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Abstract of the Dissertation

On the Lefschetz Fixed Point Theorem
and Some of its Extensions
by
Susan Elizabeth Slome
Doctor of Philosophy
in
Mathematics
State University of New York
at Stony Brook

1991

In this dissertation we prove several Lefschetz
fixed point type theorems. In the first chapter the
manifold under consideration is a compact Lipschitz
manifold. This manifold is denoted X. We assume that
£ is a flat vector bundle over X. It is then possible
to define L? forms on X with values in §; this space is
denoted turC%(X,E). An exterior derivative, denoted 4,
is defined on this space. This exterior derivative
satisfies the property d2 = 0. A corresponding de Rham

cohomology complex can then be constructed. We assume

iii




that f:X - X is a Lipschitz map. Further, we assume
that f has at most a finite number of fixed points. A
Lefschetz fixed point theorem is proved in this

context.

Also we use Hilbert space techniques to prove two
Lefschetz fixed point theorems. In the first case the
manifold in question is topological. Associated to
this manifold;are two Hilbert spaces, dencted Hy and
Hy. We suppose FiHG -~ H is Fredholm. A map from the
manifold into itself is assumed to induce operators on
the kernel and cokernel of F.

~Finally, a new proof is given for a special case
of the well known Lefschetz fixed point formula for

elliptic complexes proved by M. F. Atiyah and R. Bott.
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Introduction

Given a compact manifold X; de Rham and various
types of cochain complexes can be constructed.
Cohomology spaces are then obtained. It is of interest
to consider maps £, from X into itself, which commute
with the operator of a complex. Such an f induces maps
on the cochomology leQel. A map £:X » X is said to have
X€X as a fixed point if f(x) = x. Lefschetz fixed
point theorems relate the action of f on the cchomology
and the behavior of f in a small neighborhood of each
of its fixed points. That is, Lefschetz fixed point

theorems relate global phenomena to local phenomena.

The focus of this paper is on Lefschetz fixed
point theorems where the manifold in question is non-
smooth. In particular, manifolds with a Lipschitz
structure are studied. The importance of Lipschitgz
manifolds is made evident by the fact that every
topological manifold of dimension not equal to four
admits a Lipshitz structure; this structure is unigue
up to é Lipshitz homeomorphism. [9]

In the first chapter the space under consideration

is a triangulated compact manifold X. Then X may be




thought of as Lipschitz manifold. The work of D.
Sullivan [9] shows that on a Lipschitz manifold L2
forms and exterior derivatives can be defined. Also,
given a Lipschitz vector bundle £ over X, one can
define L® forms with values in §. (This space is
denoted by Q&CX,E)). Supposing that £ is endowed with
a flat structure, an exterior derivative d can be
defined on QéU(,E) and satisfies d*=0. Thus, one can
form the corresponding de Rham complex. Then, a
Lipschitz map f£:X +- X satisfying certain properties
will give rise to a map on the cohomology spaces of
this compléx. Further, it is assumed that the fixed
points of f are isolated._ The main result of the first
chapter is to prove a Lefsche£z fixed point theorem for
such an f and QHX,E).

In the second chapter a Lefschetz fixed point
theorem is proved in an abstract setting. The
underlying space is a compact topological manifold.
The "complex" consists of two Hilbert spacesg, Hﬁand
H;, and the role of the exterior derivative is now
played by a Fredholm operator F:Hy - Hy. The

cohomology spaces consist of the kernel of F and the

cokernel of F. A map f on the manifold, with no fixed




3
points, which commutes with F induces operators on the
kernel and cokernel. A Lefschetz fixed point theorem
is proved in this setting.

The last chapter also contains a proof of a
Lefschetz fixed point theorem. In this case the
underlying manifold X is smooth and E and F are smooth
vector bundles over X. The operator in question is an
elliptic pseudodifferential operator D on the smoofh
sections of E into the smooth sections of F.
Furthermore, D is assumed to be of order zero, so that
D extends to a bounded operator on the Iﬁ sections of E
into the Lzsections of F. The cohomology classes are
the kernel of D and the cokernel of D.

The result of the last chapter is not new [1], but
the method of proof is. This method of proof,
suggested by N. Teleman, is of interest because it can
be extended to include the analogous Lipschitz case.
Also it can be used in the case of signature-tvpe
operators introduced by S. Donaldson-D. Sullivan [10]
and presently investigated by D. Sullivan and N.

Teleman in the Lipschitz and quasi-conformal setting.




Chapter 1.

§1 Lipschitz Manifolds

A topological manifold X is said to be a Lipschitz
manifold of dimension n, if it is provided with an
atlas {Uy, ¢,l,c; where the U, are open sets of X and
2y (U, -V, < R are homeomorphisms satisfying the
requirement that By © ¢{1 is a Lipschitz function. That
is, there exist constants cw'such that

I8, o gylix) = g o ¢ﬁ'1(y)l < oyl x - vl

for all x,y € ¢ (U, n up).

1.1 Theorem: (Rademacher) Suppose U is open in R! and
let g:U 4R', Then g is a Lipschitz function if and
only if the partial derivatives of g exist almost

everywhere and are bounded measurable functions.

Denote by lé(V), Lé- differentiable forms of de-
gree r on VaR'. Suppose g:V,cR - Vpﬂﬂ is a Lipschitz

map. Then g induces a map g*:L{(VB) -+ Li(V,) defined as

follows:

Let @ = a(y}dyﬂAdYﬂA---Adym € LEH@). Then




(g*e) (x) = alg(x))Ldg;)/dx;dx; A - - ALdg;/dx; dx;, -
(Note this definition of g* makes sense in view of
theorem 1.1.) In light of fhis one can define Li-
differential forms of degree r on a Lipschitz manifold
X, denoted L}, as follows: Set @ = {0,} e, where each
w, € Li{s,(U))) satisfy the compatibility condition
(oo ) %0y = @

Let @ EI@(V < R). Then © is said to have a
distributional derivative de € L?I(V) if there exists
N € L?I(V) with the property that for any smooth n-r-1
form ¥ with compact support in V

foAdy = (-1)"fqAy
In this case set de = 1.

