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Introduction

The study of completely integrable geodesic flows (and Hamiltonian sys-
tems in general) has regained momeﬁtum m recent years, as new techniques
have been discovered to construct examples. Let us recall that a geodesic flow
is said to be completely integrable if it admits a maximal number of indepen-
dent conservation laws (i.e. first integrals) that Poisson-commute. Classical
examples are given by n-dimensional ellipsoids with different principal axes
(Jacobi, 1838), left invariant metrics on SO(3) (Euler, 1765), surfaces of rev-

olution (“Clairaut’s first integral”), and flat tori.

In part due to Poincaré’s realization that complete integrability was a
rare phenomenon, the subject went through a period in which very little de-
velopment occured. In the past decades the study of Hamiltonian actions
and the geometry of the moment map provided the necessary framework for
a solid theory of symmetries. As a consequence, new examples appeared. In
1978, Mishchenko and Fomenko [28] constructed left invariant metrics on semi-
simple Lie groups with completely integrable geodesic flows. Then Thimm [33]
devised a new method for constructing first integrals in involution on homoge-
neous spaces. In particular he was able to show that the geodesic flow on real
or complex Grassmannians is completely integrable. Guillemin and Sternberg
[18] strengthened this method and obtained further examples. Very recently
Spatzier and the author [31] constructed the first non-homogencous examples

using riemannian submersions. We were able to show that spaces like Es-




chenburg’s strongly inhomogeneous 7-manifold [7], CP"#CP" for n odd and
the exotic T-sphere constructed by Gromoll and Meyer [12], have metrics with
completely integrable geodesic flows.

A natural question arises: What are the geometric and topological prop-
erties of a compact riemannian manifold whose geodesic flow is completely
integrable? Some topological features are shared by all the previous examples
and we would like to draw attention to them. Tollowing Grove and Halperin
[15] we will say that a compact manifold M™ with finite fundamental group
is rationally elliptic if the total rational homotopy of M, 7.(M) ® Q is finite
dimensional. Homogeneous spaces are known to have this property, although
is rather restrictive (cf. Section 2.1).

Rational ellipticity is shared by all the known examples of manifolds with
completely integrable geodesic flows. Also in all of them 71 (M) has polynomial
growth. We should mention that recently, Taymanov [10] proved that in the
real analytic case, m1(M) is almost abelian.

Before we state our results let us set some terminology.

Let GG be a compact connected Lie group acting by Hamiltonian trans-
formations on a symplectic manifold X with moment map ¢ : X — g¢* (cf.
Section 1.1 for definitions and properties of the moment map). We will say
that the action has multiplicity k if for generic z € X, the symplectic reduction
of Ker d¢, (i.e. the quotient of Ker d¢, by its null subspace) has dimension
k. Since the symplectic reduction of a subspace is naturally symplectic, k can
take only even values. If k = 0, then Ker d¢, is isotropic for generic x € X

and we obtain the notion of multiplicity free action introduced and studied by




Guillemin and Sternberg in [18, 19].

Let H be a G-invariant Hamiltonian, £y its Hamiltonian vector field and
H~'(a) = N a compact regular level surface. Let hy,,(H) denote the topolog-

ical entropy (cf. Section 2.2) of the flow of 5 restricted to N.

Theorem 4.3.2 If the action of G has multiplicity zero or two, then hy,,(H) =

0.

Let us now describe some of the interesting consequences that Theorem
4.3.2 has in the case of geodesic flows. Let M be a compact riemannian
manifold. If the topological entropy of the geodesic flow is zero then (M)
has sub-exponential growth [6]. Moreover, we will see in Section 2.3 that if

m1{M) is finite, M is rationally elliptic (Corollary 2.3.2).

Thus from Theorem 4.3.2 we obtain:

Theorem 4.4.1 Let M be a compact manifold whose cotangent bundle admits
a compact Hamiltonian G-action with multiplicity k < 2. Assume the set of
G-invariant functions on T*M contains the Hamiltonian associated with some
riemannian metric. Then (M) has sub-exponential growth and if w (M) is

finite, M is rationally elliptic.

Observe that Theorem 4.4.1 and thus Theorem 4.3.2 are false for k > 4.
For example M = $? x S?#5% x §% is not a rationally elliptic manifold,
and admits a 2-torus action (cf. Section 2.1) . The lift of this action to the
cotangent bundle of M has mutiplicity £ = 4. Any riemannian metric invariant

under the torus action gives rise to a geodesic flow with positive topological



entropy.

The idea behind Theorem 4.4.1 is very simple. If the geodesic flow ad-
mits a sufficiently large group of symmetries (k = 0,2), then M has severe

topological restrictions (rational ellipticity).

Let us now describe briefly why actions with multiplicity < 2 are relevant
to complete integrability. A function of the form fo ¢, for f: ¢* — R is called
collective. We will prove (cf. Proposition 4.1.5) that if there exist fi,..., f, in
C>(g*) such that f; 0 ¢, ..., f, o ¢ are s-independent functions that Poisson-
commute on X", then the multiplicity of the action is < 2(n — s) . Observe
that if s = n, that is, if we can find a full set of commutative collective
Hamiltonians, then the action is multiplicity free. This was proved in [18].
Note also that a G-invariant Hamiltonian i is also completely integrable if it
admits n — 1 independent commuting collective integrals besides H. In this

case the action has multiplicity < 2.

Most of the known examples of completely integrable geodesic flows arise
by considering collective integrals as above. The Thimm method (cf. {18, 33])

fits into this framework.

Let (M™,g) be a compact riemannian manifold whose geodesic flow is
completely integrable with first integrals £y =|| . {|,, F%, ..., Fi.. We will say
that the geodesic flow is completely integrable with collective integrals if the
functions F;, 2 < ¢ < n are collective with respect to the action of some com-
pact Lie group & that leaves the Hamiltonian associated with the riemannian

metric invariant.



Theorem 4.4.4 Let M” be a compact riemannian manifold whose geodesic
flow is completely integrable with collective integrals. Then w (M) has sub-

exponential growth and if 7;(M) is finite, M is rationally elliptic.

Suppose X is the cotangent bundle of a manifold M and G acts by deriva-
tives. If the action is multiplicity free then M is a homogeneous space G/K
[19, pag 43]. In this case one calls (@, K) a Gelfand pair. When G is sim-
ple, all possible Gelfand pairs have been classified by Kramer in [23]. For
SU(n) for example, the possible K are SO(n), Sp(In/2]), U(1).Sp([n/2]) and
S(U(k) x U(l)) where k+ | = n. If the action of G does not arise from an
action on M, then M does not need to be homogeneous. In Section 4.2 we give
examples of this situation. In fact we will prove that on the cotangent bundle
of CP™# — CP"™ there is a multiplicity free action of the group SU(n) x 12,
Certain sphere bundles over the Grassmannian G,,_; 5(R) provide éx'amples as

well.

In the case of a 4-dimensional symplectic manifold the vanishing of the

topological entropy can be obtained under different hypothesis on the integrals.

Theorem 3.3.1 Let I be a Hamiltonian system on a 4-dimensional symplectic

manifold. Suppose H is completely integrable, and on some compact regular

level surface N the integral f satifies either one of the following conditions:
(2) f is real analytic.

(b) The connected components of the set of critical points of f form

submanifolds.



Then the system restricted to N has topological entropy hys, = 0.
Combining this theorem with results of Dinaburg [6] we obtain:

Corollary 3.3.2 Let M? be a compact connected surface. Assume M? sup-
ports a geodesic flow that is completely integrable by means of an integral as

in Theorem 3.3.1. Then x(M?) > 0.

Coroliary 3.3.2 was proved by Kozlov [22] in the case of a real émalytic
function by completely different methods. If we assume condition (b), the
integral could even be of class C*.

Now take two points p and ¢ in M. Denote by n(p, g, \) the number of

geodesics connecting p and ¢ with length < A, Define

N(A) = /MxM (2,4, A)

(we will prove in Section 2.4 that if p and ¢ are not conjugate n(p, ¢, A) is finite
and that the set of points for which this does not happen has measure zero).
The groﬁth of this function can be viewed as a measure of the complexity
of the geometry of geodesics. Basic properties of this function as well as its

connection with the topological entropy are studied in Chapter 2.

