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- Dirac type operators on complete open manifolds are gener- ‘
alized Fredholm operators in the sense that they are invertible
modulo the algebra of locally traceable operators with hounded |

propagation, which is the Roe algebra. Hence Dirac type opera-

we study the computation and the geometric significance of such a
K theoretic index, based on the study of the K theory for the Roe

tors have indices in the K theory of the Roe algebra. In this thesis
algebra. J‘
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Chapter 1

Introduction

Index theory is the study of topological invariants for elliptic differential

operators on manifolds.

An elliptic operator DD on a compact manifold is a I'redholm operator.
The only topological invariant for a I'redholm operator is the Fredholm index
[16], which is defined to be dim(ker D) — dim(coker D). The Atiyah-Singer
index theorem calculates the Fredhom index in terms of the topological data.
This theorem establishes a bridge between analysis, geometry and topology [2]
[3]. The Fredholm index is often related to the geometry of the manifold. An
example of this is that the nonnegativity of the scalar curvature implies the
vanishing of the Fredholm index for the Dirac operator. Therefore a nonzero
A genus is an obstruction to the existence of a metric with nonegative scalar
curvature.

Index theorems have been generalized to noncompact manifolds of various

sorts. Elliptic operators on noncompact manifolds are no longer Fredholm in

the classical sense, but are Fredhoim in a generalized sense with respect to




certain operat;)r algebras. The topological invariant for an elliptic operator is
now the generalized Fredholm index, which lives in the K theory of an operator
algebra. An early example of this was the index theorem for almost periodic
Toeplitz operators, which computes partially a generalized Iredholm index (
Coburn, Douglas, Schaeffer and Singer [11]). ( Toeplitz operators are the odd
analogue of elliptic operators.) Some other examples are the index theorem
for coverings (Atiyah {1}, Miscenko and Fomenko [27], Connes and Moscovici
[14]), for foliations (Connes and Skandalis [15}), for homogeneous spaces of Lie
groups {(Connes and Moscovici [13]), and for complete manifolds of bounded
geometry with regular exhaustions ( Roe [31] ) .

Inlthe case of a complete manifold M, Dirac type operators on M are
generalized Fredholm operators in the sense that they are invertible modulo
the algebra of locally traceable operators with bounded propagation, which is
the Roe algebra. Hence Dirac type operators have indices in the K theory of the
Roe algebra [31] [33]. If M has bounded geometry with regular exhaustions,
then there is a trace on the Roe algebra. Roe’s index theorem calculates the
pairing of this trace with the K theoretic index [31}. In some other special
cases Roe constructs “higher traces” (cyclic cocycles ) over the Roe algebra to
compute their pairing with the K theoretic index [32, 33, 34].

The purpose of this thesis is to understand the K theoretic indices of Dirac
operators on complete open manifolds and its geometric significance, based on
the study of the K theory for the Roe algebra.

In this thesis we prove that a non-zero K theoretic index of such a Dirac

operator on a “geometrically open” manifold is an obstruction to the existence




of a metric in the strict quasi-isometry class with uniformly positive scalar
curvature near infinity. In order to detect the K theoretic index we construct
a class of K homology elements over the Roe algebra and compute their pairing
with the K theoretic index, which can be used in detecting the nonvanishing
of the K theoretic index on manifolds with a cone like end. We obtain a
formula of the K theoretic index on the connected sum of manifolds. Also
we answer a question of Roe on the nonexistence of metrics with nonnegative
Ricei curvature near infinity.

For a finitely generated discrete group, a Roe algebra can be defined in
an analogous manner by using the word length function defined by a finite
generating set. When M is the universal cover of a compact Riemannian
manifold M, then the Roe a,lgébra for M can be shown to be Morita equivalent
to the Roe algebra for the fundamental group of M. One of the purposes of
this thesis is to understand the K theory and cyclic cohomology of the Roe
algebra for reasonably “nice” discrete groups. We compute the K theory of the
Roe algebra for various groups. As a consequence we prove that the K theory
of the Roe algebra for Euclidean space and for the Poincare disc is huge while
there exists a compact spin manifold M with nonzero A genus such that the
K theory of the Roe algebra for the universal cover of M is trivial.

For groups of polynomial growth we obtain certain vanishing results. In
particular we prove a conjecture of S. Hurder which states that the exotic
cohomology HX?(I")=0 for ¢ > d, if T is a discrete group with polynomial

growth of degree d. The exotic cohomology was introduced by Roe to construct

cyclic cocycles over the Roe algebra [32] , [33]. Moreover, we shall prove that




every cyclic cocycle over the Roe algebra for such a group has dimension at
most d. We also show that group cocycles can be used to construct cyclic
cocycles over the Roe algebra of amenable groups. By using this cyclic cocycle
method we show that the K theoretic index of the Dirac operator for the spin
manifold ET with T’ invariant metric is nonzero when I" has polynomial growth

and BT is compact and oriented { ET' is topologically the universal cover of

the classifying space BT for T').




Chapter 2

K theoretic index and positive scalar

curvature near infinity

2.1 The K theoretic indices of Dirac type

operators

In this section we construct the K theoretic indices of Dirac type oper-
ators on complete manifolds introduced by Roe [31} [33] in the framework of
Kasparov’s KK theory. Such ‘Lx KK theoretic interpretation of the index will
be useful in computation.

Let M be a complete Riemannian manifold, and let Clif f<(M) be the
complexified Clifford algebra bundle over M. There exists a natural connection
V over Clof f¢(M) which is compatible with the Riemannian connection over

TM, the tangent bundle of M.

A vector bundle S over M is called a Clifford bundle if S is a left module

over Clif f¢(M) and S is endowed with a Hermitian metric and a compatible




connection such that:
(1) For each unit vector v in T, M, its module action on S is an isometry.

(2) For all smooth sections ¢ of Clif f¢(M) and s of S, the connection V
is compatible with the module action, i.e, V(cs) = ¢Vs + (Ve)s.

The Dirac operator ) acting on S is defined by:
(Ds)s = Yeg(Ve,$)a,

where {e1,...,ex} is an orthonormal basis for T, M and s is a smooth section
of 5.

We will assume that S is a graded Cifford bundle, i.e, there 13 a grading
operator 5 such that »* = 1 and 5 anticommutes with the module action
of tangent vectors. Hence S can be decomposed into the direct sum of the

positive and negative eigenbundles of #:
S=5.®5_.

The Dirac operator D) can be decomposed correspondingly:

When M is a spin manifold, there is a natural Clifford bundle called the

spin bundle. The Dirac operator acting on the spin bundle is just the usual

Dirac operator. For more information see [18].




A positivé operator b acting on L%(S) is said to locally traceble if, for all
compactly supported continuous functions f on M, the operator fof is of trace
class. A general operator is locally traceble if it is a finite linear combination of
positive locally traceble operators. The Roe algebra Bg consists of all locally
traceble operators with bounded propagation. Recall that an operator b is said

to have bounded propagation if there exists r > 0 such that for any s € L*(.5),
Supp(bs) U Supp(b*s) C {z|z € M, dist{z, Supp(s)) <r}.

Denote by Bg the operator norm closure of Bg.

The Roe algebra plays an important role in the index theory on a complete
manifold since its K theory is the receptacle for the index.

The Dirac operator D on the Clifford bundle 5 is essentially selfadjoint
under our assumption that M is complete [10]. If f is a continuous real-valued
odd function on the real line such that limp,—qeo f(z) = 1 and limy,—,_ o, f(z) =
—1, then f(D) is a well defined bounded operator and we have the following

lemnma, which is implicit in Roe [33].
Lemma 1 f(D)? —1 is in Bs.

We have the following decomposition of f(D) since f is odd.

fD) 0




By lemma 1 we know that f{D). is a parametrix of (D). More pre-

cisely, we have

f(D)4f(D)- —1=C.

fD)-f(D)y —1=04

where

is in Bg. Let

It 1s not difficult to check that L has an inverse:

Cy f(D)-(1-C.)
Lt =

J(D)+ —C.

Now the index of D is defined to be:




¢z f(D).C_(1-C.)

f(D)+Cy —C?

which lives in KO(ES). It is not difficult to check that IndD does not depends
on the choice of f.

Notice that IndD is 0 if D, is invertible. Hence IndD can be viewed as
a topological obstruction to the invertibility of D,.

The motivation for such a definition is the following. Let Ag be the C*
algebra of bounded operators acting on L?(S) with bounded propagation. It
can be shown that Bg is a *-ideal of Ag. Hence we have the following short

exact sequence:

0—+'_§S—>AS.—>A5/__§S—>O

which induces the following exact sequence of K groups:

Ki(Bs) —— Ki(As) —— K,(As/Bs)
T !
Ko(As/Bs) —— Ko(As) «——  Ko(Bs)
where § is the connecting map. By lemma 1 [f(D)] is invertible in Ags/Bg
and therefore represents an element in K (Ag/Bs). Clearly [f(D)] = [£] in
Ag/Bs. Now we can see that IndD is the same as §(f(D)) [6].

Let A and B be graded C* algebras. Recall that a Kasparov module for

(A, B) is a triple (E, ¢, F), where £ is a countably generated graded Hilbert




module over B , ¢ 18 a graded *-homomorphism from A to B(FE), and F is an
operator in B(F) of degree 1, such that [F, ¢(a)], (F?2—1)¢(a), and (F—F*)¢(a)
are all in K(F) for all @ € A, where [ ] is the graded commutator and K(#)
is the algebra of compact operators on £ with respect to B [6].

