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Abstract of the Dissertation
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by
Gregério Pacellt Bessa
Doctor of Philosophy
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‘We use a compactness theorem of Anderson-Cheeger to prove a
differentiable diameter sphere theorem for Ricci curvature and as

a corollary we have an differentiable eigenvalue sphere theorem.
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Chapter 1

Introduction.

A basic problem in Riemannian geometry is the study of relations between
the topological and the Riemannian structures of a complete Riemannian man-
ifold. More precisely, under certain geometric bounds in M (e.g. bounds on
the sectional curvature, Ricci curvature, volume, diameter) describe topologi-
cal properties of M. For example:

Myer’s _Theorem: If (M™,g) is a Riemannian n-manifold whose Ricci cur-
vature Ricn gy satisfies Ricgyng) = (n—1)6 > 0, then:
1) The diameter of M diamym g) satisfies diamam g < »\%

2) The universal cover M of M is compact and the fundamental group m1{M)

of M is finite. Where Ric(png) is the Ricci curvature of (M™, g).

The underlying philosophy is: Which topological properties of a manifold
M can be deduced when geometric bounds are imposed 7
One of the aspects of these relations is the so-called topological rigidity, (1‘é-

spectively metric rigidity), i.e. bounds on the geometry of a manifold M, re-

stricts M to a finite class of manifolds up to homeomorphism, diffeomorphism




(respectively isometry ). One of the most striking examples is the Classical

Sphere Theorem due to Rauch, Klingenberg, Berger ([Kl], [Be]).

Classical Sphere Theorem: If (M™",g) is a complele, connected and sim-
ply connected n-manifold whose sectional curvature Ky satisfies 1/4 <

Kpg) <1, then M is homeomorphic to the n-sphere 5™.

Thus the condition on the sectional curvature provides a uniqueness of
topological types in this class of manifolds. There are other examples in which

a class of Riemannian n-manifolds is metrically rigid . For example:

Cheng Maximal Diameter Theorem ([Ch]): If(M™,g) is a Riemannian
manifold and satisfies Riciun ) > (n —1)g, diamungy = m then (M, g) is

isometric to (S™(1), gean)-

This thesis is concerned with some rigidity phenomena under Ricci curva-
ture bounds. It is shown that a Riemannian manifold (M, g) satisfying certain
geometric bounds is diffeomorphic to the canonical sphere S™(1), (Theorems
A, B). To introduce the particular problem considered let (M™",g) be a com-
pact n-dimensional Riemannian manifold satisfying Riciar,g) = (n—1)g, where
Ric(arg) is the Ricei curvature of {M™,¢). By Myer’s Theorem, the diameter

diamp,g) of M satisfies diamagy < m and if diampu,) = 7, then (M, g) is

' isometric to S™(1) . Similarly, a theorem of Lichnerowicz ({L]) , implies that

X\ (M,g) > n, while Obata ([Ob]) proved that A (M, g) = n implies that (M, g)
is isometric to (S™(1), gean). Here A1(M,g) is the first non-zero eigenvalue of

(M™, ¢) for the Laplace operator. Note that in the above results (Cheng’s Max-

imal Diameter Theorem, Lichnerowicz-Obata Theorem) the isometries occur




when the diameter assume the maximum value (respectively the minimum
value for the first non-zero eigenvalue for the Laplace operator). This raises
the following questions:
1) If Riciarg) = (n — 1)g and the diameter is close to m, is M homeomorphic
(diffeomorphic) to S™(1) 7
2) If Ricgug = (n—1)g and A (M™,g) is close to n is M homeomorphic
(diffeomorphic) to S™(1) 7

The answer to both questions is no. Anderson, (c.f. [A2]) constructed
for n > 4, a family of n-manifolds (M, g.) satisfying Ric(arg) = (7 — 1)ges
vol(M,g.) > v and diamps,y,) = (7 —€) for any € > 0 and some v independent
of €, which are not homotopy equivalent to $™(1). These manifolds (M, ge)
also satisfy A (M, g.) <n+e. It should be remarked that independently Otsu
answered the first question for n > 5 (c.f. [Ot}). Thus extra hypotheses are

needed to have a diameter or eigenvalue sphere theorem for Riccl curvature.

QOur main result is the following theorem:

Theorem A: Given an integer n > 2 and py > 0 there ezists an € = €(n, po) >

0 such that if M admits a metric g satisfying

Ricug) 2 (n—1)g, I (M) 2 PO diamprg) 2 T — €,

then M is diffeomorphic to S™(1) and the metric g is ¢ = €'(¢€) close in the

C® topology to the canonical metric gean of curvature +1 on S™(1).

‘Remark: Theorem A gives an affirmative answer to the first question in the

case that the injectivity radius is bounded from below. Note that in Anderson’s
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examples {as well as in Otsu’s) one can not replace the lower bound on the
injectivity radius by a lower bound on the volume in dimensions bigger than
or equal to 4. (A lower bound on the volume is a weaker hypothesis that a

lower bound on the injectivity radius).

Again in Croke’s Theorem the condition in the lower bound on the sectional
curvature can not be replaced by Ricrg = (n — 1)g without imposing an
extra condition as Anderson’s examples show.

As a corollary of the Theorem A we have the following result, which
answer affirmatively the second question in the case that the injectivity radius
is bounded from below. In some extent, Theorem B extends Croke’s result to

the diffeomorphism case.

