem 3.4 implies
l9P(2) S MOM(F)(2) + fou |f(2) ~ Flw)2e= 2 gy ()
< MO(F)(2) + Jon fo MO(f)*(z + t(w — 2))|| 2 — w]]?x

(Iz = wl| + €)2e 5L gy (w)at




So

Som foom @plz('g—“‘;ﬂ)e‘de(z)dV(w)

< Jon Jon [a"" (w)e=IP ¥ (w)V (2)

< o Jon MOU P ) F AV )V (4

i fon Jon fon s MOV (= + )l (el + OFx

cop{~2E x|}V (:)dV (w)aV (w)d < Gy fon MOV ()t

Ca Jon Jon fon Jo MO(S)(2)olP ([l + €Y7
emp{—ﬂlfu — Iz = tw — u||*} x dV(2)}dV (w)dV (u)dt
< Oy fon MO(F)P(1)dV (1) + Ci fom MO(f)(2)dV (2)

< Cs Jon MO(f)P(w)dV (w) < 0o

where €1, Cy, and (5 are some positive constants.

On the other hand it is well-known that
H;Hg = T|g|2 -T,15 < Tiglz' (3.15)

Thus H, is in S,. So H,_jisin S,. Similarly we can prove that H?_—_? is in 5,.
Theorem 3.19. Suppose that { is in BMO,(C™) and p> 2. If

- MO(f)*(z) < o0, (3.16)
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then Hy and H? are in S,,.
Proof. Since for b in H*(C™ du), the Hankel operator can be written as

the following integral operator

H7(2) = [ @ = fepeFaute),
Lemma 3.16 tells us that to prove the theorem it is sufficient to show that
Ve - R )me 3 |2f7#(w)d#(z)

It follows from Theorem 3.4 that

L 7@ = FolPleF Pauo)duts)

< [ [ [ MOy tttw—alle—wlPlr—wl+0pe L v (2)av (o)

S / . f . fo MO(f)(z + tw)|w|P(|lo] + O)pe‘”%&dV(z)dV(w)dt
< (L, MOUPEAVE( [ el (ol + Cye™ 4 aV (w)) < oo.

on
In the same way we can prove that H}- is in S,.
Lemma 3.20. Suppose A is a positive operator on H2(C™,dy), then for
p=1
tr(A?) = jc < ARk, > V()

> [ < Ak, k, >P dV(2).

on
The proof of the lemma is easy so we omit it. Summarizing all above
results we state the following theorem.

Theorem 3.21. Suppose that fis in BMOy(C™) and p> 2. Both I

and Hy are in p-Schatten class if and only if

- MO(f)(z) < co. (3.17)
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Combining Lemm.a.;.":o.‘.'_g a,ndLemma, 3.20 gives the proof of the only if part

of the theorem.




Chapter 4

Some function algebrasontheumt disk

In this chapter we will study the Bourgain algebraé'bf AOP, H °°+C’OP,
HCOP and the countably generated algebra H*[.A] where A is a subset of

the complex conjugate of H. Some properties of subalgebra A of C(M) are
given if A, = C(M). Thin Blaschke products play a very important role since

they have good properties on the Gleason parts.

4.1 The maximal ideal space of H*(D) and

Blaschke products

The maximal ideal space of H*°(D) is defined to be of multiplicative linear
maps from H* (D) onto the field of complex numbers. If we think of M as a
subset of the dual of H*(D) with the weak-star topology, then M becomes a

compact Hausdorff space but is not a metric space.

If w is a point in the unit disk D, then the point evaluation at w is a ) T

multiplicative linear functional on H*, and so we can think of w as an element ;'.-:
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of M. Thus we wil] freely think of the unit disk D as a subset of the maximal

ideal space M. Carleson’s Corona Theorem [Car2] states that the disk D is
dense in M.

By using the Gelfand transform we can think of H* as a subset of C(M),
the continuous, complex va,lued functlons on the maximal ideal space of H,

In fact Hoffman {Hol] showed that C(M) is the algebra gencrated by the

bounded harmomc fnnctlons on the unltn.dlsk D Smce Jones [J] proved that

interpolating Blaschke products separate the max1mal ldeal spaoe M of H*,

the Stone-Weierstrass Theorem tells us tha.t C(M ) is a C algebra. genera.ted

by interpolating Blaschke products although it is not known Whether H o0

generated by interpolating Blaschke products as a uniform algebra.