Hence, one says that @ = {od, g € LﬂXJ has
distributional exterior derivative denoted de € L?I{X)
if each d@, exits. That is, de = {de} ;- In order

for this definition to make sense one needs:

1.2 Proposition:[14] If g:Vv, - VB is a Lipschitz map

and 0 € LI(V;), de € Lg*iivﬁ) then d{g*e) = g*(de).




set 0Ql(X) = {o: @ € L}(X), do € LI(X)]. oOn this
set d satisfies d° = 0, and one can form the DeRham
cohomology complex

0+ alix) & g A RI(X) = 0
and therefore also the corresponding cohomolgy spaces
Hj(X) = Ker & /Im da'l.

Let X and Y be Lipschitz manifolds with respective
atlases (U, g,} .. Vg, *ﬂﬁ&' Then a continuous map
f:X - Y is said to be a Lipschitz map if tﬂo f o ¢{1 is
a Lipschitz map between Euclidean spaces, for all a and
B. A Lipschitz homeomorphism f induces a map
£*:L3(Y) - LI (X) as follows: For @ = {oglpg € LY(Y) set

frx0 = ({9 o £ ° ¢, _1)*“‘&}1366,:151‘
It is easily checked that f*w satisfies the compatibil-
ity condition
(2, © oy x(Wy o £ o g hyxagp= (4 o £ 0 o) ray.

A Riemannian metric on X is a collection I' =
(T lyg. where I'y, is a Riemannian metric on V,, with
measurable components, which satisfy the compatibility

conditions (¢5°¢{1)*Pa = I',. A Lipschitz isometry is a

Lipschitz map f£:X -» X which is also an isometry.




§2 Lipschitz Vector Bundles

A vector bundle § over X is said to be a Lipschitz
vector bundle if the total space E(§) is a Lipschitz
manifold, the projection map n:E -+ X is a Lipschitz map
and for each x € X there exists a local coordinate
system (U, h} with x € U such that h is a Lipschitz
homeomorphism. Denote by P(f) the Lipschitz sections
of the bundle E.

A vector bundle £ over a manifold X is called a
flat vector bundle if there exists a family of local
trivializations {u,, ¢u} such that B, © ¢{1 are locally
constant. On a flat vector bundle one can define
locally constant sections.

Suppose now that & is a real or complex, flat
Lipschitz vector bundle over X. Denote by QMXQE) the
space T(f) ® (%(X) (here and elsewhere the tensor
product is over the Lipschitz functions on X). Locally
the elements of!%(X,E) can be expressed as linear
combinations of elements of the form & ® ® where s ¢
r(&l ) and o € Qi(U,}). Further, s restricted to Uy, is

given by s = Eaﬁﬁ where the s; are constant sections on

U, and the a; are L2~functions. In light of this, it




8

is possible to define the exterior derivative dn of €
(%(X,E). It is given by dn = d(Za;s; ® @)= d(Is; & a;e)
= Zs; ® d(a;0). It is clear that a2 = 0. This gives
rise to the cohomology complex

2.1 0 - of(x,6) S al(x, ) 4 ... 4 glx,£) 40
and the corresponding cohomology spaces

Hi(X, §) = Ker a"/im a'l.

83 Statement of Theorem

Let X be a triangulated compact topological
maﬁifold of dimension n. Then X can be given a
Lipschitz structure and so can be viewed as a Lipschitz
manifold. Suppose that £ is a real or complex Lipsch-
itz vector bundle of dimension k over X. Introduce a
flat ‘affine metric on each simplex of the triangulation
of X. Assume f:X -+ X is a Lipschitz isometry with a
finite number of fixed points [xﬂij and call K the
triangulation of X; assume also that each X; lies in
the interior of a distinct simplex of maximun dimensgion

n. Suppose further that there exists a Lipschitz flat

bundle map g¢:f*§ -~ { which covers the identity on X,




(i.e. o:f*E|, -+ &, and carries locally constant
sections to locally constant sections).
In this case it is possible to define a map
FI:0l (X,§) » 0j(X,§) by setting
[F'(sew) ] (x) = g(s(f(x))ef*w and
extending linearly. Note two important properties of
FI:
3.1 Ff:r(zlu)egg(u) ~ T4y eafie(uy)
for U any open subset of X.
3.2 allprl o prgrl,
The second property follows from the assumption that ¢
carries locally constant sections to locally constant
sections and the fact that d commutes with fx.
From (3.2) it follows that F' induces a map
(F') *:HJ (X, §) - Hj(X,§).
It will be shown that H{(X,£) is a finite dimensional
vector space for all r so it makes sense to speak of
the trace of (F')*, denoted tr(Ff)*,
The following Lefschetz fixed point formula will be

proved:

3.3 Theorem: Sr(—l)rtr(Fr)* = Ek%(~1)“aitrﬂx,
|
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where the a; are constants which depend only on the
action of £ on the simplex of maximum dimension con-
taining x;.
Actually, it will be shown that

£ (-1t = £ (-1)Ter (£7) x
where (f')*:Hj(X) - HJ(X) is the map induced by f on the
Iﬁ—de Rham cohomology. Notice that the expression trdx;
makes sense since
¢:f.*E|xi = E'ﬂrﬁ = E|xE - ﬂxi' The number £ (-1)}Ttr(F')x*
is called the Lefschetz number of f relating to the
complex QELX,E) and will be denoted L(f).

The proof of the theorem will proceed in the
followiné order:

First, singular cochains on X with values in the
bundle € will be defined. These will be shown to form
a complex and the corresponging cohomology spaces will
be denoted H:(X,E). The map f together with the bundle
homomorphism ¢ will induce a map also denoted

F*:H (X, §) - HX{X,E).
The second step will be to show that Hf (X,E) and

IQ(X,E) are naturally isomorphic. This will be accom-—

plished by showing
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(i) H}(X,§) « H*(X,E) and (ii)} Hi(X,§) = H*(X,E)
where E is the sheaf of germs of locally constant
sections of the bundle & and H*(X,E) are the sheaf
cohomology spaces of X with coefficients in the sheaf

E. Next it will be shown that the diagram

Hp(x, &) & mypx, 9

|

Hyx, &) 8 ompx, o

is commutative.

Then simplicial cochains on X with values in §
will be defined, giving rise to the cohomology spaces
H* (K,§) where K is a triangulation of X. Then it will
be shown Hf(X,E) =« H*(K,{) and again f and ¢ will

induce a map, still denoted F* so that the diagram

H} (X, E) &' H2(x, 8)

(I

H* (K, E) &' mx(x, &)

is commutative.
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Finally the theorem will be proved for H*(K,¥) and

so it will ‘follow that it is true for H&LX,E).

