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Abstract of the Dissertation

The Fuler Equations
Of An Incompressible Ideal Fluid
In A High-Dimensional Bounded Region

by
Jinguo Yu

Doctor of Philosophy
in
Mathematics

State University of New York at Stony Brook

1991

The author proves that the maximum norm of the vorticity controls the
breakdown of smooth solutions of the Euler Equations of an incompressible
ideal fluid in = 7™ % [0,1], » > 2, a high-dimensional bounded domain. In

“other words, If a solution is initially smooth and loses its regularity at some
later time, then the maximum norm of the vorticity must necessary grow

without bound as critical time approaches.
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Introduction

Let £ be an open set in R*(n > 2) and 99 be its boundary. The set
{2 can be either the whole B*(n > 2) , or a bounded set with a sufficiently
smooth boundary dQ). The motion of an inviscid incompressible fluid filling

 is governed by the initial-boundary value problem of the FEuler equation:

%u-l—(u-V)u»I—Vp:O, in Qx[0,7] (0.1)
Vou=0, in 9x[0,T], (0.2)
cuy>=0,  on x0T, (0.3)
u(2,0) = uo(z),  on O (0.4)

where v is the outward unit normal vector of 952, uy is a given vector-valued
function, while the velocity u(z,t) and the pressure p(z,t) are to be deter-
mined. . Inside of the equation, V indicates the spatial derivative (3, ..., 3,),
Vp is the gradient of p, and V - u is the divergence of w.

The existence and uniqueness of the solutions of the Fuler equations has
been considered by several authors including M. Wolibuer [W], V. Judovich
[J], T. Kato [K1], [K2], D. Ebin and J. Marsden [E-M], J. Bourguignon and H.
Brezis [B-B], R. Teman [T1], and D. Ebin [E]. The regularity of the solutions
was studied byzR. Teman [T2], and C. Bardos and U. Frisch [B-F]. In [K1]
Kato proved the existence and uniqueness of the global solutions in the two

dimensional case, and a simplified proof by Ebin [E] followed. In the higher

dimensional case (n > 3), all known theorems are local results which can be




stated as follows: Suppose an initial velocity field uy is specified in H*(12),
s>nf2+1, with
20|70y < N,

then there exists Ty > 0, depending on N, such that (0.1)-(0.4) have an

unique solution in the class
SC = C([0,17; H*(@)) N C*([0,T); H*~H(Q)), (0.5)

at least for T = Ty. But such a result does not give an indication as to
whether the solutions actually keep their regularity for all time as in the two
dimensional case. For the three dimensional case, several numerical investiga-
tions by A. Chorin [C1] and [C2], U. Frisch, P. Sulem and M. Nelkin [F-S-Nj
and R. Morf, S. Orszag and U. Frisch [M-O-F] predict that the solutions
of' the fluid equations, which at first represent smooth flows, may develop
singularities. Theoretically, the proof of the breakdown of smooth solutions
for the high-dimensional Euler equations is still open. J. Beal, T. Kato and
A. Majda [B-K-M] studied Q = R® case and established a mathematically
rigorous link between the formation of singularities and the accumulation of
the vorticity w = V X u, the curl of u. They proved that if the L=-norm of
the vorticity w is integrable as a function of ¢, then the solution v will not
lose its regularity; i.e., ||lug||ge(ny < oo will give us ||u||gsn) < oo for ¢ € [0,7]
if
T
| ol @t < oo,

where s > 3. In other words, if the solution is initially smooth and loses its

regularity at some later time, then the maximum norm of the vorticity, w,




must necessarily grow without bound as the critical time approaches. It was

pointed out in their paper that their method doesn’t work for the fluid flow
in a bounded region, and that a more involved proof using additional ideas
18 necessary.

In this paper, we announce that the result of [B-K-M] holds for Q ==
T" % [0,1], where T™ is the n-dimensional torus. In what follows we only
prove the result for the three dimensional case, i.e.,, § = 7% x [0,1]. TFor
n 2> 3, the proof will be similar. n here is different from n on p.1.

We denote the spatial differentiation vector by D = (8,,,8s,, O, ). Thus
Du indicates the first derivative of v in spatial variables, and D?%u, D3y in-
dicate the second and the third spatial derivatives of u. The whole proof is
divided into several steps as follows:

In Section 1, for any bounded region Q with a smooth boundary 99, we

prove that the solution u of (0.1)-(0.4) satisfies the inequality

d
Zlullzs@) < Ki(llullzeoa) + 1Dullzo@)llullze(@), (0.6)

where K is a constant depending only on 9, the diameter of €, and s,

where s > 3.

According to the Sobolev embedding theorem, in R3,

||z () + | Dull oy £ Clllullmz @) + 1 Dullaz)) < Cllullms@),

inequality (0.6) becomes

d
EE”“' ma@) < Cllul|msoyllullas@),

which leads us to two well-known results for the regularity of the solutions

‘of the Euler equations in  C R®:
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1. If (0.1)-(0.4) has an H® solution for t € [0,T], then (0.6) guardntees
that the H® solution is as smooth as the initial data uo for all time

L€ [0,T], i.e., ug € H*(Q),s > 3, gives u(t) € H*(R).

2. If up is C(82), by using the local existence and uniqueness theorem for
H3(2), (0.1)-(0.4) has a C*™ solution during the time interval [0,T],

where the II® solution exists.

The above regularity results were proved by R. Teman using Sobolev
estimates [T2] and by C. Bardos and U. Frisch using Schauder estimates
[B-F].

In Section 2, we give the estimates for ||u(|r=(ay and || Dul| 1~ (q), the terms
on the right side of (0.6).

For a function u defined in a bounded region {2 with the cone property,

assume that u satisfies
1Dl £e(n) < Kop(l|w]|zes@) + ol z2()), (0.7)

for p > 2, where K; only depends on 2, and is independent of p. One can

prove

[ Dullneo@y < Ka(l+ [lwlizeay + fuollzzy)[L +In(1 + |[uflgege))],  (0.8)

where K3 is just a constant depending on §2.
While (0.7) holds, we also have an estimate for u, the solution of (0.1)-
(0.4):
lellz==@) < Kallwllzeqay + lluollaay), (0.9)

where K, is a constant depending only on f2.