For ¢, 7 € M, the pseudohyperbolic distance between w and T, denoted
by p(, ), is defined by
ple,m) = sup{le(/)l: f € H,||f|| < 1,and (f) = 0} (4.1)

The Gleason part of ¢ is denoted by P(y), and is defined by
Pg) = {r € M: plp,7) < 1}, (42)

For each ¢ € M, Hoffman [Ho?] constructed a fundamental canonical

map L, of the unit disk D onto the part P(). This map is defined by taking

a net {we} in D such that w, — ¢ and defining

fobufz) =lim (et (43)

for z€ D and f € H*® | the above limit exists and is independent of the net -

{ws} provided that w, — . Budde (Bu] extended the map L, from the :
maximal ideal space M onto the closure of the part P(p)in M.
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For each bounded harmonic function f, the composition fo L, is bounded

and harmonic. Moreover
(DED™f 6 Ly, )(z) — (DEDTf 0 Ly)(2) (4.4)

uniformly on any comp&éf subset of D provided that ws — .
Viewing H* functioﬁ_s as E.:(_).li:ﬁ_i._ﬁﬁbﬁ'_s'.functions over the Shilov boundary

(4.5)

of H*, we can represent an element ¢ of M:'::é,"s"i_:ri'_c'_égra,:ti:dh'_ff_)v'(_er X against a

positive measure dji,:

f(p) = f fdp,. .- . (46)

This representation allows us to extend ¢ to L*(8D) in such a manner that

the Gelfand transforms of functions are also continuous on M. The measure
dp, is called a representing measure, and its support is known as a support
set, denoted by Suppp,. The support set Suppu, is a weak peak set for H*
([HoL).

An interpolating sequence is a sequence {w,} in D such that for every
bounded sequence {c,} of complex numbers there is a function fe H* such
that f(wn) = ¢, for every positive integer n. An interpolating Blaschke prod-

uct b is a function on D of the form

2w | w, — 2
bz)= || ———— 4.7
(9= T el o= )
which is associated with an interpolating sequence {w,}. Carleson [Carl]

proved that a sequence {w,} C D is interpolating if and only if
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An infinite sequence {w, } in D is called thin if

il ] 1 (4.9)
me=1,msn mWn
as n— oo, The Blaschke product associated with a thin sequence is called a
thin Blaschke product. ¢ € M — D is called thin if ¢ is a cluster point of
some thin sequence. For an inte.rl:.).ola,ting Blaschke product b associated with
{wn}, we use Z(b) to denote the (ﬁ'log_ﬁ_%'e_ of {w,} in M — D. Hoffman proved
that for every thin point ¢ in M — D.,' ité: support ':sét is maximal, i.e. it is not
properly contained in any other suﬁp'ort"se.t:.. So for dnj}'two distinct points

X, y in Z(b), where b is thin, Suppu, NSuppy, = ¢.

4.2 AOP, H* + COP, and HCOP

First we need the following proposition due to Izuchi.

Proposition 4.1. For any infinte sequence {z,} CZ(b) where b is a thin
Blaschke product, there is sequence {f,} C H* such that
L|falyn)}| > 1 — ¢, for some subseduence {yn} C {z.} and g, — 0;
2. fn = 0 weakly in H*>; iy

Bl <1 L

The proof of Proposition 4.1 involves the fact that the support set of a
thin point is maximal and any support sets are weak peak sets for H*. In fact
using the idea in [AG2] Gorkin anci Izuchi have a stronger result as follows:
(For completeness we include a brief proof.)

Proposition 4.2. Let {¢,} be a sequence in M such that for distinct m

and n, ¢, and @, are contained in distinct Gleason parts. Then there are a
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subsequence {¢,, } of {¢n} and a sequence {f,} in H* such that

ilon)] > 5
and RRGIRRRS
”'_-Zifg )l <2

for all z in D.

Proof. By the nested infefsé’ctiéﬂ property,there exists ¢ in M such that

pe n {(pmﬁpﬂ-f-l,

n=1

Our hypothesis implies that ¢, € P(cp) for a,t most one n. Thus from the
proof of Theorem 3 in [AG2] we see that there are functmns F and G’ such

that for some subsequence {¢,, } of {®.},

2 an(z)ﬁ G;(2)] <2

and
Fk((lo.n.k) = 1
and i
k-1 N
1—(HG Sonk)l <"
7=1

Let fy = Fi(z) [1}=] G;(2). Then

Z]fk )| <2

and

1= Jilen,)] <

So !fk(‘nonk)l > %
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We often use the followmg prop031t10n in [3, 16] which describes the prop-

erties of thin Blaschke products on parts.