Theorem B Given n > 2 and py > 0 there exists an ¢ = ¢(n,po) > 0 such

that if M admits a metric g satisfying

Ric(h/[,g} Z (n - 1)9, 2n.]{M,g) 2 Pos /\I(Mag) <n+e,

then M is diffeomorphic to 5™(1) and the metric g is € = €'{¢) close in the
C'® topology to the canonical metric gean of curvature -1 on S™(1).
In chapter 2 we are going to give present a (not complete) survey of sphere

theorems to put our results in context in Riemannian geometry and in chapter

3 we present the proof of Theorems A and B.




Chapter 2

Sphere Theorems.

In this chapter we begin stating some theorems relating bounds on sec-
tional curvature, Ricci curvature, volume, and diameter and first non-zero
eigenvalue for the Laplace operator of an n-dimensional Riemannian manifold
(M,g) and conditions for (M,g) be isometric (respectively homeomorphic,

diffeomorphic) to the canonical sphere (S™, gean)

2.1 Isometric Conditions

To study relations between topological and Riemannian structures of com-
plete Riemannian manifolds, it is natural to seek in first place sufficient con-

ditions to provide rigidity results. For example the following theorem

Theorem 2.1 If (M",g) is a complete, connected, simply connected n-manifold

with constant sectional curvature equal to I, then (M™,g) is isometric o

(S™, gean)-




naturally led to the study of the following class {(M™,g) | § < Ky < 1}
of manifolds. The Classical Sphere Theorem, states that for § € (1/4, 1] this
class has one element up to homeomorphism. Cheeger took one step further
and proved a finiteness theorem in a larger class of Riemannian manifolds,

which is known as Cheeger Finiteness Theorem ([JC]).

Theorem 2.2 (Cheeger Finiteness Theorem) Given A,v, D > 0 the class
of Riemannian n-mantfolds M(A,v,D) = {(M,g); | Koy |S A, vol(M,g) >

v, diamag) < D} has finitely many diffeomorphism types.

Now we start with some theorems providing suflicient conditions for (M, g)
be isometric to S™ without an upper bound on the sectional curvature and in

some cases with a weaker hypothesis as a lower bound on Ricei curvature.

Theorem 2.3 If (M, gq) satisfies Ky = 1 then vol(M,g) < vol(S™, gean)-

Here equality holds if and only if (M, g) is isometric to (S™, gean)-

Theorem 2.4 {Toponogov) If (M, g) satisfies Kg) = 1 then diamrg) <

7. Here equality holds if and only if (M, g) is isometric to (5™, gean)-

Theorems (2.3, 2.4) are true under weaker hypotheses as stated below.

For references see ([CE], [Sh2]).

Theorem 2.5 (Bishop, [BC)]) If (M,g) satisfies Ricaryy > (n— 1)g then

vol(M, g) < vol(S™, gean). Here equality holds if and only if (M, g} is isometric

to (Snagcan)-




Theorem 2.6 (Cheng, [Ch]) If (M,g) satisfies Ricagy = (n — 1)g then

the diamarg) < w. Here equality holds if and only if (M, g) is isometric to
(Sn:gcan)'

Theorem 2.7 (Lichnerowicz-Obata Theorem, [L], [Ob]) If (M,g) sat-
isfies Riciarg) = (n — 1)g then A(M,g) = n. Here equality holds if and only

if (M, g) is tsometric to (S™, Jean)-

Here A1 (M, g} is the first non-zero eigenvalue of (M, g) for the Laplace opera-

tor.

Remark: Again, note that the isometries in the results above occur when
the volume, diameter assume maximum values (respectively the first non-zero
eigenvalue for the Laplace operator the minimum value), therefore is reason-
able to expect that some homeomorphism (diffeomorphism) may be obtained
near the maximum (respectively minimum) values. Furthermore whenever
Riciamg) = (n — 1)g and the volume of (M,g) is close to the volume of the
canonical sphere (S™, g.on) the diameter of (M, g¢) is close to the diameter of
S™(1).

Guided by the isometric conditions above, many authors have shown that
there exists some topological rigidity near the maximum values of volume and
diameter (respectively minimum value for the first non-zevo eigenvalue for the
Laplace operator) whenever some extra condition is imposed. For example: a
lower bound on the sectional curvature or injectivity radius, (c.f. [Es], [Nk],

[Sh], [P}, [GP], [Cr2]). In the next section we are going to present some of

these topological rigidity theorems.




2.2 Topological Sphere Theorems

Using the fact that if a compact manifold M is covered by two non-
overlapping closed disks is homeomorphic to S”. Shiohama proved the follow-

ing theorem:

Theorem 2.8 ((Shiohama) [Sh]) Given n > 2 and k > 0 there ezists
¢ = e(n,k) > 0 such that if a manifold M admits a metric g satisfying
Koug) = —K, Ricgugy 2 (n - g, vol(M,g) = (1 - e)vol(5™, gean) then

M is homeomorphic to S™.

Eschemburg and Nakamura ([Es], [Nk]) independently extended the result
of Shiohama for a diameter sphere theorem imposing a lower bound on the

injectivity radius. In fact they proved:

Theorem 2.9 ((Eschenburg-Nakamura) {Es], [Nk]) Givenn 22 and p,
k> 0, there exists an € = e(n, k, po) > 0 such that iff M admits a metric g satis-
fying Kug) > —k?, Ricg) = (n—1)g, injarg) = po and diamug) 2 (7 —¢),

then M 1is homeomorphic to S™.

Two possible ways to extend Eschemburg-Nakamura's result to a larger class
of manifolds are:

1) Removing the lower bound on the sectional curvature.

2) Replacing the lower bound on the injectivity radius by a weaker con-
dition like a lower bound on the volume.