The set of all Kasparov modules for (A, B) can be made into a group
K Ko(A, B), the Kasparov bivariant K group. When 4 = C, KK,(C,B)
can be naturally identified with Ky(B), the K theory for B. When B = C,
K Ky(A,C) can be naturally identified with K°(A), the K homology for A [6].

There is a natural 7, grading on Bg which is induced by the grading on
S. Bg is a Hilbert module over itself by right multiplication. f(D) is a module
map by the multiplication on Bs. Let ¢ be the graded #-homomorphism from
C to B(Bjs) such that $(1) is the identity operator on Bg. By lemma 1 it
is easy to see (Bg, f(D), ¢) is a Kasparov module for (C,Bs). We have the

following natural result.

Proposition 1 IndD is equivalent to the Kasparov module (Bs, f(D), ¢) for

(C,Bs) by the natural identification of Ko(Bg) with KK(C, Bg).

Proof: Cf [6].

Recall that the metrics ¢, and g, are said to be quasi-isometric on the
manifold M if ¢1g1 < gy < eo¢y for some ¢p, ¢y > 0. ¢ and ¢ are strictly quasi-
isometric if, in addition, the difference of their Riemmannian connections is
bounded. Notice that the Roe algebra for a spin bundle depends only on the

quasi-isometry class of the metric.

The following result is implicit in Roe [32].

10




Proposition? Let M be a spin manifold, and g1 and ¢o be two complete
strictly quasi-isometric metrics. Assume Dy and D, are the Dirac operators
on M induced by g, and g,. Then IndDy = IndD, in Ko(Bg), where S is the
spin bundle of M.

2.2 Obstruction to uniform positive scalar

curvature outside a compact set

Throughout this section M is an even dimensional complete open Riem-
mannian spin manifold with positive injectivity radius and 5 is the spin bundle
on M. Recall that the injectivity radius for M is defined to be the supremum

of the r for which the exponential map exp,, is an embedding on the open ball

of radius r, in T, M for all m € M.

The following result on an obstruction to the existence of a metric with

uniform positive scalar curvature near infinity is the main result of this section.

Theorem 2.2.1 Let M have sectional curvature bounded from above. If there
exists a metric in the strict quasi-isometry class on M whose scalar curvature
is uniformly posilive outside a compact set, then the K theoretic index of the

Dirac operator is zero in Ko(Byg).

The above theorem presents a phenomenon peculiar to noncompact man-

ifolds, which is not possible when the manifold is compact.

11




Recall that a regular exhaustion on M is an increasing sequence (M;} of

compact subsets such that the union of M; is M and for each r > 0
lim Vol{z € M|dist(z, M;) < r}/Vol(M\{z € M|dist(z, M\M;) <r})=1.

The existence of an exhaustion amounts to a certain kind of amenability of
M. In the case that M is a universal cover of a compact Riemannian manifold
X the existence of an exhaustion is equivalent to the amenability for the
fundamental group of X. When M has a regular exhaustion (M;) a trace 7

can be defined on By as follows:

(k) = lifn . trk(z,z)/vol M;,

where the limit is taken as linear functionals over Bg in the weak* topology
[31]. If M has infinite volume it is easy to see 7(k) depends only on the value of
k(x,z) outside a compact set. This fact is used by Roe to prove that r(IndD)
is an obstruction to to the existence of a metric with positive scalar curvature
on a “large set” [31]. This result is the motivation for theorem 2.2.1.

There are several different concepts of an end for a complete manifold. In
this section an end for the manifold M is simply a connected component of
M\C for some compact set C € M.

Using corollary 2.3.1 in section 2.3 we can specialize theorem 1 to obtain:

Corollary 2.2.1 If M has an end isomelric to the cone Rt x N with metric
dr? 4 f(r)?g" where gV is the metric on the compact oriented manifold N and

lim, o0 f(r) = o0, then there ezists no metric in the strict quasi-isometry

class on M whose scalar curvature is uniformly positive outside a compact set.

12




Proof: An exérrﬁnation of the proof of lemma 2 shows that theorem 2.2.1 is
still true if we replace the conditions of theorem 2.2.1 on injectivity radius
and sectional curvature by the following condtion: there exists an infinite
sequence of balls B(z;,r) for some r > 0 such that Volume(B(z;,r)) > ¢ for
certain constant ¢ > 0 and B(z;,r) N B(z;,7) = 0 for 7 # j, where B(z;, 1) is
the ball with center x; and radius r. This is satisfied by the manifold under
consideration. Now our result follows from corollary 2.3.1. QED

The following lemma plays a key role in the proof of Theorem 2.2.1.

Lemma 2 Let M be as in theorem 1. If K is the algebra of all compact op-
erators acting on L*(S), then the natural inclusion i.: Ko(K) — Ko(Bs) is

ZETo.

Proof: Since M is a complete open manifold, there exists a ray in M, ie. a
curve 4: [0, +00) — M such that « is a geodesic and v minimizes the distance
between any pair of points on itself [8]. Let r > 0 be the injectivity radius
and B(x, R) be the ball with center z and radius R. By our assumption on

sectional curvature and the volume comparison theorem [8] we have
Volume(B(y(nr),r/2)) > ¢

for some ¢ > 0. Therefore there exists a sequence of uniformly bounded
cross sections {f,}52, € L*(S) satisfying || fo |lz2y= 1 and Suppf, C
B{y(nr),r/2). Let fat1 ® fn be the operator: (fuy1 ® fo)h =< h, fu > fop,
for any h € L*(S). Define U by U = 2, fay1 ® f in the strong operator

topology. It is not difficult to check that U is in Bg and U is a partial isome-

try since the f, are uniformly bounded and Suppf, N Suppf, = 0 for m # n.

13




Now U*U is the projection onto the subspace of L?(S5) spanned by {f,}22,
and UU* is the projection onto the subspace of L*(S) spanned by {f,}°%,.
This implies that f; @ f; is equivalent to 0 in Ky(Bg). The lemma follows

from the fact that f; ® fi is the generator of Ko(K). QED.

Now we are ready to prove theorem 2.2.1.
Proof of theorem 2.2.1;
Take

V1 — 7 /2 forz >0
HEER

—V1—e2/2 forz<0

in the definition of the index of D, We have

. e™PiP+ e 3DADH([ 4 ¢~ PiPH) f(D)Y
IndD =

—e P DLF(D), —e P}

which is an idempotent in M3(C) ® Bs. This idempotent is homotopic to the

following idempotent :

6—tD1D+ 6—%D_"“_D+ (I + e_tD;D-I-)ft(D)z_

-—e‘éD+D1ft(D)+ —e—tD+ D

14
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for t > 0, Whére

V1 — et5?/2 forz >0

—V1 —e /2 for x <0

We have

(IndD); = IndD

in Ko(Bs). Hence by lemma 2 it is enough to prove that (IndD)), converges

to a compact idempotent in operator norm as ¢ goes to co. Now since

0 D_
D =
Dy 0
we have
A e 3PHPY(T + e P+ P £,( D),
e T3 (1—eP) (D) = ,
e DD+ (I 4 ePIPH) (D) B,
Ay e Pif(D),
6_§szt(D) — ,
e3P0+ £(D)L B

where A;, B;, A}, and B] are bounded operators. Therefore it is enough
) y gy ¢ g

to prove that e“"é'Dg(I — PV f,(D) and e3P £,(D) converge to compact




operators in operator norm as ¢ goes to co. We have

L

(TP = P D) = e (1 P71 - )

(e—-;-D"’ft(D))z - e—tD2(1 _ e—t/ZDz)_

Clombining the above equalities and the fact that e=22" (] — ¢~*P*) f,(D) and
e~3 D" fi( D) are selfadjoint operators we see that it is enough to prove that
—tD?

e converges to a compact operator in operator norm as ¢ goes to co. We

have the well known Weitzenbock formula [24] [25]
D?*=V*V +k

where V*V is the connection Laplacian and k is the scalar curvature. Assume
k > ¢ > 0 outside some compact set K. Let x be a smooth nonnegative

function on M such that

(
0 ifze M and disi(z, K) <1

1 ifze M and dist(z, K) > 2

and /X is also smooth. Let s € L*(S), and s, = e7*”s. Then by the

Weitzenbock formula we have

1D2sullsel = [ (D050

> c/M(st,st)x + ]M(V*Vst,st)x
= c/M(st,.st)X + /M(Vst, (dx)s:) + /M(Vst,xvst)

Z C/M(St,st)x + /M(V-St, (dx)s:)

16
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But
[ (Tsut@isol < e (] I9sdelsl < oDl
here again we are using the Weitzenbock formula and ¢; = ||d¥||co. Combining

the two inequalities we have

[ (sty50x S fellDsilllsell + 1/¢| D%s.]

which goes to 0 as { goes to oo since
Dsy = DemtP%s = 1/v/t(vVtDe P s),
D%s, = D% %5 = 1/1(tD*e 1D’ s),

and ViDe D" tDe " are uniformly bounded with respect to ¢ for ¢ > 0 by
the spectral theorem. Therefore \/)_(e‘tDz\/)? goes to 0 in operator norm as ¢

goes to co. We have

lvxe™ ™I = l(vxe™ ) (e ™)) = llv/xe™™ xll-

It follows that \/)?e‘tDz goes to 0 in operator norm as ¢ goes to oo. Hence

(1— e VX = (1= V) (xe )

goes to 0 in operator norm as ¢ goes to co. By lemma 1.2 in [30] we know that

the kernel of ¢—tP°

converges to 0 on compact subsets of M as { goes to oc.
Therefore {1 — ﬁ)e‘tm(l — 4/X) converges to a compact operator as ¢ goes

to co. Finally we conclude that

e = 1=y (IR IR T xR xhy/Re P (1-y/X)

converges to a compact operator in operator norm as t goes to co. QED.
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2.3 Detection of the K theoretic index

In this section we construct a class of K homology elements on the Roe
algebra By and obtain a formula for their pairing with the index of the Dirac

operator. This can be used to detect nonzero index.