Remark: If the boundary 9Q is sﬁooth, say al least C, the cone
property is guaranteed.

In Section 3, we prove our main result: for s > 3,

[[u(®)]

) < e e([luollare @y + 1)IF® -1, (0.10)

where
t
F(t) = 6$P[I(£ ([[wllze=cay + llttoll L2y + 1)d7],

with K is a constant depending on £ and s; i.e., if a fluid flow with a smooth
initial velocity field uo, say up belongs to H*((2), then the fluid flow keeps that
smoothness for all time ¢, provided that the maximum norm of the vorticity
of the fluid flow remains bounded accumulatively for all time ¢.

In Section 4, we borrow some definitions and lemmas from [S] by E. Stein,
and then we show that A,, the constant in Lemma 10, can be refined. The
result with the refined constant is very important in the proof of (0.7) in
Section 5.

In Section 5, for a special region 1 = T?x [0, 1], we derive that the relation
between u, the velocity, and it’s vorticity, w, actually are Dirichlet problems
or Neumann problems of the elliptic systems. We study the half-space case
first and then use the partition of unity for the compact set to prove (0.7)
for this special region . We believe that a more careful estimate for elliptic
systems will lead to that inequality (0.7) holds for general bounded region

Lin R". If it is so, the main result can be extended to any bounded region

with a smooth boundary in the high-dimensional case.




Section One

Let @ = (o, ag, 03) with |a] = a3 + s + a3 < s, and let

glel
aaq aozz 8013 u.

Tl w2 X3

v= D% = =
Applying D* to (0.1}, we get
9 .
i + (u-Viv+ DVp = F,,

where

Fy=D((u:V)u) —u VD,
Multiplying (0.11) by v and integrating it over §2, we obtain
19
55[9[%2(9) = —fQ <(u-V)v,v>d
—/ﬂ <D"‘Vp,“u>d;lc—l—j&:2 < Fo,v>dx

=L+ 1L+ I

A). Estimate I; in (0.13):

For any smooth function A(x)

jﬂ [(u- V)hlhde

_f(ul-—h+u2 h+ v h)hd:c
I3

— 2 — . (
= [ 1 <uv>ds fghv (hu)dz

(0.11)

(0.12)

(0.13)




{
7
_ 2 _ : :
= [ B <uv>ds /ﬂh(hv u+ (u- V)h)da.
By using equations (0.2) and (0.3):
[ ¥)hlhda
| _1 h2<uv>d.5'-l]h2v-udm=0 (0.14)
2 Jog ’ 2 Ja ' )
So I] = 0.

B). Estimate [; in (0.13):

We need some lemmas.

Lemma 1 Assume f(z),g(x) € H*(Q), then for any multi-index o = (ov, a2, av3),

with |a| < s, we have

”Da(fg)”L?(Q)

< Cs(1f Hzeoyl| gl ooy + N9l Lo oy 1] £

|
@), (0.15) |
and

|D*(fg) — FD*gllr2(a)

< GID = @ligllare— o) + lgllz=@ | fll =), (0.16)

where Cy only depends on s.

Proof: The proof of (0.15) and (0.16) for @ = R™ can be found in [M] of
Moser and in [K-M] of Klainerman and Majda by using the key inequality

known as the Gagliardo-Nirenberg calculus inequality:




(G=N1) D llgarsay < On NPTty 1D I gy,

where 7 > ¢ > 0. For a general bounded region 2, this key inequality becomes

1 (G=N2) (D fligarssay < ONIF iy 1D £l oy + Callfllz oy

(see [N] Page 125). Applying first a Holder inequality and then (G-N.2) we

can write
ID*(f)llzy < C D |1D? fDg| a0
Bty=ox
SC 32 PP fllpaainog 1 D79l pareiiiay
By=a
<C Y (Mo A1+ £l @) Qg N R0 g A g gy
Btr=a

Since Q) is bounded, we have
[ fllz20) < Cllfllz=(), |
where C' depends only on Q. Writing ]
1y < CIANEh I,
|
we then obtain
1IN0 IS + 1) ey

< I A1

For the same reason




gl =™ I D= gl 24 + gl ey
< Cllgll L= Mgl ).
Notice
181+ 17 = o,
so we get:

Bty=o

1D(f)llzaey < € 3 (If zee@ylgllzzscy) ™1 (gl ooy || 1l 2o ay) 171

< ClF Mz @ gl @) + Ngllze@ll filzreay),

which is precisely (0.15).

To prove (0.16) we make the follow modifications:
[1D%(f9) = FDllay <€ 3 IDPFDg|| 12
16"{"")':0‘"6#0

=C 3. |ID(DFDg||r2q)-
61+ o1

We then proceed as before, replacing f by Df and |af by |a] — 1.
Q.E.D.

Lemma 2 F, as defined in (0.12) can be estimated by

| Fallra@y < Cul| Duflpos @ [Jullme 0y, (0.17)

where C'y is a constant depending only on Q and s.
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Proof: We take f = u, ¢ = Du. If both f,g € H°N CY(Q), by using

Lemma 1, we have

|| Fall 220
S CID*(fg) — fD|l 12

< CllDuf|peo @y |u]

He(Q)-
Since we only assume v € H® N CYR), we need (0.16) remain true with
g € I’7' N C(R), even though D*(fg) and fD% may not be in L(Q).
Notice that

D*(fg)—fD% = >, C,D°fD%,
Bty=c.f#0
is in L*(f2).
Since H* is dense in H*™!, we can choose a sequence g, € H* N (),

such that g, — ¢ in H*"' N C(Q), as n — oo. Clearly, for any 8,~, with
Yl <lal-1<s—1,18 < s,

DPDg, — DPfDg (n — oo),
in Ly(0). Thus
D(fgn) — [D%gn — D*(fg) — FD% (n — o0)
in Ly(€2). Using the sequence g¢,,, we have
1D*(f9) = FD%gll12(0
= > DfDg||rxg