5§54 Singular Cochains on X with Values in £.

In order to define singular cochains on X with

values in £, the following well known result is needed.

It is stated here without proof.

4.1 Proposition: Any flat bundle over a connected,
simply connected topological space is a product bundle
compatible with the flat structure. That is, for E a
flat bundle over base space B which satisfies the
hypotheses, there exists an isomorphism

h:E + B x R (or ), such that h carries locally

constant sections to locally constant sections.

Define CP(X,E&) the space of singular p-cochains on
X with values in § as follows: Let AP be the standard
Euclidean p-simplex. Let o:A? + X be a map which ex-
tends to a Lipschitz map on a neighborhood of AP in R?

into X. Denote by b, the barycenter of o and let

(%(X,Z) denote the space of chains, with integer
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coefficients, of all such o. Then an element y €
CP(X,E) is a map defined on C,{X,Z), such that v(o) €
Eh% and y extends linearly to chains. Notice that if
o, and oy are singular simplexes on X, then 1(01) £ qbii
and y(oy) € ﬂquso in general y(ac; + boy) = ay(o)) +
by{o,} is a formal sum.

Suppose Yy € c"(X,E), define dy by dy(c} = y¥{do) =
?(E(—l)ioi) = Z(—l)iv(oi) (the o; are the faces of o).
Now {dy) (o) € E“G and y(o;) € Ehm‘, however this defini-
tion of the coboundary operator ;akes sense because all
of the fibers over ¢ are identified via constant
sections by proposition 4.1. The coboundary operator
thus defined satisfies d* = 0 and the ¢P(X,E) together
with d form a cochain complex. The associated
cohomology spaces are dencted Hf(X,E).

"Returning now to f and ¢, these maps induce a map
denoted F:CP(X,§) - CP(X,E) defined by
(Fy) (o} = gl(y(fe0)).
To see this definition makes sense, observe (Fy) (o) €
EHG and y(feo) € qbﬂm' Now b, = £(x) for some x € o,
S0 Ehfba= ﬁfhl = f*ﬂx; however, f*ﬂx can be identified

with f*Eh%, because the pull-back bundle of a flat

bundle is flat. Thus y(feo) € f*Ehﬁ. From this it
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follows that g(y(feo)) € Ehk' The map F commutes with

the coboundary operator 4 for,
{d(fy) ]I (o) = (Fy) (do)
= ¢(y(@(fe0))) = gldy(feo)) = [F(dy}] (o).
That is, dF = Fd, hence F induces a map

F*:HE (X;E) -+ HE(XI'E) .

The proofs of propositions in the next two sec-—
tions follow closely the proofs for the analogous
.statements for smooth manifolds and cochomology with

values in a vector space as given in [13].

§5 showing Hy(X, §) « H*(X,E)

To show that Hg(X,E) and H*(X,§) are naturally
isomorphic the following definitions and results from

sheaf theory are needed [13].

5.1 Definition: A presheaf (§y; Pyy} on a manifold M
is said to be complete if whenever the open set U is

expressed as a union UU, of open sets in M, the fol-
(A}

lowing two conditons are satisfied
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(i) Whenever h and g in Sy are such that Py, = Pye, 19
for all a, then h = q.
(ii) Whenever there is an element g, € Sy, for each o
such that Pueau,ve9e = Puanup,ups for all a and B, then
there exists g € 8y such that 9y = Py, 9 for each a.
5.2 Definition: Suppose S is a sheaf over M. The
support of sheéf endomorphism 1:8 - & is the closure of
the set of all points in M for which 1 restricted to
the stalk of S over m is not zero. Suppose {U;} is a
locally finite open cover of M. Then a collection of
endomorphisms [1;] of § is called a partition of unity
for S subordinate to the cover {u;}, if

(a) support of 1, c U;

(b) Zili = identity.

5.3 Definition: A sheaf S over M is said to be fine
if for each locally finite open cover {U“ of M, there
exists a partition of unity {1;} subordinate to this

cover.

5.4 Definition: A sequence of sheaves

0+ A~ 5 ~ S| e
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is called a fine resolution of A if the sequence is

exact and each of the %_are fine.

If P is a presheaf on a manifold M, P canonically
gives rise to a sheaf on M denoted B(P) called the
associated sheaf. Conversely, if S is a sheaf on M, §

gives rise to a presheaf and also the space of sections

of the sheaf S and both are denoted I'(8), with some

abuse of notation.

5.5 Theorem: If P is a complete presheaf, then

F(B(P)) is canonically isomorphic to P.

5.6 Theorem: Let 0 -+ 8§ = G ¢ = -

be a fine resolution of the sheaf § on M. Then
0 -T(g) »T(c) = -+

is a cochain complex and there are canonical

isomorphisms HY(M,S) = HI(r(c*)) for all q.

5.7 Proposition: Suppose {SU, Pyy! is a presheaf with
associated sheaf S over M and suppose {SU' pyyl satis-

fies only condition (ii) of definiton 5.1. Then the

sequence 0 - (Sy)y = S L I'(s) - 0 1is exact. ((8g)y =
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{s € 8y: p,y(s) =0 for all m € M} where PyiSy = S is
the natural projection which assigns each element of Sy

to its equivalence class in 5, and <t is the homomorph-

ism which sends s € Sy to the global section

m e pLH(S) of 5.) §

Returning to the manifold X, suppose U is an open
set in X. Recall, o{U) = (e: @ € L{(UV), de € LE(u)]
and set sT(U) = T () o 0f(U). For any V > U define
pmV:SI(V) -+ 8"{(U) to be the restriction map, that is |,
for any n € S'(V) pyy(n) is the restriction of n to U.
Then [Sr(U),.pmv} is a complete presheaf with corre-
sponding cochain complex
5.8 0o - st 4 shuy 488wy &4 ...

This d is the same as defined for 2.1. To each
{st{u), pmv} there is the associated sheaf of germs,
denoted S (X).

Consider the following sequence of sheaves
5.9 0o~ L &xy 4 dxy b
In this sequence d is the sheaf homomorphism induced by

the presheaf homorphism d of 5.7. Recall E is the

sheaf of germs of locally constant secticons and d%x)
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is the sheaf of germs of Lipschitz sections, so the map

i is inclusion.