Petersen ([P}) was able to extend Eschemburg-Nakamura’s result remov-

~ ing the lower bound on the sectional curvature, and Grove-Petersen ([GP])




replacing the injectivity radius by a lower bound on the volume. The state-

ments are as follows:

Theorem 2.10 ((Petersen) [P]) Given an infeger n > 2 and py > 0 there
exists an € = e(n, po) > 0 such that if M admits a metric g satisfying Ric,g) 2

(n — 1)g, injang) = po and diamqg,gy 2> (7 — ¢) then M 5 a twisted sphere.

Theorem 2.11 ({Grove-Petersen) [GP]) Given an integern = 2 and k,v >
0 there exists an € = €(n, k,v) > 0 such that if M admits a metric g satisfying
Kgy = k, Ricpagy = (n —1)g, vol{M,g) > v and diamg) = (1 — €) then

M is a twisted sphere.

On the other hand Croke gave an affirmative answer for the second ques-

“tion under stronger hypothesis (i.e. a lower bound on the sectional curvature),

‘in fact he proved the following result:

Theorem ([Crl]): If M is a compact n-dimensional Riemannian manifold

with sectional curvature Ky > 1, then there is a constant O(n) > 1 such that

sz‘(n) -n > M{M) > n then M is homeomorphic to S™(1).

It is known that for n > 7 there exists manifolds which are homeomorphic to
but not diffeomorphic to the n-sphere with its standard differentiable struc-
ure (see [Mi], [GM]). In fact Gromoll-Meyer construct examples of exotic
7'—?spheres with non-negative sectional curvature and positive Ricci curvature.
_he existence of such manifolds give rise to the problem of finding conditions

to single out the differentiable structures of S™.




2.3 Differentiable Sphere Theorems

The classical differentiable sphere theorem was first proved by Gromoll
([Gr]), Shikata ([Sk]} and Calabi (not published). They proved that a n-
dimensional Riemannian manifold (M™,g) satisfying 0 < é(n) < K < 1
is diffeomorphic to 5™ with its canonical differentiable structure. Shiohama-
Sugimoto ([SS]) proved the independence of the dimension. It can be stated
as follows:
Theorem: ([Gr], Calabi, [Sk], [SS]) There exists § € (1,1/4] such that if
a simply connected n-dimenstonal Riemannian manifold M admits a metric g
satisfying 1 > K(pg) > 0 then M is diffeomorphic to the n-sphere 5™ with the
the standard differentiable structure.
The most recent estimate for § is § = 0.681 (see [Su}), but is generally believed
that the Classical Differentiable Sphere Theorem holds for § = 1/4.

The first result on the differentiable sphere theorem without assuming

an upper bound for the sectional curvature was proved by Otsu-Shiohama-

Yamaguchi ({OSY]).

Theorem 2.12 ([OSY]) For a given n > 2 there exists an ¢ = ¢(n) > 0 such
that if a manifold M admits a metric g satisfying Kqg) > 1, vol(M,g) >
(1 — €)vol(S™, gean ), then M is diffeomorphic to n-sphere S™ with its canonical

standard differentiable structure.

Yamaguchi extended Theorem (2.8) to a differentiable sphere theorem,

(c.f [Sh]). The first differentiable sphere theorem without bounding sectional

curvature was proved by Anderson {c.f. [Al]).

10
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Theorem 2.13 (Anderson, [Al]) Givenn > 2 and C > (n~1) there exists

an € = €(n,C) > 0 such that if an n-manifold admit a metric g salisfying
C > Ricagg > (n—1), wvol(M,g) > (1 — €vol(S™, gean),

then M is diffeornorphic to canonical sphere of sectional curvature +1 on

Sn(1).

This upper bound in Theorem (2.13) is a technical hypothesis necessary in

the proof. It remains an open question whether the same result holds without

this upper bound.
Finally we remark that the our main result (Theorem A ) extends Theorem

(2.10) to a differentiable sphere theorem and as a corollary we have a differ-

entiable eigenvalue sphere theorem. We restate Theorems A and B for sake of

completeness of this section.

Theorem A: Given an integer n > 2 and po > 0 there exists an € = ¢(n, pg) >

0 such that if M admits a metric g satisfying

Ricpe > (n—1)g, injm = po, diampay 2 7 — &,

then M is diffeomorphic to S™(1) and the metric g is € = €'(¢) close in the

- C topology to the canonical metric gen of curvature +1 on S™(1).

Theorem B: Given n > 2 and po > O there exists an € = €(n, po) > 0 such

that if M admits a metric g salisfying

RiCM e (n - 1)ga Zn]M 2> Po, /\1(M) <n+te,
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then M is diffeomorphic to S™(1) and the metric g is € = €(€) close in the

¢« topology to the canonical metric goun of curvature +1 on S™(1).




Chapter 3

Proof of Theorems A and B

We start this chapter giving the definition of convergency of sequences of

Riemannian manifolds in C'*-topology.

Definition 3.1 A sequence (M;, ;) of Riemannian manifolds is said to con-
verge in the C%-topology for a fized o < 1 to a C-Riemannian manifold
'_ (Moo, Goo) if Moo is a C™ manifold with a C* metric tensor go, and there is a
sequence of CY diffeomorphisms fi : Mo, — M; for i sufficiently large, such
that the metrics frg; converge to go, in the C*-topology on M.,. Here the Che=
" structure is defined with respect to some fized C* atlas compatible with its

O structure.

If a sequence (M;, ¢;) of Riemannian manifolds converges in the ('*-topology
“ to a C*-Riemannian manifold (Mw, ¢e), we may assume that all metrics g;
re defined on a C* fixed manifold M and the metrics g; converges to ge in
the C*-topology. The following theorem (C'*-Compactness, see [AC]) which is
a generalization of Cheeger-Gromov Compactness Theorem is the main tool

ised in the proof of Theorem A, besides elliptic regularity.