Proposition 4. 3 _Suppose tha.t b is a thin Blaschke product. For any ‘

Gleason part P(m), el_th'ei}_ is cgi_nSt_'@ht'_'With modulus 1 on P(m} or there is a

real number 8 such that

for zeD. :
Axler and Gorkin [AGl}proved t'.he-foll wing proposition which is one of

the interesting results on algebras on the 'umt 'dlsk

Proposition 4.4. Let { be in H*. Let {wn} be a thln. sequence'm D and

let b the associated Blaschke product. If
lim an (1= Jwa*)| £ (wa)| > 0 (4.10)

then the complex conjugate of b is contained in H*[f]. |

It is easy to see that neither AOP nor H*+COP contains any complex ‘
conjugates of interpolating Blaschke products. We first show the following
theorem which implies that neither (AOP), nor (H* + COP); contains any
complex conjugates of interpolating Blaschke products.

Theorem 4.5. Suppose that f is in H®. If its complex conjugate f is
in either (AOP);, or (H* 4+ COP);, then

zEng(l _ |Z|2)f'(z) = 0. (411) o

Proof. Here we deal with just (AOP), since from the following PI"O_Of:':“-r SR

will see that it is easy to get results on (H*™ + COP),.




Step 1. First we showtha.t (AOP), does not contain any complex conju-
gates of thin Blaschke products

Let b be a thin Bla;sc.h._.l_;:jef. product Suppose that the complex conjugate

1.} which weakly converges to 0 in AOP,

bis in (AOP),. For any'fséﬁuen_ce'_"

there is a sequence {gn}cAOPsuc that

Then for a,nSf Gleason part P(m),
[Bo Lo Lm—gﬂmus .
Since X = M(L*(ID)) is contained in M, then
B0 Linfa© L ~ g0 L|lx < &

It follows from Proposition 4.2 that bo L,, has modulus 1 on X. So

120 Lin =50 Ign © Lt <'€ni -

Thus on M-D
fn = bgnllm-p < eq.
Of course on Z(b) we have
1 fallze) < €n. (4.12)

On the other hand it follows from Proposition 4.1 that we can find & sequence
{fa} C H® such that

L|falyn)l > 1 — &, for some y, €Z(b) ;

2. fn — 0 weakly in H*,

e



For the sequence we have

I fallzy =1 —e,

This contradicts (4.12)"-.-'.'80': far we have proved that (AOP), does nct contain

the complex con;ugates of a,ny thm Biaschke products.

Step 2. Suppose that (AOP:).;, conta,ms the complex conjugate f of f for f
in H* such that

“Tlim su
z—aD p

Without loss of generality we maychoosea,thmsequence {wn}m D suchtha,t
Ban(1 — i |2)] 1

Let b be the associated Blaschke product. it follows irom. Proposition 4 that
H*[f] contains the complex conjugate of b. So (AOP);, contains the conjugate

of b since (AOP), contains H°°[f] But thls contradlcts Step L.

Let By, denote the little Bloch space Imrnedla,tely we have the followmg

corollaries.
Corollary 4.6, (H*® -FC’OP);, NH*> = (AOP}y, N H® = By N H>.
Corollary 4.7. Neither (AOP), nor (H* + COP), contains the conju-
gates of any interpolating Blaschke products.

The following lemma appeared in a proof in [CJY]. For completeness we
state it again here.
Lemma 4.8. Suppose that {f,} is a sequence of H® functions such that

w1 fa(2)| < M for all z in D. Then f, — 0 weakly in H>.
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Proof. As in [CJY], if ¢ € (H*)* and a, = sgn < @, f > then for any

positive integer N we have:

E'_<_.‘P’fn I—'Zan<90;fn

P Sl Dot -’fn_ll < lvllv

n""l

So < ¢, f, >— 0 since the serles:.}:‘” -

<@ f ;>'3f converges.._._

Theorem 4.9, (H> +00P),, and (40P .re:proper subset of HCOP.