5.10 Proposition: The sequence 5.8 is a fine resolu-
tion of E.

Proof: Let {Ui} be any finite covering of X and sup-—
pose ¥ is a partition of unity subordinate to this
covering. Define presheaf endomorphisms 1, of

{st(u), pyyl by 1i(n) = W;'n for n € ST(U). The 1
induce sheaf endomorphisms 1; which satisfy

(i} supp li c U

(ii) Z;1; = identity.

This shows the S'{X) are fine.

The sequence 5.9 is clearly exact at E and é”X),
also d° = 0 because 5.8 is a complex. That the se-
quence is exact follows from the Poincaré lemma for
OJ(X) as given in [11].

It then follows from 5.10 and 5.6 that
HU(X,E) « HI(r(§(X)). since P(B(ts™ (U ipyyl)) =
{r(s]y; pyy}, by 5.5 it follows that s'(X) and T'(s (X))
are naturally isomorphic. Hence

HUT (5% (X))) = HU(s*(X)) = H}(X,§)

and so HI(X,E) = Hg(X,‘E)-
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§6 Showing HU(X,E) = HI(X, &)

Let U be any open set in X, then CMU,¥) is the
space of singular cochains on U with values in £E. For
U <V define pyy:CP(V,§) » CP(U,§) to be the restriction
of p-cochains acting on singular simplexes in V, to p-
cochains acting on singular simplexes in U. Then the
fc?(u, ), pmvl form a presheaf of vector spaces on X.
Denote the associated sheaf of germs of p-cochains on X
with values in & by (X, §).

The coboundary operator d on CP(X,%) gives rise to
a sequence of sheaves

6.1 0+E-dx,&) § dx, gy b ...

6.2 Proposition: The sequence 6.1 is a fine resolu-
tion of E.

Proof: Take any finite covering (Uj} of X and a parti-
tion of unity {¥;} subordinate to the cover fu;1 in
which the functions take only the values 0 or 1. For
each i define 1i:CD(U,E) - ¢Mu,&) by setting

[1;(v)]1 (o) = ¥ (0(0))y{(c). The 1; can be seen to be

presheaf endomorphisms and the corresponding sheaf
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endomorphisms form a partition of unity. This shows
that the sheaves in 6.1 are fine.

To see the sequence is a resolution note that
tﬂ(X,E) is Jjust the sheaf of germs of sections of £ so
E naturally injects into (ﬂ(X,E). Also the sequence is
exact at (X,£) since diyl, = [dyl, (LYl, = germ of ¥
at m) if and only if y is constant on a neighborhood of
m. To show the sequence is exact elsewhere it is .
possible to use the same homotopy operator used in the
analogous proof for singular cohomology with values in
a vector space.

It then follows by theorem 5.2 that
HUX, &) «~ H(r(c*(X,§)) for all g. It remains to be
seen that HUT(c*(X,§)) = nl(x,§).

{chu,&), Pyy} satisfy the hypotheses of 5.7. So
the sequence

0 -+ C§(X, k) » C*x(X,§) - T(cx(X,E)) ~ 0O
is exact. To this short exact sequence there corre-
sponds the long exact sequence
- HYCH(X,§)) » HU(C*(X,E)) » HUI(C*(X,E)}) -
ey x,8)) » -

Thus if it can be shown that HY{C§(X,§)) = 0 for all q,

then it will follow that
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HUT(C*(X,8))) = HU(C*(X,E)) = HI(X,§).
The proof that HY{C§(X,£)) = 0 proceeds just as in the
case of cohomology with values in a vector space case.

Thus

H (X, E) « H(X,E).

§7 Showing Diagram 3.4 is Commutative

In order to show that diagram 3.4 is commutative,
the following definitions and theorems from sheaf

theory are required [3].

7.1 Definition: Let f:X - Y be a continuous map. If
A and B are sheaves on X and Y respectively, an
f-cohomomorphism k:B + 4 is a collection of
homomorphisms kx:Bf(x} = A for all x € X, such that for
any section s € F(q“), the map x # k(s(f(x)) is a

section of A over fq(U).

7.2 Definition: Let f:X - Y be continuous. If A and

B are prsheaves on X and Y respectively an




f-cohomomorphism k:B - A is a collection of

homomorphisms ky:B(U) -~ A(fﬂ(U)) for U open in Y com~

patible with restrictions.

Notice that an f-cohomomorphism of sheaves induces
an f-cohomomorphism of presheaves by putting

[ky(8)1(x) = K, (s(E(x)).

7.3 Theorem: If k:B -+ A is an f-cohomomorphism, then
kK induces a natural homomorphism K*:tH* (Y, B) - H*(X, A)
and futhermore if B* and A* are ény acyclic resolutions
of B and A respectively and g*:B* 4 A% is an
f-cohomomorphism extendiné k (i.e. commuting with
differentials and augmentations), then the following

diagram is commutative:

Hx(r(Bx)) 8" Hx (I (a*))

I

H* (Y, B) §' Hx(x,a)

7.4 Theorem: A fine sheaf on a compact manifold is

acyclic.
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Return now to the manifold X, bundle €, map £ and

homomorphism ¢. Notice ¢ 1induces an f-cohomorphism g=x

of E into itself, that is, ¢*’Ehxl’* E, is defined by

7.5 exlslpy) = [o(s)],.

This makes sense because ¢:f*ﬂx = ﬂf“] ﬂ_qx.
In sections 3 and 14 maps

F:0¥ (X, 8) - Qf (X, §)
and F:C*(X,E) ~ C*x(X,§)
were defined, but both these maps can be viewed as
being induced by f-cohomomorphisms

Fr:5%(X,E) + 5%(X,§)

Fr:0x (X, &) - Cc*(X,E)
respectively defined by

F* [S@@]f[x} = {¢(S)@f*ﬁ)]x

and Fx[¥lfy = [oly}],.

Also it was shown that $* and C* are fine resolu-
tions of E so by 7.4 they are acyclic. The Fx's are f-
cohomomorphisms extending ¢*. Hence by theorem 7.3,

the following diagram is commutative




Hr(r{s*)) B Hx(r(gx))

f

H*(X,EY &' HA(X,E)

| )

Hx(r(cx)) B mx(r(cx))

which, in light of sections & and 6 gives the

commutativity of

Hf (X, &) &' mp(x,8)

{ /|

Hp (X, E) B Hy(x, B)

58 Showing H*(K,E) =~ H*(X,E)

Let K be a triangulation of X. Denote the
geometric realization of K by | Kl (that is, | Kl is
homeomorphic to X). Denote by C*(K,&) the space of
simplicial cochains on K with values in the flat bundle
§ over |Kl. So if s is a p-simplex of K and y €

cP(K,%), then Yi{s) € ﬂbs. The coboundary operator d is

defined in the usual way. It is well defined because

| sl is connected and simply connected, so the fibers
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over s are naturally identified via the flat structure

of §. Let H*(K,£) be the spaces of cohomology classes

obtained from the cochain complex

chk,&) & clix, 8 4 ctik,ey) 4 -..