We also obtain:

Theorem 4.4.5 Let G/K be a homogeneous space such that the action of G
on T*(G/K) has multiplicity zero or two. Then for any left invariant metric

on G/K, N(X) grows sub-exponentially.

Examples of homogeneous spaces such that the action of G on T*(G/K)



has multiplicity two are the Stiefel manifold SO(n + 1)/SO(n — 1) and the
Wallach manifold SU(3)/T? (cf. Example 4.1.4).

In Chapter 5, using quite different techniques, we will prove that N(\)
grows at most like A% for any compact convex surface of revolution. In generé,l,

we will prove that in the real analytic case we have:

Theorem 5.3.1 If M* admits a codimension-one torus action by isometries

and Ricy > 0, then N()) grows at most like A",

As an added consequence of some of the ideas used in the proof of the
last theorem we get a result on closed geodesics that we now describe:

Consider a left invariant metric on SO(3) defined by

X2 X2 Xz
X X >==—L 22203
DR AL AL

Let SO(2) be any one-parameter subgroup. Then SO(2) acts on SO(3) from
the left by isometries. The quotient, My, 1, 1, is a 2-sphere and we endow
it with the submersion metric. This corresponds to the classical “Poisson
reduction” and M is called the Poisson sphere [2]. It follows from a theorem of
Lusternik and Schnirelmann [21] and estimates of Klingenberg and Toponogov
that any convex metric on S? whose Gaussian curvature satisfies 1/A < K <
A, has at least three geometrically different closed geodesics with length in
(27 /V/A, 2m/A). That this is optimal is shown by a result of Morse:

Given any constant N > 2r there exists an € > 0 such that any prime

closed geodesic on an ellipsoid

2 2 2
@27+ Ay +azrs =1, a1 < a; < as



and | 1 — a; |< ¢, is either a principal ellipse or is larger than N.

We will prove a similar result for the Poisson sphere:

Theorem 5.5.1 Given N > 27 there exists an € > 0 such that any prime
closed geodesic on the Poisson sphere My, r, ;. with | 1 — I; |< € has length

> N except for three closed geodesics with length close to 2x.

Complete integrability guarantees via Liouville’s Theorem the existence
of an open dense subset U of the unit tangent bundle of M that is foliated by

tori, and the geodesic flow on these tori is quasiperiodic. We can also prove:

Theorem 5.6.1 Let M™ be a compact riemannian manifold whose geodesic
flow is completely integrable. Suppose for some p in M the unit sphere at p
is contained in U. Then m (M) has polynomial growth of degree < n and if

w1 (M) is finite, M is rationally elliptic.



Chapter 1

The moment map

1.1 Hamiltonian actions and moment map

All the results in this chapter are taken from [17].

Let X be a symplectic manifold with symplectic form w. Given a -
function f on X let {; be the associated Hamiltonian vector field, i.e. w(é;, ) =
df (*). The map

T : O — Symplectic vector fields

sending f — {; is a morphism of the Poisson algebra C*™(X) into the lLie
algebra of symplectic vector fields. Suppose now that a connected Lie group
G, acts symplectically on X. Let g be its Lie algebra. Associated with the

action of (7 is a Lie algebra morphism
3 : g — Symplectic vector fields.
The action is said to be Hamiltonian if there exists a Lie algebra morphism

a:g— C%(X)



such that 7 o @ = . To each point, z € X we can associate an element I of

the dual space ¢*, by the identity
L(() =¢'), ¥ €y

where ¢¢ = () € C°(X). If we let & vary, we get a map
¢: X —g" o1,

This map is called the moment map. It is easily seen to be G-equivariant
if we consider on ¢* the coadjoint action. Thus if G, denotes the stabilizer of
a point ¢ € ¢g*, then G, leaves ¢~1(c) invariant. Another way of describing the
moment map is as follows. Let { € ¢ and let e, : g* — R be the linear form
on ¢*: f € g* — f(¢). Let ¢° = ¢ o-qﬁ and let ¢! be the vector field on X
associated with ¢ by ¢! = ﬂ(C) Then

w(C *) = de(*).
This equation determines ¢¢ up to an additive constant.

Let us now describe some of the most relevant properties of the moment

map.

Proposition 1.1.1 The symplectic perpendicular to the tangent space to the
orbit at x is Ker d¢,. The image of d¢, is the annihilator of the Lie algebra
of the stabilizer group of x. In particular, dé, is surjective if and only if the

stabilizer of x is discrete.

Recall the following definition. Let f : X — Y be a smooth map between
two differentiable manifolds, and suppose W is an embedded submanifold of

Y. We say that the map f intersects W cleanly if

10



(i) f~Y(W) is a submanifold of X,
(ii) at each z € f~Y (W), T f~' (W) = df ;1 (T W).

Now we have the following proposition:

Proposition 1.1.2 If ¢: X — ¢* intersects an orbit O cleanly, then ¢1(O)
is coisolropic and the null foliation through a point x € ¢7'(0) is the orbit of

z under G?ﬁ(z‘)’ the connected component of the isotropy group of ¢(zx}.

Assume now that the group G is compact. Then G, is always connected.
Let X* denote the set of principal orbits of G. As is well known, X* is an
open connected dense set of X. Let B, denote the vector subspace of T, X

spanned by £f(«) where f is a G-invariant function. Then we have:

Proposition 1.1.3 The restriction of ¢ to X* intersects every orbit in ¢(X*)
cleanly. Moreover, for each x € X*, Ker d¢, = B,. In addition, if dim Oy,

is mazimal among all G-orbits in $(X*), then Gy, /G is abelian.
Next, let H C G be a closed subgroup and let Xy ={z € X : G, = H}.

Proposition 1.1.4 Let the compact Lie group G act as a group of symplectic
transformations of the symplectic manifold X and let H be a closed subgroup
of G. Then Xy is a symplectic submanifold. If the action of (& is Hamiltonian
with moment map ¢, then ¢ maps each connected component of Xy into an
affine subspace of g* of the form p+ h°, where h° denotes the annihilator of h
in g*. If H is a normal subgroup, then Xy is G-invariant, and the restriction
of the moment map to each component is a submersion onto an open subset of

the affine subspace p + h°.

11



1.2 Collective motion

Let G be a connected Lie group acting on a symplectic manifold X by
Hamiltonian transformations. Let ¢ : X — g* denote the associated moment
map. A Hamiltonian H on X is said to be collective if it is a pullback by the

moment map of a smooth function f on ¢*, i.e. H= fo .

Let us explain now, what ingredients go into the solution of a collective
Hamiltonian. Recall that a function f € C*(g*) defines a map L; : g* — g
by the formula: L;(c)(a) = df.{c). The map L; ié sometimes known as the
Legendre transformation associated with f. The following important relation

holds:

En(2) = L(p(a))(z) forallz € X. (1.1)

It follows from equation (1.1) that if z(t) denotes the trajectory of the Hamilto-
nian system ¢ with 2(0) = z, then z(t) lies entirely on the orbit of G through
z and hence ¢(x(t)) lies entirely on the orbit O through ¢(z). Moreover v(¢) =
#(z(t)) is a solution of the Hamiltonian system corresponding to fo = f/O.
Set ((t) = Ls(y(t)), then equation (1.1) says that z'(t) = ((t)"(=(#)). So we
can find the solution curve by applying the {ollowing three steps:

(1) Find the orbit O through ¢(z).

(2) Find the solution to the Hamiltonian system on O corresponding to

fo passing through ¢(x) at £ = 0. Call this curve (2).

12



(3) Compute the curve ((¢) = Ls(v(¢)). This is a curve in g. Solve the

differential equation (i.e. find the curve in ( satisfying)

() = (BalD), a(0) =e.
Then a(t)z is the desired solution curve.

Remark 1.2.1 Suppose for instance that f is invariant. Then, on each orbit
O, ¥(t) is constant, but the map L; need not be trivial. Thus ((¢) will be a
constant element of g, and «(t) will be a one-parameter subgroup. Therefore
the motion corresponding to f o ¢ when f is invariant is given by the action

of a one-parameter subgroup, the one-parameter subgroup depending on z.

13



Chapter 2

Entropy and rational homotopy

2.1 Rationally elliptic manifolds

In what follows, manifolds will always be assumed to be closed connected
and simply connected.

