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Abstract of dissertation
L*-Analytic Torsions, Equivariant Cyclic
Cohomology and the Novikov Conjecture

by
Donggeng Gong
Doctor of Philosophy
in

Mathematics

state University of New York at Stony Brook

1992

In this dissertation we study L*-analytic torsions, equivariant cyclic coho-
mology and the Novikov conjecture from a functional analysis point of view,
closely related to geometry and topology. We discuss the L2-analytic torsion

functions for homogeneous spaces of Lie groups. The properties of this torsion
function are similar to that of the Ray-Singer analytic torsion. We introduce
_both L*-analytic and K-theory torsions for (semifinite) von Neumann alge-
. bras, which share most properties of geometric ones. An equivariant bivariant

~cyclic theory is also developed here. We prove two of the remarkable properties

i




of this bivariant cyclic theory, namely the excision and Chern characters for
equivariant p-quasi-homomorphisms. We construct the Chern characters for
both odd and even p-summable Fredholm modules and for even #-summable
Fredholm modules. We obtain the pairing of equivariant cyclic cohomology
with equivariant K-theory. We also find an index theorem for equivariant
f-summable Fredholm modules and a higher index theorem for homogeneous
spaces. A higher equivariant index map is defined, which is considered as a
possible tool to solve the pairing version of the equivariant Novikov conjecture
proposed in this dissertation. Finally, we give a survey of the current status of
the Novikov conjecture and prove an equivariant Connes-Gromov-Moscovici
theorem and equivariant Novikov conjecture for groups acting on euclidean
buildings, This dissertation lays a foundation for new research areas which we

state in the section on Open Problems.
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Introduction

The starting point of this dissertation is Cyclic Cohomology. Motivated by
the work of Carey-Pincus [CaP 1}, Douglas-Voiculescu [DoV] and Helton-Howe
[HeH], Connes [Con 1-3] developed Cyclic Cohomology as a powerful vehicle
to drive index theory beyond the scope of the Atiyah-Singer index theorems.
Meanwhile, Loday-Quillen [LoQj and Tsygan [Tsy] (see also [FeT]) developed
:.:(;yclic homology from a Lie algebraic homology and additive K-theory point
of view. The important properties of cyclic {co-)homology are Wodzicki’s
excision theorem [Wod 1-2] (see also [Gong 2] for a six term exact sequence
periodic cyclic cohomology), Chern characters and the pairings with /-
éory. Because of the analogy between cyclic {co-}homology and K-theory,
ost results about cyclic (co-)homology are obtained in parallel to those of K-
v. In particular, cyclic (co-}homology was extended by Jones-Kassel [JoK]
he bivariant case. Our motivation in the study of cyclic (co-)homology here
:p'plication to equivariant index theory. Keeping this in mind , we develop
I an equivariant version of (bivariant) cyclic (co-thomology, which is
ated by our work [Gong 1-2]. We obtain the Chern characters and the
with equivariant K-theory which are used to get the equivariant index
Qur further motivation for developing the equivariant cyclic(co-

gy 18 the hope that we may obtain a higher equivariant index theorem




and its application to the equivariant Novikov conjecture. This point needs to

be fully investigated elsewhere.

The important application of cyclic (co-JYhomology to the Novikov con-

jecture ([CoM 1], [CGM 1]) also stimulated our study on this well-known
conjecture, This is the main topic of Part III. To see the link of the Novikov
conjecture with topology, geometry and functional analysis, we use one chapter
to survey the current status of the conjecture. In particular, this conjecture is
related to the Thurston geometralization conjecture. We employ equivariant

Hilsum-Skandalis technique to obtain equivariant Connes-Gromov-Moscovici

theorem on the homotopy invariance of (higher) signature with coeflicients in
(almost) flat C*-algebra bundles. This result is a crucial tool for proving the |
equivariant Novikov conjecture for groups acting on euclidean buildings and
enables us to improve the Rosenberg-Weinberger theorem about the equivari-
ant Novikov conjecture for groups acting on manifolds of nonpositive curva-
t'l_ire. Our method is quite different from the usual one which relys on the

Miscenko symmetric signature invariant.

: Because the discussion of the Novikov conjecture involves the signature
perators on the universal covering spaces, the recent work of Carey-Mathai

aM], Lott [Lott 3] and Liick-Rothenberg [LiiR] motivates our study of L2

bras to consider the L2-analytic torsions for homogeneous spaces. By bor-

qutic torsions in Part [. We use a semifinite trace on type I/, von Neumann
.I.Ig_-: this geometric idea, we introduce L2-analytic torsion for n-tuples of ;
|

ting elements in semifinite von Neumann algebras. The case of finite

umann algebras is treated in [GoP 1}, where we find also a new homeo-



topy invariant for compact Riemannian manifolds by using this new analytic
torsion and the result in Part III of this dissertation. We also consider the
K-theory torsion for n-tuples of commuting elements in finite von Neumann

algebras.

The dissertation is organized in the reversed order of the above discussion
as follows. We begin with the L?-analytic torsions in Chapter 1 where a torsion
function on homogeneous spaces is introduced to avoid the positivity condition
on the Novikov-Shubin invariants. The main properties of the torsion function
are stated in Theorem 1.1 and Propositions 1.2 and 1.4. A formula for the
torsion function is given in terms of group structure and harmonic analysis. We
~also compute this torsion function for hyperbolic spaces. In Chapter 2 we use
the geometric idea of Chapter 1 and follow [GoP 1] to discuss the determinant
and L?-analytic functions of n-tuples of commuting elements in semifinite von
Neumann algebras. The main results are Theorems 2.1 — 2.2 and Propositions
2.6—2.7. We compute the torsion function for compact Riemann surfaces. The
general case of Riemann surfaces of finite volume with cusp singularity will be
_’_m‘eated in another paper. We consider in Chapter 3 a K-theory torsion for n-
uples of commuting elements in finite von Neumann algebras. The advantage
of this K-theory torsion over the analytic one is that there are no restrictions
in the definition. The main properties of this torsion are given in Theorems
3*.1 — 3.4. In single operator case, the torsion and operator are determined

ith each other up to certain factors and weak isomorphisms.

The second part of the dissertation is about equivariant cyclic (co-)homology

1d- index theory. We follow [Gong 1-2] to define equivariant bivariant cyclic




theory in Chapter 4. Our goal is to construct bivariant Chern character for

equivariant p-quasi-homomorphisms without using the excision property of

bivariant cyclic theory, inspired by [Nis]. In Chapter 5 we carry out the

construction of the pairings of equivariant (entire) cyclic cohomology with

equivariant K-theory and the Chern characters in equivariant (enfire)cyclic
(co-)homology. These pairings and corresponding Chern characteré are used,
motivated by ([Con 3], [JLO], [GeS]), to get an index theorem for even equiv-
ariant #-summable Fredholm modules. Chapter 6 is devoted to the higher
equivariant analytic index map for Riemannian manifolds. An equivariant
Alexander-Spanier cohomology is developed here. The main results of this
. chapter are Theorem 6.1 and Proposition 6.3. We should point out that this
_chapter is motivated by the desire to establish the higher equivariant index
theorem and to use it to verify the pairing version of the equivariant Novikov
;ionjecture for certain groups, which we will investigate elsewhere ( the nice
book of Berline-Getzler-Vergne [BGV] might be helpful for this problem). But
for homogeneous spaces we are able to prove the higher equivariant index
theorem in Chapter 7, since this Is a special case of the general higher equiv-

ariant index problem and we can transfer the problem to the one studied by

f_:annes-Moscovici [CoM 2].

- The third part of the dissertation is about the Novikov conjecture. Begin-
Ing with a survey of this conjecture in Chapter 8, we present two pictures of
he conjecture: group picture-which tells us which groups satisfy the Novikov
onjecture; and manifold picture- which gives us the manifolds whose funda-

nital groups satisfy the conjecture. We will see that many conjectures, which
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are the ones of current most active research areas, are proposed in the same
fashion as the Novikov conjecture. In particular, for discrete groups realized
as fundamental groups of 3-dimensional compact manifolds the Novikov con-
jecture is related to the Thurston geometralization conjecture. Chapter 9 is
the most technical part of the dissertation where we carry out the equivariant
Hilsum-Skandalis technique. The main results of this chapter are Theorems
9.1 — 9.2. These results together with Kasparov-Skandalis theorem [KaS| en-
.able us to prove in Chapter 10 the equivariant Novikov conjecture for groups
_:'a;cting on euclidean buildings. We also remove an important condition in the
‘Rosenberg-Weinberger theorem [RoW 2]. Finally, we end the dissertation with

a list of open problems which form a natural continuation of our work.




Chapter 1

L?- Analytic Torsion Functions For

Homogeneous Spaces

The Ray-Singer L?-analytic torsion [RaS 1] on a compé,ct Riemannian
manifold M has been extended to the covering space M of M. One uses
'thg trace on finite von Neumann algebra generated by the fundamental group
1(M ) to define the L2 —analytic torsion on M. From the functional analysis
oint of view, this situation involves only the finite von Neumann algebras.
-hére are other geometric cases which are related to type /1,,-von Neumann
ebras. In this chapter we study such a special case, namely homogeneous
__c: s of Lie groups, where semifinite traces on type I1,,-von Neumann algebra
a. central role. In section 1.1 we define the {-(regularized) determinan,
"Ct-ion for equivariant elliptic differential operators on a homogeneous space
with G a unimodular semisimple Lie group and H a compact subgroup of
ome elementary properties of this determinant function are discussed. In
on 1.2 we use the (-determinant function to define an L?-analytic torsion

T(G/H, ) on G/H. The Ray-Singer torsion is a special value of this




torsion function at A = 0. T(G/H, ) has the main properties of the Ray-
Singer torsion. The main point in introducing a parameter A in T(G/H, }) is
to get rid of the decay condition on the trace of the heat kernel of the Laplacian.
Such a condition is necessary if one wants to define the L?-analytic torsion on
non compact manifolds [Lott 3], though there is a conjecture that this decay
- condition is always satisfied for the covering spaces of compact Riemannian
‘manifolds (cf. Open Problems). But this parameter in some cases makes
the computation of L*-analytic torsion more complicated. In section 1.3 we
- 1se harmonic analysis to give a formula for computing the L%-analytic torsion
- function when G/ H is the universal covering of compact symmetric spaces of
egative curvature. This formula can be easily obtained from {MoS]. We then
dé,lcula,te in particular the L2-analytic torsion functions for hyperbolic spaces.
' he computation of the torsion function for G/ H being the universal covering

's"p__'a@:e of locally symmetric spaces with finite volume remains to be done.

.. (-Determinant Functions

let  be a unimodular Lie group with countably many connected compo-
ts and H a compact subgroup of (. Denote by M = G/ H the homoge-
1s'space of left cosets gH,g € . Suppose that « is a finite dimensional
'y représentation of [f on a complex vector space E. Let € be the asso-
. omogeneous vector bundle over M, £ = G x4 F, and C®(M.£) (resp.
)) the space of all C"°-sections (resp. with compact support) of £.

he right (resp. left) regular representation R (resp. L) of G on C°°(G)




defined by (R(R))(9) = F(gh) (resp. (E(W)F)(g) = F(h19) ), 9, € G, and
the diagonal action of H on 0°(G) ® F, one has C=(M, £) ~ (C~(G)® E)*
and C®(M,€) = (C>(G) x E)¥. Choosing a Haar measure dg on G and the
normalized Haar measure dh on H, we can endow M with a G-invariant mea-
sure dg/dh and F with an H-invariant inner product, and then define a global
inner product on C°(M, £). Denote by LM, E) the completion of C°(M, )
with respect to this inner product. We have L?*(M, £) = (L*(G) x E).

We recall below some notations. Let W™ (M; &) be the space of all differ-
ential operators P of order n in L*(M,€) with distributional kernels Kp in
(C~(G x G) @ Hom(E, E))A*H consisting of all elements K € C~®(G x
G) @ Hom(E, E) such that a(h)K(zh,yg)a(g)™ = K(z,y), z,y € G, and
g, h € H. Let U (M;E) (resp. W(M;E)) be the subspace of U"(M;E)
consisting of all P € ¥™(M;E) with (resp. G-) compactly supported kernels
Kp, i.e., Kp(z,y) # 0 only for {(z,¥) (resp. z7'y) in a compact subset of
G x @ (resp. G). A differential operator P € U™(M;€) is G-invariant if
L(¢)PL(g)™! = P,¥g € (. The kernel of a G-invariant operator P is de-
termined by an element kp € ((C~°(G) ® Hom(E, E)Y"*#. This means
that kp satisfies kp(z) = o(h)K(h 'zg) o(g)™,Vz € G,g,h € H, and
(e,y) = kp(z~'y). Lel U*(M;&)C be the space of all G-invariant oper-

P
ors in U"(M; ). Thus an operator P € ¥7(M; £)% can be written as

Pu = Av(Pu o /GL(g)lSL(g)_ludg, u € dom(P),

13 = fP € VL(M; &) with a cut-off function f. Note that f € CP(G)
alled a cut-off function if (1) f = 0; (2) f(gh) = f(g9),9 € G,k € H; (3)




One of the basic notations in this chapter is the trace T'rg in type I, -von
Neumann algebra Eo(£) which is defined below. Let B(L*(G)) be the space
of all bounded operators on L*(G) and let Rg be the commutant in B(L3(G))
of the left regular representation L. There is a faithful semifinite normal trace

Trg on Ry determined uniquely by

Tra(R(e) B(e)) = [ lo(o)l*dg

for ¢ € L¥G) and the right regular representation R with R(e) € B(L*(G)).
Let Rg(E) be the commutant of the restriction to L2(M, £) of the representa-
tion L& I of G on L*(G) ® E. There is therefore a natural trace on Rg(£),
enoted also by Trg, which is obtained from the trace T'rg on Re and the
ordinary trace on End(F).

It is an important fact about the trace Trg that it is linked in a simple
Wa,:jf'with the ordinary trace T'r on B(L*(M,E)). There is faithful semifinite
ormal operator valued weight Avg from the positive part B+ (L*(M, £)) to

¢ extended positive part RE(E) where T'rg can be extended,
Avg(T) = /G L(g)TL(g) dg, T € B*(L*(M,£)),
f]:_la,t Tre(Ava(T)) = T'(T) for T' € BYH{L*(M,£)). Here the domain of

Ave) = (AT, : Th € BHLA(M, £)), | Ava(T)]| < 00, A € C,m € N}

i=1




for any cut-off function f € CP(G).

With these preliminaries we now prove a basic lemma.

Lemma 1.1 Let P € U°(M;E)Y be a selfadjoint elliptic differential operator
bf order n with positive definite principal symbol oo(P) on T*M \ M.

(1) The spectrum Sp{P) of P is contained in [—a, co) for some real number a,
(@) Tra(e®) ~ TRt 05, 0,

where m = dimM.
.::Proof. (1) let f be a cut-off function such that
P = to(P) = [ L(g)fPL(g)"dy.

Let Gy = Supp(f),Mes(Go) < oo. If for some real number ey we have

Pu,u) > —ao(u,u),u € dom(fP), then

(Puw) = [(FPL(9)™u, L(9) ™ u)dg
> —ao [ (L(g) ™, L{g) " u)dg = —aomes(Cl) ull.

. 1t suffices to prove that P = fP is bounded below. Since the principal
ibol oo(fP) = foo(P) > 0, we can construct ¢y € U= (M; &) such that
| foo(P). Let Q = Q5Qo. Then oo(fP — Q) =0 and fP—-Q ¢
(My; €) for some compact My C M. Here S*(Mj, £) is the usual symbol

The rest of the proof is to estimate fP — Q. This estimate follows from

2) Note that part (2) of the lemma means that [Tre(e™)—>74 t o ay |

} as t — 0. This assertion is proved for the Laplace operator on M

10




in [CoM 1]. We follow ([CoM 1}, {Gil}) to include a proof here for the general
case.

Let U C M be a relative compact open set which serves also as a coor-
dinate chart of M. Let O be the region in C bounded by two infinite rays vy
beginning at —a—1: vy = {z =z+iy € C:z+(a+1){t—1),y = +tay,t > 0}
for some a; > 0, such that Rt ¢ O. Then (P — Al)™! is an analytic function
in . But (P—AI)~! is not an elliptic operator. Yet given a cut-off function f
with support in U mod H we can choose as in ([Gil] P.52) an analytic family
of pseudo-differential operators Ry on / whose kernel is suppotted in U x U
such that fRy = Ry and op(fRa(P — AJ) _ f) ~ 0, and in terms of the norms
|i--llxr on Sobolev spaces Hi(U, £),

IFRy — f(P =ADHhew <a(L+A)* e, (1.1)

here ¢ is the constant independent of A € U. Using the nuclearity of the
"Clgsion operator I, from L%(U,&) to Hp(U,E) for k > m = dimM, we get
Q= FRA(P — ) — § is a trace class operator on LU, &) and | Qu| <
kllzr | @k, Since Ry and Q) are compactly supported, we can extend them
ially to M, denoted also by Ry and Qx. Now let F; = 5 f, ,, ¢ Rad).

the Cauchy theorem and (1.1), we have
1

| £ wfe_"PHTT = | é———,e_”‘(R,\ —~ f(P -~ A8 7,
. vy LT

. A d

< = A N —k-1

= QW/%'e e+ ) {
1

< —m] e M erlA A, ast 0. (1.2)
2w vy

rmore, we know that R is a smooth operator ([Gil], P.53). @, is thus
Avg) N dom(Tr) and (1.2) shows that fe ' & dom(Tr). Clearly,

11




fe ' € dom(Avg). Therefore,

[Tree ~TrE) < ||Ava(fe™ — Blr, < 20|feF = Edlr,

IA

co(t), t =0,k >0, (1.3)
On the other hand, we have the asymptotic expansion [Gil]

TrE; ~ Z tj/”aj,t — Q.

i>—m

- This together with (1.3) proves part (2) of the lemma. Q.E.D.
Let us remark that by (1.1) and the proof of (1.2),

| B — fe ||z < eto¥9) ¢t — 0,

for arbitrary ¢ > 0 and constant ¢(e) > 0, provided that two rays vi are equal
torv = {A € C:dis(} [—a,00)) = £}. We see therefore that e Trg(e™F)| <
2\:)_6_(%’\_““ for RA > a. It is thus appropriate to define {-determinant func-
o . of P.

éﬁ:'nition 1.1 Let P be a G-invariant elliptic differential operator on M with
itive definite principal symbol go(P) on T*M \ M. Suppose that the spec-
'Sp(P) of P is contained in [—a,00). Then the {-determinant function
P, \) of P is defined by

d
log DC(P’A) = _E‘;(CP(S: )‘))3=0:
5,A) = iﬁ et rg(e ™ )e A dt, RA > a, with T'(s) = [0 t* le~ldt.

'k 1.1 The integral defining (p(s, ) is convergent for RA > a as we
before. By Lemma 1.1, (p(s,A) has a meromorphic eztension to

extended function is analytic near s = 0. £(Cp(s,A))sm0 is well




We state the basic properties of the {-determinant function in the follow-

_ing proposition.

| Proposition 1.1 Let P be a G-invariant elliptic differential operator on M
with positive definite principal symbol oo(P) on T*M \ M. Suppose that the
pectrum Sp(P) of P is contained in [—a,c0) for some a > 0.

1) log D¢(cP, ) = log D¢(P,2) + (p(0,2)log(c), ¢> 0, R\ > ac,

2) log De(U*PU, A} = log De(P,)) for G-invariant unitary operator U on
L*(M,E) and R\ > a.

Proof. (1) We have

1 00
Cep(s,A) = _FT;)_/U ts"lTrg(e_tp)e_i’Vcc—Bdt

—s A
= ¢ CP(S: o )
ﬁce the result follows.
(2) follows immediately from T'rg(e”V " FU) = Tro(e~tf). Q.E.D.

L?-Analytic Torsion Functions

Ve begin with the Ray-Singer analytic torsion for a closed oriented Rie-
nian manifold M of dimension m. Let M be the universal covering space
M. Denote by AI(M) and A7(M) the spaces of L* — j forms on M and M,
Let I be the fundamental group m (M) of M and (2(I') the Hilbert space
.a&:e integrable functions on I'. T acts on #(T") via the left (resp. right)
epresentation L{g} (resp. R(g) ). The finite von Neumann algebra Ry

ed by R(g),¢g € T in B(I*(T)) will play an important role via, its finite

13




trace Trr(R{g)) = 8;.. In fact, let F be a fundamental domain for the action
of T on M, we have AY(M) ~ A(F) ® I*(T), and the space of [-invariant
bounded operators on Ai(M) can be identified with Rr @ B(A(F)). Thus
the trace T'rr on Bp together with the usual trace on B(AJ(F)) produces a
trace (denoted also by Trr) on Rr ® B(A(F)). Let [kj = de; + jj_lcfj_l be
the Laplace operator on M,j = 0,1,...,m, with domain equal to the Sobolev
space of all j-forms on M. Here d is the exterior differential on A. Aj is
T-invariant and selfadjoint and for ¢ > 0 e~t8i is a bounded I-operator on
A(M) and has a Schwartz kernel on M x M. Furthermore, Trp(e™"2) < co.

Let A; = dtd;+d;_d%_, be the Laplace operator on M, and P; : AY(M) —
KerA; (vesp. P;: N(M) — Ker(A;)) be the orthogonal projection. Denote
by Al = AJ-|(KE,,AJ.)J. (resp. /:}.; = Aj]([{e,.&j)J_). By the Seeley expansion theo-
rem for heat kernels, we get that the zeta function (; = ﬁs) I ts_lTr(e‘m; )dt,

defined for s — 1 > m /2, extends to an analytic function near s = 0.

Definition 1.2 The Ray-Singer analytic torsion T(M) of M is defined by

log T(M) = 3 $(~1¥j¢}(0)

T(M) depends in general on the Riemannian metric on M. But we can define

the torsion T'(M) of M as

= 1. o :
log T'(M) = 3 (1)’ (53¢;(0) +log |47 (n')/ (W)},
J=0
where 7' and k7 are two orthonormal bases for H/(M) = KerA; and for
HI(M) = Kerd;[imd;_,, A’ : H(M) — HY(M) is the de Rham map given

by Al(a) = f, o for & € KerA; and j-chain v in M, A%(y?) is a basis of H’(M)

14
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and |A?(p?)/ (k)| stands for the determinant of the change between the two
bases. Then T"(M} is independent of the metric on M [RaS 2].
To recall the definition of L*-analytic torsion on M [Lott 3], we need the

Novikov- Shubin invariants given by
a; =sup{fB; =2 0: Trp(e_t‘&;) ~ O(t‘ﬁj/z) as t—o0},7=0,1,...,m.

They are homotopy invariants [GrS].
Definition 1.3 The L2-analytic torsion T(M) of M is defined by

log T(H1) = 5 > (~1¥(¢ia(0) + [ 47 Tree ) ),
i=0 !
Provided the Novikov-Shubin invariants are positive, where
m

I
2+’

1 1 A
o=y J) ¢ TS, R >

also extends to an analytic function near s = 0

The condition that a; > 0 is imposed to guarantee the convergence of the
integral in log 1" (M ). This condition is satisfied for hyperbolic manifolds and
for M with abelian fundamental groups [Lott 3]. W. Liick has conjectured
this is always true, i.e., a; > 0,7 =0,1,...,m.

We now come to the L%-analytic torsion function for the homogenecous
space M = G/H. Let « : H — Aut(E) be a unitary representation of H on

finite dimensional vector space E. The induced representation Ind%a of G on

L*(M, &) is given by

((IndGa)(9)e))(@) ¥ Ruulg)(e)z) = ¢(gz),

p € IY(M,E) = {pelLl*G,E): p(gh)=oalh)p(g)},



where & = G x,, I is the homogeneous vector bundle associated with a. Let P
be the tangent space to M at eH. Then (L}(M,£)®p ANVP)H can be identified
with &-valued L* — j forms. Define the differential operators d(«) and d*(a)
by
da) = Y Rnales) ®e(ey),
i
P(0) = Y Ruals;) ®i(ay),
where {z;} is an orthonormal basisj of P and ¢ (resp. ¢) is the exterior (resp.
interior) multiplication of A*P. Then we define the Laplace operator A;(a) =
di(a)di(a) + di—i{a)di_i(e),§ = 0,1,...,m. Let Al(a) = Aj(e)|xera o
By Lemma 1.1, we can define the L*-analytic torsion function on M as follows.

Definition 1.4 The L*-analytic torsion function T(M, \) of M is defined by

log T'(M, \) = 5 (1) jlog De(Ale), X), RA > 0,
§=0
where
d 1 el —iA )y —
log D¢(Aj(a),A) = _E"s'(r(s) /0 T rg(e7 05N e P dt) o, (1.4)

Remark 1.2 (1) Unlike the L?-analytic torsion on covering spaces, where
positive decay rate of TTg(E_tA;) is required, we use the parameter A to control
the integral in (1.4).

(2) When M = G/ H is the universal covering space of a compact symmet-
ric space, the value of T(M, ) at A = 0 differs from the L*-analytic torsion

[Lott 3 ] by a volume constant.

The L*-analytic torsion function T{M ,A) has gimilar properties to the
Ray-Singer torsion. We first prove the vanishing result of T(M, A) for an even

dimensional homogeneous space M = G/ H.
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Proposition 1.2 [f the dimM = m is even, then T(M, A) = 0 for all R\ > 0.

Proof. The proof is a routine computation. Let A/(M,E) be the space of

E-valued L? — j forms on M. The Hodge theorem which is valid for M shows s

N(M,E) = dN-T @ TN @ HI (M, E),

where KerAj(a) = H/(M,E). We have (KerAj(a))' = dAI-T @ d*AT+T and
Al(e) = di(a)d; (@) mor + dj—1(a)d}_ (@) 75— This implies

TTG(e—fAi(a)) = Trg(e—fd?(a)dj (a)|dw+]) + TrG(e‘tdf“l (ﬂ)dﬁﬁl(a”d'\j_l)_

We omit « from the notations and get

TTg(e_mj_ld;“"l) = / TTg(dj,_le_th"—ldj”“l d;_l)dt

t

o0 d*_d;
= / TTg(d;_ldj_1e_t -1 J—l)dt
t
= —TTg(e_Zd;—ldj_l)dt == TTg(e_td;_ldj_l), > 0.

Hence, 1
D=1 iTra(en™5 ) = 3 (=1)j(Tra(e™141) 4 Tro(e™4%)) |
—

1=

ta,

= ALY S(Tro(e atr) + Trg(e %)

e

]

= Y (1) (%)
0

(~1YTrg(et-19), (1.5)

L
il

It
NE

[y

LN

On the other hand, since dimM is even, Hodge duality implies #(djoadi_y) =

dy,—;dm_;*, where * is the Hodge operator, an isometry. We obtain

=

m me m

S (D) Trg(e™ %) = (1) Trae Hamitn) = 30 (1) Trgle %),




his together with (1.5) shows that 37 (—1)jTrg(e “t83(0)) = 0, Hence,
log T'(M, ) = 0. Q.E.D.

In order to consider the dependence of T(M,)) on the metric in M, let

- us first prove the following.

Proposition 1.3 Let g(u) = goutg:(1—u) be a family of G-invariant metrics

on M. Suppose that Aj(u) are the Laplace operators on M associated with

g{u). Then

d < i; A (a) S i; d —t4;{ug)

Q1Y Tra(e %))y = ~1 35(-1) ITra(Z(8i(u) Jumue™ ™).
=0 =0

Proof. By the Duhamel principal, we have

T?‘G(i(—1)jj(e‘(*‘E)Aj(u)e—fAj(uu) oA (-2 (w) y)
J=0
15 d L)
= Trg( f E( 1)33(6 (t—s)A; (u.) —sh; (”"))ds)

i=0

3*—0

By taking the derivatives with respect to u on both sides of (1.6) and then

letting u = up and & — 0, we obtain that the right hand side of (1.6) is

f—e T
i [ P Tra (At g
- d m( }
= —hm t— 2¢) E jTTg( (A (1)) umuo © )

du

= — Z(_]‘)jjT?‘G(%(AJ(u))u—_—uoe_tAj(uo))_

t— a-m
— TTG / j(Aj(u)em(t—s)Aj(u)e—SAj(u[))___ e—(t-—s)Aj(u)e—sAj(uo)Aj(uO))dS)

{—g s
= - f D (1Y 5Tra(Aj(u) — Aj(ug))e™ (85w g =51 {u0)y g (1.6)
€ 3=0
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On the other hand, the left hand side of (1.6) is

lim ____(Z (1Y 3Trg(e —(t-e)h () j—edjluo) __ ,—eb; (U)e“(f-—a)ﬁj(ﬂo}))uﬁu

e—0 'u, -

= hmz J—';Trg(e {t-- S)A)(U) —cA; (u.)) g

5-—:»0

d U
= E( 1 jd—TT‘G(e —t4; ( ))u =ug*

=0
Here we used the fact that

lim Z(—ml)jjTrG(—d—(e‘sAj(“))uzuD e~ (t=e)Ai(w0))
5—>0j=0 du
e d enien

= hm(-—s) Z(—l)jjTT‘G'('Eu'-(Aj(u))u=uoe tA;( ))30

0 ¢
&= F==0

Combining these two identities, we complete the proof. Q.E.D.

Theorem 1.1 With the notations in Proposition 1.3, then for dimM = m

odd,

%logTu(M,)\) = ﬁi(_l)jﬂf’?"g(v(u)ﬂ(u))

_ i / m.\tz JT?"G t(AJ’(”)+Pf(u))I/(U))tsdt)s:ﬁa

where v(u) = (;ﬁ;(*@)** and Pj(u) is the orthogonal projection of N (M, &)

u

| onto KerAj(u).

Proof. Since the Hodge operator *, associated with the metrics g(u) satisfies

*12.1 = 9 du(*'”') ¥ +*u, du ( )_ 0. Then

d d d
(Bi(u) = igfl(*ud(u) *u d(u)) £ = (d(u) #u d(u)+)
= :I:(d_u(*“) w ok d(u) %y d{u) + #,d(u) *, *;1%(*u)d(u))

() 7 ) () () ()

= v(u)d"(u)d(u) — d"(uyv(u)d(u) + d(u)r(u)d*(v) — d(u)d* (v)v{u).
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Here we omit the subindex for d(u). Clearly,

Tro(v(w)d (w)d(w)e 2™y = Tre(d*(u)d(u)e 2 u(u)),
Tre(—d*(wv(uw)d(u)e M) = —Tro(d(u)e™ ) d* (u)v(u)),

Tra(d(w)v(u)d (v)e ™) = Tre(d (w)e W d(u)v(w)),
and
Tra(—d(w)d* (u)y(u)e i) = —Trg(e i@ d(v)d* (u)v(u)).

Using the identities d;(u)A;(v) = A;41(u)d;(u) and d;-‘_i('u.)Aj (u) = Aj_i(u)d;-‘_l(u),

we get

L (A () SN T gt W (u)d(w)v(u)) — Lra(e™ S M d(u)d (u)v(w))

Tra(— o

+Trg(e 10 @ (w)d(u)v(w)) — Tre(e” 9 d(u)d* (u)v(u)).

Hence,

e

S (1T g (As{w))e50)

= L Trale™ O (w)d; (W) + Tro(e™d; (W), (w)y(w))
. L

= (=D Trg(en A (w)r(u) = — (3 (1Y Tra(e " Mu(w)).

3=0 =0

As a result, we obtain

i(log Tu(Ma)\))

du
— li 1 o s—1 —Atd = IR 1A () "
T 2ds F(s)/(] e }E(jgo(“"l) iTra(e — Pi()))dt) 0

- %dis T‘%f e _MZ TTG(dd (Aj(u))e 5™ dt) g




of the metric on M, since KerA;(u) ~

Note that when A =

da. 1

“%ds(r(s)/o s‘”dt(Z 1Y Tra(e 5y (u)))dt) =0

%fg(r(s.s) J e E 1Y Trg (e M5B _ =8Py () ) (u)) dt
r_?'s‘)/ o -/‘*z 1T ((e=MOH OB _ o= Py () (1)) oo
L4 (= Py ()(w))

0"" Se‘“("“)tdtZ(—l)jTTG(—Pj(M)V(U))

f%/ te _MZ 1Y Tra(e*Gitr Dy (u))dt)
S

1

G /\-l-l Z( 1Y Tra(—Pj(u)v(u))

A

§(/ 18 —Atz _]‘TTG t(Aj(u)+Pj(u))V(u))dt)szo'
0

Here we have used the fact that the zeta function (;,(s, A} of A;(u) can be
analytically extended to a neighborhood of s = 0 which follows from Lemma

1.1. In fact, we have the following asymptotic expansion for m odd,

Trafe™ W) ~ Zt Faj, t— 0.

In the above proof we also used the fact that Trg(P.

L*-analytic torsion [RaS 1].
We now consider the product formula for the L*-analytic torsion function.

let 4 and Gz be two unimodular Lie groups with countably many connected

(1)) is independent
H? (M, £) is independent of the metric.

0 the formula in Theorem 1.1 reduces to that of the
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components, H; and Hy two compact subgroups of G and Gy, resp.. Suppose
oy and oy are two unitary representations of H; and H, on finite dimensional
_-'Vector spaces f1 and Fy, resp.. Then @ = oy X @3 is a unitary representation of
H=H xHyon E=FE xFjand & = G X, E = (G Xy, 1) X (Gy Xy, Bs) =
& % &, where G = Gy X Gy and & = G; X,, F;. We can thus consider
the L*-analytic torsion functions 7T'(G/H,)) and T(G;/H;, )). These torsion

functions are related by the following formula.

Proposition 1.4 Let x(G;/H;) be the Euler characteristic number of G;/ H;.
Then

log T(G/H,\) = x(Gy/Hy)log T(Gyf Hy, N) + x{Ga/ Hy) log T(G/ Hy, A).

Proof. We have M = G/H = M; x M,, where M; = G;/H;. Then
Brr=j A¥ (M) @ A(My) is dense in A7(M). The Laplace operators are related

S AP Tra(e™®5M0) = 37 S (1) 4 (Trg, (e 4H) ) T, (e A1)

=0 7=0 ktl=7
+ Tre, (67 gy ay ) T e, (eT1A10ER))

+ Tra, (7N Trg, (e ™M) | s)))

mo

= X(My) Y (—1)1Trg, (74 (M2))
=0

+ x(My) Y (=1)FkTrg, (e 0)),
k=0

since x(M;) = 750(~1) jTra, (P;(M)) and S (—1Y Trg,(e74M)) = o,
The latter follows from the step preceding (1.5). See also [GoP 1]. The rest of

proof is clear. | Q.E.D,
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We state below a result about how the L2-analytic torsion function varies

with respect to the induced representation. Thus let Iy and H5 be two com-
pact subgroups of . Suppose that H; is a normal subgroup of Hy and /‘
has finite index in H,. Then for a finite dimensional unitary representa-

tion oy : Hy — Aut(FE;) we can associate an induced unitary representation

Indifoy : Hy — Aut(E,) by \
IndfZay(hs) f(h) = f(hhy), h,hy € Hy,
where
By = {p € L} Hy, By), () = a(hy)(h), by € Hy, h € Hy).

Let T(G/H;, A\) be the L%*-analytic torsion functions on G/ H; corresponding

to the representations «; and [ ndgf 0.

Proposition 1.5 log T(G/Hy, A) = logT(G/ Ha, A).

Proof. See [RaS 1] for the proof. Q.E.D.

We close this section by the following results.
Proposition 1.6 logT(M,\) is an analytic function of A for RA > 0.

Proof. By Lemma 1.1, we sce that the first integral in the right side of the

equality

1
I'(s)

has the extension to a neighborhood of s == 0 which is analytic for both s and

+5] ; 1 & ca '
A ts—le—w)\tTrg(e-*iAj)dt = I‘(S) (/0 _|_/6 )ts—le—)\tTTG(e—tAj)dt

A. Obviously, the second integral in the right side of the above equality can
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- be extended to an analytic function for both s near zero and A with X > 0.
log T(M, X) is thus an analytic function of X for RA > 0. Furthermore, for m
“odd,

Ve

|

cod 1d 1 co m . r

— A — o — s=1 _~Mty EEAY AL o

_d)\logT(M’ ) 2 ds I‘(s)fo e t)jgg( 1) 5Tra(e™7) )50

1d S il , 00 ;
= e [ — Y 8 —At —tAL dt B ‘
BTy S ol i 1

= =5 Y (Wi e Tro(e ) dt)ms.  QED.
—0 0

The following proposition shows that the L%-analytic torsion function de-

fines an additive map on the representation group R(H) of H.

Proposition 1.7 Let oy and oy be two representations of H on finite dimen-
sional vector spaces By and By, resp.. Let To, (M, X) be the L*-analytic torsion
functions corresponding to o;,1 = 0,1,2, 00 = 0y D vy,

(1) log Tp, (M, A) =log To, (M, X) + log Toy (M, ),

(2) If oy and oy are unitarily equivalent, then log T, (M, ) = log T, (M, X). |

Proof. (1) We have d(ag) = d(ay) @ d(c;) and A(ag) = Alay) © Alay).
Assertion (1} follows easily from the definition of the Z2-analytic torsion func-
tion.

(2) Since v is unitarily equivalent to , the induced representations
Ind§jey and IndS ey, are also unitarily equivalent. In fact,if : G — E) is such
that ¢(gh) = oy (h)p(g),h € H,g € G, then for ay = UoyU*, U : E; — B,
unitary, (Up)(gh) = Uoa(h)olg) = calh)(Up)(g). Hence, d{as) and d(a)
(resp. A(o) and A(ar)) are unitarily equivalent. By Proposition 1.1, We get
the assertion. Q.E.D.
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As a consequence, log T,,(M, ) : R(H) — F(RA > 0) is an additive map,

where F(RA > 0) denotes the set of all analytic functions on A > 0.

1.3 Computations

To calculate effectly the L*-analytic torsion function T'(M, \), let us note
that the trace of the heat kernel TTg(B_tA-;)((E, z) is independent of z € (G and

for any cut-off function f,

TT(;(eth;) = /(;f(m)Tr(e_m;‘)(:v,m)dm
= [ S@(Tr(e)(e,2) = Tr(P})(z,2))da
= Tr(e™)(e, ) = Tr(P)(e,¢) & Tr(e™5)(e) — Tr(Py)(e),

where T'r is the trace on End(FE) of the finite dimensional space E. We get

1d, 1 00 e
1 =—— f 12 lem M N1V jTrale™ ™ — PdE),-
Og T(M)A) QdS(F(S) o € J; ) J T'G( J) ) =0

- 55 Z(—P (ls)fff‘le‘“Tr(e‘“‘?)(e)dt~A~STr(Pj)(e)))s=o- (L.7)

From now on we asume that 7 is a connected semisimple Lie group and
H is a maximal compact subgroup of G. Let G and H be the Lie algebras of
G and H, resp.. We can write G as § = H @ P with respect to the Cartan
form. P can be identified with the tangent space of G/H at eH. Choose a
maximal abelian subalgebra A C P. Let @ = M, & A, & N, be a standard
cuspidal parabolic subalgebra of § with A, C A. Suppose ( is the normalizer
of @ in G. @ can be written as a Langlands decomposition = My AgNg.

Recall that the representation x¢, of ) associated with an irreducible unitary
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‘representation (¢, W) of My and a quasi-character ¢” of Ag is defined by

::_qrg,,, = IndgC ® e’ @ I acting on
Hey = {2 G~ W : g(gman) = e 0+0)1% ¢ () p(g)}

with the norm [ icp(h)ﬁvgdh. Let M3 = MJC with the identity component
Mg of Mg and C' = KerAd|y,. We also use SZ(MQ) to denote the set of
equivalent classes of discrete representations of Mg. With theses notations we

now state

Proposition 1.8 (1) If G has no simple factor locally isomorphic to SO,(p, q),
pg odd, or SL(3, H.), then log T'(M, X) = 0,R) > 0.
(2) If G is not contained in (1), then

g TN = 5ty e By
— IR N
with
S AP e) = dimi - Yo (1) [ et
j=0 =0 -
:T( Yo dim(W ® (A°4P,, — AP, @ NANTMS)du(E, v), (1.8)
£€£(M7)

where Py = PN M is a component of P in the Iwasawa decomposition, and
du(€,v) is the Plancherel measure
,u(f,y) =c H (/\g,a) H < (/\5,1/),1/ > .
oA, veat
Proof. The results follow from the proofs of Proposition 2.9 and corollary 2.2

in [MoS]. ( We use only Ki(e) in the notation of this reference.) Q.E.D.




We thus see the computation of the L2-analytic torsion function on G JH
is much easier than that of the L? -analytic torsion on '\ G/H for some
cocompact torsion free discrete group I' of &, since the heat kernel K,(z, y) on
I'\ G/H involves the action of I', namely, K(z,y) = Ki(e)+ Sver Ky~ tvz).

We now calculate the L2-analytic torsion function for the hyperbolic space
M = G/H with G = §O(m, 1) and H = S(O(m) x O(1)). In this case, P,=0
[Don]. We can further simplify (1.7) by the step preceding (1.5),

log T'(M, \) = édi(—l_ / e Y 1T (e ) () o,
s T'(s) Jo jaurd
To compute Tr(e ™i%)(e), we use the Plancherel formula [Wil] for fi(z) =
Tr(e_td;dj)(m),
= D d@Ou(f)+ X [ OnnlfueleNds,  (19)

weliy el "

where M; = SO(m — 1). Since m is odd, the discrete series representations
w € (74 do not contribute to the heat kernel. The first term in (1.9) dropped
out. Note also that W corresponds to the standard representation o; of M,
on AY(R) [Mill]. Thus only o; contributes to the second term in (1.9). We have
([Fre], [MoS]),

Or, ., (f;) = et HEF =9

Hence,

fi(e) = foo et +(2 )paj(a:/\)dw.

Using the explicit formula for the Plancherel measure v, (zA) in [Mia], we get

m-1)/2

fife) = (45?; ay (" [ )( I G+ + - i) dg.10)
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See also [Lott 3] for this formula. Therefore we obtain
Proposition 1.9 Let G = S0(m,1) and H = S(O(m) x O(1)) with m odd.
Then
log (M, ) = -2 (3( m;ﬂ J+1-T§—3) [t et o
where fi(e) is given by (1.10).
Let us calculate some examples.

Example 1.1 Let m = 3 in Proposition 1.9, fy(e) = ﬁ,—;,f;{(e) = %&%ﬁ%,

fz(e) = fo(e).
Z( 1) f; ts R P I‘(ls)( 2)3/2((1+/\) (s— 3/2)[‘(3 ;)
— (B — -2-) + 247630 (s — %))).

Hence,

log T(M,}) = _"(M)_S/Z%(P(IS)
= (DI = )4 BTG - )iy

(14 2)7e=5/0(s - 2

= —(47r)—3/2((1 + )\)3/21‘(—3/2) _ /\3/2I‘(—3/2) _ 2/\%“_%))

1 1 3
= 3/2 T g
2ﬂp( WX (14 ),

—2)7

where we used the formula I'(; —n) = '((?71')—41)4’” = 0,1,.... In particular,

log T(M,0) = 2.

Example 1.2 For m =5 in Proposition 1.9, we have

(o) = N o e—t(x2+(2—j)2)w2($2 + )(z* +2) .
56 = g D L @
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1 1 0 —t(aR4d) 2,2
Jole) = WF_@_)(@)LWS 2222 4+ 1)dx

_ 1 26_4t(1 4 i
— (4m)5/2 g3/ 2t)’

where we used I‘(%) = 34? and [3° e~y = VT

2

1 1 0 —t(z?41
h(e) = W@(%)[mﬂ (2222 + 2)da

1 8t 3
Gy s 2t gp)

1 1 (a2 )2 2 9
0 = gt L e

4 3 3
+—t-+4)'

(i

Since fa(e) = fole) and fs(e) = fi(e), we obtain

log (M, ) = 5= Z( DS /Owts-ie-”fj(e)dt)szo

_ld, 1 ® 1 s 1 2% 3
T 2ds'T(s) Jo (- (47)5/2 3+ )
1 8et 3 4 3 3
+ 2(4w)5/23t3f2(2+55) T )5/2\/.(%2 + 3 +4))dt)s=o
8 64

— _x 3/2 > 5/2 = 3/2

96 2( (/\+4) (A4 + 7 (A +1)
~ —5-(A +1)%% 4 3)\5/2 — 24032 48NV,

where we used I'(—2) = ilaﬁ,I‘(—%) = —%@ and T'(—%) = —2/7. In particu-
lar, log T(M,0) = =

% o




Chapter 2

L*-Analytic Torsion Functions for Semifinite

von Neumann Algebras

In [GoP 1] we studied an L*analytic torsion for n-tuples of commuting el-
ements in finite von Neumann algebras which is motivated by the work on the
L2-analytic torsion for covering spaces ([CaM], [Lott 3], [LiiR]). We now extend
the L2-analytic torsion to semifinite von Neumann algebras. A natural geo-
metric example of using semifinite von Neumann algebras is the homogeneous
spaces discussed in Chapter 1. As we know, the Fuglede-Kadison determinant
is fundamental for the discussion of the L2 analytic torsion in finite von Neu-
mann algebras. For the semifinite von Neumann algebras there is a Fredholm
type determinant [Brow] which is not good enough for our purpose. We thus
introduce a (-(regularized) determinant in semifinite von Neumann algebras
either by means of s-numbers or by using the usual (-regularization furnished
by the Mellin transformation of the trace of restricted heat kernels. In sec-
tion 2.1 we collect some basic properties of this { determinant (function). We

examine the relation of the {-determinant function with the Fredholm type
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determinant, which is used to derive a mapping property of the L*-analytic
torsion function in section 2.3. In section 2.2 we utilize the ¢-determinant to
study the L*-analytic torsion for n-tuples of commuting elements in semifinite
von Nenmann algebras. This analytic torsion shares most properties of the
torsion in geometry. In particular, we obtain a similarity formula which com-
pares the torsions of two similar n-tuples. There are some conditions initially
needed for the definition of the {-determinant and torsion which we will remove
in section 2.3 by introducing a parameter in the L2 analytic torsion, as we did
in the previous chapter. But this parameter causes some difficulty in the com-
putation of the L*-analytic torsion as Wé see in section 2.4 where we use the
Selberg trace formula and Zeta function to calculate the (-determinant and
torsion functions of the Laplace-like operators on compact Riemann surfaces
of constant negative curvature. The L%-analytic torsion function for general

Riemann surfaces will be discussed elsewhere.

2.1 (-Determinants

Let A be a semifinite von Neumann algebra acting on a Hilbert space .
This means that there is a faithful semifinite normal trace 7 on A. Recall that

the s-numbers Sp(t) of T € A are defined in [Fac 2] as

Sr(t) =inf{s > 0: 7(1 —¢,) < ¢}

1

for the spectral family {es} of |T'| = [Adey, where |T| = (T*T)z € A. As
the type I factor case, we are going to use the s-numbers to define the (-

determinant. Thus for T’ € A let Pr be the orthogonal projection of H onto
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the kernel Ker(T) of T. Denote T’ = (I — Pp)T( — Pr) € Ap = (I~
Pr)A(I - Pr), where Ay is also a semifinite von Neurnann algebra with trace
tr(z) = 7((I - Pr)z) ([Dis], P. 114). Without confusion we do not distinguish
7r and 7, A and Ap. Let LP(A) (1 < p < co) be the set of all 7' € A such that
Jo7 1S ()|Pdt < 0o, We use Ly(A) to denote the set of all injective selfadjoint
elements 7" € A such that e=*7™" ¢ 4 and (e ™) < oo, Vit > 0. Clearly, if
T € LP(A), then T' € LP(A), since T" < T and then Sr(t) < Sp(t) by Lemma
4 [BrK]. We define the zeta function (r(s) for T € LP(A) as

Cri(s) = /0°° 1Sp(t)*dt, Rs > p.

Since Si(t) < ||7”)} and Spi(t) — 0 as ¢ — oo,

; . Rs 7. At )
o < [, o ISPOFa [ snipas, s>

We see that the integral defining ¢r:(s) is absolutely convergent and the con-
vergence is uniform for any bounded strip in Rs > p. Hence (r+(s) is analytic
for Rs > p.

We now want to extend {r:(s) to an analytic function near s = 0, Such
extendibility of {+(s) is satisfied by the resolvents of elliptic pseudo-differential
operators on compact Riemannian manifolds. To formulate a general sufficient

condition regarding this, we first prove the following lemma.

Lemma 2.1 Let T € A be such that |T'| € LP(A).
(1) [T") € Le(A) and

Cr(s) = .

= () /OOO ts"lr(e_”T']_l)dt, Rs > p.
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@) If 7(eT17) ~ Yooyt with I; > oo as j — 0o, namely, for & > 0
there is K > 0 such that |r(e”'17) — Kooyt < O(t%) ast — 0, then

: g‘},(s) = F(ls) Jot* 7 7 (e VAt can be extended to an analytic function near

= 0.

Proof. (1) Using the spectral representation of |7'|, |T"| = [ Ade,, we have
1 oo —u
(|T']) = ]/\SdT(eA) = F@j/(/o MutTte v du)dT (ey)

- F(ls—) /OOO dtts_l(f e"trgd”r(e)\))

= 1“(13) fo - 2L (e 4717 dt. (2.1)

Since |T'| € LP(A), we get 7(|T'|°) < oo for Rs > p. In fact, for s real number

?

s 2 p, Propositions 1.6 and 1.11 [Fac 2] show that

(|T')°) = /é " (Sp(8))dt < 0.

By the analyticity of 7(]T"}°) and (7+(s) for s > p, we obtain that 7(|7'[*) =
(ro(s) for all s with ®s > p, Tt follows from (2.1) that |T'| € Lg(A) and (1)

follows.
(2) By part (1),

((s) = ﬁ( ]06+ /sl)ts—lfr(e:li“'f“)dt

1 s K . 5 1 -
- lite—l f et / 2L (e 1T ) ds
11(3)(/0 2ottt e et (e

1 X &t 1 5 1 ry—1
= —_— E J— I # s—1 / s—1 —7Y| ]
I'(s) 4 Li+s + I‘(s)(/o ()8 dt + 5 (e )dt),

=0

where |c(t)| < O(t°) for € > 0. Thus the last two integrals define a function

which can be extended to an analytic function near s = 0. Clearly, the first




term has an analytic extension to a neighborhood of s = 0. Hence (k(s) can

be extended to an analytic function near s = 0. Q.E.D.
We say (7(s) is extendible if it can be analytically extended to a neigh-

borhood of 5 = 0.

Definition 2.1 (1} Let 7' € A be such that |7'} € LP(A),1 < p < co. If {pi(s)

is extendible, then the (-determinant A (7T") of T' is defined as

lOg A(;(T) — %(CT’(S)).S:D-

(2) For T € A with |17 € Lo(A), if (5(0) = 7t 7(e"T 1™ )dt < oo and
{1+(s) is extendible, then the (-determinant D.(7") of 7" is defined as

d o0 -1
log De(T) = =(Ch(Nemo+ [ 7 7(e™ 1"t

Let dom(Ay) = {T € A : |T'] € IP(A) for some 1 < p <
00, (7:(3) ts extendible} and dom(D;) = {I' € A : [T| € Ly(A),(5(0) <

oo and (.(s) is extendible}.

Remark 2.1 (1) Let T' € dom(A;) and (32(0) < oo. Then T € dom(D¢) and

log D¢(T) =log Ae(T). In fact, (32(0) = -f;(rés) J2 e (e dL) .

(2) The determinant D¢(T) is in particular useful when (e 1717 has a
slow decay as t — oo, since ((s) may not be well defined for Rs > 0.

(3) If A = L(H), the type I.-algebra of bounded linear operators on H,
the determinant A¢(T) is discussed in [KKW]. See also [Sim]. In this case, if
7" € LP(A) for 1 < p < oo, then |T"| € Lp(A) and (3(0) < co.

(4) The (-determinants Ay (T) and D¢(T) are different from the Fredholm
type determinant A(T'), which is defined as follows. Let T € I+ L'(A), i.e

")
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T =141 for some Ty € L'(A). Then for |T| = [ Xex(|T]),
log A(T) = j In Adr(ex(|T1)).

A(T) has many nice properties [Brow]. We list only the mapping formula,

namely for T € LP(A),0 < p < oo,

log AGF(T)) = [ In|F()ldpur(T)

with f holomorphic near the spectrum Sp(T) of I' and f(0) — 1 vanishing to

order at leat k (k > p), where p\(T) is the measure associaled with T [Brow].

px(T) is defined by dux(T) = dpo(3) and po is the Riesz measure of harmonic

function u(z) = log A(gx(2T)) near z = 0 and gi(2) = (1 — 2)exp(z + ...+
1

2 1) & > p. We thank Joel Pincus for telling us this measure.

The relation between A¢(T') and A(T') is given by the following.

Proposition 2.1 Let T; : [0,1] — dom(A;) be a differentiable family such
that Ty is injective and |T,|7'£(|T|) € L'(A). Then

(1) Flog Ad(Th) = —r (T Z(IT))).-

(2) 243 = —A(T5'T3), provided log(|To| ™! |Ti) € L1(A).

Proof. Assume that the spectrum Sp(|7;|) of |T}| is contained in [—§, a] and
£} is the closed curver {z € C : dis(z,[—8,a]) = £} with &€ > 0. Then

Ty = —-—/ ATy = \)1dA,

We obtain by integration by parts

LlogA(n) = L)),
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= -—( dtm — [ (1T~ )0
= LT [ s ] = 2 )
- —f(mrla(mm.

(2) Since |1;]'£(|T3|) € L}(A), Lemma 1.1 [Brow] implies

SO AT L) = 5+ (log(1To| i) = (T4 S(L)).

Using part (1), we get

d d -1 ?
—log A(1) = —=log AT [TY).

This yields
ATy A(|T31~H T
CEA (T~ BT AD

Q.ED.
We now collect some properties of the (-determinants A (T) and Dg(7)
which are similar to those in the case of A = L(H). See ([For], [KKW], [Sim],

[Vor]). The following is a perturbation property of the ¢-determinants.

Lemma 2.2 Let T € dom(D;) be injective, T > 0. Let Ty € A be nonnegative
such that T +Tg is injective and nonnegative. Suppose that (3.4, (0) < oo and
T I 4+ ToT~1) 1> € LMA) for some 0 < o < 1. Then

(1) T+ Tp € dom(D,),

(2) log De(T + Ty) = log A( + T1) + log D¢(T), Provided Ty = TyT for some
Ty € LM A).

Proof. (1) By the Duhamel principal,

e HTHT) ™ _ T2 _/t e—s(T+To)_1((T+TO)~1 _ T—I)e—(t—S)T—J ds
0
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1
- — / e~ =TI (T Tyt PO T gy,
0
This implies for ¢ > 0

_ 0)~1 _pp-1 o —u 1)1 - _ o
le T+ —e= 1| < fo le= ¢ (T + 1)~ — 7T,

1

17 duser [ u o (T+To) ™ =T T)

= Iilatl“““T‘lToT‘l (I+TT™) 177, < oo, (2.2)

where ¢; is a constant. Hence (1'+ Tp) € Lg(A) and C%’+To(3) 1s extendible.
(2) By (2.2) we have

log D¢ (T + Ty) —log D¢(T) = /Ooo (e HTHT T _ ot gy
It thus suflices to check that the last integral is log A(J + T}). In fact, let
o(s) = /0 Tl (e UTHTY Y gy s
Then

ds (s) = /000 T((T + sTo) M To(T + sTy) te I HTo} gy
= 7((T + sTo)™"16) = r((I + sTy)"'T})

d
= 5-log A(l +5Th), s>0.
8

It follows that ¢(1) — ¢(0) = log A(J + 71) — 1. But »(0) = 0. We get the
result. ' Q.E.D.
The basic properties of the (- determinants are stated in the following

proposition.
Proposition 2.2 (1) If T ¢ dom(A;) is injective and normal, then

log A (T™) = mlog A¢(T),m € N.



(2) If T € dom(Ay), then log A(AT) = (In M)y (0) -+ log Ae(T), A € €, \
0. Similarly for T € dom(D¢),log De(AT) = ¢y (0) In || + log De(T).

(3) log A((UTU*) = log A(T') for T € dom(A;) and U € A unitary operator.
This is true also for T' € dom(D,).

(4) If T € dom(A,), then

% 1 * 1 1 4
log Ac(T") =log A(T) = 5 log A(TT) = S log Ac(|T[") = 5 log Ac(|T'F?).
(5) log D¢(T1 @ Ty) = log D¢(T4) + log De(Tz) for T; € dom(D;).