8.1 Theorem: HP(K,E) = H(X,§) for all p.
In order to prove 8.1 the following well known

result will be used

8.2 Lemma: {("the five lemma" [8]) Given a commuta-

tive diagram of abelian groups and homomorphisms

Gy =Gy ~ G » G ~ G
175 lyq 173 172 lyl

Hy - Hy -~ Hy = Hy » H

in which each row is exact and Y1+ Y3- ¥y and y; are

isomorphisms, then ¥Y; is an isomorphism.

Proof of 8.1: Define a map T:CMX,E) » cP(K,E) as
follows: Given any simplex [Vge vieres, Vﬁ] € K there

exists a unique o E(%(X,Z) that maps the ith vertex of

AP to vi. So define t':Cp(K,Z) ~ C,(X,2) to be the map




which sends [vwv1,---,vﬂ to this unique singular

simplex. Then for y € CP(X,£) set

(11)[vﬂ,v1,'--.vp] = y(t'[vh,vl,-'-,vp]) = y({o).
Extend t to a cochain map. It will be shown that this
cochain map induces an isomorphism of cohomology.
Claim: Given any subcomplexes K; and K; of K, the

rows of the following diagram are Mayer-Vietoris

sequences.

SH Ky U K| ) P (KL E) en? () K| L&) -HD (k| nl Kyl L)

~ HU{K UKy &) - HP (K, §) @ H Ky, &) - HP(K\NK,, §) =
Proof of claim: The first exact sequence exists be-
cause |Kﬂ and | Kyl are an excisive pair and sheaf
cohomology theory guarantees the existence of a Mayer-
Vietoris sequence for an excisive pair. The second
exact sequence exists because {C’k,&),d} is a chain
complex so a short exact sequence on the chain lével
gives rise to a long exact sequence on the cohomology
level. Now CP(KNKy, E) = cP(K,E) n cP (k. £) and
CPK &) + MKy, E) = CPUK|UKy, E). It follows from this

that there exists the short exact sequence
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and the associated long exact sequence is the second

Mayer-Vietoris sequence of the diagram.

The proof of 8.1 will now proceed by induction on
the number of simplexes in K. Suppose K consists of
only one simplex s. Then s must be a zero simplex.

But a bundle over a one point space is trivial so
(I sl ,&) and HP(s,%) are as in the constant coeffi-
cient case where it is known that H'(s,G) = H (I sl ,6)

(G is a group). Now suppese the result is known for

any complex containing less than n simplexes. Let s be
a simplex of K having maximum dimension and let L be

the subcomplex of K consisting of all simplexes except
. Then K=Lwusand L N s = § (3 is the subcomplex
consisting of proper faces of g). So Hfﬂ Ll LE) =

H(L, &) and H)( Lnsl ,§) = H'(LNs,E) by the induction
hypothesis. It is known that induces an isomﬁrphism
between singular cohomology groups and simplicial
cohomology groups in the constant coefficient case , so
T induces an isomorphism between H(l sl ,E) and HP(s,E)
(this is because | sl isg connected and simply connected
so § restricted to s is a trivial bundle, which reduces

this to the constant coefficient case).
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Thus by the Mayer-Vietoris sequences and 8.2 the

desired result is cbtained.

89 Proof of Theorem 3.3

Suppose X, §, f, and ¢ are as before.

9.1 Lemma: Suppose g:X + X is continuous and g is
homotopic to f, then g induces a map
G*:H} (X,E) - Hf(X.E)

such that G=x

Fx.,

Proof: Define maps §,f:X » X x I (I is the unit
interval) by f(x) = (x,0) and §(x) = (x,1) for all X €
X. Suppose h:X x I » X is the map which defines the
homotopy of f and g. That is, h{x,0) = f(x) and hi{x,1)
= g{x). Then f = hef and

g = he§. Since h:X x I » X, the "pull back" bundle hx§
over X x I exists. Define maps

F:CM(XxI, h*€) - CP(X,E), G:CP(XxI,h*E) - ch(X,E) and
H:CP(X,§) - CP{XxI,h*E) as follows: First note that
for ¥ € ¢CM{XxI,h*E) and o a singular simplex in X,

(FY) (0) should be contained in Ehk and

(feo) € n*f|,, = ExhxE = f*x§|, . So define
Y Elb(oé ,bg Ibé




(Fy) (o) = o(y(feo)) € Ehﬁ.
Now g ~ f implies that g*§ and f*§ are naturally

isomorphic vector bundles. Also for any fixed ty €I,

set

9.2 hix,ty) = hto(x),then hto:X -+ X and hto*E is
naturally isomorphic to f*(. So consider these bundles

identified via the natural isomorphisms.

In 1light of this it makes sense to define
G:cP(XxI, h*§) - cP(X,E) by
(GY) (0) = s(y¥(§eo)).
As to H, notice (Hy) (o) should be contained in

h*’;’lb6 (here o is a singular simplex in XxI and Y €

c?(x,E)), so set

(HY) (o) = y(heo) € EIbhos = h*EIbG.

Then FH:cMX,§) -~ cP(X,£) and
[(FH}Y] (o) = [F(HY)] (o)
= p{HY(f°0)) = g(y(hefeq)) =g (yY(feo)) =(Fy) (o).
Thus FH = F. sSimilarly 6H = H. Hence FxH* =F* angd j.

d
G*H* = G*, where o

é’*'F*:H?(XXI,h*E) - Hr(X'E) ;

1
and H*:Hf (x,§) -~ H}(XXI,h*E) | -
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are the maps induced by, respectively, G&,F and H. S§o
to prove F* =G*, it needs only to be shown that F* =
G*.
For G any abelian group, there exists a map
P:Cy(X,6) =~ €y (XXT,G)
called the prism operator [12]. It satisfies the
following: If
f':CD(X,G) + C,(XxI,G)
g’ :C,(X,6) - Cp{XxI,G)
are the maps induced on singular p-chains by f and g
respectively,; then
g - £ = dp + pd.
Define P:cMl(XxT,n*§) + ¢?(x,£) by setting
(PY) () = g(yiplo)).
This definition makes sense in view of 9.2.

dP +P4d

Claim: ¢ - F
Proof of claim: [(G - F)(y)](o) = p(¥(§ - £)eo). on
the other hand,
[{dP + P&) (¥)) (o) = [(dP) (¥) ] (o) + [(Pd) (¥)] (o}
= ¢{y(p(do))) + s(y(dp{o))) = gly(pd(c)) + ydp(o))]
= ¢(y(pd + dp) (o))},

since § - f = pd + dp it follows that G - F = pda +ap.