As it was proved by Felix and Halperin [8], the class of n-manifolds M™
(or more generally the simply connected topological spaces of the rational
homotopy type of a CW-complex) is divided into two subclasses: either

(a) m(M) is finite for all p > 2n — 1, or

(b) the integers p, = Yy« dim m(M) ® Q grow exponentially in p (i.e.
AC>1,FkeN: p>qg= p, > CP).

Following Grove and Halperin [15] manifolds in class (a) are called ratio-
nally elliptic; the rest (those in class (b)) are called rationally hyperbolic.

The “generic” manifold is rationally hyperbolic; rational ellipticity is a
severely restrictive condition, albeit satisfied by all simply connected homo-

geneous spaces and manifolds that admit a codimension-one compact action



For instance if M is rationally elliptic then:

(1) dim (M) ® Q < n,

(2) dim H(M,Q) <27,

{3) the Euler-Poincaré characteristic xar > 0,

(4) xar > 0 if and only if H,(M,Q) = 0 for all p odd.

Let b;(f2M, Q) denote the Betti numbers dim H;(QOM, Q). It is pointed
out in [15] that rational ellipticity is equivalent to the property that the integers
tp = 3q<p 0o (S2M, Q) grow only sub-exponentially in p. We outline the argu-
ment for this equivalence. By a theorem of Milnor and Moore, 7, (M) ® Q
is isomorphic to the Lie algebra of primitive elements of the Hopf algebra
H,(QM, Q). Then it is enough to prove that H,(Q0M, Q) is finitely generated.
Using a structure theorem for Hopf algerbras we can write H.(QM,Q) as a
tensor product of a polynomial algebra with only even dimensional generators
and an exterior algebra with only odd dimensional generators. Now it is not
hard to see that if these generators are not finite, the sum of the Betti numbers

of the loop space grows exponentially.

Interesting examples of rationally hyperbolic manifolds are S* x S'# 5% x
8!, k > 1> 2[16]. They admit a codimension two-action of the group SO(k) x
SO(D).

15



2.2 Topological entropy

The topological entropy h..,(g) of a continuous flow ¢; on a compact
metric space (X,d) may be defined as hy,,(g1) using the entropy of the time
one-map or it may be defined in either of the following ways. All three defini-
tions give the same number k,,, which is independent of the choice of metric
[27].

A set Y C X is called a (7T,8)-separated set if given different points
¥,y €Y there exists { € [0,T], such that d(g.y, g:%') > 8. Let N(T,6) denote

the maximal cardinality of a (T, §)-separated set. Then
: 1
hiop(g) = 3“PS‘>032m8uPT_>ooTlogN(T, ).

A set Z C X is called a (T, 68)-spanning set if for all z € X there exists
z € Z such that d(g,z, ¢,2) < é for t € [0,7]. Let M(T,6) denote the minimal

cardinality of a (', §)-spanning set. Then
. 1
hiop(g) = sup5>olzm5upT_,oo-flogM(T, 8).

Remark 2.2.1 Given a compact subset X € X (not necessarily invariant) we
can define the topological entropy of the flow respect to the set K, hy,,(g, K),

simply by considering separated (spanning) sets of K [4].

The topological entropy of a flow g; is a number which roughly measures
the orbit structure complexity of g,. Flows with positive entropy exhibit com-
plicated dynamics, and the larger the entropy is, the more complicated the

dynamics is.

16
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Let w(7y) denote the w-limit set of the orbit 4. If v C w(y), then 7 is said
to be recurrent. If - is not a critical orbit (i.e. a fixed point or a closed orbit)
then it is said to be non-trivially recurrent.

The following proposition gives an idea of the dynamical significance of

the topological entropy.

Proposition 2.2.2 The topological entropy verifies the following properties:

(i) For any two closed subsets Yy, Yy in X,
hiop(g, Y1 U Ya) = mazii 2hip(g, 7).

(6) FYs C Vs then hupy(9, i) < buo(g, Ya).

(i) Let g : X; — X; fori = 1,2 be two flows and let # : X; — X, be a
continuous map commuting with g' i.e. g2 om = wogl. If v is onto, then
Piop(9') 2 hiop(g?) and if 7 is finite-to-one, then hiy(g') < hyop(g?).

(iv) Suppose that X is separable. If g, only has trivial recurrence, then hy,,(g) =
0.

Proof: The first three properties are fairly standard, so we omit the cor-
responding proofs. To prove (iv) assume hy,,(¢) > 0. The variational property

of the entropy [25] says

hip(g) = SUPucMepg Pu (9),

where h,(g) denotes the measure-theoretical entropy with respect to g and
Meyg the set of all g-invariant ergodic probability measures. Therefore we

can assume that for some p € Merg, hu(g) > 0.



Since X is separable, the Poincaré recurrence Theorem [25] implies that
the set of recurrent orbits has full g-measure. But we only have trivial recur-
rence and g is ergodic, then g has to be supported on a single orbit, which in

turn implies that 2,(g) = 0.

Next we will state some results of Bowen that we will need later.

Theorem 2.2.3 [4, Theorem 17] Let (X,d) and (Y,e) be compact metric
spaces and ¢, : X — X, f; 1 Y — Y continuous flows. Letw : X — Y

be a surjective continuous map so that wo g, = from. Then

htop(g) S htop(f) + 'SupyEYhtop(g’ W—l(y))'

Corollary 2.2.4 [4, Corollary 18] Let (X,d) and (Y,e) be compact metric
spaces and g, : X — X a flow. Suppose n : X — Y is a conlinuous surjective

map such that m o g, = ©. Then
htop(g) = SupyEYhtop(gaﬂ__l(y))'

Let (X, d) be a compact metric space and ¢/ a compact Lie group that
acts on X by isometries. Then the quotient space ¥ = X/G is a compact
metric space with the induced topology. Let 7 : X —+ Y denote the projection

map.

Theorem 2.2.5 {4, Theorem 19] Let g, : X — X and f,: Y — Y be contin-

wous flows such that o g, = f,om. Suppose g, commutes wilh the action of

18



(. Then
hiop(9) = hiop(f)-

2.3 Geodesic entropy and topological entropy

Let M be a n-dimensional compact riemannian manifold. Fix A > 0 and
p € M. For each ¢ € M define n,(¢) as the number of geodesics connecting

p and q with length < ). Set

L) = ]M Rp.

In [3] it was proved that this integral is well defined and

L) = fo “a ]S | detA(e) | d (2.1)

where A,(t) is the unique family of linear maps along the geodesic defined by v
verifing the Jacobi equation with initial conditions A,(0) = 0 and A}(0) = /d.
The unit sphere at p is denoted by S, and v stands for its canonical measure.

We define the geodesic entropy at p by

o= limsupx_,%o% logl,(A).

Let hy,(g) denote the topological entropy of the geodesic flow on the unit tan-
gent bundle. The following theorermn is an improvement of Manning’s inequality

[27]. Tt is basically contained in [13].

Theorem 2.3.1 For every p € M we have

Op < hiog)(g)-

19



Proof: We will make use of Yomdin’s Theorem. It gives a lower bound
for hop(g) in terms of growth rates of volumes of iterates submanifolds under
gi- Fix p € M and set Y = S,M. According to Yomdin’s Theorem (see [34])
we have:

1 €
hiop(9) = limsupe-ssoo7logVol(g:Y) ¥ A

where Vol stands for the n — 1-dimensional Riemannian volume on the unit
tangent bundle. Hence we only need to prove that A > o, Set V(i} =

Vol(g,Y') and observe using equation (2.1) that

:f;dr/spM | det Ao(r) | dv

+
< ]0 dr /SPM|det (dg» z,5,0) | dv

= / r)dr.

Civen ¢ > 0 there exists T(¢) such that if ¢ > T(¢) then V(#) < 8+, Thus

T(e) t
) < / rydr + V(r)dr
T(e)

elate)t

T(e)
</ V(T)dr—{_A-l-c

Hence we get

limsupt_.ﬂo%Iong(t) <A —I—I €

for all ¢ > 0 i.e.