B+v=a,870
=lm | 3 DD

n—oo
Bty=a,f£0
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= lim [|[D*(fg.) — fD%9ullr2(a)

n—oc

< L Co(1D ||z @ lgnll -2y + llgnllLe @l f]

T+ 00

Ho(52))
< Cy(ID fllzee@yllgllzs-1(0) + Nl zoo@y | Fll mzs(y)-

We have thus proved Lemma 2,

Q.E.D.
Consequently,

1) < [ | < Fayo > Jda
< Mallzz@yllvllz2 ey
< G| Dl pooy 1wl o @y 10| 22(2)-
C). Estimate I in (0.13):

Lemma 3 If u and p satisfy (0.1)-(0.3), then the function p satisfies

Ap = HZ%ujaiwui’ in 2 x [0,7],
] K

i
e,
P =~ 2 it on 90 x [0, 7],
v o
where the functions ¢; ; depend only on 5.
Proof: See [T1}, p.34-35.

Lemma 4 p, defined as in Lemma 3, has an estimate

Vel < Ca(l|Dulle=(y + llullze@)lull @,

where Cy is a constant depending on  and s, with s > 3.
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Proof: By Lemma 3 and the well-known Agmon-Douglis-Nirenberg theory
in [A-D-N}, p satisfies the inequality

1|VP”H=(Q) < C(”D“DU”H’-I(O) + ”uu”H’_%(BQ))'
Applying (0.15), we get |

| DuDullgs-riay < CllDul|peog@y || D*~ (D) | 12(n)

< C|| Dul| poogayl| |

He(Q)- - (0.18)

By using the trace theorem and (0.15), we get

leessll o3 (5%)

< Cllun

He(2)
< Cllullzooqa 1wl mrega)- (0.19)

(0.18) and (0.19) complete the proof of Lemma 4.
Q.E.D.

Now we have estimate for /,:

Haf < fn | < D*Vp,v > |dz

< Col|Vplms@)llollz2(a)

< Cs(|| Dulflze ) + el @) lulla@llvllz2 @)

We sum here over @ with 0 < |a| < s. Based on argument A), B),
C), we have our important estimate for ||u||zrs(n) in terms of || Dul|e(q) and

[feel| ooy
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q : |
el ey < Clllullzwa) + 1 Dulleiey) [ulye(ay J

|

ie., i
!

d |
T el < Kalllull ooy + 1 Dullzo @) llullae(0)- (0.6)
|

|

|

;

;

|

|

i

|

|

5
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Section 2

In this section, we give the estimates for ||u||ro@) and || Du|lpe(q)-

Lemma 5 Suppose @ C R" is a bounded region with the cone property.

Assume a function u(z) satisfies the inequality
[Dullrr@) < Cap(([wllpe@) + [lwollz@),  (0.)
for p > 2, where Cy is a constant independent of p. Then
[ Dullpee @) < Ka(1 + [|wllze() + fuollz2@) [l + (1 + [lullms@y],  (0.8)

where K3 depends only on (1.
Proof: Here we prove (0.8) for n = 3. Actually for any n > 2, the proof is
similar.

We use a result in [So], p. 487 by Sobolev: any C! function v(z) on §2,

can be written in integral form over a small cone ¥, contained in Q with z

as its vertex:

3 9
v(z) = -/Vo Eoﬂ(y)dy + E /Vo —m—g—y—iza—%rv(y)dy, (0.20)

where &;,7 = 0,1,2,3 are known smooth functions depending on {) and

1&] < Cyy t=0,1,2,3,

for some constant Cs independent of v(x). Thus for any &, the function

Jv(z)|F satisfies
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o(@)lt = [ &alo(v)ldy

+E

()0l 5

% |z - m2

3
=+ 1. (0.21)

The first term I in the above equation satisfies

ol < C4 [ [o(@)"dz = Caljollixcay (0.22)

For the terms in the summation, we obtain, using the Holder inequality

11 € Col | =g lo()*" | Do(y)ldy
< CsklDvlll f, (17 ylzlv(y)i‘“ Hedyl,
for 1=1,2,3,
where
Piloy e -2
1 7 =1, €., G = 3

We replace ¢ with 4/3 in the above inequality. Notice

LRI TR Y
[f%(]xmy[%uy)! )ds]

< - a(k 1) 2
U, T,

where o > 1,6 > 1, and
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To determine a and 8, we utilize the inside of the above integral. Let

1 1
p=( L _apt
Ui T it
FE exists, if

—§a+320, te, 1f a<

e

Here we take a = -}—g, so that B = 17. Since { is compact, E is bounded by

a. constant independent of ®. Thus for i =1,2,3,

|L| < Cokl| Dol zagoy ol o

LS gy
for 1=1,2,3. (0.23)
Equation (0.21) and inequalities (0.22) and (0.23) give us

o(@)* < Collolipge) + Cobl Dol g (02)

Recall the well-known Taylor series

1 2 1 .
e = 14 plo] + LD g#k|v|k-
’ k=3 """

Since
1 1
ol < 5+ 2ol
we obtain:
3 > 1
M <5+ o+ 3 Sutlt, (0.25)
k=3 ™"

where z is a positive constant to be chosen.

Right now we let v(x) = Du(z). Using assumption (0.7) and inequalities
(0.24), (0.25), we obtain
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ol 3
e!lPul < 5t s (|| Duli2qy + ID%ull sy llvl (n))

- 1 k k 2 - 1 k k-1
+Cs g};{# ”Du”L-"(Q) + Cs]|D u“L*(Q) kZ__; (k — 1)'[;5 ]IDUIIL%ﬁ(k—U(Q)

3 1
S+C) ok W IGR(Jlw] L@y + [|uol z2))IF
k=2
1 68 -
+ Gl Dul|1(q) Z i K 5 (k= D)((wlpe @) + [[uollz2(@))]

(0.26)

Using Sterling’s formula:

k! > \/Qkar(%)k,

the inequality (0.26) can be written

Pl < Cho 3 1Cu (JJwllzeoay + o llzagey) el
k=0

+Chol| D*ul| oy D [Cu ([[w]| pooqry + [|wol|r2(ey )il

k=0
1
<C 1+ pl|D*u ) 0.27
ol + Tl -+ AP @)l (020
Let
# = min(1 ! )
= mun(1, ,
2C1 (|lwllzecay + ||uol|z2(y)
then

1
[ Due]| ooy < o In2C10(1 + pf| D*ul| 12 )]

< 1+ 2Cu(l|lwllpoegay + lluollz@)lin(1 + pl| D*uliraay) + 1n(2C10)],

< Ks(1 4+ |lwl|zeoga) + luollzz@))[L +1n(1 + [lullmo o))l (0.8)
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In the last inequality we have used

107wl zaay < Hullas @),

in [L] by O. A. Ladyzhenskaya. This proves Lemma 5.
Q.E.D.