 Theorem 3.2 (C*-compactness (Anderson-Cheeger)) The space of com-

| pact Riemannian n-manifolds (M, g) such that
RiC(M,g) = —A, inj(M'g) > po > 0, 'UOl(M'g) <V (3.3)

is pre-compact in the C* topology for any o < 1. More precisely, given any
sequence of n-manifolds {(M;,9:)} satisfying the bounds (8.8) and given any
fized o < 1, there is a convergent subsequence in the C’O‘.topology. The limit
:manifold (Moo, 9oo) admits an atlas of CY* harmonic coordinates charts F), :
U, — R" having the following property:

(1) The domains U, are of the form U, = F['(B(rs)), where B(rx) C R,

“with radius satisfying v, > ¢(n, po,a, @), @ <1 and Q > 1 fizred. The domains

:-F_l(B(Th/Z)) cover M.

m

(2) The overlaps F,, = F, 0 F,* are controlled in the CV*-topology,
e ||[Fullere < e(n, po, o, @)
(3} The metric geo,; = goo(a%i,i) in the charts F,, are controlled in the

8r;
e £ Q-1

7o _topology in the sense that Q@718 < gooi; < Q- 0i5 and rji | geo;

3.1 Proof of Theorem A

To start let us consider a sequence of Riemannian manifolds {(M;, )}

Ric(M;,g;) > (n—1)gi z.“"r"’j(Me,ge) = po, diam(M;,gs) > (7 — &) (3.4)

iere lime; = 0. By theorem (3.2), (M), ¢:i) — (Mo, geo) in the C* topology,

here (Mo, 9oo) is @ C* Riemannian manifold. In particular for 2 sufficiently



: large all (M;, g;) are diffeomorphic to (My,, 9o ). Then we show that the first
eigenvalue for the Dirichilet problem in any ball of radius 7/2, A (Bi(z,7/2))
converge to Ay(Bgsn(m/2}) = n. From this we show that g., is a weak L? (p >
n) solution of Ricci equation (Ric(arg,,) = (7 —1)geo) in harmonic coordinates.
By use of elliptic regularity g, is smooth, has Ricci curvature Ricarge) =
(n — 1)goo- Since diameter diamar,.,) = 7 we can apply Cheng’s maximal

diameter theorem to conclude that (M, goo) 1s isometric to (S™, can).

From now on, we assume that all the metrics are defined on a fixed C* man-

ifold M and the metrics g; converge to g, in C* topology.

Proposition 3.5 Let {(M,¢)} be a sequence of Riemannian manifolds sat-

Ricirgy 2 (n— 1), njamg) = po, diamp,g) 2 T — &, (3.6)
h’ére lim; o0 €; = 0,. Then passing to a subsequence if necessary,
)\J(B,'(SC,?T/Q),Q,;) - /\1(35"("?/2)19&17@)' (37)

re Ay (Bi(z,7/2), ¢;) is the first non-zero eigenvalue for the Dirichlet problem

he ball B;(z,m/2) in the metric g;.
ove this proposition we need some lemmas.

ma 3.8 (Cheng’s Lemma ([Ch])) Suppose (M,g) is a complete Rie-
nian n-manifold satisfying Ricprg) > (n — 1)g. Then for any x € (M, g)

ny r € [0, diam,]| we have:

/\1(.89(.7:, T), 9‘) < Al(BS"(T): gcun)

15




with equality holding iff (By(z,r),g) is isometric to (Bsn(r), gean)-

Lemma 3.9 Let {(M,¢:)} be a sequence of Riemannian manifolds satisfying

he bounds (3.6), then passing to a subsequence if necessary,

M(Bi(z,7/2),4:) = M(Bool2,7/2), 900 (3.10)

he proof of this is going is to be shown in 3 steps.
Step 1

Let {g:} be a sequence of metrics on a compact manifold M converging

’té goo in CP-topology and let D be a domain in M. Then,

-00f:

Let g and gg be two metrics on a closed manifold M such that a?gy < g <
g0 with 0 < a? < b%. Then for any k

T

b
a2 /\k(M)QO) (312)

a®
bn+2

Me(M, g0) < \(M,g) <

proof of this fact is in [GHL] page 179, and only uses the max-min prin-
le. The same proof also works for a compact domain D C M. Hence, if
s'e:quence {g;} of metrics on M converges to g, in the C%topology then
19i) = A(D, geo ), since we can find sequences of real numbers {a;} and

satisfying 0 < a? < 82, im0 @; = Hmy_ o b == 1 and afg; < goo < blgs.

16
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Step 2

Let {gi} be a sequence of metrics on a compact manifold M converging in

CO-topology to geo. Given § > 0 there exists 4o = 10(8) > 0 whenever ¢ > 1

Boo(o,7/2 — 8) C Bi(e,7/2) C Boo(z,7/2 + 6) (3.13)

Proof :

From Theorem (3.2) part (1), we know that M has coordinate charts of the
form F7*(B(ry) and the domains F; ' (B(rs/2)) cover M. Then {(gri)oo are
‘bounded on the closure of F'(B(ry3))

Given ¢ > 0 there exists 3o > 0 such that for all 1 > 4y and for each chart

sup | (gii — (grs)eo |S € (3.14)

_'Now fix ¢ > iy and consider y € By(z,%/2). Let v:[0,1] = M be a minimal
‘geodesic with respect to g; joining z to y. Assume that ([0, 1]} is contained
n the closure of F7'(B(ry2) for some chart. The general case is done by

‘breaking -+ in pieces such that this condition is satisfied.