Recall that any compactly supported vector bundle on M can be repre-
sented by a pair: (o, &), where E = Ey® F4 is a graded bundle on M which is
trivial outside a compact set and « is a continuous £ bundle endomorphism
of grading 1 such that &® = 1 outside a compact set [2]. Now a special com-
pactly supported vector bundle on M is a compactly supported vector bundle
represented by a pair (@, F) such that: (1) E is trivial as a vector bundle.
(2) £ is endowed with a Hermitian structure such that « is selfadjoint. (3)

limy—co 8UPyep sy la(y) — a(2)]| = 0 for any r > 0.

Example 1 Iet M = R? = C and E = CxM @©CxM with the usual Eu-

clidean metric and

0 5¢(2)

géz) 0
for z € C, where ¢ is a smooth function on M such that ¢(z) = 1 oulside

a compact set and $(0) = 0. Then the pair (o, F) is a special compactly

supported vector bundle on M.

More generally, if M is a simply connected nonpositively curved manifold,

then the Miscenko element is.a special compactly supported vector bundle on




M. We omit the definition of Miscenko element since it is not used in this

thesis. (Cf [26] or [22] for the definition of Miscenko element.)

Let Co(M) be the algebra of all continuous functions vanishing at infinity.
Co(M) is equiped with the trivial grading. L?(S) and L2(E) can be considered
as graded modules over Co(M). The graded tensor product L2(5)&c,(an) L2 (12)
can be identified with L2(S)®V for some graded finite dimensional vector space
V by choosing a finite basis for the Cy(M) module of all continuous compactly
supported cross sections of £ (Notice that £ is a trivial bundle). (Cf [6] for
the concept of graded tensor product).

A special compactly supported vector bundle (a, £} on M induces a K
homology elemént 7 over Bs: (LA S)®c,anl*(E), ¢,18a), where By acts
on LA(S)®c,ny LA(E) & LAS)®V by ¢(b)(s@v) = bs@v for s € L*(8),v &
V,b € Bs, and C acts on L2(S)®a,anL?(E) from the right in a trivial way.

Lemima 3 .
T = (LQ(S)@)(}D(M)L?(E), o, 1®a)

is a Kasparov module for (Bg, C).

Proof: All we have to check is that ¢(5)((1&a)?—1) and $(b)(1&a)—(1&a)$(b)
are compact for b € Bg. The compactness of b((1&«)? — 1) follows from the
condition that o®—1 is compactly supported. The compactness of ¢(b)(1&a) —
(1&a)¢(b) is a consequence of proposition 5.18 in [32]. QED.

The pairing of a K homology element with the K theoretic index gives

rise to a numerical invariant, which can be used to detect the nonvanishing of

N

19




the K theoretic index. The pairing can be computed by using Kasparov’s KK

product (see [6] for more information on the KK product).

Our main result of this section is the following:

Theorem 2.3.1 . If 7 is as above, then (IndD)@}B-ST = [(, EY}&cy(an)[ D]
where the lefl hand side is the pairing between the K homology element T and
the K theory element IndD and the righthand side is the pairing between the K
theory element in Ko(Co(M)) induced by (o, ) and the K homology element

in KO(Co(M)) induced by D.

Remark. The right hand side can be computed explicitly by the Atiyah-
Singer index formula {3].

Proof: Recall that L3(S)&c,mn L2(E) is identified with L?(S)®@V for some
graded vector space V in order to define the Bg action on L*(S$Y®c,an LA (E).
We have a well defined operator f(D)&1 acting on L*($)®c,(ar)L?(E) by using

such an identification. f(D)&1 is obviously a f(D) connection. We can also

choose « such that ||a|| < 1. By proposition 18.10.1 in [6] we have
[(@r, B)|®co(my[D] = indexF,

where

0 F,

F= = 1®a + /1 — 182 f(D)&1

F_ 0

20
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acts on L*(8)®c,anL?(E). The Fredholmness of Fy follows from the following

identity which can be easily verified:

F? =1 mod K,

where K is the algebra of all compact operators on L2(S V&0, LA (E).

(#,%, LH(S®c,oany L2(E)) is obviously a Kasparov module for (C,C), where
¥ is the trivial + homomorphism from C to B(L¥(S)&, an LA(E)), the alge-
bra of all bounded operators acting on L2($ )®co(m) LA E). We shall prove that
(F,%, LA(S @y a) L*(E)) can be identified as the Kasparov product (I ndD)@EST.
Notice that Bs®g_ L*(S)®c, L2 (E) is equivalent to LH(S$Y&co(an) LA (E) as
a (C,C) bimodule. Hence f(D)®1&1 is equivalent to F(D)B1 and

[F(D)®1, F] = 2y/1 — 1Qa?f(D)?*&1) > 0

since [|af| < 1, where the graded commutator [ ] contributes to the cancellation.
Now the only thing we have to check is that F is a 1@« connection. If we set

Ty =a2@gyforz € By and y € LA(8)&c,an L*(E), then we have

T,(1&a) — (=1)*“FT, = /1 — 1&a2 f(D)zd1,

which is compact since 1 — 1Qa? is compactly supported. We are done by
definition 18.4.1 in [6]. QED.

Let Ch(M) be the algebra of all bounded continuous function & on M
such that lim,_, ., SUPyep(z,y) [la(y) — ()| = 0 for any » > 0 [21] [32]. By

Gelfand’s theorem this algebra can be identified with the algebra of all con-

tinuous functions on a compact Hausdorff space M in which M is naturally
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embeded. (M\M is called the Higson corona of M in [33].) We have the

following short exact sequence of algebras

0 — Co(M) — Cp(M) — C(M\M) — 0

which induces the following exact sequence of K groups:

Ky(Co(M))  —— Ki(Cu(M)) —— K (C(AT\M))
I Js
Ko(C(M\M)) e~— Ko(Cu(M)) ——  Ko(Co(M))
The special K group of M is defined to be the subgroup of Ko(Co(M))
generated by all special compactly supported vector bundles on M.
"T'he following result says that all special K elements come from the Higson

corona.

Proposition 3 . The special K group of M is the image of the connecting

map & in the above diagram.

Proof: The connecting map § can be realized as follows: Given any [u] €
Ki(C(M\M)) ( u is a unitary in M, (C(M\M)), there exists a trivial vector
bundle V with a Hermitian structure on M\M such that u is a continuous
unitary endomorphism on V. V can be extended to a trivial vector bundle
V with a Hermitian structure on M. Tt is not difficult to see that u can be }

extended to a continuous endomorphism @ of V in such way that 7 — 1 and

uu* — I are compactly supported on M when T is restricted to M. ( We can




extend u to a continuous endomorphism u; of V. Notice that uu, is uniformly
positive in a neighborhood O of M\M in M. Hence log(u?u,) is well defined
on 0. Now log(uju;)} can be extended to a continuous endomorphism % of
V. Take @ = u;e~*2) Now 6(u) can be defined as the pair (a, £) where

B = Ey® Fy, Ey = Ey =Vl and
0 Ty

Ty O

Now the pair (a,F) satisfies the condition (3) in the definition of special
compactly supported vector bundle since « can be extended to -JW It is easy
to see that the pair (o, F) satifies the other two conditions in the definition of
special compactly supported vector bundle and (e, E) ( as an element in the
special K group) does not depend on the choice of the extension of . It follows
that (a, F) is a special compactly supported vector bundle on M. Conversely
, if the pair («, £) is a special compactly supported vector bundle on M, then
by condition (3) « can be extended to a continuous endormorphism of E,
where E is extended to a trivial bundle E over M. Now by the above explicit
construction of the connecting map ¢ it is not difficult to see that the pair
(a, E) is in the image of §. QED. |

Proposition 3 shows that theorem 2.3.1 is closely related to the results
of Roe [33]. But the exact relation is unclear since the Fredholm modules we

construct may not be finitely summable. This is closely related to an open

question of Connes (see 2.4(3) for further remarks).
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The formalism of this section be used to obtain the following nonvanishing
result for the K theoretic index of the Dirac operator on manifold with a cone

like end.

Corollary 2.3.1 If M is even dimensional and has an end isometric to the
end of the cone Rt x N with metric dr® + f(r)2¢™ where ¢V is the metric
on the compact oriented manifold N and lim,_ o f(r) = 400, then the K

theoretic index of the Dirac operator is nonzero.

This result can also be obtained by applying results in [33].

Proof: For any m € M\M, there exists an induced multiplicative lin-
ear functional m* on Cr(M)/Co(M) by m*(g) = g(m) for any g € Cy(M) =
C(M\M). Given a continuous function ~(z) on N, we can construct a function
g(z} € Cp(M) such that (1) g(x) vanishs outside the end. (2) g(z) = h(n)
for # = (r,n) when r is large enough, where (r,n) is the product coordi-
nates for RT x N, The fact that g(z) is in Cy,(M) follows from the condition
lim, 4o f(r) = +co. We can define a multiplicative linear functional p(m),
on C(N) by p(m).(h) = m*(g). It is not difficult to check that p(m).(h)} does
not depends on the choice of g. Hence we have a continous map p from M\M

to V.