20



21

Let B;()) be a geodesic ball in M the universal covering of M. Let
pr: M — M denote the covering projection. From equation (2.1) for 1,(X)
it is clear that Vol(Bs(A)) < I.()). Therefore if y denotes the growth
rate of volume of balls in the universal covering, we clearly have p < o,.
Hence Theorem 2.3.1 sharpens Manning’s inequality. As we will see below the
geodesic entropy is particulary relevant in the simply connected case, while

¢ = 0 automatically. We also observe that if M does not have conjugate points

then by the results in {11] the three quantities are the same: g = 0, = hyy,(g).

Corollary 2.3.2 Let M be a compact riemannian manifold with finite funda-

mental group. If hip(g) = 0 then M is rationally elliptic.

Proof: In [14] Gromov proved that if M is compact and its fundamental ;

group is finite there exists a constant ¢ depending only on the geometry of M

such that whenever p and ¢ are not conjugate ;
c(A—1}
noa(2) 2 D2 k(OM,Q),
i=1
where b;(0M, Q) are the rational Betti numbers of the loop space of M. Hence
we deduce that (A > 1):

von'S BeM,Q) < L)

and this implies

1 kil
limsupm_%oo—nzlog(z b(QM,Q)) < %.

=1




Since hyp(g) = 0, we get o, = 0 by Theorem 2.3.1. This implies that the sum
of the Betti numbers of the loop space grows sub-exponentially. As we know

(cf. Section 2.1) this property is equivalent to rational ellipticity.

2.4 Average growth of geodesics

Fix A > 0. Take two points p and ¢ in a compact riemannian manifold
M and define ny(p, g) to be the number of geodesics connecting p and ¢ with
length < A, Consider the set A = {(p,q) € M x M : p and g are conjugate}.
We claim that A has measure zero in M x M. Call y the standard measure on
Mand v = puxp. Set A, = {g€ M : (p,q) € A}. Sard’s theorem implies that
p#{Ap) = 0 because ¢ € A, if and only if ezp, has ¢ as a singular value. Define
g(p) = p(A,). Then if p(M) < 400 a standard result from measure theory
says that g is measurable and [gdy = v(A). Hence ¢ = 0 and v(A) = 0.
Standard Morse Theory now guarantees that if (p, ¢) is not in A, then ny(p, ¢)
is finite. Hence n) is a well defined measurable function on M x M for each

A > 0. Hence if we set

Fubini’s Theorem implies
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and using Fubini’s Theorem again and equation (2.1) we get

NOY= | " [V deta,(1) | do, (2.2)

where ¢ denotes the standard measure on SM. Hence we deduce that N is a

C'-function and its derivative is given by

[3 | delAy(N) | do.

Remark 2.4.1 Take v € T,M with unit norm. Take the geodesic (¢} =
expyfv and an orthonormal basis {v,es,...,e,} in T,M. Take Jacobi fields

J; such that J;(0) = 0 and J{(0) = ¢;. Recall that d{ezp,)wv = 7'(¢) and

d(exp,)wte; = Ji(t). Then | detA,(t) |= \/| det < Ji(t), J;(t) >|. Thus

| detAy(t) |= /| det < Ji(2), J;() >| || Ja(e) || - || Tult) || -

The growth of N(A) can be viewed as a measure of the complexity of the
geometry of geodesics. It also has the property of being a significant global
geometric invariant. In general, the growth is very hard to predict, although
as we will see below for “almost all” manifolds, i.e. for rationally hyperbolic
manifolds the growth is exponential. Recall from the previous section the
definition of ¢,, the geodesic entropy at p. Let us now define the geodesic
entropy, e(M) as:

1
e(M) = limsup)\__,+oo-/-\-logN()\).

Note that it follows from Jensen’s inequality that e(M) and o, are related by:

e(M) 2 =5 fyr oodu(p).

Next we will prove:
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Proposition 2.4.2 The following properties hold:

(a) For a compact symmetric space M™, N()\) does not grow faster than A™.
If the space has rank one, N(X) grows linearly.

(b) If M™ is flat, then N(X) = Lvol(SM).

(c) If M is rationally hyperbolic or m1( M) has exponential growth, then e(M) >
0.

(d) If M has no conjugate points, e(M) = hiy(g) = 0, for allpe M.

(e) If M is a homogeneous space, e(M) =0, for allpe M.

Proof: (a) On a compact symmetric space the Jacobi equation can be
solved easily. The solutions have at most linear growth. Hence | detA,(t) |
can be bounded uniformly in v by a polynomial of degree n — 1. Then it

follows from equation (2.2) and Remark 2.4.1 that N(A) grows at most like

A™. If the symmetric space has rank one then all the orthogonal Jacobi fields

are bounded, thus N(A) grows linearly. f
(b) For flat manifolds the Jacobi equation reads J* = 0. Then | detA,(t) |=

"1 and the claim in (b) follows from equation (2.2).

(c) The same proof as in Corollary 2.3.2 shows:

: 1 i e(M)
thUPmerooElOg(; b:(QOM,Q)) < -
Hence if M is rationally hyperbolic the sum of the Betti numbers of the loop
space grows exponentially, thus e(M) > 0.

Next observe that since o, > g we deduce that e(M) > u. But if m (M)

has exponential growth then g > 0, thus e(M) > 0.
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(d) Suppose M has no conjugate points. Let K denote a fundamental
domain for the action of xy(M) on the universal covering of M. Then it

follows that
N\ = /K vol(Bs(N)).
But since the volume growth is independent of p € K [27], from the last

equation we deduce that e(M) < p. But we already know that e(M) > p.

Thus e(M) = p. The results in [11] now imply
e(M) = pp = hiy(g) =0, forallpe M.

Assertion (e) is trivial.

Remark 2.4.3 As we just saw, if M does not have conjugate points then o,
does not depend on p. In general the behaviour of the map p — o, is not very v

clear to us.

Next, we will determine the growth of N(X) for a certain class of ho-
mogeneous spaces, the so called naturally reductive. Let M™ = G/K be a
homogeneous space equipped with a left-invariant metric. Let 7 : G — G/K
denote the canonical projection. Let g be the Lie algebra of G and k thel Lie
algebra of K. We can assume that /K is reductive, i.e. there exists a com-
plement pof kin ¢: ¢ = kP p so that Ad(K) leaves p invariant. The metric on
Tik)G/ K induces a metric on p denoted by <, >. M is called naturally reduc-

tive (with respect to the complement p) if [X,.], : p — p is skew-symmetric



for all X € p. Naturally reductive spaces include normal homogeneous spaces
and hence symmetric spaces. An important property of naturally reductive
spaces is that

Expye) =nroexp|, (2.3)

where Fzp denotes the riemannian exponential map on M. Thus, geodesics

in M are images of one-parameter subgroups of G [36].

Proposition 2.4.4 Let M"™ = G/K be a naturally reductive homogeneous

space with G compact. Then N(X) does not grow faster than ™.

Proof: Since M™ is homogeneous it is enough to prove that I,(A) does not
grow faster than A”. We know that the Jacobi field along the geodesic defined
by the unit vector v € p with initial conditions J(0) = 0 and J/(0) =W € p
is given by |

J(t) = d(Ea:pﬁ(e))w(tW).

Using equation (2.3) we get
J(t) = dregpry © dexp,(tW).

Endow GG with a bi-invariant metric and denote its norm on tangent spaces by

| * |g. Since G is compact the last equation implies
I J(#) I< L [ dezpu(tW) la

for some constant L. But since ¢ endowed with a bi-invariant metric is
a symmetric space we know that | dexzp,,(tW) |g is bounded uniformly by

(at +b) | W |g for some constants ¢ and b. Since norms in euclidean space
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are equivalent there exists ¢ such that | W |g< ¢ for any vector W such that

< W, W >=1. Hence from (2.1) and Remark 2.4.1 we get

A
L) < (Lo)™ ]0 dt [ (at-+ by dv.