Lemma 6 Assume u, the solution of (0.1)-(0.4), satisfies condition (0.7);

then v must satisfy

|wllzoey < Ka(llwllzoe @y + lluollz2ey), (0.9)

where Ky is a constant depending only on ().
Proof: Recall the well-known inequality in [N], p.125 by L. Nirenberg:

”Dj'U,”Lp(Q) < constant(A)||D™ul

“L,(ﬂ)]]u[ﬂ;(“’m + constant(B)||ul z2(q),

where.

for all @ in the interval

Lozt
m
Here j,p,m,r,q are real numbers and n is the dimension of the space. The

constant(A) depends only on n,m,j,¢,r,a, and the constant(B) depends

only on the bounded domain §2. Since n = 3, we specifically choose p =

00,j =0m=1r=12,g=2,a = %, which gives us
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2 1
l|lul| ey < constant(A)]]DuﬂEu(m]|u||22(m + constant(B)| ul| 12 @)

< C|| Duf| zogay + el 2gay)- (0.28)

Notice that u is the solution of equations (0.1)-(0.4). Multiply (0.1) by

u, and integrate over {}. Using integration by parts, we obtain:

4 -

I

—|-/pv-ud:1:—/ < u,v > pdz.
Q o9

The estimate I; in Section 1 shows that the first term on the right side
is zero. Equations (0.2) and (0.3) show that the other terms are also zero.

llul| L2y is thus conserved, i.e.,
lullz2@) = |luollz2a)- (0.29)

The proof is completed by combining the equation (0.29) and inequalities
(0.7) and (0.28).

Q.E.D.
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Section 3

We can now prove quite easily our main result, using the estimates in the

previous sections. The main result of this paper can be stated as follows:_...

Theorem 1 Let & =T% x [0,1], and let u be the solution of (0.1)-(0.4). If
u exists for t € [0,Ty], the following inequality holds:

(&)l o) < €7 [e(|[voll ooy + 1)]TW — 1, (0.10)

where C
1
F(#) = eplK [ (lwllze) + luollzam) + 1)a

for s > 3, and K is just a constant depending on Q) and s.

Remark: The proof of this theorem depends on the inequality (0.7) which
we prove only in the case @ = T2 x [0,1]. Hence we state the theorem only
in that case. However, we believe that (0.7) is true for all bounded domains
1 C R* which have smooth boundaries. If it is, then the above theorem is
true for all such domains also.

Proof: Using inequalities (0.6), (0.8), (0.9), we get

o) < Ka(l[ullneo) + | Dull o) ul

d
El|u| Ho()

< K(1 + |fw|pegay + uoll 2@t + In(1 + ||u)lms@)]|wllze@y.  (0.30)

Let

y(t) =1+ [|u|

He(9)-
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From (.30}, we then obtain

d
‘C'Ey(t) < K(l + l|w“L°°(Q) + H%”L?(Q))(l + ]ny(t))y(t).

Denote
A(t) =1+ Iny(2),

where z(t) satisfies

d

=2(1) < K(1+ o]z + loll 2ay)2(D)-
Therefor, if Z(1) is the solution of the ordinary differential equation:

d

72 = KL+ ffoollze) + [[wollz2@) 2 (),

Z(0) = z(0) = 2o,

then
z(t) < Z(1).
This gives us:
2(1) < zoexp{K f:(l + 1wl o=@y -+ llusol| 2y )t }-

Changing back to the form of ||ul/fs(a), we see that ||u|

He() is bounded by

some form of f|w||peo(q) and ||uel|r2):

In(1 + [Je(t)ms()

t
<[ +In(1+ [|U0!|Hs(n))]emp[ff/0 (lwllze () + luollzagy + 1)dt] — 1.
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This produces the inequality (.10).
Q.E.D.

The theorem has the following immediate consequences: i

Corollary 1 Let u be as in the above theorem, and suﬁpb’éé i_h_éfe is a time

T such that the solution u can not be continued in thé.cld"s._é'."' |
SC = C([0, T} H(@) N (0,7 A7) (05)
toT =1T,. Assume T, is the first time that'd_z'scontinuity occurs. Then
o . C
| lellsydt = oo,
and in particular
lim sup ()| (@) = oo.

Corollary 2 Lel u be a solution of (01}-(04}, and suppose there are con-
stants My and T, such that on any interval [0,7T], with T' <T,, we have

T
£ |]'LU”L00(Q)dt S Mo.

Assume the initial data, ug is in H*(Q). The solution u then can be continued

fort € [0,T,] in the class SC.
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Section 4

This section is the preparation of Section 5. We introduce some definitions
and well-known lemmas borrowed from [S] by E. Stein, and then refine a

constant in Lemma, 10.

Definition 1 Let ® be a linear mapping from LP(R™) to LY(R"), where 1 <

p,qg S 00. Then

1. @ is of type (p,q), if for any function f € LP(R"),

12(N)lzeamy < Al fllzoam)s
where the constant A does not depends on f.

2. ® is of weak-type (p, q), if for any function f € LP(R™),
measure(z : (@()(@)] > ) < (AL,

Obviously, we have

Lemma 7 If ® is of type (p,q), then ® is of weak-type (p,q).

Proof: See [S], p. 20.