Now we are ready to construct a special compactly supported vector bun-
dle to detect the K theoretic index. By the dimension assumption on M we

know that N is odd dimensional. Hence there is an element v € K*(N) such

that its image under the Chern map chu is the fundamental element in the

i3
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cohomology of N. The pullback p*(u) lies in K1(M\M). Its image 5p*(u) un-
der the connecting map in proposition 3 is a special K element by proposition
3. Let 7 be the K homology element on Bg induced by the special K element
8p*(u). Notice that the connecting map § is explicitly constructed in the proof
of proposition 3. Hence we can apply theorem 2.3.1 and the Atiyah-Singer

index formula [3] to obtain
(IndD)égr = 1.

Hence IndD is nonzero. QED.

2.4 On the behavior of the K theoretic index
under the connected sum of manifolds

In this section we show that the K theoretic index behaves extremely well
with respect to the connected sum operation of manifolds.

Let M and N be open complete spin manifolds with positive injectivity
radius. Let M#N be their connected sum. M#N is equiped with a Rieman-
nian structure which is compatible with the Riemannian structures of M and

N outside a compact set.

Lemma 4 If M and N have sectional curvature bounded from above, then we

have
I{O(ESM#N) = I(O(ESM) 87 'KG(-ESM)a

where Syrpn, Sy and Sy are correspondingly the spin bundles on M#N, M

and N.
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Proof: Let Kargn,Kpr and Ky be the algebras of compact operators acting
correspondingly on L?(Sygn), L*(Sa) and L?(Sy). We have the following

short exact sequence of algebras

00— KM#N —? -ESM#N B ESM#N/I(M#N — 0

which induces the following exact sequence of K groups:

Eo(Kngn) — —— Ko(Bsyyn) —— Ko(Bsy o) Knegn)

[ |
Ki(Bsyrgn! Knagn) —— K\(Bsyyy) —— K (Kprpn)
By lemma 2 we know that i, = 0. We also have the well known equal-
ity Ki(Kpgn) = 0. Combining the above equality with the exact sequence
we know that the natural map: Ko(Bs,,,) — Ko(Bsuyn ! Kargn), is an
isomorphism. Similarly we can prove that Ko(Bg,,) and Ko(Bg, ) are natu-
rally isomorphic to Ko(Bs,/Kar) and Ko(Bs,/Ky). Tt is not difficult to see
that Bg,,,/Knm#n is naturally isomorphic to Bs,, /Ky @ Bs,/Kn. Now our
lemma follows. QED.

Lemma 5 If f is a smooth real-valued odd function such that Mmoo f2) =
1 and lim,,_,_, f(2) = —1, then f can be uniformly approzimated by smooth
Junctions of the form g such that (1) lim,_ 1. g(z) = 1 and lim,_._., g(z) =

—-1, (2) g*—1 and g(g*>—1) are rapidly decreasing and their Fourier transforms

are compactly supported.




Proof: Let’s first notice that f can be approximated by smooth odd functions
of the form f; such that (1) lim,_ o Ji(z) = Land lim, o fi(2) = ~1, (2) !
can be uniformly approximated by rapidly decreasing smooth real-valued func-
tions of the form % such that / is compactly supported (since limp,— 4.0 fi(2z) =
0 and lim,_,_ fi(z) = 0), where the ‘hat’ denotes the Fourier transform,

Moreover & can be chosen such that {*° k= 2 since IS fi = 2. Now take

g(z) = -1 + /_“; h(t)dt.

By the properties of & we see that (1) limy 00 g(®) = 1, limn, o, g(a) = =1,
and (2) g is compactly supported. Notice that f; can be approximated by
functions of the form g since fi(z) — 9(z) = [Z(fi(t) — h(t))dt, and f, h
are rapidly decreasing functions, Now izg(z) = h. Hence ¢ — 1 — Ggxg—26
and g(gi 1) = §*§*§— § are compactly supported as distributions. Notice
that ¢* —1 and g(¢* — 1) are rapidly decreasing. It follows that ¢? — 1 and

9(95—:_ 1) are smooth functions. QED.

The main result of this section is the following.

Theorem 2.4.1 et Dyrgn, Dar and Dy be correspondingly the Dirac opera-
tors on the manifolds M#N, M and N. If M and N have sectional curvature

bounded from above, then we have the following index formula:

IndDM#N = IndDy @ IndDy,

where IndDys @ IndDy is identified as an element in KO(ESM#N) by lemma
4.

27




28

The idea behind the above theorem is that the K theoretic index is only
related to the asymptotic behavior of the manifold at infinity.

Proof: Let f(x) be a smooth real-valued odd function such that lim, ., f(z) =
I and lim,,_, f(z) = —1. Take f(2) to be the function in the definition of

IndDyrygn, IndDyr and IndDy. We shall prove that

(Cuan)t  F(Dapn)—(Crrgw)-(1 — (Cragen)-)
IndDM#N =

F(Daggn )+ (Crrpn ) + —(Crgn)?

can be decomposed correspondingly according to the decomposition given in
lemma 4. By lemma 5 f can be uniformly approximated by smooth functions of
the form g such that (1) lim, 4. ¢(z) = 1 and lim,,,_, g(z) = —1, (2) ¢* -1
and g(g*—1) are rapidly decreasing and their Fourier transform are compactly
supported. Hence Cuyrgn = f(Dmgn)® — 1,C = f(Du)® - 1 and Cy =
F(Dn)?—1 can be correspondingly approximated by g(Darpen)?—1,9(Dpr)?—1
and g{Dy)? — 1. We have

-

1 gtee ,
o(Dugpn)’ — 1= — /_ (g% — 1)(t)e"Dren gt

27
1 e~ .
g(DM) —1= 2— (92 - 1)(t)e”tDMdt,
gDy — 1= / 1)(t)e™Pn dt,

where the ‘hat’ denotes the Fourier transform. Since gf‘: 1 is compactly sup-
ported and e®Pu#n e#DPm and P~ have finite propagation speed [10] [9],

there exists a compact subset X' C M#N such that

L*(Supn) = L Sulank) ® L (Snlmi) ® L (Sman|x)
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and
[
(9(Pm)? = 1lanx) A Az
2 —
I(Dpmgpn)* —1 = B, (9(Dn)* = 1mik) Ba |°
O] 02 C‘3

\

where Ay, Ay, By, By, C,C,, and Cy are compact operators. The above formula

together with the approximation process shows that
Cran € Cy @ Cn

in FSM#N/KM#N o ESM/I&’M &) E—SN/KN. Similarly we can prove that
0 F(Daagn )= (Crrgn)- (1 — (Crgn)-)

F(Dragen )+ (Cragen 4 0

0 S(Dar)~(Car)-(1 — (Car)-)

1%

f(DM)+(CM)+ 0

0 F(Dn)4+(Cn)-(1 = (Cn)-) |

FON)+(Cn)4(1 — (Cn)4) 0
in ESM#N/I{M#N = "B-SM/KM @ FSN/KN by using the fact that the Fourier

transform of g(¢g% — 1) is compactly supported. Now our theorem follows from

the proof of lemma 4. QED. -




2.5 On a problem of Roe

In section 2 we proved that the K theoretic index of the Dirac operator
1s an obstruction to the existence of metrics with uniform positive scalar cur-
vature outside a compact set. The same result is not true i general if we
replace “uniform positivity” by “positivity”. Roe introduces a trace on the
Roe algebra when there exists an “exhaustion” on the manfold. The pairing
of the trace with the K theoretic index is an obstruction to the existence of
metrics with positive scalar curvature on a “large” set due to the continuity
of the trace [31]. The pairing of the trace with the K theoretic index can be
obtained from Roe’s index formula.

The index of the de Rham operator is analogously an obstruction to the
existence of metrics with positive Ricci curvature outside a compact set in

special cases [31]. The following result is an example of this.

Theorem 2.5.1 Let X be a compact oriented 2-manifold or j-manifold with
Euler number x(X) < 0, and let M be an infinite covering of X. Then there
is no metric in the strict quasi-isometry class on M whose Ricci curvature 18

nonnegative outside a compact set,

The above result solves a problem of Roe. The same result was proved
by Roe [31] in the case of an amenable covering,
Proof. Assume Ric > 0 outside the compact set K © M. There exists a

closed ball B(p,r) with center p and radius r such that K C B(p,r). Choose

R such that dist(0B(p, R), B(p,r)) > 10r, where dB(p, R) is the boundary
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of B(p,R). Now there are finitely many ba,lls {B(:c,, r)}e, such that z; €
dB(p,R) and 9B(p,R) C U™, B(z;r). Let M = {:c]:r; € M and z can
be connected to x; by a minimal geodesic w1tl1out mtersectmg B(p,r)}. We

claim

M — B(p, R) C UL, M;.

Proof of the claim: For any * € M — B(p, R) there is a rmmmal geodesic
¥ connecting z and p. Then 4 intersects B(z;,r) for sotiie z Cons1de1 the

minimal geodesic B connecting z with z;. 4 does not intersect B(p, ) smce

lengthB < (lengthy — 10r) 4+ r = lengthy — 9r.