Proof. (1) Note that |T'| = |7 and |T™| = |T'|™ since T is injective and
normal. Using the relation Siznym(t) = (S7+(t))™, we have (errym(s) = (g (ms).
This proves part (1).

(2) We have Sury(t) = [ASr(¢). This implies {pry(s) = |A]*Ceels),

which proves the first part of (2). For 7' € dom{D;) we get

1 5 P 8 —u|T!|~
Shar(s) = Fght [ W re ™,

(Ery(0) = /m (e T gy

Hence,

log DAT) = (i )(Ch(s) = g5 [, 77 Yuomg
+ d%((},(.s) B T(IS) /J,\ll w (e duy,

]MT w (e T du = ¢2,(0) In |A| + log De(T).

(3) This part is clear since Syr+(t) = Sp(t) and T(e_“UT'U”_l) =

(e~ 1T,
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(4) Since I — Pr is the support of T, we get by Propositions 1.5 and 1.6
[Fa,c 2] S(T—)r(t) = ST*(t) = ST(f,) = STr(t), It follows that CT‘(t) = C(T*)’(t)-
Hence log A¢(T™) = log A¢(T). Also by Proposition 1.6 [Fac 2],

Srery(t) = Srer(t) = Sprp(t) = (5'.|T|(1f))2 = (Sz(t) = (Sp (1))

Thus, () (s) = {7(28) = {j7/(2s). The result then follows.
(5) This part is trivial since r(e~HMOTYI™) — 7(c~HT17") 4 (eI,
Q.E.D.
Observe that the conditions in part (1) can be dropped out by the proof
of part (4).
We now consider the (-determinant function to avoid the condition (72(0) <

oo in the definition of D¢(T). Suppose that T' € A satisfies

IT!| € 1Ly(A), - (23)
T(e—tIT'l'l) ~ Y aytiast—0and I; /oo asj — oo, (2.4)
i=0

(™™™~ 7% as t — 0o for some a >0 and a € R. (2.5)

Conditions (2.3) and (2.4) are satisfied for the resolvents of elliptic differen-
tial operators on (the universal coverings of) compact Riemannian manifolds

and homogeneous spaces of Lie groups. Condition (2.5) is much weaker than

(#(0) < co. Define
1 oo o
(re(s, A) = Ts)/o e M (e Rs > 1y, ®A >«
By (2.4), we obtain for 6, > 0 and r(t) with r(t) ~ O(t) as t — 0,

(ro(s,\) = —1—(%@ /St%'“-le—”du fgtﬂ—lr(t)e—”dt
’ I'(s) = 5 Jo 0



+ A ts_le_’\t*r(e’tlm_1 )dt)

K
_ Zalj l +3)/\ (s+1;) _ Zab

I'(s) j=0

s—1 =Mt gy s—1_—At —¢|T| 1
(/Ot r(t)e dt+/6t (e 7VaL).  (2.6)

F / tl iFs—1 —-/\td_t

1

+ I'(s)

Hence, {7+(s) is extendible.
Definition 2.2 Assume that T' € A satisfies (2.3) — (2.5). The {-determinant

function D¢(T, A) of T is defined as
d

log D((T, )\) = E—(CTJ(S,/\)),S:(;, R > a.
s

Remark 2.2 (1) D (T,0) = D(T) for T' € dom(D,).

(2) %log De(T,A) = —((1,X), RX > a. In fact, for RA > d,

d = d —t|T'|—
d —38 5 —M _tET’I—I
= — P ) 1 .
ds(r(s+ 1) /0 e (e )dt) om0 = (o (1,)

Here the analyticity of log D¢(7, A} as a function of A is guaranteed by (2.5).

Proposition 2.3 Let T € A satisfies (2.3) — (2.5). Then D¢(T,)) has the

following expansion as A — oo,

log De(TSA) ~ 32 (e (DA™ = Jémt'f‘le“”dt)

1;#0,—1,-2...
[—o]

Za._:,( log A — Z / e M dt),

where a_; = oy, for j = 1;, and 0 otherwise,
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Proof. By (2.6),

o Ui +8) ) _st1y) LI A P Ry
CT’(S;A) = jioalj( F(S) A J P(S)[s 1 e dt)
[ Al U Vi e g
-+ I‘(s)/& e r(e Jdt, R > a.

For [; negative we use the identity Hr_{.z(.::)_“‘l = ((s~I;)...(s—1))"! and Res(T'(s), —3)

= “;J Then

d oo
—(Cr+(5,X))sz0 = ay (DA — [ th=le™Mdy
Lo e = 5 (e () J )
DY R (1)
+ ap. —ln)\)\lfi———l—)\[’ .
B (5 IR V(A

— / tlj—lew)\tdt) +/ t_le_AtT(entlT’l_l)dt_
8 §
Here we used the computation

d T(s—j), & (=1)
E(—T(S)_)s=0 = ;T

The result then follows easily. Q.E.D.
We now consider the §-determinant of 7'. Assume that T € A satisfies
(2.3)—(2.5), and |T"] € L?(A). Define the 0-determinant Dy(I-+AT) of I+ AT

as )
1ong(I—[—/\T):/O FP((r(1,u))du,

subject to log Dy(I + AT')|y=o = 0. Here the finite part FP(f(z)) of a mero-

morphic function f(z) is defined by

FP(f(z))={ f(=) zisnot apole,
11m€~40(f(w+6)*%j@), T 8 a polea

4
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Proposition 2.4 Assume that T € A satisfies (2.3) — (2.5) and |T"| € LP(A4),
1 <p<oo. Then

(1) log Do(I+AT) = —log De(T, ) +log De(T) + e S5 oy . — ca_g with
the Euler constant c.

(2) forp=1,

L log AT+ AJTY).

d

ar
Proof. Using the identity %(I‘(s)@w(s, A)) = —T(s+ 1)z (s+1,)), we have
log Do(I + AT) = f FP(—-=(D()Crr(s, ) oo d
= P(F(S)CT'(S> 0))s=0 — FP(L(8)¢r (5, A))s=0
As shown in [Vor],

P(F(S)CT’(Ss )‘))8=0 = C’}’(O) )\) - CCT‘(O: A)

[—to] (__1)3'
= log D(T,A)—¢ > a; '
jm—»O J'

Combining these tow identities together, we get part (1).

(2) Clearly, I'(s)(z(s, A) is analytic near s = 1.

dd/\ 10g DQ(I —]— )\T) = FP(CTI(l,/\)) = /00 e_AtT(e_t]T'lﬁl)dt
=[O+ w) (e () = (A + 7)Y

= rlog(I + NT')).

Part (2) then follows. Q.E.D.
One refers to ([MoS], [Vos]) for the similar formulas of Propositions 2.3
and 2.4. Part (1) of Proposition 2.4 provides a link between the ¢-determinant

function and the Fredholm type determinant which will be used in section 2.3.



2.2 L*-Analytic Torsions

We now apply the (-determinants to the n-tuple T'of commuting elements
in A. To guarantee the finiteness of log D¢ for the Laplace operators associated
with the n-tuple 7', we introduce spectral invariants. We then focus on the
L*-analytic torsion of commuting n-tuples.

Let I' = (Ty,...,T,) be an n-tuple of commuting elements in .A. This
means that T;7; = T;T; and T; € A, i = 1,...,n. Denote by o = (Gt 00)
the n-indeterminants. Let A7[o] be the exterior space generated by g, A A
oi;l S <L <4 <o Let C4(T) = H®No], 5 =0,...,n. We can

assoclate a Koszul complex { Cu(T),d(T)} with T by defining
di : C5(T) = Cin(T), di(T) =D _1;5;,

where S; : Ao] — AF![o] is given by S;(€) = o; A€, € € Mo],j =1,....n.
Since T is a commuting tuple and $;5; + S;5; = 0, d;41(T)d;(T) = 0. Note

that the adjoint St of S; is given by
Sillitoj ) =8, o AEAD, 1=1,2

and ;57 +575; = 1for i = j, and 0 for i #£ j. We define the Laplace operators
A;(T) associated with T as

AJ(T) = dj(T)d‘T(T) + dj*l(T)dj—l(T)a 7=0,... 3 T2y

with convention d_1(T) = 0 = du(T). Since A;(T) can be expressed as a
matrix of elements in A, we see A;(T) e A® M, def A, , where M.,

is the algebra of all m; x m; matrices over C and m; 1s the dimension of
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Ai[o]. There is a faithful normal semifinite trace + @ Tr on Ay, denoted
also by 7 without confusion. We will thus not distinguish A and Ap; Let
ANT) = (I - P;)A;(T)(I — P;) for the projection P; of Cj(T) onto KerA;(T).
A%(T) is injective. (A%(T))™' may be unbounded. But it affiliates with A,
e, S(ANT)) ™ C {A(T)) 1S for S € A’ the commutant of A. Clearly, the
spectrum Sp({AL(T))~")of (A}(T))_l is contained in the interval [[|AL(T) ||~ 0)
for A}(T) # 0. Let
(AU = [ Aden(T)

be the spectral representation of (A’(1'))™", where a; = |ALT)| ™! and @, =
oo if 0 € Sp(AY(T)), @y < 00 if 0 & Sp(ALT)). We have e,(7) € A Then

for oy < 00 and 7(f) = o0,

r(e MO = f e Mdr(ex(T)) > e f " dr(en(T)) = oo

ary
Thus throughout this section we assume c; = oo for 7(7) = co. Let
%oo(T) = sup{f 2 0: r(e™&INT) » O@=P2), 1 - o0},
050(T) = sup{|B]: 7(e7 ANy~ O@?), ¢+ — 0},
Gjoo(T) = sup{B = 0:7(e(T)) ~ O(t’7?), t — o0}.

By the Karamata Tauberian theorem [Shu], we have ©;4(T) = ©; (T pro-
vided ©;4(1") < oo. Assume 0, .,(T) < oo,

o - K
(e MMy = ] e"dr(ex(T)) < —e 17 (ey (1)) + t/ e r(ex(T))dA
e

+ 1—B/2 jK mualuﬁﬂd‘u < agt"ﬁlz, t>0
t

for some constants a;. This implies 0;0(T) < B/2 and «;,.,(T) > B8/2. Hence
0;0(T) = 0,0 (T).



We point out the convention that a;.(T) = 0 and ©;4(T) = oo if there
re no 3 satisfying the condition in the definition. o o,(7") are the invariants
roduced by Novikov and Shubin [NoS] for the Laplace operators on smooth
'z_mifolds. They are homotopy invariants. We will be concerned with @, (7"
for the n-tuple T in contrast to the Laplace operators on manifolds for which
0;.,(T") does not contain much information.

We call {6;.(7T)}7, the spectral invariants of 7. The important fact
about the spectral invariants is that if 0 < ©;,,(T") < oo, then Cff;_(T)(O) < 00,
and ANT) € dom(D¢),j = 0,1,...,n. The following is a basic property of

the spectral invariants.

- Proposition 2.5 Let T = (Ty,...,T,) be an n-tuple of commuting elements
in A such that ANYT) € Ly(A),j =0,1,....

(1) ©;0(zT) = ©,0(T), z€C,z 0.

(2) Ou-sol1") = O30(T).

(3) {9;0(1)} are unitary invariants, i.e., ©;o(U*TU) = ©,4(T) for unitary
element U € A.

Proof. (1) We have Aj(2T) = |2?A;(T) and Ai(zT) = |2|*A%L(T). This

implies T(e"‘t(A}(ZTD_l) = T(e_lzlm%m;’(m)“l) . Part (1) is clear.
(2) Let § : Cu(T) — C(T") be the unitary map defined by
WO =D 37 S 5581 Sawiy, € Casy(T),
J1 < 2p

for £ = 3ic. <y Sia -+ 3Ty g, € Cp(T) [Vas]. We get ATy =P A (T)h
and AY(T) = §*Al,_,(T*)}. It follows that 7(e {43 TN Ty = 7 (=M ALy
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7(e _t(A"—J(T*))_l). This proves part (3). Part (4) also follows from this argu-
ment. Q.E.D.

It would be interesting to investigate further these spectral invariants
under similarity.

We now use the (-determinant to study the L*-analytic torsion of com-
muting n-tuples. Let D(A) be the set of all n-tuples of comnuting elements
in A such that A%(T) € dom(D;). As we remarked before, AL(T) € dom(D¢)
provided 0 < ©;4(7") < 0.

Definition 2.3 Let T' € D(A). The L*-analytic torsion 74(7T") of T is defined

as
log 74(T) = 3 S(=1¥ s log De(A(T)).
j=0

It is easy to see by Proposition 2.2 that 74(7") is a unitary invariant, namely,

TA(UTU) = 74(T) for U € A unitary.

Proposition 2.6 Let T € D(A).

(1) log Ta(T') = Ef_o(— )J-H.?CA'(T)( n|z| +log T4(T'),z € C, 2 # 0.

(2) log Ta(T) = (—1)"*" log 74(T™).

(3) If T and T® are in D(A), then log7Ta (T @ TP = log T4(TW) +
log 74(T®).

Proof. (1) follows from Proposition 2.2.
(2) Since AYT) = AL (T*W, 7(e BTy = r(e @il D™ We
have T* € D{A). Furthermore,

logra(T) = = 3 (—1F* log De(A!_,(T*)

J=0

b
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b=

7

1)+ log TA(T*)a

(1744 (jlog De(AY(T")) — nlog De(8(1))

It

since $7o(—1)7 log De(AH(T)) = 0 [GoP 1],
(3) We have AL(T'M ¢ T@) = A1) @ AL(1®). Part (3) follows from
Proposition 2.2, Q.E.D.

The following is the similarity property of the L?-analytic torsion.

Theorem 2.1 Let T™ € D(A) be similar, k = 1,2, i.e., there is an invertible
U e A such that T® = UTWU-L, Suppose that the L? -cohomology of the
Koszul complex {C'*(T(l)),d*(T(l))} s zero. If 0 < @j,Q(T(z)) < oo, then

n —1)j+1 1 1 p{2hy—1
! T®) =1 T E0 a1 [ —HA T _o(2.7
o Ta(T%) =log rall ™) (32 iy [t [ dur(neaaT0), 2.7)

where vy = UU* — I foru = 0, I — (U*)"'U for u = 1, and S(UU* +
=W UU* - 1) for 0 <u < 1. T = T on Hilbert space H with tnner

product < - >y=u <> +H1—-u) < U, UL >,

Proof. We will prove (2.7) by endowing [T with a new equivalent inner product
< +,+ >, which does not effect the structure of A.

First of all, with respect to the new equivalent inner product < -,- >, =<
U~ U~' > on H, U is a unitary operator. Thus T on H is unitarily
equivalent to T® = UTWY~* on H with < -,- >,. This implies that AL(TM)
and A% (T are unitarily equivalent. Hence by Proposition 2.2, log 4(T™M) =
log T4(T®). Tt is therefore enough to prove (2.7) for T and T, namely we
need to find the relation between two L2-analytic torsioﬁs of one n-tuple with

respect to two equivalent inner products on H.
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Let 2, ¢ (H,< +,+ ») — (H,< +,+ >,) be the identity map. We have
(T = (1) (TP)*8; and Aj(TP) = (2) 7 (T )it dy (T3 o (TO)(E3)

;PI(T(Z))i:. Using the notation 1, = (i;)”lﬁ%(i;), we get d% ()™ = —p (2)! p
and

d * ®

AP = —ndi(TO)LID) + TP ) (T)

— d (Twudi_ (TP 4 & (T (TP ).

Note that dj(T{P)A;(TP) = Aja(TP)d;(TEH) and di_, (T A;(TP) =
A1 (TN (TP). we obtain

T(d;fyude;Ze—tAj_l) — T(Vude;;ze_m;l d;‘) _ T(Vudefzd;e—mﬁl)

—tATL
= 7(vud;d; A} e BBj),
—2 ~tAT! —2 A1
T(djm1vad;_1 A7) = r(vudi_yd; AT e 1),
* -2, —tA7! * -2, ~tAT!
T(dj1d;_1ovuBj e ) = T(vud;adi (A7 ).

Here and below, d;, d} and A; stand for d;(T®), d3(T®) and A;(T{*). There-
fore,

L (e d Loty
a-t';r(e ;07T = tT(@(AJ(TE”))Aj(TE)) 2 t85(18) 71y
= =1 did; A7) 4 r(vadidi AT e )

= (ody_ i AT ) 4 r(vd; adi A7),

As a consequence, we get

d

U

g A1) = 33 (1M

7=0 ds

+ /100 t—ld;iT(e—t(Aj(Téz)))“l)dt) 1

1 d (T i




= 5 DU Gy | iy )y
+ [ T(vuAfe“*‘Aﬂ‘l)dt)

= %?;( 2 ds T / e e )
: /())

= 5 D g e
s dii(r(lsf(uue—mw*))szo (@)

= 3 G e e )y
= LD e o

Here we used the facts that lim;_, o T(Vue"'t(Af)“l) =0 and lim;_, o ts’r(vue“t(‘ﬁ»‘)_l)
= 0, which follow from the assumption. Hence We prove (2.7). The formula
for v, follows from ¢} = u -+ (1 — w)(U*)'U~. Q.E.D.

The following result concerns the vanishing of the L*-analytic torsion.
Proposition 2.7 Let T € D(A) be such that [T*,T;] = 0,4,7 = 1,...,n.
Then forn > 1, log4(T) = 0. |

Proof. The assumption implies that A {7) = S TiT¥,5 = 0,...,n. More

precisely, since dimC;(1") = m;, A;(T) = O (0%, TLT¥) on C4(T). Using

Proposition 2.2, we have for n > 1,

log D¢ (ANT)) = mylog D (D TTT)),
=1
and then
107 "
log4(T) = 5> (=1)"jlog De(AY(T)

=0
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(=1 jm;log D((3STITY) = 90,

1
2; 0 =1

k)
7=

since ny; = ( ? } and }:’;‘zo(——l)j"‘ljmj =0 for n > 1. Q.ED.

2.3 L?-Analytic Torsion Functions

In the previous section we used the (-determinant to discuss the L2
analytic torsion 74(T) for n-tuples T' of commuting elements in A. As we
noted before, we require AL(T) to satisfy CZ(?{,-(T)(O) < 00. We now utilize
the (-determinant function to avoid this assumption and then define the [2-
analytic torsion functions.

Let D(A(X)) be the set of all n-tuples 7' of commuting elements in 4 such
that AL(T") satisfies (2.3) — (2.5).

Definition 2.4 Let € D(A())). The L*-analytic torsion function 74(7, }) of
7" 1s defined by

Z(ml)j-}_lj log DC(A;(T)aA)a A > @,

§=0

IOg TA(T: A) =

el

where a = maxp<j<n{a;} and a; are the constants in (2.5) corresponding to
AL(T).

Since D¢(A5(T1),0) = De(AY(T)) for T € D(A), we see 74(T,0) = r4(T).
Thus 74(T, ) is a natural generalization of 74(7). Indeed, 74({T, ) shares

most properties of 7,4(7T').

Proposition 2.8 Let T € D(A(MN), z€ C,z #£0.
(1) log ra(=T, A) = log Ta(T, |2[*A) -+ Z?:O(—l)j*‘leA;_(T)(O, |22 A} In | 2.
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(2) log TaA(T, A) = (—1)"" log 74 (1™).
(3) log TaA(TM @ T™, A) = log 74(T™M, \) +log T4(T®, \) for TO) € D(A(X)).

Proof. (1) Since Aj(2T) = |2]?PAL(T),

1 N A (2T
Careny(s,A) = I‘(s)/o e My (e HAETD Ty
1 oo sp5—1 —|z[2 AL 1
= I‘(s)[) |z|2sge el ‘r(e Has(T) Vdt

= |z|23CA;_(T)(S, Az3).

Hence,

d d. .
log De(Aj(2T),A) = —=(Cayemy (s, \)omo = —= (12" Casery (s, Alz|*)) oo

= Cayn)(0, Mz In |2[* + log D¢ (A}(T), Ajz[?).

This verifies part (1).
Parts (2) and (3) follows from the proof of Proposition 2.6. Q.E.D.

Proposition 2.9 Let T% € D(A(X),s = 1,2. If T® = yTOU- for some
invertible U € A and the cohomology of {C.(T™), d (TN} is trivial, then

log TA(TP, %) = logra(TW, ) + = Z /dU/ Xe™ Mo (v e‘*(Af(T‘(‘Z)))"I)dt

1M /0 dm(yue—t(m(i“f)))‘l))520)_

Proof. The notations are the same as in Theorem 2.1. Using the integration

by parts, we have

d ()4
- —r4(TP,)) = e w_T(V —HA TN

1
2 :
1
2

_ )g+1 / b7~ Te N r (e~ HA () Moo

Z”;
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(2}
- G5 A7 dttre e e ST,
— li )j+1(( f dtts»le—)\tT(vue—t(Aj(Tl(‘z)))—l))SZO
21 I'(s) Jo

- fo " dhe ™M (e TNy,

Taking the integral on both sides of this identity, we obtain the result. Q.E.D.
We now use the measure defined by L. Brown [Brow] and Proposition 2.4

to obtain a mapping formula of the L2?-analytic torsion function.

Theorem 2.2 Let T € LP(A),1 < p < oo, and f be an analytic function near
the specirum Sp(T) of T' such that f(T) is injective and nonnegative. If f

vanishes at the zero to order at least p/2 and f(T') € D(A()\)), then

log T4(f(T),2) = —;—log De(f(1)?) - % so(7) log{1 + Af(2)*)du(=z)

[—1o] AN
b33 a0 - () (25)

=1
where p(z) is the measure introduced by Brown [Brow] and a_;(f) are the

coefficients in (2.4) corresponding to f{T)?.
Proof. Since f(T') is injective and nonnegative, Proposition 2.4 implies
1 1
log aA(f(T),2) = 5log D(f(T)N(T)",\) = 5 (log De(f(T))
| (— )
— 1o AU AL o 3 oD —can()

In view of the formula [Brow],

log AU+ AT = [ Tos(1 4 Af2(<))du().

We get (2.8). ‘ Q.E.D.




Let us remark that if all oy, (f) are not equal to negative integers, then

(2.8) reduces to

log TA(F(1),3) = 5 1oB De(A(T)) =5 [ 1og(1 + A (<)),

2.4 Determinant Functions on Riemann Sur-
faces

In this section we will compute the (-determinant and I?-analytic tor-
sion functions for Laplace-like operators on a compact Riemann surface M of
constant curvature —1. Let X™ be the space of tensors {f(z)(dz)"} on M for
n integers or half integers. For n = 1 we can consider X'/? as the space of
spinors on M. The covariant derivative V from X" to X* ® (X' @ X') can be
decomposed as V = V7 @ V7, where V7' : X™ — X7t apnd V2 ; X» — X!
are defined by V7 = p"dp™" and VZ = p~19, with p(#) the coefficient of met-
ric ds* = p(z)|dz|® of M in terms of local conformal variable z. Using the
metric ds®, we endow a Hilbert space structure on X™. Then (V) = —v=
and the Laplace operators on X" are A} = —V2V? and AZ = —V"V:. In
particular, AT is the Laplacian on functions and A1_/2 is the Laplacian asso-
ciated with the Dirac operator V2 2+ We can use the uniformization theorem
to realize X™ and A¥ more concretely. In fact, let H? be the upper half plane
with the metric ds® = y~?dzdz. Then M = H*/T for some discrete subgroup
I'C PSL(2,R) = SL(2,R)/{:£1}. Let T be the lifting of T to SL{2,R) and
x : I' — {£1} be the character such that x(—1) = —1. Then a spin structure

on M corresponds to a choice of such €. Let (2n) be the space of automorphic
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forms f on H? such that

cz+d

cz + d " f ),

f(72) = (x ('7’))2‘"'(|

Lt
I
o

S(2n) is a Hilbert space with the inner product < -, >,
dmdy

<fuh>= [ H@AE)

We identify X™ with S(2n) via the isometry ¢ given by o(f)(2) = y" f(z).
Then A} and A are conjugate with —Dy, +n(n + 1) and — Dy, + n(n — 1),
resp., where Dy, is a selfadjoint operator in §(2n) defined by Dy, = y%( 2 +
By ) — 2niy L.

Note that A¥ and D,, have the discrete spectra. Choose a negative
number Ag such that Ao & Sp(AF) and Ao £ n(n £ 1) & Sp(Dy,). We want to
compute the {-determinant and L?— analytic torsion functions for the operator
13, T = (A% — Xo)™ = (—Dan + n(n £ 1) — Ag)~". We have |IF| = T and
| TE™ = A% X = =Dy, +n{n £ 1) — X It is thus sufficient to consider
Dy,

By using the Selberg trace formula [Hej], we get (cf. [HoP))
Tr(e'P>) = KMt) + K™(¢),
where

ke = X s~ o i et
0<i<n—-1/2

2
—t/4

©0 ue i
— 2rv(M)—— — " -
Wk(M)(tL?rt)W?fo dusinh(u/Q) cosh((n — [n])u),
5 [ et e
np

K0 = 5 St e e

~ p'rzme :D'“




with [ given by cosh({/2) = J—J—)-i. Let N* = limy_ T?"(e“m ). We have
NE =1,N} =0 for n > 1/2 half integers.

(az(s,A) = Dz

1 o —1_—t{An( :1:15) /‘oo s—1 _—t(An(ntl)) o
— 5 n{n n dtt j{ t
F(s)(/o dit*e K20+ [ ; )

L (5,0 + (s, N).

Here for n nonnegative half integers,

+ — s—1 —t(/\+n(n+1)) o
S CRVIEE (3 j dtt K1)
/ di—Le—t+n(n+1) E (y)2 et e
— ttﬂ - Tl n X 1 -
F(S ¥ prime }‘; Sl]lh(pl/?) 4\/—
l
— Z'np . I 1/2)2
5, 5. 2 gy s KA G 1)
( pl s—1/2
2/A+ (n+1/2)2
where K,(t) is the modified Bessel function.
d + _ 2n.p ! 1
ds( an($A)sm0 = ryg;mcpz—:x sinh(pl/2) 2+/7
pl
K_172(pli/ A + (n+1/2)?) )" 12
alph/ 2\/)\ +(n+1/2)?
1
= IZ, 5 + A+ (n1/2)2), (2.9)

where Z,(s) is the Selberg Zeta function,

11 ﬁ(l — x(y)*"e Ut =0,1/2.

~ prime j=0

We now compute ¢ (s, A).

1 0O
CH(s,)) = F—@/U det*=1 e~ () g )
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= dit*~ e —f(Hﬂ(nil))( X( Z (zn_Qj_l)e(””.?)(”—J~1)t
P(S “/ 0<j<n—1/2
et 00 6_%
+am(M) f a7z (= D)
M : Ny s
= D g -+ 20— )G+ D)
0<5<n—1/2
_ ) e weh(n = ) u .
(4m)3/2 Jo sinh(w/2) 2\/)\ +(n+1/2)?
2
e )I(Sﬁg,z (/X + (n + 1/2)2).
Let I,.(s,A) denote the second term of this identity. The above relation
implies
d M :
(G Mo =28 S (202 1) (At (205 +1))
3 2 0<j<n—1/2
2rx(M) po | wcosh((n — [n])u) u . 3
" du - 129
(4m)3/2 fo sinh{u/2) (2\/)\ +(n+ 1/2)2)
K_spa(ur/X + (n+ 1/2)2). (2.10)
Combining (2.9) and (2.10), we get
d d d
o (Cat(5 Mo = (G Mo = (G5 W e
= XS n g+ 25 4 D)

2 0<_7'<n—1/2
+ InZ,_p)( +\/)\—]—(n+1/2 )+ Lne(8,A))s=0. (2.11)

Similarly for (4 (s, A) with n > 1/2,

N 2np ! 1
Gaaloh) = GaloN) + 3y zm e p;_;x(,y .
Ks_l(pl\/)\ + (n —1/2)?)( pl )3—1,/2J

21/A + (n — 1/2)2




where

1 e .S— - n{n-—- n
Coa(s,)) = ) /0 dtt 1=t Ot o )

= XD i+ 20—+ 1)
0<j<n~1/2
) g el b w e,
(dm)erz smh u/?) 2/ + (n — 1/2)2

Kyapp(uy/A + (n — 1/2)2).

1“_(85
Consequently, we have
d _
2 Gaz (5 Wm0 =~ (G52 N )emo + In Zip(5 4+ (2= 1/2))
_ __._(fl@ T (2n~—2j—1)1n()\+(2n—j+1)j)
2 0<j<n—1/2

+ In Zn_[n](%—l—\/)\—l—(n—l /2)2)— d%(fn_l,e(s, A))oeb2.12)

We now use a result of Sarnak to compute d%(fn,e(sa M))s=o. Let n=1/2
and A —1/4 = u(u—1) . We get A = (u — 1/2)?. By Sarnak’s theorem [Sar],

- _(C—A_ ( ))s:() = ~%(CD1+U(U—I)(5))3=O

1/2
= log Zyya(u) + (29 — 2)(co — u(u — 1) + 2log Ty (v + 1/2) + ulog(2m)),
where ¢o = —1/4 — 1 log(2m) + 2((—1) with the Riemann Zeta function ((u),

and I';(u) is the Barnes double gamma function defined by

1 2 o0 U, .
— 2',1' ’&/26—(‘15-]—((:-«{—1)11. )!2 1 + —_ Je“"-H' o
Tt~ o) JI=11( 7)

Also for n = 0,4/A+ 3 =u— 1 XA =u(u—-1),
d d
E(C—AO‘(S: )‘))s=0 = _E(CDo+u(u—1)(3))s=0

= log Zo(u) + (29 — 2)(co — u(u — 1) + log Il‘j(( )) + ulog(2n)).
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On the other hand, we know by (2.12)

d d 1
~ 75 (Sa7,(8:M)a=0 = log Zja(u) — —(I-1/2,6(5, (4 = 5)*))s=0,

and

—%(CAO—(S, A))s=o = log ZO(U) - d%(f_l,e(s,u(u —1)))s=o0-

Comparing these identities, we get

1y ol u(u=1))) o= (M) (e —u(u—1)-+log T(0)+ulog(2x)), (2.13)
and

d

ds(f_l,e(s,(u——3)2))3=o=x(M)(co—u(u—1)+1og%wm(zw)). (2.14)

Now replacing u — 1/2 by 1/A 4 (n — $)? in (2.13), we obtain the formula for

general n,n — [n] =

1
27

Tl oo = X(M)(eo — (A (n = 224 )4t (= D2 5
+ 2logTa(y/ A+ (n — %)2 + 1)+ (\/)\ +(n — %)2 + %)101;(271‘)). (2.15)

Similarly for n =

[n] we use (2.14) to express <=(Lu—1.e(s,A))s=0 by (2.15)

except replacing 2log I'y(y/A 4+ (n — 1)? + 1) by log 1;%((\/" ;:((n_lé));:%)).
n—%)7+1
We have proved the following theorem by combining (2.11),(2.12) and
(2.15) together with

d
~log D¢(T,\) = — 75 Cazls, A = do))s=o.

Theorem 2.3 Let TF = (AT — Xo)~'. Then for X\ > 0 and n positive half
inlegers,

1
—log Di(THA) = InZ (5 + VA= o+ (n+1/2)?)

L
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_ x(M) Yo (2n—2i—1In(A- X+ @2n— )G+ 1))

2 0<j<n—1/2

= X0~ (Aot 1+ D= do (04 Ly

1 1
- §)+210gF2( /\—)\o+(n+§)2+1)

+ (\/)\ — Ao (n+ %)2 + %)bg(?vr)), n = 1/2.

1
_log DC(Tn_aA) = In Zn_[n](i -+ \/A — )\0 - (n — 1/2)2)

_ X(M) Z (2n_2j~1)ln(A—)\0+(2n—j+1)j)
2 ocieniip

= X()eo= (A=t (0= 5+ 1) A o+ (n - Ly

1 1
— §)+210gP2(\/)\——)\0+(n—5)24—1)

+ (\/)\ — Ao+ (n— %)2 + %)log(%f)).

et Dyt
If we replace 2log 1"2(\//\ — Ao+ (n—1)2+1) by log Fg;(\})\i‘;:fl)fl;?), then
2

the above formulas hold for positive integers.
1  —
P2/ A—Xo+1/4+1 1
+ log 4 ot 1/4t3) —]—(\/)\—,\0+1/4+-§)10g(27r)).

L(y/A = o + 1+ 1)

Note that the formulas above are valid also for )\ = 0. We can then

get the determinants log D¢ (1), Since TF are selfadjoint and injective,
log D¢((TE)?) = 2log D¢(T%). Using Theorem 2.2 for f(2) = 2z, we get the
formula for log T4(T%, A).

Let A¥ and Dy, be the lifting of AZ and Dy, to H?. Denote

w d 1 00 C a4
d + - _ f s—1 _—MXt —tAL .
log det(AZ, X) = (_—I‘(s) A dit®e” " T'rr(e™" 0 )dt )5,



log det' (AT )) = 4.1 )/00 dtt"’_le_AtTTr(e_tf[ﬁ)’)dt)s:o,
S ]

_E(F(
where Trr is the natural trace on the finite von Neumann algebra generated

by a discrete group I'. We have

log dei([&f,)\) = —gg( £.(5,A))s=0-

As a corollary of the proof of Theorem 2.3, we obtain

Corollary 2.1 For n positive half integers,

log det(At,)) = _x(M) 3> (2rn =25 — DIn(A+ (20— 5)(j + 1))
0<i<n—1/2

= X(M)(eo = (A + (n+5)) — 1 +2log (A4 (n 5V 4 1)
(A (4 5P+ 5) log(am),
logdet(AZ,\) = HK(‘QE Y (2n—=2i —DIn(A = e+ (2n — 5+ 1))
0<j<n—1/2

— X(M)(eo— (A +(n = 5)7) — 1 +2logT(

+ (A +(n— %)2 + ;i;)log(zvr)).

Same formulas hold for integers n provided we replace 2log Ty(y/A+ (n — 1)24

1) by 10g F%(\/W'l‘%)

P17+

Proof. See (2.10),(2.12) and (2.15). : Q.E.D.

Observe that the above determinants do not involve the Selberg Zeta
function at all. We finally remark that it is quite difficult to compute the (-
determinant function of the Laplacian on compact Riemann surfaces of genus
¢ = 1 due to the occurrence of the modified Besssel function K;(s) in the trace

of the heat kernel.
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Chapter 3

K-Theory Torsions for Finite von Neumann

Algebras

In the previous chapters we studied the numerical torsions for geometric
and operator situations. We will now introduce a K-theory torsion invariant
for n-tuples of commuting bounded A-operators on a finitely generated Hilbert
A-module H with A a finite von Neumann algebra. This torsion invariant
takes value in weak K-theory group K{"(A) of A. The advantage of the K-
theory torsion is that unlike L? -analytic torsions on non compact manifolds
we do not need any restrictions on commuting bounded A operators and we

can more closely look at the relation between the torsion and operators.

This chapter is arranged as follows. In section 3.1 we define the torsion
invariant for an n-tuple of commuting bounded A-operators on finitely gener-
ated Hilbert A-module H, and recall some useful facts. The properties of the
torsion invariant will be discussed in section 3.2. We show that the torsion
invariant respects nicely the operator operations. A trivially-embedding theo-

rem and vanishing theorem are also proved. We study the torsion invariant of
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single operator in section 3.3. In that case, the torsion and the absolute value
of the adjoint operator are determined with each other up to conjugation by
isomorphism and a direct sum factor of weak isomorphisms. We calculate the

torsion Invariant for finite abelian von Neumann algebras.

3.1 K-Theory Torsions for Tuples of Com-
muting Elements

Let A be a finite von Neumann algebra. This means that there is a normal
and faithful finite trace 7 on A. Let [2(A) be the completion of A under the
pre-Hilbert inner product < ay,a; >= 7(aja1). Let H be a Hilbert space.
Suppose that we can endow a continuous left A-module structure on H such
that H is isometrically isomorphic into a closed subspace of 12(.A)& H; for some
Hilbert space Hy. H is called a finitely generated Hilbert A-module if there is
a surjective A-map from @7, *(A) onto H for some positive integer m. Note
that in our special case, a finitely generated Hilbert A-module ¥ is projective,
i.e., there is a finitely generated Hilbert A- module H such that H @ H is
isometrically isomorphic to DL (A) as Hilbert A-modules. Throughout all
Hilbert A-modules will Be assumed to be finitely generated unless specifically
stated.

Let us recall algebraic K-theory group of finite von Neumann algebra A.
Ko(A) is defined to be abelian group generated by all isomorphism classes of
finitely generated Hilbert .A-modules with the relation [H, @& H,] = [Hy]® [H,).

Ky (A) (resp. K}’(A)) is the abelian group generated by conjugation classes of
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automorphisms (resp. weak automorphisms) of finitely generated A-modules,
subject to the relations

(1) if 0 — (Hy, f1) = (Ha, f2) — (Hs, f2) — 0 is an exact sequence of au-
tomorphisms f; (resp. weak automorphisms) on finitely generated Hilbert
A-modules H;, then [(H2, f2)] = [(Hy, f1)] + [(Hs, f3)],

(2) if fi and f; are two automorphisms (resp. weak automorphisms) on finitely
generated Hilbert A-module H, then [(H, f, ;)] = [(H, f1)] + [(H, f)],

(3) [(H,I)] = 0 for the identity map I on finitely generated Hilbert A-
module H.

Here f : Hy — Hj is a weak isomorphism if f is injective and has a dense range
in Hy. Clearly, f: H — H is a weak antomorphism iff f is injective, since H
is finitely generated and f is an A-map. Thus f,f; is a weak automorphism
if f; and f; are weak automorphisms on H. We know Ko(A) = 7y (), where
U is the unitary group of A. Since K{A) can be identified with the abelian-

% RY via the Fuglede-

ization of the general linear group GL(A), K,(A)
Kadison determinant provided 4 is a II;-factor. Also if A is a finite abelian

von Neumann algebra L®(X, u) with X compact and second countable, then

Ki(A)

¥ Lo(X, p)* and KP(A) «© F(X,u)*, where F(X,u)* is the group

of all almost everywhere invertible measurable functions on X. Another ugeful
fact is that [(Hy, f1)] = [(Ha, f2)] if f; : H; — H; are weak isomorphisms satis-
fying ufy = fou for some weak isomorphism u : /f; — H,. For the application
of the algebraic K-theory in operator theory we refer the reader to the paper
of Carey and Pincus [CaP 2-4] where the algebraic K,-theory was successfully

used to explore the deep relation between the Lefschetz numbers.
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Let H be a Hilbert A-module. Suppose that T = (7y,...,7T,) is an n-tuple
of commuting bounded A operators on H, i.e., T;T; = T;T; , 4,7 = 1,...,n,
and each T; commutes with A-action on H. Throughout we always assume
that A-operators are bounded. Using the notations of Chapter 2, we let o =
(o1,...,0,) be the n-indeterminants and A?[s] the exterior space of complex
space Clo] = ®7_,Ca;. Then C;(T) = H®@A?[o] is a finitely generated Hilbert
A-module and di(T') = 37, 1;5; : Ci(T") — Cja(T) is an A-operator. We
have d;11(T)d;(T) = 0. {C(T), d.(T)} is called the Koszul complex of finitely
generated Hilbert A-modules associated with T' and H. The Laplace operator
AT : C;(T) — C4(T) is defined by A;(T) = d(T)di(T) + d;1(T)d_ (T).

We can write A;(7T) in terms of 7} and S; as follows.

Lemma 3.1
Ao(T) = dy(T)do(T) =Y 1T,
=1

An(T) = do o T, (T) = 3 _TTY,
=1

A(T) = Y((TPT - TI7)S; S+ Ty

=1

n—1 n
+ Y Y (T~ TIDSS + (I — TIT)S:S5), 0<j <.
=1 k=I41

Proof. This follows from a trivial computation and the fact that 5;55+57.5; =
1for¢ =y, and 0 for z # j. Q.E.D,
We have C;(T) = KerA;(T) @ (KerA;(T))*. Both KerA;(T) and

(KerA;(T))* are finitely generated A-modules. Let AY(T) = A;(T)xera, )y

It 1s injective and hence is a weak isomorphism. A’(T) defines an element

[A5(T)) in K7(A).
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Definition 3.1 The K-theory torsion invariant (7T, H) of T is defined by

(T, H) = D=1 T € KE(A)
=
Remark 3.1 (1) The adjoint of A-operators on finitely generated Hilbert A-
modules induces an involution * on K'(A) by +[(H, f)] = [(H, [*)] for weak
automorphism f : H — H. Since A;(T) and AY(T') are selfadjoint, we have
x7(T, H) = 7(T, H). Hence (T, H) is in K*(A)?, the fized points of * in
K(A).

(2) (T, H) differs from the torsion invariant in the previous chapters by
constant 3. But it is equal to that [LiR]. In fact, for any bounded complex
{Cy,d;Yi—_y of Hilbert A-modules, let Aj = did; + dj.qdi_| be the Laplace
operators and Al = Aj|xea iyt We can define the torsion invariant of
{C\,ds} as

n

T(C) = 32 (1A

j=—k

(3) It is easy to see that KerA;(T) = % = HHCAT)). We say
z=(21,...,2,) € C" is in weak resolvent set p,(T) if HI(C,(T — 2)) =0 for
all § =0,1,...,n, where T —z = (Ty — z,...,T, — 2z,). For such a point z,

we have T(T — z, H) = T5_o(=17 AT — 2)] € Ky(A)22.

We now define a relative torsion for an A-operator between two Hilbert
A-modules. Let H® be two Hilbert A-modules and 7% = (Tl(i), o, T e
tuples of commuting A -operators on H® i = 1,2. Suppose U : HY — H® j5
an A-operator which interwines 7), U Tj(l) = ij U,7 =1,...,n. This implies
that dPU = UdY for the differentials d\ of the Koszul complexes C,(T)

associated with 7). Hence U/ induces a morphism from C,{(T™) to C, (7).

65




66

Form the mapping cone C,(U) of U by C;(U) = C;11(T®) @ C;(T™) with
differential d;(U) : C;(U) — Cypa(U)

Loy= |~ 0| o
7 - y )= 1Yy, T
vood®

{Cu(U),d.(U)} is a complex of finitely generated A-modules. Let A(U) =
& (U)di(U) + d;1(U)d;_4 (U) and AUUY = Aj(U)|(xern;)L-
Definiton 8.2 The torsion invariant 7(U, T®) of U relative to (H®,7() i
defined by

H(U,TO) = Y (—1HGIAYU) € KPP

J=-1

Remark 3.2 Ifj;'(i)'—_o,j"—_—].,...,n)dj(U)-T. 0 0 : Ci(U) - Ciya(U)
U o

can be thought of a map from HO @ H® o W o H®, We have

AU =TUDUU, j=0,...,n—1, A (U)=UT @0, A, =0&UU"

Hence,
"0 = TP D mal070)
4 WU (1T
= § om0 4 w0 —0, s,

since Z;":O(—l)jjmj =0 forn>1 and m; = ( ? ), and z?=0(“1)jmj = 0.

Here T+ denotes T|(I(E,’.T)J_ for an operator T. We also get forn =1,

7(U,0) = [(U"U)] - [(UU*)*].
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This shows that T(U,0) is not equal to the torsion of operator Uy =

on HO @ H®. In fact +(Uy, HO @ HO) = [(UU*)4].

We can also write down a formula for A;(U) in terms of A;(T®), dgi) , U
and U*.

Lemma 3.2 A_(U) = (Ao(T) + U*U) 0, A (U) = 00 (A (T +TUT™),

N P
(@0 — @y AT+ DU

Proof. The proof is a direct calculation which we omit. Q.E.D.
Definition 3.3 Let U : HY — H® interwine T™. U is called a weak
cohomology equivalence relative to 7% if the cohomology H*(C.(U)) of the
mapping cone C,(U) is zero. U is weakly simple cohomology equivalence if
H*(Cy(U)) =0 and w(U, T = 0.

A necessary condition for U to be a weakly simple cohomology equivalence
relative to 70 is that the weak resolvent sets pu(T) of T are equal. This
can be seen from the following long weakly exact sequence [ChGr] associated

with short exact sequence

0 — C(T®) 5 0 (U) S 2C(TW) - 0,

B HI(SC(TWY) 5 HI(CU)) S H(CTPN S (3.1)

where LC,(T™M) is the suspension of C..(T™M) defined by (BC(TD)); =
Cip1(TM) with differential £d{ = ~dY,.

e
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Proposition 3.1 Let H® be two Hilbert A-modules and T two tuples of
commuting A-operators on HW, i = 1,2. Suppose U : HY — H® 45 an
invertible A-operator such that U interwines both T®) and (TWY*, If

n

Z J+1 (A (T(l)) +U” U)'(KeTA (T(l)))l] [UU*II(E’T‘AJ‘(T(”)]) =0
in K{'(A), then U is a weakly simple cohomology equivalence.

Proof. Using Lemma 3.2, we have

A;(U) = ((A.H'l(T(l)) + UV*U’)|(K|31'AJ'.|_1(T(l)))~L D (U*U)IKE?"AJ‘+1(T(1)))

& (A1) + UU N ierayzns @ (UU*)|gern,(m@))-

n—1
(0,10 = 3 (A (T U D) [era 0 20y LU0 ko 0 )
i=-1
+ Z TH A (T(2)) +UU* )I(KGTA (T(z)))J-] + [(UU )|K6'r/_\ {T(Z))])
j=
= (=1 ([(A(T™M) + U ) xeera jermyr] + (U0 | icera o]
=0
~ (AT + VUi eray@yr] = LTU*) orazen])
+ DDA TD) + U |kern iy 2] + (U V)| gera,(zun])-
=0

We claim that [(A;(TO)+UU*)|(gera jaonyL] = [(A;(TD)+U* O)ligera; ]
and [(UU)|gerayiren] = (U D) kerayewy]. In fact, UdY) = dPU and

Uy = (dP)U. We get AT = UA;TD). Hence Ulkera; ()

and U, 7))+ are invertible. The claim follows from U(A;(TM)++U*U) =

(A{T)+TUNU on (KerAj(TM))L and UU*U) = (UU*)U on KerA;(T™M)

and the remark at the beginning of this section. Thus we obtain

7(U, T(i Z(_] 7+1 (A (T (1)) + U*U)I(KBTAJ-(T(U))L] + [UU*|K6?'AJ'(T(1)}])'

J=0




By assumption, 7(U, T®) = 0,
It remains to show that the cohomology of the mapping cone of U is zero.
It suffices to check by long weakly exact sequence (3.1) that U : KerA;(TM) —

KerA;(T™) is an isomorphism, which is obviously true. Q.E.D.

Remark 3.3 The above proof implies that (T, HW) = (T3 H@Y i U7 .
HW — H® is invertible and interwines both T and (T'D)*. We call this the
weak similarity property of the torsion invariant. In particular, the torsion is

@ unitary imvariant.
We give some examples that satisfy the conditions of propositions 3.1.

Example 3.1 (1) Iij(i) =0,7=1,...,n, AT = 0,(I(erAj(T(e')))J_ —0,
then for invertible U : H®)Y —» H®),
Y= ATD) + U (gorn aryr] =0,

4=0

and since E?zo(—l)jmj =0 forn>1,

Y (=1 o |Kera cran] = Z(_l)j+1[U*U|OJ-(T(1))]
J=0 =0
e Z(—l)j+1?nj[U*U|H(1)] = 0
=0

Hence U is a weakly simple cohomology equivalence relative to T = 0,
(2} More generally, suppose that [ﬂ(l),(Tj(l})*] =0,4,7 =1,...,n. Then
by Lemma 3.1, Ay(TO) = 72 TE(TO),

KerAf(T®) = Ker(3 TP(T1)) @ Alo],

(U U ) kera,(rny] = m;[(U*U) |Ker(E;‘=, I§1)(T§1))*)]’
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and

(AT UV eragireonys] = msl (TP (T +U V)] ey 50 gtz
j:l 3=1"3 7

We get

Z(_l)j-l-l([(A.?(T(l)) + U*U)|(Ke'r'Aj(T(1)))"‘~] + [UU*|K67'AJ'(T(1))])
e
= DM TOTY 4+ Uy " G

0( ) m’([(z i (J ) + )I(Kerzj=1T§1)(i} ))-«)J.]

i=1

[

—

+ U*UIKeTE;;l Tﬁl)(T}_l))*]) =0

Therefore, if U : HY — H® is invertible and interwines both T® and (T,

then U is a weakly simple cohomology equivalence relative to T,

Remark 3.4 The condition [T;, Tf} = 0 is satisfied when each T; is selfadjoint
or T; = (8) for some fized normal operator S,1=1,...,n. Morcover, a min-
imal normal extension T = (T, . .. ,Tv) of subnormal n-tuple I' = (Ty,...,T,)

satisfies [T}, T =o0.

3.2 Property of Torsion Invariants

The main properties of the torsion invariant are given in Theorems 3.1 —

3.3. We first prove the following lemma.

Lemma 3.3 Let {C5,d; Y0 _, be a complex of finitely generated Hilbert A-
modules and A;(C,) = dids+d;_yd¥_y its Laplace operators. Then for AY(C,) =

Aj(c*)|(1{eTAj(C,))J-}




Proof. Using the decomposition C; = imd;_; @ KerA;(CL) ® tmd}, we have
AlC,) = d;fdjl?v'n}f &) dj_ld;f_dm. Since d;_; : wmd}_, — imd;_; is a
weak isomorphism and dj_l(d;f_ldj_l) = (dj_1d}_y)d;_4 on imd}_;, we obtain
[} _1dj—q Im] = [djmld;—llMI]- Hence,

S CUICN = 3 (1Pl + 651 b]) = 0

j=—k j=—k

Q-E.D.

Theorem 3.1 Let H) be two Hilbert A-modules and T — (Tl(i), coy TON

two n-tuples of commuting A-operators on H® ;=12

(1) If TM = (T&%,...,Tﬂ%) is obtained by permuting (T1(1),...,T,£1)), then

(T, HOY = (70, HY,

2) (T o T, HO @ HO)Y = 7(TW), HVY 4 7(TO), HO),

(3) H(TORI+IRT®, HOGH®) = (C,(TW))@r(T®), HO)4r(TW, H)g

X(C(T®), where X(CL(TD)) = Tpo(~1P[Ker A (T)] € Ko( ),

(1) (T, HO) = (<1 7(( ), 70)

Proof. (1) is immediate since the Laplace operators associated with 7V and
7™ are unitarily conjugate.

(2) Let Aj(T") be the Laplace operators associated with 7' = 71 @ TO,
Then AY(T) = AY(TM) ® AL(TD). Hence, [AL(T)] = [ALTON] + [AL(TD))].
This implies (2).

(3) Clearly, the pairing Ko(A) @ K P(A) = K,(A) given by [Hy] ®
[(H1, £)) = [(Ho ® Hy, I ® f)] is well defined. Let 7= T @ I + [ @ T®) —
TV er+IeT?,. . TWeT+ I®T®).

Ci(T) = (HM @ HM) @ Dprq=; AT [0] A AYo]
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Byt g=i Cp(TM) ® C,(T@),

With this identification, we get

GIE) = YTV @I+ 10T At

=1

= Dpe=i(dy) @ T+ (171 @ dP)(€).

Hence {C.(T), d,(T")} is isometrically isomorphic to the tensor product of com-
plexes {C.(TD), d(T™)}. By Lemma 7.14 [LiR] we get the result.

4) Let &Y = o, T8 © C(TW) = C;_(TW) and A(TW) —
(cfgl))*(fgl) —I—d(l) (d(21)* on C;(T™). Using the unitary operator § : C, (T -
Co(T™M) defined in Chapter 2, we have §d) = d®} and then

AG(TD) = ((d2,)7dY s + d0 4y (@D, ) = A, (T (3.2)

Let d" be the differential of the Koszul complex CL((T™)*) associated with
(T®)*. Then (dV) = d&, and 4V = (J(l__)l)*. This implies A;(T(M) =
A;((TMDY*). By (3.2), we get A; J(TW) = i (T, Therefore, by

Lemma 3.3,

(10, ) = i(—l)ﬂ‘“j[(A;_J-((T(”)*)l = (~1 (), 7O

(M (P AY(TO))] = (1) (@), 5O),

=0

Q.E.D.

We know in Chapter 1 (cf. [RaS 1]) that the analytic torsions of even
dimensional (compact) Riemannian manifolds are zero. The following theorem

is an analogue of this result for the operator case.



Theorem 3.2 Let H be o Hilbert A-module and T = (Th,...,T) an n-
tuple of commuting A-operators on H. Suppose [d; d*] ] [d;d* |md] =
0,...,n—1, where dj is the differential of the Koszul compler associated with
the adjoint n-tuple T of T. Then (T, H) = 0 for n even. Furthermore, if
LIy =TT, j=1,...,n, then forn > 1L, 7(1,H) = 0.

Proof. We know already from the proof of Lemma 3.3 that

[dj—-ld;—liimdjml] = [d-’;"*ldjmlhmd;— ]

1

(T, H) = E_:O( D145 ds ] + [dioadiy b))

= "5:1( 1)! [d*d ’:md*] (3.3)
=0
The assumption and (3.3) show that 7(T, H) = (T*, H). But Theorem 3.1
implies that for n even, (T, H) = —7(T*, H). We get 7(T,H) = 0.
IE[73, T3] = 0, then by Lemma 3.1, Ay(T) = 33, TE(TO)s. [AL(T)] =
m (20, TE(TEN*)4). This together with the fact that 58 o(—1)jm; = 0

for n > 1 proves

(T, H) = 3 (=1 m, (3 1194 = 0.
3:0 =1

QE.D.

By Theorem 3.2 we obtain immediately the following,

Corollary 3.1 Let A = L2(X, p) be a finite abelian von Neumann algebra
with X compact second countable and # a measure on X. Suppose T; is the
operator on L*(X, u) defined by the multiplication by w; € L™(X,pu),j =
Li..o,n. Then forn>1 and T = (Ty,...,T,), (T, L*(X, 1)) = 0.
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We now consider the torsion (U, T @) of U : HM — H® relative to T

The following result is an analogue of Theorem 3.1 for (U, T®),

Proposition 3.2 Let HY and H® be Hilbert A-modules and T and TO
n-tuples of commuting A-operators on H® and 2408 resp., 1 = 1,2, If U :
HY — H® and U : O & F® gre weak cohomology equivalences relative

to T and T, resp.. Then T(=U, Tt = (=1)*r (U, (T,

Proof. Let us figure out the relation between d;(U ) and d,(U*), the differ-
entials of the mapping cones C,(U/) and C,(U*) of U and U*, resp.. Let 4
be the differential of the Koszul complex associated with (T)*, We get from
the proof of Theorem 3.1 that df,-i) = ﬂ*(é,:ljhl)*ﬂ Under the identification

CJ(U*) = Oj+1(T(2)) o) OJ(T(U) o~ CJ(T{I)) B Oj,ﬂ (T(B)), we have

r

F2) 3(1) *

U dY 0 —d?,
[ [ 1

_ (oo (d®, ) - 0
0 0 @ 1o 4

e R R E Y

0 ﬂ*J 0 §

ATy ~ |[F0 Dpejer(-U) | § 0
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Therefore by Lemma 3.3,

n

(U @YY = S TAL L (~0))]

=0
= (=1)"r(=U,T%).
Q.E.D.
Finally we consider the following embedding problem. Let T’ = (T,...,T,)
be an n-tuple of commuting A-operators on H. Suppose 7' = (T, .., T3, ) is
a sub-m-tuple of T for m < n. How is 7(T', H) related to (T, H)? A special

case is discussed below.

Theorem 3.3 Let H be a Hilbert A-module and T = (Ti,...,T,) an n-tuple
of commuting A-operators on H. FLet T = (T1,...,T,,0) be an n + 1-tuple.
Then 7(T, H) = 0.

Proof. Let Cj(0,41) = Ci1(T) A 0,41 with differentials di(ont1) = Y, T1S),
J =0,1,...,n+1. Then C;(T) = Ci(T) & C;(0ny1) and the differential
d.(T) of the Koszul complex associated with T is equal to that of (', (T'). Let
A(ont1) be the Laplace operator of {Cy(0n41), du(0ny1)}. We get Ay (T) =
Aj(T)Y®Aj(n41) and then 7(T, H) = (T, H)+7(Cu(0nt1)). But Aj(o,yq) =
A;1(T). By Lemma 3.3 we obtain

n+1

(T, H) = Z( DHIAT + [A0n))
n+1
= Z( DAY + (A (T))
n+1
= 2(—1)5[A;(T)]:0.