Proof. We still deal with only the case .tha,t (AOP
HCOP.

a prOper subset of 5

Suppose that there is a function fe (A0 ™. -1

HCOP Then_
there is a thin part m such that foZ, is:. = foLmIX It
g is not in H* 4 (/(8D), Chang-Marshall’s Theorem (18, 12, 19]) tells us that

H*>[g] contains the complex conJugate of an mterpolatmg Bla.schke product qb -

Since f is in (AOP), and the Hoffman rna,p Lm is b".'ect've for any sequence.

{f.} € AOP weakly convergmg to zero there .
that

8520 L = 90 0 Bunllx < 605 0
as n goes to co. So
”fn Q Lm - ngn o} Lm”X. S En-.

Since f, 0 L, and g, 0 Ly, are in H* and X is the Shilov boundary _of H°° > -
then

”fn oL, — ¢gn o Lm” < &p.




Let {2} be the zeros of ¢ in D. Beurling’s Interpolation Theorem ([Ga])

implies that there is a sequence {F,} of H* functions such that
L. Folzr) = bk

2. > |Ful2)| < M for all zin D

for some constant M. Since m is thin, siicre is a thin Blaschke product b such

that

L‘?tfnanOb. Then L
So1a(2) = S [ Fu(ble))f < M
for all z in D. Lemma 4.8 tells us that fo — 0 weakly = . here is a

sequence {g,} in AOP such that

%é_:rn o Lm - ¢gn a Lmli —<- En-

On the zero set Z(¢) U{z." we have: RTINS T e

I lzter s < &0 S )
But £ 0 Ln() = Fu(28) = Sy 50 [|fll 508 oy = 1. this contradicts (4.13).
So g € H® + C(dD).

We can naturally e "~ to D, denoted + G, which is harmonic in D,
Let F'= foL,(z) —G(z). It is casy to see that F vanishes on X. Now we are
going to prove that F is in Co(D). Otherwise, suppose that there is a sequence
{2} C D such that

l.z, — oD




2.1F(z,)| > 6

for some positive constant §.

First we have to prove that for any sequence { f,,} weakly converging to 0

in AOP there is a seq_ueneej {gn}C AOP such that

HGf,,,oL gnoLm||<6n—>O

Since g is in H* + C’(@D) then G 1s m'J:H ol + U C’ In add1t1on, polynomials
of 2 and the conjugate of 7 are dense in UC so 11; is suﬂiaent to show that for
any sequence {f,} weakly converging to 0 in AOP a,nd a,ny sequence {5,,,} of

positive numbers converging to ) there is a sequence {g,} C AOP such that
”—;[fn © Lm —gn 0 Lm” S En

for all positive integers 1. For simplicity we simply estalish the case for which
[=1.

Let G, = M”'—L(—l Then G, is in H oo a,n{i G converges to 0 pointwise
on D since fol,, converges to 0 pomtw1se on D So both f oLm and (., converge
to 0 uniformly on any compact subset of D. On 6D we have Z f,,, 0 L — G =
e~ f,.(m). Hence

“?_fn o] Lm — Gn”BD — (.

So
| fa 0 Lm — 2G| — 0.

Clearly
IZfn o Ly —Z2G,)| — 0.




It follows easily that
[Zfa© Lin —gn 0 Lm|| S &4
iflet g, =G, 0b.

So for any sequence { fn} weakly convergmg to zero in AQP there is a

sequence {gn} C AOP such that

”anOL QN_OLm”<5n._"0

On X , F vanishes. So ||gn0 L ||‘-X-’5 é,;..f-smee -g};,_c_sL,;;f e" Héé‘,' then [|gno Ln||x <
€,. Thus R

1Ffo 0 Lnll < .

On the other hand we can find a sequence { f,} weakly converging to 0 in

H*° such that
fﬂ. o Lm(zk) = Onk

Then |F(2,) fn © Lm(2,)] 2> 6 for all n. So 6 < 2e,. This is impossible since e,
goes t0 0. Hence fo L, — G =F € Co(D). So fo L, € H® +UC for every
thin part m. So far we have proved that (AOP), C HCOP.

On the other hand it follows from Proposition 3 that IICOP contains the
complex conjugates of every thin Blaschke product. However Theorem 4.5
tells us that (AOP); does not contains the complex conjugates of any thin
Blaschke pfoduct. So (AQOP), is a proper subset of HCOP,

In [GSZ] we showed that (H* + UC), = H*® + UC. Now we can prove
the following theorem

Theorem 4.10. (HCOP), = HCOP.