Hence z is in M;. So we have proved our claim. Now M; are star shaped sets

and Ric|p, > 0. By the volumé'carﬁﬁarison theorem [5] we have
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Volume(B(ai,m1) N Mi)/V olume(B(wi,r2) N M) < VO(r1)[VO(ry),

where V°(r) is the volume of the Euclidean ball of radius r. Notice that the

volume for the Euclidean space has polynomial growth, i.e. Vid) < kd®
for some fixed k¥ > 0,n > 0 and arbitrary d > 0. Cormnbining this fact and
the above volume inequality with the claim we see that the volume of M has
polynomial growth, i.e. there exists ¢ > 0,n > 0 such that for a fixed z € M
Volume(B (m,d)) < cd” for any d. Hence there exists an exhaustion on M by
proposition 6.2 in [31]. Now Roe’s index formula [31] can be applied to the

deRham operator to obtain the desired result as in the proof of proposition

2.9 in [31]. QED




Chapter 3
The algebr'a'i('_:}-t()pology of Roe algeb’fé’is,

In order to compute l.:he K;'.._f.;.heoretic index explicitly we are fa:éé(__ij' Wlth
the problem of computing the K i‘._]ieory of the Roe algebra. In this chapterwe
shall compute the K theory of Roe :émi"gebras for various spaces to see the sc'c'jp_é'_: .
of complexity. In particular, we bfd\fe that the K theory of the Roe algebl;a,.
for Euclidean space and the Poiﬁéa’i:ej.hyperbolic disc is the direct product of
countably many copies of Z. We also. construct an even dimensional compact
spin manifold M with nonzero fi genus such that the K theory of the Roe
algebra for the universal covering space of M is trivial. Therefore even if the
C(m{M)) index of the Dirac opera,'_toi° is nontrivial [27], the K theoretic index
of the Dirac operator living in the K theory of the Roe algebra may be trivial.

While a complete computation .o.f .the K theoretic index is not always
possible, we can compute a partial i:n(“iex. by constructing XX homology elements
or cyclic cocycles over the Roe algebra and then computing their pairing with
the index. One other purpose of this chapter is to understand the cyclic

cohomology of the Roe algebra for reasonably nice spaces.

N
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For a finitely generated discrete group T, we deﬁne a Roe algebra in an
analogous manner by using the word length function deﬁned by a finite gener-
ating set. When B is the universal cover of a compact Rlemannlan manifold

M, then we show that the Roe algebra for M is Morita eqmvalent’to the Roe

algebra for the fundamental group of M. When T" has po]ynom]al growth we

propose a inductive way of computing the continuous cyclic cohomology of a

certain natural smooth subalgebra of the Roe algebra. In partl(iula,r' we
that if I' has polynomlal growth of degree d, then every cyclic cocycle
smooth subalgebra has dimension at most d. The same method can b
to prove a conjecture of S. Hurder which states that the exotic cohomolog

HXYT)=0for ¢ > dif I is a discrete group with polynomial gwwth of degre
d. The exotic cohomology was introduced by Roe to construct cychc cocyc
over the Roe algebra [32] [33]. We also show that group cocycles can be use-

to construct cyclic cocycles over the Roe algebra of amenable groups. By .'us

ing this cyclic cocycle method we show that the K theoretic index of Dlr -

operator is nonzero for ET spin manifold with T invariant metric When I‘ has:f__
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polynomial growth and BT is compact and oriented ( ET is topologlca,ﬂy the'.-:_'.

universal cover of the classifying space BT for r).

3.1 K theory of Roe algebras

Let I' be a finitely generated discrete group. A length function / can be

naturally defined on I' by choosing a finite generating set on I' and letting

I{7) equal the minimal length-of a word in these generators which represents
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¥. Then [ induces the metric d on T* by d(yy, 72)13";—7;' iy t) for ym,v, € T
Now the Roe algebra Bp for I' consists of the op'erat(:)"r_s_ acting on *(T') in the
following way: o

(k1) (v E k(, ’h)f(’Yl)’ _' ::::33 8

v el

where f is in §(T'} and k(v1,72) is a bounded functlon on I‘ x 1 Whlch vanishes
when the distance between 7; and 4, is greater than some consta.nt dependmg
on the operator k. It is not difficult to verify that By does noi;'clgp_t__ap_c_l' on the

choice of the generating set in defining the length function. i

Denote by Br the operator norm closure of Bp. The moﬁ'x.ré;ij.;o'm for con-

sidering Br is the following:

Lemmma 6 Let M be a compact spin manifold and M be ils unwersa,l '_qvq_r.

with spin bundle S endowed with a w (M) invariant metric. Then the

algebra Bg is Morita equivalent to FM(M).

One consequence of the above result is that B does not depeﬁc.l's_'ftoﬂ_. the
choices of the invariant metric and will therefore be denoted by EM',T
Proof: Let M be endowed with the metric whose pullback N t;l.'l.:é_.:.::gfiVEH
metric on M. Let S; be the spin bundle on M. Denote (M) by T. : W ecan

use a fundamental domain U to make the identification
LY(S) = (1) @ L*(S|y) = (") @ L*(S)).

Hence each bounded operator on L*(S) can be decomposed correspondingly.

Now it is not difficult to gee

- Bs 2 Bro K,




where K is the algebra of all compact Opera,tofs...(')_ﬁ.:? Lz(Sl) QED.

There is a natural I" action on [*°(T'):

("HO) = Fay)

for any g € T, f € [°°(I'). We have the following étr.uétu_'fe:' T ultfor Br:

Proposition 4 Br is isomorphic to I°(T') x T', the fedﬂ__e’ki 'é}fa ed product

algebra,

Proof: Let’s first prove

the algebraic crossed product. Any a € Bp has a kernel a(%’,’fzjﬁi“
For any g € I' let f, be the function on I defined by f,(v) = a('y,g '.7

we have

a=) Mg

~el
as operators on [*(I") where M}, is the multiplication operator on lz(F)_by

and g acts on {*(I") as follows: (¢f)(v) = f(¢~') for any g € T and f .

2 ver My,9 can be viewed as an element in {°(I') %, T. It is not diﬂi_culi}_-to:see
such a correspondence is one to one. Next let’s check that the 1esulthold ':'
the level of C* algebras. The norm on the crossed product is defined bythe E

regular representation on I*(I') ® I*(T") = {*(I' x I'):

((ag)f)(s,8) = alts)f(s,g7"t)

for any ¢ € {*(I') and g € I'. I*(I" x I') is isomorphic to G,eprI?(T) by the map:

f('sat) - @‘Yer‘f(’?’at)‘
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ag can be decomposed correspondingly: S

(ag) (69'1’6[‘67) (t) — @161‘&(#)/)67 (

2. 6ig; as an element in Bp. QED. |
Now we are teady to compute the K theory of the Roe al

clidean space R™ with the usual metric.

Proposition 5 Ko(By-) is isomorphic to the direct product of countably

copies of Z.
Proof: Combining the above lemma and proposition 4 we have

?

Ko(Bgn) = Ko(I™(Z") x I™) = Ko(((I°(Z") x Z) M Z) % )

the iterated crossed product. Now our result follows by repeatedly-applyi
the Pimsner-Voiculescu exact sequence {30]. QED. |

By a similar method we have K,(Bg) = Z. The generator of K, ("ER ca
be detected by the cyclic cocycle constructed from partitioning R [34] IIence
the pairing of this cyclic cocycle with the K theoretic index IndD cletects o
the K thoeretic index completely. This implies that there is only one.in:c.]:e:x
theorem for the Dirac operator on R with the usual metric, which is the one
given by Roe [34].

The K theory for the Roe algebra of Euclidean space is huge. The follow-

ing result provides another extreme example.




Proposition 6 Ky(BF,) = 0, where F,, is thefreegmup with n generators

andn>1.

In particular, the above proposition implies that the éﬁﬂity element is 0

n KO(FFR). If T is an amenable group, then the idéﬁtgty 1ement ‘s nonzZEro
in Ko(Br) since a T invariant mean on [>°(I") can be u ed 1

tr on Bp such that tr(1) = 1. Hence it is tempting _to.:_:_c_qnjectu_r 'th_at the |

identity element is 0 in Ko(Br) for nonamenable groups..'

Proof of proposition 6: For simplicity take n = 2. From propositi

have the following exact sequence of Pimsner and Voiculescy [30]

Kol (F2)) © Ko(1°(F2)) 5 KoI™(F2)) % Ko(Br,)

— Ky (I°(F2)) ® K, (I1°(F3)) = 0,

where i, is induced by the inclusion s [*(Fy) — .ETFZ, = I"(F3) Fz,a(qﬁl

#2) = (1= 0D)($1) + (1 - a3)(8s) for 1, € I(F3) and o are indu

by the action of two generators a and b for F, on I°(F,).

By the exactness of the above sequence, we see that i, is ontd._.' Not
that Ko(I%(F;)) is generated by projections in I°°(F,). Hence it is enough '1;0-'_53
prove that 7,(P) = 0 in K,(Bg,) for any projection P in 1°(F3). Let e; and
e; be the projections in I1°°(F3) such that E
(

1 ify=a™" --form>0,n%#0and Pla™y) =1
eiy) =

0 otherwise
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and

1 if ¥ = Fra®... for m > O, n 76 0 a,ndP(b—mfy):l
ez(7) = Tt

0 otherwise

where 7 is written in the reduced form. Then it is easy o see
1 if'y:b"--cforn%OandP(;f)'
(I-af)e1@0)(y)=1. s

0 otherwise

and
1 ify=a"forn#0and P(y)=1

(1 —e3)(0 @ e2)(7) =

0 ofﬂérwise

Hence we have
0'((61 EBO) + (0 4 62)) =P — €o,

where

Ply) ity =1
60(7) = 9 )

0 otherwise

.

where 7 is written in the reduced form. Tt follows that i,(P) + 7,(ep) = 0 in
Ko(Br,). We can prove i,(ep) = 0 in Ko(Bg,) by using an argument similar

to that used in lemma 2. Hence we have

i(P) =0




in Ko(B,). QED.