Q.E.D.
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The following example is different from Theorem 3.3.

Example 8.2 Let T" = (Ty,1) on H . Then Ao(T) = T}y + 1, A\(T) =
(IVTT + 1) @ (TyT + 1) and Ao(T) = T + 1. /

(T H) = (LT + DY+ (T3 + D) - 2(T Ty + 1Y)

= (T + D] - (1)) = o,

Since Ker(T{Ty -+ I) = 0,[(H,I)] = 0, Tu(T;Ty + I) = (T\TY + DT, and
Ty o (KerfyTh )t — (KerTyT7)* = imT] is a weak isomorphism. But in

general, 7(Ty, H) +# 0.

3.3 Torsion for a Single Operator

Let H be a Hilbert A-module and T an A-operator on H. By Lemma, 3.1,
the Laplace operators associated with 7" are A, (1) = T*T and Ay(T) = TT*.

Theorem 3.2 implies
(T, H) = —=[(TT*)'] = —[(T*T)"). (3.4)

The theorem below shows that the torsion is a week complete unitary in-
variant of operators in the sense that the torsion determines and is determined

by the operators up to conjugation by isomorphism and a direct sum factor of

weak isomorphisms.

Theorem 3.4 Let H® be two Hilbert A-modules and T'C) two A-operators on
HO resp., 1 = 1,2. Then (7MW, gy = T(1'®, H®Y i there exist finitely

generated Hilbert A-modules H; and weak isomorphisms T; on Hijyj = 1,2,



such that [(Hy, T)] = [(Hs, T)] and (TO(TNNL @1y and (TO(TEY L g T,

are conjugate by an isomorphism.

Proof. Let C(A) be the category whose objects are all pairs (H,T) with
H a finitely generated Hilbert A«modulé and T a weak automorphism on
H. A morphism U : (H;,T;) — (H,,13) is an isomorphism from H; onto
H; such that UTy = ToU. Define product and composition operations on
C(A) by (I, ) @ (Hy,Ty) = (Hy ® Hy, Ty & Ty) and (H,Ty) - (H,T3) =
(H,T1T3). Then C(A) is a category with product and composition. Let
K¥(A) = Ko(C(A), +,0), the Grothendieck group of the category C(.A) [Sil.
K#(A) is an abelian group with generators [(H,T)] subject to the following
relations.

(1) [(Hy,T1)] = [(Hs,T,)] if there is an isomorphism U : H; — H, with
UT, = TyU;

(2) [(H: © Hy, Ty & T3)] = [(Hy, Th)] + [(Ha, T3));

(3) (H, 1 T3)] = [(H,T0)] + [(H, T3)];

(4) [(H,I)] =0.

Comparing this with K(A), we see that K{*(A) differs from K(A) only by
(2) which is [(Hy,Ty)] + [(Hs,T5)] = [(Hs,T3)] in K¥(A) associated with a

short exact sequence
0 — (I, 1)) 5 (Hy, Tp) 5 (Ha, Ts) — 0. (3.5)

Hence there is a surjective map from K”(A4) to K¥(A). The kernel of this
map is the set generated by [(Hy,T1)] + [(H3, T3)] — [(H2, T3)] associated with

short nonsplit exact sequence (3.5). Furthermore, if we forget the composition
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operation in C{A) and consider the Grothendieck group KO(C(A) ) of C (.A)

Then Ko(C(A),+) is an abelian group generated by [(H,T)] with relatlons ; 3

(1),(2) and (4) above. Then the natural map from Ko(C ( )s+) to K#(A) is
also surjective. Its kernel is generated by [(H,')] + [(H,1y)] — [(H, 1T)).
Hence the kernel of the map Ko(C(A),+) - Kp(A) — K{"(A) is generated
by [(Hy, T)] + [(Hs, T5)] = [(Hs, T2)] and [(H,T3)] + [(H, )]~ [(H, T, T)).
With these preparations we can proceed the proof of the theorem. Sup-
pose (T, HW) = 7(7(3), H®)in K¥(A). We have in Ko(C(A), ),
(T, g W) +\; H, T, T,,) +Z(Hk2,Tk2)]
+ Z( IJ? 31 J? Jz) ) + Z( Hl17ﬂ1 + [(ﬁlaaf}s)])
= T(T(Z)aﬂr@) + Z( Hi’ 151)] ( iy iz)])

+ 2([(Hk11Tk1)] + [(L{kakas ) + Z 31 Jl )] Z[(ﬁb?f}z)}‘

k

We simplify the above identity as

T(T(l),H(l)) + {(Hy, T11T1q)] + [(ﬁhiﬁn)] + [(ﬁhﬂz)]
+ [(Ha, Toa)] + [(Hs1, o)) + [(Has, Tsa)]
= (T, HO) 4 [(Hy, To)] + [(Hy, Too)] + (B, ToFon)]

+7 [(Hai, To1)] + [(H3, Tos)] + {(ﬁfsza Tsz)], (3.6)

where

H = @H;, Ty;= ®iTij, j=1,2, on Hy,
Hy = EBjI;rj, T = @jj},—, t=1,2, on H,
Hy, = @O;Hjp, Ty = ®; 05k, £=1,2,3, on Hy,

Hy = @jﬁj[, Tm:@jTj“ 121,2,3, on ﬁg].



All Hilbert A-modules here are finitely generated and all maps involved are
weak isomorphisms. Note that 0 — Hy — Hy — Hyz — 0 and 0 — Hy —
Hayz — Hys — 0 ave exact sequences. Since identity (4.6) holds in Ko(C(A), +),
we obtain that there exists (H3,T3) in C(A) such that

(T(l)(T(l))*)l @I 0 (Thlh) @ Tu 55, Tm ST d T31 @ Ta:a
= (T(g)(T(Z))*)l GNEYCNETRGN APR ) (TuTzz) P Tor ® Tos D T

We have thus proved one direction of the theorem.

Conversely, if there are Hilbert A-modules H; and weak isomorphisms 7}

on H; such that [(Hy,Ty)] = [(H,, T3)] and
(TO(TOYY @ Ty = (TOT®y )L ¢ T,
Then by the definition of K(A) we get
(TOTOY) = (T (T @)
in K(A). By (3.4) this is 7(TM), H) = +(T®) @), Q.E.D.

Corollary 3.2 Let HY be two Hilbert A-modules and T = (T7,..., T)
two n-tuples of commuting A-operators on H resp., i = 1,2. Then (T, H®)
= 7(T®, H®) iff there exist finitely generated Hilbert A-modules H; and weak
isomorphisms I on Hj such that [(Hy,Ty)] = [(Ha, T2)], and @; caa( A5{(TM)) &
Bk even( AL (TN BT, and &; add(A;-(T(?‘)))j@@k even (AL (TONEDTY are con-

Jugate by an isomorphism,

Proof. Suppose (T, HW) = 72 ((—1)+FAYTW)] = (17 H®) =
2_o(— 1)1 [AL(T™)] We obtain

7=

(5 0aa(AFT)Y © B cven( ALTD))] = [ 0aa(AYTD)Y D Br cuen(AL(TT)H).




We then proceed as the proof of Theorem 3.4 to get the result. Q.E.D.

We close this section by the following example:

Example 3.3 Let A = L®(X, u) be a finite abelian von Neumann algebra
with X compact second countable and p a measure on X. If H = L*(X, )
and T; are the multiplication operators determined by ¢; € L>®(X,pu),j =
1,...,n, then we know by Corollary 3.1 that 7(T,H) =0 forn > 1 . By (3.4)
(T, H) = [(TWIT)}] for n = 1. Recall that the determinant det from K¥(A)
onto F(X, p)* is an isomorphism. Since KerTyT} = KerTy ={f e H: [ =
0 on X\ (Kerpy)} and (KerT\IPYr ={f € H: f =0 on Kery,}, we have

det(r(T\H)) = (det((TVT{)* @ Ilxerryry)) ™

= (|‘1‘91l2|‘p1¢0 + X‘P1=U)_1 € F(X,pn)x,

where X, 20 15 the characteristic function of set {30.1 =0} in X.

More generally, if H = @, L*(X, 1) and T; are the operators determined
by the multiplication of matrices cp?) G...D cpgm),j = 1,...,n. Then for
T=(Ty,...,T,) andn > 1, det{7(T,H)) = 1, and

det(r(T, H)) = (TT(et"P + x,0) " € F(X, )", n=1.
=1



Chapter 4

Equivariant Bivariant Cyclic Theory

This chapter arises in the desire of extending Jones-Kassel bivariant cyclic
theory to the equivariant case. We first face the problem about how to define
equivariant bivariant cyclic theory for topological algebras. Keeping in mind
the application of cyclic (co)homology to index theory, we choose to define the
equivariant bivariant cyclic theory which is slightly different from equivariant
cyclic cohomology discused in [Gong 2] and in the next chapter. The advan-
tage of this definition is that we can use it to construct equivariant bivariant
Chern characters. As one should expect, the properties of Jones-Kassel bivari-
ant cyclic theory are not always extended to our situation due to topological
structure of algebras. Our aim is to prove the excision property and construct

the Chern characters.

This chapter is arranged as follows. In section 4.1 we define equivariant
{entire) bivariant cyclic and Hochschild theories of Fréchet locally m—convex
G-algebras for Lie group G. Some basic properties are discussed. We use the

results in [Gong 2] to prove the excision property in section 4.2. A six-term
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exact sequence of equivariant periodic bivariant cyclic theory is obtained. Qur
main result in this chapter is to construct the equivariant bivariant Chern
characters which extend the result [Nis] to the equivariant case. Qur approach

is different from those in ([Kas}, [Wang]) but is related to that in [Nis].

4.1 Equivariant Bivariant Cyclic Theory: Def-
initions

Let A be a Fréchet locally m-convex algebra over C. This means that
A is a complete topological algebra with topology determined by a sequence
of seminorms {p,}32, satisfying pn(a1a2) < pala1)pn(asz) for a1,a2 € A and
n € N. Suppose that G is a locally compact Lie group acting on 4 by smooth
automorphisms @ : G — Auit{A) such that p.(ga) < pn(a) for ¢ € G and
a € A and if A is unital a,(1) = I. Here Aut(A) is the space of continuous

automorphisms of A. Thus for each ¢ € A a,(a) is a smooth map of g. Let
C(G,A) = {¢o € C*(G, A) : Supp(p) 1s compact in G}
with the multiplication

(fix £2)(9) = [ A(Borfu(h ™ g)dh, [; € C(G, A).

Cg° (G, A) is isomorphic to the projective tensor product C2(G)®.A4 of C°(G)
and A. Since the projective tensor product of Fréchet spaces is Fréchet, we
see that A®HDGC™(Q) is a Fréchet space for n € N. We follow [Gong 2] to
define the equivariant cyclic (co)chain complex. Let &, : A HDQC> () —

ABMQC(G) and t, : A (@) — A EC2(G) be defined by



d;(aﬂga’l) v )a‘n')f)(g) =

and

(ao(l'g(a.l), Agy. -y, f)(g)7 1= 07

J (a(]?-'-:aiai+19-'-7aﬂ>f)(g); 1<z Sn—la

(anaﬂya’la e )an-~17f)(g)) 1= n

talto, @1y oy any fY(9) = (@, o (a0), a1, ..., a1, F)(g),n = 0,1,.. .,

where (ao,ay,...,a,, f) stands for ay®@a@ ..., Ra, B f. di and 1, arc contin-

uous. One can easily verify [Gong 2]

; T S R R .
;—ldfv. — d‘nmld:u 3<.73

dit, =

and

tn_ldffl, 1<:<m

dr, i=0.

t:-l-l(aﬂaa'la sery iy, f)(g) = (ang(a’U)7 Tt 7a;1(aﬂ))f(g)’

Define a G-action on A®tDQC> () by

Prlao, ary. ..y an, F)(g) = (0 (o), - .., oy (a0)) f(hgh™"), Vh € G.

Clearly, t,pp = ppt, and d pj, = prdt for b € G. In fact, as in [Gong 2],

tnph(aﬂy Aiy..0yQyp, f)(g)

= tn(agi(aﬂja s 1al:1(a‘n)? h - f)(g)

= (a3 (), og (a5 (a0)); .-, & (1)) (- )(9)
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a;;l(ana Of[:glh—l (a())s Giyeney an——l)f(hghwl)
= Ph(an: O5(_)] ((10), Ay eyOp1, f('))(g)

= phtn(ao,al, R ,an:f)(g)1

where h - f(g) = f(hgh™!), and

d:aph(ﬂ")’ala R >a"n1f)(g) = d;(agl(ao)a e 705]:1(0’?%)}}5 : f)(g)
( .

(a;l(ao)ag(a;j‘(al)), agl(QZ): s ;G’El(an))f(hgh“l),i = O,
=) (@it (a0)s - 05 (@), - 0 (0n)) flhghTY), 1 < i < — 1,

(@ (ana0), oy (1), - - 05 (@) f(hgh™) i =

.
’

a}jl(a{h Xpgh~1 (a’l)a Gz, .. 3an)f(h.qh'1)7i = 0:
= Y o e, ..., G141, - a0) flhgh™1),1 < i < n 1,

i andg, ... a0 1) flhgh™"),i =n

\

= phd;(ao, Q1y...,0n, f)(g)

Let b and ¥ be the morphisms on A2 +D&C(() defined by

n n—1
b= Y1V, ¥ = (1)
=0 i=0

Then b and ¥ are equivariant and continuous. Let T and J : A2HD&C2(G) —

AN QO () be defined by

T= (Hl)ntny J(O‘.g, S PRI f)(g) = (_l)n(anaoﬁa’l’ r e U1y f)(g)



We proved in [Gong 2] the following facts on ASHGC(G):

(1) T = p, where

plao, a1, .., a0, f)(9) = (a’_q_l(ao)? oo ,org_l(an))f(g), ’

(2) TG = (1),

(3) b= E?:O p—(i+1)Tz’JT(z‘+1)n, = E::ol p_(£+1)TiJT(i+1)n.

Let CI(A) = A8TH)Qg C2(G) € (AXHIQO>(G)) /M, where M is the
closure of linear span {pp(z&f) — z&f, p(z&f) — a®f,z € AP+ f ¢

C&(G)}. Then b8 and T' descent to CF(A). We have

Lemma 4.1
- ZTiJT(i+l)n e ZTiJT_(H-l),
i=0 =0

n—1
¥o= S TN (1 —T) = (1= T), HN = Nb

i=0

and b* = (0)? =0 on C’f(,f-’l).

Proof. By the above discussion, we need only to check pdf, = d’p and t,p =

ot, on A®(”+1)®C’§°(G). In fact,

' agl(%ay(al),a% st )fg), 1=0,
pd;(amal)--':an:f)(g) = A

oy Wag, ..., a1, . an, f)(g),1 <i < m,
= d;p(ao,al, ety ()
tnplao, at, .. 0, f)(9) = (a;(an), oy a0)oy (@), ..., a5 (an), F)(g)

= a;l(an, aoag_l(al), day ... sy n—1, f)(g)

= Ptn(a(ha'l)- . 7amf)(g)' |



The proof that = 0 and 2 = 0 is a routine computation which we omit.

Q.E.D.
If A is unital, we define §" : CF(A4) — CZ,(A) by ,
§'(av, a1, >, £)(9) = (L g (@0), a1, @, £)(9).
Lemma 4.2 S’ commutes with p, and p, and V'S’ 4+ S'b =1
Proof. The proof is given in [Gong 2). Q.E.D.

We now form the double complex CF,(A) by
C’ﬁ,n(vél) = C’f(.A), m,n > 0,

with the vertical and horizontal differentials §; and &, given by

(

b(z,)g™, m even,
51($nqm) = A
= (xp)g™, m odd,
(
N(z,)g™ 1, m even,
62($nqm) = 4

(1-T)z,)g™, m odd,

\

where ¢ is an indeterminate of degree 1 and the element in CS (A) is written

as £,q™ for z, € CZ(A). Then (§;)* = 0 = §;6, + 6,6,. Define S on CE(A) by
S(zaq™) = Tag™?, m,n 2 0.

S commutes with 6;. Denote by T3.(CE(A)} the total complex of double com-

plex C%(A), namely,

TW(CH(A))= D oA

m4n=k



with differential d = 6, + &,. T,(C¥ (A)) is a Fréchet space since each CE(A)
is Fréchet.

Suppose that B is another Fréchet locally m-convex (-algebra over C. Let
Hom(Ty(CZ(A)), T;{CE(B))) be the space of all continuous multilinear maps
from T{CE(A)) to T;(CE(B)) . Let {Hom(T,(CE(A)), T.(CE(B))),d} be the

complex given by

Hom(Tu(C5(A)), TCE(B)))n = [ Hom(T:(CE(A)), Ten(CH(B)),n € 2,

i>0
with the differential d, df = df —(—1)Vfdfor f € Hom(Ti(Cx(A)), Tun(CL(B))),
|f| = n is the degree of f. Define ad(S) on Hom(T(CZ(A)), T.(CE(A))) by
ad(S)(f) = Sf — [8.
ad(S) clearly commutes with d, Let

Homs(T.(CL(A)), Tu(CZ (B)))={f €Hom(T.(CF(A)), T.(CS(B))) :ad(S)(f) =0}

and

Ker(S,T.(CZ(A)) = Ker{T.(CS(A)) S T.(CE(A)[2]},

where X[k] is the shifted complex of a complex X by k: (X[kDn = Xnck,
with differential d = (~1)*d. Then {Homg(T\(CE(A)), T.(CE(B))),d} and
{Hom(Ker(S, T,(CE(A))), Ker(S, T.(CE(B)))),d} are complexes.

Definition 4.1 (1) The equivariant bivariant cyclic theory of A and B is
HCG(A, B) = H_n(Homs(T,(C(A)), T.(CE(B)))), n >0,
(2) The equivariant bivariant Hochschild theory of A and B is

HHG(A,B) = H_,(Ker(S, T.(CE(A)), Ker(S, T.(CE(B)))), n >0,



.-

Clearly, the map § on Homs(T.(CZ(A)), Tu(CF(B))) given by S(f) = §f =
JS induces a morphism from HCZ(A, B) to HCZT*( A, B).

Definition 4.2 The equivariant periodic bivariant cyclic theory of A and B is
PHCH(A,B) =lim HCE (A, B).
1,8
Observe that there is a short exact sequence

0 — Ker(S, T.(CF(A) - TW(CF(A) 5 Tu(CE(A)R] — 0. (4.1)

Thus if A is nuclear, T.(CF(A)) and Ker(S,T.(CF(A))) are nuclear. We get

the following commutative diagram

0 0
I !
0— Homg(T(CE(A)), T.(CE(B)Y-2] = Hom(T,(CF(A)), T.(CE(B)))[-2]
1S } Hom(S, I)
0— Homs(T(CE(A)), T.(CE(B))) = Hom(T,(CE(A)), T.(CE(BY))
L1 H
0 — Hom(Ker(S, T*(Cg(A))), Ker(S, T*(C4(B)))) — Hom(K er(S, T*(C4(A))), T* (CL(B)))
! !
0 0
0
ad(5) ! 0
ik Hom(To(CE(A), TL(CS(B))
i) | Hom(S,I)
= Hom(T(CI(A), TL(CE(B))2] — 0
LI
“E2 Hom(Ken(S, T*(Ci(A), T*(Co (B~ ©
!
0

where each row is obviously exact. The exactness of last two columns fol-

lows from (4.1) and the nuclearity of .A. By the 3 x 3-Lemma, we obtain




the exactness of the first colurnn which yields the equivariant Connes exact

sequence
—HOE (A, B)SHCE(A,B) L HHEA(A, By~ HCE (A, BYS HOR (A, B)—(4.2)

provided A is nuclear.

We can also define equivariant cyclic theory in terms of other complexes
for some special algebras. To this aim, let us introduce the notion of strong
equivariant H-unitality.

Defintion 4.3 Let A be a Fréchet locally m-convex G-algebra. A is called
strongly equivariant H-unital if there is an equivariant map 5" : CF(A) —
CE 1 (A) such that &S + 5% = I.

By Lemma 4.1 , we see that A is strongly equivariant H-unital provided

A is unital. For strongly equivariant H-unital algebra A we can define a

morphism B : C5(A) -+ CZ,(A) by B = (I —T)S'N. Obviously, B? = 0 —

E

bB + Bb. We then form a new complex {TS(A), b+ B} by
Ti(A) = CHA) @ CLy(A) o CE (A ...,
with diferential b+ B. The map S is also a morphism on T9(A) given by
S(Tny Tnog, Tnss...) = (Tpg, Ty, ...).
As before, let
Homs(1,(A), T,7(B)) = {f € Hom(TE(A),T¢(B)) : ad(S)(f) = 0}

with the differential d.



Proposition 4.1 Let A and B be strongly equivariant H-unital. Then
HCG( A, B) = H_(Homs(T7(A), T7(B))),
and
HHE(A,B) = H_(Hom(Ker(S,TZ(A)), Ker(S, TE(B)))).

Hence,

PHCH(A, B) = im H_ (20 (Homs(TE(A), TE(B))).
n,S

Proof. The proof is to construct explicit isomorphisms. Introducing an inde-

terminate u of degree 2, we can write

(A= D Cl(An.
k+2i=n
Define 1) : TF(A) — TF(CE(A)) and L : TE(CF(A)) — TE(A) by
Li(zu?) = 2¢™ + S"N(m)q?p_l
and
IQ(.’IJ(]ZP) = a:up, Iz($q2p+1) = (I — T)S"(zc)up,
where 5’ is a morphism on C%(A) to be determined which satisfies 5/ + ¥ 3" —
I and (§)® = 0. One can easily show [Kass]
L (zu®) = zu? + (1 — T)(S)?N(2)uw?™ = I(zu?)
and
IIIZ = I-i— d(P + f,Dd,

where ¢ : CE(A) — CE(A) is defined by

e(zg™) =0, p(zg*) = 5'(z)g*+.




Hence /113 and 1,11 are homotopic to the identities which imply the result. It: S
remains to find 5. Let &' = S'0'S’". We get

S+ HS = (8"~ SVW + (S~ b5 = S + 55 =1,

and (812 = S'(S)AV)2S8" = 0, since S'(b'S! + ') = 8" = (WS + S'¥)S" and
then (S = ¥'(5")2. Q.E.D.

We now come to the entire version of equivariant cyclic theory. Let
A be a unital Fréchet locally m-convex (-algebra whose topology is deter-
mined by a sequence {p;}%; of seminorms satisfying pi(zy) < pi(2)p;(y) and
pilgr) < pi(2),Yg € G,z € A. We assume p; < pp for j < k. Let A; be the
Banach algebra defined by the completion of A/ Ker(p;) with respect to pj
and B; : A — A; be the continuous quotient map. A; is a G-algebra and g;
is equivariant. We have a map from A/Ker(p;) to A/ Ker(p;) for 7 < k. Let
o : Ay — A; be the corresponding extension of this map. Then {A;, s, £;}
is a projective system and A = lim_, i A;j. To define the seminorms on the pro-
jective tensor product A8(+1) we map A8(+1) 14 A?(HH) via the map 8; and

then for z,, € ABCHY) [gt

[#ally = 118i{2n)l s«

for the projective tensor product norm [|..]|jx on Banach algebra A We
choose an increasing sequence {¢;} of seminorms on C(G) and tensor them

with |[..||; to get a sequence of seminorms on A®(7‘+1)®C’§°(G). Denote also by

||--ll; the quotient of these seminorms on CE(A). Let TS(A) (resp. T8 (A))

be the space of all sequence {z,,}%2, (resp. {an11}5%,) such that for each j




and r € N,

= ”'TZHHJ " [|2n4a 5
Z:% < oo (resp. 7;; @n+1)! < 00),

where z, € CZ(A). One can check that b and B map TS(A) to TZ(A) for
vi # va,v; even or odd. (cf. for instance, Chapter 5). We may consider the
periodic complex {77, (A),b+ B} given by T (A) = TS(A) for j even and
TS, (A) for j odd, with an obvious operator S of degree 2.

Definition 4.4 Let A and B be strongly equivariant H-unital. The entire

equivariant bivariant cyclic theory of A and B is
HCE (A, B) = H_(Homs(T.7,(A), T (B))),

HCg (A, B) = H_(Homs(T,(A), T7,(B))).

Since S acts on HCY (A, B), we can.deﬁne the periodic version of the entire
equivariant bivariant cyclic theory.
Definition 4.5 The periodic entire equivariant bivariant cyclic theory of A
and B is

PHCE (A, B) = liénH (A, B),

There are also normal versions of the above cyclic theories for unital
algebras. Let C9(A) = (AQ(A/C)8N &y ,C°(G). Here A/C is the quotient
of A by C. Replacing CZ(A) by CY(A) through the discussion above, we
get TF(CE(A)), T¢(A) and then the normal version of the equivariant cyclic
theory, denoted by HC, —E’?*G'* and so on. But we do not know whether in
our case HC ¢y and H C¢: are isomorphic due to the lack of explicit formula of

strong homotopy. For A = C and G compact Lie group, one can construct




a strong homotopy from T%(C) to TS(C) = Clu] @ R*®(G) [Kass|. Define
I : TE(C) — TE(C) and I, : TS(C) — TY(C) by

I3('!.Lp Z( 1 62; pmi, /
>0
(
0,n odd,
L) v @ @n_z) = 4
i>0
usl @ Ly, N even,
241
f'A_A—A'\
where e = 1®... Let 9 : TE(C) ~» TE(C) be the map of degree 1
defined by
P(uPer,) = 0
1 (2n + 24)In! p—i
uPeg,_q) = -1 ’+1-£———- €ont2i
¢( 2 1) Qz;( ) (2n) (n_]_ E)! 2n-+2

Then 1Ty =1, I3ly = I dip + d. This proves that I3 and I; are strongly

homotopic inverse with each other. Hence we have obtained the following

Proposition 4.2 Let A be strongly equivariant H-unital and G compact. Then

HCHA,C) o H—*(HOmS(T (A) TG( )))a

HCH(C, A) ~ H_,(Homs(T7(C), T (A))).

Note that T7(C) ~ R®(G)[u], where R®(() is the space of G-invariant
smooth functions f on G, namely, f is smooth and f(ghg™') = f(h) for
g,heqG.

HCH(A, C) is in general different from HC%(A) in [Gong 2]. The reason

to define HCE(A, B) as above is that this equivariant bivariant cyclic theory
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is suitable for the study of the Chern characters. Of course, we may define
HCE(A) as HCE(A, C) and study its application to equivariant index theory

which is left to the interested reader.

Proposition 4.2 enables us to compute HCE(C, C) for compact Lie group

G as follows.

HOG(C,C) = H_.(Homs(R*(G)[u], B(G)[ul))

= H_.(Hom(R*(G), R*(G)))
(

Hom(R>*(G), R*(G)), *=2n,

O, *:2?1-'—1, T?,ZU

We now consider the reduced version of equivariant bivariant cyclic the-
ory. For a unital Fréchet locally m-convex G-algebra A we let CO(A) =
CE(A)/CY(C) and define TE(A) as that of TF(A) with CF(A) replaced by
CG(A). Then {T'9(A),b+ B} is a complex. Using TG(A) and T5(B) instead
of TF(A) and TF(B) in Definition 4.1, we get the reduced version of equiv-
ariant bivariant cyclic theory. For a general A, we can compare the reduced
complex T¢(A*) with TE(A), where A* is the algebra obtained by adjoining
an identity to A. In fact, let

®: 0% (A) @ C%, 1 (A) = CY(A) @ CF

) q q-

be defined by

Q(wﬂamlp'“amq:f) = (330::51:-":mqaf)7®($17"‘>$q1f) == (1:331;-'-;$q;f)'




Clearly, ® is an isomorphism and defines a morphism of the complexes [LoQ].Hence,

TOA) = @ C(A) = Do)

pteg=n q=0

= (CJ(A) & CLi(A) @ (CLa(A) @ CFL5(A) & ... 7
~ CEA) @ Co (A ... =TS(AN).

We have obtained the following,

Proposition 4.3 Let A and B be Fréchet locally m-conver G-algebras and
HCG(A*,B*) be the reduced equivariant bivariant cyclic theory of A" and
Bt, Then

HCH(A,B) ~ HCh(A*, BY).

4.2 FExcision Property

In this section we will associate a long exact sequence of equivariant bi-
variant cyclic theory with the following short exact sequence of Fréchet locally
m-convex G-algebras

0 —— A —s & &= B s 0. (4.3)

2

Here i and « are topological homomorphisms. j is a continuous linear map
such that mj = 1. The method is to use the spectral sequence and equivariant
H-unitality as in ([Wod 1, 2], {Kass] [Wang]) and [Gong 1,2]. The long exact
sequence of equivariant bivariant cyclic theory will follow from the results in
[Gong 2]. Let us first recall the construction of spectral sequences in [Gong 2].

Consider the Bar complex

BE(£) = (£)°M&e,0(G)




with the differential ¥. let
BKE = I{er{Bf(S) Iy Bf(R)},

where , is induced by 7. Identify .4 with i(A) and R with j(R) in £ as
topological spaces. We have that A is an ideal in £ and BF(A) C BZ(£).
Filter {BKEZ,V'} by

F,BKS, = Span{[es, ez,-..,ep4q, f] € Bﬁ_q(é') . ot least ¢ ;s € A},

0 C BS(A) = FoBKS ... C F,_.BKY = BKE,

The spectral sequence corresponding to this filtration converges to the homol-

ogy of {BKSZ ¥}. Its Eg—terms are

BE;? = Span{les, ..., py, f] € BS, (E) : ezactly q eis € A}

with differential d) _ induced by ¥/. we write elements of BKZ,

as the following.
Case It (@), Tna)r -+ > Ci)s Tinga)r S min ks € ZF, 2 < j <1, 1 <4 <
{, nip1 €N;

Case 1L [T(ay); Glkr)s -« vy Q) Plmaga)s S Py ki €LY, 1 < 4,7 < Iingyy €N,

where

a(k.‘) — (ak,‘_1+1aak.‘u3+2: s 7aki—1+k,‘)f)7 1 S H S l: a; € A:

T(nj) = (Tn_-,'_1+1: T'nj__1+2, fe 7rﬂjm1+ﬂj5f)? 1 S j ﬁ l + ]., 'l"j € R

Then dg'q acts on these two kinds of elements as follows.

Case I: dg,qla(kl), T(na)s -+ oo Ofi) g ) ST = [0 (agry), Plna)s« s G(k)s T(maga)s S 1

! ,
g—1 s ar
+ Z(‘“l) = (Ritniy )[a(kl), Tlng)s - - - ?b,(a’(kj))’r(ﬂjﬂ)f BERACTFEYT f]

=2



Here, B’(ao,al,. v tn) = YV (1) (g, .o 5 @iy - - -y ).
Case I dg’q[r(m),a(ka), o3 O(k)> Tnzga)s T

! . .
= Z(«——l)ziﬂ (nitki)tn, [T(nz)a Gk )y + 5 T(ng) b’(a(kj)), ey Ok T(npgn) f]

i=1

We now introduce two complexes depending on the form of elements.

Case I For 1 € Z% let Oy = (ng,n3,...,n4q) with [O] = Sl n; and {(O)) =

1

Lin; > 0,2 <i < land nyy > 0. Let BIS(O;) be the total complex of the

(I 4+ 1)-tuple of the complexes

(BAA)B(A)na]® ... &B.(A) QR[] 01| + 111 ]OCE (), C,

where B,(A) and E*(A) are equal to A®™ with differentials & and ¥, Tesp.,
and REIO1[— || + ny41] concerntrates in dimension —| O]+ nyyy with trivial
differential.

Case II: Let Og = (nq,n9,...,m41),m; > 0,1 <4 < l,nyq > 0. Let BTG(O,)

be the total complex of the following

A o~

(Bu(A)m]@B.(A)[na]® . .. & B.(A) ] &RE = |Oy ]+ 1y, ]OCE(G)) e, C.

Then we have

{BESL,&8,} @&  BIYOND b BISO),
O::[Oi]| =p Oz :|Ogf = p
1(0) >1 (02) > 1

where F' is defined by

Flrmys aig)s 5 000)s Pomgads F1 2 [060)5 0(0)s -+ O(ki)s Tna)s T(na)s -+ 5 Tnrg) s -



F is one-to-one and onto continuous map. As a result, the BEg;l- terms of -
the spectral sequence are isomorphic to

P H(BIE(O:), )P D  H(BT.(O:),4,,), p=1. (44)

all O1: [O1|=p all Og: |Oz)=p

To guarantee that the spectral sequence Bng stops at £k = 2 for p > 1, we
introduce the equivariant H-unitality.

Definition 4.6 Let X be a Fréchet G-space. Let

Bi(A,X) = (APMBXHCX(G)®q,,C

BO(AX) = (A3M@X)&q,C, n>1.

If H,(BS(A,X),5) = 0 and H.(B%(A X)) = 0,%+ > 1 for any Fréchet
G-space X, then A is called equivariant H-unital.

Note that if A is unital , then A is equivariant H-unital by Lemma 4.2.
It is likely that the strongly equivariant H-unitality implies the equivariant
H-unitality.

Now if A is equivariant H-unital, by (4.4), the inclusion BZ(A) AL BK?
induces an isomorphism in homology. See {Gong 2] for details. Similarly,
we can show that the inclusions Ker(S, T.(CE(A))) & Ker(S,CKS) and
TECYA)) — CKE ¥ Ker{TC(CE(E)) I TF(CER))} induce isomor-

phisms in homology.

Theorem 4.1 ([Gong 2}) Let A be equivariant H-unital.
(1) BS(A) 2% BKEC, Ker(S, T.(CE(A))) * Ker(S,CKS) and TS (CE(A)) <

CKE induce isomorphisms in homology.



(2) There are the following long exact sequences associated with (4.3),

o= HHS(A) 5 HHE(E) ™ HHS(R) 5 HHE [(A) - ...,

o= HCS(A) ™ HCO() ™ HCS(R) S HOS [(A) — ...

The equivariant H-unitality is guaranteed by Theorem 7 in [Gong 2].
We now use Theorem 4.1 to prove the excision of equivariant bivariant

cyclic theory. Let us first prove the following crucial lemma.

Lemma 4.3 Let X, and Y, be two complezes of Fréchet G-spaces. Suppose
¢ Xo — Y. induces an isomorphism in homology. Then Jor any complex
Z, of nuclear Fréchet G-spaces, Hom(I,¢) : Hom(Z.,X.) — Hom(Z,,Y.)

induces an isomorphism in homology.

Proof. We divide the proof into three steps.
Step 1. Let C(X.,Y,) be the mapping cone of @ given by C.(X,,Y.) =
Yo ® X1, with differential d(y,,z,_1) = (dyn + @(Tn-1), —d(z,—1)). We have

a short exact sequence ’
0= Y. = Cu(X,,Y,) = X, ]1] = 0.
Hence, we get a long exact sequence
- Ho(Y.) — H,(C.) - H, (X)) 5 H, 1(Y,) = H,1(C,) —.

Since ¢, is an isomorphism, we obtain H,(C,) = 0,7 > 0. This implies that
Cy(X.,Y,) is an exact complex.

Step 2. We now show that Hom(Z,,C(X,,Y.)) is exact. In fact, if f €
Hom(Z,,C\)n is a cocycle, ie., df —(—1)"fd = 0, then in particular, df(z) =



(=)™ fdz) = 0,20 € Zy, i.e., f(z0) € Cy is a cycle. Since Zy is nuclear, we

get a long exact sequence [Tay]
— Hom(Zy,C,) & Hom{Zy, Cpy1) & Hom(Zg, Crya) - .

Thus there exists an f, € Hom(Zo, Chy1) such that dff = f on Z;. Consider
f+ (=D"*fld on Z;. We get d(f + (—=1)"*t'fid) = 0. This shows that
[+ (=1)"*t' fid is a cocycle on Z;. Hence we can find f; € Hom(Z1,C\y2)
such that dff = f + (1) fid on Z;. We proceed this way to find f! €
Hom(Z;, Ciypy1) such that dff = f 4+ (=1)**1fl_d,i > 0. We have thus
obtained an element f' = {f/} € Hom(Z.,Cs)ny1 such that df’ = df' +
(=1)m+tfrd=f.

Step 3. Let ¢, be the morphism on Hom(Z,, X,) induced by ¢. Let C, be

the mapping cone of ¢,,

& = Hom(Z, Y )n ® Hom(Zw, X.)al1],

with differential _zi(fn,fn_l) = (dfn + ulfr1), —d(fu_r)). Clearly, C, =
Hom(Z.,C(X,,Y,)). We get

0 — Hom(Z,,Y,) — C» — Hom(Z,, X.)[1] = 0.
Hence we obtain a long exact sequence
— Ho(Z4, Ys) — H(C.) — Hoy(Hom(Z,, X)) &3 Hn_l(Hom(Z*, Y.)) .
To show that ¢, is an isomorphism, it is enough to check

H*(C’*) = H*(Hom(z*a C*(X*a}f*))) = 07

which is true by Step 2. Q.E.D.




Theorem 4.2 Let B be a nuclear Fréchet locally m-convex G-algebra. Suppose
A is equivariant H-unital. Then there are long exact sequences of equivariant
bivariant Hochschild and cyclic theories associated with short ezact sequence

(4.3) of Fréchet locally m-convexr G-algebras,
oo HHAB,A) ™ HHL(B,E) T HHYB,R) 5 HHXY B, A) — ... (4.5)
and

. — HOXMB, A) 5 HCOX(B,€) I HCAB,R) > HCM (B, A) — ... .(1.6)
Proof. We know already by Theorem 4.1 that the inclusions

iv: Ker(S, T.(CE(A))) — Ker(S,CKE) and i, : TF(CC(A)) — CKC

induce isomorphisms in homology. By Lemma 4.3,

Hom(Ker(S, Tu(CE(B))), Ker(S, Tu(CE(AN) T Hom( K er(S, T.(CE(B))), Hom(S, CKSY)

and
Hom(1,iy) : Hom(T.(CZ(B)), T.(CZ(A))) - Hom(T(CZ(B)), CKT)
induce isomorphisms in homology. Since
0 — Ker(S,CKZ) — Ker(S, T.(CE(E)) ™ Ker(S, TL,(CF(R))) — 0
and

0— CKE — T(CY(£) B TL(CP(R)) — 0
are short exact, we obtain the following short exact sequences by nuclearity of
B,
0 — Hom(Ker(S, T.(CZ(B))), Ker(S, CKE))— Hom(Ker(S, TL(CE(B))), Ker(S, T, (CE(£))))

5 Hom(Ker(S,Tu(CE(B))), Ker(S, To(CE(R)))) — 0, (4.7)



and

0 — Hom(T.(CX(B)), CK ) — Hom(T:(CS (B)), T (CF (£)) BHom(T.(CF (B)), T (CF(R)))—0.

(4.5) then follows from (4.7). Since in the following commutative diagram

0 0
T T
0 — Hom(T.(CZ(B)), CK9)2] — Hom(T.(CS(B)), T.(CE(E))2) =
1 ad(S) 1 ad(S)
0 Hom(T.(C(B)),CKS) - Hon(T.(CS(B)), T(CE(E)) =
T 1
0 — Homs(T.(CS(B)), CKE) — Homs(T.(CH(B)), T.(CS(E))) 7
T T
0 0
0
T
Hom(T.(CE(B)), T.(CZ(R)))[2} 0
1 ad(S)
Hom(T.(CY(B)), T.(CE(R)) — 0 (48)
1
Homs(T.(CS(B)), T-(CE(R))) — 0
i
0

each column is exact and the first two rows are exact, we get that the third




row is exact by the 3 x 3 Lemma. Also from the commutative diagram =

0 — Homs(T.(C7(B)), Tu(CF(A))) = Hom(T.(CE(B)), T.(CE(A)))
| Homs(1,3,) | Hom(l,1,)
0—  Homs(T(CH(B)),CKE) —  Hom(T,(C%(B)),CKC)

"X Hom(T,(CO(B)), T.(CE(A))) - 0
| Hom(1,1.)
ad(S) Hom(T.(CZ(B)),CKE) —0

and the long exact sequences associated with both exact rows above, we have
that Homg([,1.) induces an 1somorphism in homology. (4.6) then follows from

the third row of (4.8). Q.ED.

Theorem 4.3 With the assumplions of Theorem 4.2, there is a siz-term ezact

sequence of periodic equivariant bivariant cyclic theory associated with (4.3),

PHCY(B,A) —*» PHCOYB,E) —» PHCYB,R)

I !

PHCY(B,R) «—— PHCL(B,E) —— PHCL(B, A).

Proof. The result follows from the facts that the maps in (4.6) commute with

the map S and that the direct limit preserves the exactness. Q.E.D.

We should point out that the excision perpoty of the first variable in

HCg(.,.) and HHX(.,.) is unknown due to the lack of Lemma 4.3 in this

situation.




4.3 Equivariant Bivariant Chern Characters

Let G be a compact Lie group and A and B be Fréchet locally m-convex
(G-algebras. Recall that equivariant K K -theory of A and B can be defined as
follows. We call

P=(p, ) AsEBTEB

an equivariant quasi-homomorphism if

(1) € is a Fréchet locally m-convex (r-algebra, J C £ is an equivariant ideal
in £,

(2) ¢ and % are equivariant homomorphisms from A to &€ such that & s
generated by the images of ¢ and 3 and J is generated by the image of ¢ —
as an ideal in &,

(3) J is an essential ideal in & , i.e., each nonzero closed ideal in & has a
nonzero intersection with 7,

(4) p is injective.

Two equivariant quasi-homomorphisms @, = (g, tho) and @y = (pq, ) are G-
homotopic if there is a family {®,} of equivariant quasi-homomorphisms from A
to B, t € (0,1], such that &, = ¢, and &, = ¢, and the maps ¢t — Dg (a) and
t— Qg,(a,b) are continuous for all a,b € A, where Do(a) = p(p(a) — ¥(a))
and Qol(a,b) = u(v(a)((d) — H(b))) for & = (¢,%). The G-homotopy is
an equivalent relation on the set of equivariant quasi-homomorphisms from
A to B. Then KKg(A,B) is defined to be the set of G-homotopy classes of
equivariant quasi-homomorphisms from A to B ® K. Here K is the compact

operators on I* @ {*((F) with inner G-action ve(a) = ugau;™ for uy(£ @ n) =



£ ® Ag(a). Ag is the left regular representation of G on L?(G). See [Phil:- - .

Our aim in this section is to define a character from some special elements,
called p-quasi-homomorphisms, in K Kg(A, B) to PHCE (A,B). (v,¢) : A —
£ T 5 K®Bis called an equivariant p-quasi-homomorphism if pla)—p(a) €
L* @ B,Va € A, where L” is the p-Schatten class operators on 2 @ I2(G).

Let A be unital and D : 4 — A be an equivariant continuous linear map.
Define ep : CF(A) — CZ_1(A), Ep : CE(A) — CS,(A) and Lp : CF(A) —
O3 (A) by

eD(GO:"'aaﬂv-f)(g) = (aoag(D(m)),ag,...,an,f)(g),

Ep(ag,...,a0, f)g) = D (L, (ao),an,...,D(a),. .. e, flg) +
i=1
+ Z(“l)nj Zl(L ag_l(a'n—:i+1)a rees agl(an)a (_)f;l(a.g),
i=2 i=

Apyen iy iy .,an_j,f)(g),

T

Lp(asy... a0, F)(g) = D (a0, D{as),... a0, f)(g).

=0
Let Jo : CG(A) = CZ ,(A), Jy : CE(A) — CF(A) and J, : AQA — Abe thg

morphisms defined by

Jz(ah 0‘,2) = D(alag) — alD(ag) — D(al)ag,

Jo(a'oa"'aamf)(g) = (aoag(JQ(a‘lﬂ(I?)):aS:“‘:anaf)(g):
J1(ao,...,an,f)(g) = ;(nl)i-"l(l,a;l(ao),...,Jg(a,;,ai+1),...,an,f)(g)

+ 2L (DO 6N (g440), - g Han), o) (ao),

=2 =1

Aiy. - ,Jz(aiaai+1)> s ,Gj,f)(g)-



Let hp = I ® ep + S ® Ep, Ly = 1® Ly and Jp = 1@ Jo +:S-®:Jl- |
morphisms on TE(A).

Proposition 4.4 dh;, = SLy — Jp.

Proof. Note that for a unital Fréchet locally m-convex algebra B, h ¢
Homg(TE(A), T E(B)) is given by a sequence of homomorphisms {4; Fiso, By
CE(A) — CGnt2i(B) is of degree n + 2i such that

h(u? @ z) = iup_" ® hi(x),

i=0
or formally, b = Yiv0 St ® h;. Then dh = 22i>05" @ g;, where gy = [B, hol, ¢; =
[B, h,‘_i]-i—[b, h,’],i 2 1. To show _djaD = SL;D—JD = S®LD_I®JD_S®J1 =
—1Q@J+S®(Lp— J1), we need only to check

[b, GD] = —JO, [B, ED] -+ [b, ED] - LD - JI and [B, ED] = 0.
We have

bep(ao, ay, ... an, f)(g) = (a0cy(D(a1))ay(az), as, .. ., an, f)(g)
b S s (D))t )
b )™ (o (D)) s r, o),
enblao,as, ..o an, £)(g) = (aoety(an)o, (D)), .., F)(g)
~ (e (D(raa) s, .., an, £)(o)
+ S(%I)i(aoag(l)(al)),az,. Cs Gilig ity dn, £)(g)
b D oy (D(an))s 1) ().

Therefore,

[b: eD](QO) cerylpn, f)(g) = (beD + eDb)(am tes 1an7f)(g)




— (aoctg(D(en))ay(as) + aoery (e )y (D)) — aocrg( Dlaraz)y s, -, Fa)
— mjg(ao,...,an?f)(g)' .

This proves [b,ep| = —Jo. Let us check |B,Fp] = BEp + EpB = 0. The ’
formulas for B and Ep show BEp(ag,...,a,, f)(g) = 0 since 1 is between 1

and n positioﬁs in BEp(aq, ...,a,, f){g), which is zero in CF(A). Also

n

EpBl(ag,...,an, f)(g) = Z(—l)”iED((l, a;l(an_i+1), ... ,a;l(an),ag“l(a),

=0

d1,...,8n—i), f)(g) = 0.
Hence, [B, Ep] = 0. The proof is thus complete by the following lemma.
Lemma 4.4 [B,ep|+ [b, Ep] = Lp — Jy.
Proof. We have [Gong 2]

bISI_I_S!bI — I,B — S’N,LD = ZD“

i=0
where D;(ao, ..., a., f)(¢) = (a0, .., D{(a;),..., an, F}g).
(a) cp = d0D1I
ep(do, .-, an, f)(g) = (aoeg(D(ar)), as, ..., an, )(g)
= dﬂ(aO; D(al)v eeny Oy, f)(g) = dU‘Dl(aU‘J s ?a'naf)(g)'
(b) Bep = §' Y0 TidoDy = §' 2 TidoDy on CE(A).
(¢) epS' = Dy:

enS'(ao. .. an, f)(g) = (eg(D(ag"(a0))); a1, an, F)(9)
- (D(aﬂ)iala'--aan:f)(g)

= Do(ag, e ;anyf)(g)'



(d) epB = epS'N = DN = 30 DoT? = 0 DoT%.
(e) bS'+ 80 =TI —T: Since ¥S" + S0 = I and b= ¥ + d,, on CE(A),

dn415 (a0, ...y a0, )(g) = (=1)"* (@, o) (a0), a1, . ., G, F)(9)
= _T(GO:"':an:f)(g)‘

Hence, bS" + 80 = (V' + dyy1)S" + SV = S + SV + dpp1 S =T - T.
(f) Tn—i+1D5 . DUTn—z‘-l-l:

T D(ag,. .. i, £)(9)
= (_1)n(n—i)T(a;1(ai+l)a R agl(an): a_g_l (G'O)a L5 P D(a’i)a f)(g)
= (_l)n(n~i+1)(D(ai)1 a_g_l(ai-l-l)a s 30’5;1(0'71): a_g_l(a'())a A1y ey G, f)(g)

= D()Tn_ﬂ-l(ag, vy Uiy f)(g)

(9) Let Ep = ¥0, I T9D; + 3%, D; on CF(A). Then bEp = Lp —
? 0TI D; — S'WE}, and Ep = S'EY. In fach,

n f-1 nt1j—1 .
Ep =8N 17D, +ZD =503 T7D;)) = §'E),
J=21=1 j=2i=1
and by (e),
nt1 j—1 '
bEp = WSEp=(I-T-SV)Ep=(1-T)Y.3 77 D; - S'VE}
J=21i=1
ntl1j—1 n+l g1
= Y3 T7D; = Y S THID, — S,
i=2 i=1 =2 i=1
n n j—1 nt17-1
== EDH’ZZT iD; — NS TD, — SV,
=1 i=21=1 J=2 =1

= Lp- ZT‘J'D{ — 8"V B,

§=0




Furthermore, by (f) and 7"t = I, T D; = T4 D; = DT+ = DT
We get bEp = Lp—3_7., T-9D;—S'"V B, = Lp—-3T%0 DyT—1—S'WE",. Hence
in view of (b) and (d),

n~-1 n n
[Ba eD] + [ba ED] = 5 E T_JdODl + ZDOT_j + Lp — ZDDT_J
j=0 3=0 7=0
— SWEL+ S'ELb
n—1
= §' > T7'dyD, + Lp — S'(S'EL, — Epb).

=0

This implies that [B,ep] + [b, Fp] = Lp + Jy iff

n—1
—Jy = 8(S T 3dyD; — S'El + ELb) (4.9)
=0

We need therelore to check (4.9). Now VE}, = 70 >0t IS a4 TiD; on
CE(A). Note that

_ T-idiyj, 147 <n,
4T = (4.10)

T_(j_l)dl.}_j_.n_l, l+] 2 n + 1.

In fact, since
r 4

Td[w}_, GSISTL—]., T_ldH_]_, OSlSn—l,
diT = < 4Tt =

d'ﬂ.) l:(]a do, I:'R.

\ .

d;T'—j = dnglT_(j_l) = T_jd1+j,l 43 < m, and d}T*‘?‘ = T_jd1+j_n_1,l+ Jj>
n+ 1. Using (4.10), we get

n—1n-{j—1 n—1 n4+l  F—1

VER, = SN ATD+Y. Y S dTiD;
=0 j=2 i=1 =0 j=n—I4+1:=1
n

= EZET”J’@D{JFE i iT‘jd;Di. (4.11)

1=2 j=24i=1 1=0 7=I41 i=1




Clearly,

n n j-1
Ebb = ZZZTﬂ.Didk

k= Dj 2 gl
k n
= ZZT*JDdOJrZZT JDd1+Z(E+ > ) ZT ! Dydy.
7=21=1 i=2i=1 =2 =2 gJ=k+1 i=1

Let us check for k > 2,
deiy 1S2Sk—'17
(4.12)

Dide =9 4u(Dy + Do) +ma, i =k,

dpDigt, 82 k41,

.

where mi(ao, . . ., an, f){g) = (=1)*(a0, ..., J2(ar, @xs1), - - - ,@n, £){g). In fact,

Didk(ao, L f)(g) = (_1)k(a07 Ve JD(ai)s vy 0ROy, :anaf)(g)

= dipDi(ao,...,a,, f)(9).
Thus, Didy = dpD;,1 <4<k —1.

Dkdk(aﬂa ceey Op,y f)(g) = (“l)k(aﬂa v =D(akak+1)7a’k+27 crey Upy f)(g)

(de(Dr + Diy1) + me)(ao, . -, any [)(9) = di((ao, - ., D(ar), . ., an, F){9)
+ (a0, sk, Dlagsr), - an, £)(9)) + (=1) (a0, ., Ja(ar, ahs), -, £)(9)
= (=1)*ag,. .., D(agarp1)y - -, an, FYg) = Didi(ao, . .., an, f)(g).
Also,

('""l)k(("(); ey AROE 41,y ;D(ai)) e ?a’n:f)(g)

= deiJrl(aOa'“:amf)(g)a sz'*'l

Didk(ao, covy Op, f)(g)



In particular, D;dy = doDjy1, ¢ > 1. Using (4.12), we obtain

n j—1 J—1
Ebb = ZZT do 1_}1-{—2 T J.Dld -l—ZT Jdl H“l)
i=2i=1 =2 =2
n E oi-1 n <
+ D03 T7dyD; + > ( ZTthkD + 177 (dy(Dy + Diyi) + my)
k=2 j=2i=1 j=k+1 i=1
=1
+ E T dDitq))
i=k+1
n n o j-1
= EZT TdoD; +ZT J(dlD + dy Dy + my) "J"ZET id\D i1
j=2i=2 J=2 §=21i=2
n k 5-1
+ YN 3TTdD; -E-Z Z ZT 'd,.D; —I—ZT Iy Digy + T7my)
k=2 3=2 =1 k=2 j=k+1 i=1 =k
n i n k j-1
= S TILD 4+ S TDi 43 S Timy
7=21i=2 k=2 j=24=1 k=1 j=k+41
n k13 _? X
+ E Z ZT_jde,'.
k=1 3=k41 i=1
Consequently by (4.11),
-1 nF
S'"(6Ep — Epb— > T7doDy) = S'O.S T dD; - EZT idy DD
j=0 3-_1 1=1 j=21i=2
RS T“’mk~ZT idyD
k=1 j=k+1
n—1 "
= 8= 2 T7mg).
k=1 7=k+1
Hence to prove (4.9) we need only to check J; = —S' 321 7 g L 'mg. In

fact, this is why we define J; at the beginning. We have

T (ag, ... an, £)(g)
(_l)jnn(a;fl—l (aj)': a_(;ﬂ'l(aj+1)7 e :a;jl (G'O)s a_;il—l (011), e aa;jl—l (a’j—l)1 f)(g)
n—-1 =n

S’Z E T_jmk(ator--;anaf)(g):

k=1 3=k+1




n j—1

— S22 (YD (0 (a444), 0 (a542), - 0 (an), @ (an),

j=2k=1

0:’;_,-1_1(1!11), - ,ag_jl_l(Jg(ak,ak“)), e a;f_l(aj), i)
n j—1 /

= D > (=1 (G 0 a ), 0 (@), - 0 (an), o0 (ao),

§==2 k=1

a;-l_l(al), - ,a;jl..:(Jz(ﬂk,GkH)), sy ag"jl—n (aj), f)(g)

= Jl(aﬂa--'aanaf)(g)> on CS(A)’

Q.E.D.

We now use Proposition 4.4 to construct the Chern character. For a

Fréchet locally m-algebra A let QA be the universal algebra generated by

symbols a, g(a) with a € A satisfying q(a1a2) = a1g(az) + g(a1)az — ¢(a1)q(as)

[Cun] and ¢.A be the ideal in QA generated by g(a),a ¢ A. @ acts naturally

on QA and qA. Let Iy and Is : A — QA be the canonical equivariant
embeddings, Is(a) = a, Ig(a) = a — ¢(a). Then A ~ I5(A). We also have

Q.A 2} Q(.A) = 44 @ @n>0(v4+®¢4®n):

where ¢ is an isomorphism given by wlaogay .. .qa,) = apday ...da, and
@(qay ... qay) = doy ... da,, and d : Q(A) - Q(A) is the differential. With

this identification, the multiplication on Q.4 is given by

wiwy, jwi| even,
U * Wy =

UJ1WQ+CU1dLU2, IWI odd.