Then, it follows from the claim that G*x = fFx,
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9.3 Definition:[8] Let K and K’ be simplicial
complexes and suppose f:l kKl -+ | K'l is a continuous map.
A simplicial map h:X -» K' is called a simplicial
approximation to f if for x € | Kl the set {f(x},| hl (x)]
is contained in the closure of some | s’| where s’ is a

simplex of K'. (I hl :1kl - | K] is the continuous map

induced by h.)}

9.4 Theorem:[8] ©Let f:dkl - | k'l be éontinuous.
There exists a subdivision of K, call it L, which
admits a siﬁplicial approximation h:l Ll -+ | k'l of f.
And any subdivision of L also admits a simplicial

approximation to f. Furthermore h is homotopic to f.

9.5 Theorem: If K' is a subdivigsion of K, there
exists a subdivision chain map v:CP(K' ,E) - CP(K,E).

If #:K' ~ K is a simplicial approximation to the o

identity then.v* t*ﬁziﬁ(K',E) - HP(K,E).

9.6 Theorem: For a simplicial map h:K - K', the

diagram
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Hx (K’ ,E) &' nx(x, &)
mx ke, g Ll Hx (I &l ,E)
is commutative. (H* and | Hl * are the maps induced by

h.}

The proofs of the last two theorem are as in the con-

stant coefficient case [8].

Proof of 3.3: Recall f:X - X has a finite number of
fixed points [xﬂii and K is a triangulation of X such
that each X; lies in the interior of a simplex of maxi-
mum dimension. Let K’ be a subdivision of K fine
enough so that there exists a simplicial map h:K' - K
which is an approximation to f, and choose K' so that
the fixed points still lie in the interior of simplexes
of K' of maximum dimension. Observe that the simplex
of K! containing X; must be mapped by h onto the
simplex of K containing ¥; for all i.

Denote by X' the space obtained from X by deleting

the interior of the simplexes of K’ containing the

fixed points. Then f:X' - X has no fixed points and

because X is compact, there exists g > 0 such that
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d{x,f(x)) > ¢ for all x € X’ (d(x,y) denotes the disg-
tance from x to y). Denote by L' a subdivision of K'
restricted to X' of mesh less than £/2, and let L be
the triangulation of X which consiste of the simplexes
of L’ together with the simplexes of K' containing the
fixed points. Then there exists a simplicial
approximation of f stilil denoted by h:L ﬂlK with the

property that for any simplex s € L, his) n s = a.

9.6 Observe that this also means that for any simplex

8 € L of less than maximum dimension, hi{s) n g = e,

Now let Y :C(L) - ¢P(K) be the dual of the
subdivision chain map. This induces a map still]
denoted ¥ :cM(L,&) -+ cP(K,&). Let H:CP(K,E) - cPy(L, &)
be the map induced by h. Then

(H o y")P:c™L, &) - cP(y,§).
Let {sﬁig be the simplexes of L of maximum dimen-
sion n and suppose that the fixed points x. € s. for

1 1

1 <i < 1. Denote by Cj; the basis for CH(L,E) where

Cjj = c30e%, c; € ¢ (L) is such that Ci(sk’ = Bn and

{e%ji is a basis of locally constant sections for ﬂsr

Because h(sﬂ n 8; = @ for all i such that
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1 <1 <m, the trace of (H o y')t:C"(L,8) - c™{L,E)
depends only on the action of (H ¢ ¥ )" on {Cﬁliﬂﬂ and

for any p # n
9.7 (H o ¥ )P:cP(L,E) + ¢™(L,£) has trace zero by 9.6.

Since h(s;) 28 for 1 < i < 1 and ﬂhmn is trivial
(with fibers naturally identified via the flat struc-
ture of §), it follows that

-] 1 I = [-] I 1 ]I-‘ = (-] n 1 ]I.'

(Hoy' )l (cyy) = (Hey')'(cjee]) = [(h'ey’) (cl)]®¢|xie]
for 1<i<l. Here h':CP(K) - cP(L) is induced by h and
the map ¢ which is the "same" on all fibers of qhwi'
{this is because ¢ preserves the flat structure of §),
is denoted by ¢“i. S0 suppose

’ LW | l — i l
9.8 (h' oy’) cie¢hqej = ajci®bje; + I(other terms)
= aib]@ci@ei + Z(other terms),
then the trace of (Hey’')":c"(L,E&) - c™(L,&) is
leo k. i _ 1
2i-1Zj13ib) = Eijajtrel,
and from 9.7 it follows that
B (CLTEr (Hoy' )T = 5 (-1)Ta trg|,
Also from 9.8 and 9.7 it follows
Zpd (-1)Ttr (b’ oy’ )T = £ d(-1)"a,.

It remains to be shown that
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Ep (=1 fer (Hoy' ) = 5 (-1)Ttr (FT) =,

The following diagram is commutative:

Hx (L, E) ¥ Hx(k,E) B* mx(L,E)

| I

H (k6 B omlx,g) M owx, )

That the diagfam is commutative follows froﬁ theorems
9.5, 9.6 and lemma 9.1. This shows that

E(-1)Ter (Hey' )T* = 5(-1)Ttr (FT) % = L{f).
However, it ‘can be shown by purely algebraic means
that E(-1)Ttr(Hey' )T* = g£(-1)Ttr (Hoy')' [4].
Similarly E(-1)"tr(hey' )’ = £(1-)Ttr(ff)* so

E-Dfer (£ = 3i(-1)"a;.
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Chapter 2.

81 An Abstract Setting

Let X be a compact topological manifold and Hy and
H Hilbert spaces. Denote by L(H}), the bounded opera-
tors from H, into itself for i = 0,1. Suppose there
exist *-homomorphisms gy and 0; from the continuous

functions on X into LL%) and LL%) respectively.