Next, we will show that certain metrics over non-homogeneous spaces

have N()) also with polynomial growth. To be precise we will prove:

Proposition 2.4.5 Let 7 : M* — B* be a riemannian submersion where
M = G/K is a naturally reductive homogeneous space with G compact. Then

Ng()\) does not grow faster than ¥,

Proof: Take a point * € B and a unit vector v € T, B. Consider the
geodesic 7, defined by v. Let J,(¢) be a Jacobi field along -+, with J,(0) =0,

< Jo(0),7.(0) >= 0 and < J{(0),J)(0) >= 1. Since 7 is a riemmanian

submersion we can lift «y, to a horizontal geodesic ¥ in M. Moreover we can -

lift J, to a Jacobi field (not necessarily horizontal) J along v with J(0) = 0,
< 4'(0),J'(0) >= 0 and < J'(0), J'(0) >= 1. Hence
1) i<t I |l -

Now recall that in the proof of the previous proposition we proved that || J(2) ||

is bounded uniformly by a linear polynomial p(¢). Thus

Np()) < f: dt SBp(t)k_l.
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Example 2.4.6 Let G be a compact Lie group endowed with a bi-invariant
metric. Recall that G x ¢ acts on G as follows. Given g1, ¢2 in G we have
(g1,92).x = g17g; . Hence if H C G x G is a closed subgroup that acts freely
on G we can consider the riemmanian submersion 7 : G — B = G/H. Now
the last proposition implies that for all the spaces thus constructed, Ng(})
does not grow faster than A%™ B,

Concrete examples of this situation are the exotic 7-sphere constructed by
Gromoll and Meyer [12] 7 = Sp(2)/A, and examples of Eschenburg [7]. These

examples are strongly inhomogeneous, i.e. they do not have the homotopy type

~ of any homogeneous space.

A natural question arises: What can be said about the growth of N(X)
for an invariant metric on a compact homogeneous space? For example,
SO(3) with a generic left invariant metric is not naturally reductive because
there exist Jacobi fields with exponential growth [35]. Hence direct estimates
for N()) as in the proof of the previous propositions become impossible.
Here is where the topological entropy becomes very useful. As we pointed
out vanishing of the toplogical entropy implies —in the homogeneous case-
e(M) = 0, proving at least sub-exponential growth for N(A). We will address

these questions in the next chapters.
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Chapter 3

Some entropy computations

3.1 Entropy formula for collective Hamilto-
nians

Let G be a compact Lie group . Let X be a symplectic manifold on
which G acts by Hamiltonian transformations with moment map ¢ : X — g*.
Take a collective Hamiltonian H = f o ¢ and let g; denote the flow of {z. In
what follows, for a subset A C X, we will denote A;,(g, A) also by hep(H, A).
Recall that O, denotes the orbit through ¢ under the coadjoint action, and fo,

stands for the restriction of f to O,.
Proposition 3.1.1 If A C X is any compact gi-invariant subset we have
htop(H: A) = SUPced(A) htop(foca Oc N ¢'(A))‘

Proof: As we mention in Section 1.2, g, leaves the orbits of ¢ invariant.

Hence it follows from Corollary 2.2.4 that

htap(Hy A) = Supa:eAhtop(Ha AN O:L')J (31)

e Tady
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where @, denotes the orbit of G through z. Let us compute now hup(H, AN
Q).

Consider the map 7 = ¢/0, : O, — Oy(zy. By Theorem 2.2.3 we deduce
that

heop(H, 05) < hiop(f0,00yr Qi) + 5UPee0 iz hton (H, 77 ().

But now, according to the description of collective motion that we gave in
Section 1.2, the curve a(t) is the same for every = € ¢7'(c). Hence for
any ¢ € ¢~ c), sz = a(t)z and since G is compact this clearly implies

hiop(H, 771 (c)) = 0. Thus

hioP(H') Om) < htop(fogb(x)’ Otf’(fﬂ))

But according to part (iii) in Proposition 2.2.2 the reverse inequality holds.
Thus

htop(Hy Og) = huop( fo 00y Osta))s
and also

htap(H, a, N A) = htop(foqb(x)a oqﬁ(m) N ¢(A))

This equation together with equation (3.1) implies

htop(H, A) == SupmeAhtop(fO¢($)) O(ﬁ(m) f ¢(A)) = Supcéé(}l)htop(f@ca oc N ¢"(A))

<

Corollary 3.1.2 Suppose the energy surface H='(a) = ¢71(f~(a)} is com-

pact. Then

htop(Ha H_l(a)) = supcef-1(a)htop(foc, f(;:(ﬂ'.)).




Let us discuss some applications.

Example 3.1.3 Let X be a compact Hamiltonian SO(3)-space. In this case
the coadjoint orbits are two-spheres. Hence for any smooth function on so(3)*
we have Ayp(fo.) = 0. Thus we deduce that for any collective Hamiltonian

I, heop(H) = 0.

Example 3.1.4 Let G be a compact Lie group endowed with a left invariant
metric. Then it is known that its associated Hamiltonian is collective for the
right action [17, pag 219]. Let f denote the quadratic form on ¢* that defines
the left invariant metric. Then, Corollary 3.1.2 implies that the topological

entropy of the geodesic flow defined by the left invariant metric is given by

hto;p(g) = SUP;cf-1 (l)htop(f0c7 f(;cl(l))

We deduce for example, that for G = SO(3), huep(g) = 0.

Example 3.1.5 Let X be a compact Hamiltonian G-space with moment map
$: X — g*. Let K C G be a closed subgroup. The inclusion k¥ — ¢ induces
a projection 7 : g* — k*. This projection, restricted to a coadjoint orbit O,
can be viewed as the moment map corresponding to Hamiltonian action of K
on @. Now let f: k* — R be a function invariant under the coadjoint action
of K on k*. Set H = fowod¢. Apply now Proposition 3.1.1 twice; once to

deduce that fop(f 0 7p,, Oc) = 0 and again to obtain hsp(H) = 0.
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Collective functions like H, i.e., Hamiltonians defined by means of a sub-
algebra and the corresponding projection, where introduced by Thimm [33]
to prove the complete integrability of certain geodesic flows on homogeneous

spaces.

3.2 Submersions and collective metrics

Let M be a riemannian manifold on which the group K acts freely, dis-
continuously and by isometries. Consider the quotient B = M/K and let
7w : M — B denote the canonical projection. Endow B with the submersion
metric. The metrics on M and B induce canonical maps TM 25 T*M and
TB 3 T*B. Suppose now that G is a group acting on M and its action com-
mutes with the action of K. Then there is a naturally induced action on B.
In this way, by lifting to the corresponding cotangent bundles, we have two

moment maps: ¢% : T*M — ¢* and ¢% : T*B — ¢*.

Proposition 3.2.1 The equality ¢% o xz 0 dx = ¢ o x1 holds in the set of

horizontal vectors on TM.

Proof: Recall that the moment map ¢, is given by ¢%(v)(¢) = v({(p1v)),
where p; : T*M — M is the canonical projection. Similarly ¢Z%(w)(¢) =
u((*(pyu)) for p; : T*B — B. Hence we need to prove that if v € TM is

horizontal, then

< dr(v), (¥ (padmv) > = < v, (}(prv) > .
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But observe that ps o drr = 7 0 p; and that (7 o p1v) = drl*(p1v). Hence

< dr(v), (Npydn(v)) > = < dr(v),dn{*(prv) > .

But since v is horizontal by definition of the submersion metric

< dr(v),drl(prv) > = < v, (Mp1v) > .

We apply the proposition to the following situation. Let ¢ be a Lie group
with a right-invariant metric. Then TG 3 T*G gives rise to a right-invariant
Hamiltonian on 7*G. Then it is known that the latter is collective for the
left action of G on T*G [17, pag 219]. In other words our Hamiltonian can be
written as f o ¢}, where f is some positive definite quadratic form on g*. Now
let K be a subgroup of (G acting from the right. Then we can endow G/K
with the submersion metric. Clearly there is also an induced action of G on
T*(G/K) with moment map ¢%. Then from the proposition we deduce that
fo ¢% is the Hamiltonian associated with the submersion metric on G/ K. We

have proved:

Corollary 3.2.2 The Hamillonian associated with the submersion metric on
G/ K is collective for the canonical action of G on T*(G/K), and its defining

function is the same one that defines the right-invariant metric on G.

33



8.3 Zero entropy and completely integrable
systems on 4-manifolds

Let X*¢ be a four-dimensional symplectic manifold and H a Hamiltonian
on X. Let N be a non-singular, compact level surface of H. Suppose the sys-
tem is completely integrable; i.e., suppose there exists an additional function
on X which is independent of H (almost everywhere) and is in involution with
H (such a function is called an integral). Restricting this integral to N gives

a smooth function f. The main result of this section is:

Theorem 3.3.1 Let X* be a smooth symplectic mantfold. Suppose that the
Hamiltonian H is completely integrable and on some non-singular compact
level surface N the integral f satisfies either one of the following conditions:
(a) f is real analytic.
(6) The connected components of the set of eritical points of f form sub-
manifolds.