Corollary 3.1.1 There exists a compact Riefﬁ'_ : ﬁiaﬁifold M such that

I(U(—EM) =0,
where M is the .u.ﬂ.raz'.v.ersal covering of M.

Proof of the corollary: Take M = (81 x ST)(S?

X .5'2) is. the n
dimensional sphere and ﬂ is the connected sum. The fun_
M is F3. Hence our _.;_e_s_ult follows from lemma 6 and the____@b
QED. - |

Let M be the universal covering of a compact spin ménﬁol :
be the Dirac operator on M. Mlscenko and Fomenko defined the .C
index of D: indD € I{Q(G:(’JTI( ))) [27]. By lemma 6 we have a,na.
inclusion 4,: Ko(C3(my(M))) — Ko(By). The image of indD under 4,

clearly IndD € Kyo(By). Nonzeroness of IndD has a stronger 1mphca,t10

than the nonzeroness of ind D (e.g. see theorem 1.) The reason is that 7 ndD 1
an invariant of the strict quasi—isometry.class while tndD is only an invaria,nt”'o_f
the class of m1(M) invariant metrics (actually indD is only defined for (M) .
invariant metrics.) But indD is sometimes easier to compute. Hence it is
natural to ask if the nonzeroness of ind D implies the nonzeroness of Ind D
(such a possibility is suggested in [31]). The following result indicates that it

is not true in general.

Proposition 7 There exisis a compact spin manifold M with nonzero A genus
such that Ko(By) = 0, where § is the spin bundle over the universal cover M

of M and is endowcd with a w1(M) invariant metric.




Notice that the nonvanishing of A 1mp11es the o @nishing of indD by
Atiyah’s L? index theorem for the covering space

Proof: Consider M; =

(ST x S3)B(ST x 53 )-,-whe-;_e

he n dimensional

and m (M) = F;. By Iemma 6 #nd proposition 6 M is the desu"(-;d
QED.

The last example we want to compute is the K theory of the R'oc':'_:a',_l'g
for the Poincare hyperbolic disc I with the metric: &

ds® = 4|dz /(1 — |z*)2.

Proposition 8 Ko(Bp) is naturally isomorphic to the direct product of count-- :

ably many copies of Z.

Proof: D is the universal cover of a f{ie:mann surface M with genus ¢ > 2 and
a metric of constant curvature —1. By lemma 6 we know Ko(Bp) = Ko(Br)
for I' = m(M). T can be realized as the amalgamated free product in the
following way:

Let ay, by, - ay_4,b,_; be free gé'nera:tors for the free group H and «,b
be free generators for the free group G. Let L = 7 be the abelian group with

the generator [u]. Then I can be identified with subgroups of H and K by:




[u] — [a1, by~ [ag—1, by-1] € H

[u] — [a,b] € K, where |, ] is the group commutat
Now I is isomorphic to H *;, K, the free amalge:x at vt H and K over

L. Hence we have the Pimsner exact sequence [28]:

Ko(I°(T) X L) —— Ko(I°(T) x H) @ Ko(I%(I) % K) =

I

K(Br) e K((o(T) % H) @ Ko(I2(T) 3 K)

where ¢, is induced by the difference of inclusions.

Notice that I°°(T') x H is isomorphic to the direct product:

ably many copies of {°°(l) x H. It follows from propositioﬁs

Ko(I°°(I') x H) = 0. Similarly we have Ko(I*(T') 1 K) = 0. Tt als6 o

that I°°(I") 3 L is the direct product of countably many copies of 1o

By the exact sequence of Pimsner and Voiculescu we have K 1(!""@)'

Hence K;({*(I'} % L) is isomorphic to the direct product of counta ly.

copies of Z. By the above explicit computation of Ky(I°(T") x L) an th

that L is embeded in H and K we know that ¢, = 0. Hence our fés_l'ﬂt.* fe

from Pimsner’s exact sequence. QED.

3.2 Cyclic cohomology of Roe algebra.é":_: :

The pairing of a cyclic cocycle over a smooth subalgebra of the Roe'a

gebra with the K theoretic index gives rise to a numerical index invariant.’




morphic functional calculus,) In order to carry out _

to construct a natural smooth subalgebra of the Ro

given by using group cocyles over T Pairing of such cyclic cocycles Wlt
index of Dirac operators can be computed by using Connes and Moscov1
index theorem [14]. |

Let I be a finitely generatedly discrete group and [ be the length fu :

on I' defined by a finite generating set.

Definition 1 B consists of all elements of the form:

orer 8007, where §(1) € 1°(F) and e 601wy (L + 1)) comverges

for any s > 0.

Proposition 9 If T has polynomial growth, then B is a smooth subalgebra
of the Roe algebra B, i.e. Bf° is a dense x-subalgebra which is stable under

the holomorphic functional caleulus in the Roe algebra.

Proof: The proof is completely analogous to the proof of the corresponding

result for CY(T') in [23] and is therefore omitted. QED.




Corollary 3.2.1 Ky(By) = Ko(Br).

Proof: Cf [6].

Definition 2 The dimension of a cyclic cocycle over an .al'ge.l;}a A is defined to
be the minimal n for which its class in the periodic cyclic coﬁbmology HC*(A)
comes from H}Y(A).

When T has polynomial growth we obtain the following result as a conse-

- quence of our inductive method of computing the continuous cyclic coﬁoﬁiology

for Bg°.

Theorem 3.2.1 If T’ is a finitely generated discrete group with polynomial

growth of degree d, then every continuous cyclic cocycle over B has dimension

at most d.

The proof of the theorem will require considerable preparatory lemmas
and a deep theorem of Gromov.

If I’ is amenable we have the following method for constructing cyclic
cocycles over Br by using group cocycles over T

Recall that a normalized cocycle ¢ on I’ is a map from I'™ to C satisfying
[14]:
(1) g2+ gna1) + TFor (91,1 939541, )
+(=1)"c(gr, - ga) = 0
for all g4+, gn41 €T\
(2). e(g1,+192) =0

when g;+-+ g, =1 or g =1 for some j.




Let ¢ be a normalized group cocycle over T' and m be an invariant mean

on {*(T"). Then we can define the induced cyclic cocycle as:

Tc(fﬂa Tty fn) = Z m(fo(gﬂ)ggfl(gl) oo (90 - g;)*fn(gn))c(gﬂa e 79’:‘1)7
gvgn=1 |

where f; € Br = I°(I') x, T, the algebraic crossed product of I*(T') with

T, filg:;) € I°(T), g* is the translation action on > induced by g, and

g;i €.

Lemma 7 If I’ has polynomial growth, then 7, can be e:vtendéd to a cyclic

cocycle over BR.

Proof: The lemma follows from the fact that every normalized group cocycle

over a discrete group with polynomial growth has polynomial growth. QED.

Recall that ET is the universal cover for the classifying space BT for I.

Corollary 3.2.2 If T has polynomial growth and BT is an even dimensional
compact oriented manifold, then the K theoretic index of the Dirac operator on

an BT spin manifold with T invariant metric is nonzero when I has polynomial

growth,

Proof: Choose the group cocycle corresponding to the fundamental coho-
mology element on BT, By Connes-Moscovici’s index theorem [13] we know
T.(indD) = 1. Now our corollary follows from above lemma., QED.

Let G be a finitely generated discrete group and [ be the length function
on  defined by a finite generating set. The space C*=(G) of rapidly decreasing

functions on & consists of all elements of the form: 2over €Y, Where ¢, € C




and 32, er ley|*1(14 (7)) converges for all s > 0 [23]. When I' has polynomial
growth C°°(({) can be made into a complete locally convex topological algebra
by the seminorms: Po(Ever &) = (Cyer ey 21 + I{(7))*)? for any s > 0
[23].

Let G be a finitely generated discrete group with polynomial growth. If
A is a complete locally convex topological algebra with a G action by au-
tomorphisms, then we define the topological crossed product A X, G as the
completion of the algebraic crossed product A Xy G in AR, C=(Q)

, Where @,

means the projective tensor product. A X G is a complete locally convex

topological algebra with the algebra structure coming from A X, G

If T is a finitely generated nilpotent discrete group, then there exists a

filtration ' =Ty DT, ... > Fyy1 = {1} such that T; is a normal subgroup

of I''_y and 1';/T;_; has a single generator. Notice that a finitely generated

nilpotent discrete group has polynomial growth. Let G; =T /T4, we have :

Lemma 8 If T is a finitely generated nilpotent discrete group, then Bf® =

(1> (T) x4, Gir) Xp Gr_g)-++) X, (i1, the iterated topological crossed product,
where (1)

is endowed with the localy convez topology defined in this section

and G; is either 7 or Z/nl.