In a local chart ' = >op k0] O,

| () — e (V) | < /01 | (\/Z(gkj)ka’“j - \/Z(gkj)oovk%‘) | dt
< /1 | Y((grj)i — (grs)oo JUry; | dt

\/2((9kj)oovkvj)
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Using twice Cauchy-Schwarz inequality we get

en | v |

|l (7) = oo () |2 o (3.15)

where | v |*= S v? and A is the smallest number such that >2((gk;)eovav;) =
X v |*> 0 in all charts F'(B(ra2) covering the manifold. (Note, there are

only finite number of them.) In other words

en | v |

VA

Now we have to show that | v | has an upper bound independent of ¢ and y.

doo(2,y) < difz,y) + (3.16)

Since v is a tangent vector of a minimal geodesic v : [0,1] — M in a metric
i, the length || v ||,,< diamary, < 7. Then 72 =] gk )ivev; =] (k)i —
(koo )0V + (ks )oo iV |

> | 329k )oovsvs | = | T((9ks)i — (ghs)eo)uavi |2 A v [* —ne | 0 [?

Therefore we have that | v |< . This shows that B;{z,7/2) C Bo(z,7/2+

NET

v/ AA—ne) ),

Vi > 19, Set & = A"E;’i ; and solve for e, this gives (by the above)

io = io{€(8)) > 0 satisfying (3.13). The other inclusion is proved similarly.
Step 3

lim Ay (Bi(z,7/2),9:) = M(Boo(2,7/2), go0)

1—+00

Proof:

From (3.13) we have for ¢ > 4g:

Al(Bw(m,%r/Z +68),9:) € M{(Bi(z,7/2),9:) € M(Boo(w, /2~ 6),9:) (3.17)




Therefore

lim A (Boo(, 7/246),9:) < lim A(Bi(z,7/2),9:) < lim M{Boo(z, 7/2-6), 3:)

(3.18)
From (3.11) the left hand side limit is
M(Boo(2,7/2 + 6}, goo)
and the right hand side is
/\I(Boo(xa ’7]'/2 - 5)7 goo)
Letting § — 0 we have that
lim A{Bi(z,7/2),¢:) = M(Boo(z,7/2), g0 ) (3.19)

T— 00

Remark: It is clear in the proof of lemma (3.9) that given ¢ > 0 there exists
io = 1p(€) > 0 depending only on € such that Vi > 15 and any © € M,
| M(Boo(z,7/2)) = M(Bi(=,7/2)) |< e

Lemma 3.20 Let {(M,g:)} be a sequence of Riemannian manifolds satisfy-

ng:
R’L’C(M,g'.) > (n—1)g, NI (M,g) = Por d’iam(M,g‘.) > =g, (3.21)

where lim;_,o ¢; = 0. Then passing to a subsequence if necessary,

Vol(M, g} — Vol(S™, gean)- (3.22)
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Proof :

By the Bishop-Gromov volume comparison theorem {[G], [BC], [CGT]), the

functions
_ Vol(0B(z,r)) () = Vol(Bi(z,r))
Vol(dBsa(r)) 7" Vol(Bsn(r))

fi(r) (3.23)

are non-increasing as function of r for any fixed z.

Here B;(xz,r) is a geodesic ball in M of center z and radius r in the metric g;.

Claim:

Vol(0Bi(z,7),g:) = Vol{0Bs(z,1), go)-

For almost all r in [0, 7] and fixed z.

Since g; — goo in the C'* topology we have
VOJ(Bk(I7T)3gi) — VOI(BFG(:E)T)?QOO)

The proof of this fact is trivial.

Now given § > 0 Jig = 1p(8) > 0 such that Vi > ¢y we have (see (3.13)):

Vol(Boo(z,7 — 6,9;)) < Vol(Bi(z,r),g;) < Vol(Bu (2,7 + 6), 4i)-
Then

lim Vol(By(z,r — 6),9:) < lim Vol(Bi(z,r),9:) < lim Vol(Be(z,r + 6), g:).

1—O0 i—+00

Therefore
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Vol(By (2,7 — 6),0s0) < lim Vol Bi(z,1), goo) < Vol(Beo(z,7 + 8),¢c0 )

1—00

Letting 6 —+ 0 we have:

hm Vol(B,-(m, T'),g-i) - VOE(BOO(:L.J T)J gOO)'

100

r _ Vol( B, ) . . . .
Thus fe(r) = J—L—l—lovol&::&f)‘” is non-increasing as a function of r for any fixed

z. The sequence of functions defined by s — Vol(3B;(z,s),¢) is uniformly

bounded, just note that fi(r) is non-increasing (see (3.23)).
Then

Jo im0 VOl(OB(z,8), g:)ds = lim;_, fy Vol(8Bi(z, s), g:)ds = lim;,o, Vol(B;(z,7), ¢:)

= Vol(Be(z,7), go0)
Therefore

for[jim Vol(3Bi(z,s), i) — Vol(3Beo(w, 5), goo)|ds = 0

for all 7 in [0, 7).

This implies that lim;e Vol(0B;(2,r),4:) = Vol(0B(2,7),9s) for almost
all r in [0, 7).

Thus fo{r) = %&BT(%%%} is non-increasing as function of » almost everywhere

in [0, 7] for any fixed .
Before we proceed we need to recall a definition.

Definition 3.24 Given lwo points p,q wn a compact Riemannian manifold

(M,g) we define the excess funclion e,q: M — R as
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€pq(z) = disty(p, ) + disty(q, x) — disty(p, q)

and the excess of a manifold as e(M,g¢) = min, { maz, e, (z) }

We are going to present a proof that (M, ¢.) has excess zero due to Grove-

Petersen (see [GP]).