\

Here |w] is the degree of w € Q4. Note that the degree |qa| of qa is —1.
To use Proposition 4.4, we define D : QAT — QAT by Dw = —|wlw for




homogeneous w. Then for a1, 4z € A, |a;| = 0 mod (2), Jg(al,dg)"z"lj(.d{ag

-

D(ar)az—D(ay)a; = 0 and for Ja;| = 1 mod(2), Jo(ay,a;) = D(a;-ag+ayda,) = R

a1D(az) — D(ar)az = arday. Hence, Jy(ay,a5) € ¢A and J; is of degree —1.
Denote also by Iy and I5 the extensions of Iy and I to A1, which induce
morphisms T3(I;) : TE(AT) — TE(QAY) and T,(1) = T(I,) on THQC).
This implies that 7,(fs) — T.(Is) descend to TE(A) = TF(A)/TE(C),i =
5,6. Let F,7(QAY,qA™) be the filtration of Ker{r, : CH(QAT) — C%(g A},
FHQAY, gAY ={lao, ..., ar, fle Ker(CE(QAT) T CF(gAT)) ="~ilafl Zn}
i=0
for k > n—1, and for k < n — 1, FS(QA*, ¢At), = 0. The differential d
preserves FiZ(QAT, ¢AY). Since ¢(a) = Is(a) — Is(a) and |¢(a)] = —1, we
see (T(I5) — Tu(I))(TS(AY)) C FE(QA* g A*). Note that Jy and J; defined
at the biginning by using D and J, map FF(QAY, ¢AT) to FG,(QAT, gAH)
since Jy(ay, az) € ¢(A). Clearly,
.
Lp(ao,...,a5, f)g) = > (ao,...,D(a),... sk, F){(g)

=0

e 2 ]a,,-|(ao, - 7ak:f)(g)'

=0
Thus on FE(QAT,gA1)\ FE (@AY, qAY) Lp = —nl. Because of this, we
can define S, : FF(QAT, g A%) — FZ (QAT, gA™) by

1
Sp =5~ —dhp :S—ESLE)—EJD.
n n n

Sn is well defined since Jp(F7(QAY,qAT)) ¢ FS,(QA*,¢At) and § —
%SLb = 8 -8 =0o0n FF(QAT,gAT) \ Ff+1(QA+,qA+). Obviously, S,
commutes with S. Hence S, € Homs(FZ(QAY,qA%), FS  (QAT, ¢ AT))_,



and dS, = 0. [5,] = [S — 1dho] = [S]. Teb inpr : FO(QAF gAY &
FG(QAY, g A*) be the embedding. Then i35, ¢ Homs(FS(QA*, gA%), FS(
QAY,gA")) and Sping1 € Homs(FS, (QAY, g AT, FS (QA*,qAY)) which

imply that [1,,1][S,] = [S] = [Su][éntd)-

Definition 4.7 The Chern character ChZ*(A) is defined by
ChE (A) = [Sp][Sn-a]... [Si]ehG(A) € HOF(T(AY), I, (QAY, gA)),

where Chg(A) = [T(I5) ~ Tu(le)] € HOHTT(AY), FF(QA*, ¢A™)).

QObserve that

ling1]CRE(A) = [5041][Sul[Sna] .. [S1]ch&(A)
= [S][Su-r]. .. [S1]ChG(A) = [S|CRE2(A).

We now focus on the following special situation. Let {p,9) : A —
€T % KB be an equivariant p-quasi-homomorphism. ¢(a) — ¥(a) €
I*&B,Va € A, where L? is the p-Schatten classes. Thus

A —:ﬁ LIH)&B 1> 1P&B — K&B.

Since QA is universal for the quasi-homomorphisms [Cun|, there exists an
equivariant homomorphism Q(,%) : QA — L(H)®B which extends ¢ and

¥, Le, Qe P)(Is(x) = o(z), Q(p,¥)(Is(z)) = ¥(z). This implies that the
restriction ¢(p,¢) of Q(p, ) to ¢.4 maps g A to LPRB.

We define a map Fg : FO (L(H)®B*, LPQBY) —» TS(Bt),n+1 > p, by

FG(mO & Aoy« ooy T ®akaf)(g) = Tr(mOJugml . -mk)(a();- v aak:f)(g)°



Since there are n + 1(> p) mis € L, mopgmi ... my € L'. Fy is well defined

(see Chapter 5 for details). Now the map
Qo, ) : Fyi(QAY, gAY) — KR (L(H)@BY, 1PQBY)

is induced by Q(¢,%) and commutes with S. Hence [Q(p,).] € HCH{FZ (QAT,
gA"), FC (L(H)®BY, LP@BT)). Also [Fg] € HCL(FS, (L(H)®B*, [r&B1),
TE(B*)). We can therefore use the composition of the elements to define the

Chern character CHZ'(ip, 1) of equivariant p-quasi-homomorphism (¢, 15).
Definition 4.8 The Chern character CHZ'{p, %) of (¢,%) is defined by

HE (e, ) = [F6llQe,¥).]ChE(A)
€ HCE(IT(AY), I, (QAY,¢AY)
® HOG(F(QAY,qA™), I, (L(H)&BT, F&BT))
® HCAFZ (C(H)&BT, LP@BT),TE(B™))
o HCOG (A%, BY) o HOZ(A,B).

Theorem 4.4 Let (p,1)) be an equivariant p-quasi-homomorphism from A to
B. |

(1) S(CHE(p, %)) = CHG (g, ),n 2 p— 1,

(2) {CHE (¢,%) Ynzp-1 defines an element CHE (p,4) in PHCE (A, B),

(3) If two equivariant p-quasi-homomorphisms (pg,%0) and (p1,%1) of A and
B are connected by a smooth path of equivariant p-quasi-homomorphisms, then

CHE(po,0) = CHE (w1,%1).
(4) If ¢ = on a dense subalgebra A,, of A, then CHZ (p,%) = 0.




Proof. (1) We have the commutative diagram

FO,(QAT, gAY 5 FG, (QA*, g+ POV RS (C(H)@B*, 1r&BY) T8 T(BH)

Q(‘P!"f")* a ~ n Fa
FO(L(N)RB*, [POBY)) p

Hence, [F&][Q(p, ¥)Jlinta] = [Fe][Qp, )]

CHE(p,9) = [FellQo, 9)JCHE(A) = [FalQ(p, ¥):llins] CRGT*(A)
- [FG][Q(SDaw)*][S]ChZGn(A)
= [SIFGQ(w, #)JCRE (A) = S(CHE (0, ).

(2) is trivial by (1).

(3) Let (4, %;) be a smooth path of equivariant p-quasi-homomorphisms of A
and B connecting (¢o, ¥o) and (¢1,%1). Let e, : Co.y®B — B be the evaluation
map at t,¢ € [0,1]. We have (ps, ;) = (e)(1, %), and CHE (i, ;) =
[(e:)JCHE (01, %e),n > p — 1, where CHZ (@1, %) € HCOF(A, Co®B) is
defined by (@, v;). Using Proposition 4.4 for Jp = 0, we get S([(e1).] —

[(0).]) = 0. By part (1),

2n+2(¢1a¢1) (‘Poﬂ/)o) = S(Cﬂéﬂ(%;%)‘“OHE;R(%;%))
= S([(ex)s] = [(eo)sNCHE (101, %1) = 0

(4) is dlear, since Q(¢,)(a(2)) = Qp,P)(Us(®) — Io(x)) = 0 for @ € A,
Q.ED.
Theorem 4.4 shows that the Chern character CHE (¢, ) is well defined

for the equivalent classes in the sense of (3) and (4) of the theorem. One may




notice that the above construction of the Chern character does not inifélﬁéé_ g
the excision property of equivariant bivariant cyclic theory which is crucial in
([Kass], [Wang]). But it is not clear how to construct the odd Chern character

without using the excision property.




Chapter 5

Chern Characters in Entire Equivariant

Cyclic (Co-)homology

In the previous chapter we constructed the Chern character for equivariant
p-quasi-homomorphisms. 1t is natural to try to define the Chern character for
a more general situation. As a partial solution to this question we will obtain
the Chern character for equivariant #-summable Fredholm modules which ex-
tend p-summable Fredholm modules, the analogue of p-quasi-homomorphisms
in one variable case. The main purpose of the present chapter is to construct
Chern characters in (entire) equivariant cyclic (co-)homology and to apply
this construction to the equivariant index theorem. In section 5.1 we recall
the definitions of (entire) equivariant cyclic (co-)homology for a unital Banach
algebra A with compact group & action. Some basic morphisms on the (en-
tire) equivariant cyclic (co-)homology are defined, which are useful for the later
sections. In section 5.2 we construct the Chern characters from equivariant
K-theory to the normal (entire) equivariant cyclic homology. In particular, we

study the character from odd equivariant K-theory K¥(A) to the odd normal
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entire) equivariant cyclic homology. In section 5.3 we obtain the pairings of T
¥ g % g

(entire) equivariant cyclic cohomology with equivariant K-theory. In section
5.4 we define the Chern character from even equivariant #—summable Fred-
holm modules to the normal entire equivariant cyclic cohomology. Finally, the
results in the preceding sections are used in section 5.5 to get the equivariant
index theorem of even equivariant #—summable Fredholm modules. Another
possible application of the Chern characters and pairings defined in this chap-
ter would be the proof of the equivariant Novikov conjecture for some special
cases (cf. Chapters 6 and 8). Our formulas for the Chern characters and pair-
ings in the even case are inspired by the ordinary ones except for the group
twisting ([Con 1, 2],[GeS]). We will thus have to reconstruct many identities
whose proofs are complicated. It should be pointed out that the formulas here
are quite different from those in ([KKL], [KIL}}), which deal with finite group

actions. On may also consult [BIG] for the Chern Characters.

5.1 Equivariant Cyclic (Co-)homology

Throughout we assume that G is a compact group and that A4 is a unital
(G—Banach algebra over C. This means that G acts on A by continuous
automorphisms « : G~ Aul(A) such that ¢, is unital for each ¢ € G. In
this section we recall various equivariant cyclic (co-)homologies [Gong 2]. Let
C(G) be the space of all continuous functions on & and & be the projective

tensor product. Let

CE(A) = (AP DBC(G)) G, C,



the quotient of Aé("“)@C(G) by Span{(pr—I)(z),(p—I)(z) :z € A®(“+1)®C’(G)},

and

“(A) = Homg(A2) C(G))

= {f € Hom(A*"),C(Q)) : pu(f) = f,h € G,

where A8+ and Hom(A®H), C(@)) are the (n + 1)—tuple projective ten-
sor product of .4 and the space of all continuous multi-linear maps from A®+1)
to C(G), resp.. @ acts on APMDEC(F) and Hom (AP C(G)) by ps and

Pn, respectively,

Ph(a’Orala' ey ln,y f)(g) = (GEI(GO)a ce ,a;l(an),h : f)(g)

= (o (a0)y- -, a5 (@) f(hghTY), g€ G
for (- f)(g) = f(hgh™), f € C(G),a; € A, and

(Prf)(a0,ax- .., a.)(g) = f(ai ' (a0), - - o (an) (AT gh);

p is defined by

P(aﬂaala seeylny f)(g) = (%_1(‘10): a_g_l(a'l)? s 1ag_1(aﬂ))f(g)'

Here (a0, ay,. .., an, f) stands for (o1& ... Ra.&f) in ABMDRC(A).
Define differentials b and B on A2 U&C(G) by |
b= Z(—l)id; and B=(1-T)5N,
i=0
where di, T and 5" were defined in Chapter 4. It is easy to see that di,T

and S’ are continuous equivariant maps [Gong 2]. We also define b and B on

Hom(A® ) (@) to be the dual version of b and B above [Con 1]. The b



and B descend to C%(A) and C%(A) and satisly b* = B* = bB + Bb = 0by =

Lemmas 1 and 2 in [Gong 2]. Let
T7(A) = CHA) © ClLy(A) & CL(A) @ -
and
TE(A) = Co(A @ C A e Cai (A e ...
be the complexes with differential b+ B,
(b + B)(mi’n-}-i; Toan—24iy.-- aw'i) = (b$2n+i + B$2n-~2+é; men—2+i + B$2n—4+‘i7 . ')7

zp € CF(A),i=10,1, and

(b + BY(fantis fon—tis - -5 Ji) = (b fantir 0fon—a4i + B faniis - - -)-

Definition 5.1 The equivariant cyclic (co-)homology of A is defined by

HC3(A) = H(T5(A),b + B),

for n > 0.

To define the entire equivariant cyclic {co-)homology, we need to estimate
the norms of b and B. Note that A®+DRC(G) has the projective tensor
product norm and C%(A) has the quotient norm of A#C+YGC(G). The norm
on Hom(A®tHD C(Q)) is given by

“f“'ﬂ = mangG,”ai”Sﬂf(aOa A1y..., a"n)(g)|

Then
6(ao, a1, - - -5 any, -1 < (n+ DI F]l I_IO fall,




15" (a0, a1 - - s @ny Fllnsa < AN T Neall,

i=0

and .
1T (a0, ax, ..., an, )| < £ TT el ’
=0

Hence [|8]}n < (n41), [l < 1, [IT]ln < 1, [|N]|ln < (n+1) and || Blln < 2(n+1)
on ABCHGC(R) and then on CY(A). Similarly, 6], < (n + 2), ]9 <
LTl <L ||N<n+1and ||B|l. < 2(n+2) on C&(A).

Let TS(A) (resp.TS,(A)) be the space of all sequences {wa,}&,
(resp.{T2n41}22, ) such that for any r € N,

o0

”5’3211”2% " “$2n+1“2n+1
< cofres < ,
nZ_% (2n)! (resp. ,{V-% (2n + 1)! < o)

where z; € CF(A). Let Tg(A) (resp. T2*(A)) be the space of all sequences
{an}2o (1esp-{ fant1}20), fi € CA(A), such that for any r € N,

oo oo
Z Tnn!”on”?n < oo (?"63}). Z rnn!”f?n-!-l”?ﬂ-l-l < OO)

n=0 n=0
Then it follows from the estimation of the norms of b and B that b and B map
TS(A) and TE (A) to TS (A) and TF(A), respectively, for 11,72 = ev or odd

and 1 # 7o

Definition 5.2 With these notations, the entire equivariant cyclic {co-)homology

of Ais
Ker((b+ B)ITS(A)

HCG(A) = Im((b + B)[TS(A4))
and
wom ) Kerl(b BITE (A)

Im((b+ B)|Te?(A))




Remark 5.1 (1) The entire equivariant cyclic homology here differs slightly
from the ordinary one ({Con 2], [GeS]} by the coefficients in the decay condi-
tions of TG(A), since we want to deal with the Chern character in HCG,(A).

(2) We will need the normal version of (entire) equivariant cyclic (co-

Jhomology, which is defined as follows. Let A = A/C be the quotient of A by C

and CY(A) = (ARAPMGC(G))Ra,C and CL(A ={f € Hom(A&(A)EM, C(G)):

pu(f) = f,h € G}, Replacing CO(A) and C&(A) by CF(A) and C%(A) in

TE(A), TS (A), TE(A) and TF (A), we get the complezes TE(A), TS (A), TH(A)

and T (A) with differential b+ B. Then the normal (entire) equivariant cyclic

(co- Jhomology is the (co-)homology of TF(A), T (A), T&(A) and TH (A), resp..
Note that in the normal case, B has the following simple formula

n

Bldo,1y - 10 @) =9 (D)™ (1,0, @nmigt) - 0 @)ty @0),01,- + 0 ) FG)5.1)

1=0
Let now (V, B) be a finite dimensional unitary representation of the com-

pact group G, and End(V) be the space of all continuous linear maps on V.
(G acts on End(V) by defining the action of v,

ve(m) = ﬁgmﬁg_l, m € End(V), g€ G.
A& End(V) has diagonal G—action. Let Fiz and Fg,
CO{AREnd(V)) 2% CE(A)

and
C5(A) 25 Or(AGEnd(V)),

be the morphisms defined by

Fe(ag®@mo, ay@ma,. . . @n®my, (g} = (a0, a1, . . ,00) f(g)Tr(moflymy. . . my[5.2)



on (AGEnd(V)®)&C(G), and for f € C%(A),

~

(FEN(ae@mg, a1 &my,. . . ,a,@m, ) (g) = f(ag, a1y - - 10 )(9)Tr(moByma. . .1, )(5.3)
Here T'r is the natural trace on End(V).

Lemma 5.1 Let A be a unital G—Banach algebra and (V, ) a finite dimen-
sional unitary representation of G. Then Fg and F} induce morphisms on

(entire) equivariant cyclic (co-)homology,
HCS(ASEnd(V)) <% HCE(A)
and
HCL(A) 25 HOL(AGEnd(V))

for * = n, and for both cases of even and odd entire éyclic cohomology (for

short “ev” and “odd”). Similar results hold for the normal case.

Proof. The proof is divided into several steps.
(1) pnFa = Folpn ® v;") and (5r @ v ) PG = F&pn.
(prFe)(ao@mo, a1 &my, . .., a,@ma, f)(g)
= pr(do, a1, ., an, f(‘)T"'"(moﬁ(.)m1 omg)(g)
= (e (00),- -+, 05 () f(Rgh™ ) Tr(moPugn-1m . . . 10)
= Fa(ay (a0)@vy " (mo), .., 0 (an)&V (mn), - £)(9)

= Fa(pr ® vy ) @o®mo, a:1@ma, . . ., an@ma, f)(9),
and

((ﬁh ® Vgl)Féf)(a()@mO:al@mlv e 7aﬂ®mn)(g)




= (Féf)(agl(aﬂ)éf";l(mo), cey a;l(an)@w;l(mn))(h_l‘éh')" R

= flaz(a0),. .-, 0 (@) (R gh)Tr(moflymy . .. mn)

= Fa(pnfiae®@mo,a;@my,. .., an@m, )(g)-

It is easy to see that pFg = Fgp. Hence, Fiy and £y are equivariant.

(2). & Fg = Fodi, and & F} = F4dL.

& Fo(ag®mo, a1 ®@m, ..., a,@mn, F)(9)
= d®(ap, a1, .., F()Tr(mofyma ... m,)(9)
= (agay(a1),az, ..., ) f(9)Tr(mofgmy ... my)
= Fglaay(a,)@mev,(my), az@ms, . . ., an@m,) f(g))

= Fadﬁ(ao@bmo, Gl®mla cen ,ﬂn@’mm f)(g)
Clearly, di Fg = Fgdi 1 <1 < n, and & F = Fidi,1 <1 <n+ 1

(2 F5F)(ao®mo, ar®my, . . ., apgp18mipga)(9)
= (Féf)(aoag(ﬂl)®mng(m1)a a2®m2, vy ﬂn+1®mn+1)(9)
= flapey(ar),aq, ..., a0 (@) Tr(mofymy ... Mpy)
= d2f(ag,ar...,8n401)(g)Tr(mofymy ... Myyr)

= (Fédgf)(ai)@mﬁa a1®mla s 1an+1®mn+1)(g)'
(3). TFg = FgT and TFy = FAT.

(TFG)(G(]@mU, a‘1®m1: vy an®mn7 f)(g)
= T(a'(]: A1y« Qny f()TT(mOﬁ()ml o mﬂ)(g)

= (=1)"(an, @, (ao), a1, .. ., 1) f(9)Tr(mofymy . . . 11,)



= Fg((—l)"(an@)mn, a;l(ao)@)vg_l (mo), a1@ma, . .. 1@ 1, F))(9)

= FGT(a0®m01 a1®m1: R :an®mn7 f)(g)a
and

(TFéf)(agé)mo, a]®m1, S 7aﬂ®mn)(9)
- (_1)n(F5f)(an®mn; Of;l (a())@V;l(mD): al®m17 L] 7an—1®mn-—1)(g)
= f(Gn, @, (a0), a1, - - . @1 )(9)TT(mnfyvy (mo)my . 1115 1)

= (FET)ae®mo, a18my, .. ., 6,8m,)(9).
(4). S'Fg = FeS" and S'Ff = FgS'.

SIFG(G'DémO) a1®m17 e 1an®m‘nn f)(g)
= §'ap, a1, ... an, F()TT(meBymy ... my)(9g)
= (1,0, (a0), a1, .., an}f(9)Tr(mofymi ... my)

= FgS'(ax®mo,a1®@my,...,a,.8m,, [)g)
and

(S"FA 1) (a0@mo, 0y @my, . . ., a,@ma)(9)
= (F&h(, ;" (a0)@v; (o), @, . .., an@mn)(g)
= f(1,05"(a0), a1, -, @ (g)Tr(1Byv;  (mo)my . . mn)
= (5'fMao, 01, . s an)(g)Tr(mofym . . . 1)
= (F258')(ao@mo, a1@m, ..., an@my,)(g).

Therefore, Fg and Ff; commute with b and B.

(5). Fa(TE(ASERd(V))) C T (A) and Fg(T5(A) C TE{(ARERd(V)).




In fact, with the norm |m| = mazi<; j<4lmi;| for m = (mu)fd:le

End(V) and ¢ = dim(V'), we have |Tr(m)| < ¢||m/,

| Fa(ao®@mao, a1@m, . . ., @4n@mnn, )|l = mazgea||(do, . - -, an) f(g) /

Tr(mofyms ... my)]| < qﬂ)(llaillIlmsll)llfllliﬁll

for ||B]| = mazgeq||Byll, and

ML ;e [|la:@maill<1 lFéf(aOé’m'O: a1®my, . . ., an®mn)(9)|

< maz s gmifi<1 411 [T lllmaDIBI < gll Flla-

i=0

Hence, | Fall. < ql|8l| and ||F&|l. < ¢||8]l. The same arguments work for the
normal case. Q.E.D.

The maps Fg and F; will be used later on in the construction of Chern
characters. A similar map for entire equivariant cyclic cohomology is also
defined in [KKL].

To consider other useful maps, let us define L1(G, A) to be the space of all
functions z : G — A such that [ ||z(g)||dg < co. Here dg is the normalized

Haar measure on G. I;1(G,A) is a unital Banach algebra with multiplication

given by

(o1 x23)(g) = [ a(B)a(aa(h™9))dh.

Let R(G) be the space of all continuous central functioné on (7, i.e., ¢ € R(G)
if p € C(G) and p(h™'gh) = (g),Yh € G. For ¢ € R((F) define morphisms
F,, and F~,

Cu(I4(G, A)) =5 CF(A)




ok

Ca(A) =5 C*(L,(G, A)),

by the following formulas

Fcp(mﬂamla' . >$n)(g)

= Lo s olt), 07l ) 072 @nlb Dol h)EE (5.4)

n=g

and

(F(:f)(mo, £ PRI :Bn)

= fGn,rf (zotho), 0y p, @ilha)- - sevi, @albn) o . ha)iplho. . hn)d™ b (5.5)

Here, Co(L1(G,A)) = (L1 (G, AP0+ G (LG A)) = Hom{(I4(G,A))BE C).

It is straightforward to check that ||F, |, < {l¢|| and ||F5ll. < [|e].

The following proposition can also be used to construct the Chern char-
acters. But the proof consists of rather lengthy computation. Since we will

not use it in this dissertation, we omit the details of the proof.

Proposition 5.1 With the above notations, F, and F; induce morphisms in

(entire) cyclic (co-)homology
HC*(Ll(Ga 'A)) _50_) HO:?('A):

and

HOL(A) 25 O (LG, A)

Jor x =n, “ev” or “odd” and p € R(G).



5.2 Chern Characters in Equivariant Cyéll'(‘,'
Homology

Recall that the equivariant K-theory group K&(A) of a unital G-Banach
algebra A consists of the equivalence classes of all equivariant idempotents in
A& End(V) for any finite dimensional unitary representation (V, 8) of compact
group (. Here an equivariant idempotent p' € AREnd(V) is equivalent to
an equivariant idempotent p” € AQEnd(V)) if there are equivariant elements
p € ARL(V,V}) and ¢ € ARL(V},V) such that pg = p”,qp = p/, where
(Wi, 1) is another finite dimensional unitary representation of G; L(V, W) is
the space of all continuous linear maps from V to V;. Note that AQEnd(V),
considered as endomorphisms on AQV, has diagonal G—action & - (a®m) =
o tacan @B mpBy, ie., b+ (a@m) (a1 ®mi) = (o acn®fy 'mpbh)(adm.) =
o Y (@)ay ®(B; 'mBy) (my). Thus, the G-action on AQEnd(V) is the same as
o *6&v; ! in section 5.1. See [Phi] for details.

Let p € A®End(V) be an equivariant idempotent. Define elements [py]
and [p,] € CE(A&End(V)) by

n+1
pn(g) = (papa" . :pal)a n .z U,

T

ﬁn(g) = (LP,P,-- s Py 1)1 n> Ga

and

Here the 1 € C(G) in the last position is the constant map with value 1. Then

since (e, @v;')(p) = p and p* = p, we have



(
(bp)g) = A« Pa-1(g), n even;
0, n odd,
(bpa)(g) = < (2pn—1 — Pn-1)(g), 1 even; 5.1)
0, n odd,
(Bp.)(g) = {4 (R DBuilg), n even; 53
L 0, n odd,
and
(Bfa)(g) = 0,n > 0. (5.9)
Let
51,G 2k)! L, .
Eng ) = (1" E s — Sy
and

dhi(p) = {(-1)* (2:!)!(19% - %ﬁzk)})?;o’

Then dhf(p) € TE(ASEnd(V)),+ = 2n or “ev”.

Theorem 5.1 let [p] € K§(A) be represented by the equivariant idempotent
p € AQEnd(V) for some finite dimensional unitary representation (V,3) of
G. Then ChS(p) = Fg(dhf(p)) define maps from KE(A) to H_C’*G(.A) for

* = 2n or “ev’, where Fg is given by (5.2).

Proof. Tt follows easily from identities (5.6)—(5.9) that Ch%(p) are cycles, ..,

(b+ BYChE(p) = 0 for = 2n or “ev”. To show that Ch%(p) are independent




of the choice of p, let us note that if (V4,3) is another finite dlmensmna,} |

representation of G and p@0= | P 01¢ A@End(V ® V;), then
00

Fa((p® 0)2n) = Fo(p2n)

and
Fa((p ® 0)2n) = Fo(P2n)-

Hence ChG(p & 0) = Ch%(p) for * = 2n or “ev”. Thus, if p € AQEnd(V4) is
another idempotent such that § is equivalent to p, we can consider both p and
§ as elements in AQEnd(V & V;) by using p® 0 and 0D p. As a consequence,
we can assume that two equivalent idempotents p and p are in AQEnd(V) and
we need only to consider the case when there is an equivariant path pg,t € [0,1]
such that po = p and p; = p [Phi]. Furthermore, we can assume that p; is
differentiable with respect to ¢. Thus we need to show that the ChS(p:) are
independent of ¢. It suffices to show that the %dhf(pt) are boundaries. To

this aim, let us define for the equivariant element y € AR End(V) two maps

Li(y) : CE(AQENd(V)) — CS (AR ERd(V))

and
La(y) : CY(AGERd(V)) — CS(AQEnd(V))
by
Li(y) (Yo, Y15 -« s Y f) = i:(yo, o Yis Yo Yitts - o Yns )
and -

n

Lﬂ(y)(yﬂvyla s )yﬂﬂf) = Z(yoa s Uit [yayi]1yi+1: coesln, f)
=0



for y; € AQERd(V), f € C(G). The formulas of L,(y) are th.é:.sa}nej as tho:

in ([Con 1],[GeS]). But we have to check that the L;(y) satisly thé foHo'Wiﬂg...:“f-._:'-

[6, Ly (y)] = bL1(y) + L1(y)b = Ly(y), (5.10)

1B, In(y)] = BLi(y) + Li(y)B = 0. (5.11)

Hence, [0 + B, Li(y)] = La2(y). The proof of these identities is a tedious
computation which we omit here.

We now get by (5.10) — (5.11)

%(dhf(pt)) = %{(—1)'“%2(19% — %ﬁ;k } = La()Chy (py)

[b+ B, Ly(y)]Che () = (b+ B)(Ly(5)Chy (p)),

It

since (b + B)dhf(pt) = 0. Here y; = ,;%(Pt) -(2p: - 1) is equivariant. Clearly,
L (y)Choy(ps) € TSu(ASEnd(V)). Q.E.D.

Theorem 5.1 is an equivariant analogue of a result in [GeS]. The reason
why the ordinary Chern character formulas work for the equivariant case is
that the idempotents are equivariant, thus the group twisting does not cause
trouble. We should expect that this is true for the Chern characters from
KE(A) to HC?RH(A) and H_()’zd(.ﬂ.). From this point of view, we first con-
sider the ordinary case, i.e., G = {e} is a trivial group.

Note that by definition K-theory K(A) = limy_oo(GLa{A)/GL{A)o),
where GL,,(A) is the group of mvertible n X n matrices with entries from A
and GL,(A)p is the connected component of the identity in GI,,(A) [Bla]. Let

[«] € K1(A) with representative u € GL,(A). Define ugyy € Cora{A) by

2k+2

”~

-1 —1 -1
topgr = Tr{v™ u, v u,. . u u),k=0,1,...




Here, if we write ugpyy = Tr(@o, a1, - ., @org1), then ay; = ™t agjp1 = u,

j<k. |

Lemma 5.2 let N
Chansr(u) = {(—=1) klusrgr }ico € Tonya(A)

and

C’kodd(u) = {(—1)kk!uzk+1}zo=0 & Todd(A)-

Then the Ch,(u) are cycles, i.e., (b+ B)Ch,(u) = 0,% = 2n + 1 or “odd”.

Proof. Clearly, Choga(t) € Toga(A). We have

2k 2
T -1 T 1) = 1
bugerr = Tr(l,u™ Y uyu ™t uy o u™hu) = Tr(lu,u™, o u,u”)
in Coy41(A), and
2%+2
- - =
2i+1 _ -1 —1 -1 .
TP gpr = —Tr(u, v u,u™ . u,u )2 =0,1,... &,
2k+2
2% -1 ~1 -1,
T?ugpyr = Tr(u™ yu,u™ oy, o u™,u),i= 0,1,k
2k 42 2k+2

Nugpyr = (k—i—l)(T?'(;’"l,u,u_l,u, cu ) =Tr(uuuuh L uuTh),

and
2k+2 2k4-2

Bug = (k+1 Trlga_l,u,u”l,u,...,u_l,t; —Trlau"l,...,u,u"l .
+ ’ 5 Wy

Therefore,

(b4+B)Chgnsi(u} = (=1)"nlbugnir+{—1)"""(n—1)!Bugy_1,.. ., bug+Buy, bus) = 0.

This also proves (b+ B)Ch,gq{u) = 0. Q.E.D.




Theorem 5.2 The Chern characters from K1(A) to HC,(A) deﬁﬁéd by Ch*(u) L

for x =2n+1 or “odd” are multiplicative.

Proof. The multiplicativity of Ch,(u) means that Ch,(uu') = Ch.(u) +
Ch.(u) for [ul,[«'] € Ki(A) with representatives u and u' in GL.(A) and
GL,(A), respectively. Note that Ch,(u®I) = Ch.(u)in HC (A)for x = 2n+1

or “odd”. We can assume that both u and v are in GL,(A). Let
up =uw' D1 and v} =udv

in GLo,(A). Chu(uh) = Chy(wn) and Cha(i;) = Cha(u) + Chu(u). Then

Uy = u 0 stnt — cost 10 sint cost

01 cost sint 0 u —cost sint

defines a path in GL,;,(A) connecting ) to u] {Con 1]. Thus it suffices to
check that the %C’h*(ut) are boundaries.

To this aim, let

un(l) = (C1FE 1S w0k = 1,2,

=0

uo(t) = Tr(uu™),

where

2i 2(k—i-1)

i -1 -1 -
u2k_TT(ut y Uty ooy Uy U Uy

1 -1 w1
JURUE T Ugy Uy Uty ooy Uy U ),s

and ) = £ (uy). Then {uz(t)}i2y € Teu(A),

2(k-1)

-

bl (t) = Tr(uyujuy ' u,uy'y o, uy ™, uy)




2(k—1)

~ Y
-1 . -1 -1 -1
- Tr(ut y Ugly 3 Uy "y Uy o e ey Uy 7“’*)

2(k—1) |
r—1 7 -1 -1
+ Tr(lsutut p Uty Uy g ooy Ug, Uy )a
2(i-1) 2(k—i-1)

-~ ~ ” ~

i _ w1 -1 -1 7 —1 -1 ’ -1
buz,(t) = Tr(Lyuy ey ooy Uy Uy Uy Uyl Uy Uy 5 Uty oy Uy ) Ut)

2 2(k—i—1)

2im (0 —1 -1, =iy =1 T -1 -1
b ()T (u e, Uy U, g U Uy U Uy Uy U
2 2(k—i—1)

.

”~ -~ Y
2i+1 -1 -1 -1 0 -1 1
+ (DT gy uy g g U, Uy Uy U U)

2i—1 o 2(k—i-1)
~. -~
2k —1 -1 -1 -1 —1 -1
+ (L)L ugy g e Uy Uy Uy Uy Uglly s Uy Uy e ey Uy Uy )
2 2{k—7)
; u - 1 T -1 T 1
; B — ~ _ _ —
Nu?k(t) - ZTT(utau‘t y ooy Uy Uy o Uy Ty Ty, Uy yorey Uty Uy )
i=0
2(4-1) 2(k—1)
. o1 PR B | c-1 A 1,
+ D Tr(uy T Uy Uy Uy Uy Uy Uy Uy Uty - Uy L Ut)s
i=1
and
. 2j 2(k-7)
_ k -1 -1 -1 =1 -1
Bug(t) = (—DFRIO S Tr(lunur st Uy ity e,y ey Uy Uy )
=0
2(5-1) 2(k~1)
: -1 " T =1 -t =1 1,
+ D Tr(Lup ey, Uy Wy Uy Uy Uty ey Ty ,Ug)).
i=1
Therefore,
2(i—1) 2(k—1)
k -~ -~ ™~ -~ b ™~
_ k+1 -1 1 1,4, ~1 ~1 —1
bugkra+Buge = COFPED (g ue. . ug ety U ey Uy Uy U
i=1
. 24 2(k—1%)
-~ ~ -~ - ~
1 -1 1,0, —1 -1 1
DY /A (T TR T R TS T TA TN R TR AN T )
=0

2 2(k—1)

.

"~

~ N ~
-1 ~1 -1 ¢ -1 -1
- TT(ut s Uty ey Uy g Upy Uy 5 Uy Uy 5 Ugy v e vy Uy )ut)]




% (kL)
. 2 (k=)

o -1 1 -1 -1 Ry g
+ ZTT(l,ut,ut ISR Y AR Tk TR TIC T YRR THOE ARl RIS Tl | S0 = LT P

=0
23 2{k—Jj)

o

o~

k -~ Y
= (—1)k+1k![ETr(ut_1,ut,. our g u e gy . ug U

=0
27 2(k—~7)

o

k -~ ~ -~
-1 -1 Y —1
— Y (U U U U Uy Uy - Uy , )]
i=0

d
= (—l)kk'EUQk.H (t),k’ > 0,

since & (u; ') = —u; Yutuy . Obviously, bua(t) + Buo(l) = £Lu1(t). This proves
£ Chi(ur) = (b+ B){{uax(2)})-

To show that Ch,(u) is well defined, let us note that G'L.(A)o is path
connected. We need to check that if u, € GL,(A)o is a path connecting the
identity Id to uy. Then Ch,(uy) = 0,% = 2n + 1 or “odd”. This follows from
the proof of the last paragraph because Ch,(Id) = 0 in HC.(A). Q.E.D.

Consider now the general case with nontrivial compact group G. We

adopt the following odd equivariant K-theory K{(A),

KS(A) = Lim (GLY(A®End(V))/(GLY(ARERd(V))o),

VERL(G)

where R, (G) is the set of equivalent classes of finite dimensional unitary rep-
resentations of G; GLE(A®End(V)) is the group of all equivariant invertible
clements in AQEnd(V); GLE(A®End(V))o is the connected component of
the identity in GLY(A®End(V)) and the direct limit is with respect to the
order relation < in R (G). Vand V; € Ry(GlareV < VitV =2V &l
for some Vy € Ry(G). Then u € GLY(A&®End(V)) can be considered as an
element v @1 € GLY(AQEnd(V,)). Note that this is not the definition of
KEF(A) in [Phi).




T

let [u] € KZ(A) be represented by u € GLG(A®End.(V)')'.; Define Chi(u
2k+1)

TS{A®End(V)) with the representative {(M—l)kk!(:uz"l, Uy Uy, U u, 1M R
for # = 2n + 1 or “odd”. As before, 1 stands for the constant function on &
with value 1. Since u and u~! are equivariant, b and B acting on Ch.(u) have
the same formulas as in the ordinary case, The proof of Theorem 5.2 can be

repeated to get the following equivariant version of Theorem 5.2.
Theorem 5.3 Let ChS : KF(A) — Ifo(A) be defined by
ChS(w) = Fa(Che (u) for + =2 + 1 or “odd”.

Then ChS (u) are mulliplicative maps. Here the morphism Fi is given by (5.2).

5.3 Pairings of Equivariant Cyclic Cohomol-
ogy with K-theory

To study the pairing of (entire) equivariant cyclic cohomology with equiv-
ariant K-theory, we first consider normalized equivariant cocycles {[Con 2},[KKL]).
Let {forsi} € TE(A) for = 2n,2n + 1, “ev” or “odd” and i =0,1. {for:} is

a normalized cocycle if it is a cocycle and

Bo{f2k+i} = A-Bﬂ{f2k+i}a

where Bofy = S(1 —T)fx and Afy = ;%ka,k > 0. Clearly, {for4:} 15 a

normalized cocycle iff (1 —T)Bo{ fzr4i} = 0. As shown in [KKL}, each (entire)

equivariant cocycle {fyryi} is cohomologous to the normalized one { f2k+i}



given by

Jorti = farri = (0+ B)DBofaryis (5.12)
where D = =% ¥ 5 iT* on CF(A).

Let now ¥ = {far} € T5(A) be a cocycle and % = {fu} be the normal-
ization of 1 for = 2n or “ev”. For any [p] € K§(A) with representative
p € AQEnd(V), we define
(

o~ 1)EEL(Fr F (0., - ., p)(g), * = 2n;
< [pl, % >« (g) = 3 (5.13)

522 o (1L (FE B ) (pyp, -, ) g), * = “ev”.

Here Ff; is given by (5.3). Also for 1 = {for} € TE(A), * = 2n or “ev”, we

define, using por and Poy in section 5.2,

4

S o~ 1)L (Fx £ ) (por — L5ax) (), * = 2n;
<[pl,# >5 (9) = 4 (5.14)

z(j:o(_l)k%)‘!(ﬁ'éfzk)(m - %ﬁzk)(g'), x = “ev”.

k
Here F} is given by (5.3).
Theorem 5.4 The character-valued pairings of HCE(A) and HCG(A) with

KE(A) given by (5.13) — (5.14) are additive in the variable [p| and linear in

forx =2n or “ev”.

Proof. Evidently, the series in (5.13) and (5.14) are convergent. The proof
that the pairings <, >, are independent of the choice of the representative of

2 is identical to that in [Con 2]. ldentities (5.6) — (5.9) can be easily used to

show < [p], (b+ B)yp >\,= 0 for * = 2n or “ev”.




The pairings are also independent of the choice of the reﬁréﬁéﬁfdﬁii@fpf
[p]. In fact, for the pairing < [p],¢ >, this follows from the proof of Theoreﬁ
5.1, and for the pairing < [p],9 >« this reduecs to the case just mentioned,
since we can assume that all for(ag,ay,...,as)(¢g) vanish if some a; = 1 for

2 > 0 by considering fi; on (A)®(2k+1)’
f;k(a0+AD7 e ,a2k+A2k)(g) = fgk(ag, Alyeney (ng)(g) —]-)\030]02}9(611’ caey (J,Qk)(g),

where A = A® C,\; € C with G—action k- (ag + Ao) = an(ao) + Ao. The
additivity of Fg and the multi-linearity of fp imply that the pairings are
additive in the variable {p]. Q.IE.D.

Consider now the pairings of HC5 ' (A) and HCS(A) with KG(A). Let
Y = {fars1} € T4(A) for ¥ = 2n+1 or “odd”, and [u] € KF(A) be represented
by equivariant invertible element v € GL({A®End(V)). Define

( 2kj—2
(= UFRUES far Yty u)(g), * = 0+ 1
<[ul,¢ >i= " (5.15)
o0 (DRI ES forp ), .y u~t, u)(g), # = “odd”.

The series in (5.15) is convergent by the definition of 72%(.A4).

Theorem 5.5 The character-valued pairings < [u],v >, of HCL{A) with

KE(A) are multiplicative in [u} and linear in ¢ for s = 2n+ 1 or “odd’.

Proof. We first show that if ¢ € Tg%(A) is a coboundary then < [u], % >'=
0. In fact, let ¥ = (b4 By with o = {fs,} € T#(A) or TF(A), ie.,
f2k+1 = bfék'}_ Bfék-}-?.: ko= O: 1: A (f2n+1 = blen if ’lj) € Tén+l(A)) USing the




G-invariance of u, we get by the proof of Lemma 5.2,

2k+2 2k

Frbfo(u™uy .o u ) = (Fafu)(Lu N, uhw)

— (Fafu)uu™ o uu™)

and
2h+2 242
FéBfékH(u—l,u, ces ,u—l’u) = (k + 1)((Fc§f£k+2)(1, u_l,u,, N ,u’l, u)
2k+2
- (Fc*;fzrk+2)(1jua ’Ufl, cel ,u,u"l))_
Hence,
-1 2k;|—2
< [u], % >ongr = Z(_l)kk!(Fé(bfék) + Fé(BfékH))(u"l,u, coouThu)
k=0
20+2
+ (_1)nFé(bfén)(u_laua v ’u—-l’ u)
2}:
= S -DRIE ) L u T )
k=0
2k

.

— (Fafu)(Lu,u™, o uuT)]

2k-4-2
n—1 -

+ LA RE A+ DIFe S (Lu ™, u u)

k=0

2k+2

- (Félek-i-?)(lau:uwa s :uau_l)] = 0.

Similarly, < [u], >!4,= 0if ¢ € T§™(A) is a coboundary.
The proof of Theorem 5.2 can be also used to show that < [ul,v >, are

independent of the choice of the representative of fu]. The rest of the proof is

clear. Q.15.D.




5.4 Chern Character of Even Equivariant o
Summable Fredholm Modules

In this section we will construct the Chern character from even equivariant
#-summable Fredholin modules to even entire equivariant cyclic cohomology.
Let A be a unital G-Banach algebra and A : G — L(H) be a unitary represen-
tation of G on a Hilbert space H. Then G acts on L(H) by 7,(R) = A RAJ".
Let € be an equivariant element in £(H) such that e® = Id. Suppose that D
is an equivariant unbounded selfadjoint operator in H and p': A — L(H) is a
representation of A on H such that p is equivariant (i.e., p'(ay(a)) = 74(p'(a)))
and ep’ = p'e.

Difinition 5.3 We call (A, H, G, D) an odd equivariant #-summable Fredholm
module if we have

(1) Let A(D) be the set of all @ € A such that [D, p'(a)] is densely defined
and extends to a bounded operator on H. The A(D) is dense in A and there

is a constant m(D) such that
' () + 1D, p' (@)} < m(D)lell, for a € A(D);

(2) Tr(e ") < 00,Vt > 0,

(A, H,G,e,D) is an even equivariant #-summable Fredholm module if
besides (1) and (2), D) anticommutes with &: eD = —De.

Note that this definition is the natural generalization of Connes §- summable
Fredholm modules to the equivariant case [Gong 2]. To construct the Chern

character of even equivariant #-summable Fredholm modules, we will use sev-

eral formulas in [GeS]. See also [JLO].




Let
Age = {(ts,ta, .. 1) ER*:0<h <t <. St <1
be a 2k-simplex and Che (D) = {C%E“(D)}g;o be defined by

CTthk(D)(ao, ap. .. ,agk)(g)zfA kTr(sage_tlDz)\g[D, aﬂe"ﬁﬁl)Dz [D,aq]. ..
2

¢~ tarta)DI D g 1o 020D g%y g A 1D ad), [D,as), - - 1D yaz]>ak (5.16)
for a; € A(D). Here, for convenience, we write p'(a;) as ;. Since

Chi (D) (e (a0), @ a), - - o (aaw)) (g )
= < alzl(a’ﬂ)’ )\h‘lgh[D> alzl(al)]a [D1 Of}fl(az)], R [-D: agl(a’%)] > 2k
= <a’UJ/\Q[Daalla[D:a‘Q]a"-7[Daa2k] >k

= Cnh?(D)(aDaaly rrry (1-21;)(‘(]),

we see CThék(D) € HomZ(A(DYR(A(D))®®,C(G)). By the estimation in
[{GeS],

max |CThék(D)(a0, a1 ..., a)(9)l
9€G

= ma:EQGGI < o, )\g[D:a]]a [D:\ a2]1 ey [D:«‘IZk] >ak |
m(JD)%JAIH,P(QJ—(1—6)1:)2 2k

(2k)! H [Jaill][ Al

=0
mlm(D)zk“TTe_(l‘a)D? 2k

= (Qk)' gj”aéna

< mazgeq

where 0 < § < 1 and m; = maz,eql|A; || < oo in view of the compactness of

(. Thus, CTh?;k(D) extends to AS(A)®®) and

mlm(D)2k+1Tre_(1_5)D2

IChZ (D)l <

(k)] ’




o — ©0 kk] D 2k+1T?‘ _(1_5)b2 L
S RCRE (D) < S 24 m 2%), ¢ < oo
k=0

k=0

Therefore, Cheg (D) = {C‘_hgc(D)} e Tg(A).

Theorem 5.6 Chg (D) is an equivariant cocycle in Tg(A).

Proof. This amounts to verifying (b4 B)Chg (D) =0, ie.,
(6Ch2E(D) + BCRE (D)) agy a1 - - - azkn) = 0,k = 1,2,

To this aim, let us use the following identities [GeS]:

E(_1)|A01+...+§A.’—1| < Agyerry Ay >p=0, (5.17)

i=0

<-A0)' v )[Dz,Ai]r ‘e )A'n. > = < AO?' .- )Ai—lAi) Ai-{-la' .- 3An >n—1

- < Ao,. .. ,Ag-h A{A,;“H,. .. ,Aﬂ P n—1, (518)
and

<Ag,A1,. . .,An>nzz(—1)(|A0H‘--v+!Ai—1D(]AiH"’I'IA“D<l,A.i,. . A, Ag,. . .,A,;_1>n+(15.19)

=0
where A; are operators in H such that (5.17) — (5.19) are well defined and
|A;] = 0if eA; = Ae and |A;] = 1 if eA; = —Aje. We have by (5.1),

BCKE(D)(ag, a1 . .., az-1)(9)
2k—1
= Z(_I)t(zk_l)< ]-a A.tJ [Daagl (a2k~1)]a' © [D,Q;l(ao)], [D:alla- c ey [D'.\G'Zk—l-i] >k
1=0
2k—1

= Z(W1)1(2k_1)< 1'.\ [Daaﬂe—i]:- ST [Dza'2k—-1]1 [Daao]aAg[Daal]:' M) [D1a2k—1—i] 2k .

=0




Here we used the fact that [D, ;' (a;)] = A [D,a:] . Hence, letAo =
(D, agl, A = M[D, a1, A; = [D,ad,i > 2 in (5.19). We get "

< do, )\g[D,al], {D: a2], ceey [D: GZk—l] k-1 y ‘
2k—1
= Z(_l)g(Zk_l)<1v[D:ai]r .- $[~D1a2k—111 [D7a0]:)\g [D:a'l]r . J[D3a"i"—1] ok
=0
= BChY(D)ag,a1 ... a5-1)(g), @ € AD). (5.20)

Also since [D, a;a;11] = [D, a;]ai11 + ai[ D, ai14],

bChZ (D) (agyas - .-, dzx—1)(g)

= < aoag(%), )\g[D; Cﬂﬂ; [Da asl, . - - a[D,sz—ﬂ >ok—2

2k—1
+ Z ('—1)‘L < dg, )\Q[D, (11], [.D, (1.2], ey [D, a,;a,—+1], ey [D, ng_l] >2kﬁ2
i=1
= < aﬂ)\g(a’l): [D: a2]1 [D> a3]7 ceey [Da azk—l] >9k—3
2k—2
+ Z(_1)$(<a01)\g [D,Gq], [D7a2]:' . )[Daai]aﬂ-h [Daa'i-l-2]a- .. 7[D:a2k—1]>2k~2
i=1

+ < ag, /\Q[Da a'l]a [D: 012], R [Da a“i—lla ai[Dr a‘i+1]7 R [D-.- a"Zk—l] >2k—2)

+ (=1 < agrorao, Ag[Dy @), [Dsasly -, [Dy agka] >ax-2 - (5.21)

Using the fact that [D, [D, ¢;]] = [D?, a;] and identity (5.18) for Ag = apA,, A =

a1, A; = [D,a},1 > 2, we obtain

< g, [Da ')\g[Ds al]]a [Dn a?]) ey [Dp aZk—l] > 2k-1
= < G'OAgg ID, [D, 0‘,1]], [Da a’?]: AR [D7 a’?k—l] > k-1

= <aghyay, [D,az),. . [ D,a00] >ap2— <dohg,aq[D,az],. .. LD, a381] > 502

and

(—1)é < aOv)\g[DaalL[D:a?]a' -'1[D1[D9a‘i]]:'"}[D:a%—l] k-1




= (—1)1.(((10,)\5,{1),&1], [D:GZ]P . ’[Dsaiwllaia [Daa"H-l]:' .- B[DvaZkﬁ]. >2F2 ot

— < do, )\Q[Da al]v [Da 02]7 REE) [D7 ai—l]a ai[Da a"5+1]a LR [D: a2k—1] >2k—2)'
Hence, these identities and (5.20) prove

< ag,[D, A\ D, a1l [D, aal, .., (D, azk-] >2x-1
+ 221(_1)5_1 < a0, Ag[D,an], [D,azl, .., 1D, [D, ], .. -, [Py a2r—1] S22
= b&hg’“‘z(D)(%, ay ... aak_1)(9). (5.22)
But by identity (5.17) for Ag = ao, Ay = X\, [D,a1], A; = [D, ], > 2,
< [D,ao), \g1D,a1],[D, az), - .., D, azk_1] >2x-1

+ < o, [D7 /\Q‘[Dﬂ 0‘,1]], [D, 0'217 veey [Dy a2k—1] >9k—1

2k-1
+ Z(—1)1_1<a07 )‘Q[Da a1]> [-Da a2]v' . :[Da [.D, a'i]]r . =[D7 azk—1]>2k~1: 0.
1220 .
This together with (5.20) — (5.22) proves (b + B)Chg (D) = 0. Q.E.D.

We now consider the invariance of the Chern character Chg; (D) under the
differential homotopy of D. Let us define for any bounded operator A’ € L(H)

or A =D,
Che(D, Aoy - - a)(g)=d () Wl<ao, Ay [Dyarl,. . ., [Dyail, A [D s>
L

Then as shown in [GeS], Cheg (D, A") = {CThék(D,A’)}ﬁ;‘;o c Te(A)if A €
L{H) is even, and if A" = D, Ch¥(D, D) = {ChE"Y(D, D)} € TZ*(A), since

Ty n my(n4+Dm (D) Tre-(1-8D% n
max |CH (D) (a0 a1 ()] <™ 2N V(R

for A’ € L(H), and
my (n41)m( D)3 Tre~(1-9D"

max [C(D,D)(do, a1, ,aa)(9)] < i 1T o




Proposition 5.2 let D, be a one-parameter differential famz’?y of equwamant
selfadjoint odd operators in H such that either D, = sD and Tre™ 2% < oo for

alt >0, or D! is a continuous family of bounded operators on II. Then

dic?h“""( o) = —(b+ B)CRE (D, D).
5

Proof. As in the proof of Theorem 5.6, it follows from (5.19) that

BC’thH(Ds,D')(ao,al, ., au)(g)

= —Z 1) < ,ao [Ds,al], [_DS,CIQ],. . [Ds,ai], D;, . [Ds,azk]>m£|5.23)

Similarly, tedious computation proves

bCRE ™ (D,, D) (a0, a1, . . -, az)(g)
2k

= _Z<a07 )\H[Dﬂa’l]) IDSJGZ])' .. 7[D3)a‘5—1]: [D;)ai]: [Ds:ai-[—l]r .. :IDsya2k]>2k
=0
2k . .

- Z(Ml)a( Z (_1).?_1 <G’01 /\Q[Dsaal]v' L] [-D::aj]:' "y [Dma’i]a D;: L [Dsaa2k] >2k+1
=0 1<5<s

+ E (“1)j<a()7 /\g[Dsaal]; [Ds:a2]7- T [Ds;ai]: D;a' [Dga :.-] [Dsaa2k]>2k+1)(5‘24)

j>i+l

The last term of (5.24) is the second one of the following identity

2k
Z(Hﬁl)‘z([DsaaU]) )\g[Dsaal]a [Dsaa’?]:- .. 7[Dsaai]; D;; [Dsaa'i+1]7- . )[Ds;a2k]>2k+l

i=0

2k
+ 3 D0 F) <, A D, [DRa], oy [Dayas], Dlye . [Deyaar]> 20

i=0 1<5<i
+ 3 (W <a, A[Psyaily - [Dosts], Dy [D2 5], [ Dayak]> 2011
j>z'+1

+ Z<a0, [Ds,a1], [Dsyaal,e - - 5[Dasas], [Py DLl,- o [ D sy iar] > 2= 0, (5.25)




which is obtained by summing all of the identities from (5.17) with e

(
ao, j=10;
AglDgy0n], 5 =15
[Dsrai], <5
Dog=i41;
[D5,0;4], j24+1,

\

over 0 < ¢ < 2k. Therefore, combining (5.23), (5.24) with (5.25) and using
the following identity [GeS]

d n
E < Ag,Al,.. LA, = - z < Ao,.. .,[DS,D;],A,;+1,. ..,An >p41s
' i=0
we obtaln
d i ev
EChG (Ds)(ao, a1, - .., a2)(g)
2k
- _Z<a03 /\Q[Dsaal]a [Ds,a2]a' e a[Dsaai]: [Ds,D;], [Ds;a'i-l-l];- .. ,[Ds,agk]>2k
=0

2k
+ Z<a'07 /\g[DsaalL [D-‘HG'Z]:-' e ?[DSJai—l]v [Dfs?ai]: [D87a5-|-1]>' .- :[Ds,a?k] 2k
‘o

= —(bCHEY(D,, D)+ BCAE™(D,, D))o, ar, - . . , a2 )(9)-

Q.ED.

5.5 Index Theorem of Even Equivariant O-

Summable Fredholm Modules

We now apply the Chern characters constructed in the previous sections

to the equivariant index theorem. Let (A, H,, €, D) be an even equivariant




§-summable Fredholm Module. We write H as H = H* @ H~ and then

D=0 D"
Dt 0
with H* being the +1-eigenspaces of ¢ and (D*)* = D~. Moreover, since H
is a unitary representation space of compact group GG, the Peter-Weyl theorem
implies
H=®,.sH,,
where G is the set of equivalence classes of irreducible unitary representations
of G, and H, is the closure of the direct sum of all irreducible unitary represen-
tations spaces which are equivalent to o. Let P, be the orthogonal projection
from H onto H, and D, = P,DP,. Since ¢ and D commute with A,,g € G,
H,=H}® H; with H* = H, 0 H* and D¥ = P,D*P, and D? = P,D*P,.
Then
Tr(e D) = Y. Tr(Pe P} = 3 Tr(e™P?) < co.
oeG

€@
Hence, for each o € G, Tr(e”P7) < oo and DF : HF — H is a Fredholm

operator. Denote by Ind(D7) the index of D}.
Definition 5.4 Let (A, H, G,E,D) be an even equivariant #-summable Fred-

holm module. The character-valued index of D is defined by

Inde(D*)(g) = > Ind(D})%.(g), (5.26)
cel

where X, is the normalized character of o: ¥, = (dimV,) 'x,, V, is the finite
dimensional representation space of o.
Note that this character-valued index is the same as that in [AtS]. In fact,

let S, be the set {1,2,...,m(c)}, where m(c) is the multiplicity of & in H,.



Then H, = V, ® L*S,) up to isomorphic isometry, and DF = [ dV, ®. D L

Thus, Ind(D}) = dim(V,)Ind(D}). Ind(DN%,(g) = Ind(D)x.(g). The
following lemma extends the McKean-Singer index formula to the equivariant

case, and also tells us that the right hand side of (5.26) is well defined.

Lemma 5.3 Let (A, H,G, e, D) be an even equivariant 8-summable Fredholm
module. Then

Indg(D) = Tr(eh,e™P),Vg € G,t > 0.

Proof, Clearly, Tr(e),e ") < 00,Vg € G. We get as in the ordinary case
[Gil],

Tra, (ehge™P%) = Tricer(p2)(EAg)
= Trgeozyna+(Ag) — Trgermzyna-(Aq)
= dim(Ker(D2) N HY)%,(g) — dim(Ker(D2) N H )%, (g)

= Ind(D7)%:(9)-
Therefore,

TT(EAge_tm) = Z T"'Ha(‘fl\ye_mg) = Z Ind(D:)Xfa(g)-

aEé O‘Eé

Q.E.D.