Suppose also, that F:Q)F»lﬁ is a bounded Fredholm

operator,
Let £:X + X be a continuous map with no fixed

points, and suppose there exist trace class operators

Ti: i -~ H for i =0,1 satisfying
1. T].F = FTG and

2. Tijo;{g) = c&(g°f)Ti for i =0,1 and g any continuous

function on X.

It follows from condition 1. that Ib:KerF -+ KerF and

Tj:ImF -ImF. Because Ty maps ImF into itself, T; induces

a map
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i&:CokerF » CokerF. (KerF = kernel of F, ImF = image
of F, CokerF = cokernel of F.) Denote the restriction
of Ty to the kernel of F by Ty -

Since F is Fredholm KerF and CokerF are finite

dimensional Hilbert spaces.

§2 The Thecorem

Lemma: TrT; - TrT; = Trf - TrT, (TrT denotes the
trace of T).

Proof: Since F is Fredholm Hy and H have the follow-
ing direct sum decompositions:

3. Hy = KerF @ (KerF)!

ImF @ {(ImF)! . |

&l
Denote Ty restricted to ImF by Ay, T) restricted to
(KerF)! by By and Ty restricted to (ImF)! by By. Now
F: (KerF)! -+ ImF is bijective so from condition 1. it
follows that FBy = AF or
4. A, = FFl .

Then from 3. and 4. it can be seen that Tb and T1

have the matrix representations
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(The zeros in the bottom left hand corner come from the
fact that KerF is invariant under Th and InF is in-
variant under TP)

Let [en] be any orthonormal basis for (KerF)! and

{f,} an orthonormal basis for KerF. Then le;,£;1 is an
orthonormal basis for Hy and
TrTy = Z<e;,Bje> + n<f,, T
or Z<eyBye,> = TrT, - Trt.
This shows that TrTy, = TrBy + TrT, similarily
TrT; = TrA; + TrB;. Thus TrTy - TrTy = TrA; + TrB; - Trf
- TrBy = TrB; - Trf.
(The last equality follows from 4.)

Now the diagram . |
(ImF)! B (1pp)!

CokerF i1 CokerF

is commutative so TrBl = TrT and so the lemma has been

pProved.




Theorem: TrTl = Trf,

Proof: It will be shown that TrTy = TrTy = 0 and then

the theorem follows from the lemma.

Denote by I'(f) the graph of £ in XxX and let a
denote the diagonal in XxX,

has no fixed points, there exists ¢ > 0 such that the

distance from I (f) to & is greater than ¢. Choose a
finite open cover {Uﬂ of X such that the diameter of

each Uj is less than ¢, and let {¢j} be a partition of
unity subordinate to this cover. Then the ¢jhave the
property that suppe; n fd(supp¢j) = &.
It is known that for A and B trace class and C €
L(H) (i) Tr(A + B) = TrA = TrB and (ii) CA and AC are
trace class and TrAC =TrCA. Thus
\TrTi = Tr(TiEOi(¢j))
= ETrTioi(¢j) = ZTrT}oi((f¢j)2)
= ETroi(f¢jVPgH(f¢j) = ETroi(f¢j)oi(f¢j°f)Ti
= ZTroi(f¢j(f¢j°f))Ti
but the supp(f¢j°f) = fq(supp¢j) hence
ETroﬂJﬁj(I¢rf))Ti = 0,

Thus TrTi =0 for i = 0,1.

Because X is compact and f




Chapter 3.

81 The Smooth Case

Let X be a smooth compact Riemannian manifold and

E and F real or complex vector bundles over X. Denote

by T'(E) and I'(F) the smooth sections of E and F,

respectively.

Let f: X - X be a smooth isometry with only
finitely many fixed points {xﬂii. Because f has only
finitely many fixed points, these points are isolated.

This in turn implies that there exists an ¢ > 0 such

that, given any tubular neighborhood of the graph of [

With radius less than 2¢, each piece of the diagonal in

XXX intersecting this tubular neighborhood is contained

in a neighborhood diffeomorphic to R.

Let D: T'(E) -» I'(F) be a pseudodifferential ellip-
tic operator of degree zero. Suppose that D is

£ - local, that is, the Schwartz kernel associated to D

is supported on a tubular neighborhood of the diagonal

in XxX of diameter less than ¢. Since D is of order

Zero it extends to a bounded operator from L%E) into

Iﬂ(F) (the square integrable sections of E and F

respectively}. It follows from the ellipticity of D
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that the kernel of D and the cokernel of D are finite
dimensional spaces. cCall Q: Lﬁ(F) -~ Lz(E) a
parametrix for D if the operators
(1 - p): L*F) ~ L2(F) and (1 - g): L}(E) - L}(E)
are trace class operators.

The map f induces maps f*: F{E) - I'(f*E) and
f*x: T'(F) - I (fxF). Suppose there exist bundle
homomorphisms #¢3: £*E -+ E and ¢1* £*F - F which cover
the identity. Set.fn = g;f*: I'(E) - TI'(E) and £ = g f*:
'(F) -~ T(F). Suppose further that Iy and f; extend to

bounded operators on IF(E) and LQ(F) respectively, and

that the diagram
Li(e) } Li(r)
1. £y ¢ £, ¢
Li(E) 3 1)
commutes.
Let Q be a parametrix for D. Dencte the trace of

a trace class operator A by tra.

Lemma 1: [7] If A is trace class and B is a bounded

operator on a Hilbert space, then both AB and BA are

trace class and traAB is equal to trBA.
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Definition: sSet tr(fy £ T(E), r(r)) =
trf; (1 -pg) - trf; (1 -QD). Denote this trace by T.

The following lemma is stonger than Lemma 1.

Lemma 2: [7] If A and B are bounded operators on a

Hilbert space and if both AB and BA are trace c¢lass

then trAB = trBA. I

Proposition 1: 7T jis independent of the choice of (.
Proof: Let Q; and Q, be two parametrixs for D. Then
1 -0OD =R, 1-Dg =R, 1-0p-=s5,1- DOy = 8,
where R, Ri, 8y and 5) € I,. (I; denotes the space of

trace class operators.) It follows that

D(QI - Qg) = Sl - Rl € Il.
Then

[trf1(1 - DQy) - trf (1 - D) ]

[t

trify{l - 0Q) - £(1 - DY) ]

tr[fo(l - QID) - fg(l - QgD)]

Il

trle(QZ - Ql) - trfu (Qz - Ql)D

(This last step follows from lemma 1.)
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= trDfy(Qy - ) - tr(Q, - Q)bf,
(This step follows from the commutativity of diagram
1.} |
= triQ - 9)Dfy - tr(g - Q)Df,
=0

(The second to last equality follows from lemma 2.)