Proof: Let I = IFo>Ih>--- > I'ty1 = {1} be a filtration of T such

that T'; is a normal subgroup of I';_; and T} /T with a single generator. Let

G; = T;/T;_4, then we have oy = T ¥ Gy, the semidirect product of T,
with ;, where G; acts on T; in the following way: gny = G g™ for a fixed

generator g of (+;, a fixed preimage j of ¢ in T;_, and any v € T;. This action is




well defined since I; is normal in T': i—1. Henc

the iterated semidirect product of groups Now

we see that Bp is isomorphic to 1°(T) %, I‘. _j:(_)__ur em

finitely generated nilpotent discrete group. QED. -
We need the following deep theorem of Gromoy [19

of finitely generated groups of polynomial growth,

growth, then T" has a nilpotent subgruop T of finite index.

We need the following lemma in our proof.

Lemma 9 If T’ and IV are groups as in the above theorem, then __

finitely generated and has polynomial growth of the same degree as I‘

Proof: Consider the finite set /' = {m, **,7a} in I such that {Inl,- i .,' [%

I'/I". Define the subset § C T by:

S = {vyly € I',dist(v:y,F) < ¢, for some ¥ € F'},

where the distance is induced by the length function on I" and ¢ is a posﬂ:lve
constant. S is dbviously finite, | |
Claim: Je such that S generates IV

Proof of the claim: Let [S] be the group generated by S in T'. Let {g),---, g}

be the generating set of I' used in defining the length fuction. Without loss of

generality we may assume that if 9 € {1,--*,9m}, then g7 €{g,- - s Gm }-




Let i € I be such that

9i = YoV
for some v,, € F. Let Thor Yeg € T be such that y

commutation relations
oo /
NV = VL0 Yk 1
. "
NV = V1,2V 1

for some Vel 1 Va2 € £ Take

c= mawk,z{l(’)fk,z,l), HVk,2)s 1)} B

Then v, 9%, € 5,9/ € S. Now we can prove F[S]

m

F[S5] = {ghlg € F,h € [S]}. For any ¢ = Gy o gwm € T notic th
be chosen to be positive by the assumption on the generating set

can use the commutation relations to obtain
9= (Ve V)™ (Ve Ve, )™

= () - (el
= Yer Wy (s Ve )V,
! ! !
= 7]91 ‘711 . fyktvlt—lll'.th,lt_l 71‘,

(where ¢, ., € [S])

where v € F,+' € [S]. With the identity F[S] =T it is easy to conclude th.@iﬁ:.

5 generates I, By choosing F*U S as the generdting set in defining the leng‘éh_-':_ o




function we see that I has polynomial growth. of the same degree as I'. We

are done since the degree of polynomial growth doz

16t ep__ends on the choice

of generating set. QED.

Lemma 10 If T is a finitely generated discrete group'and']f" s

L' with finite indez, then Br = Br @ M,,(C) for n = II‘/I"

Proof: By lemma 9 I” is finitely generated. Let {7,-- .,7m} b’e'a..genela,t~
ing set for I, Let ' = {v,,--+,4,} in T such that {lm], - ['yn]} I‘/I" Let

5 be as in the proof of the above lemma. Choose T = FU S as the_; generatlng

set to define the length function on I'. Now T'is isomorphic to r/ I” X I" :a,s sets
by the map: v — [y] x 7, where 4/ = 471y for the ; € F such that [ ] [ ,] o
Let [ and I be the length functions on I' and T defined by the generatmg sets_.

T and S, respectively. Define the distance d; on T’ [TV x T' by:

2+ U(vive™) ity # 7

dl((’ﬁa 7;)9 (’}'2; '}’;)) =

'(vv™h) it 11 =7

\

Denote by d the distance on I' defined by the length function 1. Then it is’

casy to see

d(z,y) < du(2,y)
for any z,y € T = T'/I" x I". Assume § = {s1,-<+,s,}. Without loss of
generality we can assume further that s~ € S whenever s € S. Then we have

the following commutation relations:

. 3 o . . ’
S = Mii N g




for some y1,; € Fyy;, €TV
Si’}’fl = 72,3‘,1'7;,5,5_'
for some v,;; € F, Yoi5 €I
ViV = V3, Ve,
for some vy3;; € F' Y5i: € 17
VN = Vi Ve
for some y4;; € F, Yai; €T
Vo = stk

for some v5;; € F,vf,; € T" Take M = maz i {l'(Y)}. Tt is no diffi

to see that the Roe algebra Br with respect to the distance d, is'.'i..s.:bfnorphl_

to Br ® M,(C). Hence it is enough to prove that for any ¢ > 0 t'lié_rgéf..

¢ > 0 such that:
{,9)le,y € T, d(z,1) < o} € {(z,1)lory € T, dy(2y9) < 1),

I {z,y) € T x I'is such tha l(zy™") < ¢, then zy™" can be written a,s
3;’1‘17;‘11 ...3?::7?;

for s; € S,9; € F such that 0, my] + X4, |ni) < .
By using the commutation relations we can shuffle al 7v; in the first place by

beginning with v;,. We finally get:

xy ™ =g




for some ¥ € F, g € T such that

Ig) < MEFel(ay),

Suppose
= qihy,y = gah,
for some g; € F,h; € T". Then we have
hihy' = qizy gy = givgg; L

By using the commutation relations and the shuffling process we ha,ve

l’(hlhz-l) < MC+2ZI(Q) S Mc2+2c+21($y—1) < = Mc2+2c+ﬁc:.

QED.

The following topological analogue of lemma 10 follows from the:'.:_éibbye.__

proof.

Lemma 11 [fI'is o finitely generated discrete group and T

is a subgroup in

I with finite index, then Bge = Br? ® M,(C) for n = T/1”|.

The above lemma together with lemma 9 makes it possible for us to ’

compute inductively the continuous cyclic cohomology of B (Cf the following

proof),

Now we are ready to prove theorem 3.2.1. ::l

Proof of the theorem 3.2.1: Step 1 : When T is nilpotent, we shall prove by '1

induction that every cyclic cocycle over Bt = (((I°°(T) MpGi) ¥ Gy) )4, G, ’




has dimension less than or equal to Y
1 if G;
rankG; = J

0 i =17,

Notice BR = BE. Assume by induction that the result __':old's’.f (
true when n == 0. Now consider BLL”+1) B(”) X Gn%l P

First case: G,y = Z,, for some positive integer p. We have .j
B = 19°(T') %, Ty,

where I'yy1 = Gy X Gy -+ X Gnq1. Notice that (1) %, I,y s 1s§morp111c (o
the direct product of card|T' /Ty 41| copies of 1°° (Tag1) Xx Tpyy = BF :
lemma 11 By +1 18 isomorphic to BE ® M, »{C), which is Morita equlvalent
Bfe. Tt follows from the induction hypothesis that every cyclic cocycle'over
BR >, Das dimension at most rankl’y, = rankl, 1.

Second case: Ghy1 = Z. As in the previous case B s isomorphic 6 the*

direct product of card|l'/T', 41| copies of (I’ nd1) Mg Dy = B, We know.-'a_ :

P(Tg1) X Dpyy = (1 (Cog1) X T) 0, Z.

It is not diffcult to see that our topological crossed product is equivalent to

Nest’s smooth crossed product [28]. By Nest’s result [28] we have the following

long exact sequence:

= HP NI (Cg ) X, Ty) — HY 1P (Paga ) 4o Ty) — HE (I (Tog1) ¥a L) 2, 2)

hom

- H;\n(lm(_rnﬂ) >qA:r'Fn) —* H;n(loo(rn-!-l) M Fn) -
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where HT((1° (Trt1) Mo 1) Xx Z) pom is the “homogeneous” cyclic cohomology
for (I°(Th11) X2 Ty,) %, Z. Recall that the “homogencous” cyclic cohomology
for (1°(T41) X, I's) X4 Z is the cohomology of homogeneous cyclic cochains,

i.e., such that given g,y am € 1°(Tpgq) X, Ty,
gb(unoao, cee unmam) — gf,(unﬂao, cee u"mam)é‘nn+...+nm,g, .

where ¢ is a cyclic cochain over (I(Tp41) X Ty) X Z, w is the generator for
Z and

1 ifn=20
5HO:J itn

k)

0 otherwise

Y

A result of Nest [28] implies that the periodic cyclic cohomology of (I P(Log1) Xy
I'n) X Z can be computed by the “homogeneous” cyclic cohomology. We have

the following commutative diagram:

HE (I (Tga) ¥e ) ——» HEH (I (Tgg) X5 1)

I s

Hc(m—l)modz(loo(FnH) Xy I') ——s Ho(m—l)moﬂ(loo(rn_l_l) Xy Ty)

— Hj\n((loo(rn-l—l) X F'n) Xy Z)hom I I‘I;n(loo(rn_l_l) b Fn)

s |5

HOm mod2((loo(1“n+1) X x Fn) X Z)hom — g™ mod2(loo(l-1n+1) X, Fn)

- H;F(loo(rn+l) XrIy)

J&

—— HO™ ™11, 1) 5, T,)




Every cyclic cocycle over lm(rnﬂ)'>.<1:'1r:'l;‘ﬁ';'ha'&f;"'-dimension at most rcmkI‘

since I°(1',41) X I, is isomorphic to the direct pi'oduct of card|l"/T, 44| copiés__ :

of [*(T',)X%,I",. Hence 81, 83, 84, and &, are onto if we take m = rankT, ;. Now

it follows from a standard diagram chasing argument in the above commutative
diagram that &5 is onto.