Then heop(H,N) = 0.

Corollary 3.3.2 Let M? be a compact connected surface. Assume M? sup-

ports a geodesic flow that is completely integrable by means of an integral as

in Theorem 3.3.1. Then x(M?) > 0.

Remark 3.3.3 Corollary 3.3.2 was proved by Kozlov [22] in the case of an
analytic integral by completely different methods. If we assume condition (b)

the integral could even be of class C'.
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Observe that the class of functions considered in (b) includes the Bott

integrals studied by Fomenko in [9}.

Let us start with the proof of the theorem. We first state a result of Katok

[20, Corollary 4.3] that we will use:

Theorem 3.3.4 If g is a C'** (& > 0) diffeomorphism of a compact two-
dimensional manifold and hip(g) > 0 then g has a hyperbolic periodic point
with a transversal homoclinic point and consequently there exists a g-invariant
hyperbolic set A such that the restriction of g Lo A is topologically conjugate to

a subshift of finite type.

We note that Theorem 3.3.4 extends to flows without singularities on
3-manifolds. Theorem 3.3.1 follows from Theorem 3.3.4 and the following

lemmma:

Lemma 3.3.5 Under the hypothesis of Theorem 3.3.1 there are no transversal

homoclinic orbils.

Proof: 1If the function is real analytic, the lemma was proved by Moser in
[29]. Therefore assume that condition (b) is verified. Denote by Crit(f) the
set of critical points of f. Since f is an integral, the flow of £y leaves Crit(f)
invariant. Condition (b) says that Crit(f) is a disjoint union of circles and
compact connected surfaces. These surfaces are tori and Klein bottles because
£x is never zero.

Suppose now that there is a transversal homoclinic orbit. Then we have

the analogue for flows of the hyperbolic set A in Theorem 3.3.4. We will also



call it A (for the properties of shifts and suspended horseshoes, we refer to
[32]). We claim that there exists a surface X? in Crit(f) such that A C X?.
To prove this observe first that since f is an integral it follows that if v is a
hyperbolic closed orbit then v C Crit(f). Otherwise the symplectic gradient
of f would generate a non-zero eigenvector with eigenvalue one for the Poincaré
map of 4. This idea can be traced back to Poincaré (see [22] for details). But
the hyperbolic closed orbits in A are dense and Crit(f) is a closed set therefore
A C Crit(f). Moreover since the flow on A is transitive (i.e there is a dense

orbit) we deduce the claim.

We now argue considering the flow of g restricted to X?. Since &g is
never zero, for any closed orbit «y, X? — is a cylinder or a Mobius band. By a
Poincaré-Bendixson argument (see [30]) we deduce that £y has no non-trivial
recurrent orbits, i.e. if w(y) denotes the limit set of the orbit v and v C w(y)
then w(7y) is a closed orbit. But this is absurd because dense orbits in A have

non-trivial recurrence. The lemma is proved.

Remark 3.3.6 Note that the proof of the lemma still works if we allow the
surfaces to have boundary. We also note that Moser in [29] proves that A C

Crit(f) with a different argument which only requires f to be of class Ch.

Proof of Corollary 3.3.2: In [6] Dinaburg proved that if m;(M?) has ex-

ponential growth, then h,(g) > 0. Hence from Theorem 3.3.1 we get that
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m1(M?) cannot have exponential growth and therefore x(M?) > 0.




Chapter 4

Hamiltonian actions with low multiplicity

4.1 Multiplicity k actions

Let G be a compact connected Lie group acting by Hamiltonian trans-
formations on a symplectic manifold X with moment map ¢ : X — g*. As
we mention in the introduction, we will say that the action has multiplicity k
if for generic # € X, the symplectic reduction of Ker d¢, (i.e. the quotient
of Ker d¢, by its null subspace) has dimension k. Since the symplectic re-
duction of a subspace is naturally symplectic, & can only take even values. If
k =0, then Ker d¢, is isotropic for generic ¢ € X and we obtain the notion
of multiplicity free action introduced and studied by Guillemin and Sternberg
in [18, 19].

Let B, denote the vector subspace of T, X spanned by {{{z): fis G —
invariant}. Let us denote by E(x) the tangent space at = to the orbit of
G through z. In what follows L stands for the orthogonal complement with

respect to w. On a generic set we have the relations (cf. Propositions 1.1.1

Fa3lwel
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and 1.1.3):
B, = E(z)* = Ker d¢,. (4.1)

Recall that if K is a subspace of a symplectic vector space, the symplectic
reduction of K is defined as: K¢ = K/K N K*. Hence from (4.1) we deduce
that the action has multiplicity k if and only if generically dim B7*¢ = k. We
also note that this is equivalent to saying that for generic ¢ in the image of
¢, the Marsden-Weinstein reduced space ¢7!(¢)/G, has dimension k. We will

need the following lemma:

Lemma 4.1.1 Let K C E be subspaces of a symplectic vector space. Then

dim K™% < dim E™.

Proof: Write K = (K N K*) @V where V is some complement. Assume
dim V > dim E —dim E*NE. Then VN (EtNE) # {0}. Take 0 # 5 €
VN(ELNE). Since K1 D EL, we get that n € K1 N K. This is impossible

since V N (KL N K) = {0}.

Now let H C G be a closed subgroup and let Xy ={z € X: G, = H}.
We know from Proposition 1.1.4 that Xy is a symplectic sub manifold of X.
Moreover ¢ maps each connected component of Xy into an affine subspace of
g* of the form p + h°, where h° denotes the annihilator of & in ¢*. Let Ny

denote the normalizer of H in G,



Proposition 4.1.2 Suppose the action of G on X has multiplicity k. Then

the action of Ny on Xy has multiplicity < k.

Proof: First observe that since G is compact by averaging we can always

extend any Ny-invariant function on Xy to a G-invariant function on X.

Take z, € Xp and let By ,, denote the subspace spanned by the Hamilto-
nians at x, of Ny-invariant functions on Xg. We choose z, so that dim Bz,
is maximal. We need to show that dim By% < k. Let &;,(x,), ..., &, (%0) be
a basis of By, As we mentioned before, Ny-invariant functions are restric-
tions of G-invariant functions, thus we can think each ¢, as defined on all of
X. Now set By, = span{{s(z),....€5 ()} for z € X.

Since all the ¢;,’s are independent at z,, there exists an open set U of X
containing z, so that, dirn By, is constant on U. Now let V' C U be an open
set on which dim (Bp,, + Bg ) is maximal. Since dim By = k on a generic
set, we can find y € V, so that dim B;ed = k. But clearly By, C B,. Hence
using Lemma 4.1.1 we get dim B¢ < k. But dim By, = dim By, and since
dim (B, + Bf,) > dim (Brz, + B# ) we deduce that dim (By, N By ,) <

dim (B, N B ,.). Thus dim Byt < dim Byl < k. o

We will denote by ind G the index of G defined as ind G = min g dim G..

If GG is semi-simple the index is the same as the rank.

Lemma 4.1.3 Assume for some x € X, the isotropy group G is discrete.

Then k=dim X —dim G —ind G.
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Proof: From Proposition 1.1.1 we know that if dimG, = 0, then the

moment map is a submersion at z. Therefore for generic ¢ in the image of ¢

we get:

kE=dim ¢ ' (c)—dim G.=dim X —dim G —ind G

Example 4.1.4 Let us check that the action of SU(3) on T*(SU(3)/T?) has

multiplicity two. First let us give a detailed description of the orbit structure.

The Lie algebra of SU(3) consists of all the skew hermitian matrices with
trace zero. Denote by t the Lie algebra of T2. It consists of all the matrices ¥

of the form:

0 0 ~

\ /

where «, # and v are purely imaginary and their sum is zero.