It follows from diagram 1. that fﬂ induces a map
denoted Fp:kerD - kerD and f; induces a map

E}: cokerD - cokerD.

Definition: The number trF| - trFy is called the
Lefschetz number of f and ig denoted L{f).
Theorem 1: L (f)

E#iai, where each a; is a number

It

which depends only on the action of f in a small

neighborhocod of ¥;. In particular, if f has no fixed

points than

L(f) = 0.

Proof: Let A denote the orthogonal complement of kerD
in LP(E) and n the orthogonal projection

n: IF(F) - imD. D: A -~ imD is an isomorphism. Denote

by G the Green's operator Dlen: IF(F) - A. Set




Ry = 1 - GD and Ry = 1 - DG. Notice that Ry is the
Projection onto the kernel of D and Rlis the

projection onto the orthogonal complement of imD. Now,

kerD is a finite dimensional space and the orthogonal

complement of imD is isomorphic to cokerD which is also

finite dimensional,

so Ry and Rl are trace class

operators. Hence ¢ is a parametrix for D.

Calculating T using G yvields

T = tr(flRl) - tr(fuRG).

However, tr(flRl) = trFI and tr(fORﬂ) = trFG. Thus

T = L(f).

Next choose a bounded operator Q: Lﬁ(F) - LZ(E)

such that 1

- QD and 1 - DQ are smoothing operators.

Since smoothing operators are trace class, Q is a

f )
parametrix for D. Set 1 - QD = 8y and 1 - DQ = 8y.

Let {Ual be a finite open cover of X such that the

diameter of each U, is less than ¢.

Suppose {¢§l is a

partition of unity subordinate to this cover. The

operator £ ¢Qg¢ is

still a parametrix for D and gives

rise to smoothing operators §; and S;. It follows from

the assumption that D is ¢ - local, that Sy and S; are

2e - local.

Evaluating 7 using %,#Q¢ yields
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T = tr(flsl) - tr(fGSG).

The following is well known:

If S is a smoothing operator with associated Schwartz
kernel K(x,y) on XxX, then § is trace class and

trs = frtrk(x,x).

Now if S; has associated Schwartz kKernel K; (x,y), then
the kernel associated to Sif; is Ki(f(x),y) for i = 1,2.
Hence trgif; = IxtrKi(f(x),x). Because §; is 2¢ - local,
K;(x,y) is supported on a tubular neighborhood of the
diagonal. This implies that Ki(f(x),y) is supported on
a@ tubular neighborhood (of diameter less than 2g) of
the graph of f. And because s was chosen sufficiently
small Ki(£{x),x) is zero everywhere except on a smalil
neighborhood of each fixed point of f; in fact, a
neighborhood which can be taken to be diffeomorphic to

R'. The theorem then follows from proposition 1.

8§82 An Example

Suppose X is a smooth compact Riemannian manifold.

Let E and F be smooth vector bundles over X. Denote by




1 the projection T*X -+ X. Let S"E,F) denote the

standard symbol claéées of order m, that is,

SY(E,F) = {per(m*Hom(E,F)l
| 830fo (x, E)scyy (1 + | £ v
for all a,f<0, where Cﬁ>0].
Here (x,§) are the coordinates on T*X. |

Given any element p of SYE,F), it is possible to

, . \ 3
construct, in an almost canonical way, a pseudo-~ ‘

differential operator from IF'(E}) into T'(F) which has P

as its symbol. This construction given in [6] goes as

follows:

Suppose A:R - R is a bump function suported on

{-1,-1] and for any 1°0 set l“(x) = A{x/n). Denote by
p:XxX - R the geodesic distance. Then Py = lnop is a
function supported on a tubular neigborhood of the

diagonal in XxX. Let exp:TX -» XxX denote the

exponential map. Now given any s{x) € I'(E), set

s' (v) = [exphﬁ(x,y)s(y)](v). So, s' is a section of

the pull back bundle exp&(E) over T,X. Then for p €
SYE,F) define the operator Op:I'(E} - I'(F) by

(ep)s(x) = (En)“ffe‘““bp(x,ﬁ)s'(v)dvdE.
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Heré the double integral is over T}XxT;X. Notice that
the distributional kernel of ®p is supported on a
tubular neighborhood of the diagonal in XxX because pll
is supported there. The diameter of this tube can made
arbitrarily small by taking N sufficiently small.

Given any pESl(E,F) it is possible to construct an
operator of order zero by rescaling p. That is, if
p’ (x,€) is given by p’ (x,§) = p(x,&/1 €l ), then ep’ is a
psuedodifferential operator of order zero.

Suppose £:X -+ X is an isometry with at most
finitely many fixed points. Set E = F = A*T*(X) the
bundle of the exterior algebra of the cotangent bundle
of X. Then f induces a bounded map f*:Iﬁ(E) - LZ(E).
For any pGﬁ(E,E), invariant under the isometry f, (an
example of such a p is the symbol associated to the
exterior derivative d), set D = @p’. Then the

following diagram is commutative:

ey % (g

£xl £x1

ey b 12(E)
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The diagram commutes because f is an isometry and the
exXponential map depends only on the Riemannian metric.

So this f and D satisfy the hypotheses of theorem 1.

53 The Lipschitz Case

It is possible to weaken the hypotheses of the
theorem in the previous section. The manifold X cén be
taken to be Lipschitz instead of smooth. The spaces
Iﬁ(E) and LQ(F) can be replaced by more general Hilbert
spaces Hy and Hy which are modules over the continuous
functions on X. The map f:X - X is required to be a
Lipschitgz isqmetry. The operator D:Hﬂ-+Iﬁ is assumed
to be bounded, Fredholm and g¢-local. Again the
existence of a commutative diagram:

D
Hy = H

is postulated.
The example of the previous section of course
still satisfies these more general hypotheses.

However, other examples which do not require the

assumption of smoothness have already been constructed




by S. Donaldson-D. Sullivan {10} and are presently
studied by D. Sullivan and N. Teleman in on going
research. One of these include a "signature" operator
associated to an even dimensional Lipschitz manifold.
In this example the signature operator constructed in

[11) is rescaled and localized.
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