Proof. It is sufﬁaent to show: t_ha.t (HCOP);, C HCOP. Let f be in

(HCOP), and m be a thm pomt _:Wrrte

show tha,.'g"' is 'm:H + C(@D) If g is not in
H> + C’(BD) Chang—Ma,rsh.all’s theorer

:lmphes” that the Douglas algebra

D roduct b. Since

! '?;onve_rgmg to zero

then

“fn oLy - bgn o Lm”X <én — 0

Because foo L, and g, o L,, are in H*® 4+ UC, on the maximal ideal space

M — D of H® + C(9D) we have

”fn o Lm - bgn o Lm“M—D S En

So on Z(b) A
Ifno Lmllzey e (414)
However since Proposition 4.3 implies that any two points in Z(b) lie in

different Gleason parts and

p(Ln(7), Lm(#)) = p(r,0) = 1

for 7 and ¢ in Z(b) it follows from Proposition 4.2 that we can find a sequence
{fn} in H* such that

3
| fa 0 Ll 2y > 1 (4.15)
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and

fjl ful)l < 2.
By Lemma 4.8, the sequence {f} weakly converges to 0 in H°. Thus {4.14)
contradicts (4.15). So g is in H°° + C(0D). We extend g to be harmonic on
D, denoted by G. Let F '_——'i";foi'L G' We claim that F is in Co(D). If not we
may choose a thin sequence { zn} in D satlsfymg IF(zn)I > & for some positive
constant é. Let ¢ be the Blaschke product a,ssoc1a,ted Wlth zeros {z,}.
Flrst we note that in the proof of Theorem 4 9 we:have proved that for

any sequence { fn} weakly convergmg to'O.'m H o there is'a sequence {g=} in

H** such that
”an oL, — gn © Lm” <e, — 0.

So for the sequence {f,} there is a sequence {G,} in HCOP such that
|F fr oLy — Gy oLm“ <e,

since f is in (HC’OP);, As F vamshes on X we have

|Gwo Lin ll-'z‘:ffzse,;:.-. :

If we extend G, o L, |x harmonic on D denoted by Hn,
| Hall £ €. - .
1Ffno Lulimep < 2¢,.

Hence

2en
[0 Linflze) < ==




But, as in the above argument, we can find a sequence {f,} such that £,

weakly converges to 0 in H® and

”fn 0 Lm”Z(é) 2

|

So f o Ly —G'is in Co(D). Hence f o Ly, is in H® -+ UC for every thin point
m. Therefore f is in HCOP. RNy

4.3 The Bourgain algebrasof H°

Let A be a subset of the complex conjugate of H®. We considor the
algebra H*[A] which is generated by A over H. So we can think of H® [A]
as a closed subalgebra of the algebra C'(M) of continuous functions on M.
Since A is a subset of the complex conjugate of H* it is easy to see that the
maximé.l ideal space of H*[A] is M. This implies that the aigebra.s on the
disk cannot be determined by their maximal idt_a’é;l space although the Douglas
algebras are determined by their ma)ﬂma,l]dealspace by Chang-Marshall’s
theorem. We say H*[A] to be countable genéra,téd if A is'a countable subset
of the complex conjugate of H*. In the section we show a countably generated
algebra H>[A] contains the conjugates of every thin Blaschke products in its
Bourgain algebra . To do this we use Bishop’s antisymmetric decomposition
theorem ([Ga]) as in [AG1].

A subset S of maximal ideal space of a uniform algebra A is called an-
tisymmetric for A if every function g in A which is real-valued on S must be

constant on S.




Proposition 4.11. (Bishop Antisymmetric Decomposition) Let A be a

uniform algebra on U. Let { E.} be the family of m_a,xima,l sets of antisymmetric

for A. The E, are closed disjoint subsets of U whose union is U. Each E, is a

p-set. If fe C(U), and f|Ea 6 Alg, for all E,, then f € A.

Let A be a subset of the complex con_]uga,te of H ® We define

E(A)={m¢ .M f o Lm zs not constant'for some f € A}

First we are gomg to: st‘f’éé

Lemma 4.12. For ©

intersection SN E(A) of
point.