Consider the Killing metric on SU(3) i.e. (X,Y) = —1Re tr(XY). With
respect to this product #* is the subset of su(3) given by the matrices with zero
entries on the diagonal. By homogeneity it suffices to study the action of T2 on
the cotangent plane at the coset of the identity [T%]. We may identify T, M
with #1, and under this identification the action is given by Ad, : t+ — ¢+,

z € T?. Therefore the dimension of the orbit of 72 through X € t' is given
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by the dimension of the image of the map

Y = adx(Y) =[X,Y], Yet

Let X € t be given by

0 a b
X = —a 0 ¢ |-
b —¢ 0

\ /
Take Y € t as before and compute [X,Y]. We get

( )

0 af-a) Ky-a)
Y=l ap-a) 0 cy-p |

\b(v—a) ey=p 0 )

To compute the kernel of adx we set a(f —a) = b(y — ) = ¢(y— B) = 0.
Therefore whenever two components of X are different from zero, the kernel
of adx is trivial and the orbit through X is 2-dimensional. Otherwise , the
orbit is 1-dimensional if X is not in the zero section.

Thus since dim SU(3) = 8 and ind SU(3) = 2 we conclude that k = 2.

Similarly we can also check easily that the lift of the 2-torus action to the

cotangent bundle of 5% x §?#.5% x S? has multiplicity &£ = 4.



Now, we will study the relation between multiplicity & actions and collec-

tive functions.

Proposition 4.1.5 Suppose that fi, ..., [, are functions on g* such that f; o
By ey fs 0 G are s-independent functions that Poisson-commute on X*. Then

if k denotes the multiplicity of the G-action, we have that k < 2(n - s).

Proof: Let F': X — R® be the function F' = (f104¢, ..., fs0¢). Generically
F~1(a) is a submanifold and the vector fields &, 44, ..., 1,04 are tangent to it.
Moreover, since f 0 ¢, ..., f, © ¢ Poisson-commute, the associated Hamiltonian
fields span a null subspace. Thus generically dim Ker dFr*® < 2n — 2s. But
the level surface ¢='(c) is contained in F~(fi(c), ..., fs(c)), hence Ker dé, C

Ker dF;. Apply now Lemma 4.1.1.

Remark 4.1.6 Observe that if s = n, i.e., if we can find a full set of commu-
tative collective Hamiltonians, then the action is multiplicity free. This was

proved in [18].

Next we will study the following special case. Suppose X = T*M and the

action of (¢ on T*M is the lift of an action of G on M.

Proposition 4.1.7 Let G/K be a principal orbit for the action of G on M
and let | be its codimension. If k denotes the multiplicity of the action of G

on T*M, then the multiplicity of the action of G on T*(G/K) is k — 2.
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Proof: Let M(k) denote the set of principal orbits. Then there exists

an invariant neighborhood N of G/K diffeomorphic to G/K x U where U
is an open set of Mxy/G. Moreover G acts on U trivially and on G/K by
left translations. Hence T*N is symplectomorphic to T*{G/K x U) and the
symplectomorphism is equivariant. Next observe that 7™ N is an open subset of
T* M, thus the action of G'on T* N has multipicity £. But since G acts trivially
on U it is clear that the action of G on T*(G/ K) x T*U has multiplicity & if and
only if the action of G on T*(G/K) has multiplicity k& — 2 where [ = dim U.

<

Corollary 4.1.8 Suppose the action of G on M has codimension one. Then
k=2 if and only if (G, K) is a Gelfand pair.

Note that it also follows from the proposition that & > 2I. Hence for
k = 0, the action is transitive (this was proved in [19]) and for & = 2 it has
codimension < 1.

Let, us see some examples:

Example 4.1.9 Take M = 5" and the standard codimension one action of
G = S0(n). The principal orbit SO(n)/SO{n — 1) is a symmetric pair, thus

a Gelfand pair. Therefore the action of SO(n) on 15" has multiplicity two.

Example 4.1.10 Imbed SU(2n)} into SU(2n + 1) as the upper left 2n x 2n-
corner, to obtain the canonical embedding Sp(n) C SU(2n) C SU(2n + 1).
Consider the 1-parameter subgroup of SU(2n + 1) given by

diag(e—iét‘/Z'n.,. 6——1'9/271.,81'6).
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Since the latter centralizes SU(2n), it induces a free action of U(1) on
SU(2n + 1)/Sp(n). Let U(1) act on S? by rotations, and consider the man-
ifold M = SU(2n + 1)/Sp(n) xyq) S* obtained by the quotient of SU(2n +
1)/Sp(n) x 5% by the diagonal action. Clearly M admits a codimension one
action of the group SU(2n + 1) with principal orbit SU(2n + 1)/Sp(n). Since
(SU(2n+1),S8p(n)) is a Gelfand pair [23, Tabelle 1] we deduce that the action

of SU(2n + 1) on the cotangent bundle of M has multiplicity two.

Example 4.1.11 Let S* act on the right on SU(2) and on 5% by rotations.
Counsider the space M = SU(2) xg S* obtained by taking the quotient of
SU(2) x 8% by the diagonal action of S'. The space thus constructed is
CP24t — CP? which is not diffeomorphic to any homogeneous space [5]. Now
observe that the natural action of the group SU(2) x S on SU(2) descends
to an action on M. The principal orbits, SU(2) x §1/5' are Gelfand pairs.
Hence the action of SU(2) x S on the cotangent bunlde of CP2# -~ CP? has

multiplicity two.

4.2 More examples

Let X be a Hamiltonian (G-space with G compact. Suppose the action
1s multiplicity free. If X is the cotangent bundle of a manifold M and &G
acts by derivatives then we saw that M is a homogeneous space G/K. If the
action of G does not arise from an action on M then M does not need to be

homogeneous. We will now give examples of this situation.
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First let us describe a multiplicity free action on X = T™S$? which is not
he 1ift of an action on S2. Since T*S? can be written as SO(3) x g1 R? we

note that X admits a Hamiltonian action of the group SO(3) x 5*. Let 17 be

a,__iﬁa.ximal torus of this group. Then the action of T2 clearly has multiplicity
-'_#';ro, and obviously does not arise from an action on §2.

Let @ be a manifold such that T*() admits a multiplicity free G-action.
Suppose S! acts on @} without fixed points. Let S! act on the 2-sphere S?
by rotations. Consider now the diagonal action of §* on X = @ x $2%. Since
the latter is free we can consider the quotient manifold M = @ xg S?. Let

7 : X — M denote the projection map.

Proposition 4.2.1 Suppose the action of G on T*Q) and the induced action

of S' on T*Q commute. Then T*M admits a multiplicity free G x S'-action.

Proof: Let S} be the Hamiltonian circle action coming from the S-factor of
the group SO(3) x ST that acts on 7*S5%. This circle action commutes with
the lift of the rotation. Observe now that by obvious extensions we get an
action of G = G x Sl on T*X. Let ¢s1 denote the moment map associated
with the S'-action on T*X. By assumption the latter action commutes with
the G-action. Thus G leaves $5:(0) invariant and descends to a Hamiltonian
action on @51 (0)/S* making dr equivariant. Since T*M and ¢35 (0)/S* are

symplectomorphic [2, pag. 95] we only need to prove that the action of G on

$51(0)/5* is multiplicity free. By the equivalences stated in [18] it is enough
to prove that for generic points & € ¢3! (0)/S? the orbit O(d) of ( through &

is coisotropic. Let w denote the symplectic form on 7 X and let @ denote the
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symplectic form on ¢ (0)/S. Assume that (¢, %) = 0 for all 4 € T:0(9).
Then we need to prove that ¢ € T;0(5). Set p = dr. Take a point v € ()]
such that p(v) = 9. Since the action of @ is equivariant for each 7 € T:0(9)
we can take 5 € T,0(v) such that dp(n) = 4. Also write dp(¢) = ¢ for some
¢ € T,65i(0). We have

&(,5) = &(dp(C), dp(n)) = w(C,m) = 0

Since ¢z1(0) C T*Q x T*S? write ¢ = ((1,£2), 7 = (71,72) and v = (v, va).
Hence w({,n) = 0 implies wi(¢1,m) + wa2({2,n2) = 0 where w; and wq are the
symplectic forms on T*Q and T*S5? respectively. Also T(y,,.,)0(v) = T0,,Gv. &
T, S vy, Take py = 0 hence wi((y,m1) = 0 for all ; € T,,Gvy. Since the
action of G on T} is multiplicity free and the projection of ¢/ (0) onto T*Q
is dense, we deduce that for generic vy, with v; the first component of a pair

in 45,;11 (0)3 Cl € Tvl G'Ul-

Let W be the tangent vector field to the orbits of S on ¢5i(0). Then
W can be written as (—Wj, Ws) where Wi denotes the tangent field to the
St.orbits on T*() and W, the corresponding tangent field to the S'-orbits on
T*S?%. Note that since w({,W(v)) = 0 and wi((;, Wi(v1)) = 0 we deduce
wa(l2, Wa(vz)) = 0. Also note that wq((z,72) = 0 for all n; € T, Sova. Suppose
now, we choose vy so that Wy(v,) & T, S'w,. This a generic condition. Then if
S denotes the linear subspace spanned by 1, and Wy(v;) we have dim S = 2,
and therefore S is a Lagrangian subspace. This implies that {, € 5. Write
(o = any + BWy(vy). Observe that wy(W(v1),T,,Gvr) = 0 and T, Gvy is
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coisotropic, thus Wi(v1) € T, Gvy. Now write

¢= (G, ¢2) = (G + bW (v1), 0) + (0, arpz) + bW (v)

But since dp(W(v)) = 0, ({1 + bWi(v),0) € T, Gvy and (0,a,) € T, Slv, we
deduce that dp({) € T;0(9).