Definition 2 LP(R*) + L(R™) is the space of all functions f such that f =
Si+ fo, with f1 € LP(R™) and f; € LY(R").
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Lemma 8 For all p such that py < p < p,,
L?(R") C LM (R") + IP(R").
Proof:  See [S], p. 20.

Lemma 9 Suppose 1 < r < 0o, and let & be a mapping from Ll(R"')" +
L'(R™) to the space of measurable functions on R™. Suppose that for all f

and g € L'(R™) + L"(R"™), we have:
1.

[2(f + D < [N +12(g)],  (sub— additive),

measure(a : [(B()(w)| > @} < 2 sy, (weak ~type(1, 1),

AN Nl oy
(44

measure{z : [(P())z)] > a} <( ), (weak—type('rl",":?:“.)::)}-.__ :_;":..'.

Then

I|¢(f)l|LP(R") < Ap”f”LP(Rn) .- ! (031)
for all f € LP(R™) with 1 < p < r, where e

24 (2A)
p—-1 " r—p

).

Moreover, as p — 1,
Ap(p — 1) —> O,

where C' is a fized constant depending only on Ay, A,, and r.
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Proof: See [S], p. 21 - 22.

Lemma 10 Suppose

@(D)@) = [, Ko = 1)), (0:32)
where
K(z) = %(T—n),

with W(z) homogeneous of degree 0. Suppose U(z) also satisfies:
. .

_/Sn_l U(z)de =0,

where S™ is the unit sphere in R™.

2. if

sup  |U(z) - ¥(y)| = w(8),
Jo—yl<Blel=lyl=1

then
[
o & -

Remark: This condition requires a certain continuity of V(zx), which
is known as ‘Dini-type’. Of course, any U(z) which is of C, or even
merely Lipschitz continuous, gives w(8) < C§%, for some o > 0, and

thus satisfies this condition.

Then,

1. ® is weak-type (1,1).
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2. Forany f € LP(R™), 1 < p < o0,

12(F)lzrrmy £ Apl| Fllzrrny, ' (0.33)

where A, is a constant depending only on p.

Proof: See [S], p. 29 - 42.

We claim here:

Lemma 11 the constant A, in the above lemma can be dominated by Ap for

some fized constant A independent of p; i.e. (0.33) can be rewritten as

1@ (F) | zermy < Apl| fllze(rny- (0.34)

Proof: We prove this lemma in two steps.

1). For 1<p<2.

In fact, according to Lemma 10, & is weak-type (1,1) and weak-type (3,3).
Also, ® is sub-additive because of its form (0.32). Applying Lemma 9, we

have

1) zermy < Bl fllioam), (0.35)

for any function f € L?(R"),1 < p <2, with

241 (249)°

B =
(p—l 3—p

4

). (0.36)

2). For 2 < p < o0.

We use the equivalent LP norm
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Il = sup | [ p(a)é(z)dal,

ll#ll 2o rny <1

where

1 1
Zpo=1.
P q .
For any f € LP(R"),2 < p < o0, and ¢ € LY(R"), with !l Lagrmy Sl,We

have that

[ @U)@)(z)da

- RJ/ K (z — y)g(z)dz] f(y)dy.

- R"[fRn K(z — y) f(y)dylg(z)dz

Applying 1). to g, we get
(O(/)(=)g(z)dz|

/.
< [[9(g(—2)|| Loy 1f || Lo remy
< Byllgl\zommy | fll e amy

< Byl flireegny-

Thus
| [ (@) (@)g(e)de]

Holle(rmy<1

N®(f)lleermy =  sup

< B, || fllgegany, (0.37)

where

2
2A1 + (2A3) )_]a_.
g—1 3—¢q

qu(




Since

=
4
L=
Il
“b—-"

we then obtain

p=i

By= Ao —1)+ QAP LT < ap,

for some fixed constant A independent of p. Therefor (0.35),".'(0_..-: '
(0.38) give (0.34).

Q.E.D.
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Section 5

In this section, we prove the inequality (0.7) for the region Q =T2><[O,1]

A similar inequality

| Dulier@) < Cp(llw]lzo@) + lluollL2(ay)

may have been proven somewhere before for some constant €, changing Wlth
p, although the author hasn’t seen it. Here, we need C, to be bounded by .
K,p for some constant K, independent of p. _
Now we turn our attention to the relation between the velocity u, the
solution of {0.1)-(0.4), and its vorticity w = V x u. Since we assume ) = ._
T? x [0,1], u(zy, 2, 3) is periodic in (21, 2,). Assume the period is (1,15,:'.:
where the region has its boundary in the z direction. Applying Vx to i&,
and using (0.2) and (0.3), we get three elliptic equations, which are Dirichlet

problems or Neumann problems:

For u,:
17, Jd
Auy = ——w3 — 1wy,
(9272 3.’133
a .
"&guﬂxa:m = w2|x3=0,1-
For u,:
J d
AUQ = g uny T ws,
6313 3:{;1
0
'é‘ﬂ;uz]mazoa = _w1|:r:3=0,1-
For us:
d 7,
Auz = —wy — ——wy,

91,

9z,




k=0
We study the above problems by starting with'.ﬁ{_é_:.hajf—pla,ne zz > 0.
Since the region 1 is compact, we can then prove the:'ili’éql'ja.lity by using the
partition of unity method. _' | :
Now we consider the Neumann problem in the half "—:ﬁ.l'é,ne z3 > 0 for uy

with the property that u;(p) vanishes as the point p gi_)és____i_t(_) infinity. We have

, T

= Ly Ly, 0.39

B = 0 T B (9:39)

RAWIITILA S (0.40)
6173 [25] xzz3=0 — W3 ma=0) i v

and here we assume that w is supported in the half ball B*+.
We give some notation before getting 't.}ié?’é'}&p'liéit representation of the
above solution. Let # = (21,29, 23), T = (T1, 2, T3), and T* = (Fy, Ty, —T3),

the reflection point of 7. Also, let

|z = /2l + 2f + 23.

Choose the second Green’s function

1 1. 1
G(@,7) = 27r(|$—§] |$—5*|)
Clearly,
d —
E_QZG(:B,:E)IMZG = 0.