Given two points p,q in (M, go,) realizing the diameter, ie. dist, (p,q) = =,

we just need to show that for any é > 0, we have:

OBy (py 7 — &) = 8B..{g,9) (3.25)

because given any z in (M, g ), suppose dist, (p,z) = 7 — 6. Then z €
OB (p,® — 8§) = 0Bw(q,6). Thus there exists minimal geodesics 71,7, from
p to = and from z to ¢ respectively such that the lengh I(v4) = 7 — ¢ and
() = &. Then e,,(z) = dist, (p,z) + disty (z,q) — disty (p,q) = {n) +
l(72) — disty,(p,q) = 0.

Now to prove (3.25) suppose that is not true, so there is z € M such that
distyoo(p, @) > ® — 6+ 11 and distye,(g, ) > 6 + ns.

Then the balls Boo(p, 7 — 8), Beo(q,0) and By {(z,ns) are pairwise disjoint, for
13 = 1/2min{n1,n2}.

Since fo(r) is non-increasing for every r, we have:

Vol(M, go) 2 Vol( Boo(p,® — 1)) + Vol(Bo(g, 8)) 4 Vol(Beo(2,73))

Vol(M, goo)
~ Vol(5™, gean)

(Vol(Bgn(m — ) + Vol(Bsn(6) + Vol{ Bgn(ns)) > Vol(M, geo)
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A contradiction.

Since (M, goo) is @ smooth manifold with a C“ metric, we have (see [CGT}):

lim Vol(0Boo(p,7))
r—0 Vol(0Bg=(r))

Note that theset A = { s € [0,7] | limi_e Voly,(0B;(z,s)) = Vol, (0Bux(z,5)) }

=1

is dense in [0, 7] and u(A) = u([0,7]).

By (3.23) we have:

1 — i VOUOBoo(p7)) | Vol(0By(pym — 8))  VolldBo(g,6))

N ol (0Ban () = VolldBe(r —8)) ~ VolldBam(®)

(3.26)
as § — 0.

Thus Vol{0Bu(p,r)) = Vol(0Bgn(r)) ¥r € A. This implies that

Vol(M, go) = /O " Vol,_(8Bwl(z,s))ds = /O " Vol(8Bgn(s))ds = Vol(5™, gean)

Proof of Proposition (3.5)
By lemma (3.10) we need to show that Vz, A (Be(z,7/2)) = A (Bsn(7/2)).

Since Vol{M, goo) = Vol(S™, gean) (lemma (3.22)) and because foo(r) is a non-
increasing function of r it is easy to see that given any point z in (M, goo) there
exists a point y = h{z) such that dist, (z,y) = m. By the same argument

showing that (M, g, ) has excess zero is clear that the excess is realized by

any two points realizing the diameter. In particular,  and h(z) realize the
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excess e(M, goo) = 0 of (M, g, ). Moreover, given z, h(z) is unique, for if there
exists z # h(z) such that dist, (z,z) = =, we have a minimal geodesic v from
z to A(z), passing through z since & and h(z) realize the excess of (M, g,,),
e(M, goo) = 0. Thus I(y) = dist, (z,2) + dist, (2, h(z)) = disty (2, h(z)) =
7. It contradicts the fact that 2 # h(z). This defines a function b : (M, go,) —
(M,gc). By the previous discussion h is well defined and injective.

Claim:

his a CM* isometry of (M, g.,).
Proof:

Given any two points in (M, ¢ ), say z and y. There are minimal geodesics

and 7, from z to h(x) passing through y and h(y) respectively. So dist, (z,h(z)) =
dist, (z,y) + dist, (y, h(z)) = dist, (z, h(y)) + dist, (h(y), h(z)). Suppose
disty (z,y) = ¢, then dist, (y, h{z)) = m — e. By triangle inequality we have:

= disty,, (y, hly)) < disty (y, h(z))+disty, (h(z), h(y)) = 7—etdist,. (h(z), h(y))
Then dest, (A{z), h{y)) > €.

Also we have:

r = disty., (4, h(y)) < distye (v, 2) + disty, (2, h(y)) = € + dist,,. (2, h(y))

Thus dist, (z,h(y)) > & — e Since dist, (z,h(z)) = dist, (z,h{y)) +
disty,, (h(y), h(z)),

we have that dist, (h(y), h(z)) = € i.e. A is a distance preserving function.

Theorem(Calabi-Hartman ([CH]}). Let (M, ¢) be a connected n-dimensional

C® Riemannian manifold, 0 < « < 1. Then any isometry ¢ of (M, dist,) is of
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CM® regularity. Furthermore ¢ satisfies
Pg=yg
By this result of Calabi-Hartmam, A is a C1* isometry.

Note that 0B (#,7/2) = 0B (h{z),7/2) see (3.25). Thenif z € 0By (z, /2)
by triangle inequality h(z) € @Bz, 7/2). Thus A(Bu(z,m/2)) = Boo(h{z), 7/2).
Therefore,

)\1(300(22,71'/2),9'00) = )\1(_800(}&(:1?), 7"/2):900)' (3'27)

Now we are in position to show that A (B (z,7/2), 9o ) = M (Bsn(7/2), Gean )

Vo € (M,g). Given z € (M, go,) the balls B(z,7/2), Bo(h(z),r/2} are
disjoint, (desty,, (z,h(z)) = 7). By Cheng’s lemma ((3.8), [Ch] ) we have:

AM(Bi(z,%/2),9:) < A(Bsn(m/2), Gean) V. (3.28)

Hence from lemma {3.9)

A (Bool@,m/2), goo) < M(Bsn(7/2), gean)- (3.29)

By Lichnerowicz’s formula, (see [L], [BGM]) A1 (M, ¢;) = n, thus A\ (M, gs) >
n.