Theorem 5.7 Let (A, H,G,e,D) be an even equivariant 0—summable Fred-
holm module. Then for any [p] € K§(A) represented by the equivariant idem-
potent p € AQEnd(V),

Inde((D & Idv);) =< [p], Chg (D) >, (5.27)




where V i3 a finite dimensional unitary representation spacé of.G'.'dﬁd'(g_'D; ®

Idy)tr =p(D* @ Idy)p: p(HY @ V) — p(H™ ® V).

Proof. It is easy to see that the dense subalgebra A(D) of A is stable un-
der the holomorphic functional calculus. This means that if (V, ) is a fi-
nite dimensional unitary representation of G and a € A{(D)Q®FEnd(V), then
f(a) € A(D)®End(V) for any function f holomorphic near the spectrum of
a in AQEnd(V). As in the ordinary case, we have K§(A) = KF(A(D)).

Let A(D) = {R € L(H) : [D,R] € L(H)} with the norm ||R||' = ||B| +
I[D, R]||. A(D) is a Banach *-algebra and A(D) 2 A(D). As in section 5.4, we
can define the Chern character Chg, (D) in T (A(D)) by the same formula as
for Chig (D) and Chg (D) = Ch (D) on A(D). By the proof of Theorem 5.1,
we can assume that there is an equivariant idempotent p' € A(D)®End(V)
and a path p, of equivariant idempotents in AQEnd(V) connecting p to p'.

Then by Theorem 5.4 and the homotopy invariance of index,
< [p}, Chg (D) >, =< ), Chg (D) >, =< p'], Cha (D) >,

and

Indg((D ® Idy)}) = Indg((D ® Tdy)3).

Using the result in [Phi], we can assume that there is a path p} of equivariant
idempotents in A(D) such that pj, = p’ and p, is a projection. Thus it suffices

to check that for the equivariant projection pf,
< W, G (D) >%,= Tnds((D & Tdv)})

Note that < [p}], Chg (D) >t,=< [3}],Ch§ (D ® Idy) >, . In faci,



F2Chg (D) = Chg (D @ Idy) as shown by the following calculation:

Che (D ® Idyv){(ao®mo, . . ., agx@ma)(g)

= <ap®@ma, (A, ®BHD® Idy a:R@m4], [D®Idy,a3@mal,. . ., (D@ Idy ,aox@mar]>ak
/A% fl“r(esonoe_ltlp2 A D, ar)e= @D qy] ..

... g (tart2k) D2 [D, azk]e_(l_m)m QOmofBymy - . . mgk)d%t

< ag, Ag[D,a1],[D, a2l, ..., [ D, azk] >ak Tr(mofymy ... max)

FEChg (D) (ao@mo, . . ., ag@mar)(g).

Hence, we reduce (5.27) to the equality

<[], Chg (D ® Idy) >L,= Indg((D ® Idy)};). (5.28)

Now choose a homotopy (D ® Idy), = D ® Idy + s(2pf — 1)[D ® Idv, p}]

of equivariant odd selfadjoint operators which satisfies the condition of Propo-

sition 5.2, Tt follows from Proposition 5.2 that

< [p{), Cha (D ® 1dy) >,=< [p}], Chg (D @ Idy)1) >, -

By the homotopy invariance of index, (5.28) is equivalent to the following

< [0, ChZ((D ® Ldy)y) > Inde(((D ® Tdy 1))

where p is an equivariant projection in A(D)® End(V) and [p}, (D@ Idv)i] =

L (D@ Idy)p) + (1 — p))(D ® Idv)(1 — py)] = 0. But by Lemma, 5.3,

< Bl OHS (D © Tay)y) >,
5> DR 54 (0 6 1 ) (o~ 5 )

k=0



< pll()\g ® ) >o
= (DR 1

k=0
Tr({e ® Idy)p, (), ® B,)e~(PBIVIY)

Inda(((D ® Tdy)1)f;).

(Ag®ﬂg){(D®1dV)11pl]r . 5[(D®IdV)11p’1]>2k

Q.E.D.




Chapter 6

Higher Equivariant Analytic Index

In [CoM 2] Connes and Moscovici used the Alexander-Spanier cohomology
to construct the higher index. They proved the higher index thecﬁem which is
important in their approach to the Novikov conjecture. They also employed
cyclic cohomology in a crucial way. It is natural to study the higher equivariant
index theory by using the equivariant cyclic cohomology discussed in Chapters
4 and 5. This together with the application of the higher equivariant index
theory to the pairing version of the equivariant Novikov conjecture is the main
motivation of the present chapter. It turns out that one has to develop certain
equivariant Alexander-Spanier cohomology. We will thus define in section 6.1
the equivariant cohomologies of spaces and groups. These cohomologies involve
the group twisting at the cochain level and in the coboundary operators and
are quite different from usual equivariant cohomologies. The equivariant coho-
mology of spaces so defined will be called the equivariant Alexander-Spanier
cohomology. We will discuss the excision and tautness of this cohomology.

In section 6.2 we will use the equivariant Alexander-Spanier cohomology to
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construct the higher equivariant analytic index map of Riéﬁidnﬁ?an_mamfo}d’
This higher index map shares most properties of the usual index map " We i
will prove in section 6.3 that this higher equivariant index is well defined in
the equivariant K-theory of manifolds and satisfies the Atiyah-Singer index
axioms. We finally propose a pairing version of the equivariant Novikov con-

jecture which deserves further investigation.

6.1 Equivariant Alexander-Spanier Cohomol-
ogy

We assume throughout this section that G is a compact group and M is
a locally compact Hausdorff space and G acts on M by homeomorphisms. To

define the equivariant Alexander-Spanier cohomology, let F'(G) be the space of
g+1

rm— s ———
all functions on G and M9 = M x ... x M. Define C%(M) to be the space
of all functions ¢ : M?* — F(() such that for each ¢ € G, ¢(zo,...,2,){(9)

is bounded as a function of z; € M and satisfies the following

1. @(gzo,...,g5)(ghg™") = o(zo,...,x.)(h), Yg,h € G,

2. (P('TO: ce ?mQ)(g) = (—1)gﬁﬁ’($q;9_]$0 v >$q-—1)(g)'

Let CL(M) be the subspace of C&(M) consisting of all elements satisfying

W(ga, T1,. . T4y Tig1y - - -, ) (g) = 0 for some z; = 2,,,,0 < i < g—1,9 € G.




Let & : CL(M) — C&' (M) be the coboundary operator defined by |

g+1

(5(10)($03 SRR $9+])(g) = (,0(9231, T2yeney m9+1)(g)+;(wl)i(9($ﬁa ey 3?2': RN $q+1)(9)-

we have for ¢ € C’g;(M),

(a) (8p)gzo, .., g2431)(R) = (80)(@o, .., 211 ) (97" hg):

(b} (g0, . . ., 9Tq41)(h) = @(h{gz1), 922, . . . y9%q41)(h)
g+1

+ Z(—l)igo(g;r;o, SRR LTS PR/EEES PR ,g$q+1)(h)
i=1

= (8p)(0,...,Tq41)(9” hg).
() (69)(0r- .+ 7481)(0) = (=) (80)(qs1, 920, 21, 24)(g). Tn Tact,

(690)(:50: s 9$q+1)(g) = (_1)q50($q+17m1: SRR wq)(g)

T Z(_l)i+qﬁo($q+h 97 0y vy iy 2 )(g) + (=)™ (@) (@05 -+ 2,4)(9)

— (_1)q+1(5(’o)($q+1,g_1m0, e ,:nq)(g).

(c) 8%¢ = 0. Indeed,

8(6p)(wo, -+ Tg42)(9) = (80} (921, %25 - s Tar2)(9)

q+2 _
b1 (80) @i T2 (0)
i=1
q+2 Ciel )
= S D (=1 (@0, oy By Bty e Tar)(9)
1=2 =2
q+2 .
+ z (Wl)J_l{P(wﬂa RN "Ei: ce :é\:ja s 7$§'+2)(g)) = 0.
F=i+1

Clearly, (6¢)(g@o,...,2441)(g) = 0 if ¢ € CL(M) and 2; = w;41 for some
0 < i < q. Hence {C5(M),8} (resp. {CL(M),6}) is a complex. Let U =

{U;,i € J} be an open covering of M. We say U is a G-covering of M if




for U € Y and g € G, gU € U. We call p € CL(M) is locally z’e;to 1f
there is an open (G-covering U of M such that ¢(gzo,z1,...,2,){g) = 0 for
(z0,y...,25) € Upey U and ¢ € G. Obviously if ¢ € C&(M) is locally zero so

is §p. All locally zero cochains ¢ € C&(M) form a subcomplex {Cg (M), d}.
Then C&(M) = {Ca(M)/CEo(M),6} is called the equivariant Alexander-
Spanier complex. Its cohomology H%(M) is called the equivariant Alexander-
Spanier cohomology of M. We denote by H%(M) the cohomology of complex

Ct = {CH(M)/CE(M) 0 Cgo(M), 6}

Remark 6.1 (1) When G = {e} is a trivial group, HE(M) reduces to the
ordinary Alezander-Spanier cohomology of M [CoM 2].

(2) HE (M) is formally different from equivariant Alezander-Spanier coho-
mology in the sense of Honkasalo [Hon]. Unlike [Hon] the coboundary operalor

here involves the group action.

(3) If M = {pt}, then CH(M) = Cx(M) ~ F.(G) € {p € F(G) :
o(ghg™) = p(h),g,h € G}. HL(M) = F,(G) for =10, and 0 for ¢ > 0.

Let N be a locally compact Hausdorff G-space and f : N — M be
a continuous G-equivariant map. Clearly, f induces homomorphisms f* :
C&t(M) — C&(N) and f* : C&o(M) —» C4o(N). We have f* : H4(M) —
HE(N). Let My C M be a G-subspace of M and ¢ : My — M be the inclusion.
i* 1 CL(M) — Ct(M,) is surjective. Denote by C%(M, M) the kernel of #*.
Let IT%(M, My) be the cohomology of the complex {Ca(M, My),5}. We have

the following properties of H(M).




Proposition 6.1 (1) Ezactness: there is a long ezact sequen;bé
L HL(M, M) — A&(M) = T4 (M) S 05 (M, Mo) — ...,

(2) Fzcision: let U be a G-subset of My C M such that there is an open G-

neighborhood W of U with W C int(My). Then the inclusion i : (M \ U, My \

U — (M, My) induces an isomorphism i* : C5(M, M) — C&{(M\U, Mo\ U).
Similar results hold for C5(M) and Hy(M).

Proof. (1) is from the short exact sequence
0 — CF(M, My) — C&(M) — C5(Mo) — 0.

To prove (2), let us note that by assumption the rows of the following com-

mutative diagram are exact

0= Cao(M) —  Ciu(M, M) 5 Cu(M,My) =0
I § 1

0 Cty (M \ U) = CL(M\ U, Mo \ U) 2 G (M \ U, Mo \ U) — 0,

where CE(M, M,) is the subcomplex of C&(M) consisting of all ¢ € C&(M)
such that ¢ is locally zero on My. Following [Spa], we need only to show
that jiz* is surjective and ()71 (C%o(M \ U)) = Co(M). -Define for ¢ €
CLM\U, My \ U)

0, if some z; €W, 0<i <y,
P1(To; -+, 7q)(9) =

w(xo, ..., 24)(g), otherwise.




Then ¢ is a bounded function of z; and G-equivariant. Also. go.l(:ar:"(;-,. ; ,;nq)(g)
(=1%o (g, 97 00, %1, .. -, T4—1 {g) and p1(gzo,z1,...,%4)(g) = 0 for some
2; = Tiry. 1 is in CH(M). Let U = {U; : 1 € J} be an open G-covering
of My \ U such that ¢ = 0 on %", Then U4 = {U;UW : 4 € J} is an
open G-covering of My such that ¢; = 0 on U{T'. Hence ¢, € C&(M, My).
It follows from the definition of ¢; that i*py — ¢ = 0 on U™, where U, =
{U;Nint(Mp) : ¢ € JJU{M\W}. Since int(My) and M\ W are G-equivariant,
U, is an open G-covering of M \ W. This proves ji(t*¢1 — ) = 0.

To check (#*)™"(C&o(M \ U)) = CEo(M), let ¢ € CE(M, M) be such
that i*p € C§o(M \ U). There are open G-coverings U of My and U of
M\ U such that ¢ = 0 on ¢4+ and UT". Take Uy = {U; Nint(My) 13 € J},
Us = {U;N(M\U):i€J}. Uy =U; Ul is an open G-covering of M, since
M\ U is G- equivariant. But ¢ = 0 on U™, ¢ € Cgo(M). Q.E.D.

To obtain the tautness of equivariant Alexander-Spanier cohomology, we

need the following lemma.

Lemma 6.1 Let M be a locally compact Hausdorff G-space and My C M a
(F-subspace. SupposeUd = {U; : i € J} is an open G-covering of M. Then there
ts an open (G-neighborhood O of My and an equivariant function f: O — M,
such that

(1) f(z) ==z, Vz € My,

(2) for any U € U, F(UNO) C U*, where U* =U{U' € U : U'NU # B}.

Proof. Let O be the set of all 2 € M such that there are an U € If and an
equivariant map f, : Gz — M, satisfying € U and f,(z) € U N M;. We

have




(a) My C O: take f, = I: Gz — Mp. Since U is an open covering..(:).‘f".ﬂ;f,"t.}ﬁerfé__
is an U € U such that ¢ € U. Then f.(z) =z € UN M,. |
(b) O is open: let z € O, U and f, : Gz — My as above. By the slice theorem
[Bre], there is a slice O, C U at . Then GO, is an open neighborhood
of x and for each y € O, there exists a G-map ¢, : Gy — Gz such that
w:{y) = x. It is enough to show GO, C O. Let z; € GOz ;1 = gy for
some y € O,. xy € gU and foip,, = gfapy + Glgy) — Glgz) = gMo C M.
Furthermore, (fzgy)(21) = 9(foy)(y) € (gU) N My. Hence #; € O. O is an
open neighborhood of .

Note that O \ M, is G- equivariant. We define the equivariant map f :
O — My by

I, on My,
-

fmn on GmCO\MO-; mEO\Af{O

Evidently, f(z) = z for z € My. Let Uy € Y. If z € Uy N O, then there
are U € U and f, : Gz — My such that z € U and f, € U N My. Thus
€ UyNUU €U and f(z) € U. Q.E.D.

Let us point out that f : @ —» M, may not be continuous. But f is
good enough for us to prove the tautness of equivariant Alexander-Spanier

cohomology.

Proposition 6.2 Let M be a locally compact Hausdorff G-space and My a

closed G-subset of M. Then the natural homomorphism

lim AL(0) 5 HE(Mg)

o




is an isomorphism, where O runs over all of the G-neighborhoods of Mg;_' ;

Proof. Surjectivity of i*: let ¢ € C&(Mo) be a G-cochain such that ép = 0 on
W11 for some open G-covering W of My, Let U = {WU(M\ M) : W € W}
U is an open G-covering of M since M \ M, is G-equivariant open. Choose
an open star refinement V of U (cf. [Hon],p.30), i.e., V* C . By Lemma 6.1,
there exists an open (-neighborhood O of M, and equivariant f : O — M,
such that f(V N O) C V* for any V € V. Then §(f*p) = f*(dp) = 0 on
Ve+rinOrtE But f(VNO) C V* C U for some U € U since V is the open star
refinement of 2. Hence f(V N O) C U N M and §(f*¢) = 0 on (V N O)*+2,

This proves f*(i) is a cocycle in C&(0) and (f*¢)|ar, = ¢.

Injectivity of *: let O’ be an open G-neighborhood of My and ¢ € C&(0)
be such that & = 0 on W2 and ¢|a, = 1 on Wit for some open G-
coverings W of O/ and W, of My. Let U = {W; U (O'\ My) : W, € Wi}
U is an open G-covering of (. Choose an open G-star refinement V for
both & and W. By Lemm 6.1, there are a G-neighborhood O of Mp in O
and an equivariant function f : O — M, with the properties of Lemma 6.1.
Since f(VNO) C V¥ ¢ Wy for V €V and some Wi € Wy, f*(¢la,) =
T*(8¢1) = 8(f*e1) on VTN Ot Hence it suffices to check that f*(¢|as) is
cohomologous to ¢|o in C&(0). Let D : C9(0) - C{O) be defined by

(D":b)(m(h R wq—l)(g) - 2(_1)i¢($0, ceea iy f(wi)a AR f(mq""l))(g)
+ ¢($Oag~1f($0)a f(ml)a s 1f($9))(g)




Clearly, (Dvy)(gzo,. .., i Zig1,. .., T4—1)(g) = 0 for some z; = ;4 if ¥ has
such a property. We have

q—1

(Dw)(gxﬂa s 19'3311—1)(9}"'9_1) = Z(wl)iw(xﬂa s 9$iaf(mi)’ v >f($q—1))(h)

i=1

+ I,b(:co,g_lf(:rzo),f(:rl),. ooy F(@g-1))(R) = (D) (2o, - - ., 24-1)(h),
provided 9 (gzo,. .., g92,)(ghg™") = ¥ (zo, ..., 2,)(h).

(‘SD’ﬁb)(xGa e awq)(.g) = "rb(g-'foag_lf(gml):f(m?)a sy f(a"q))(g)
+ ;(—1)"”1%1;(9:61, Tay -5 &y f(20), -y F2g))(9)

+ Z(“l)i(¢(mﬁag_lf($0)7 f(l'l)a sy f(%))(g)

=, e,
[l
-

(=1)7%(w0, -y 25, £ (25, f(), -, F(2))(9)

+
]

Il
e

+ 3 (Yo iy g, F(z), - Fle))G)),
F=it+1

(D&¢) (o, - -1 24 )(9) = 997" f(za), f(21),- .., f(z))9)
- ’Qb(-ﬁ‘ﬂ'o,f(iﬂl),- e 5f($Q))(g)

q

+ 2("1)i+1¢($079f($0)1 ses af(‘ﬁi)v sy f(wq))(g)

T é(—l)*w(gm, i f(@), s F(@))(0)

+ :l(—l)jw(mo, By m f(w), f24))(9)

+ (_1)i+1¢($0, <oy iy f(i'i)a f('THl)a veey f($q))(9’)

T2 0w f(@)s F ) £(20)(9)

Therefore,

(6D¢ + D&b)(mm e wq)(g) = d’(f(mﬂ)ﬂ T vf($q))(g) - "tb(m(h Lo ?mq)(g)'



Let D = —;—Zg:_& D : CL(0) — C&L Y (0). The above arguments show that D~

is well defined and for ¥ € CL(0),

6D + Dép = £ (v|u,) — .

In particular, we have § D + Dép = f*(ip|as,) — . We know already ¢ = 0
on W and (VNO)U f(VNO) ¢ W for some W € W. Hence 6@ = f*(ip|ar, )¢
on VI N O™ e, f*(plas,) is cohomologous to ¢ in CE(O). Q.E.D.

We discuss briefly the equivariant Alexander-Spanier cohomology with
comnpact support. Let M be a locally compact Hausdorff G-space and M,
a G-subapace of M. Denote by C¢ (M, My) (resp. é&)C(M, My)) the sub-
space of C&(M, My) (resp. C5(M, My)) consisting of all ¢ € CL(M, My) such
that ¢ is locally zero on some cobounded G-subset of M. Recall U C M is
cobounded G-subset if M \ U is compact and U is G-equivariant. Obviously,
§ maps C& (M, My) into CELH(M, M) and CEo(M) C C& (M, M) . Let
CY (M, My) = C& (M, My)/ C&o(M). The cohomology HY (M, Mo) of the
complex {C% (M, My), 8} is called equivariant Alexander-Spanier cohomology
with compact support. Similarly, we can define the complex {C*E";C(M , Mo), 6)
and its cohomology A% (M, My) by using C (M, My). We can discuss the
properties of ch(M , Mo) as above, which we omit.

We now come to the equivariant cohomology of groups. Let I be a group.
Suppose that compact group G acts on I' by automorphisms « : G — Auz(I")
such that a(gg2) = a(g1)algs),a(g™!) = alg)L. Let CL(T) be the space of
all functions ¢ from I'"*! $o F(G) satisfying the following:

(1) ¢(vg,...,v4)(g) is a bounded function of v; for each fixed ¢ € G,

(2) w(gvo, ..., gvg)(h) = (v, ..., vy) (g hg),Yg, h € G,



(3) @(uvo, .., g)(B) = @(h() v, vire o 7)) i €T HE G
Define the coboundary operator 6 : C&(T) — C&(T') by
q+1 )
(60)(vo, - - > ve11)(g) = @(gr1, v, . - -, Vq+1)(g)—i—z(—1)’go(vo, ey Piy e Vg1 )(9)
=1
To check that & is well defined, we can use the calculation of the coboundary

operator on C5(M). It suffices to verify

(60) (vug, . .., vv)(B) = () (h(v) Twwg, 1, . . ., v )(R),

which is obtained by a computation. As before, §% = 0. Hence {Cg(I'), 6} is
a complex. The cohomology HE(T) of the complex {C&(I'), 8} is called the
equivariant cohomology of T". Note that H&(I') reduces to the usual cohomol-
ogy of I' when (G is trivial. The natural example of the group I' with a compact
group action is the fundamental group m;(M) of Riemannian G-manifold M.
Let ¢ € G have a fixed point in M. Denote by GGy the subgroup of G generated
by g. Then (4 has a fixed point in M. Hence &; acts on (M), even though
G may not act on m;(M). We will use the cohomology H (I') elsewhere to

consider the pairing version of the equivariant Novikov conjecture.

6.2 Higher Equivariant Analytic Index

Assume throughout this section that G is a compact Lie group and M is
a complete smooth Riemannian manifold. This section is devoted to defining
higher equivariant analytic index for M. Let £ and ' be two smooth complex

G-vector bundles over M. Denote by $(M; E, F) (tesp. V,(M; E, F')™1) the

space of all equivariant {resp. elliptic) pseudo-differential operators A of order




r, A: CX(M,EQ®|A3(M)) = C=(M,F & | A}(M)), where | A 5 (M)

s the.

C*-line bundle of half densities over M whose fiber at z € M ié déﬁnéd by B

| A|3(M), = | A |3(ToM). Recall that for a finite dimensional space V over R
and the set of all ordered bases B(V) of V, a half density on V is a function
from B(V) to C satisfying (%) = |det(B2, 51)|7 f(B1) for i € B(V) and
| A|#(V) is the C-vector space of all half densities on V. That A is equivariant
means g(A) = A, namely, A, A\ = A, where A, is the operator induced by
the G-action on various spaces such as C®(M,E ® | A |2(M)), g € G. Let
K(z,y) € Hom(E,, F,) ® | A |2(T.M) @ | A |5(1,M) be the kernel function of
4,
(AN) = [ K(@n)f@)dy, [ C2(M, B | ABF(M)).

Then

(Mg AXN 1)) = Xy - A ) (g7 ) = fM A K(g7 2,07 y)g ™ fy)dy.

We see that A is equivariant iff K(g~"'a,¢7y) = A 1K (z,y)A,, Vg € G, where
Ay acts on the fibers of vector bundles ¥ and F. Let A; € UF(M; E, F) =
UpsoWe(M; E, F') with kernel K;{z,y),0 <1 < q. We define for ¢ € CA’E;’C(M)
7o+ (VG(M; B, E))®t) — F(G) by

T‘P(AOJ' .- Aq)(g) = (_1)quq+?T(Ag'I{O($O; 331) . I{q(wm 9310))(,0(9:60, Llyeeny mq}(g)a

where T'r is the trace on the fibers of vector bundle £E. We first prove the

following basic lemma.

Lemma 6.2 Let ¢ € C’g;c(M) 7, satisfies the following
(1) 7o(Aos -, Ag)9) = (—1)7( Ay, 97 (Ao), As, - . » Ag-1)(9),



(3) broldo, - Agpa)(0) = oMoy g,
(3) 7(g(Ao), - .. s9(A)) (k) = T,( Ao, ... » Ag)(g7 hg),
(4) If fi € WQ(M; E, E) are functions, then

T‘P(‘AO + Jo, ...  Ag + fq)(g) = (_I)QTw(AO: s A g)-

Proof. (1) We calculate

7o(Agy Aoy - ., Ag_1)(g)
= (=1) /M o T(Ko (970, gm0) Ay Kolza,21) . .. Ky (21, g2,)
(924, %o, . . . s Zq-1){(g)
= (~1)% f Tr(AKo(wo, 1) . .. Ky(2q, 920) o (g0, 71, .. ., 3,)(g)
= (=1)"rp(A1,..., A,)(g).
Here we used the properties of K, and ¢ that A K, (a,, 20)A;1 = K, (g, g0)
and (2o, ..., 24)(9) = (=1)%(24, g 20, 21, - .., T4-1 )(g).
(2) We have
Ttp(Aﬁg(Al)ﬂA2’ ey Agga)(g)

= D [ T OB, 01) K11, 20) (00, 200) (),

To( Aoy, Aifliga, ..., Agyr)(g)

= (_1)!}' /Mq+2 Tr(/\gKo(a:g, &‘L’]) . I{q+1 ($q+1,g3)0))(9(g$0, - ,If';'g', PR .'Eq_|_1)(g),

Ttp(Aq-i—lAGvAl? e DAQ)(Q)

= (_1)9 /Mq+2 TT(,\QI{q+1($q+1, 580)1(0(270, 3’,‘1) N I{q(mq,gmq+1))



@(gwq-[—l)wh v ,mq)(g)

= (1™ qu+2 Tr(AgKo(zo, 71) - - - Kyp1 (11, 920))(g21, T2, - - -, Tr1)(g)-

Hence, (b1,)(Ao,. .. Ag11)(9) = Tso( Ao, ..., Agi1)(g)- 4
(3) Since g(A;) = Ai, we need only to check

To( Ao, ..., Ag)(h) = To(Ao, ... , A (g hg).

This can be seen by the following computation:

To(Aoy .o rs Aq)(gdlhg)
= (—JJQ(A;W+1(Agw1hgﬁh(mo,w1)---1¥§($q,g“lhgwo)ﬁp(hgxo,gwl,---,ga@)(h)
= (1) qu+2 Tr(MKo(zo,21) . . . Ko(2g, hwo))p(hzo, 1, . . ., z4)(h)

= 7,(Ao,...,A)(R),

since Agffi(g_lcc,g_ly)A;l = K,(z,y).

(4) Since @(gxoy ... Ti, Tiqt,-- ., 2q) = 0 for @; = 241, we get

T‘P(Aﬂa cee 7Ai—17fi7 s 1A9‘)(g) = 0.

This imples (4). Q.E.D.

Now let a € Sym%(M;E, )™, the symbol space of ¥&(M; E,F)~".
Choose A and B in V&4 (M; E, F) such that the principal symbols ¢{A) and
o(B) arc a and a~!, resp.. Then as in [CoM 2], let Sy = I-BA € U3 (M; E, E)
and 8y =I — AB € U3'(M; F, F).

LI SQ —BWSOB EII’?;(M,EEBF),L_lz So (I‘l‘S[])B
A 51 St —A




Define P=1L| {8 0 L le= O 0| and
0 0 0 Ir

2
Ro=P—e=| %0 SI+S)B | cyeopEa B F).
S$A 5P

Let @ € C4 (M), bp € C& (M),
Definition 6.1 IndC : Sym&(M; E, F)™' — F(G) is defined by

g+1
r—N—

1nd(a)(g) = 7olRar- ., B)(9)

= (—1)* /Mq+1TT(/\gRa($o,fﬂ1) o Ro(zg,9%0)Yp(9T0, 1, - - - 1 Tg)(9)-

To show that [ ndf is well defined, we need the following lemma.

Lemma 6.3 ([CoM2|) Lei {P, :t € [0,1]} be a C"-piecewise family of idem-
potents in V(M; E® F,E @ F). Then for ¢ even and Ty = (1 — 2P,)%%,

TtP(Pl}' . '7P1)(g) - T‘P(Pﬂa' . ':PU)(Q) = (q-l' 1) f: T5‘P(Tt1Pta' . 7Pt)(g)dt

In fact, since P; and T; are equivariant and ¢ is even,

G PoeeisB) = TPy TP R))
= i%(ﬂ,...,Pt,[Tt,Pt],Pt,...,Pt)(g)
o (@4 D7l(T P B P9)
(gt DTy Py P = (g + V75, (Te, Pry -, PO,

To show that [ ndg(a) is independent of the choice of the idempotent P, let

Lo and L be two such idempotents with supports sufficiently around the




diagonal. Let F; be the idempotents associated with Lga,ndR&(z

pe |
e. By Lemma 6.2, 7,(R,(3), ..., R.({)}g) = 7,(P;..., P)(g). Observe that
T7o(Piy oo, P)(g) = T,(P: @ 0,...,P; @ 0)(g). It suffices to show

T(Po®0,...,Po ®0)g) =1 ,(PL®O,..., L ®0)g).

This follows from Lemma 6.3 by choosing a path connecting P, @0 with P, @0,

Pg 0,2
0 0
1 wt oot -1 i A
L, IyLg" 0 || cosT —sin g LoLT" 0 cos B sin %
0 1 sin 2 cos T 0 1 —gin 2 cos &
2 2 2 2

1 ndg(a) is defined for an equivariant cocycle ¢ € C‘g;,c(M ). We can show
that Indﬁ;](a) is defined for [} € flg;c(M) Indeed, Ind(a) = 0 for locally
zero cochain ¢ € C’E;C(M ), since the kernel R,(z,y) is supported around the
diagonal. If ¢ € C& (M), then for ¢ even,

q+1
Indgy(a)(g) = 7oy(Ray--., Ra)(g) = bry(P,..., P

g

= 15(P,...,P)g) = —74(P,..., P)(g),

since 1) is antisymmetric and R, is equivariant. Hence Ind§,(a)(g) = 0. Thus

I ndG] is well defined.

%

We remark that a weak version of the McKean-Singer formula holds for

Indfp](a). To state it, we assume M is a compact G-manifold and D ¢




U (M; E,F)™" is an equivariant elliptic differential opefat'bf;.:::_U_s ng the ide:

potents in [CoM 2],

W(D) _ G_D*D 6_%D*D(I_E:;*D'“)%D* /
- E
e~ 3PP (L 220D T—e 0P s

e—D*D 6-»%D*D(I-»e"D*D \D*

P(D) = D*D ,
6—%DD*D I— e~ DD*
and
-D*D _1p*D I—e~P "D NLys 1
R G )
30D (I=e22 Y35 [ — DD

We see P,(D) is a path of idempotents connecting P(D) with W(D). Let
Wi(tD) = W(itD)—e, t > 0.

Lemma 6.4 Let g € G be sufficiently close to the identity. Then
lim 7,y (W1(iD), ..., Wi(tD))(g) = Indigy(o(D))(9)-

The proof is the same as that in [CoM 2] which we omit.

6.3 Analytic Index Map in Equivariant K-

Theory

In this section we will use 7 nd[cfo} to define an index map in equivariant

K-theory and prove some properties of this index map which are similar to

those of the Atiyah-Singer index map.



Proposition 6.3 Let M be a complete Riemannian'(.}’::rﬁdﬁifo_lti;? Ther gt
pairing of H2(M) with K3(T*M,T*"M \ M) to F,(G) given by IndS;(a) for

[¢] € B (M).

Proof. The proof is the same as that of Theorem 2.4 [CoM 2] except we have
to use the equivariant homotopy theorem of equivariant vector bundles. Iirst
we define the relative K-theory group K(T*M,T*M \ M) as the quotient
of E(T*M,T*M \ M) by EX(T*M,T*M \ M), where Eg(T*M,T*M \ M)
is the set of G-homotopy classes of all triples (o, F, ) with E and F C™-
complex vector bundles over T*M and ¢ a G-isomorphism from F|r«anas
onto F|panm, and EL(T*M,T*M \ M) is the subset of Eg(T*M,T*M \
M) consisting of (o, £, F') with ¢ a G-isomorphism from E onto F. Two
triples (o, B, Fi),i = 0,1, are G-homotopic if there is a triple (o, E,F) €
Ea(T*Mx[0,1],(T*M\ M) x[0,1]) such that (o, E, F')|p+prx i3 Is G-isomorphic
to (oi, By, Fi),1 = 0,1. Eg(T*M,T*M \ M) is equipped with direct sum oper-
ation. We can obtain from this description of K&(T*M,T*M \ M) that each
equivariant elliptic principal symbol ¢ € Sym%(M; F, F)~' defines an element
(a,7*FE,n*F) in Eq(T*M,T*M \ M), where = : T*M — M is the canonical
projection and o is homogeneous of degree 0. Let Sg(T™M,T*M \ M) de-
note the subset of Eq(T*M,T*M \ M) consisting of G-homotopy classes of all
such elements (a,7*E,x*F). The important fact is that Se(T*M,T*M \ M)
generates the group KZ(T*M,T*M \ M). This is because any (o, £, F) in
Eq(T*M,T*M\M) is isomorphic to a triple (a,, 7* Fo, * Fp) in Sg(T* M, T* M\
M), where Fy and Fy ave equal to E|pr and F|yy, resp., and a, is the extension

of o|g+ar to #*F' by homogeneity of degree 0 [Bie|, since M is a (G~-deformation




retract of T*M. Here §*M is the unit sphere in T*M. . |

Let [¢] € fféqc(M ). We know already that I ndﬁ';](a) is deﬁﬁed forthe
triple (e, 7*E, 7*F) in Sg(T*M,T*M \ M). It suffices to check that Im.:lﬁp](&)j L
is independent of the choice of the representative of G-homotopy class. To
this aim, let (a,7"E,7*F) be in Se(T"M x [0,1], (T*M \ M) x [0,1]). We
obtain that ¥ and F' are G-isomorphic to Ey x [0,1] and Fy x {0,1], resp.,
where Ey = Elarcqoy and Fy = Flyxqa [Bie], and a; = al|pananx{sy 18
in Sym%(M; Ey, Fy)™,5 € [0,1]. Choose C'—path {A;} (resp. {B,} ) in
VoM, Eo, 1) (resp. WL(M; Fy, Ey) ) such that o{A,) = a, (resp. o(B,) =
a;') and each A, (resp. B,) has the support near the diagonal. As in the pre-
vious section, we can produce a Cl-path P, of G-idempotents. Using Lemma
6.3, we get 71, (o, ..., Po)(9) = ia{ Pr, ..., Pi)(9). Q.E.D.

I ndi’;] : KQ(T*M, T*M \ M) — F/{G) is called the higher equivariant
analytic index map for [p] € ffé“:c(M ). Indf}) shares most properties of the
usual index map as we will see below.

Clearly, if f : N — M is an isometric G-diffeomorphism of complete
smooth Riemannian G-manifolds, then for [p] € ﬁé‘{c(M ), F*(le]) € ﬁé‘fc(N )

and the diagram

KYT*M,T*M\ M) 5 EKYT*N,T*N\N)

commutes. The point is that one can use [¢] to assume that M and N are
compact. The commutativity then follows from the definition of I nd[cfo]. More-

over, if p : Gy — ( is a homomorphism of compact Lie Groups, then the




diagram

K(T*M,T"M \ M) —— K% (T*M,T*M \ M)
lmd[?"] lf”'d&(w]
F(G) — F(Gh)

also commutes, where [p*(p)] € ﬁéﬂc(M)

Observe that if M is a point, then KL(T*M,T*M \ M) = R(G), the
representation space of G, and HY (M) = F,(G). The elliptic operators A
and B are just G-linear maps on finite dimensional - modules £ and F:
A:E — Fand B: F — E, which are clearly G-compact. We can choose
So=TeL(F,F)and S, =1 € L(E,E), L=1¢€ L(E® F). We get for ¢
even,

q+1
Indfj(A) = Tr(A, R... B)p(g) = (Tr(M]5) — Tr(lr))elg) = Ind®(A)p(g).

This is the axiom (Al) of Atiyah-Singer in the hgher analytic index case.

We agsume for the rest of this chapter that M is a compact G-manifold.
Then KQ(T*M,T* M\ M) reduces to K&(T*M) in the sense of Atiyah-Singer
{AtS]. Let U be an open G-subset of M and ¢ : U — M be the inclusion.
i induces a homomorphism 4, : KL(T*U) — K%(T*M). As shown in [AtS],
any element [a] € K2(T*U) can be represented by the symbol of an elliptic
G-operator A € W&(U: E, F)~", where ¥ is the closure of W% (U; E, F) in the
space of continuous operators on Sobolev spaces. In fact, there are G-bundle

isomorphisms a and B outside a compact subset My of U,

o E|U\Mo — (U\Mg) X Cn, ﬂ : F!U\Ma — (U\Mo) x C",




Then Au = 8 owu for u a distributive section of E on U\Mg Thesymbol :
of A is an isomorphism outside a G-compact subset of U and [O'(A)] R [a] V
can extend F and F trivially to bundles 7, & and ¢, F on M via isomorphisms
o and B and extend A outside U by formula 1,(A)u = f~'au. Evidently, !
[0(i.(A))] = i Jo(A)] = t.[a] € K&(T*M). Similarly, we have an elliptic G-
operator B € W&(U; F, E)~! such that B can be extended to #.(B) on M and
o(B) = o(A)~'. If we use A and B to construct the idempotent P and R,
as in section 6.2, we have that R, constructed from i,(A) and i.(B) is the
extension 7,(R,) of R, to M. We also extend ¢ € CL(U) to 4.(p) € CL(M)

in a natural way, i.e., 1,(¢) is zero outside %', Consequently, we obtain

mdy@) = [ (~DPTrOyRu(ao,@1). .. Baleg, 930))e(970,21, ., 2,)(9)
— /Mq+1(—1)qTT()\gRa($g, 21) ... Ro(2g, 920))0(g%0, %1, - . ., T4)(9)

= Indg y(in(@))().

This is the higher version of the excision axiom [AtS], i.e., the following dia-

gram commutes

By (D) KUT*U) 5 Hg (M) @ KY(T*M)
IndG \4 FC(G) I?’LdG /

Provided U is an open G-subset of M.

To consider other axioms, we first give another form of the analytic equiv-

ariant index map.




Proposition 6.4 Let ¢ € CL(M) be a cocycle and D' €. .\If (M 3E F

G-elliptic operator. Then

Indiy(D)(9) = 7 (P(D), ..., P(D))9) — m(P(D)'- -, P(DY)(g),
where P(D) and P(D)' are the projections of LY M, E) and L*(M,F) onto
Ker(D) and Coker(D), resp..

Proof. Let Q(D) = =222 D o parametrix of D in W5 (M; F, B)~'. The
idempotent corresponding to Q(D) is denoted by P and R(D) = P — ¢ as
in section 6.2. To control the support of Q(D), we introduce a cut function
a € CF(M x M) as in [CoM 2], which is equivariant, nonnegative and sup-
ported in a sufficiently small neighborhood of the diagonal. Let Q.(D) =
"t Q(D)a’3,1 < s < 1. Cleatly, Q(D) — Q(D) € ®5=(M; F, E),s > }

@.(D) is also a parametrix of D. We can then use Q.(D) to form the idem-

potent P, and then R, (D)= P, — ¢, 1 1 < s < 1. Note that R.:. = R. Then
1
Indfy(D)(g) = Indfy(tD)(g) = m(Rs(tD), .., Re(tD)){(g), 5 > 3
By Lemma 6.3,

Indf1(D)(g) — ma(R(¢D), ..., R(tD))(g)

= (g+1) [ mlBa(tD), BuleD), .., Bu(D))(g)ds = .

2

Therefore,

Ind$y(D)(g) = m(R(UD), ..., RUD))(g), t> 0,9 € G.

By the asymptote of the eigenvalues of D on compact manifold M [Gil], we

get as t — oo,

(~D°D Y p(py)y (~3ED'D () D) P08V () o~5DD" (¢ P MY g




and ¢~*'PD* N8V P(D). Hence, R(tD) strongly PD)Y® (—P(D)’) as ¢ - 0.
This motivates the desired formulas. In fact, using the iterated heat kemels

and the fact that ¢ is bounded, we obtain

Ta(R(D),..., RED)(g) == 7q(P(D),...,P(D))(9)

+ (D) (P(DY,..., P(DY)g).

Q.ED.

Proposition 6.4 is useful in deriving the normalization and multiplicative

axioms of higher equivariant analytic index map.

Recall that Atiyah and Singer introduced elements ps» € K2(1'S™) for
n=1,2 and G = O(1) and SO(2) [AtS], which are the symbol classes of the
de Rham complexes of exterior differential forms on S! and S?, resp.. Let
D=d+d: EB,-Q%(S”) — EBQ%'H(S”) be the differential operator given byr
the exteribr differential and its adjoint d* with respect to a Riemannian metric

on 5", Then

CopCw, n=2, 0, n=2,
Ker(D) = 4 Coker(D) =

where w is the volume form in 12(5?). Since SO(2) acts trivially on H%(S?)

and the generator of O(1) acts trivially on H°(S") and changes dz to —dz on




HY(5Y),

1w, n=2,
P(D)(zﬂ,y) =1 P(D)!(may) =

We obtain
Tl (P(D), .., P(D))(g) — m(P(DY,. .., P(D)'){9)

Tr(Aglger (D)) f(sz)ﬂl o(gT0, T1,. ., T)(GJwo A Awg, n =2,

(Tr(Aglxerp)) = TT(Aglcoker(p))) fisryerip(920, 215 - Zg)(g)dTo A . dy, 1 =1
(

2\[(52)‘1"'1 (‘O(g.’ﬂg, Lyyens ,.'L'q)(g)’IUO AU A Wy, N = 2,

(1 = Tr(Aglooker(my)) Jistyen (920, @1, .., 25)(g)dzo A ... dzy, n=1,9¢€ G.

\

Also for operator A defined on S = R/27Z by Ae™® = ™% n > 0, and

e n < 0, we have that Ker(A) = 0 and Coker(A) is generated by the

constant functions.

Indy(@)(A)g) = —ma(P(AY,-.., P(A)) (o)

- (S1)a+1 P90, 21, -, T )(g)dTo A .. . dag.

But we know that the symbol a{A) of A , given by o(A)(z,£) == & for ¢ >0
and 1 for £ < 0, determines the element —J!(1) € K2(7'S') [AtS]. Hence,

Indfy({(1))(g) = fmw (920, T1y ..., 3,)(g)dTo A . . . dag.




We now consider the multiplicative axiom of .'éc'iﬁi.\.f'afiant!ﬁa,ﬁaly"t' ¢

map. Let M and N be compact smooth Riemannian (-manifolds. Assume L

that a; € K(T*M) and ay € KX(T*N) be represented by smooth symbols

o and B, resp.. Let A; € WE(M;E,F)™" and Ay € UL(N; E', F')"" with

o(A;) = @ and o(A;) = f. Then the element aja, € KG(T*(M x N)) is

reﬁresented by the symbol

Let

I® Ay

o(D) = v. By

Ker(D)

Coker(D)

Hence,

AR —IQA;

AT

a®l —1Qp"

188 a*®1

EVLIMxNEQR OFRF,FQE & FE®F).

considering Ker(DD*) and Ker(D*D), We get

Ker(AJAi @I+ 1® AjA;) @ Ker(I @ AzA + A AL ® 1)
Ker(A;) ® Ker(Ag) @ Coker(A;) @ Coker(As),
Ker(AjA] @ I+ 1T ® ASAy) + Ker(I ® A2A% + ATAL @ )

Coker(A1) @ Ker(A;) @ Ker(A;) @ Coker(A,).

P(A) ® P(As) & P(AL) ® P(Ay),

P(AY @ P(A;) ® P(A) @ P(Ay)'-



Now let ¢ € C4(M) be a cocycle. Then p®1 ¢ C’é(Mx N 3

Inden(D)9) = Tpen(P(41) ® P(As),..., P(A1) ®P(Az))(g)
+ 7Tga@l]( (Ar)’ ®P(A2)'a---=P(A1)'®P(A_2)')(9)
= Teen(P(A1)' ® P(A2),..., P(A1)' ® P(A3))(9)
= Teeq(P(41) @ P(A:),..., P(A1) ® P(4:))(9)
= (ma(P(Ar), .-, P(A))(g) — ma(P(AL); - -, P(A1))(9))
(1 (P(A2), ..., P(A2))(g) — i (P(A2)', ..., P(A2))(9))
= Indf(A1)(9)Indf)(As)(g) = Indfy(@){(9)Indf(as)(9).
Note that (1] € H&(M). Since Indf(a;)(g) and the left side of the above

identity is well defined, [ ndﬁ}(ag)(g) makes sense when [ nd[?o](al)(g) # 0.

Similarly, if ¢ € C4(N) is a cocycle, then 1 ® p € C&(M x N) is a cocycle and
Indﬁgw](alag)(g) = Indﬁ](al)(g)Indﬁp](ag)(g).
To summarize, we have obtained

Theorem 6.1 Let M and N be compact Riemannian G-manifolds and [p] €
HL(M) and [¢)] € ffg;(N) with ¢ even. The higher equivariant analytic index
map satisfies the Atiyah-Singer axioms:

(1) If M is a point,
Indfy(a)(g) = Ind®(a)(g)e(g), Ya € KG(M) = R(G),

(2) Fzciston axiom: let U ~y M be an open G-subset, then for a € KQ(1T*U)
and [p] € HL(U), ip] € AL(M), i.(a) € KA(T*M), and

Indjg(a)(g) = Tndg, ) (ia(a))(9),




(3) Normalization aziom: for [¢] € HL(S™),G = 50(2),0(1)’ !

(a) Ind[cfp](ps2)(g) =2 (52)e+1 (P(gwﬂvmla vt 1‘1"9‘)(.9)3 g€ 30(2)5

(8) Indps)(a) = (=trQalmis)f, o970, 1, 20)(@)dzo A .. da,

Sl)q+l

(¢) IndS(J1(1))(9) :f(51)q+1 P90, 1, -, 5o)(g)dzo A . A dzy, g€ O(L),

(4) Multiplicative aziom: for a1 € K&{(T*M) and az € K&(T*N)

IndS g (ara2)(g) = IndS(a1)(g) Indf)(a2)(9)

and

Indﬁ®¢](a1a2)(g) = Indﬁ](al)(g)Ind%](ag)(g).

We close this section by proposing a pairing version of the equivariant
Novikov conjecture. Let us recall the Atiyah-Segal-Singer equivariant index
theorem [AtS] for signature operators. Suppose G is a compact Lie group
and M is a closed oriented Riemannian (F-manifold. Let &£ be a G-vector
bundle over M and Dg the signature operator with coefficients in . Then

the equivariani: index Ind%(Dg) of Dg is a character of G given by
Ind®(Dg)(h) =< Ch(:*(E))w(h, MM L(M™),[M*] >, h € G, (6.1)

where M* is the submanifold of fixed points of A in M, i : M* — M is
the inclusion, w(h, M*) is certain element in H*(M* @), £L(M") is the stable
Hirzebruch L-class of M*, and [M*] is the twisted fundamental class of M"
(see also [Don 1]). We should point out that M" is in general the disjoint

union of compact connected submanifolds of M. The right side of (6.1) is a




sum of pairings on the connected submanifolds. Given h EG,let a
closed subgroup of G generated by h. Consider the commuta;ti\.fé:di'a,gfa:r_r_l_
; .
M — B?Tl(M)
fh
Mh — B'?Tl(Mh),
where Bw;(M) is the classifying space and f is the classifying map. Since
M" # B (otherwise nothing needs to be considered). Gy has a fixed point in

M. Hence G acts on m;(M). We can assume f is Gj-equivariant by averaging

over (1. Then
(FAyir: Hy, (Bm(M),R) — Hp (M"R) = H*(M",R) ® R(G1)

is a homomorphism. Here HY (Bm(M),R) is the usual Borel equivariant
cohomology of Br(M). Let N and M be two closed oriented Riemannian G-
manifolds and f; : N — M be a G-pseudo-equivalence, i.e., f; is equivariant

and is a homotopy equivalence. Let [¢] € HE (Bm(M),R) and
Ind®(fp]) =< ((f*)#* (le])w(h, MM)L(MY), [M"] > .

Question: Is Ind“([¢]) a G-psendo-equivalence invariant? Namely, does the

equality

< (FL(Y e (el))wh, NIYLIND), [N >=< ((F*) & ([e])Jw(h, MWLM, [M*] >

hold?

Note that for A = 1 this question is the Novikov conjecture. One possible
way to attack the question is to prove the higher equivariant index theorem
and use it to bridge Ind“([]) with the G-pseudo-equivalence invariant which

will be proved in Chapter 9. We will investigate this elsewhere.



Chapter 7

Higher Equivariant Index Theorem for

Homogeneous Spaces

In the previous chapter we used the ordinary trace to study the higher
equivariant analytic index. Such a trace is not suitable for the index problem
on homogeneous spaces. We will thus employ the trace on type II- von Neu-
mann algebras to define the higher equivariant analytic index for homogeneous
spaces. This is similar to the case of covering spaces where the trace trp is
localized on the fundamental domain. We multiply the kernels on the homoge-
neous spaces with a cut-off function. We finally reduce the higher equivariant
analytic index problem to the one studied by Connes and Moscovici. The
reason we proceed this way is that every thing involved is invariant under the
whole Lie group action. The group twisting does not cause big trouble in
this case. But when we prove the higher equivariant index theorem for gen-
eral equivariant pseudo-differential operators on homogeneous spaces, we have
to be careful about the significant difference between the K-theory groups of

homogeneous spaces and the usual manifolds without group structure. We
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will discuss the higher equivariant analytic index in section -ITI;i-"a;nd'_'prov

higher equivariant index theorem in section 7.2.

7.1 Higher Equivariant Analytic Index for Ho-
mogeneous Spaces

We begin with some notations (see also chapter 1). Let G be a uni-
modular Lie group with countably many connected components, H a com-
pact subgroup of . Denote by M = (/H the homogenecous space of all
left cosets gl for ¢ € (. Suppose that A is a unitary representation of
H on a finite dimensional complex vector space E. H acts on G x E by
diagonal action: h(g,z) = (gh,MRh)"'z). Then &€ = G xy F is a homo-
geneous vector bundle over M = G/H. Let C*°(M.E) (resp. C*(M,E))
be the space of all C**-sections (resp. with compact support) of £. Then
C*(M.E) = (C~(@) x BY and C®(M,£) = (C®(G) x E)¥, where H acts
on U®(G)x E by h(p,z) = (R(h)e,, A(h)z) and (C(G) x E)* is the subspace
of H-invariant elements in C*°(G) x E. As before, R is the right representa-
tion of H. Using the Haar measures on GG and H, we can define a G-invariant
measure on M. Let L?(M,£) be the completion of C®(M, ) with respect
to the global inner product given by the G-invariant measure on M and G-
-nvariant Hermitian structure on £. We have L*(M,€) = (L*(G) x E)¥.

Suppose & and & are two homogeneous vector bundles over M. Let

U™ (M; &,E) denote the space of all pseudo-differential operators P from
C(M, &) to C°(M.&;) of order n, and o(P) be the principal symbol which



is a smooth and positively homogeneous map frém 7r*81
T*(M)\{0} — M is the natural projection. See [CoM 1] for deta,lls Each P
W (M; &, &) has distributional kernel Kp as an element in (€9 (G‘ X: G’) ® o L
Hom(Es, Ey)/™*¥ consisting of all elements K € G-(Gx )& Hom(Ey, By
such that A(R)K(zh,yg)M(g)™! = K(z,y) for all g,h € H. P is called

compactly supported if SuppKp is compact in G X &, and P is G-compactly

supported if Kp(z,y) # 0 only for 7'y in a compact set in G. We use

U (M; &, &) (resp. W M;E,&,)) to denote all (resp. G-)compactly sup-

ported elements in ¥™(M; &, &,). P is called G-invariant if L(g)PL(g)™ = P

for all ¢ € G, where L is the left regular representation of G. The kernel Kp
of G-invariant pseudo-differential operator P can be written as Kp(z,y) =
kp(z'y),z,y € G, where kp is an element in (C~°(G) @ Hom(E,, Ey))7*#
consisting of all k € C~°(G) @ Hom(E}, E,) such that k(z) = A(R)K (k™ zg)
M(g)~t, for all g, h € H. In fact, take kp(y) = Kp(1,y). From L{g)Pl(g) ! =
Pwehave Kp(g~'z,g7'y) = Kp(z,y),Vg € G. Hence kp(z™'y) = Kp(1,2zy)
= Kp(z,y) and kp(y) = Ao(h)Kp(h,yg9)Mi(g)™" = Aa(h)kp(h™ 2g)Ai(9)7", b,
g € H. Let WM, &, &) be the space of all G-invariant pseudo-differential
operators and U"(M;&,E)¢ = W (M;E,E)C N UM M; &, E). There is a
general average procedure to produce G-invariant operators Av(P) for P €
(M €41, E,),
(Av(PY)(e) = [ L(9)PL{g)  u(x)dy.
Clearly, L(g)Av(P)L(g)™ = Av(P),g9 € G. The kernel K 4,p) of Av(P) is

given by

K poipy(m,y) = /G Kp(g~'z,g7'y)dg.




We can say a little bit more about G-invariant operator P by using cut
function. f € C¥(@) is an H-invariant cut-off function if f > 0'., f(gh

f(9),¥g € G and h € H, and [; f(¢'z)dg = 1,¥Vz € G. One can easily see
that if P ¢ ‘IJZ(Mg 81,82)‘3 , then P = Av(fp) for any cut-off function f

To define a higher index map on the algebra U™ (M; £y, ;)% | let us recall
the Alexander-Spanier cohomology of a homogeneous space M. As in Chapter
6, let C*(M) (resp. C*(M)) denote the Alexander-Spanier complex (resp.
with compact support), defined by C(M) = CY(M)/CE(M), where C?(M)
(resp. C{(M)) consists of all (resp. locally zero) functions from M1 {o
R. lts cohomology H*(M) (resp. HX{(M)) are called the Alexander-Spanier
cohomology (resp. with compact support). Let Ok (M) (resp. C%, (M)
be the subcomplex of C*(M) (vesp. C*(M)) consisting of all C®- cochains.
We know already that the cohomology H* (M) (resp. ﬂ:(M)) of C (M)
(resp. C%, (M)) is isomorphic to H*(M) (resp. H:(M))., where H*(M) (resp.
HY(M)) is the usual cohomology of M given by the de Rham complex A*(M)

(resp. AZ(M)). The isomorphism is implemented by
A (M) == C3,(M),

where p(w)(o, . .-, ) = Xg(@0, -1 2¢) fo 00,09 Wr @ € AUM), Sylwo, ..., 7]
is the C*°-complex X! — M given by S,[zo,...,x](f0s- - 2q) = b tii,
and x, satisfies the following: let I/ be ‘a covering of M with special prop-
erty [CoM 1], x, € C®(M™), Suppy, C UM and xo(2za@),-- -, Tatg)) =
Xo(®oy. .., 24), Yo € S,yq, the permutation group of order (¢ + 1)!, and for
P=pR@P1®...Qp, € CUM) v(p) = pelpi A...AOp,. If G acts on A*(M)




vis the map induced by L(g) : M — M, then p is equiva,ﬂ.aﬁf'préﬁded' Xg 188

d(p(w)) = pw)g o, .., 97 2,)

= Xq(g_lwﬁv-"ag_]wq) w

Sqlo— 20,8 g

= Xq(wﬂa“-’wq)/ w

Q_] Sq{ﬂ"*‘%---ﬂ’q]

= x(T0y...,2y) / gw = plgw)(@a, . .-, Ty)-
Sq[.'.'l:(), ;-"Cq]

Clearly, v is G-invariant. Thus if we require all the coverings of M to be
equivariant, then G acts on C% (M) (resp. C‘;‘O,C(M)), and x, can be chosen

to be equivariant. We get the homomorphisms
(A (M) == (C%,(M))°

which satisfy vp = I.
From now on we assume that all Alexander-Spanier cochains are smooth.

Let

Cl o (M)={peCLI(M) :o(a(o), - - » Ta(g)) = 5197()P(T0,. - -, Tg), VA ES 1 }

and C‘gm(M) = Cg,m(M)/(Cgm(M)ncg(M)). Then H*(ég'w(M)) o~ H*(M)

Note that the evaluation map at the identity of G gives an isomorphism
from A*(M)? onto C*(G, H,R), where G and ‘H are the Lie algebras of G and
H resp., and

C*(G,H,R) = {p € A*G" 1 i,p = 0,0, = 0,Vz € H}

with the differential d : C1(G, H,R) — C?(G, H,R) given by

do(@os-. ) = 3 (I Fp([en ], w0 s Biye B s Tap)
S<J<q+1
(-1

p>

*2ip(Toy e e s iy n s Tyq).