Applying the Green’s second formula, we obtain that

() = /Ra G(m,f)[é%wB(E) - a;;wz(f)]d*f

+




2wy (T, Ty, 0)
f dfl i)
ZW B \/(391 —21)% + (2 — T2)? + 23
d

[ 526, D) = 5-Gla, Dua(Eldm

_/ w2(ﬂ'11,$2,0)
m \/(33'1"'“ )2+ (22 — F2)? + 22

Say the first integral is the interior term and the second one is the bound-

47, d7,. (0.41)

ary term. The interior term is a linear combination of I, I}, I3, and I}, where

d 1 — T —Ff
= J o7\ —g ®)eE = -/Ri 7 —zp @
. d 1 -
I = fﬂi ?ﬁ(m)w(x)df
for 1=1,23.

Here, we ignore the indices of w. Apply derivatives to I, to obtain

9 - /Rs 3(ms — F)(2e _TZ)w(EE)dE

6331 i lﬂ? - Eis

= / )'w(a:)d"

where

33&'1.’172 ]
2 3
i+ 23 + a3

Uy(zy, @, 23) =

Also,

0 pe [ Bl=®) i

dzy 0 I e —zP




where

2 _ 2 .2
2z5 —xf — 73

Uo(@1, e, €3) =
3 &3 ]
i + 23 + 23

and
L= BE Y R
8:173 2 R?,, l.’B __ -51'3'[3 w(m) T,
where

3372333
2 3 .
z{+ x5+ o3

We extend w(E) = 0 to the lower half-space z3 < 0. The ab(:){r'

\1’3(3131, £, 3:3) ===

of DI, can be written as integrals over R™. Ii is easy to check tha, _
integral kernels W;,¢ = 1,2,3, satisfy conditions (1) and (2) in Lemm
Thus, :

|2 L2|lrr) < ApllwllLrg)-

Now, observe I; and If, for « = 1,2,3, and note that the integral f

their derivatives will have the same properties as DI,. So

max{|| DL Loy, | DI |l1r@)} < Apjlw]lLo),
for i=123.
According to the Minkowski inequality,
If + gllzey < N llzeiey + lgllzeg),

we arrive at the estimate for the derivatives of the interior term__.d_ft (041)




ID [ DsGla,)w(@)dz ] 1s(@y < Apllwllsoey,
¥ :

for some constant A independent of p.

Now we should estimate the boundary term in equation (041

w(EIJEMO)

J =
/Rz \/(331 —T1)? + (@2 — F2)? + 23

dmdz;.

Let

Mo = /(21 = F1)* + (w2 — T)? + 2,

M = /2 + 22 + 22,

Taking the partial derivative of J with the respect to z;, we Obt.a,i_:_.l_._l

—6—J - —(331 - lL‘l)w(l‘l, -’Bza{)) - T, 4,
Oy B ((z1 —21)? + (v2 —T2)? -+ 23)2

Lu(=52 5™ )
= . e T1,Tq, 0)dT1dT,,
e (o =72 + (22 m§2)2+m§w($1,wz, VdT, :cz,__..___

where

1 To I3 Ty

G M) = T

Similarly, the partial derivatives of J with the respect to a:z and Ty ar

follows:
9 [y(spe, aem, & e
e : = Ty, T3, 0)dT1dTo;
s’ = o e G TR ) e

where
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Ty Tg T3

G = " i
2M1M7M_ M; i
|
|
|

and
9 Ty(75, 228, &
I B 0 dF1dT
Oz3 ./m (21 —T1)%+ (2g ~T2)% + 23 e
where
Zy I9 Ia T3
I‘3(ﬂ)"j'4—_$ M) - _M

We will derive the following in general in order to estimate ||DJ||1s(q).

Let y = (y1,-.-,%n), 2 > 0 and real, |y| = \/yi +... +y2, P = (y,2), and

|P] = (Jy* + 2%)3. K(y,2) is a kernel defined in the upper-half space R+

with homogeneous degree —n, and is of the form

- 1P]* 1P
K= e

where I'(P) is homogeneous of degree 0 and satisfies:

(1) IM(Q1) = T(Q2)] < s1Qs",

for any unit vectors @y = (y,0), Q2 = (7,2) and some constant «, o, (@ < 1),

where (1), represents the geodesic distance on the unit sphere from @ to

(J2; and

2) /|y1=1 I'(y, 0)dw, = 0.




I((y:z) = ffl(y,z) + 1{2(."9'7 z))

T (24 2n)E

where
¥ oz Y A
I{ (? Z) fasad F(l(ysz)i, |(yvz)i) F(IQI,O)
o (gl +2%
and
- I‘(ﬁ", 0) o Gl
Ky(y,z) = (043) -

For Ki(y,z):
Let @ be the angle between vectors @, and ;. Thus

z

V0yl + 22

sin(f) =

By Condition (1) and the inequality
|0]* < C*sin®(0)

for 0 < 8 < Z_ where constant C'% is fixed, we have

= 99
—_— 1
Ky, 2)| < kPO ——
R T
< O sin®(9)
- (P22
1
= g i *

Teris WEEAE
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For any fixed z, set y = z£, dy = 2™d¢.

o d§
jRn K1 (y, 2)|dy < £C° fn,, e S C. (0.44)

Here C is independent of z. Recall the well-known result about convolution:
Lemma 12 For any p such that 1 < p < oo, if f € L', then

1f * gller@y <A Mz ll9llze),
for any g € LP.

Proof: See [Tr], p. 278 -280.

(0.44) shows that K, is L'. Using the above lemma, we have

| [ Kl =, 2o, 0)dnl rogrn.«

< ”Kl||L1(Rn)||w(yao)”L”(R”)
< Cllw(y, 0)]l eary

where C' depends neither on z nor on p.

For Ky(y,z):

We should use Agmon-Douglis-Nirenberg’s

Lemma 13 For any p such that 1 < p < oo, and any z, if w(y,0) € LP(R"),
and K, is of the form as in (.43), then
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Il /. Kaly —n, 2)w(n, 0)dnllLany,e < Collw(y, 0)lzrgam), (0.45)
Ry

where C, depends on p and not on z.