Therefore,

< MM, goo) < maz{Ai(Boo(#, 7/2), goo)s Mi(Boo(A(x), 7/2), go0) }

..<_ AI(BS“(W/Q)agcan) =N




But by (3.27), M(Be(2,7/2),ge0) = M{Boo(h{2),7/2), goo). Then the propo-

sition (3.5) is proved.

Proposition 3.30 The limit metric g, is smooth and satisfies Ricip,.,y =

(n—1)¢co-

Proof:
The proof will be in 3 steps. Let ¢ be the nonnegative first eigenfunction of
Bgn(7/2). It is known that ¢ is cos(r) . Let p; be the distance function w.r.t.
the point z in M and the metric g;. lLet us fix 7 and work on the manifold
(M, g;)

The function cosop;, satisties the boundary conditions of the Dirichlet

problem.
Hence:
f(dcosop;,dcosop;)
. < .
A](Bi(:l;) 7‘-/2)) —= I(COS Op.i).z (3 31)
Stepl:

Given € > 0 there is tg > 0 such that if 1 > ¢y then we have the following

estimate:

0<— jf - ]0 " cos(t) - sin(t) - 6:(26) - ln’(_‘ng)l)dtdf <e-e, (332

sin(t)"~

where df is the canonical measure of S™71, 6;(t£) is y/det(gi)py - t*F w.r.t.

normal coordinates, a({)=min(r/2, dist. of cut point in the direction ¢) and

¢ is a constant independent of ¢.
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Proof :

From (3.31), integrating on the tangent space of & we have:

(z,7/2)) // e cos(t)* - 0;(t¢) dtd£<f] sin(t)” - 0;(t€)dtdé (3.33)

Now integrating the right hand side of (3.33) by parts we have:

A "® sin(t)20,(16)dvdz = | cos(a(©)(= sin(a(E))Pla(e)é)dt ~
n—1 n—1

- ff cos(1)0(t6) [~ cos(t) + (- — "=
01(t¢) [sm( )(ﬂ D) fsin(t) V)

T 00 sm(rT T sm(ger sl
- fg cos(a(£))(— sin(a(£)))8:(a(€)¢)de
— f/a(é)cos(t)(—sin( ))8;(€) In'{ n((tt)f) )dtdé
+ / /fé cos(#)°0;(¢€ ) A (Bsn (m /2)didE) (3.34)

+ fﬁféam n;l cos(t)(—sin(¢))0;(t€)dtdé.

Then from (3.33) and from (3.34) we have:

Bz x/2)- | / cos(t)? - (t€)dtde < [ cos(al&))( —sin(a(€))u(al€)6)de

—f—/]a(g}cos ) sin()0;(t) In'( 6((?5)5) Ydtd¢ {3.35)

+ fE /ﬂ(>@(t)zai(t£)/\1(35n(,r 1)) + f,g /;(s) (n

The first and the fourth term of the right hand side of (3.35) are negative.

D) cos(t)(— sin())B:(t8)drde.

Then

A(Bi(z,7/2)) - f/:{i) cos(t)? - 0;(¢€)dtd¢

£




_//a(s)cos )sin{2)8;(t€) ln ( ((t)E) )dtdé (3.36)

j f " s (£)20:(t) M (Bsn (1 /2))dtde

By proposition (3.5) and Cheng’s lemma (3.8) given € there exists an 75 > 0

such that if 1 > i, then Vz
0 < M (Bsn(m/2)) — M(Bi(z,7/2)) < e (3.37)

From (3.37) and (3.36) it is then easy to see that

0 < Ji Jo'® cos(t)(sin(t))0:(4€) In' (5L Y dede

+/E/Da(£) cos(t)20;(tE) [\ (Bse (7/2)) — A (By(z, 7 /2)|dtdé (3.38)

From the proof of Bishop-Gromov inequality ([BC]), 1n’(ﬁ(%)t—£);—]—) < 0, then

the first term of (3.38) is negative. Therefore

0 < fi o cos(t)(— sin(t)8i(t€) In' (ks Ydede

sin(t)n—1

] / cos(£)20;(t6)[M(Bsa (7 /2)) — M(Bi(z, 7 /2)]dtde <e-c, (3.39)

where

c= ./;/Oﬁ/z cos(t)g(SiI;(t) Y'dtdé = cos{t)?dz. (3.40)

Bgn(/2)

Then for ¢ > ¢35 we have

0 < _/5./:(5) cos(t) - (sin(t)) - 8:(t€) -1 ’( (() ) T)dtdE < e-c (3.41)
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Remark: Note that the integrand in (3.41) is positive hence the same esti-

mate is true if the integral is taken from 0 to r < a(€) instead.

Step 2:

fM | Ricy, ~ (n— 1)g; | dv,, — 0 (3.42)
Proof :

Now let us consider ro < £ and fix it from now on.
Let S;(z,r) be the geodesic sphere in M; of radius r < 1, and let Hi(r, £) be the

mean curvature vector at ezp,(r¢) in M;. It is well-known that H(r,€) = Bilre)

9i{rg)’
By the second variational formula,
n—1 .-
Hi(r &) =3 /0 | {Vrdi |2 —Ri(T, Ji)}dt (3.43)
k=1

where J;, are Jacobi fields vanishing at z, forming an orthonormal basis at
Tewpa(re)9i(X,7) and T is the tangent vector of the radial geodesic t — exp.(L£).