Here i : CQ(Q,H,H) - Cq_q(gaHaH) and O : C‘I(g,'H,H)

are given by

(Za:'(lo)(mla e =‘T"q—-1) = ‘P(ma T1y-.- nmq—l)

and

(Oz0) (@1, .., &) = Zcp(ml, e [En ] 8g) a2, -, 2y)

Then the relative Lie cohomology group H*(G,H,R) is defined to be the co-
homology of C*(G,H,R). One has H*(G,H,R) ~ I*(A*(M)%). See [BoW].

We now define the higher equivariant analytic index. Let & = & = &
be a homogeneous vector bundle over M. Assume ¢ € C% _(M)%. Thus
w(gTo,...,92,) = (p(mg;...,wq),Vg € G. For P; € U°(M,E)Y with kernel
K;,i=0,1,...,q we define

'I}p(Po, L ,Pq) = (_1)9‘ Lq+1 TT(f(ﬂﬁo)I\fg(mg, .’171) - Kq(.’L'q, wo))ﬁo(ﬂ;’o, ‘e ,$q)d$q+1,

where f is a cut-off function. This integral is well defined since f and K; are
G-compact supported. Note that we do not need ¢ to be compactly supported.

This is different from the situation in the previous chapter.

Lemma 7.1 (1) 1,(Po, ..., P) = (—1)tr,( Py, Po, ..., Py1).

(2) bro(Poy .-, Pyp1) = 75o(Poy -+, Ppya).

(3) If vp; € WUM,E)Y,0 <1 < q, then 7,(Potido, - -+, Pytipy) = 7o(Po, . .., By).
(4) 7, is independent of the choice of the cut-function f.

Proof. (1) Using Ki(gz, gy) = Ki(z,y) and equivariance of ¢, we have



= (7 [ TG, 2 20) Kol w0, 22 1) .’Lff@;_l
~go(1,:r:;1:ﬂ0, . .,xq"lmq_l)dm”l o
= (-1)% jG Tr(Ko(20, 1) - Kyra(2g-1,1) Ky (1, 20))
-(,o(wo,...,:r:q_l,l)d:cquf(:cq)da:q
= (~1)% ]G Tr(Ko(l,21) ... Koz, ))p(1, 21, . .., 2 )da?
= (=1)¥7,(Fo,..., Pp).
Hence, (1) and (4) are true.
(2) The proof is the same as that of Lemma 6.2.

(3) Since ©(Zaf0), - - -  Ta(q)) = stgn{a)p(zo, ..., x,), We have p(zo,. . . 27, Ti,. -, 2g)
— 0. Using this we get (3). QED.
Note that any P € WO(M, £, &) defines a bounded G-invariant op-
erator from L:(M, &) to L2 (M,&,;). Let Wg(M,E) be the norm closure in
B(L*(M,£&)) of WM, E)® and Ck(M,E) the norm closure of W; (M, E)%,

where
U (M, )% = {R(¢) € B(L*(M,£)) : $ € (C2(G) ® End(£))"}

with (R(¥)u)(z) = f¥(a7 y)u(y)dy, v € C(M,E). Denote by Cy(S(V), )
the sup-norm closure of (C°(S(V), End(E))) for V =H+ ={( € G* : {|n =
0} ~ Ty M and S(V) the unit sphere of V. Then we have the following exact

sequence of separable C*-algebras:
0 — CG(M, &) — VG(M, £) =5 Ca(S(V), E) — 0,
where for P € U°(M, E)C o(P) is the principal symbol defined by

o(P)(e, dip(2))u(a) = lim e YO P(e%u)(z), $ € (M),




db(@) # 0, u € CX(M,E) and oo(P)(€) = a(P)(0,€) € End(£),€ £ 0 €
ToM ~ V. o(P) is determined by oo(P) due to the G-invariance of PO‘U(P) _
can be considered as an element in (C(S(V), End(E)) in view of hoto-

geneity ao(P)(t€) = oo(P)(£),t > 0.

Let us now recall the K-theory group Ky(V) which is a substitute for
K°(T*M,T*M \ M) in the homogeneous case. Kg(V) can be described as
follows. Let E(M) be the set of all homotopy classes of H-invariant maps o :
S(V) — Iso(E,, Es), where as before S(V) is the unit sphere of V with respect
to the Ad*(H)- invariant metric and By and FEj are finite dimensional unitary
H-modules. Two a; in C®(S(V), Iso(E;, F}))? i = 0,1, are isomorphic if
there exist o € (Iso(Eo, £1))" and 1, € (Iso(Fo, F1))¥ such that Piog(€) =
a1 (E)po, V€ € S(V), and ay is homotopic to ay if there exists o € (C(S(V) x
[0,1], Iso( E, F)) such that |svyxfoy = @a and &|sv)xq1} = 1. Here H acts
on [0,1] trivially, Let £(M) be the subset of £(M) consisting of all classes
represented by a constant map ag, ao(é) = ¢ € (Iso(Eq, F5))7, V¢ € S(V).
Then Ku(V) = E(M)/E(M). See [CoM 1] for details.

Now choose a map « € C(S(V), Iso(Ey, E3))7. As in the case of usual
compact manifolds, there exist Py € WM, &, &) and Qn € v2(M, &, £)C
such that & = ao(£y) and @™ = 69(Q.) . Then S° = [--Q, P, € U; (M, &, £)¢
and S} =1 — P,Qu € ¥;°(M, &,&)°. Define

Ly=| %2 ~U+50)0 | c w0, ¢, @ &,)°.
P, S

o




We have

L—l — Sg
o Sl

Let Uy = L,(Ig, DO)LY Ry = U, — (0 Ig,) in U7°(M, & & &;)¢. Denote
by K, the kernel of R,. For ¢ € .Cg?oo(M)G, 6w = 0, we define

2941

Ind,(0) = 7,(Ry,...,Ry,)
= (—1)2"f(;2q+1 Tr(f(za) Koo, 21). . Kal®ag, 20))(Zoy . ., 2ag )dw et

Proposition 7.1 The map Ind : Ku(V) @ H*(C% _(M)%) — R defined by
Ind([e], [¢]) = Indy(a) is a homomorphism of the variable [ed].
Proof. The proof is divided into several steps.

(1) Ind,(«) is independent of the choice of L, and of the representative
of ¢ in [p]. The proof is exactly the same as that given in section 6.2.

(2) If ey € C°(S(V), Iso(E;, F}))¥ are isomorphic, i=0,1, then Ind,(ap) =
Ind,(a3). In fact, using the notations in the previous paragraph, we have
$100(Fag) = 00(Pay )1bo and then oo(Pa,) = 9y 0o(Pay Jtho. This implies also
90(Qas) = 00(Py) ™ = 5" 70(Qu, Y11

Sgo = I- anpﬂo =1- "pngaaPm"/)O = Tvl"o_l‘ggl"/)ﬂ:
Sclro = I- 'PC\’GQQ’O =1~ TJD'_I_IPa1Qa1¢1 - 1!);1351\(11#1:
and

R = (320 )2 520 (I + Sgu ) QG‘D
Séo'PQ'O _(S(I)co)z




o 61 O (821)2 Sg’l (I + Sgl)Qﬂfl
0 i_l S}hpﬂ‘l _(St}u)z

_ 61 {} Roq ¢0 0
0 7t 0 ¥

This proves Indy(ao) = Ind, (o).

(3) If a(é) = o € Iso(Ey, Ey)" ¢t € 8(V), then (Pyu)(z) = ¥(u(z)).
Then we can choose 52 = 0 = 5} and R, = 0, which implies Ind,(a) = 0.

() If o; € C=(S(V), Iso(E;, F}))H are homotopic, 2 = 0,1, then Ind,(ap)
= Ind,(c;). To prove this claim, let & € C°(S(V) x [0,1], Iso(E, F))H be
a Cl—piecewise homotopy connecting g and ay. Denote o, = alg(v)x{s},
s € [0,1}. Note that M is paracompact. We have E ~ (E|sw)xoy) % [0,1] and
P~ (Flswyxqoy) X [0,1]. We can thus consider a, € Cy{M, &, Fy). Let U,,

be the corresponding idempotents and R, = U,, — (0@ I). By Lemma 6.3,
1
Indy(Ray,. . Ry )= Indy(Ragy - . Ry ) = (2 + 1) / T50(Tsy Bye - - Ry, )d5 =0,
0

since 6y is locally zero and R, is zero near the diagonal.

Therefore, Indy,)([o]) is well defined. Obviously, I'ndy([as} + [as]) =
India(len)) + TndiJas]). QED.

Indy,)([c]) is called the higher equivariant analytic index of operator P, €
Un(M, &, E)F with oo(Py) = «.



7.2 Higher Equivariant IndexTheorem

In this section we will obtain a higher equivariant index theorem which

expresses the higher equivariant analytic index of G-elliptic pseudo— differential

operators in terms of topological information.

Recall that the usual proof of the general Atiyah-Singer index theorem
on compact Riemannian manifolds consists of several steps. First one checks
the index formula for the signature operators on even dimensional manifolds.
Second using the fact that the K-theory group of the unit sphere of the cotan-
gent bundle is generated by the signature elements modulo the 2-torsion ele-
ments and the K-theory of the manifolds, one can deduce the index tileorem
for general elliptic pseudo-differential operators on even dimensional oriented
manifolds. Then the case of nonoriented manifolds can be obtained by the
lifting to the double covef:ing spaces. One reduces the case of odd dimensional
manifolds to the even dimensional ones by crossing the manifolds with S* and
modifying the operators appropriately. For the homogeneous space M = G/H
the second step is invalid, since Kg(V) is not in general a module over B(H).
To deal with this difficulty together with non-spinor case, we need further
detailed information about Kg(V).

Since Kzx(V) = 0 for odd dimensional M and a connected group H, we
consider only the case of even dimensional M = G/H. To describe Kg(V)
in terms of the representation ring R(H) of H, we choose a double covering
H of H consisting of all elements (h,s}) € H x Spin(V) such that Ad*(h)
coincides with orthogonal transformation of V' defined by s € Spin(V), where

Spin(V) is the Spinor group of V. Then there are two representations of



-~ <

H on V, namely, (h,s) € H — Ad*(h) € SO(V) and SESpm(V) As
shown in [CoM 1], Kz(V) = Kz(V)° @ Kz(V), Kg(V)® = Ku(V) and

R(IH) = R(H)° @ R(H), the + eigenspaces of the irreducible represent’é,t.it:)'n 5 o

such that e(u) = (—1)' for the generator u of the kernel of the covering map
Spin(V) — So(V),i = 0,1. Every element z € Ky (V) is the form z = of
with a € R(H)! and B the Bott class in K(V) determined by the Dirac
complex.

Now for ¢ = aff € Kp(V) with a € R(H)! we can also use a to denote
the finite dimensional unitary representation o : H — End(E). Let S* be
the half-spin representations of Spin(V). Then E* = B ® 5% are the unitary

H-modules, hence induce homogeneous vector bundles £% over M. Let
VE: C®(M,E%) — C®(M, T*M @ £%)

be G-invariant connections which are compatible with the Hermitian structures

of £*. Then the Dirac operators DF with coefficients in £* are the composition
+
DECP(M, %) s O (M, T2 M @ £) & (M, £%),

where c is the homomorphism induced by the Clifford multiplication. To derive
the higher equivariant index theorem, we need also the ./Zl—genus and the Chern
character. Denote by H*(G, H, R) the relative Lie algebraic cohomology of the

complex
CUG,HR)={p e NG 11,0 =0 forz € H,Ad*(h)yp = ¢, h € H}

with the differential d : C9(G, H,R) — C7*'(G, H,R) given by

1 L
dﬁo(wla"'awq+1) = (_1)z+3+1

= — oz, 5], 21,0 iy By e T )-
¢+ 152



Note that H*(G, H,R) = H*(G,H,R)/Ho  where H, is thecomponen of t

identity in H. We now choose an Ad(H )-invariant spliting of 'g,' g :’H@’p
This amounts to fixing a G-invariant connection on the principle bundle H —> £
(G — M given by the projection 8; : G — H parallel to P with the curvature

form |

O(z,9) = —3:(lz,30), @y € P

We can also associate a representation a : H — GL(E) with a unitary repre-
sentation o of H on E. This produces an element O, € A2P* ® GL(E) given
by

O4(z,y) =§-—17;a(®(:c,y)), z,y € P.
Clearly, O, satisfies ©,(Ad(R)z, Ad(h)y) = a(B)O.(z,y)a(h)!, 2,y € P and
h € H, where h is the lifting of & to H. Thus Tr(expO,) € AP* is H-invariant

which implies that
(1 -0y (TrexpB,) € > CUG,H,R) C Z/\"Q*.
q g

one can check that this form is closed, hence defines an element in H*(G, H,R)
denoted by Ch{«). Ch(c) is well defined. If we replace the representation
space E above by an H-module V and form @y € A*P* @ GL¢(V) as above,

we get an element

Oy
exp(30v) — exzp(—10y) " sinh(0y/2)

A(G, H) = det

Using the above procedure for Ch{a), we also have that A defines an element

in H*(G, H,R). This is the Hirzebruch A-genenus for a homogeneous space
M.




Similarly, we can define £(G, H) € H*(G, H,R) given by. theformdet ot

€ AP*. With these notations we can state the higher equiva,riaﬁt index theo

rem.

Theorem 7.1 let [p] € H¥(C*(M)Y) be such that p([¢]) € H¥(G,H,R) .
Then for any G-elliptic pseudo-differential operator P € ¥*(M, )%,

B

Ind(P) = (s < Chao PHAG, Do), V] >, (1)

—

where ao(P) is the principal symbol of P and the right side of (7.1} is the
scalar of the m-component of Ch(oo(P)A(G, H)p([p]) in H*(G,H,R), and
dimM = m = 2n,

Note that the right side of (7.1) makes sense since H™(G, H,R) = C™(G, H,R)
= A™V is one dimensional. Thus the m-component of Ch(ao(P))A(G, H)p([])
can be written as < Ch(oo(P))A(G, H)p([]),[V] > w with a nonzero m-
form w in A™V. As we pointed out before, [oo(P)] in Kx(V) has the form
[00(P)] = of with a € R(H)! and [oo(D})] = . Thus it suffices to prove
Theorem 7.1 for the Dirac operator D} associated with the unitary represen-

tation a.

Theorem 7.2 Let [p] € HX(CH(M)%) be such that p([p]) € H*(G, H,R).
Then for o € R(ﬁ)l,

3

P

—1) __q_'__ < C’h(cro(P))fi(g, H)p([e]), [V] > .

———

Proof. The idea of the proof is to reduce this index problem to the one studied

in [CoM 1]. The proof is broken up into two steps.




Step 1. Since I'ndy,)(D} is defined by the in.tegr.ali-' of “C.}’_%'c'_o'_': pact s
ported kernel functions and a cut function, we can assume that ¢ IScomPaC
and then M = G/H is compact. s

Using the notations in Chapter 6, we get by Lemma 6.2
Ind, (D) = Pr% T (Wi(tDF), ..., Wi(tD)).
This is the McKean-Singer formula for homogeneous space M (cf. [CoM 2]).

0 DI
D¥ 0

[+

Furthermore, if we write D = D, = v =1 @ (=I) and D} =

—Dg, then

Indi(D7) = limr,(W(tD), ..., Wy(tD)),

where W(tD) = (¢"0" 4 e3P W(—2D?)tD)v, and W(z) = (=)} for
z>0,and 1 for z = 0.

Let Q9(M) be the space generated by elements ¢udp @ ... ® e, for
@i € C°°(M). Then in the Fréchet topology C4(M) is identified with QM)
via the map o ® ..., — wodp1 ® ...dp,. With this identification, we can
write  as

o=3 9,00, 5 opl) € QM(M).
i=1

Let o) = cp(()i) 8(,0?)(8). . .®8(pg?. It suffices thus to consider 7,0 (W, (tD),. .. ,Wo(tD)).
We omit the upper index (2) in .

(W3 (tD),..., Wa(tD))
= (_I)Zq/M2q+1 T?‘(Wz(tD)(:Eo, .'131). . .T’Vz(tD)(ﬂL‘gq, Ll’,‘g))f(pga(pl ... 3(pqu$2q+1
= Tr(Wa(tD)feoWa(tD), 1] . .. [WatD), gay])

= Tn((etzm_e-%tzD“W(_tﬁpz)w)f%[wg(w),@1]...[Wz(w),%]). (7.2)




Here we used the facts that Wy(tD)(zh, yg) = W (tD)(, y:)'- f(:nh) i
wi(zh) = p,(z),Yh € H,i =0,1,...,2¢. Tr, means the super trace T'r v

Step 2. We see (7.2) is similar to the higher analytic index in [CoM 2]

except for the factor f. We can therefore reduce the computation of (7.2)
to the one calculated in {CoM 2]. This means that we can use the Getzler
symbolic calculation to compute the limit of the right side of (7.2) as ¢ — 0
as long as we replace T*M and A(R) in the calculation of [CoM 2] by V and
fi(g, H). Denote by [](t) the operator under the super trace in the right side
of (7.2). The computation in [CoM 2] can be applied here to get (up to an
isomorphism between Ty M and V)

Tp(DF) = Lm(]](¢))

t—+0

= B e gy 7ol ([0 8) e

= %@%‘,/ A(G, HYCh(a) fpodips A ... A dips,

- g;j)) ol Ju < AGHICHYpadis A .. dig, V] >
Nl < AG, HNCh(a)podor A ... N d [V]>jf (M)
" Gm) ) e P e

_ Ezwlz); (2‘1'), < (G, H)YCh(a)podgr A ... A dpag, [V] >

since [p; fw(M) =1 for the volume w(M) on M. Q.E.D.

In particular, we have the higher index theorem for the signature operator.

Corollary 7.1 Let D, = d+d* on C®(M,ANT*M ® £) be the operator asso-
ciated with a finite dimensional unitary representation « : H — End(E) and

Dy = DY® D be the decomposition corresponding to the *1-eigenspaces of the




operator 7(£) = (—1)%@Dt 4 (£) on the forms. Then',.for. [{p]equ(Cf;(
with p([p]) € H*(G, H,R), o

(D)) = G <oh@g M V>

Here dimM = m = 2n. As we noted before, p([¢]) is always in H*(G, H,R) =

H?(G, H,R) if H is connected.



Chapter 8

A Survey on the Novikov Conjecture

In this chapter we will give a survey of the Novikov conjecture. The goal
of this chapter is twofold. First, we give an introduction to the conjecture and
review the progress made so far on the conjecture. Second, according to the
Gromov principle: any statement claimed to be true for all discrete groups
is trivial, hence the Novikov conjecture is unlikely to be valid ([BaC 3], [Kas
2]). To construct any counter-example for the conjecture, it is necessary to
know the groups that satisfy the conjecture . We thus present in Section 8.1
several equivalent forms of the original conjecture and of the (equivariant)
strong Novikov conjecture. We also include the Novikov conjecture for folia-
tions and the Cohen-Jones conjecture. In Section 8.2 we consider several kinds
of discrete groups satisfying the Novikov conjecture. We also point out some
discrete groups for which the Novikov conjecture is unknown. This group pic-
ture of the conjecture will be used in Section 8.3 to obtain a manifold picture
for the conjecture, i.e., to obtain those manifolds whose fundamental groups

satisfy the conjecture. In particular, the Novikov conjecture for the funda-
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mental groups of compact 3-dimensional manifolds .ié'.i'e_'l::'emtq:d_-:tb_.t__
geometrization conjecture. This chapter can be considered as a’comp!

to Weinberger's nice survey on the Novikov conjecture [Wein 3].

8.1 Several Conjectures

(A) The Novikov Conjecture (NC)

Let M be a compact oriented Riemannian manifold of dimension n. Recall
that the signature Sign(M) of M is defined to be zero if n # 4k and p* — p~
if n = 4k, where pT (resp. p~) is the number of positive (resp. negative)
eigenvalues of symmetric bilinear form (z,y) =< z - y,[M] > on H¥*(M).
As usual, z - y means the cup product of z and y, [M] € Hyu(M) is the
fundamental class and <, > is the pairing of H*(M) with Hy.(M). The well-
known Hirzebruch index theorem [Hir] says that Sign(M?¥) can be written

Sign(M*) =< Ly(M*¥), [M] >, (8.1)

where Li(M*) ¢ H¥*(M* Q) is the Hirzebruch Lj- class which is the uni-
versal polynomial of rational Pontrjagin classes F; of M. An important conse-
quence of (8.1) is that Lz(M*) is a topological homotopy invariant. Novikov
[Nov 1] extended this to the case where dimM = 4k 4+ 1 and conjectured that
< Li(M*%)p, ..., [M] > is a homotopy invariant for any {¢;} ¢ H'(M,Z)
and dimM = 4k + [. This conjecture was proved by Rohlin {Roh] for { = 2
and independently by Farrell and Hsiang (cf. [Hsi]) and Kasparov [Kas 1} for

arbitrary {. Novikov then proposed the following well-known conjecture:




The Novikov Conjecture (shortly, NC): Let M be .a"cofnj):';_x(::t:f_ oriented Rie

mannian manifold, ' a finitely generated discrete group and BI""ité} classﬁ"ymg

space. If f: M — BT is a continuous map, then for any ¢ .E H *(BP,Q)

< L(M)f*(¢),[M] > is a homotopy invariant. This means that if N is an-

other compact oriented Riemannian manifold and £ : N — M is a homotopy

equivalence, then
< L(M)f* (), IM] >=< L{(N)(fh)"(¢), [N] >, (8.2)

where L(M) is the total Hirzebruch L-class, L(M) = |1 375 with character-
istic classes z; of M.

This conjecture is one of several currently active research problems in
topology and functional analysis. To express the NC in terms of homology
and K-theory, let us introduce the signature element [D] in K-theory K;(M)
of M for dimM = 2k 7,7 = 0,1. Let d be the exterior differential of p-forms
(M) on M and d* the formal adjoint of d with respect to the inner product
in 7(M) induced by the Riemannian metric on M. Using the Hodge operator
* 1 QP(M) — Q*?(M),0 < p < n, we can define an involution 7 on Q?(M)

for n = 2k by
T(p) = 243 ko,

Then D = d + d* : Q*(M) — Q*(M), and 7D = —Dr for n=2k. D defines
an element [D} € K;(M) by modules (L*(AcT*M), D(1 + D?)=%) for n =
2k. Also for n = 2n + 1 D defines an element {D] € K;(M) by considering
Ko(MxSY) ~ Ko(M)®K,(M) which follows from the six-term exact sequence.

Now if  denotes the Poincare duality, @(L(M)) = L(M) N [M], then for




@ € I*(BI', Q),

o) (M) >

<, FQUI(MY) S=< (), QM) >=< LM

and

<, (fR)QL(N))) >=< (FR)*(), QL(N)) >=< L(N)(FR)*(), [N] > .

Thus (8.2) is equivalent to

F(QL(M))) = (fR)«(Q(L(N))) € H.(BT, Q). (8.3)

This is the homology form of the Novikov conjecture,
Let £({M) be the modified Hirzebruch L-class which differs from L({M)
by a constant ¢ [AtS]. We have CA([D]) = cL(M) N [M] = Q(L(M)). (8.3) is

then equivalent to

CH(F[Dw]) = F(CR(IDuD) = (FR)-(CR(DN])
= Ch((fh).(IDn])) € H.(BT, Q).

Since the Chern character Ch : K, (M) ® @ — H,(M,Q) is isomorphism, we

obtain that (8.3) is equivalent to

F({Dm]) = (fh)([Dn]) € Ko (BT) © Q, (8.4)

where K,(BI') = lim., K,(Y) with the limit taking over all finite CW-sub-

complexes Y C BI'. (8.4) is the K-theory form of the Novikov conjecture.
The significance of the NC is not only its application in topology ([FaJ 1],

[Wein 1]), but also the interesting methods of proving it. Successful applica-

tions of K K-theory and cyclic cohomology to the NC provide such examples




([Kas 3], [CoM 2]). One can see that the phenomenon’ of theNCsp

out currently over several research areas such as higher index theory; highet

Whitehead torsion and higher #-invariant and so on.
(B)Strong Novikov Conjectures {SNC)

We now come up with some conjectures which imply the Novikov con-
jecture, To define these conjectures we first recall the K K-theory group
REKKC(X;A,B) = REKKS(X; A(X),B(X)) of G — C(X) -algebras A and
B for locally compact group G and G-space X, which is defined to be the quo-
tient of usual Kasparov G — A(X) —B(X)-bimodules (F,T) with an additional
condition that {fa)ch = ac(fb) for a € A(X), b€ B(X),f€ C(X) and c€ E
by the usual equivalences [Kas 3]. Here A(X) = Co(X, A). In particular, we
define

RK%(X)= RKK®%(X;C®C", C)~ REKK(X;C,C ® C*),
and
REKZ(X) =lmKZ(Y) = lim . KKJ(C(Y),C) = lim KK (C(Y) ® C\,,C),

where the inductive limit is taken over all compact’ GG-subspaces ¥ C X and
Cpq is the Clifford algebra of CP*¢ with quadratic form @Q,(z) = 27 + ...+
w)—aly —...—al and O = O,

let H be another locally compact group and X, A and B have the commu-
tative I — G actions. There is an induction map %% from RKK¥(Y; A, B)
to REKH(Y xg X; A(X)¥,B(X)¥) defined by

REKKH(Y; A,B) "X REKKFH(Y x X; A(X),B(X))

¥, RKKS(Y xy X; AX)H, B(X)H),




where in terms of bimodules goxy((E,T)) = ( E@C(X).,'T(g)i) a,nd)\H((E
(EH,TH), TH = [ h(zT)dh, and E¥ denotes the set of the ﬁxéd'pbiﬁi;;af}jf

Here € is a nonnegative continuous function on X such that Ju c":(h‘i'a:')dh"': 1 : 4 o

for z € X and Supp(&) N HY is compact for compact ¥ C X

Now for a countable discrete group I' let C*(T") be the group algebra of
I' which is the completion of I"(T") with respect to the greatest norm. Let
Ir € K§(C(T)) be defined by I equivariant € ~ C*(I')-bimodule (C*(T), 0),
where C*(T) is equal to C*(T) as a Hilbert module over itself with Iaction
given by the product of C*(T'), g(a) = g-a,g ¢ I' and a € C*(T), since g €
can be considered as an element in C*(T'). We also consider C*(I') with trivial

action. Let {fr] = {"FT'N(Ip) € RKK (BT, C,Cx(IY),

e K3(C*T)) = RKK'(;C,C*T))
Y 18] € REK(- xp ET;C(BD), C*(T)(BD))
= RKK(BT;C(BT),C*(T)(BT))

=  RKK(BL;C,C*(I)).

Here ET' is the universal covering space of BT'. For compact subspace Y C BT
let B} be the restriction of [Ar] to Ko(C(Y) ® C*(I')) ~ RKK(-;C, CY)®
C*(T')). B defines a homomorphism By : K,(Y) — K,(C*(T)) by the Kas-
parov product. The inductive limit 8 of By : RK.(BI') — K (C*(I")) is then
dual to the homomorphism o : K*(C*(I")) —» RK*(BT) which is defined by

the cap product with [8r]. This means that for any compact subspace Y & BT,
() Qo) y = By B(y) € C, Ve € K*(C*(T)),y € K.(Y).

Here & : K*(C*(I")) % RK*(BT) 5 K*(Y).



We can now state the strong Novikov conjectﬁr.és’a:s: follows( R
KaS)). s
SNCseq: B® Q: RK,(BI) ® Q — K.(C*(I)) ® Q is injective. -
SNCg: B: RK(BT) — K,(C*(T')) is split injective.

SNCyo™: B: RK.(BT) — K,(C*T")) is an isomorphism.
SNCq: a: K*(C*(I')) - RK*(BT) is split surjective.

SNCE=: for any compact subset ¥ N BT,
Im(RE*(BT) % K*(Y)) = Im(ia : K*(C*(I')) — K*(Y)).

SNCeel: for any separable C*-algebra A with trivial [-action, the homo-
morphism a4 1 KKE(C, A) — RKK*(BI;,C, A) defined by KK{(C, A) i
REKKF(EL;C, A) ~ RKK*(BT;C, A) is surjective.

SNCImQ; for any C*-algebra A with Ko(A) = @ and K1(A) = 0, o has dense
range.

In the SNCZ/ P is a map from ET to a point. There are the following links

among these strong Novikov conjectures and the NC:

9

SNCG™ NC

T
SNCE”m = SNCp = SNCpgq — SNC,

fr i

SNCg SNCF™Q
Note that if BT is compact, then the SNCE™ (resp.SNC,) implies the SNCjgq

due to the dual relation between a and 8. But this is not true in general.




The implication SNCpgqg = NC comes fl‘orr't.i'..hé_'E homotop

the Miscenko symmetric signature o(M) € Lo(CT') [Mis 1] é,n_df"_th_e.': elation
B([Dum]) = Ju(e(M)) for even dimensional manifold M, where J,: LO(CI‘)

Ko(CT) — K,(C*(T)) is induced by the inclusion CI' % C*(I') and LO(CFj'.

is the Witt groups of equivalence classes of non-singular hermitian forms over
involutive ring CI'.

One can also define 8 : RK,(BT') — K, (C*(T)) with C*(T') replaced by
C*(T') above and make similar conjectures about @, where C¥(T') is defined
as the completion of '(I'} with respect to the norm ||f|| = [|A(f)|| for the
left regular representation A of I' on {*(I). We should point out that all
operator K-theory approaches to the NC are based on the Miscenko symmetric
signature o(M) except [CGM 1] and [HiS]. But because of the difficulty of
dealing with o(M) for the general equivariant case, we will adapt equivariant
Hilsum-Skandalis’ technique to prove the equivariant Novikov conjecture.
(C) Strong Algebraic Novikov Conjectures (SANC)

‘We mention briefly some strong algebraic forms of the Novikov conjecture,
since we will not be concerned with them in this dissertation.

Let T' be a discrete group, Q,(I") and L,(I') its cobordism groups and
L-groups. The pairing of Q,(T') with L,({1}) defines an Q,-module map 1 :
0.(T) — L.(T). ¥ factors through H,(BI',Q) ~ Q.(BT) ®q, Q,

.M. - LMoo

8]

O H(BLGQ) S

to define a map Ir : H (BT, Q) — L.(I') ® @ with homology graded by Z,.




Here  is given by p((f]) = f.(IM] N L(M)) for £ M — BI
representative in Q.(T"). Ir is called the L-theory assemblyma,p - Since
image of (M) in Lu(Z((T)) is equal to 8o(M), the injectivity of Iy implies
the Novikov conjecture [Wall 1]. The following is the Wall I-theory version of
the NC.

SANCy.: Ip : H (BT, Q) — L.(T') ® Q is injective.

See ([Hsi), [FaH 1,2], [Cap], [Wein 1,2]) for more details about this conjecture.

There are also natural assembly maps in algebraic K-theory kr : H (BT, Q)
®K.(Z) - K.(Z(I')) ® Q, and in the Waldhausen K-theory of spaces, Ar :
H. (BT, Q)@7r.(A(pt)) — 7. {A(BT)®Q [Lod]. Here A(X) is the Waldhausen
algebraic K-theory of space X [Wal 2]. Cohen and Jones [CoJ] have proposed
the following (Waldhausen) algebraic K-theory version of the Novikov conjec-
ture:

SANChp: kp : H(BT, Q) @ K,(Z) — K.(Z(I')) ® Q is injective.
SANC . Ar: Ho( BT, Q) @ m.(A(pt)) — m.(A(BT')) ® Q is injective.

Since the rational homotopy groups m.(A(BT')) ® Q is isomorphic to
K,(Z(T)) ® Q and this isomorphism is compatible with the assembly maps,
we see that the SANCy. and SANC),, are equivalent.

The important progress on the SANC}y,. has been made by Cohen-Jones
[CoJ] and Bokstedt-Hsiang-Madsen [BHM]. Cohen and Jones were partially
motivated by the Chern character in cyclic homology to construct a charac-
ter map Ch, : T(A(pt)) ® @ — m(Map(CP>,Q5°%)) ® Q, where Q5° =
lim_, Q*S". They showed that the injectivity of Ch, implies the SANC 4,

and conjectured the following




SANCoy Ch. : m.(A(pl) ® Q = mu(Map(CP*, Q5%)) © Q Is injoctive

The surprising point is that the group I' is completely it of thegA NG
due to some commutative diagrams. Thus unlike the operator K -theory&P S
proach to the NC which proceeds each time for only one class of groups, fhe: B
SANC 4. could be verified for all discrete groups once the SANCyy, is proved.

This seems to contradict the Gromov principle.

Bokstedt, Hsiang and Madsen have proved the SANCgy, under two con-
ditions. One of the conditions is about homology of the group I'. We have
heard that they might be able to remove this homology condition. This is
certainly a very significant result. The question now is to form the operator

K-theory version of the SANCyy, and prove it.

There are also other conjectures which imply the Novikov conjecture
[FaJ 2].
(D) Equivariant Novikov Conjectures (ENC)

A generalization of the Novikov conjecture to the equivariant case is pro-

posed by Rosenberg and Weinberger [RoW 2] which is stated as follows.

Let compact Lie group (G act by isometries on closed oriented connected
Riemannian manifolds M and N. As usual, we can define the signature el-
ement [Dy] € K.(M). Since G does not act in general on the fundamental
group 71 (M), we use the fundamental groupoid 7 (M) with a natural G-action.
There is a “classifying space” Br (M) with G-map fpr : M — Bw(M) such that
for any closed subgroup H C G all components of the fixed points (Br(M))*
are aspherical and f induces isomorphisms on 7y of all fixed point sets of H

and on m; of all components of the fixed point sets of H. f is unique up to




G-homotopy (see May's appendix to [RoW 2}).
Let # : N — M be an orientation-preserving G-pseudo—eﬁﬁi'val.éﬁzce_-_. A o

Namely, h is G-equivariant and is homotopy equivalence as a usual map

Rosenberg and Weinberger conjectured the following:

ENCpr1: If KZ(Br(M)) is finitely generated over R(G), then

b fn)-([Dw]) = (fa)([Du)) € KZ(Br(M)), (8.5)

where h, : KZ(Br(N)) - KS(Bn(M)) is induced by k.

ENCpy2: Let F be some collection of prime ideals of R(G) and the localiza-
tion KZ(Br(M))r be finitely generated over R(G)#. Then (8.5) holds after
localizing.

ENCy: Let Y be a G-space such that KE(Br(Y)) is finitely generated over

R(G). Then for a commutative diagram of G-maps,

M
72
N\

h1 Y 5 Bryy,
P
e

N

(Fr)-(@a)ul[Du]) = (fv)utpu([Dn]) € KE(Br(Y)).

There is also a localization version of the N Cy. Note that one can ask
the equivariant Novikov conjecture for topological manifolds since the relation
between smooth and topological equivariant cases is not clear.

Rosenberg and Weinberger have proved the EN Cy for complete Rieman-

nian manifold ¥ of nonpositive curvature [RoW 2]. They also verified the




ENCy for topological manifolds M and N and the above.Y'.: Wewﬂl :p'_i;:c}ve:1n
Chapter 10 the ENCYy for the geometric realization X of an eucli(;leé;ﬂ' bulldmg
without the condition on K& (V). -

If & acts on M trivially, one can then produce a pairing version of the
equivariant Novikov conjecture [RoW 1]. The general pairing version of the
equivariant Novikov conjecture was proposed at the end of Chapter 6. Baum
and Connes recently proposed an equivariant version of the NC (see also [Ogle
1]) by using their universal equivariant classifying space EI'. This version is
similar to the ENCy for Y = ET.

(E) The Novikov Conjecture for Foliations (NCF)

The Novikov conjecture for foliations is similar to the ordinary one. Let
(V,F) and (V', F') be two orientable C'*-foliations with V and V’ closed.
Suppose h : V' — V is an orientation-preserving homotopy equivalence, i.e.,
there exists a leafwise map Ay : V — V' such that &- hy; and A - b are leafwise
homotopic to Iy and Iy, resp.. Let Bw(V) be the classifying space of the
topological groupoid n(V) of V and f : V — x(V) be the classifying map.
Baum and Connes [BaC 2] asked the following:

NCF1: £.(LIV) N V) = hofu(LTV) 0 [V]) € Ho(Br(V), Q).

Suppose dim(V) = n,dim(F,) = l,¢g = n - 1. Let T, be the Haefliger
groupoid of all germs of homeomorphisms of R? and f, : V -» BI'; and
fq: V' BTy be the Haefliger classifying maps.

NCF2: let ¢ € H*(BTy; C). Then

< LITV) (), [V] >=< LITV')(£)" (), V'] > .

Clearly, the NCF2 is a special case of the NCF1. The NCF1 was proved



by Baum and Connes [BaC 2] for nonpositive curved lea,vesRece 15

der announced a proof of the NCF1 for leaves with hyperbo']j::c. fundam ntal
groups. Note that if F =1V and F' = TV’, then Bx(V) is hombtbﬁy.:éélii.'izyi_—“.':.._ S
alent to Bry(V). In this case the NCF1 reduces to the NC. There are alss
other Baum-Connes conjectures which imply the NC'F1 [BaC 3]. We finally
mention that John Roe proposed recently an exotic cohomology version of the
Novikov conjecture [Roe| and Weinberger [Wein 3] generalized the NC to the

stratified spaces and to the manifolds with boundary (see also [Lott 1]).

8.2 Group Picture of the Conjecture

We know that the SNCpggq is true for the following kinds of discrete
groups: (1) groups with properties of rapid decay (RD) and of polynomia}
cohomology (PC) [CoM 2J; (2) subgroups of finite component Lie groups ([Kas
3,[FaH 2]); (3) groups whose classifying spaces can be realized as complete
Riemannian manifolds of nonpositive sectional curvature ([Mis 2],[Kas 3], [Fall
1],[Fac], [FeW]); (4) torsion free discrete groups acting properly on locally
compact euclidean buildings [KaS]; (5) Cappell class of groups [Cap]. We now
discuss these groups more carefully.

Let I' be a finitely generated discrete group with a length |- ] : T — R.
Define

H=(T) = {¢: T = C5 32 lp(o)*(1 + lg)™ < 00,Vk € N},

g€l
I" has property (RD) if H*(T') ¢ C*{I"). The following groups have property
(RD):



(1) groups of polynomial growth; (2) the Gromov hyperbolic groups Thec}ass
of groups with property (RD) has the following properties [Jol]: .
(a) If Ty C T is a subgroup and T has property (RD), so does [y;

(b) Let 1 - I’y - I'; — I's — 1 be an extension of groups and IT'; be finite.
Then T, has property (RD) iff '3 has;

(¢) Let T'g C T be a subgroup of finite index. If I'y has property (RD), then I'
has property (RD);

(d) If I'y and T'; have property (RD), then 'y x I'; and I’y * T'y have property
(RD); More generally,

(e) The amalgamated product T'y #4 I'; has property (RD) if T'; and T'y have
property (RD) and A is finite;

(f) If I" is amenable, then I" has property (RD) iff T is of polynomial growth.
Thus for n > 3 SL(n,Z) does not have property (RD), since there exists a
solvable and non-polynomial growth subgroup T'o € SL(n,Z). But SL{(2,7)
has property (RD). From this one see that the Novikov conjecture is unknown

for general amenable discrete groups.

To define the group I' with polynomial cohomology, let us note that the co-
homology H*(1',C) of I is defined as the cohomology of complex {C*(I', C), 6},

where
C(1,€) = {ip s T%0H) s € v, .., ) = (3t - 7))

and

n41 )
Sp(voy. .y Unt1) = Z(—l)‘(p(rfg,. ey Vimly Vidly -+« 3 Vnpl )-

=0




I’ has property (PC) if each element in If ™(T') has a.rep're'séﬁfa;five t,osuc that
[o(v0y s va)l S a TT(1 + |wal)
i=0
for some constants ¥ > 0 and ¢ > 0. Note that any group of polynorma.l .'
growth has property (PC). This was proved by Connes and Moscovici. Also
if T' is a hyperbolic group, then for p > 2, H?(T',C) is bounded, hence has
property (PC) by Gromov's theorem [Gro]. Using the Kiinneth formula that
H*(T'y x T'y,C) ~ H*(T'1,C) ® H*(T'3,C), we see that Ty x I'; has property
(PC)if I'y and T'; have it. We list a few properties of hyperbolic groups below,
(1) T is hyperbolic iff the Cayley graph X associated with I' is hyperbolic

metric space, i.e., there exists §, > 0 such that
(:c,y) 2 mm{(x,z), (y,z))} - SO:V"Ev ¥,z € X:

where (z,y) = (

zlo + fylo — [z — ylo) and |zfo = |z — z|, zo is a fixed point
in X.
(2) If Tp C T'is a subgroup of finite index, then T is hyperbolic iff Iy is.
(3) I I is hyperbolic, then there are no subgroups in I' isomorphic to Z ¢ 7.
We see that SL(n,Z) is neither hyperbolic nor polynomial growth for
n 2 3. There are hyperbolic groups with Kazhdan property (T ([Gro] p-153).
See [HaV] for very nice treatment about (T)-groups. A natural question is of
course to prove the Novikov conjecture for (T)-groups.
We now consider the Cappell class of groups. let Jy be the smallest set
of groups satisfying
(e) {1} € T;
(b) if I'),Ty and H arve in J, with H C T';, then Ty x5 Ty € Jo;




() if Ty, Ty € Jo and o; : Ty —» I’y are monomorphisms;_': z =1,2, _;_tﬁ'éﬁ'the

HIIN extension Ty #p, {t} of Ty =25 T, is in Jo, where
Loty {t} = 2+ To/{< taa(n)t " e(v) ™" > v € I',t € Z a fized generdt&“}.‘.}'.- s

TJo is called the Waldhausen class of groups. Fach group in 74 is torsion free.
The Cappell class J of groups is a generalization of the Waldhausen class 7.
It is defined as the smallest set of groups satisfying
H{i}eJ;
)i, e J,He Ty and H C Ty, then T+ Iy € J;
3) Ty € Jo,T2 € T,00 : Ty — Ty are monomorphisms, 7 = 1,2, then
Ly {1} € J;
HifI' € Jand Iy C I with [I',T4] finite, then I" € 7.

One has that Ty x Ty € Jif Ty € 7,1 = 1,2. Cappell also gave a more
general class of groups satisfying the SAN C, [Cap].

To see how the Cappell class of groups fits into the program of operator

K-theory, let us discuss the closedness of various Novikov conjectures under

the group operations.

Lemma 8.1 ([Ros)) If T = lim_, T,, is the direct limit of groups T, and all
T, satisfy the SNCES"’“ (resp. SNCjs, SNCpgq), then T' also satisfies the
Schésom (resp. SNCg, SNC‘g@Q).

Lemma 8.2 ([Ros),[Kas3]) LetT, C T be a subgroup of finite index such that
the SNCggq is valid for T'y. Then the SNCagq 1s valid for I.

We do not know whether the converse of Lemma 8.2 is true,




Lemma 8.3 ([Ros]) Let I'y C T be a finite normal subgroup :s'ii},_c_h:'_:"th-qt th
SNCpsgq holds for T/Ty. Then the SNCpgq holds for T. e

Lemma 8.4 ([Ros]) Let T'y and I'y be groups satisfying the SNCpgq (res{p.'.
SNCE™). Suppose that C*(T'1) belongs to the category that the Kinneth
theorem of operator K -theory [Sch] holds. Then the SNCagq (resp. SNCF™)
s valid for T'y x T'y.

Lemma 8.5 ([Ros|} Let T'y and 'y be two groups satisfying the SNCsgq
(resp. SNCpg,SNCF™). Then the SNCpgq(resp. SNCg, SNC5™) holds
for T'y « Ty,

In general, we have the following.

Lemma 8.6 Let I' be a torsion free discrete group acting on a tree X with-
out inversion. Denote by L' and Y° the sets of edges and vertices in T\
X, resp.. Let I'y and T, be the stabilizers of the edge y € L' and ver-
tex v € X°, resp.. Suppose the SNCF™ holds for all T'y,y € L' If the
SNCF™(resp. SNCp, SNCpeq) is valid for allT,,v € X°, then the SNCigom
(resp. SNCg, SNCpgg) holds for T,

Proof (cf. [BaC 3]). Since I' is torsion free, Baum-Connes’ theorem [BaC 1]
implies

RK.(BT) ~ K*(,1) ¥ lim K.(Co(TM) x T),
C('!F)

where C(-,T') is the category of all proper I'-smooth manifolds without bound-

ary. [ts morphisms are I'-equivariant smooth maps f : My — M, which induce

homomorphisms f!: K. (Co(TM;) X T') = K.(Co(T M) x T). In general, we




have that RK;(BT) — K*(-,T) is rationally injective and that there is'amap .

it K T) = K(CT)) defined by the K-theory index map such that the
map £ : RK;(BT) — K;(Cy(T)) factors through RK;(BI') — Ki(-,I) &
K;(C*(T")) [BaC 1]. Now in view of the exactness of inductive limit, we can

apply Pimsner’s theorem to K,(Co(TM) x T') and K,.(C*(I')) to get the fol-

lowing commutative diagram with exact rows [BaC 3]:

Dy exoBEn11(BT,) & @, csiRKni1(BTy) & RE,(BT) & @, cmR K. (BT,) &

| fr, } Br, | Br | Br,

Buextknt1(CH(T0)) & Dy exiKntr (CH(Ty)) & Kn(CHI)) & By exokin(CH(IL)) &

Here the map 8,7 and ¢ are defined in [Pim]. The assertion then follows from
the Five Lemma. Q.E.D.
One of the Baum-Connes conjectures says that g is always an isomor-

phism. We denote this conjecture by BC),.

Corollary 8.1 ([BaC3]) Let I' be a finitely generated discrete group acting on
a tree X without inversion. If the BC, is true for all 'y and I',, y € X', v €

3%, then the BC, holds for T

Since the HNN extension and emalgamated free products of groups act

on tree X without inversion, we obtain the following corollaries.

Corollary 8.2 ([BaC3]) (1) Let I'g be a subgroup of I'y and I'sy such that the
BC\, holds for I'y. Let I' = I'y #p, I'; be the amalgamated free product of 'y

and Ty along Ty. If the BC, holds for T'y and Ty, then BC, is true for I'.




(2) Let Ty be a subgroup of Ty and o; : I'g — I'y be mjectwe homomor
phisms, 1 = 1,2 . Let T' be the HNN extension delermined by FU,.F.'I fmdat S
Suppose the BC,, holds for Ty. If the BC,, holds for T'y, then the BC, is tr'u.e i
for I, /

Corollary 8.3 ([BaC3]) Let free group F, of n generalors act on T'y vie au-
tomorphisms o;,1 < ¢ < n. IfT' =Ty x F,, is torsion free and the SNC’}%”’“
holds for T'y, then the S’NCES"”‘ is valid for I,

The reason for this corollary to be true is that Co{TM) x (I'1 x F,) ~
(Co(TM) x Tq) x F, and C*(I'y x F,) = C*(T'y) x F,,. From the construction

of the Waldhausen class 7, and the above corollaries, we get
Corollary 8.4 The BC, holds for the Waldhausen class Jo of groups.

The question is whether the Cappell class satisfies the NCpggq. There are two
possible ways to solve this problem. One may try to prove that if 'y C I' is
a. subgroup of finite index and g is injective for T'; then g is injective for '
(see Lemma 8.2). One may also try to remove the torsion freeness condition
in Lemma 8.6 and prove:

“Assertion” Let I' be a finitely generated discrete group acting on a tree
X without inversion. With the nofations in Lemma 8.6, if the SN C’ffom is
valid for all T'y,y € X' and the SNCpgq is valid for all I'y,» € X°, then the
SNCsgg holds for I,

Let us point out where the difficulty of proving this “Assertion” comes

from. Since the Chern character Ch : IK;(BL) ® Q — @pHy (BT, Q) is

an isomorphism, to show the injectivity of 8 ® Q it suffices to check that




(B®Q)-Ch™ : ®pHyys(BT, Q) — K; (C*() ® Q is mJectlve In._

Serre’s theorem [Ser], the following is an exact sequence

—* @ Hn-l—l(r'y;Q) —* @ Hn+l(1—‘m Q) — Hn+1(FaQ @ H PyaQ)

yext reD yext

We get the exact sequence

EBEBHsz(Fy,Q —'*@@szﬂ(PmQ ‘“‘*@sz+c(r Q '—*@@sz-m—l(ry;@ﬂ)—’ -

k yext k yexno kyext

This together with Pimsner’s theorem shows that there is the following diagram

— @yeEl (@k HZk-f—i(Fy: Q)) o @uGEO (@k H2k+i(Fw Q)) = @k H2k+i(rﬂ Q) i

L (br,® Q) Ch™ 1 (Br, ® Q) Ch! L (6reQ) Ch

i)

= Byen Ki(C*T)) ®Q 2 @em Ki(C'(T,)0Q 5 KJ(C*T))@Q 2

One can show by the definitions of o, 7 and B that all squares above are
commutative except those involving the connecting operators 8. &'s are defined
via the product with elements determined by two extensions {[Bla], [Pim)],
[Ser]). It is conceivable that these squares are also commutative. If the diagram
is commutative, then the “Assertion” follows from the Five Lemma.

Note that the group I'in Lemma 8.6 is torsion free provided all 'y, y € 31
and T'y,» € X° are torsion free [Ser]. In particular, I' = T, *1, I'y is torsion
free if I'; are torsion free, 0 < i < 2. Observe that the SN C’f}s"m is valid for T
being one of the following groups:

1) torsion free abelian groups;

2) free groups of finite rank;




3) torsion free discrete subgroups of connected Lie groups which arelsomo hi
to HxS0(ny,1)x...x50(ny, 1) for compact Lie group H and positiif;é mtegers
n; e
4) torsion free discrete subgroups of connected simply-connected solvable..l_,.ié
groups;

5) countable solvable groups having a composition series with torsion free
abelian composition factors [Ros], and from the above discussion,

6) the Waldhausen class 7y of groups.

See [BaC 3] for the proofs of 1) —4) .

Recently, Connes, Gromov and Moscovici [CGM 2] proved the Novikov
conjecture for hyperlinear groups by using the Miscenko symmetric signature
o(M). A finitely generated discrete group I is called hyperlinear if its coho-
mology is isomorphic to its hyperlinear cohomology [CGM 2]. A hyperbolic
group is hyperlinear. But we do not know whether an automatic group is
hyperlinear. Ogles papers [Ogle 1] might be helpful to prove the NC for the
automatic groups. Ogle has verified the SNCjgq for the groups with bounded

homotopy property [Ogle 2].

We close this section with the Kasparov-Skandalis’ examples [KaS].
(1) Let K; be locally compact fields, 1 <i < m. I G; C GL,,(K;) is closed
subgroup and Gy is an almost connected locally compact group, then for every
discrete subgroup I of [T ; the SNCpgq is valid. Moreover, if T' is torsion
free, then the SNCy is valid for I'.

This extends Solovev's result [Sol].

(2) For every subgroup I' of GL,(Q) the SNCpgq is valid. If in adition I js




torsion free, then the SNCj holds for T, where Q is the algebra.ié closureof
Q
We expect that the work of Connes, Gromov and Moscovici [CGM 1] 
might be helpful to prove the Novikov conjecture for residually finite groups.
These groups include the arithmetic groups, the mapping class groups of

Teichmiiller spaces, the fundamental groups of Haken manifolds [Hem 1,2]

and some knot groups, which is a topic of the next section.

8.3 Manifold Picture of the Conjecture

We now examine several classes of manifolds and their fundamental groups
that satisfy the Novikov conjecture. Let us first consider the manifolds of

sectional curvature of constant sign.

Lemma 8.7 let T be the fundamental group m1(M) of a complete manifold M
of sectional curvature of constant sign. Then the Novikov conjecture holds for

r.

Proof. Since we know already that the Novikov conjecture holds for the
fundamental groups of manifolds of nonpositive curvature, it is suffices to
prove the lemma for I' = (M), where M is a complete manifold of positive
sectional curvature. Using Cheeger-Gromoll’s theorem [ChG 2], one can find
a finite subgroup I'y C T such that T’y = T'/T'y contains a {ree abelian normal

subgroup I'; of finite rank with index [['3, T3] < co. Hence, the NC holds for

I'y and then for I' by Lemmas 8.2 and 8.3. Q.E.D.




The special examples of manifolds of nonpositive sectional curvature ar

hyperbolic manifolds, locally symmetric manifolds of non compact type. N'Qté.._:.___ : e

that the fundamental groups of manifolds of negative curvature are non amenable -
[Bro] and that the fundamental groups of complete Riemannian flat manifolds

are torsion free and finitely generated and contain an abelian subgroup of finite

index [Mil 3]. ‘

Thus we need to consider manifolds of sectional curvature of mixed signs.

The following is a special result on almost flat manifolds.

Lemma 8.8 let M be o compact Riemannian manifold of dimension n wilh
diameter d and sectional curvature kpr. Then there exists a € > 0 such that

for |kar|d? < € the Novikov conjecture holds for n1(M).

Proof. This is an immediate consequence of Ruh's theorem [Ruh] which says
that M is diffeomorphic to I' \ My, where M is a simply connected nilpotent
Lie group and I' is an extension of a lattice L C M; by a finite group. Since
I' = m(M), the lemma follows from Lemma 8.2 and Kasparov's theorem

[Kas 3]. Q.E.D.

We consider next the manifolds of nonnegative Ricci curvature.

Lemma 8.9 (1} Let M be a complete Riemannian manifold of nonnegative
Ricet curvature. Then the Novikov conjecture holds for every finitely generated
discrete subgroup T' of 71 (M).

(2) Let M be a complete manifold of almost flat Ricci curvature. Then the

Novikov conjecture holds for every finitely generated discrete subgroup I of

(M),




Proof. (1) By Cheeger-Gromoll's theorem [ChG 1], T is of poljnoﬁﬁélz growth

The assertion follows from Connes-Moscovici’s theorem [CoM 2]. i :
(2) The same reasoning as in (1) works by using [Weil. QED e
The case of manifolds of negative Ricci curvature remains unclear, neither

is the case of scalar curvature. Here we provide an example of manifolds of

positive scalar curvature.

Lemma 8.10 Let M be a 3-dimensional compact Riemannian manifold of

positive scalar curvature. Then the Novikov conjecture is valid for m(M).

Proof. According to Gromov-Lawson’ theorem [GrL], there are no K(mrq,1)
factors in the prime decomposition of M (see [Hem 1]), i.e., M can be decom-

posed as connected sums

m
N

-~

M o MMl AME (ST x SP). . H(S" x 57),

where 1(M;) is finite. Observe that w1 (M) o 7y (My) * ... * my (M) % 71 (S? x
5%y % ...+ m (S x §%). The proof is complete by Lemma 8.5. Q.E.D.

Note that the Novikov conjecture holds for the fundamental groups of Lie
groups [Mil 2] and of symmetric spaces [Wolf]. But we do not know in general
the truth of the conjecture for the fundamental groups of homogeneous spaces
M, though there exists an abstract description of m (M) [Mos]. One trivial
observation is that the Novikov conjecture holds for the fundamental groups
of compact homogeneous space G/H if H is closed, connected and locally
connected subgroup of G, since in this case = (G/ H) is abelian.

We now focus on the fundamental groups of low-dimensional manifolds.

Our starting point is that any finitely presented group can be realized as




the fundamental group of a compact 4-dimensional manifold. Wewﬂl par
ticularly pay attention to the manifolds with geometric stricture and to ‘th

3-dimensional manifolds.

Recall that the “geometry” in the sense of Thurston means a pair (X, Gx)

with X a complete, simply-connected Riemannian manifold and Gy a Lie
group acting transitively on X by isometries such that G'x contains a discrete
subgroup I' with T'\ X of finite volume. A manifold M has a geometric
structure of type (X,Gx) if M has an atlas of charts mapping to X with
coordinate changes defined by elements of Gx such that M ~ I'\ X for a
discrete subgroup I' of G'x [Wall 2]. Here is a list of geometries of dimensions
< 4.

LDim]: There is only one geometry, the euclidean line £1.

Dim2: There are only three geometries, the sphere S2, the euclidean space E?
and the hyperbolic plane H?2.

Dim3: There are only eight geometries, the sphere S3, the euclidean space
E3, the hyperbolic space H3, §? x E', H?* x E', the universal cover S, of
SL(2,R), the nilpotent group Nil® and solvable group Sol®.

LDim4: There are only twenty geometries which we omit here. See [Wall 2].
The geometries of dim 3 and dim 4 are classified by Thurston [Thu 1,2] and
Filipkiewrcz (cf. also [Wall 2]), resp..