Proof: Tor a detailed proof, see [A-D-N], p. 709-711.

The above inequality is not sharp enough to satisfy us. We claim:

Lemma 14 The constant C, in the inequality (0.45) can be replaced by Cyp,

for some constant C independent of z.

Proof:  Using the same method as Stein used in [S], p.29-31 and p.39-45,

and noticing that

1
yl? + 2%~y

we ca1i prove that for any fixed z, I5(y, z) is of weak-type (1,1) with constants
A; independent of z. Now combine Lemma 10, Lemma 11 and Lemma 13 to
prove Lemma 14.

Q.E.D.

The estimates for K; and K, gi\}e us

I [ Ky =230, 0)dnllsgm,s < Collw(@, Dy, (046)

where C is a constant independent of z.




Notice that DJ are the integral forms with kernels satisf

tions mentioned above. By (0.46) we immediately get
DIl zeme),. < Cpllw(y, 0)|lze(ra)-
If u is supported in B, so is Du. Let {2; be an open set such tha
supp(u) C O C BY.

Let ¢ be a smooth function defined in R® with support in B+, and sup
that ¢ = 1in Qy, |¢| < 1, and | D] < C. Ignoring the indices, w
that Du is a linear combination of DI and DI*, the derivatives of the interio

terms, and DJ, the derivatives of the boundary terms, That is

Du = econst. DI + const.DI* + const.D.J.

Du = ¢Du = const.¢ DI + const.¢DI* + const.¢D.J.

1
16D W any < [ ([, l8DIPdy)z

< ['([, 1DIpdy)as

1
< [, (@plhoty, 0) vy

< (Cplfwly, 0)||ze2y )7

we have




[ Dur || sty = [|¢Dwa||1o5+)

< CUIDI ooy + 1D | rirey + 1D 1o o)
< Cp(||w||Lr(roy + l2o(y, 0)|| Lorey)
< Cp([lwllrags+y + Ny, 0)lLe+nrz))
< Cpllwllzeo sy

The last second step is due to the assumption that w has support in B,

The norm estimates above let us arrive at the following:

If w is the solution of (0.39), (0.40), and u and w are supported in the
half ball B, then

[ Dullzem+) < Cpllwl|pooga+). (0.47)

Notice that u; and wu, satisfy the same type of problem (.39)-(.40). So

the above result also holds for wu,.

To derive the estimate for uz, we consider the Dirichlet Problem in R3:

0 %,
A’UB = '53—:;?1)2 — ;';?_;Ewl’ (0.4:8)
Usley=0 = 0, (0.49)

where u(p) goes to zero as the point p goes to infinity. Choose the first

Green’s function
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1 1 1
el ).

Zﬂ(lw-——E] z =7
We still assume w is supported in B, here. Now, us can be represented by

the integral:

w(w) = [, Gl B rmwa(F) — oy (7))

i1 Iz, 0T,
= [ L6 mmE - 2@ pm@dE (050
= ", 57 z,T)wy(T oz, z,T)wy(T)dT. .

Inside the representation, there is no boundary term .J, since the zero bound-
ary condition (0.48) and the derivatives are only in the %, and T, directions.

Dus, the first derivatives of ug, are of the form

const. DI 4 const.DI”,

Here, we ignore the indices as before. So Duy has norm estimate (0.47) as
well.

In addition, we have to solve

Au = Dw (0.51)

in R®, where the result will be used in the partition of unity. We assume w
is supported in the unit ball B, and we want to find the solution vanishing

at infinity. Here we choose Green’s function

b
e — 7]

_ 1
G(.I:,.’E) = 'é-‘;




Apgain the solution u can be written as a convolution int.e'g'i- '

first derivative of u should give us

Dw = const. DI + const.DI”.

Then the above argument will produce

[Dul|zerey < Opllwl|zem+)-

Now, we can prove our main inequality.

Lemma 15 If u is the solution of (.1)-{.4) in @ = T* x [0,1], and w

vorticity, then

| Dul| ey < Kap(||w||po (@) + ||uollz2(a)), (-7)

for p > 1, where K; is a fized constant.

Proof:  Since ) is compact, there exists a partition of unity (Uj,gbj

7 =1,...,7+s, where the U; are small neighborhoods and the ¢; are éﬁﬁoot’h’-
functions supported in U; with |

r+s r+s
E(ﬁj 1, and U Uj D .
=1

i=1

Also

1¢J|Sla |D¢J[S07 |D2¢JI$01 fOT jzla"'aT‘+3'

Suppose that for 1 < j < r, the U; are mapped into the unit ball B by a .'
shift, and for r +1 < j < r 4 s, the U; are mapped into the half ball I3, in




such a way that the boundaries U; N 9Q are mapped into the pla,ne'_";b

‘/::j:quuh fOT' 3=13213; j"_"l,...,T—l-S.

Ignoring the indices, we see that, for i = 1,2, = r 4 1,...,7r + s, the

satisfy

AV = D(¢$w) 4+ 2D((D¢)u) — (Dd)w — (D),
with the boundary condition

7,
E?SVIGTa:U = ¢w + (D¢)u7

in the half-space z3 > 0. Using the second Green’s function, V will be w

as an integral of the interior terms

(DG + (D)) + GI(D)w + (D))

plus the boundary term as J where w replaced by ¢w + (D).

the derivative D to V| we get

DV = const.DI 4 const.DI* + const.DJ + /(DG)[gbw +(D¢) ;

Since the last integral is not a singular integral, also ¢w and(D¢)u

supported in B, then

| [(DG) (g + (D)l 1oy < Ol + Iullzan)




Using the previous results for DI, DI+ and DJ, we get that fori =1, 2, g
rd1,...,r+s, V7 satisfy

1DV |l < Cpllwllzmmt) + lulliegt))- (055)

Fori=3;j=r+1,...,r+s, the V/ satisfy

AV = () = 2=(w) + 2D((De) — (Ddyw— (D, (056)

L2

with the boundary condition
V=0 = 0. (0.57)