Proof. Suppose ti
f € A such that SN E(/

it follows that thereis a: =

D such that

Let ¢ € 5. Now we p:
If this is not true there

Then there is an oper

{2} = {#z=} NV and

b can be factored as th

So

Since b, and by are f=

(4.16)

n a result_' in- Ithe'proof of Theorem 1in [AG).
qaxnna,l antlsymmetrlc set S of H [ A], if the

4 E(.A) is not empty,- __then_S__'__con_ta,ms only one

i E(A) is not empty. Then there is a function
1ot empty. From the proof of Theorem 4.5 [AG1]

srpolating Blaschke product b with zeros {z.} in

se Z(b)

at S is in the closure of the Glea,son part P(p).
yint T € S but 7 is not in 1n n the closure of P(p).
borhood V of ¥ such _tha,t:-_VﬂP(go) = ¢. Let
+e Blaschke product associated with {z,, }. Then

duct by by of two iﬁt.er}.)ola.ting' Blaschke products.

- SN2 US N Z().

~ of the inerpolating Blaschke product b, we can




use the fact that Hoffman ([Ho2]) showed that Z(by) and Z(b;) are disjoint.

Thus either S C Z(b;) or S C Z (b;) since S is, con'lected This contradicts
P € SNZ(b) and 7 € SN Z(by) . So § P((p)

As b is an interpolating Blaschke product, there is a n_:on"vanishing function

F and a Blaschke product ¢ with zeros { zﬁ} mH = onDsuch that

bo L,,,(z)

In order to show that § = {(p} it is suﬂiment to doesnot vanish

on the maximal ideal space M and {zn} {0}

Since F is nonvanishing on D, if F vamshes a,t some pomt me M - D,

then F vanishes on the part P(m). Then bo L,(m) = 0. Thus Ly(m) € Z(b).
So P(L,(m)) is nonirivial. P. Budde ([Bu]) showed that L] P(m) 15 a bijection
from the part P(m) onto the part P(Ly,(m)). So b vanishes on P(L,(m)).
This i¢ impossible since b is an interpolating Blaschke product.

Because P(yp) is a nontrivial part, Hoffman ([Ho?]) proved that there are
an interpolating Blaschke product 1 and constants 0 < 6 < 1 a.nd 0 <n<l
such that s .

P(p) (Yom : bb(m)| < 8} € {Ly(2) : J2] < ).
Since b is an interpolating Blaschke product, if {z

n} 18 infinite, then |z,| —

1 as n goes to co. So if [z,| >y, then

[(Ly(2n))] > 6.

Thus for 7 in Z($) we have




So

SN{m : (m)| < 6} C (Ly(Z2(BYHzn}) N{m : [1b(m)| < 6}

={Ly(2za) 1 |2n| < ?7}

Hence S{m : [¢(m)| < 6} is ﬁmte Thls set i closed and open in S. Since 3

is connected, thus § = {cp}

Theorem 4.13. Let A be a countably genera,ted suba,igebra of C(M)

and b be a thin Blaschke product If b 1s 111 the Bourgalﬁ a,lgebra, Ab, then b

is in A.

Proof. Let A be a countable subset {E} of thecomplex conjuga.te of H™.
Let A = H*(A). Define |

E(A)={me .. jolL, isnot constant for some f € A}.

Let b be the thin Blaschke product associated with {z,} in D such that its
complex conjugate is in the Bourgain algebra A,.

Step 1 We are trying to show that Z(5) CE(A) If _t.his is not true, there
is a point m in Z(b) but m is not in F(A). Then fdr'éll n , f,,l o L, is constant
on D. o

For z in D we define

gni(z) = (1= |2 f0(2). (4.17)

Hoffman showed that g, ; extends continuously to the maximal ideal space M.

Define 7
G =Y 19na(2)] (4.18)

n.l=0 2'""H ”g"o’ “
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Since for a € D and f in H* there are constants ¢ such that
(fo'L, )“’(0) = Z cralF k(l ,zp) f(a) (4.19)

then every functions i in A are consta.nt on the part P(m) 1f a.nd only if g,, ;(m) =

0 for all n, | if and onIy if G(m).«- O

Asmisin Z(b), there is a subsequence {Zn,,} of {z_n} such that lim,, G(z,,) =

0. Let b; be the thm Blaschke product a.ssocxa,ted W1th 3'{'znk} Then for any

m in Z(bl), we have G(m) = 0 so_every fimct:o

P(m) for m in Z(by).