Second step: Reduction of the general case to the case of nilpotent group.
By lemma 9 and 10 Br° is Morita equivalent to Bp for a finitely generated

nilpotent group I with the same degree of polynomial growth. QED.

3.3  On a conjecture of S. Hurder

In their approach to the Novikov conjecture Connes and Moscovici use
Alexander-Spanier cohomology to construct “local” cyclic cocycles. Motivated
by this idea Roe introduces exotic cohomology to construct cyclic cocycles over
the Roe algebra. Roughly speaking the exotic cohomology of 4 metric space
describes how bounded sets patch together at infinity. So it is natural to ask
how the growth of the metric space at infinity is related to the exotic coho-

mology of the metric space. In this aspect we prove the following conjecture

of 5. Hurder [33):

Theorem 3.3.1 If T is finitely generated discrete group with polynomial

growth of degree d, then

HX'T)=0 for ¢ > d.




Let’s first recall the definition of Roe’s exot, b}iémolgy HX*(X )_fbr_.

metric space X [32] [33]. Let M+ be theCartesm.n ditet of g+ 1 copies of

M. A function ¢: M9+ - R is said to be w~BQﬁﬁ:déd:-_1 (}unded on every .'

bounded subset. The exotic complex CX (M ) is deﬁned vs: CX9(M)

is the space of w-bounded Borel functions o M‘H':l_j"_

following support conditon: for each r > o, the set

Supp($) N {z]z € M dist(z, A)}

is relatively compact in M7+, where A is the diagonal in Ao+,

“The com

CX*(M) is equipped with the coboundary map
g+1 .
Id(zo, - - - yTgg1) = Z(~1)‘q§(m0, ey By, Tqt1),
=0
where the ‘hat’ denotes the omission of the specified term. Now the exotic:
cohomology HX*(M) is defined to be the cohomology of this complex.
The importance of exotic cohomology is that there is a natural map A
from the exotic cohomology HX *(M) to the cyclic cohomology of the Roe
algebra on M. In the case that M is a finitely generated discrete group with

the metric induced by the word length function, the map A from the exotic

cohomology HX(T) to H3(Br) is defined as follows: for $ a cocycle in the

exotic complex € X*(T) define
A(9!5)(0505 @yt vy an)

= Z aO(’YOa’YI)' "}an('}'na')/o)é('}'o,' . ',’}’n)

'yov"'l'YnEF I
for any ao,- -+, a, € Br, where a;(®,y) is the kernel for a;. Tt is not difficult to

check that A(¢) is indeed a cyclic cocycle over By.




The strategy of the proof of theorem 3.3.1_:'i:s-_as fo
with a locally convex topology ¢ such that the map f o

is injective and preserves the grading, where 79_; is 't'l'i_g.

the topology ¢. By the same argument as in the pr-:é;_nous

that _EIE has homological dimension less than or equa'lfi_;:o'_f

result follows. __
Endow Br = 1°(T') 4, T with the locally convex topélbg.

seminorms:

Poa(z) =D eypl ()

~yel -
for any @ = 3, cp 2,7 € I°(T) %, T, where Pola) = Toer a7]
ative function « on I' with nonzero values at most a ﬁnite'ﬁﬁmb
and any @ € I°(T'), and ¢ is a nonnegative function on .
Denote by J_g; the completion of Br with respect to the ¢ top

reason for choosing such a topology is the following sequence of lemm

Lemma 12 _Eiﬂ = I(I') %, ', where (') is the algebra of all f_yﬁ_r;"tz”on-

Proof: The proof is completely analogous to that of propos_'it:f:'o_
therefore omitted. QED. |

By the above result it is not difficult to see that the cyclic cocycl
Br constructed from exotic cohomology classes can be extended fb":¢§_nt;

' 3t
cyclic cocycles over B..

Lemma 13 The natural map from HX™T) to Hf(_B_fw), the conlinuous 'Cycli_c

cohomology of P“; , 18 injective.




Proof: Assume [¢] € HX™(T') and that 1ts 1ma,ge ._m HA (BF) 1s' O, i'.é'."ft:here;_

exists a continuous multilinear functional over BF such that

)‘(fﬁ)(am ay, -+, a'n.)

- Z aO(’YU?'Yl) T a’n(7m 70)‘?5(70’ Ty 77’!')

')’Br""']"ner
= (br)(ao, ar," -+ ,a,),
where a;(z,y) is the kernel of a;. Let ¥ be the functionon ™ =T x ... x T
(n times) defined by:

¢(y0a tee 1yn-1) = T(ﬁyo,yﬂ a0

Yn—1,30 )

where 6., is in Bp with kernel defined by:
(

1 if (g,k) = (z,y)
Ou,y(g, 1) = J

0 it (9,h) # (,9)

By the continuity of 7 we know that 7 is defined on Doy - - @ Bp (n times)
o F{m. For any ¢ € I(T'), § a finite subset of ', x and y € I', we define |
as = Y ges €(9)8zg49- The net ag converges to cy~1z € B & I(T™}x,I'"™ in the ’
¢ topology, where & = (24, -, 2,),9 = (g1, - - y9n)y and &g = (w101, -+, T, 0,). '
Hence T(Egel"n. (9)bzg5) is well defined. By the continuity of 7 we have

(cy T —hmz :cg,Jg)

ges ]
for any ¢ € {(T™). Tt follows that lims 37,5 e(g)7( Og,y0) 15 well defined for

any ¢ € I(I'™). This fact implies that 7(8zg,y5) Is nonzero for at most a finite




number of g € T™ for fixed = and y € I'™*. Therefore

Suppp N {z|z € T", and dist(z,) < r}

15 finite for any r > 0, where A is the diagonal of I'"™, Now it is routine to
check 74 = bry. It follows that ¢ = O, where 8 is the coboundary map in

exotic cohomology. QED.

Lemma 14 The map X from HX*(T) to HK(_B_’;) preserves the filtration, i.e.
if A[g] = St for [¢) € HX™T) and some T € Hf\"(ﬁ;), then [¢] = 0, where S

is the suspension map in cyclic cohomology.

Proof: Suppose A[¢] = 14 = 7. Define the function % on I~ by:

¢(y07 e syn—2) = T(‘Syg;.yi ) X 3 6yn—3|yn—2? 6yn—2|y0)’

where 6, , is the same as in the proof of the previous lemma. By the same
argument as in the proof of the previous lemma we know that S uppip N {z|]z €
1, and dist(z,A) < r} is finite for each r > 0. Now routine calculation

shows:

Ts = STy

and it follows that

¢($0, T ,mn) = Z(_l)i_ﬁjd)(mﬂa Cre gy th T 155%)

i‘lj

= Z(_—l)if(iﬂo, e 13?2': e 71"??,)




where

f(ﬂfo, - ,-’Bn—l) — Z(—l)ji,b(ﬂfu, . ,3;3.’} e %-1)

J

and the ‘hat’ denotes the ommission of the specified term. Hence ¢ is a
coboundary in exotic cohomology. QED.

Now we are ready to prove the main result of this section.
Proof of theorem 3.3.1: For any complete locally convex topological algebra
A with a Z action by automorphisms Nest’s method can be used to prove the

following exact sequence:
v HETHA) = HE7Y(A) = HE(A R0 D)nom — H(A) — H(A) = -+

and the fact that the periodic cyclic cohomology of A x,7 can be computed by
the “homogeneous” cyclic cohomology ( the proof in this case is even simpler
than the case in [28] since we have the algebraic tensor product here). Now
the same argument as in proving theorem 3.2.1 can be used to prove that
every continuous cyclic cocycle over _B_lta has dimension at most d. Combining

this fact with the previous two lemmas we see that S. Hurder’s conjecture is

proved. QED.

3.4 Open Questions

Results in sections 2,3,4 of chapter 2 indicate that the K theory of the Roe
algebra and the K theoretic index of the Dirac operator are related only to

the asymptotic behavior of the manifold at infinity. It hints that the K theory

of the Roe algebra is intimately related to a certain “geometric boundary” of




the manifold.

(1) Can one establish an explict relation between the K theory of the Roe
algebra and the topology of a certain (computable) “geometric boundary” of
the manifold? If the above question has a positive answer, it is natural to

ask: can one express IndD in terms of the topological data of this “geometric

boundary”?

If I' is a finitely generated group, then one can prove that
ko(Br) = Ko{C(AT\T') x T),

where BT is the Cech compactification of T (I' is endowed with the discrete
topology) and the I action on € (BT'\T) is induced by the left translation action
on I'. C(BT'\T) x T can be considered as the “noncommutative boundary” of
I'. Unfortunately the computation of Ko(C(BT\T) 1 T') is not always easy.
(2) We know that the cyclic cohomology of the group algebra CI' can be
expressed in terms of the topology of I" [7]. Can one similarly compute the
cyclic cohomology of Br = CT' x I'? An answer to this question might shed
some light on the first question.

(3) Does there exist a nontrivial p-summable Fredholm module over the Roe
algebra which is induced by a special compactly supported vector bundle, A
positive answer to this question would lead to the solution of the following open
problem proposed by A. Connes: Does there exist a nontrivial p-summable
Fredholm module over C*(@G), the convolution algebra for a real semisimple
Lie group G [12].

(4) Is the converse of theorem 2.2.1 true? i.e. if M is a complete spin manifold
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i
l
and the K theoretic index of the Dirac operator on M is zero, does there exist |
a metric with uniformly positive scalar curvature near infinity in the strict l

quasi-isometry on M? I suspect that this is not true in general.
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