Notice that the derivatives of ¢w are only in the z; and z, directions, and
that V has the zero boundary condition. So, DV will have the form as B
ug in (0.50), i.e,, no boundary terms. Also V,¢w, (Dé)w, and (D?¢)u are S
supported in B+. By the result for us and the above argument, the V,-j should

satisfy the inequality (0.55) fori =3;5 =r+1,...,7 + s.
For: =1,2,3;5 = 1,...,r, the Vij satisfy the elliptic system in R® as 13
type (0.51): ‘ '

AV = D(¢w) + 2D((D¢)u) — (D¢)w — (D*¢)u. (0.58)
Applying (0.52), for  =1,2,3;5 = 1,...,r, we have
1DV ||zasty < IDVE [l oqre)

< Op(Jlwlizem) + llullzo(m))-

Thus, we obtain the important estimate




1Dullze@) < DDV oogey

1Y
< Oplllwollze@) + llullz@))- (0.59)
Recall the well-known inequality
2 1
lullre < constant(A)|| Du2 ., 1uli?, + constant(B)|lul|z-.

We obtain

lullzeo < ell Dl + C.
< | Dullps + Colfuoll 2, (0.60)

where ¢ is a positive constant to be determined. Inequalities (0.59) and (0.60)

give us
[1Dullzr < Cplell Dullzsz + [|wljze + Cefluolz), (0.61)
for any p,1 < p < 00. Choosing p = 12, we have

1Dullziz <12C(e[Dullgsz + [[eoll os -+ Celfuof|2).

If e is sufficiently small so that : I'

1
. 1 —
206<2,

[Dullziz < C(lJwllze + uollz2),
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for some fixed constant C'. Replacing ||Dul|g12 in (0.61) with the right side

of (0.62), we finally prove

[1Dullzr < Kop([[w]|zeo + [luollz2),  (0.7)

for general p,1 < p < oo,




Bibliography

[A-D-N] S. Agmon, A. Douglis, L. Nirenberg. Estimates Near the Boun
ary for Solutions of Elliptic Partial Differential Equatid_ﬁ.é Sat
isfying General Boundary Conditions. I. Comm. Pure 89' Appi
Math., 17, (1955), pp 623-727.

[B-B] J.Bourguignon, H. Brezis. Remarks on the Euler Equation’is_ g
Functional Analysis, 15, (1974), pp 341-363.

[B-F] C. Bardos, U. Itisch. Finite-time Regularity for Bounde.c_l::_?a'_n__(.i:j_
Unbounded Ideal Incompressible Fluids Using Holde_l"i‘:_'_ ti
mates, Lecture Notes in Math. No.(565) (1975) L

[B-K-M] J. Beale, T. Kato, A. Majda. Remarks on the Bfeakd:d_.:y{_r_'r_l.' of
Smooth Solutions for the 3-D Euler Equation. Comm. Math
Phys., 94, (1984), pp 61-66 o

853-866.




[C2] A. Chorin. The Evolution of a Turbulent Vortex. Comm. Math S

Phys., 83, (1982), pp 517-535.

[E] D. Ebin. A Concise Presentation of the Euler Equations of Hy-
drodynamics. Comm. in Partial Diff. Eq., 9(6), (1984), pp 539-559.

[E-M] D. Ebin, J Marsden. Groups of Diffeomorphisms and the Mo-
tion of an Incompressible Fluid. Ann. of Math., 92, (1970), pp
102-163

[F-S-N] U. Frisch, P. Sulem, M. Nelkin. A Simple Dynamical Model
 of Intermittent Fully Developed Turbulence. J. Fluid Mech., 87,
(1978), pp T19-736.

[J] V. Judovich. Non-stationary Flows of an Ideal Incompressible

Fluid. J. Math. & Math. Phys., 3, (1963), pp 1032-1066.

[K1] T. Kato. On the Classical Solutions of the Two-dimensional

Non-linear Stationary Euler Equation. Arch. Rational Mech., 25,
(1967}, pp 188-200

[K2] T. Kato. Non-stationary Flows of Viscous and Ideal Fluid in
R®. J. Functional Analysis, 9, (1972), pp 296-305

[K-M] S. Klainerman, A. Majda. Singular Limits of Quasilinear Hyper-
bolic Systems. Comm. Pure & Appl. Math., 34, (1981)

[L] O. A. Ladyzhenskaya. The Mathematical Theory of Viscous In-
compressible Flow. 2nd edition, 1969.




[M] J. Moser. A Rapidly Convergent Iteration Methb:"(.i:f'élﬁ:&* Nonlin—-::'_._'
ear Differential Equations. Ann. Scuole Norm. Sup sta 20 (1966
Pp 265-315

[M-O-F] R. Morf, S. Orszag, U. Frisch. Spontaneous Smgularlty m-'
Three-dimensional Incompressible Flow. Phys Re'v Lett 44,
(1980), pp 572-575.

[N] L. Nirenberg. On Elliptic Partial Differential ’Eqﬁaf'ians. Annali
Della Scuola Normale Superiore de pisa (3). vol 13 (1959), pp 115 -
162.

[So] S. L. Sobolev. A Theorem in Functlonal Analy51s Math. Sbor, 4,
(46), (1938), pp 471-497.

[S] E. M. Stein. Singular Integrals and 'Diﬁ'erentiability Properties
of Functions. Princeton Univ. Press., (1970).

[T1] R. Teman. On the Euler Equations of Incompressible Perfect
Fluids. Journal of Functional Analysis., Vol 20, No. 1, (1975), pp
32-43.

[T2] R. Teman. Local Existence of ¢ Solution of the Euler Equa-
tions of Incompressible Perfect Fluids Lecture Notes in Muath,
No.(565) (1975)

[Tt] E. Treves. Topological Vector Spaces, Distributions and Kernels.
Academic Press (1967).




49

[W] W. Wolibner. Un Théoréme sur L’existence du Mouvement Plan
d’un Fluide Parfait, Homogéne, Incompressible Pendant un

Temps Infiniment Longue. Math. Z. 37, (1933), pp 698-726.

S

A