Lemma 8.11 The Novikov conjecture holds for the fundamental groups of

manifolds of dimensional < 4 with geometric structure.

Proof. This is an immediate consequence of Kasparov' theorem [Kas 3], since

the fundamental group of a manifold of dim < 4 with geometric structure is a




discrete subgroup in some finite component Lie group. : QED .

The examples of the 3-dimensional manifolds with geometric structure
are the closed Seifert fibre spaces which are modeled on 53, E3 5% x R, H? x
R, S :Lz and Nil®. Recall that a compact Seifert fibre space is a 3-dimensional
manifold foliated by circles [Sco]. The Seifert fibre space can not be a connected
sum except RP3$RP?. The universal covering of a Seifert fibre space without
boundary is homeomorphic to one of S, R® and 5% x R. Hence a closed Seifert

fibre space is aspherical unless it is covered by S® or 5% x H.

Let us remark that some compact complex surfaces have geometric struc-
tures [Wall 2]. Thus the Novikov conjecture holds for the fundamental groups
of these compact complex surfaces. But we do not know whether the con-
jecture is true for the fundamental groups of all compact complex surfaces.
Certainly, the Novikov conjecture holds for the fundamental groups of all
compact connected Riemann surfaces, since there exist metrics of constant
sectional curvature on such surfaces. See [HaK] for 4-dimensional manifolds

with finite fundamental groups.

We now consider compact 3-dimensional manifolds. First observe that
the Novikov conjecture is valid for the following 3-dimensional groups:
(1) fundamental groups of compact oriented 3-dimensional manifolds whose
irreducible summands either have non-empty boundary, or are simply con-
nected, or are sufficiently large (i.e., containing a properly embedded 2-sided

2- manifold in it);

(2) fundamental groups of submanifolds of the 3-sphere.




In fact, these groups are contained in the Waldhausen ;:ias;s - For- th '
fundamental groups of general compact 3-dimensional manifolds, we ﬁﬂl 's;éé K
below that the Novikov conjecture is related to the Thurston geometrization
conjecture. To state the following proposition, we recall that a compact 3-
dimensional manifold M is Haken if it is prime and containg a 2-sided incom-

pressible surface (whose boundary is in dM, if any) which is not a 2-sphere.

M is irreducible if any embedded 2-sphere in M bounds a ball. See Hempel's

book for the terminology [Hem 1].

Proposition 8.1 The Novikov conjecture is valid for the fundamental groups
of all compact 3-dimensional manifolds provided that the Thurston geometriza-
tion conjecture holds for non-Haken closed 3-dirnensional irreducible manifolds

with infinite fundamental groups.

One can consult the end of the proof of this proposition for the Thurston
geometrization conjecture (see also [Sco]).
Proof. Let M be a compact 3-dimensional manifold. If M is not oriented,
we can choose a 2-sheeted covering M of M such that M is oriented. Since
m1(M)/my (M) ~ Z,, it follows from Lemma 8.2 that if the Novikov conjecture
holds for m (M), then it holds also for #;(M). It suffices therefore to prove

the proposition for oriented compact 3-dimensional manifold M.

By the prime decomposition theorem ([Mil 1}, [Hem 1]), we can decompose
M uniquely into prime 3-dimensional manifolds

m
-~

M= MY, AMH(S' x §D. .. 4(S? x S} EK.L. .. 4K,




where m(M;) is finite, ¢ = 1,2,...,!, and each K; is compa,ctorlentednre

ducible 3-dimensional manifold. Note that K ; is aspherical and then (KJ) S

18 torsion free. We have

m
A

"=

w1 (M) 22wy (My)*. . .*wl(ﬂ/ﬁ)*;rl(Sl X S%) ko (81 ) S sy (K ). g (K.

Hence by Lemma 8.5 to prove the Novikov conjecture for m (M) it suffices to
check it for = (K).

First assume that the boundary §K; is not empty. Then m (K;) is the
Waldhausen class. The Novikov conjecture holds for 7y (K;). We can assume
that Kj is closed. If K; is a Haken manifold, Thurston has proved that K j
admits a geometric structure [Thu 1,2]. Hence the Novikov conjecture is valid
for #(K;). The remaining case is the non-Haken, irreducible manifolds with in-
finite fundamental groups. But the Thurston geometrization conjecture states
that such manifolds are either Seifert fibre spaces or admit hyperbolic structure
([Thu 2], [Sco]). If this conjecture is true, then the Novikov conjecture holds
for the fundamental groups of all compact 3-dimensional manifolds. Q.E.D.

We close this chapter by remarking that the higher signatures of oriented
spherical space forms are zero. In fact, let M be an oriented spherical space
form, M = 5"/7(T'), where I' is a finite group and 7 : T' — O(n + 1) is a fixed
point free representation of ' in O(n 4 1) for n > 2. Then (M) = I' and
since I' is finite, H*(BT,Q) = 0 for ¢ > 0. Thus all the higher signatures are
zero except < L{M)f*(¢), [M] > for p € H°(BT',Q). But L(M) =1 due to
the vanishing of Pontrjagin classes of constant curvature manifolds (K, = 1).

Then the assertion follows. In particular, the higher signature of generalized

Lens spaces are zero.




Chapter 9

Equivariant Hilsum-Skandalis Technique

This chapter was originally motivated by Connes-Gromov-Moscovici theo-
rem on homotopy invariance of signature with coefficients in almost flat vector
bundles [CGM 1]. As we noted in Chapter 8, this theorem has been used
to produce the most general results on the Novikov conjecture from operator
K-theory point of view. It is certainly interesting to have such a beautiful
theorem in the equivariant case. One possible way to obtain the equivariant
Connes-Gromov-Moscovici theorem is to use equivariant cyclic cohomology.
But there are technical difficulties caused by group actions. Fortunately, we
get around the trouble points by using equivariant Hilsum-Skandalis technique
[HiS]. We use thus operator K-theory in this chapter instead of cyclic cohomol-
ogy. The interesting point of the Hilsum-Skandalis approach is that one can
obtain the Connes-Gromov-Moscovici theorem for signature with coefficients
in general almost flat C*-algebra modules and that the estimation of the norms
of operators involved is not sensitive to group actions. Meanwhile, we show

that the equivariant Hilsum-Skandalis approach is a good substitute for the
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equivariant Miscenko symmetric signature and enables us to a;\:r()id_"thé.':_d_ifﬁ .
culty in dealing with the equivariant Miscenko symmetric signature for general e

compact Lie group actions. This observation is the essential point of our ap®

proach to the equivariant Novikov conjecture. This chapter serves therefore as
a technical tool to prove the equivariant Connes-Gromov-Moscovici theorem
and to provide a substitute for the equivariant Miscenko symmetric signature.
In section 9.1 we will define the so-called equivariant signature type elements
in equivariant operator K-theory, which are modeled on the signature element
[D] defined in Chapter 8. We will then obtain the main machinery of this
chapter. That is to give sufficient conditions for two équivariant signature
type elements being equal. In section 9.2 and 9.3 we will verify these sufficient
conditions for the signature elements with coefficients in flat and almost flat

equivariant C*-algebra modules. Hence we get our desired results (Theorems

9.1 and 9.2).

9.1 Signature Type Elements in Equivariant

K-Theory

This section is largely a generalized version of [IiS] and [KaM] to the
equivariant case. Our effort here is to deal with some technical points about
group actions.

To begin with, we assume throughout this section that G is a compact

group, A is a G — C*-algebra over C and £ is a right G — A-module. Here

G acts on A and £ by continuous automorphisms which are compatible with




module structure, ie., g(za) = g(x)g(a),g € G,z € £,a EAIf 'S; is grade
with grading operator & (¢ = 1), then we require ge = eg, Vg € G See[BIa] _
for the terminology. o
Defintion 9.1. Suppose that @ is a C-sesquilinear map from & x &€ to A.

(1) I Q(€,m) = Q(n,6)*,Q(¢,na) = Q(£,m)a and gQ(&,7) = Q(g€,gn) for
a€ A ¢, n €&, g, then Q is called an equivariant quadratic form on £.
(2) If £ is graded and Q(¢,7) = 0 for 8¢ = 8, then Q is of degree 1.

(3) @ is regular if there is an equivariant A-linear bijection T on &, 7' = T'g
such that € with scalar product < . > defined by < ¢,7 >= Q(¢,T) is a
Hilbert G — A-module. T is then said to be compatible with (.

(4) A scalar product < . >: £ x £ —» A is compatible with Q if < ¢,5 >=
(€, Ty) for some T compatible with Q.

(5) Two Hilbert G — A-scalar products < . >; and < . >, on & are compatible
if there exists an equivariant A-linear invertible operator T oun & such that

<&, >=< €, Ty >y

Remark 9.1 (a) Clearly, T' in (5) is unique, and any T satisfying < £,9 >o=
< £, T >1 is injective.

(b) If there are adjoint operators St and S5 of an operator S on & with respect
to the compatible scalar products < . >, and < . >,, then S; = T1SIT. In

fact,
<8, >o=< SE Ty >1=< £, 57Ty >1=< £,T7' 8Ty >a=< £, 53 >, .

(e) T in (5) is selfadjoint and positive with respect to < . >y and < . >y:

<TEm>i= <Ay > =< € > =<0, >=<n,TE >, .




Thus, Ty =T and T3 = T~y = T. Clearly, 0 << ¢,¢ >2£€: E,T{ >1 and
<ETE>y=<TETE> >0 for £ £ 0 in £. Hence T is positive. v _. |
(d) If two scalar products < . >y and < . >, on £ are compatible with Q, th:.en'.'.. e
<. >y and < . >4 are compatible. In fact, let < &, >= Q(6,Tim). Then
<60 2= Q¢ Ton) = QUET(TT o)) =< &, Ty Ty >y

(e) If T is compatible with Q, then T' is selfadjoint and there exists an operator

17 on € compatible with Q) such that T = 1. In fact,

<TEn>=Q(T,TE) = < Ty, E >=<{,Ty>.

T is selfadoint. Hence T~ is also selfadjoint. Since T? is invertible and
positive, U = 127 is well defined, invertible and positive. Let Ty = TU".
TP =1, and Q(¢,Tin) = Q&,TU'y) =< £, U~y > is a Hilbert scalar
product on E. Ty is compatible with (.

(e) If € is endowed with scalar product < . > compatible with (), < & >=
Q(&,Tn) and S is an operator on € such that there is an adjoint S* with respect

to <. >, then 5" =TS5*T" is the conjugate of S with respect to (). Indeed,
Q(SE,n) =< 8¢, Ty >=< ETHTST Ny >= Q¢,TS* T 1y).

Let £ be a Hilbert ¢ — A-module with scalar product < . >. Recall that
the space L£{£) of bounded operators on & consists of all continuous A-linear
maps 5 : & — £ such that its adjoint S* exists and is ,A-linear. The space K(&)
of compact operators on & is the ideas of £(£) generated by Qe T,y € E, |
where (g, (2) = 2 < ¥,z >. G acts on L(E) by ¢(S)(£) = gS(¢7(€)). Denote
by Lg(€) (resp. Ka(€)) all G-continuous operators S in L(E€) (resp. K(£)),

e, g — ¢(S) is norm continuous. Obviously, if S € £(€) is equivariant,




on £ with densely defined adjoint S* such that [ + $*S has dense féﬂgé:}ﬂ_-_

E. L(E),K(E) (resp. La(€),Ka(E)) and regular operators do not dei)end on

compatible Hilbert G — A-module scalar products.

Using the convention that 1-graded and 0-graded mean graded and triv-
ially graded , we have the following definition.
Definition 9.2. (1) £%(.A) is the set of all triples (£,Q, ), where & is a
k-graded G' — A-module, @ is a strongly nondegenerate G-quadratic form of
degree k, k = 0,1, and D € Lg(€) is G-equivariant such that

(@) D+ D' € Kg(E); (b) D* € Kg(E); (¢) there are equivariant S; and S,
in Ls(€) such that S;D + DSy — I € Kg(€); (d) D is of degree k.
(2) L& (A) is the set of all triples (£,Q, D), where £ and A are the same as
in (1), but D is an equivariant regular operator such that

(@) D+ D' € La(E); (b) im(D) C dom(D) and D? € L;(E); () there are
equivariant Sy and Sy in Kg(€) with @m(S;) C domn(D), DS,, 510 € Lg(E)
and 510+ DS; — I € Kg(&); (d) D is of degree k.

We will see in section 9.2 that this definition is modeled on the signa-

ture element. The following two elementary lemmas will be used to analyze

L. (A).

Lemma 9.1 ([H:S)) (a) If D is a densely defined adjointable equivariant oper-
ator on a Hilbert G'— A-module £ and S € L(E) such that im(S5) C dom(D*),
then D*S is in La(£).

(b) If D is a regular adjointable equivariant operator on £ and S € Lg(&) such

that SD € Lg(E), then im(S*) C dom(D*) and D*S* = (SD)*.




(¢) If Dy and Dy are two reqular adjointable equivariant 'oﬁeratbfs-‘ onc‘,'such

that Dy : dom(D,) — € is bijective and dom(D;) C dom(Dy), then DgDi’"las R

in £G(8).

Lemma 9.2 ([HiS]) Let D be a regular equivariant operator on £ such that
D?* = 0. Then D + D* is selfadjoint and regular on £ and dom(D + D*) =
dom(D) N dom(D*).

We now consider the property of elements in LE(A) and LE (A).

Lemma 9.3 (a) If (£,Q,D) € LE(A), then D ++ D* is invertible modulo
Kc(E), where D* is the adjoint of D with respect to the scalar product com-
patible with Q.

(b) If (€,Q,D) € LE (A), then D+ D* is regular and selfadjoint with domain
equal to dom(D) N dom(D*), and has the resolvent in Ka(E).

Proof. We first consider the trivially graded case.

(a) The proof is to find the inverse of D-+ D* modulo Kg(€). Let p = D, ¢ =
DS8,, where S; are as in Definition 9.2. Since D? € Ko(€), p* = S, DS,D —
S1D(I ~ DSy + k) = S1D + ky = p mod (Ka(£)), and ¢* = DS,DS, =
(' + 1~ 81D)DS, = DSy 4 K, = ¢ mod (Ka(€)) for k;y k! € Ke(E). ¢Dp =
DS DI —-DSy+k) = DS,D—ky+ DS,DE = ({=S1D+k)D —ky+ DS, Dk =
D+ ks = D mod (Kg(£)). Take projection (mod Ka(€)) v’ € La(€) [Bla]
such that p'p = p’ and pp’ = p mod(K¢(£)). Since p+g—I=5D+DS,—I ¢
Ka(£),p = I —qmod (Kg(€)), and ¢Dp = (I - p)Dp = D mod (K&(€)). We
get

(I ~p)Dp = (I - p)Dpp’ = Dp’ mod (K5(E)),



(I =pYI—~p)Dp=(I- p’)Dp mod (’CG( ))

But (I —p')(I = p)Dp = (I—p' —p+p'p)Dp = (I— p)Dp = D mod UCG(S)) |
Hence, D = (1~ p')Dp' mod(Ko(£)). Let py = p':(1 — 1), py = o/ So(T ). |
We have piD = p/S\D — pS,p'D = p/SiD = gfp = of mod (Ko(E)), since
D = (I - p)Dp' = 0 mod (Ko(£)).

Dpy = ¢Dpp'Sa(I 1) = ¢DpSy(I — p') = DSy(I — p')
= (I =p)I~p)=1-p mod (Kg(E)),
b = Plsl(f— P')(I —P') — Pfgl(f — P')Dpz = Plez

= ppa= pS’g(I P) 2mod(ng(8))

Hence,

(PL+P)(D+ DY) = p 4IPS D+ p, D* + (Dp1)*

= p'+(Dp) =9+ (I —p") = I mod (Ka(E)).

Here we have used p'D = p/(1 ~p')Dp’ = 0 mod (K¢(E)) and p, D* = poD* = ‘
P21 =p)D" = p'Sy(I - p')p' D*(I — pf) = 0. This implies that (D + D*) 1 =

1+ pi mod (Kg(£)).

(8) We divide the proof into several steps.

Step 1. First we assume D? = 0. By Lemima 9.2, D 4 D* is selfadjoint and

regular. Wiite $1.D + DS; = I — k, 8,k € Ko(£). Since D? = 0, (8, D)? =

SID(~k—-DSy) = 8,D-8 Dk = 8,D mod (Ka(£)), we can thus choose p €

La(E)such that p=p* p?—p e Ka(E),pS1D—p € Ka(€) and S;Dp—8,.D ¢

K6(€) [Bla]. Since I~ (pS1D + DSy(I — p)) = I — DS, — (pSyl) — DSyp) =

$10 = (pS10~(I=$1D)p) = S, D(T—p)—p($1D— 1) € Ko(E), DSy(I—p) =



I —pSiD=1-pmod (Kg(€)) and p = pSD = p*zD*STP m"d agels
Thus, ¢ % [ — D*Sip~ DSy(I = p) = I — (S, D + DS;(I ~ p)) € Ke(£).

Note that dom (D + D*) = dom(D)Ndom(D*). By Lemma 9.1(¢) and dom(z-]« SRS

D+ D*)* C dom(D), « ¥ D((i + D + D*)y1)* € Lg(€). This implies that |
D = a(i+D+D*)*. Also D* = B(i+ D+ D*)* for some 8 € La(E) by the same
argument. Using the fact that o* = (i+ D+ D*)71D* g = D(i+ D+ D*)71,
and S57p,q and Sy(7 — p) are all in Kg(E), we obtain

(i+D+ D7) = (i4D+D") g+ D*Sip+ DS(I ~ p)

= (i+D+ D) g+ (a*Sip + B Sy (I — p)) € Kg(€).

This proves that (D + D*) has the resolvent in Ka(&E) if D* = 0.

Step 2. Suppose D = Dy + a, where Dy is regular, D? = 0 and a € La(E).
Since ||(Ai + Do + Dg)7!|| < A7 for sufficiently large A > 0, (Xi + D +
D)™ = (I + (X + Do+ Dg)~Y(a + a*))~* (i + Dy + DE)~L. This proves that
(A + D+ D*)7" € Ka(E) since (Ai+ Do + D) € Kg(E).

Step 3. In general, we define for (£,Q, D) € L2, ,(A)

2
p=| P D*| p_|D 0
~I -D 0 -D

Di = 0,im(Dy) C dom(Dy). Clearly, we have (E@E, QO(—Q),D;) € L3 ,(A)

and Dy =Dy —{ 0 D? |, Steps 1 and 2 show that D, + D3 is regular with
-I 0
resolvent in Ka(€ @ £). Therefore, D + D* is regular with resolvent in Ka(&).

Now for the graded case we repeat the above proof to get (@) and (b),

even though D; in Step 3 are not of degree 1. Q.E.D.




(E) is equi
ariant and 51,5, € Lg(E) such that D?* =0 and 1D+ DS, = I,'thez.rr,"b'—l'—:l_j* SR

Remark 9.2 We obtain by the proof of Part (a) that sz € L

is invertible with the inverse (D 4+ D*)™' = p'S1(I — p') + (I — )5y, where

p' was given in the proof.

To define the maps from £%(A) and £§ ,(A) to KE(A), let us recall the
definition of Kasparov K K-theory. Let A and B be two G — C* algebras.
(€, ¢, F) is called Kasparov G-bimodule if £ is a countably generated graded
Hilbert G — B-module, ¢ : 4 — L£(£) is a *-homomorphism, F' € L;(E) is of
degree 1 such that [F,¢(a)], (F — F*)p(a),(F? — Ne(a), (g(F) — F)p(a) are
in Kg(€) and p(a)F € L5(E). Two G-bimodules (&}, ¢;, F;) are isomorphic if
there exists an isomorphism w : & — & such that Fy = uFju~!. Let £9(A4,B)
be the set of all isomorphic classes of G-bimodules (£, ¢, F).

A homotopy between (£, @0, Fo) and (&1, 1, F1) 1s an element (€, ¢, F) €
E5(A,C([0,1), B)) such that (€, ¢, F') generalizes a family {(&,, vy, ;) € ES(A, B)}
given by & = S®C([(]’1},B)B,(Pt = |, F; = F ® I. Then the Kasparov K K-
theory group is K K%(A,B) = ES(A, B)/ ~ and KKS(A,B) = KK(A,B ®
Cap) ~ KKG(A® Oy, B). In particular, K KF(C, B) =~ K(B),i = 0,1.

We can also use unbounded modules to define K K(A,B) [BaJ] as fol-
lows. (€,¢,F) is an unbounded G-bimodule if € is a graded Hilbert G — B-
module, ¢ : A — £(£) is a *-homomorphism, F' is a selfadjoint regular equiv-
ariant operator of degree 1 on & such that
(a) (I + F?)~Yp(a) € Ka(€),Va € A;

(b) {a € A : [F,¢(a)] is densely defined and extends to an element in Lo(€)}

is dense in A.




Let EZ(A,B) be the set of all unbounded G-bimodules: Therels
¥ : BE(A,B) — E%(A, B) given by y((€, ¢, F)) = (€, », F(I+ F?)‘%')_.--'_-'-;' : _

Suppose that A and £ are trivially graded. Let (£,Q, F ) € ﬁUG(A)and
T € Lg(E) be associated with (), 7% = I. Since T is an involution, we can use
it to grade £. Tt follows from D* = TD'T that T(D+ D*y=TD 4 D'T and
(D+ D*T = DT +TD'. Using D' = —D mod (Ka(£)), we get T(D + D*) =
—(DT = TD) = —~(D + D*)T mod (Kg(€)). Hence, D + D* is of degree
1 mod (Kg(£)). By Lemma 9.3, D + D* is selfadjoint and invertible mod
(Ka(£)). Then D + D* = F|D + D*] mod(Kg(E)), |D 4 D*| = ((D + D*)?)}
and F' = (D - D*)|D + D*|™* mod (Kea(£)). Since D+ D* is of degree 1 mod
(Ka(£)), F is of degree 1 mod(K(€)). We have the following:
() F* = D+ DD + D*) = F mod (Ka(£)),
(8) F2 — I = (D + D*)|D + D*|"* — I = 0 mod (Ka(£)),
(¢) 9(F) = F € Ko(£): since Q(€,1) = Q(t,qn) and gT = Ty, we have
Q(9D'€, gn) = Q(D'g€,gn). Hence, gD’ = D', and then D*g = gD*, sinco
D =TD'T. Tt follows that g(D+D*) = (D+D*)g and g| D+ D*| = | D+ D*|g.
From this we get g/ = Fg mod (K¢(£)),
(d) define ¢ : € — La(€) by p(A) = AL ¢ is equivariant.
Therefore, (£, ¢, F) is a G — C — A-module.

Let (€,@,D) € L%, (A) and T € Lg(E) compatible with Q such that
T? = I. Suppose that the conjugate D’ of D with respect to () is D' = —D.
Then D* = TD'T = —T'DT and T(D+ D*) = —(D+D*)T. This implies that

D+ D* is of degree 1 if £ is graded by 7', But we know already by Lemma

9.3 that D + D* is selfadjoint and regular with resolvent in K (£). Therefore,




(€,9,D + D*) is an unbounded G — C — A-module, where cp(/\) : )\I

Let A be trivially graded and (£, , D) € £5(A) be such that I = — D,

Then T(D + D*) = —(D + D*)T, where T € £o(£) is compatible with Q o
and 7% = I. Let ¢ be the grading operator of £, &2 = I. Since Q(¢,n) =0 if'.
O = O, we must have T = —Te. Using De = ~eD and D*e = —eD*, we see
that e(D+D*) = —(D+D*)e. Let P = Lle & = PE and D, = P(D+D*)P
on &. Then P? = P,P* = P,TeP = PTe and P(D + D*) = (D + D*)P.
As for L&(A), we can construct F from (£, Q, Dy) such that F* = F, 2 = [
mod (Kg(£)). Then (&, F) determines an element in KS(A) (ct. [Bla], p.
185).

Similarly, we can work out an unbounded G—C—A-module from (£, Q, D) &
Ll .(A) with D' = —D and A trivially graded, which is denoted by (&, Q, P(D+
D*)P).

To summarize, we have the following:

Definition 9.3. (1) ¢ : L&(A) — K§(A) is given by ¢o((€, Q, D)) = [(£, F)],

(2) Let £G.(A) = {(£,Q,D) € Ly (A) : D' = ~D}. o, 1 £ (A) — ‘
K§(A) is defined by 1o,.((€,Q, D)) = [(€, F)], where F = (D + DA+ (D+

D)%), |

(3) Let A be trivially graded and £5(A) = {(£,Q, D) € LL(A): D = —D’}.

1 L5(A) — KF(A) is defined by $1((E,Q, D)) = [(&, F)].

(4) Let A be trivially graded and £§ ,(A4) = {(£,Q,D) € L4, (A) : D =

=D} i s L8 (A) — KF(A) is defined by o4((€, Q, D)) = [(&,, F)], where

F = P(D + D*)P(I + (P(D + D*))?)~3.

Remark 9.3 1 : LE(A) — KF(A) is independent of the choice of F and T




In fact, if T\ and Ty are compatible with @, T:=1. Let U= TngTz
and Q(¢,Un) = Q(T{, Ty Ton) =< 158, Ton >1. U is compatible with Q By

the equivariant stability theorem, we can assume € = I A, the universal Halbert
A-module. Using the invertibility of U and contractibility of GL(L(H 4)), we
get a homotopy b, in GL(L(H4)) connecting Uz to I. Let fiy = hihy. Then b,
is a selfadjoint homotopy between U and I. Hence we oblain a homotopy H,
connecting Ty and Ty such that H? = I and H, is compatible with Q. Thus,
%o is independent of the choice of T. Clearly, Wy is independent of the choice
of I' since two such choices differ by an element in Ka(€).

Similar remark applies to 1.

The following lemma gives a link between L% (A) and £%(A).

Lemma 9.4 ([HiS]) Let (£,Q,D) € Le (A) be such that D' = —D. Let
U= D(I+ D*D)"%. Then for £ with the scalar product,

T/’o,u((‘g; Q: D)) = ¢0((51 Qa U))

Lemma 9.5 Let A be trivielly graded. Suppose that (€0, D) € L (A) is
such that D' = —D. Let U = D(I 4+ D*D)"%. Then for £ with the scalar

product associated with (),

’ﬂbl,u((‘ga Q,D)) = ’v[’l((g:Q: U))

Proof. Note that 1,((€,Q,D)) = [(&, F)|,F = P(D + D*)(I + (P(D +
D*))*)7%, where & = PE,P = IHIs anq $1((€,Q, D)) = [(&, 7)) with
Fy € Lg(&1) such that P(U + U P — By|P(U + U*)P| € Kz(&,). The proof

is the same as Lemma 9.4. Q.E.D.




We now examine when the images of two elements in £%(A) under by are

equal.

Lemma 9.6 Let (€,, D) € Lg(A) (resp. L2 ,(A)).
(a) If Ker(D) = im(D) and D' = —D, then 1o((£,Q, D)) = 0.

(0) %a((€,-Q,—D)) = —¢o((€,Q, D)).
The same results hold for g ,,.

Proof. (a) By Lemma 9.4, it suffices to prove the assertion for the bounded
case. By the definition of o, it is enough to check F? = I and F* = F,
which is guaranteed by the invertibility of D + D*. In fact, if D + D* is
invertible, then ((D + D*)?)% is invertible with the inverse (D -+ D*)?)~% and
= (D+ D*Y(D+ DY) by =1

To show that D + D* is invertible, let us first note that for two Hilbert
modules £ and & and S € £(£,£,) SS5* is invertible, provided S is surjective.
Indeed, by the open mapping theorem, thereis k& > 0 such that $5* > k2. We
take £ = Ker(D) =im(D) and S = D : &€ — im(D). § is surjective. Then
55" is invertible. This implies that the zero is at worst an isolated spectral
point of 5*S = D*D, since Spec(S5*) \ {0} = Spec(5*S)\ {0}. We can then
choose a submodule &, in £ which is orthogonal to & such that £ = & @ &,
and DD* is invertible on & and D*D is invertible on &. It follows that
DD* + D*D is invertible on £, But D? = 0. (D + D*)? = DD* + D*D is
invertible on £. Hence D + D* is invertible in £(£) and then in Lg(£&), since
D 4 D* is equivariant.

(b) If we change @@ to —Q and D to —D, then T is altered to —7', D* =

TD'T to —D* and then F' to —F. Hence, we change (£, F) to (£,—F), i.e.,




¢0((87 -Q, _D)) = [(gi—F)] = "[(81 F)] = _T’bo((g’Q’D)) .

Lemma 9.7 Let A be trivially graded and (€,Q, D) € LL(A) (resp'." i:g
(a) If Ker(D) = im(D) and D' = —D, then ,((€,Q, D)) = 0,

(8) ¥1((€,—Q, —D)) = ~1((£,Q, D)), where —& is equal to € graded by —e.
The same results hold for iy ,,.

Proof. (a) Note that (D 4+ D*) commutes with P = L=, The proof of
Lemma 9.6 implies that (D + D*) is invertible in Lg(&). Hence P(D + D*) is
invertible in La(&)). As a result, ¥1((€,Q, D)) = 0.

(b) Observe that if @ and D are changed to —@Q and D, resp., then T'
is changed to —T, & to —¢, D* to —D*, P to P, and hence P(D + D*) to
—P(D + D*). The result then follows easily. Q.E.D.

9.2 Flat Bundle Case

We now use the machinery in section 9.1 to prove the homotopy invariance
of the signature elements with coeflicients in flat bundles. This result will give
a substitute for the Miscenko symumetric signature for the equivariant case.

We assume throughout this section that G is a compact Lie group, A is
a G — (™-algebra over C, M is a compact oriented Riemannian (G-manifold
and F is a smooth G-bundle over M whose fiber is a finitely generated pro-
jective Hilbert G — A-module Ey. Let & = L%(E) be the completion of
C(M,NcT*M @ E) with respect to the scalar product

<tn>=[ <)) >.




Here, we use equivariant Riemannian structure on M to gét:':é;i-ﬁi-ibeft'_
module structure on Ac¢ToM @ B,z € M :

Let £,7 € AcTiM ® E,. Define £* Ay € A¢TrM & A by first letting
(0-'® 61)*/\ (ﬁ@ 62) = (_)-!/\ﬁ® < €1,€3 >,Of,ﬂ € /\CT_:M,Ci c Ey;;

< e1,eq >€ A, and then extending this to general elements ¢, 7, where < . >

is the scalar product on F, = FE.

We now define a signature element in £§ ,(A). Let @ be the quadratic

form on &g given by

Qlem) = #0=) [ £ nn,

for £ € Er with homogeneous degree d¢. Here n is the dimension of M.
Q) is equivariant since the metric and the scalar product < . > on FEy are
equivariant. Let us check that ) is regular, i.e., there exists equivariant A-

bijection T' € L(€g) such that < &, >= Q(£,T) is a scalar product. Let

(T¢), = i—@ﬁ(n—@f)(* ® Ig)(£,), € € Ep.

Here * is the Hodge operator, ?a = (—1)?"%)q o € AcT*M. T =
§7206(n98) (32 @ I )¢ = £. Hence T2 = I. Clearly, T is equivariant A-bijective.

The following

<&n>=Q(e,Ty) =02 [ e (Ty), = [ &A@ Ip)n.)

is evidently a scalar product. @ also is quadratic form: Q(€,9) = Q(,{)* and
Q& na) = Q(¢,n)a,a € A.




A

To use &g and @ to define an element in E’é’u(A), we needanoperato
D satisfying the conditions in Definition 9.2. Let V be an ant1symmetr1

equivariant connection on E. Define operator Dg by
Di(e) = %V, ¢eé.

In fact, let H4 = L*(G) ®c H4 be the universal G — .A-module [Bla]. By the
equivariant stability theorem, Fy can be embedded in ‘H4. Then F can be
constructed via a family of differential equivariant projections P = {F,}oenr

on Hu . Here each P, has a finitely generated projective range. In other

words, P : M — L(H,) is differential and the fiber E, = P,(H.4). Then let
(vf)m = (L\CT;M ® Pw)((d @ IHA )‘S)ﬂru é € COO(Ma AcT"M @ E)

The following lemma implies that Dy satisfies the conditions in Definition

9.2.

Lemma 9.8 With the above notations,

(1) Vw € O (M, AcT*M), £ € dom(Dg),w A ¢ € dom(Dg) and Dg(w A €) =
16H00dy N E 7% w A Dgé:

(2) let DY, be the conjugate of Dy with respect to Q, then Dy = —Dy;

(3) im(Dg) C dom(Dg) and D} € La(EE);

(4) there are equivariant Sy and Sy in Kg(Eg) such that im(S,) C dom(Dy),

DESQ,S]_DE € ﬁ(;(gg) and S1Dg+ DSy~ I € ICC,:(SE). ’

Proof. (1) Let w € C°(M,AcT*M),¢ € dom(Dg). Assume first that £ =
a®a,a€ C°(M,AcT*M) and a € Ey, Poa = a.

Dg(wAE), = ia“’+8°‘V(w ANa® a),




z-aw+8tx[(I ® Pm)((dw Ao (_1)8ww A dOZ) ®G)a: 5

= M(doAa® Pa) + (—D)*0 A (I @ Pw)(daé a)x]

(®1%%dw A € + 57w A Dgt),.

Similarly, we can treat the general case.

(2) To show D% = —Dg, it is enough to check Q(Dgé,n) = —Q(¢, Dgn).
let { =a®a,n=PFRba,f € C°(M,ACT*M),a,b € Ey, Pra == a, P,b =
b, D¢ =1i%(da ® Pa), Dgn = i°P(df @ Pb),

Q(DE&??) — i36£+(3a+1)3ﬁ _/M(%Aﬁ)(g’ < Pa,b >
- —z'(aﬁ“)a%'aﬁ/ (@AdB)® < a, Pb>

M
= ”"Q(ga DE’?)‘
Similarly, one can check Q(Dgé,n) = —Q(¢, Dgn) for the general case.
(3) Since the projection map x - P, is differentiable, im(Dg) C dom(Dpg),
Dia®a) = **M(I® P)(d(da® Pa))

4200+l (I® P)d®«® Pa+ (~1)3°’+1da ® dPa)

= —i(da @ PdPa).

In general, the curvature V2 is in A*(T"M, End(E)). Hence D% is in Lo(Ex).
(4) Take Sl = Sg = D:‘E(I + DE'DE + DEDE-)_I Then
S$1Dg + DgS; —1 = DRI+ DD+ DgDy) Dy
+ DpDy(I+ DyDg+ DgDy)™ ' —1

= (DgDjy+ DyDp)(I + DyDg + DpDy) ™ — 1

= —(I+ DyDg+ DgD}y)t.




Hence it suffices to check S; and (I + DeDp + DgDjy)™? aremlCG(SE
Let E be constructed by a family of equivariant A—projectigns'-'P: : -

{P:}sem with finitely generated projective ranges: E, = P,F, where Fglsa i

finitely generated & — A-projective Hilbert module. Then Vg = PDgP, Dy

is the flat exterior differential on the trivial Hilbert ¢ — A-bundle M ® Fy =

F. As in the ordinary case [Hil], ( + DjDp + DpD};)™' € Ka(F) and

Dp(I + Dy Dy + DpDy)™ € Kg(F) for F = L*(F). Since the orthogonal

complement I+ of E in F is given by (I — P)F, and its connection Dy is

({ = P)Dgp(I ~ P) , we have
D@ Dg = PDF—PDF(I—P)—l-(I—P)DF(I——P)
— Dy —(I—P)Dp— (2P — )Dp(I — P) = Dp + A,
where A = —(I — P)Dp — (2P — INDp(I — P). Hence it is enough to check
By = (Dp + A)I + (Dr + A)*(Dr + A) + (D + A)(Dr + A))™! € Ke(F)

and By = (I + (D + AY(Dp + A) + (Dr + A)(Dr + AY*) ™! € Ka(F). Now
for A sufficiently large,

(A4 (Dr + A)(Dg + A) + (Dp + A)(Dp + A)) ™ =

= (I+(AM+-D3Dp+DpDy) ™Y FATADR+A D+ Dp A*)) A+ D5 Dpd-DpDy)

since the products of A, A* with Dp and D% are bounded operators {(by means .
of the argument of Sobolev spaces) and since the norm of By = (A + D%:Dp +

DpDy) "M (DA + ADp + A*Drp + DyrA*) is less than 1 for sufficiently large

A. This proves that B, € Kg(F). Since A is bounded, AB, € Ka(F) and
DpB; = Dp(I + By)™ (A + DDy + DpDh)~! € Ko (F). Q.ED.




Therefore, we have constructed an element (EE,Q;DE): E f.%:,u(.A) o
dim(M) = 2k.  dim(M) = 2k 4 1, we proceed as follows. . :

Let e(¢) = (—1)%¢ for homogeneous ¢ € £g. Then £ extends to a gradi’ng..
on &g. Clearly, eI = --T'e ( this is not true for dim(M) = 2k), eDg = —Dge.
We get (€g,Q, D) € L4, (A).

We now consider the central problem of this chapter. Let & be a smooth
G — A-bundle over M whose fiber is a finitely generated Hilbert G — A-module
Ey. As usual, F defines an element [E] € K§(A® C(M)). Let [Dy] be the

signature element in KZ(C(M)). Then

p(E,M) Z [E]®c [Du) € KS(A® C(M)) Qcpn KKE(C(M),C)
— KEKZC,A) = KE(A), +=0,1.

Question: Is )(E, M) a G-pseudo-equivalence invariant ? Namely, let 7 :
N — M be an orientation-preserving G-pseudo-equivalence of connected closed
Riemannian G-manifolds. Is (h*(E), N) equal to ¥(E, M)?

Recall that £ is a G-pseudo-equivalence if h is a homotopy equivalence and
G-equivariant. The following observation is important: if A is equivariantly
homotopic to an orientation-preserving equivariant map hy : N — M, then
h*(E) is isomorphic to Af(E). Hence [R*(E)] = [h(E)] € K§(A ® C(N)) (cL.
[Hus], Thm 4.7, p. 29). According to G-smooth approximation theorem ([Bre],
Thm 4.2,p. 317), h is G-homotopic to a smooth orientation preserving G-
pseudo-eqlluivallence hy : N — M. Therefore, it suffices to check ¥{(A; (), N) =
$(E, M),

The following lemma then reduces the question to the G-pseudo-equivalent

. . . 4
invariance of elements in £§ ,(A).




Lemma 9.9 Let A be unital. Suppose that E is a smooth G — A-bundle vE
M whose fiber is a finitely generated projective Hilbert G — A-module Ec:,'. Let i
(€r, @, Dg) be as in Lemma 9.8. Then

Yiul(€r, Q, D)) = [E] ®cqn [Du] € KT (A).

Proof. Let dim(M) = n be even, Recall that [E] € KK§(C,A® C(M)) is
defined by the Kasparov module (I'(E) & 0,1,0) and [Dy] € KKF(C(M),C)
is given by (L2(M,T*M),,(Dar + D)1+ (Dar + Diy)?) %), where D(E) is
the space of continuous sections of ¥ and ¢ is the multiplication by elements
in C(M). Assume first that F is trivial, E = M X Ey. Then Dg = Dy, @ I
and Dg + Dy = (Dy + D}y) ® I. The Kasparov product of [E] and [Dy] is

given by
(C(M)REo)@0)RcrmneilL* (M, T*MYRA), I,(Da+Di ) (I +(Dar+ D)) 2 @1).

where ((C(M) ® Eo) ® 0) Qcanea (LHM, T*M) ® A) ~ L} (M, T*M @ E)
with inner product < (2, 22), (y1,¥%2) >=< @3, < Ty, >1 Y2 >2 equivalent
to the inner product on L*(M,T*M ® E). This proves the assertion for the
trivial bundle case. In general, E = PF, where F is a trivial smooth G — A-
bundle over M whose fiber is a finitely generated projective Hilbert G — A
module Fy and P: M — L(Fp) is a smooth family of projections. Then Dg =
PDpP, Dy + D§ = P(Dp + D3)P. Hence, (Dg+ DE)(I + (Dg+ Di)H) 3 =
P(Dp+D3)(I+(Dp+D3)?)"3 Pis a (Dp+Dp)(I+(Dr+ D%)?)~#-connection
of &g (cf. [Bla], Prop. 18.3.3, P. 206). The result follows easily from the

definition of the Kasparov product.




Now if dim(M) = n is odd, then [Dy] is given by (Ple(M,TM),go

(D + D3 )(I+(Dar+ Diy)?) 3 Py), where Py = e with ¢(¢) ;_(z;i)é,é_g_'i;--_-__._--.

The argument of the last paragraph works also in this case. QED -

Remark 9.4 If A is non unital, then K§(A® C(M)) = Ker{Ko(C(M)®

A+) 5 K§(C)} and [E] = [(T(E) @ 0),1,0)] € Ker(i*), since T'(E) ®cpnea

C =0, where A" is the G — C*-algebra obtained by adjoining an identity to

A. Note also that g can be considered as an A+ -module and (€r,Q, Dg)]

formed by the same way as vo.((Er, Q, Di)) is in Ker(i*), i.e., this element |
is Yo,.((Em, Q, DE)). With this in mind, we see that Lemma 9.9 holds for non

unital A.

Clearly, ¥1..((€g, @, D)} is independent of the connection on E, since
any two connections on FE differ by a bounded operator in La(€p).
To show the G-pseudo-equivalent invariance of 4, ((€x, Q, Dg)), we need

the following technical proposition.

Proposition 9.1 Let (£,Q;, D;) € LY (A),i = 0,1 and R € Lg(&, &)
salisfy

(a) Di = —D;, D} = 0;

(8) R(dom(Dy)) C dom(D,), RD, = D,R;

(¢) R: Ifni""(g‘)) — I;f’;’"((DL;‘!)) is an isomorphism;

(d) there is equivariant S € L(&,) such that S(dom(D1)) C dom(Dy) and.
I-RR=D,5+ 8Dy

(€) there is equivariant ¢ € L(£)) such that e{dom(D1)) C dom(D,)},eDy =
—Die,e® = I,e' =¢ and e(I - R'R) = (I ~ R'R)e.
Then ¢0,u((£11Q11D1)) = ¢0,u((527 Q23 D?))




Proof. We can assume that ' = —S. In fact, for £, € dom(Dl), o

A(SE D) = Qule, SDun) = Qule, (I~ REBn) ~ (Dt 5m).
It follows that 5'¢ € dom(Dy), $'(dom(Dy)) C dom(Dy) and [—R'R = DyS'+
§'Dy. Take § = 552, We have §(dom(D;)) C dom(D;) and T — R'R —
D184 8D,. § is obviously equivariant. Thus we can consider § with &/ = &
Let (£,Q,D) = (£ @ &,Q1 ® (—Q2), Dy @ (~D3)). By Lemma 9.6,
You((€,Q, D)) = dou((E1, Q1, Di))H+4bo.u((E2, —Q2, —D2)) = tpo.u((Er, Q1, D1 ))—
Yo,u((€3,Qs, D2)). Thus it suffices to show 1,((E, Q, D)) = 0.

For ¢ € [09 1] we deﬁne Bt(E: 7?) == Q(-T%S) Ttn)a Ot(ﬁﬁ?) == Q(Ltfa TI'): where

T, = I o Ly = I-RR (ie+tS)R vV, = Dy tR
itRe 1 R(ie +15) I 0 —D,
We have the following:
(1) DTy = T:D, since e Dy = —Dye and RD, = D,R.
(2) L,V, = —V,L,. This follows from I — R'R = DS+ SDy,Di =0 and
DyR' = R'D,. Note that by D! = —D;,
V! _ —D1 U
= .
~tR Dy '
(3) Ci(Vié,m) = Q(=ViLt ) = —Cy(&, V). Hence V; is antiselfadjoint
with respect to C(.,.).
(4) Since & commutes with R'R, Ly = 7T and
I iteR'
fz-vtf — e
0 I




Let us check (&, By, D) € L2 ,(A). SR
(a) D is antisymmetric with respect to B,. Indeed, by (1), DT, = T.D aﬁd
D' = —D, B(D¢,n) = Q(DL, Lin) = Q(Lué, ~DLun) = By(€,—Dn).
(b) Clearly, D? € Lg(£).
(¢) Obviously, there are equivariant R; and R, in La(E) such that RyD +
DRy — 1 € Kg(£), since D; have the corresponding property.
(d) By is associated with the invertible operator 7; € L;(€), hence is a strongly

nondegenerated quadratic form. In fact, the inverse of 7} is

T-—l — I 0
~tRe T

B; 1s also regular with compatible operator T¥TT;, where T is the operator

compatible with @, T? = I. Indeed,
< 67"? >By = Bt(faT:*TTt??) = Q(ﬂf,ﬂ(T:TTt'f]) =< T;s*TTtga Tt*TTt"? = .

Therefore, (€, B, D) € L3, ,(A) for 0 <t < 1. In other words, (£, B;, D) €
£5,.(C([0,1], 4)).

Let us now check (£, Cy, Vy) € L, (A) for ¢ near 0. Since T} is invertible
and Lo = 1Ty, Ly is also invertible. It follows that L, is invertible for ¢ near

0, say 0 <t <to. By (3), V, is antisymmetric with respect to C; and

v2 — D% 0
0 tD?

since 1R = R'D,. Let 5,5 € Ka(&;) be such that S;D; + D&, — I €




}C(;(Si), S{D,‘ < ﬁG(gg'), zm(g,) - dom(Di),D.;S'.; € ﬁg(gg'),?,' = 0, 1. Then b

S, 0 D, tR D, R S0 I D

0 -5 0 —D, 0 —-D, 0 -5 0 1

SiDy+ DS -1 SR —tR'S, € KolE), |
0 SoDy+ DS, — 1

since Sy € J'Cg(Sl),gg € Kg(&:) and R’ € Lg(&,E:). Note that < £,n >ot%—if
Co(&, TLm) = Q(Lié, TLm) =< L&, Ly >. We have that C, is strongly

nondegenerate and regular quadratic form. Thus we conclude that (&, Cy, Vi)
is in L ,(A) for 0 <t < t,.

Now Co(€,1) = Q(Loé,m) = QITTE, ) = Bi(&,n) and Vo = D. (€, By, D)
= (&, Cs, Vy). Hence,

d)ﬂ,ﬂ((ga Q, D)) - "ubO,u((gv B, D)) - T/”O,u((‘f”:' By, D)) = ¢0,u((5, Cto» vto))‘

From this we get that it suffices to show g, ((€ v Cis, Vi) = 0. By Lemma
9.6, we need only to check im(V, )} = ker(Vy,).

Obviously, Vi = 0,im(V,,) C ker(Vy,). To show Ker(Vy) Cim(Vy),
let (&1,€,) € € such that Vie(€1,€2) = 0. By condition (c), R : Ker(Dy)

1;‘.";’"(12 1) is bijective. Then there exists £} € &, such that & = — D&}, Since

—aR'€y = Di& = 0in !in—((DE)l This imples that D1£; = —aR'é, = aR' Dyél =

aD R, Di(6 — aR'E) = 0. Hence RDy (& — aR'E)) = DyR(é — aR/E)) =
0, ie, R(& — aR'E)) € Ker(Ds). Using Ker(Dy) = trm(Dy), we can find

¢y such that R(& — aR'¢S) = D). Since R is injective on %%151 and




R(& — aR'E]) = Dyg” in 1—‘5?%23)1, there exists 61 such that §1. — of
Le., & = Dyl +aR't,. We have thus found (&1,€5) € &€ such tha.t Vto ({;“1,52)

(€1, £2). Therefore, im(Vy,) = ker(V,,). QED -

Corollary 9.1 Let A be a trivially graded G — C*-algebra. Assume that
(&, Qi, i) are in L,(A) and R € L(&,&,) is equivariant, i = 1,2. Let
g; be the grading operator of & and T; be the operator compatible with (),
12 =1,i=1,2. Suppose

(a) D= —D;,D? = 0,e,D; = —Dye;;

(b) (dom(Dl)) C dOm(Dg),RDl = .D2R, E:QR = REl,TgR = RTl;
(C) B Ker(D1) Ker{Ds)
d)

im(D) ™ T(Dy) is an isomorphism;
(d) there is equivariant S € L(&:) such that S(dom(Dy)) C dom(Dy), —e18 =
Se;, —TyS = ST, and I — RR = D,S + SDy;
(¢) there is equivariant ¢ € L(E,) such that e(dom(D1)) C dom(Dy),eD, =
—Die,e? =1,e' = ¢, —e16 = e61, and e(I - RR)=(I- R'R).
Then 14 ((&1,Q1, D1)) = $1,4((&2, Q2, Ds)).

Proof. With the notations as in Proposition 9.1, it suffices to check that
(£,B,D) € L,(A),0 <t < 1,(£,0,,V,) ¢ L£E.(A),0 < ¢ < t5. By the
proof of Proposition 9.1, we need only to verify that B;, D, C; and V, are of
degree 1.

(1) Since 6y = —e1€ and e,R = Req, €T, = Ti€, where £ = ¢, & (—e2) is
the grading operator on £. Thus, B, is of degree 1.

(2) éL; = L&, This follows also from €61 = —g1€ and 6; R = Rey. Hence

C 15 of degree 1.

Clear]y, Vté = _évt. QED.




We now use Proposition 9.1 to show the (-pseudo-equivalent invariance

of 10,,(€, @, D) for a flat Hilbert G — A-bundle E. The rest of this section is
to devote to checking the conditions of Proposition 9.1.

Let A be a G—C*-algebra, N and M be two compact oriented Riemannian
G-manifolds and ¥ a Hilbert G — A-bundle over M whose fiber is a finitely
generated projective Hilbert G — A-module E,. E is said to be G-unitary flat
if £ is furnished with an equivariant scalar product and antisymmetric flat
equivariant connection. Let f : N — M be an equivariant smooth map. It
is clear that f*(E) is an equivariant unitary flat bundle if E is. If f and f
are two equivariant smooth maps from N into M which are G-homotopic via
G-homotopy H, then H* : f*(E) — f;(F) induces an isomorphism. Suppose
that V is the antisymmetric flat equivariant connection on F and Dyt =
1%VE, then Dyvgy = Dypmy. Observe that the map f* : C®(M,AcT*M ®
E) = C®(N,A¢T*N ® f*(E)) may ﬁot be extended to a bounded operator
from &g =L2(E) to Esmy = L*(f*(E)), since f* is not closed in general. To
get around this problem, we follow [HiS] to use the embedding.

Let w € A¢T*N. Define e, : AcT*N — AcT*N by eo(a) = w A a.

Lemma 9.10 ([His]) Let M and N be compact oriented Riemannian G-
manifolds.

(a) Suppose b : N ~» M is a smooth equivariant map and w € AeT*N is
equivariant. Let Ny be the support of w in N and h be a G-submersion from
a neighborhood of Ny into M. Then e h* : £ — Envgy s an equivariant
operator in L(Eg, Epnm)), where E s a Hilbert G — A-unitary flat bundle over
M, and the norm of e, h* is independent of E.
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(b) Assume h: N x [0,1] — M is a smooth equivariant map andwef\c N

is a closed equivariant form on N, where G acts trivially on [0,1]. Sup— '
pose kb (resp. ho,h1) is a G-submersion from a neighborhood of Ny X [6,1]
(resp. Ng) into M. If V is an equivariant unitary flat connection on Hilbert

G — A-unitary flat bundle E over M, then there exists an equivariant operator

Se ﬁg(gE,ght(E)) such that
ewh] — e hy = hy(V)S 4 SV.

Proof. (a) Since e, h* is equivariant, it suffices to show the boundedness of
eoh*. The proof is the same as that of Lemma 3.2 in [HiS]. We provide a little
detail below.

Using the partition of the unity, we have that the assertion is a local

statement. Thus let N = O x M and F be trivial. h : N — M ig then a

projection. Let ady; ®£ € AcT*M R Ey.
B (adyr ® f)(w,y) = a(h(z,y))dh; ® h*(g)(ff,y) = a(y)dyr ® £,

uh*(Qdy€) o) = w(z,y) A aly)dy; © €.

lewh*(adyr @ ) = || /N (a(y)w(z, y) A dyr) A *(a(y)w(e, y) Adyr)@< €€ >

lw A adyr || < &,6 > |* < lwl*fledyr ® €|

I

Hence, ||e,h*]| < |||

(b) Recall that the contraction 2 2 is defined by

to (adry Adt) = (—1)|Isada:1.

2
ot




. .

t 18 equivariant since G acts trivialljbn [0,1]. Define forwl E‘S’B,
1

S(w,) = / i g (e,h*(wi))dt € I2(N,AcT*N ® hi(E)).
0

Here w is considered as a smooth form on N x [0,1]. By part (a), e,h* is
bounded, and i"e% is bounded. § is thus bounded. Clearly, $ is equivariant.

Since e, h — e, hd = [ 2 (e h*)dt, it is enough to show locally
H(V)S + SV = / (eoh*)d.
Let wy = Yrapdyr Q €, dyr = dyg, A... A dy:,,

ewh™(w1) = WA R (w) = w(z,y,1) A h*(wy )

= Zw(z:yat) Aear(h{z,3 1t))(z hikdzi + Zh;jdyf + htIdt) ® ¢,
I k 3

where h: O x M x [0,1] — M , z and y are the variables of O and M resp.,

and hﬁk, hij and h{ are the derivatives of k! with respect to z,y; and ¢, resp..
%(th*((&h =2 Zw/\a; (h)( Zh dzk-i—ZhI dyDldt @ ¢ (9.1)

Since V is flat, we can assume V = d ® p, p is locally a constant projection.

V(w; d(z ardyr) ® € =Y aydy, Adyr ® €,

I,s

V() =3 ars(h(z,y,0)dh, Adb' R €,

cwh*V{w)) = Zw (z,y,0) A ] Za;s(h (z,4,1)) Zhszkdzk -+ Zh ;Y5 + B adt)

thkdzk + 2k dy + hidt) @ 5],
k i



»/0 ['t'- Fi (6wh* LL)]_ dt / Zw ,y,t) /\ {Z Q!I‘?(h ’y, )) -
(= Db hidzy — 3 by hidy; + Zhs,th dzi + Zh thI dy) L & (9 R

Now since dw = 0,

mV)( (i (e (o)) dt) = Ji ' Y(w A AORERY

[ 1) A S a0 €+ N (S (e, )b +

+ ZaI 7y1 )htzkdzk“l'zal h(z,y, )) dyj)dt@{}

= ]0 w A Z{zaf,sh{ (Z Bz + Z_hs,y,-dyj) +

+ Za;hmkdzf;-l—Zth Ay}t @ €. (9.3)
J

Adding (9.2) — (9.3) together and using (9.1), we get

(B(V)S +5V)n) = [ o (euh®(w))dl

Q.E.D.

Let A1, be the conjugate of e, h* with respect to @, where h : N — M

is a submersion in a neighborhood of the support of w. Locally, we can find
a formula for Ar,. Let A : R™ x R* — R™ be the projection. If w is a
continuous function with compact support in R™ x R*, then for adz; @ ¢ €

AcT*R™, e h*(ader @ £) = w A afz)de; ® €. We can calculate for || =k

Q(Bdzr, Ny, @1, euh*(ader®é)) = i RQ(hy (B, Ay s, ®n), ada1€),

with

ho(Bdzy Adyy, @) = z'(m_“l”“‘idmh f@(m,y)ﬁ(m,y)dyjl 7,




and hy,, = 0 for |J,] # k.

let G' act on R* by isometries and B* be the equivariant unit open ball -
in R*. Suppose that P : N x B* — M is an equivariant submersion and v
is an equivariant volume form of mass 1 on B*. Let ¢ : N x B¥ — N and

7, : N x B — B* be the projections. w = 75(v) and Py = P|yy(op. Define
By, = @ P* € La(Er, Epymy),

where ¢ : Epvpy — € py(r) 18 the pushforward. The following lemma is crucial

in verifying the conditions of Proposition 9.1.