.cone_t_a,nt_ n the pa,rt

On the other hand since H> [E]CAI,, it’ follows from Prop031t10n 4 4 that
the complex conjugate b; € A,. So for any sequence {F } Weakly convergmg

to 0 in A, there is a sequence {g.} in A such that
1B F — gulf < 20 — 0.
Hence for m in Z(b,),
010 L Fpo Ly —gno L] “<_. £n — 0,

Thus
“bl OLanOLm — 0n oLm”X <e, = 0.

By Proposition 4.3, b, o L,, has modulus 1 on X. So
”FﬂoLm_blongnoLm”X <é&n 0.

Since every function in A is constant on the part P(m), we have F, o L., and

gn 0 L, are in H*, So

”FﬂoLm_’bloLanoLm“ <ég, —0.




If m is not in Z(5), then by o Ly, is constant with modulus 1. Thus we
still have that
”FnOLm’—bIOngnoLm“ < e, — 0.

So

IIF ~ blgn”M D<€ (4.20)

'On the other hand 1t follows from Propos1t1on 4 1 that there is a sequence

{Fn } such that F, weakly goes to 0 in Hoo B
|MWB@)>IPEW

But (4.20) implies that
| Fallze1) < En-

So this is not possible. Thus Z(b) C E(A).

Step 2. Using Bishop’s antisymmetric degomp:os_ition theorem we will
show that b € A. |

¥ SNE(A) is not empty, _Lemma 4. 12 unphes that S contams ]ust one
point.. Clearly bs € Als.

If SN E(A) is empty, in Step 1 we have proved that Z (b) C E(A) Then
b cannot vanish on S. Because S is a weak-peak set for the algebra A, the
maximal ideal space of the Banach algebra Als equals S. Thus b|s does not
va,nish on the maximal ideal space of Alg, and so 1|5 € Als. Since S does not
contain any zeros of b, Proposition 4.3 gives us that b must have modulus 1
on 5. Thus

bls = %15 € Als.

This completes the proof.
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In [GIM] Gorkin, Izuchi and Mortini showed that for any Douglas algebra
if its Bourgain algebra By is L°(AD), then it must be L=(8D). Here we will
give a different proof which leads us to study subalgebras A of C'{M) such
that its Bourgain algebra A; = C(M):

Theorem 4.14, Let B be a Douglas a,lgebra,. If its Bourgam algebra in
L>(0D) is L°°(3D) then B equa,ls Lm(aD)

Proof Suppose that there 1s a Douglas algebra B such that B{, L*(0D)

but B does not equal L°°(8D) Chang Ma,rshall’ Theorem teHs us tha,t there

exists an inner function b such that 1ts complex conjugate b is. not in B Let
K = {z € M(B): |bz)| < 1} ; S (421

then b(K) = D. Otherwise there is a ¢ in D such that c is not in b(K). Define

b—c

I= .
1-%¢b

(4.22)

Then I is an inner function and invertible on M(B), Chang-Marshall’s Theo-
rem implies that I € B. So b € B. This contradicts that b is not in B.

Let b(m,) = 2, for m, € K such that {z,} is.: an interpolating sequence
in D, Beurling’s Theorem tells us that there is a’ sequence {f.} in H* such

that
Jalze) = buk
and

i [falz)] < M forall ze D

for some positive constant M. Let F, = f, o b. Then

3 Fu2) 1—ern )| <M

n=1




It follows from Lemma 4.8 that F, weakly converges to 0 in H®. Let ¢ be
the Blaschke product associated with the interpolating sequence {z,}. Now

we consider
dz'.staD(qS 0 b_Fn, B) = distan(F,, (¢ o b)B)
> S’uple 0 b(mk)l = Sup: Fa(z)] = 1.

This means that ¢ o b is not in Bb So Bb does not equal L*(dD). Hence B

must be L*(0D) if its Bourga.m algebra. Bb equals L“(BD)

"Since X is a subset of the mamma,l Ideal space M of H J for every sub~

algebra A of C(M), Alx can “be v1ewed as a suba.lgebfa of L“(@D)

Theorem 4.15. Suppose that A is a subalgebra of C’(M) a:nd contains
He. If its Bourgain algebra A, is C{M), then A]x must be L*(3D).