Now by the proof of Bishop-Gromov theorem, (see [A1l] [BC]), we have :
Hi(r, &) < fo{{n - 1)Ju2 — [? Ricy,(T,T)}dt

= (n— 1)/:{f’2 _ Pyt — /;[Ricgi(T,T) ~ (n = D)/t (3.44)

where £(0) =0, f(r) = 1. Choosing f(s) = 22l one obtains:

sin{r)

m——gfgg = H;(r,¢) < In'(sin™ " (r)) — a'&l’(—?«) . /OT[Récg‘. (T, 1) —(n—1)] Sinz(s)ds
(3.45)
Hence

lﬂf(siiﬁ ()'r)

) < -

i 7 [ R (@T) = (= Dlsin*(s)ds <0 (3.46)

sin




30

Now multiplying both sides of the expression (3.46) by cos(r) - (—sin(r)-6;(r§)

we obtain:

cos(r) - (—sin(r)) - 8;(r¢) - ln’(M)_)

sin{r)?—1

cos(r) - sin(r) - 0;(rf)

sin’(r)

> y /0 [Ricy, (T, T) — (n — 1)]sin*(s)ds > 0 (3.47)

Integrating twice over 2!, once over M;, (the underlying manifold M

with metric ¢;) and over [0, ro],

we obtain:
S, Jsp=r Sz J3° cos(r)(— sin(r))0i(ré) o' (5254 ) drdédTdz >

fM‘ / net f et fo tan(r)-0;(r¢)- ]0 T[Rz'cg,.(T, T)—(n—1)] sin’(s)dsdrdédTdz > 0
(3.48)

Since 7 < 2, we have by a proposition of Croke ([Crl] proposition 14):

fsn_l 8;(r&)dt = vol(S;(z,r)) = 2"_1M "t =cln,r) >0, (3.49)

n (W)™
where w,_1 and w, are respectively the volumes of the standard (n — 1) and
n spheres.
From (3.49) we have the following:
Jog, Jspm 13 cos(r)(— sin(r))0(ré) In'(aiike ) drdT da

Z ~/0TO tan(r) ' C(’n,, T) ]OT[/$M‘_ [Ricga (Ta T) - (n - 1)91-]ch£$] Sinz(s)dsdr > 0.
(3.50)

The left hand side of (3.50) goes to zero as ¢ — oco. The right hand side of




(3.50) is the following:

/Um tan{r) 'C(n,'f")for fM | 54, — (n — L)n | sin®(s)dzdsdr, (3.51)

where s, is the scalar curvature of My,. This implies that fi; | sgi—(n—1)n |—
0 as 1 — oo,
Claim:

| | Bicyi = (n = 1)g: |- 0 (3.52)
Let us suppose the contrary, there then exists a unit vector field Y on an open
set £ with p(€2) > 0, such that f | Ric,, (YY) — (n — 1)g:(Y,Y) |2 ¢ > 0.
Complete Y to an orthonormal frame {Y]e1,..e,_1}. Hence
Jo TRz Ricgi(er, ex) — (n — D)gi(en, ex) + fo Ricy, (YY) — (n — 1)gu(Y,Y) =
Ja | $gi—(n—1)n |. Since all terms are positive it is clear that f; | s, —(n—1)n |

will not converge to zero. Therefore we have a contradiction.
Step 3
The Hmit metric g, is real-analytic Einstein metric

Proof :

First we show that g., is a weak L' solution of Einstein equation Ric, =
(n~1)g.
Let h € L' with || A |jz1.»= 1. By Holder inequality we have:

fu < Ricg, ~ (n - Dgi, h > dz || Ricy, — (n— 1)g; ||pt|| 2 ||

< K(n,p) || Rici — (n — 1)gi {lza|] b [|lze= K(n,p) || Rici — (n — 1)g; |izs,
(3.53)
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since L'* C L™ for large p. We have the right hand side of (3.53) goes to
zero as 1 — 0o. This implies for all p large that g is a weak L'P solution of
Einstein’s equation . To show that g, is real analytic, recall that Einstein’s
equation in harmonic coordinates is given by the elliptic system (we write

goo = g for simplicity of notation),

. 9% _
k3 TS _ _ _
g _azkaxj+Q(g’ag) (Ricy)re = (n = 1)grs, (3.54)

where @) is a quadratic term in g and the 1% derivatives of g, (see [DeK]).
The equation (3.54) is a uniformly elliptic system for which we have, locally,
uniform C%* bounds on the coefficients ¢* and L?/2 bounds on the terms Q

and (n — 1)gy,, for any p < co.

Elliptic regularity ([Mo], Theorem 6.2.6) gives uniform bounds on || g ||z2.0/2,
for any p < oo, so that g € L¥»/2 N CY* . Continuing in this process, elliptic

regularity implies that ¢ = g, is real analytic in harmonic coordinates.

Since (M, geo) satisfies Ric(d,ge) = (7 — 1)foor di0M (1) = 7 and goo
is smooth, by Cheng’s maximal diameter theorem [Ch], (M, ge) 18 isometric

to the n-sphere 5™(1).

3.2 Proof of Theorem B

Theorem 3.55 (Croke([Cr2])) Let M be a compact n-dimensional Rieman-

nian manifold satisfying Ricipgy = (n—1)g and diampyr < D < 7. Then there

is a constant C'(n, D) > 1 such that \y(M,g) > C(n, D) n
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The proof of Theorem B is as follows: choose € in Theorem A and choose
C(n,m — € > 1 in Theorem (3.55). K M(M) < C(n,x — &) - n, then the

diameter of M, diamg) > 7 — & Now let e = C(n, 7 — &) -n — n.
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