Lemma 9.11 (a) Let P': N x B' — M be another equivariant submersion
and v; be an equivariant volume form of mass 1 on B, If the maps P(z,0)
and P'(x,0) are equivariant homotopic, then there ezists S € Lo(Er, Eprmy)
such that

DES+ SDE = RP,Vk - RP'V;-

(b) Let P': O x B' = N be an equivariant submersion and v; an equivariant
volume form of mass 1 on B!, where O is a compact oriented Riemannian

G-manifold. If P" : O x B' x B¥ — M is given by P"(z,s,t) = P(P'(2,s),t)

Wk

and v = v X vg, then Ry, R,

P

Proof. Since the volume forms vy, v, and v have the compact supports, there
exists equivariant ¢ € C°(B¥) such that g = 1. As a consequence, R, =
@ e, P

() Let P : N x B x B x B" x [0,1] » M be an equivariant submersion

such that P(z,s,t,u,0) = P(z,s) and P(s,s,t,u,1) = P'(z,1). This P exists

since P and P’ are submersions and homotopic. Let », be a volume form of
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mass 1 on B” with compact support. Define P, : N x B* x B! x B" _ M by".
Py(z) = P(2,4),z € N x B* x B! x B, =0,1. Then R,,, = Ry xuixy, =

g eq Py and By = Bpyyexuxw, = ¢ o Py, where ¢5" : N x BF x Bl x

B" — N,mp. : N x B*x B x B" - B* x B X B" are projections and

O = (Fpp V(e X 1y % vy). By Lemma 9.10, there is = Eg(SE,Eﬁg(E)) such

that

g (en Py — ey = ght(Br(D)S, + S1D) = D(gf*"Sy) + (¢ 8,)D.

Hence, Ry, — R,,, = DS+ 8D, § = s,
(b)LetP:OXBkXBl“’NXBk;@:OXBkXB’_;OXBIaDd
¢ : O x B'— O be defined by

P(z,5,1) = (P'(2,1),), @(z,s,t) = (z,1), ¢ (z,1) = z.
Let mp; : O x BF x B — BF x B and 77 : O x B* x B' — B! be the
projections and &; = (m;)* (v % v),wy = (m)*(v). Then for the projection
°:0x B*x B' - 0,
By, = qleq, (P")* = qlgie,, Pre, P*.
This identity is illustrated by the following picture:
CEV(E) = (PrE) o prymy B g

! ! < -
%) 2 OxBxB P u

A7 (PP () L g (PP (E) s Prpr(m) Freo rE) B g
1 1 l 1 !

L

9) & OxB L OoxBxB A NxBIM




Here the following identities are used:
P"(z,8,t) = P(P'(z,s),1) = PP(z,s,1),
qoxq'q_:OkaxBliOXBif-;O,

Wi = (m)* (1) A (%) (i () = w0 A (7)"(w),

#:0x B*x B' s O x B* &, : 0 x B - B 6(5{-)*(&,)16* = P*e,.

But Ge,, P* = ewi(jgp* = ewiP*’q! with wi = (m)*(v),wn = (7')*(v1), where
m:0x B' = Bland 7' : O x B* x B = B! are the projections. This can be

seen from the following pictures:
w(PP(E) " Pevm) B P

I ! l
OxB" & 0oxB'xB 4 0xp*,

o

w!

(PyepriE) O P )y & P (E)

Pt
N § ! !
O x B L 0 & 0xB

P'*q.P*(E)

where as before, P(z,s,1) = (P'(z,1),5),q4(2,8) = z,i(z,8,1) = (z,t), and
FP'(z,t) = z. Therefore,

.Rpu,y = q!’(j;ewlp*ewP* = qrey (P')*q!ewP*

= RP‘!”I R

Wit

QE.D.

We can now prove one of the main theorems in this chapter.




Theorem 9.1 Let M and N be two compact oriented Riemannian G-manifolds
of even dimensions. Suppose that h: N — M is an orientation preserving ho-

motopy equivalence which is equivariant. Then for each unitary flat Hilbert

G — A-bundle E over M,

Yo,u((Er> Q5 D)) = to.u((Enr(m), @, Dre(iy))-

Proof. We need only to check that (€, Q, Dg) and (Enr(i), @, Dy () satisly
the conditions of Proposition 9.1. By the observation preceding Lemma 9.9,
we can assume that A is smooth.

Let J : M — R* be an equivariant embedding (k = 0(4)), O an equivari-
ant tubular neighborhood of J(M) in R* and 7 : O — M be the associated
equivariant projection (see [Bre]). Suppose J(M) 4+ B* C O. Define a sub-
mersion P : N x B* — M by P(z,t) = w(h(z) + 1),z € N,t € B*. Let 1, be
an equivariant volume form of mass 1 on B* and ¢ be an equivariant smooth
map such that @u; = 1. With the notations as in the paragraph preceding
Lemma 9.11, we divide the proof into several steps.

Step 1. Condition (@) of Proposition 9.1 is valid already since D? = 0 by
the flatness. To check condition (b) of Proposition 9.1, we define' R to be
Ry, € Lo(€p, &), 10y R = qee,P*. Note that Py(z) = P(z,0) =
m(h(z)) = h(z). Clearly, ¢,,e, and P* preserve the domain of D and com-

mute with D. In fact, since P is homotopic to hg,

(€00 )euP'V = (eoq")euP* (V)P* = (0" P*(V)euP"

= B (V){epq Ve P .

Hence, R(dom(D)) C dom(D) and RDg = Dy R.
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Let € € Lo(£r) be defined by (&) = (~1)%¢. Then e? = I ¢ — eeD=

_DS,SP* = P*e,aew = (“l)kewg and E(etph)’ — (_‘1)k(6¢h*)’6. Hence.g.(j.—'{': RO

R'R) = (I - R'R)e. This verifies condition () of Proposition 9.1.

Step 2. We use Lemma 9.11 to verify condition (¢) of Proposition 9.1, i.e.,
R . KGT(DE) — I\’GT(Dht(E))

1s an isomorphism. By Lemma 9.11(a), the map

R =R,, from If;;g?)) ﬁ;g’:‘;ﬁ))) is independent of the submersion P and

—I:%(I%E)l as long as P'(*, 0} is homotopic to

volume form v, i.e., Ry, = Ry o on
P(,0). Let k' : M — N be the smooth map such that Ak’ and h'h are (non
equivariantly) homotopic to Ty and Iy, resp.. As we construct the submersion
P: N xB* - M from h, we can find a submersion P’ : M X B' -+ N from
h', namely, P'(z,t) = ='(K(z) + t) and 7' : O’ -» N is a projection with
O" a tubular neighborhood of J(N) C R!. Then define P” : M x B x
B* B Nx Bt By by P'(z,s,t) = P(P'(z,s),t). Clearly, P'"(z,0,0) =
Ph'(@),0) = x(h(k'(z)) + o) = h(k(z)) homeyopic I(z). Hence Ryn,u = I on
%ﬁ—’i(%ﬂ)l by Lemma 9.11(a). Furthermore, using Lemma 9.11(b), we obtain
Ryt By = Rpnoyn = I on %%%-)f)l. This proves that R,, is injective. Same
reasoning shows by switching the role of Ry and Ry, that Ry, is surjective
in %%Ejl. Therefore, R = R,, is an isomorphism. Note that this step does
not require the equivariance of various maps.

Step 3. We now check condition (d) of Proposition 9.1, i.e., there is equivariant

S & £G(£E) such that S(dom(DE)) C dom(DE) and [ — R’R = DES + SDE

Let ¢; : NxB*x B*¥ 5 Nx B* he the projections, ¢;(z,ty,%,) = (z,t;),0 =

L,2,and ¢ : N x B¥ - N and . : N x B* = B* be the projections and

w = 7w} (v). Tofind the conjugate of €g2(w) 43, We compute for fj = ade AL, @n




2600

and ¢ = fdz;, A diy, A dtyn ® ¢,

A, (eatna)0) = PG (e (). 7)
with
(eq;(w)q;)f(g) = ik(lhl+1Jz‘i)(/l;k Bgt(w))der, A dTy

for | Ji| = 0, and 0 otherwise. In particular, if § = eqs(w) i (1) = Pl o(gy ydz g, A
¢3(w) A dty,, then

(eatr3) ozt odor A dta, ® ) = MM [ o(gr)ai(w)dey A giw) @

=M alg)gi())den AGi@) ©n, [A=0,  (94)
and it is zero for |/i] # 0. On the other hand,
(pe)(ade, Adly)®n = glwA dxll Adty @n)
= z'k(”"’lm)(/Bk wow)dzy @ 1.
If £ = Bdzp ® €, then

Q(f, gen(adzy A diy)) = gRn g (L |+t k=1 |- k) Nx'Bk(ﬁprAqu) A adiy,
® < &1 >=i"Q((e)'(€), 7).
Consequently, (qie., ) (£) = #*"Bw A dx r ®{. Using this identity, we have
(0e.) (@eo)(ader, @) = FHOHID( [ qwlo A dar, @)
i%”_k'm(/}gk aw)dry, Aw ® 7.

Comparing this with (9.4), we get

() (@) = i (eqe ()83 (eas ) 41)- (9.5)




Furthermore, (e ()5 )(edzr A dtz, @ n) = g5(w) A a(g)drr Adly,Q = ¢ (w): A
adz; @ n, [y = 0,

(et %) (eqzy@) () = dPHHHAITHE) ka ag;(w))dz; A gi(w) ® 7
= ([ )ader Agw) @ n.
But e, (adz; ® n) = i*adz; A ®mn. Therefore,
ew = 175 MM (ega10)63) (Casw)h)- (9-6)

This together with (9.5) proves ¢, = i"k(zn"'”[)(q;ew)’(q;ew) modulo the bound-

ary DpS+S5Dg by Lemma 9.10. This implies that B/ R = (P*)(qie.) (qrew) P*

i

P(qe.) (qe,)P* = Pe,P* modulo the boundary DgS + SDg . Hence it suf-
fices to show that Pe,P* = I modulo the boundary DgS + SDg.

Let P, : M x By — M,P, : M x B* — B* be the projections and # :
M x By~ M bean equivaria;nt submersion, #(xz,1) = m(z+1t) and ' = P}(v).
Let P: N x B¥ — M be the equivariant submersion, P(z,t) = w(h(z) + t).
(1) (Pr)rew Py is the identity:
(Pew Pi(adzr®n) = (P)ewa(P)dz; @ n =i ¥(P) (a(P)der Aw)

S / puYader @ n = adz @ 0, k = 0(4).

(2) P!BWP* = ﬁgewrﬁ'* H

Pe,P(ade; @) = iMFP(o(P)IPAw® )

. 2MIkHn— T f a(P)wdPr @7
Nx Bk

_ k() g @ (@) 4 ))w(mi(z, ))d(m(h(z) + €)1 @ 7

—  gh(nlI]) . a(m(y + 1)) v(t)drr @ n

= Wi (a(®)dr’ @ n) = (fewi*)(ads; @ 7).




Finally, fie,#* = (P1)ie, P* modulo the boundary DES —I-SDE byLemma, S

9.11. Therefore, 'R = I modulo the boundary DgS + SDpg. _ QED :

Theorem 9.1 will play a crucial role in proving the equivariant Novikov
conjecture. It provides a substitute for the equivariant Miscenko symmetric

signature as we pointed out early.

9.3 Equivariant Connes-Gromov-Moscovici The-

orem

Let A be a G — C*-algebra, E, a finitely generated projective Hilbert
G — A-module, and M a compact oriented Riemannian G-manifold. Let E
be a Hilbert G — A-bundle over M whose fiber is Fy. Suppose V is a unitary

connection of I and ©@ = V% € C°(M,AcT*M @ E) is its curvature. Let
v > 0. V is said to be v-flat if

1] = max(10.1 < »,
where ||@,|| is the norm of operator O, on AcT*M,

CAIES

max 10(X,Y)|.
XYel'M||X||,|r|[<1

The norm of [|@|] is equal to the norm of © as an operator on Hilbert G — A-

module £g. FE is called almost flat if for any ¥ > 0 there is a v-flat unitary

connection on ¥,

To prove our main theorem of this section, we need a proposition which

is the generalization of Proposition 9.1. We first have the following lemma.




Lerma 9.12 (a) Let v,k > 0 be such that 65/3vk? < 1. Suppose that U is o

an equivariant regular operator on Hilbert (7 — A-module £ such th"a_t zm(U) C B

dom(U), [IU?|| < v2. If there are equivariant R,SeLg8), S invertible such
that R(dom(U)) C dom(U),RU + UR = S, |Bl| < &k and [|S™Y| < k, then

U+ U* has a bounded inverse with the norm

2k?
1 — 64/2vk2"

(0) Let v,k > 0 be such that 2\/§vk“(k +2vE) < 1. Suppose that (&,@,D) e
L (A), and T ¢ La(€) is invertible and equivariant such that Q&) =<

IV +U)7) <

¢, Ty > for the scalar product < .,. > on £. IfID*) < v |0 + D) <
v and there are R and S € Lg(E) equivariant with S invertible such that
R(dom(D)) C dom(D) and DR ¢ Lo(E), DR+RD = S, ||R|| <&, 157 <k
and [ITIT) < K2, then you((€, @, D) = 0.

Proof. We first prove part (a). Let

UZl: U UZ/V ’R]-: R 0 and Sl%_ S 0
-y =U 0 —-R 0 S

2 2
Then Uf = 0, and By Uy + Ui Ry =8y = | O (BUP~U"R)v | g onpr,
0 0

UIRIH = ”(RU2—U2R)/U” S %IIR””Ugll S 2]61/ < ]., and ”S;I(Rlyl‘f‘U]Rl*
SOI < IST IR + Us By — S|l < V2R(2kv) = 203k < 1, Ril;y + U, R,

has the inverse

(BiUy + UpRy) ™' = (1 + STH R + Uy Ry — SRS




and

RiLHULR) ™M < l(T+STYRU+U, R —SNSY €« ——— o .
(R Ui+ U Ry )| ”(. v (BU+U Ry —50)) 7187 < 1 _zﬂkgy\/—
Now
Ur= U* 4 3 U1+U1*: U+U* Uz/y—y |

Ujv —U* v+ U v —(U+U")

We show that Uy + U} is invertible and [|(Uy + Up)™")| < 2. In
fact, U; commutes with U; R, + R\Uy since U} = 0. Let W = (R Uy +
Uy Ry)~1. Then U; also commutes with W and UWR +WRU, = W{(R U, +
UiRy) = 1. Since Uy Ry = (RyUs + Uy R)WUL Ry = Uy RyWUL Ry and ByUy —
BUW(R\U+ U Ry) = By UWER\U, WULR, = WU R, UL Ry and WRU, =
WR\UWR, Uy, ie., WU, R, and W R Uy are idempotents. Thus, we can find
a projection P such taht P(WU Ry) = P and (WU\Ry)P = WU Ry. By
Remark 9.2, (U; + U?) has the inverse (Ui +UF)™t = P(WR)(I - Py+ (1~
P)(W RBy)*P. Hence, [|(Uy + Up)~Y| < |[WR,|| < 2ok = -

k1. We get from this estimation that for

ZE U S (-U)+ U (~U)) — (U + U = 0 v=Uv |
y—U2/y 0

121l < V2llv - U*/v|| = 24/20 and
(Vo(=U)HUS(-U)))" = (Z+U+U7) ™ = (IH(UHUD) 2) 7 (U +U7)) 7Y,
since [[(Ur + U7) ™' Z|| < =E=m2v20 < 1, e, 6120k < 1. Then

W& )+ e (—U)) ) = (T + (U + U2y (U + U=
1 2k 242

1 =2 0V20 1 — 24/2k% T 1= 6vanke
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We now prove part (2). Define a new scalar product on & by (£,7) =
<& |Tlm> . I Z € L(E), then

2 _
1Z1l¢y = ”gﬁﬁgll(zﬁ,zé)ll
= max || < Z|T[73(|T)36),|T|ZIT| 3 (|T)€) > |
T3 el<a
= max |[T)IZIPNTE2 P NT IR
JlIT|2 gli<1
= |lZlFnz = E )P,

IA

namely, [|Z[l¢) < k]| Z||. With the scalar product (.) on £, we have ||D?||(,
DIl < ko2, [ID"+ Dll) < K| D'+ Dl < kv, || Rlly < B[R < k* and [|S1 ]| <

E|[S7Y| < k®. Using part (a) with k and v replaced by k% and vkv, we

L2132

obtain that D - D* is invertible and |[(D + D*)7Y| < I:E—%V%)M—ﬂ)z’ since
6v2vEv(k?)? = 64/2vvEk? < 1 by the assumption. Thus we are done for
D'=-D.

Note that (€,) =< &, [Ty >= Q(&, T T|n). Let Ty = T7T|, 72 = 1.
Ty is compatible with Q. Let P, = &0 P2 = P = P77y and (I — P)T} =
Ty—P = —(I~P). Then (D+ D*® = P(D + DP, + (I — R)D +
DY = P) = P(D + D)P + (I — P)(D + D)I — P). Tt yields that

(D + DO < v2||D + D’)| and then

(D +D*) = (D + DYOND + D7y = (D + D)0+ D)7

Q(kz)z
Vahkv 67T (ke

since 2v/2vk*(k 4 3v/k) < 1. Therefore (D + D*)™! is invertible:

(D+ D)D) = (D+D7) ~((D+D7) ~ (D+ D))

= (I (D+ D7D+ D) — (D + DY) (D 0,




Observe that the map 1,0 in Definition 9.3 can be defined for D’ # —D,
in which one replaces (D + D*) by (D + D*)(l) in the formula of F. We have
shown that (D 4+ D*)® s invertible. Hence, Puo((€,Q, D)) = 0. Q.E.D.

Proposition 9.2 Let (£,Q;,D;) € L2, (A) be such that D} = —D; and &
have the scalar products compatible with it = 0,1, If there are equivariant
R € L(&,&),v, k >0 satisfying

() |DF] < 1 |B]| < by R(dom(Dy)) C dom(Dy) and ||RDs — DyR|| < v2;
(b) there is equivariant S € L&) such that ||S|| < k, S(dom(Dy)) < dom(Dy),
and ||I — R'R— DyS — SDy|| < v%;

(c) there is equivariant ¢ € L(&) such that e(dom(Dy)) C dom{Dy),e? =
I.e'=¢ ande(I -~ R'R) = (I — R'R)g;

(d) there is Z € L(&,) equivariant such that || Z|| < k, Z{dom(Dz)) C dom(D,)
and |[{ — RR' ~ D,Z — ZDy|| < 12,

then for 64uv(k +4v2k*(1 + k)2)® < 1,v < 2\/%2% and k > 1,

Po.u((&1, G, D)) = thou((Es, @2, D).

Furthermore, if (d) is replaced by (d'):

(d') there are equivariant W € L(€;,&) and Z € La(&) such that Izl <
kW < k,W(dom(Dy)) C dom(D,), Z(dom(D,)) C dom(Dy), WDy —
DWW <v* and |1~ RW — Dy 7 — Z Dl < v2, then for 64vy/1F 6k2{k(1 +

2 3 1,233 233215 1 >
2k%) +4v2EH 1+ 2k2 (1 + k(14 262)%)° < 1, and v < Tt k1,

Po,u({E1, @1, D1)) = thou((Esy Q2, D).

Proof. The proof is divided into several steps.




Step 1. As in the proof of Proposition 9.1, we can assume-$' = S and

Z = —Z' by considering S—QS' and 3—23' that satisfy (b) and (d). | S
Let (£,Q,D) = (& @ &,Q: @ (=Q2), D1 ® (—Ds)). By Lemma 9.7, it

suffices to show 1, ((£, Q, D)) = 0. The proof is similar to that of Proposition

9.1.

Define for ¢ € [0,1]
t=| 1 0| | I-RR Gewss)r | o _| Dm0
ithRe T R(ze 4 t5) 1 0 —-D,

These operators are all equivariant. Let By(¢,7) = Q(1:€,T)n) and Cilé,n) =
Q(Li,n). We check that (€, B, D) € L£g (A).

Ii Dj denotes the conjugate of D with respect to By, then as before,
Dy = (T/T)"'DT)T,) = —(T}T) "  D(T/T}). since

T,D — DT, = 0 0
—it(RD, — DyR)e 0

T:D) — DT, is in Lg(E) by condition (a). This implies that D -+ Die Lg(E)
since D + Dy = (1yT) " (T/(1;D — DT}) 4+ (T/D — DTNT;). Now

(7%, D)) < ¢|RDy — DyR|| < 7,
T, DIl S t|R'Dy — Dy R)| < 10,

and || Tl < (Rt + 1)v2 < V3(1 + tk), IT7|| < v/2(1 + tk). Here we endow

the norm [|(z, )] = v/||=[|2 + ||y||? on £ = & & &. Clearly,

—_— ) l - 3 ,
Tt_l — I 0 ,(T;)_l — I ZtER , (ﬂﬂ)_l — { e R
—itRe T 0 I —itRe *ReR' +1




We have [(TyT) 7! || < V2(1 + || RR'|| + t]|R])) < V(L + th? -+ tk),l'fé,ﬁd?i Lo

1De+Dill = W) IATIIT, DI + N2, DT

= 41 4+ th)(1 + 1%k + tk).

This proves D + Dj € La(£). Obviously, D? € L(£) and as in the proof
of proposition 9.1, we can find equivariant R, and S, € La(E) such that
DS1+ RyD — I € Kg(€). we have thus verified (€, B, D) € L% (A).
Step 2. We now check that (£,C}, Vy) € £ ,(A) for ¢ near 0. Since Iy =
TTy, 15 1 < 1T I < (V34 B))* = 201 4 k)2, Note that

7 Y4 / y
L= |{-BR @R | 1 0 SR g o] 0 SR

1Re 1 tRS 0 tRS 0

we see that if [L5" | O TR < a0 4 k2 VBISIIEIE < 2501 +
tRS 0

k)2k*t < 1, then I, is invertible. Let ¢ = m

- - "=y 7 - 1
IS+ rgt | O R gt < —

oy 20+ R,
(RS 0 2/2(1 + k2)2kt

In particular, for £ = o, || L;;'|| < 4(1 + k)2, Since Cy(€, Ven) = Q(L4€, Vi) =
C't(L;'IV;Ltf,q), the conjugate Vic, of Vi with respect to C; is Vie, =
L'V L;. We have

1.V, = | {=RR)D; I RR)R — (ie +tS)R'D,
R(ie +tS)D, tR(ie + tS)R — D,

|
; |
|
|
\
|
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—tR(I ~ R'R) — DyR(ic +1S) —LR(ic -+ tS)R — D,

This implies that

b = (I-RR)D,— DI~ RR)= (DR — BD))R+ R(D:R ~ RD,),
ve = R(ie+tS)Dy —tR(I — R'R) + DyR(ic + t8)

= (DR — RD)(1e +tS) +tR(D,S + 5D, — (f R’R)),
and

w, = —Dy(ie+tS)R +t(I— RR)R — (ic + tS)R'D,

= —(ie +tSYR'Dy— DR —(D\S+SDy— (I - RR))tR.

By assumptions (a) and (b}, b,u; and v, are in Lg(E). Thus Vi + Vi, =

LiNLVe+ ViL) € Le(E), t € [0,%5). One can easily check that (£, C,, V)

satisfies other conditions. Hence (£, Cy, Vi) € £, (A).

Step 3. We have shown that (£, B;, D) € £%,(A[0,1]) and (£,C,,V,) €
&u(A[0,%]). Note that Vo = D and Cy = By, (€, B, D) = (£,Cy, Vo).

This implies that 10.((€,Q, D)) = thou((€,Bo, D)) = tou((€,B1,D)) =

Yo,u((E, Ci» Vi )). Consequently, it suffices to show 1y, ((€, Cyy, Vi, ) = 0.

We now use Lemma 9.12(b).




(W IVEll <vf: Vi =

(@), v

IVl S IDY + toll Dy R — R'Dy )+ 1D3)] <

(2) Since QkVto = ka < 1 and 121/(1 -+ k)3 < 1,

IVie + Vil = ML Lo Vio + Vi Lioll < WEZHIIBI A+l ] + llogs )
= A1+ k) ((v*k + kv®) + 202|Jie + 1)) + 2t0kv?)

= 8(1+ &) (k424 2kv) <81+ k2B + k) < 1.

(3) Take X = S 0
Rty —Z
ViX + XV, = | D1S+SDi+RR  to(SR - R'Z)
0 0
—%(DzR — RDy) DyZ+ZD, + RR'

We obtain

IV X + XV — I = V2max{||D,S + 8Dy + R'B— I|| + |[to(SR — R'Z)|,

1 .
”%"'(DZR — RD)| 4+ |D2Z + ZD, + RR' — I)|}
0
2
< \/5111&)({1/2 + 2ok, -Ig— + %}
0

= V2max{p? + > VAV2(1 + k)% + 1))

1
V2(1 4 k)
1
2,
since v* -- —272-(1_'_—”2 < ﬁ; and v*(1V2(1 + k)*k® 4+ 1) < ﬁ,ﬂ; Therefore,
Vip X + XV, is invertible and

1
(Ve X + XVy)

-1« < 2,
< Tz xe, = <




(4) The norm of X can be estimated by

k

X1 = \/Qmax{IISII,IIZII+|lR/toH}S\/é(kﬂ*;o-)

= V2(k+4v2(1 + )k ¥ k.

(5) € has already the scalar product < ¢,7 >= Q(¢,Ty) with T2 = I. Now
Ci(&sm) = Q& Liyn) =< €, TLin >. But

1511 < V2max{|[] = RR|| + || —ie + toS"|| B'|, || R (~ie + 057)|| + 1}

< V214 B 4 (1 + tok)k) = ﬁ(1+k+k2+m).
BT = VRO k4 (a4 1
= AR+ R+ B+ B Zl_ﬂ) <R

(6) Finally, we check 2v/2uki(k; + 3ki%) < 1, where »y = 20,k = V2(k +
4/2(1 + k)%E%). In fact,
3

VV2k + 8(1 -+ k)2k3)
< 320(k 4+ 4V2(1 4 k)*E%)%2 = 640 (k -+ 4v/2(1 + k)2k%)°

2V k(s +3K8) = 320k + 4V3(1 + KKV (1 +

< 1.

Hence, the conditions of Lemma 9.12 are satisfied. The proof of the first part
of the proposition is complete.

Step 4: We now prove the assertion with (d) replaced by (d'). Let %, =
Z—RRZ+RSW, X, =1—-RW —DyZ ~ZDyy Xy =T —RR-— DS —SD,.

12l < 121+ NRINEN + IRINSHIW < &+ 242,




RSWD; + DyRSW = (DyR — RDy)SW + R(D:S + SD,)W
~ RS(D:W — WD) .
= (DyR— RDy)SW + R(I — RR)W

— RX,W — RS(D,W — WD,).
It follows that [|[RSW Dy + D RSW|| < w2k + k(1 4 k) k + kv2k + k202, Also,
RR'ZDy + DyRR'Z = (D;R — RD)R'Z + R(D\R' ~ R'Dy)Z + RE/(Dy7 + %Dy)
It yields ||[RR'ZD; + Dy RR'Z|| < kv + k%02 + K2(1 + k* + v?). Now

RR — I+ 72Dy + Dy 7y =

= RR' — 1+ DyZ+ ZDy+ (RSW — RR'Z)D, + D,(RSW — RR'Z)

= (RR I+ ZDy+ DyZ) + (RSWD; + DyRSW) — (RR'ZDy + Dy RR'Z)
= (RR —I)(I — RW — D,Z — ZDy) + RR(D,Z + ZD,) -+

+ (DyR— RD,)SW — RX,W — RS(D\W — WD)

— (D:R~ RD\)R'Z — R(D;R' — R'Dy)7 — RR'(I — RW — X;)

= (RR' — D)X, — (DR — RD\)(R'Z — SW) — R(D,R' — R'Ds) —

— RX,W — RS(DW — W D,).
We get
[RR — [+ Z,Dy + Dy 4[] < (1 + E*)0® + v?(2k%) + 3k%° = v*(1 + 6k?).

Therefore, replacing v and k in the first part of this proposition by v+/1 -+ 642
and k(1 + 2k?), we obtain that if

640/ 1+ 6E2{k(1 + 2k2) + 4v2E3(1 + 2K2)2(1 + k(1 + 2k2))%)° < 1,




then the conclusion holds. : QED
Let M and N be two compact oriented Riemannian (G-manifolds and
h: N — M be a G-pseudo-equivalence. Let E be an almost flat Hilbert
G — A-bundle over M whose fiber is a finitely generated projective Hilbert
G — A-module Ey. Let V be an almost flat connection on F. Then we have
two elements (€, (), Dg)} and (EM(E),Q,DM(E)) in L',OG,U(.A). The rest of this |
section is to show that these elements satisfy the conditions of Proposition 9.2. ‘

Hence, u0((€k, @, Dr)) = $uo((Emz), @, Divimy)).

Lemma 9.13 ([HiS]) Wilh the above notations, if f : N x [0,1] — M is
an cquivariant smooth map, then there is k > 0 such that for any unitary

connection V on E, | f5(V) — f{ (V)] < k||V?]. |

Proof. This lemma is independent of the group action since we are concerned
only with the norms. See the proof of Lemma 4.3 [HiS]. Q.E.D.

The following extends Lemmas 9.10 and 9.11 to the nonflat case.

Lemma 9.14 Let M and N be two compact oriented Riemannian G-manifolds

and E be a Hilbert G — A-bundle over M whose fiber is a finitely generated

projective Hilbert G — A-module E,.

(a) Leth: N — M be an equivariant smooth map and w an equivariant smooth

form on N. Denote by Ny the support of w and suppose that h is a submersion
near ¢ G-neighborhood of Ny. Then e, h* : Ep — Enr(py is a bounded equivari-
ant operator. Moreover, the norm of e, h* can be estimated by a number which

is independent of E. Let V be a connection of E and V' a connection of h*( ).

Then e h*(dom(Dg)) C dom(V') and V'(e,h*) — (e ,h*)V € L(Er, Envimy)- J




() Let h : N x [0,1] — M be an equivariant smooth map and w .an equw—
ariant smooth form on N. Let Ny be the support of w. Suppose that h
(resp. ho,h1) is a G-submersion near a neighborhood of No x [0,1] (resp.
No). Then there is k > 0 such that for any connection V of E there exists

R e L(&g, Eha(E)), IR|| <k and
lewh] — ewhi ~ ho(V)R — RV|| < E|IV?.

Proof. (a) Note that the difference of two connections is a bounded operator
and the domain of the connection is independent of the connection itself. By
treating first N = O x M and taking F trivial, we can quickly prove (a), since
the result 1s local.

To prove part (b), let
" 1 - .
R(§) = /O (i g (cuh*(&))dt, & € Eg.

Then the norm of R can be estimated by the number k which is independent

of & and the structures on M and N. As in the proof of Lemma 9.10,
. . 1 . .
(h(V)B + BV)(£) = (euhT — enhg)(6) + fo (12 (eu(A*(V) - R*(V))(£)))dL,

where A'(z,1) = h(zx,0) : N x [0,1] — M. Let R; be defined by the second

term of the above identity. Then
ewhy — e hy = hy(V)R -+ RV + Ry.

To estimate the norm of Ry, let H(z,{, ) = h(z, At). H(=,,0) = #'(z,t), and

H(z,t,1) = h(z,t). Using Lemma 9.13, we get | R, || < ||V?]. Q.E.D.




Let P: N x B* 5 M bea G-submersion, v a G—Sm(.)(.)t.h.'f.ofx.ll':.féf.}ﬁ;sg._ R

1 on B*. Suppose that ¢ : N x B¥ = N and r : N x B¥ — B are the
projections, w = r*(v}, and h : N — M is the restriction to N x {o} of P. Then
hq: N x B* — M is homotopic to P via the homotopy H(z,t,)) = P(z, At).
For this reason, we identify P*(E) with ¢*h*(E). Let Rp, = Rp,(E,V) =
qewP* € Lo(Ep, Enmmy).

Lemma 9.15 (a) Let P/ : N x B' — M be another G-submersion and /' a
G-smooth form of mass 1 on B'. Suppose h(z) = P(z,0) and b'(z) = P'(z,0)

are homotopic. Then there exists k > 0 such that for each pair (E,V) as above
there is R € Lo(Eg, Epnmy) satisfying ||R| < k and

|RV + VR + Rp,(E,V) — Rpr (B, V)|| < k||V?.

() If P: O x B' = N is a G-submersion and v' a G-smooth form of mass 1
on B!, Let P": O x B' x B¥ — M be defined by P"(z,8,t) = P(P'(z,s),1)

and v" = v' x v. Then there exists k > 0 such that for each pair (E, V),
| B o (B (E), (V)R (B, V) ~ Rpuyn( B, V)| < K[V

Proof. (¢) By Lemma 9.14, the proof is the same as that of Lemma 9.11.

(b) Define f: O — M by f(z) = P"(z,0,0) and let ¢’ : O x B* x B! = O
be the projection. Define two homotopies H and H between P” and fq¢” from
O x B x B* x [0,1] to M by

H(z,s,t,X) = P"(z, As, M), \

and

H(z,s,t,A) = P"(z,sup(0,2\ — 1)s,inf(1,2))¢).




H(z,s,t,0) = (fq")(2,3,1), H(z,3,t,1) = P"(x,s,t). We canpullba,ckthe |

unitary connection V on E to a unitary connection H(V) on H*(E) via the
smooth map H, and then by the parallel transport along [0,1] we define a
unitary operator U € Lg(Epm(my, Efqny+(r)). Same reasoning shows that H
produces unitary operators in Lo(Epm (g, 8;,—%)*(}_;;)) and La(Exy (my, E(ram(8))s
hence a unitary operator U € La(Eprs(my, E(rqm(E)). By the deﬁ?nition, Rpn =
g Uen(P")* for w” = w1, (v"), where m : O x B! x B¥ — B! x B¥ is the pro-
jection. Let Rpnn = /'l ewn(P")*. Then as in the proof of Lemma 9.11(5),

Rpnn = Rpi 1 Bp,,. the result follows easily from [HiS]
|Rrn = Rpnaoll < 1620 = U)eun (P < Ko} = U] < bV

where k) and m are constants independent of V and E. Q.E.D.

Finally, we can prove the equivariant Connes-Gromov-Moscovici theorem.

Theorem 9.2 Let G be a compact Lie group , M and N be two compact
oriented Riemannian G-manifolds of even dimensions. If h : N — M is an
orientation preserving G-pseudo-equivalence, then there exists v > 0 such that
for each G — C*-algebra A and v-flat Hilbert G — A-bundle E over M whose

fiber is a finilely generated projective Hilbert G — A-module,

¢O,u((8E1 Q; DE)) = Tpﬂ,u((gh‘(E)a Q) Dh*(E)))‘

Proof. The proof is to use Proposition 9.2 for (g, @, D) and (Eye(x), @, Dix(m)).

Let J : M — R* be a G-embedding, O a G-tubular neighborhood of

J(M) in R* and 7 : O — M be the corresponding G-projection. Suppose

J(M)+B* C O. Let P: N x B¥ - M be the G-submersion given by




P(z,t) = n(h(z) + t), and v & G-volume form of mass 1 6_&1_ B’“Take R-_—
Rp, € La(Eg,Enr(r)). We now check the conditions of Proposition 92 B A
To check condition (a), let »2 > [[V2||. D] = |IV?| < »2, and
[ Dr@yll = [[V?]} < v}, Take a G-smooth function ¢ with compact support
such that pw = w on N x B*. By Lemma 9.14, we can estimate || ew P} |
and flgll = (Pl = leuP"ll. Clearly, PV = P(V)P*, (V) =
(hq)*(V)q* and e, P*(V) = P*(V)e, for the closed form w. Then (epg™) e, PV =
(epq*) P*(V)e,P*, and
[(e0dYeuP'V = B (TNeug™Yeu Pl = [leua" Y P*(V)ew " — (V) eud"Yew |
< Mewd”) (P7(V) — (hg)*(V))eu P
b IR et — (eug™ (ha) (V))ew P
< m||V7,
by Lemmas 9.13 and 9.14 and the fact that 2*(V)(e,q*) = (eeq*)'(hg)* (V).
We have R(dom(Dp)) C dom(Du(m)) and [|RDg ~ Dyr(myR|| < my||V?|| for
some my > 0 independent of (E, V).
To check condition (), let ¢; : N x B¥ x B* - N x B* be given by
@i(@, t,tz) = (x,1;), P : M x B*¥ — M be the projection and # : M x B* — M
be the G-submersion given by #(2,t} = =(z + ¢). Then we can argue as in

the proof of Theorem 9.1 by using Proposition 9.2 to get S € Lc(€) such that
151l < ma, S(dom(Dg)) C dom(Dg) and

I~ R'R— DS — SDg|| < ma||V?

for constants m; > 0 independent of (£, V). The rest is the same as in

Theorem 9.1.



To check condition (c), take e(¢) = (—1)%¢. Then clearly s(dom(DE))

C dom(Dg),eDg = ~Dge,c = ¢',e2 = I and e(f — R'R) = (I — R'R)e, See
the corresponding part of Theorem 9.1.

Finally we verify condition (d') of Proposition 9.2. Indeed, let P, : M x
B' — N be a submersion such that ¢, : M — N given by @1(z) = Pi(z,0) is a
homotopic inverse of A, i.e., ¢1h and hg; are homotopic to the identities, resp..
Note that P, and ¢, may not be equivariant, and homotopy between ¢ A and
the identily may not be equivariant cither. But we can still identify F with
(hq:1)*(F) non-equivariantly. Let 1’ be a volume form of mass 1 on B! and

Wi = Bp o € La(Ermy, Er). then as before, there are constants my,ms > 0

such that |[Wy| < my, Wi(dom(Dg)) C dom(Dg) and
W1Dwe(y — DeWil| < my|| V2.

By Lemma 9.15 and Step 3 of the proof of Theorem 9.1, there exists Z; €
ﬁg(gh*(E)) satisfying ”21” S ms,Zl(dom(Dh*(E))) C dom(Dh~(E)) and

||I — RWl — th(E)Zl - Zth*(E)“ < m’?”VZHa

where mg and my are positive constants independent of (E,V). Let W =

Je9(Wi)dg, Z = [, 9(Z,)dg. We get the required operators. Let
v = max{([ 9, [V, o[V, g |92 el 9]}

and k = max{mg, m,, ms,me}. Then we have verified the conditions of Propo-

sition 9.2 as long as ||V?|| is sufficiently small. Q.E.D.




Chapter 10

Equivariant Novikov Conjecture for Groups

Acting on Buildings

This chapter is devoted to the proof of the equivariant Novikov conjecture
for groups acting on buildings. The case we deal with is the most general one
so far which the operator K-theory version of the equivariant Novikov conjec-
ture is known to be true. In fact, our result implies also that the equivariant
Novikov conjecture holds for groups acting on the manifolds of nonpositive
curvature which was treated by Rosenberg and Weinberger [RoW 2]. More sig-
nificantly, we remove a crucial condition on K%(Y') in Rosenberg-Weinberger's
theorem. Our method is to use Theorem 9.1 instead of the equivariant Mis-
cenko symmetric signature for compact group actions, which has not yet been
defined. This approach is quite different from the usual method for proving the
Novikov conjecture in which the Miscenko symmetric signature plays always
an important role. Since We have already devoted a long chapter to proving
the homotopy invariance of the (higher) equivariant signature with coefficients

in (almost) flat vector bundles, the present chapter is short. We need only to
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employ the results of Kasparov-Skandalis [KaS] to verlfy the mJect}wty of th
map §. This is done in section 10.1 where we set up the notations a,nd con_
struct the map B. In section 10.2 we complete the proof of the homotopy

invariance of the higher equivariant signature by using Theorem 9.1.

10.1 Euclidean Buildings and Map g

Let M be a compact oriented Riemannian manifold and G a compact Lie
group acting on M by isometries. Denote by m(M) the fundamental groupoid
of M which is defined by the equivalent classes of all paths in M. (M) can
be also given by =(M) = (J,% , where M is the universal covering space of
M. G acts naturally on 7(M). Let Br(M) be the equivariant classifying
space of 7(M) (see May's appendix for [RoW 2]) and fas : M — Bx (M) be
the equivariant classifying map. If h : N - M is a G-pseudo-equivalence
for another compact oriented Riemannian G-manifold N, i.e., k is G-invariant
and is a homotopy equivalence, then % induces maps k. : 7(N) — 7(M)
and hy : Br(N) — Br(M). Hence the following diagram of equivariant K-

homology groups is commutative:

KSM) 9 kS(Br(M))

1 b f b (10.1)

KE(N) "M kS(Bx(NY).




Let Dps be the equivariant signature operator on M. ThenDMdeﬁnesan
clement [Dy] in KE(M), which is in K$(M) for even dimensional M and
in K7(M) for odd dimensional M. One can expect in view of (10.1) that
ha(fn)«([Dn]) = (Fa)«([Das]). More generally, given a G-equivariant commu-

tative diagram

M
N

1 Y3 Bry), (10.2)
>

N

where Y is a G-space, h is a G-pseudo-equivalence and ¢ and 1 are G-
equivariant maps, one could conjecture the following (see Chapter 8)

ENCy (IRoW 2 (fy)upo(IDu]) = (fr)uthu([Dn]) in KS(B(¥)), provided
KZ(Br(Y)) is finitely generated over R(G).

Rosenberg and Weinberger have proved this conjecture for ¥ a complete
Riemannian manifold of nonpositive curvature, provided K¢(Y) is a finitely
generated module over the representation ring R(G) of G. The condition on
KZ(YY)is crucial in the proof of the conjecture due to the lack of the equivariant

Miscenko symmetric signature for general compact Lie group actions. The

prove the existence of the maps ¢ and ¥ in (10.2) for a general manifold M.
On the other hand, it is desirable to verify the ENCy for those Y whose

unsolved problem in this case is to remove the condition on K(Y) and to
universal coverings are equivariantly isomorphic to the geometric realization |
|
|

of enclidean buildings, since the euclidean buildings are the natural analogue




of complete Riemannian manifolds of nonpositive curvature. The recent work

of Kasparov-Skandalis [KaS] and Gromov-Schoen [GrS] on euclidean buildings
enables us to verify the ENCy for such Y. In fact, the existence of the maps ¢
and ¢ in (10.2) may follow from the results of Gromov and Schoen. The goal
of this chapter is to carry out the proof of the equivariant Novikov conjecture

for the above mentioned Y. Meanwhile, we will also get rid of the assumption

on KE(Y).

We now recall the definition of euclidean buildings (cf. [Bro],[KaS],[Tits]
for more details). Let X be a simplicial complex of dim n and B its geometric
realization. X can be considered as a set of its faces, X = Upcpen X k. X is said
to be typed if there is a map v : X° — {0,1,...,,n} such that for any simplex
¢ € X, the images under v of the vertices of & are pairwise different. v is called
a type of X. There is typed simplicial complex X; associated with a given
simplicial complex X of dim n such that X; and X have the same geometric
realization. We use the notations that chambers are the simplices of dim n;
walls are the simplices of dim n - 1, and apartments are some subcomplexes
of X determined by the Weyl system. (X, B) is called an euclidean building if
(1) B has a metric such that the apartments are affinely isometric to euclidean
space R™;

(2) any pair of simplices of X is contained in an apartment;
(3) the intersection SN .S’ of any two apartments S and S’ is convex and there
is simplicial isometry j : S — S’ such that 7 is an identity map on SN S5’ and

preserves the type, i.e., v(j(2)) = v(z),Vz € 5

(4) for any two chambers o and ¢’ of an apartment S there is a type-preserving




simplicial isometry j : § — § mapping o to o,

This definition of the enclidean building is slightly different from that in [Tits). |

In fact, every Bruhat-Tits euclidean building is an euclidean building in the
above sense. But comparing to the euclidean buildings given in [Bro], we

require an extra condition (4).

Example 10.1 (1) Let I be a field with o discrete valuation and SL,(F) the
group of n X n matrices on F with determinant 1. Then we can associate with
SL.(F) an euclidean building. In particular, this building for SL,(Q) is a tree
[Bro].

(2) The universal covering space of a complete Riemannian manifold of
nonposttive curvature can be considered as a geometric realization of some

topological buildings [BuS]. For more examples of euclidean buildings we refer

to [Bro].

Note that the geometric realization B of a euclidean building X is con-
tractible [Bro]. Let Ty be a discrete group which acts properly and freely
on the building (X, B) by type permuting isometries (we will take I'y to be
the fundamental group of M). Note that the action of Ty is called the type
permuting if there is a group homomorphism = : I'y — 5,,, the permutation
group of {0,1,...,n}, such that v(g(z)) = =(¢9}(x),Yg € To,z € X. The
action is called the type preserving if 7(g) = I,Vg € I's. Then the universal
covering space of ¥ = B/I'y is B. We assume that G acts on ¥ by cellu-
lar isometries via a homomorphism of & into Isom(Y') such that the lifting
of G-action to B is the type permuting. More precisely, there is a locally

compact group I' in [som(B) such that T' is the group extension of I'y by @,

A s




1 =Ty =T — G — 1, and acts on B by type permuting-. 1sometr1esThe

importance of I' is that C}(I") is strongly Morita equivalent to C*(#(Y)) x @
[RoW 2). Hence KE(Cy(r(Y))) ~ Ku(CHx(Y)) % G) = K.(CHT)). To con-
sider the ENCy for Y = B/T; we need a non-Hausdorff smooth manifold My
associated with (X, B). My is given by a I-atlas (U;, Uyj, i5)i jes satisfying
the following properties:

(1) I' acts on the index set J and U; such that g(U;) = Uiyt € Jg €It

(2) each U; is a Hausdorff manifold:

(3) Ui = U; and for 1,5 € J,U;; is an open subset in U

(4) wij : Ui = Uy is a diffeomorphism such that ¢; = Iy, and @;;{gz) =
gvij(z),g €T,

Let U° be the disjoint union of U;,i € J. Then My is the quotient of U?
by the equivalent relation “z ~ ¢;(2)”,2 € U;. My is in general non-
Hausdorff. 1t is Hausdorff iff the maps (r, s) : Uy; — U; x U; given by r(z) = «
and s(z) = r(p;i(x)) for = € Uj;; are proper. More specifically, let & be
the affine euclidean space £ = {t = ({o,...,¢,) € R**! : 2 ¢ = 1} and
E={teE:t={(t,...,ta),t; > 0,¥i}. Since ¥ is a convex set in 2, we can
define a continuous map ¢ : E — E by the formula |j¢(t) — ¢|| = inf{||t — s :
s € X}. For a subset O of {0,1,...,n} let Fo be the face of & defined by
Fo={te€X :t=(,...,t,) 11 € O if t; # 0}. Denote by Ny the interior
in E of ¢1(Fp). Obviously, Fy = Qy = 0. Then the I-atlas {Ui, Uij, 045} 18
given by U, = E,z € X,U,, = Qy(wryy for z # y in X and ¢, = I. Thus

Mx = U°/ ~ is a non-Hausdorff I'-smooth manifold. My is endowed with a

I-invariant Riemannian metric. The tangent bundle of My is trivial whose




fiber is the space of tangent vectors to . The crucial pfo'pértjr' ofMX is that i e
My is I'- equivalent to B, i.e, there are I'-equivariant maps f; : Mx — B and
fa : B — My such that fif; and f,f; are homotopic to the identity maps,

reps.. We have the diagram
B =5 My
P 1P

fa
Y = B/Fo 2y Yy = MX/PO,

where P is the natural projection, fi and f; are defined by the commutativity
of the diagram. Then Y is G-homotopic to Yx via the maps f3 and fy. It
follows from the isomorphism of (f4). ([Bla], p. 194) that we need only to
show (f49).([Dar]) = (fah)«([Dn]) in KE(Yx). The advantage of introducing
Yx is that one can then use various K K-theory information of non-Hausdorff
special manifolds. We now reduce the problem to the following:

(1) to construct an injective map 8 : K&(Yx) — KZ(C¥(r(Yx))),

(2) to show the G-pseudo-equivalence of B((fsp)«([Dum]))-

To define the map 3, let Vx be the Hilbert G- C7(x(Yx))-bundle over Yy
whose fiber V,, is the completion of C.(r—'(y), Q%), wherer : 7(Yx) — Yy is the
range map and 7 is the L -densities of 7*(Yx). As shown in [RoW 2], Vx is a
flat G — CX(n(Yx))-bundle. Note that Vy restricted to any G -compact subset
W C Yx gives a G — C}(%(Yx))-bundle over W, and hence defines an element
[Bw]in K§(C*W)QCH(=(Yx))). Let B be the homomorphism from K& (W)

to KZ(CHx(Yx))) given by the Kasparov product with {By]. 8% respects




with the direct limit to give a map § : KS(Yy) = lim_wer, KO(W) -5
KZ(Cr(n(Yx))). Furthermore, let Uy be the completion of the space of all |
continuous sections of Vx with compact support in Yx. Then (Ux,,0) is a
Kasparov G — C(Yx) — A® C(Yx) module with A = C*(7(Yx)), and defines

an element [Bx] € KK%(C(Yx),A® C(Yx)). We can consider [Bi] as a

restriction of [Gx] to W C Yx.

We are now going to interpret the map 8 as a Dirac element on My essen-
tially. Let C*(U) be the G—C™*-algebra of groupoid U = U, ,¢x Uy, associated
with the covering {U, Uy, I} of Mx. C*(U) is the completion of C.(U) =
®:yex Ce(Us,y) with the norm given by ||f|| = sup{||f.||,s € Mx} for f =
Doy foy 10 Ce(U) and || f5|| is the operator norm on H, = P({z € X;s € U,}),
since f defines a finite rank operator f, by < eg, fi(ey) >= f(2,¥,8) = fu (s).
The product of C*(U) is the convolution given by (f1/f2)sy = 32, fimzfo.ey for
Ji = @y finy in Cu(U). As pointed out in [KaS], C*(U) is independent of the
covering up to the Morita equivalence. Let C(U) = C*(U)QCLff(E). The
following facts were proved in [KaS]:

(1) Let P : Mx — pt be the trivial map. Then P, defines a Gysin element
P, € KK¥(CU),C) which is called the Dirac element Dy;

(2) There is an element nx € KK"(C,C*(U)) such that Dy ®¢ny = T €
KKV(CHU), CHU));

(3) There is an element Ox € RKKT(B;C,Cx(U)) such that {(a) Ox Qe (v)
Dx =1 € RK"(B), (b) o5,0;0)(@x)R0yw)Px = Ioxwy € KKT(CHU), C2(U)),

(¢) oB,cx@)(Ox) is invariant under the automorphism (51,82) — {82,81) of

CHU XU), where op oxwy : RKK"(B;C,CHU)) — KKY(CXU), Cx(U x U))




is given by (£,T) - (£ ® C}U),T ® I) at the Kasparov rr_.lodule_.fé.\}d',.._ﬁln

fact, Ox = (f, ), where f : B — My is a T-homotopy equivalence a.n.d:(f; I)| SR

is the Gysin element induced by the map (f,I) : B — Mx x B. But the

construction of ny is complicated. We refer to [KaS] for details.

Proposition 10.1 Let (X, B) be a locally finite euclidean building and I'y a
finitely generated discrete group acting on (X, B) properly and freely. Suppose
G is a compact Lie group acting on Y = B/Ty with a fized point. Let T' be
the extension of I'y by G and Mx be the non-Hausdorff smooth Riemannian
manifold associated with (X,B). Then B : KS(Yx) — KE(Cx(n(Yx))) is

injective.

Proof. As shown by Kasparov ([Kas 3], Thm 4.10,6.6 and 6.7), the facts

(1) — (3) above imply that the map §3 is the composition

Poincare duality

K%(Yy) ~ KZ(CHU/To))

Green—Julg Thm
~

A K.(CHU/To) % G)
Morita equiv

X K.(CHU) xT)

PR (CF(D))  KO(CH(r(Yy)),

where j5 1 KKT(A,B) - KK(A® CT),B ® C*(T)) is the reduction map.
See also [RoW 2]. The Morita equivalence above follows from the fact that
K{CHU[To) % G) = K (CXU) x G) "&™ K ((C*(U) X To) % G) ~
K.(C*(U) % T) by Theorem 1 [CMW] and Theorem 3.13 [Kas 3], since Gacts

on I'y and I' = Ty % G. The Poincare duality follows from Theorem 6.8 [KaS]

and the fact that for non-Hausdorff manifold Yy and its classifying space Yy,




K (Yx) = K&(Yx). Since jT[Dx] ®cymy 1" Inx] = Ioswywr, we have that A s

injective. QED e o

10.2 Homotopy Invariance of Higher Equiv-
ariant Signatures

We now prove the homotopy invariance of higher equivariant signature
for groups acting on euclidean buildings. Note that the action of a locally
compact group on the building is given by a homomorphism from the group

to the isometry group of the building.

Theorem 10.1 Let (X, B) ba a locally finite euclidean building, Ty a dis-
erete group acting on (X, B) properly and freely by type permuting isome-
tries. Suppose that compact Lie group G acts on' Y = B/Ty by cellular isome-

tries with a fized point. Then for G-equivariant commutative diagram (10.2),

@.([Da]) = u([Dn]).

Proof. As we remarked in the previous section, we need only to check
(fa)xp<([Du]) = (f)tbu([Dn]) in KG(Yy), where f, : Y — Yy induces an
isomorphism in equivariant K-theory. By Proposition 10.1, we know that
B : KE&(Yx) — KZ(C*(x(Yx))) is injective. It is thus suflicient to show
B((fa)wo([Dar])) = B((fa)sbu([DN])). Hence, the problem reduces to the G-
pscudo-equivalence of the invariant 3(( f4).p«([Dm])). In view of the construc-
tion of # above, the K K- index theorem [RoW 1] shows that Inda(D(s,ey«vy)) =
B(f1)sp(1Dm])), where Vy is the G — C¥{(#(Yx))-bundle over Yy constructed




in the definition of 8. Theorem 9.1 implies that Indg(Djppir)) is 3 G

pseudo-equivalence invariani. QED

Combining Theorem 9.1 with the proof above (see also [RoW 2]), We can
remove the condition that K¢(Y) is finitely generated over B((&) in Rosenberg-

Weinberger's theorem.

Theorem 10.2 Let Y be a complete Riemannian G-manifold of nonpositive

curvature in the commutative diagram (10.2).Suppose G acts on M with a fized

point. Then . ([Da]) = .([Dn]) in KE(Y).

The condition that KE(Y) is finitely generated over R(G) enables one
to reduce the compact group action to the finite group action and then the
McClure theorem is available.

We should point out that the condition on the fixed point of & is only to
guarantee the Morita equivalence in the proof of Proposition 10.1 which was
also used in [RoW 2]. The full generality of this Morita equivalence is not

clear to us at the moment.




Open Problems

The previous chapters lead us to many interesting problems. We list some
of them as follows.

(1) The L* analytic torsion for covering spaces is built on the positivity
condition of the Novikov-Shubin invariants. W. Liick told us about his con-
jecture that this condition is always satisfied. More generally, he conjectures
the positivity of the Novikov-Shubin invariants for any n x n matrices with
coeflicients in ZT" as an operator on @7 ,/*(T"), when T' is a finitely generated
discrete group (cf. also [Sun]). One can easily see that this is not true for
general finite von Neumann algebras.

(2) One can also define the L*-Reidemeister torsion for covering spaces
provided the Novikov-Shubin invariants are positive. The generalized Ray-
Singer conjecture is that the I2-Reidemeister and analytic torsions are equal.
The recent work of Miiller [Mil] and Bismut-Zheng [BiZ] might be helpful for
this problem.

(3) We are developing the K -theory torsion invariants for any C *-algebras
which differ from the torsions for tuples of commuting elements. The new K-
theory is needed to handle this problem.

(4) Furthermore, we are studying [Gong 3] torsion invariants in non com-

mutative geometry. This interesting problem deserves a full investigation,




since it may stimulate the study of other problems, such as index pr’dbl'é'rri's""in' S

non commutative geometry.

The following two open problems concern the application of (bivariant)
cyclic cohomology to the index problem.

(5) How can one use the bivariant Chern characters to study the index
problem? This problem is also addressed in [Dou].

(6) Can one obtain the index formula for (equivariant) odd #-summable
Fredholm modules (cf. Chapter 5 and [DIK])? We should point out that £ is
not a Fredholm operator without mild assumptions. Connes has also pointed
out this problem.

(7) Three interesting problems are to study the g-analogues of cyclic (co-
Jhomology, operator algebra cohomology and group cohomology. These new
research directions are under consideration. One point that is not clear to us
is the ¢g-analogue of K-theory. Perhaps one may first deal with the ¢-analogue
of homotopy groups.

(8) We would like very much to obtain the higher equivariant index the-
orem.

There are many conjectures in Chapter 8. We stress the following ques-
tions.

(9) Is an automatic group a hyperlinear group (cf. Chapter 8)7 Does the
Strong Novikov conjecture hold for automatic groups?

(10) We are in particular interested in the Novikov conjecture for virtually
residual discrete groups and amenable discrete groups. One expects that the

bivariant version of [BHM] is very complicated and interesting.
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