Proof Since A contains H*, then B = A|x is a Douglas algebra. By
Chang-Marshall’s Theorem we just show that complex conjugates of interpo-
lating Blaschke products are in B. Otherwise let b be an interpolating Blaschke
product such that its complex conjugate bisnotin B

Let s

K ={ze M(B): §(z)] <1}
then (K) = D. Otherwise there is a ¢ in D such that ¢ is not in b(K). Define

b—c
I = ——,
i-%ch
Then I is an inner function and invertible on M(B), Chang-Marshall’s Theo-
rem implies that 7 € B. So b € B. This contradicts that 3 is not in B.

Let 8(m,)} = z, for m, € K such that {z,} is an interpolating sequence

in D, Beurling’s Theorem tells us that there is a sequence {f,} in H* such




that
Frlze) = b
and

E]f,,, |<Mforallz€D

for some pos1t1ve constant M. Let F f,,, 0 b Then

'n.-—l

SIn z)i___— Z_Ifn(b(z) l<m

It follows from Lemma 4. 8 tha.t F weakly converges"to 0 in H o Let é be

the Blaschke product assoc1ated Wlth the mterpola,tmg sequence {zﬂ,} Slnce

Ay equals C(M), then ¢o b is in As. So
distp{p 0 bF,, A) — 0.
On the other hand we have that
distp(p o bF,, A)
> distx($ o bF,, B)
= distx(F,, (¢ o b)B)
> distg(fn 0b,(¢0b)B)

> Squ|fN(b(mk))l = 1.

This contradicts to that ¢ o b is in As.

Sincé L*(8D) is not a countably génerated Douglas algebra then from
Theorem 4.15 we get the following corollary

Corollary. There is no a countably geﬂer?x_téd subql_gebra such that its

Bourgain algebra is C{M).




Since Jones proved that interpolating Blaschke products separate the
maximal ideal space M of H*, we see that the algebra C'(M) of the contin-
uous functions on M is genereted by the complex conjugates of interpolating
Blaschke products over H . o we afe going to stud..y the subalgebra H*[A]
such that its Bourgain algebra is C(M) _fof'"s'ome subset A of the complex

conjugate of H®™,

Theorem 4. 16 Let A be a, subset of the__ complex conjugate of H*

and A = H*® [.,4] If the Bourgam algebra A(, is, C (M ), then A contams the

complex conJugates of every thln Blaschke products -
Proof. We use Bishop’s antlsymmetrlc decompomhon theorem as ini the
proof of Theorem 4.13 to prove Theorem 4.16. Let b be a thin Blaschke

product. First we are going to prove that Z(b) C F{A) where
E(A) = {m: fo Ly, is not constant for some [ inA}.

If this is not true there is a point m in Z(b) such that every function in
A is constant on the Gleason part P(m). It follows from Proposition 4.3 that
boL, (2) =ezforzinD.Let {2,} be an interpolating sequence in D. Define
w, = e ?z,. Then bo Ly(w,) = z,. By the Beurling interpolation theorem
there is a sequence {f,} in H* such that fu(2) = 6, and 130, |fu(2) < M
for some positive constant M. Define F,, = f, 0 b. Lemma 4.8 implies that F,
weakly converges to zero in H*™. Let ¢ be the Blaschke preduct associated
with {z,}. Then dist (¢ 0 bF,, A) goes to 0 as n goes to co.
But

distps(p o bF,, A)
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> distpimy(¢ 0 bF,, A)

> distp($ 060 Ly fnobo Ly, Ao L,,)
> distx(¢obo L fnobo L, H®)
= distx(fa0b0 Ly, (dobo L) H®)
= distp(fr0b0 Ly, (dobo L, )H®)

> Supg|fa0obo Ly(we)| = 1.

This contradicts that dist (¢ o bF,, A) 'gOes‘ to 0 as n goes to oo, So Z(b) C

Let S be any maximal antisymmetric set of A. We are going to show that
Blg is in Als.

If SN E(A) is not empty, it follows from Lemma 4.12 that S contains only
one point. Clearly b5 is in Als.

If SNE(A) is empty, so is SN Z(d) since we have proved above that
Z(b) C E(A). As in the proof of .'I;heorelz_n 4._13__*;_n.re_:s_¢e th_?;t_‘_gls. = tls € Als.

By Bishop’s antisymmetric decomposition theorem we have that o € A.
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