Let us mention some concrete examples:

Example 4.2.2 Consider the Hopf fibration S* — S§%*t1 — CP®. The
canonical action of SU(n + 1) on S**! commutes with the Si-action. It
is known that the action of @ = SU(n+1) x S! on T 8%+ i5 multiplicity free
[33]). Then clearly all the hypotheses of the proposition are satisfied. Thus the
cotangent bundle of M = 5*"*! x 51 S? has a multiplicity free SU(n +1) x T*-
action. Note that M is diffeomorphic to CP™ 14 — CP"!, For n = 1 we
get CP24 — CP? which is not diffeomorphic to any homogeneous space [5].
We will now describe a class of riemannian metrics whose associated
quadratic forms are invariant under SU(n+1) xT?. Denote by g; the metric on
S§2"+1 which is obtained from the standard metric by multiplying with ¢ in the
directions tangent to the S'-orbits. Endow X = §%**! x §% with the product
metric and M with the submersion metric ;. Since the action of SU(n+1)x 5!
on (§¥*1 ¢,) is by isometries it is easy to verify that SU(n + 1) x T? leaves
the Hamiltonians associated with the metrics §; on M invariant for all real ¢.
Incidentally, it follows from the Thimm method that the geodesic flow on

(M, g;) is completely integrable. See [31] for details.

48



Example 4.2.3 Let G,_13(R) = SO(n + 1)/50(n — 1) x SO(2) denote
the Grassmannian of 2-planes in n 4 1-space. Consider the fibration S —
S0(n+1)/50(n — 1) = Gr-12(R), where S acts on SO(n +1)/S0(n — 1)
by right translations. The action of SO(n + 1} x S* on the cotangent bundle
of SO(r + 1)/50(n — 1) is multiplicity free [33]. Thus using the Proposition
we deduce that the cotangent bundle of M = SO{n+1)/50(n—1) x g 52 has
a multiplicity free SO{n + 1) x T2-action. As well as in the previous example,
a family of metrics §; on M can be constructed so that the corresponding

Hamiltonians are invariant under the SO(n + 1) x T?-action.

4.3 The Main Theorem

Let H be a G-invariant Hamiltonian, {5 its Hamiltonian vector field and
H='(a) = N a compact regular level surface. If g; denotes the flow of g, then
G and g; leave N invariant. Set ¢ = ¢/N.

We say that 2 € X defines a stationary motion if there exists a 1-
parameter subgroup 1; of (¢ such that o = g.z. We denote by St(G) the set

of all z € X that define stationary motions.

Lemma 4.3.1 If g2 denoles the annihilator of g, in g*, then
Im dps = g,

if ¢ is not in SHG).

Proof: 1t follows from Proposition 1.1.1 and the fact that if z € St(G)

then Im dp, = Im d¢,. o
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Theorem 4.3.2 [f the action of G has multiplicity zero or two, then hyo,(H,N) =
0.

Proof: Suppose first that the action is multiplicity free. We claim that
St(G)=X.

Since the action of G on X is multiplicity free we know that for generic

z € X the orbit of ¢ through « is coisotropic [18]. Denote by F(z) the tangent
space at = of the orbit of G through . Now observe that since ¢, commutes
with G we have w(£g(x), () = 0 for all { € E(z). So, if E(zx) is coisotropic we
deduce that £g(z) € E(z). This in turn implies that generically, x € StG).
Since St(() is a closed set we deduce St(GF) = X.

Now apply Theorem 2.2.5 with Y = N/G. Since St(G) = X, the induced |
flow fixes every point in Y. Thus hy,(H, N) = 0.

Next, let us prove the Theorem in the multiplicity two case.
Set again Y = N/G, call # the canonical projection and let §, be the ‘

induced flow on Y. According to Theorem 2.2.5 we only need to show that

hiop{§) = 0. We will prove more: §, has only trivial recurrence (cf. Proposition

2.2.2). 7 \

Let 4 denote an orbit of g, i.e. #(t) = §& for some # € Y. Take |
z € 771(2) and consider the orbit of g; through z. Thus 7 o 4(t) = 4(¢). Let
H = G,. Then since g; commutes with the G-action, we deduce that v C Xg.
Let ¢n, @ Xg — nj denote the moment map corresponding to the action
of Ng on Xp. Recall that in fact ¢n, takes values on a subspace of n} of

the form p 4 h° where % is the annihilator of k in n}. Set ¢ = ¢y, () and




= ¢NH/XHHN.

Observe now that Lemma 4.3.1 says that ¢ i1s a regular value of ¢ if
@~!(c) N St(Ng) is empty. Set Q. = ¢~ 1(c) — (¢™'(c) N SH(Ng)). We have

now two possible cases:

(a) z € St(Ng). If this happens, then cleatly ¥ is a fixed point and hence

trivially recurrent.

(b) z & St(Ng). In this case @, is a non-empty submanifold of Xy N N
and ¥ C Q.. From now on we will work with the connected component of ).
containing 7. Let K. denote the identity component of the stabilizer at ¢ of
the coadjoint action of Ny on nj;. Since the action of GG on X has multiplicity
two by Proposition 4.1.2, the action of Ny on X g has multiplicity at most two.
But it cannot be zero if z ¢ St(Npg) (recall the claim we proved at the very
begining: if an action is multiplicity free, the set of stationary motions of any
invariant Hamiltonian is the whole symplectic space). Thus dim Q./K. = 1.

Now we also have two possible cases:

(b1) Q./ K. is a circle. In this case it follows inmediately that 4 is a closed

orbit and hence trivially recurrent.

(b2) @./K. is an open interval I. Then @, is diffeomorphic to O x I,
where O denotes a principal orbit for the action of K, on .. Also «y intersects
every orbit of K, once and only once. Thus if we assume that ¥ is not a closed
orbit it follows that every G-orbit in X that intersects ()., does it in a single
K, -orbit. Hence we can find a G-invariant neighborhood W of = in X so that

there exists T' > 0 with the property that y(t) € W for t > T'. But this implies
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that 4(t) & = (W) for t > T and thus & € w(#%), proving that 4 is not recurrent.

<

Remark 4.3.3 We observe that from the proof of Theorem 4.3.2 1s possible
to obtain an acurate picture of the dynamics of the induced flow on ¥ = N/G.
For example, we can carry out this analysis in full detail in the case of the
geodesic flow corresponding to a left invarint metric on SU(3)/T? using the

information obtained in Example 4.1.4

4.4 Consequences of the Main Theorem

Let us now describe some of the interesting consequences that Theorem
4.3.2 has in the case of geodesic flows. Let M be a compact riemannian
manifold. Recall that if the topological entropy of the geodesic flow is zero
then m;(M) has sub-exponential growth [6]. Moreover if m (M) is finite, M is

rationally elliptic (Corollary 2.3.2).

Thus from Theorem 4.3.2 we get:

Theorem 4.4.1 Let M be a compact manifold whose cotangent bundle admits
a compact Hamiltonian G-action with multiplicity k < 2. Assume the set of
G-invariant functions on T*M contains the Hamiltonian associated with some
riemannian metric. Then m (M) has sub-exponential growth and if (M) is

finite, M 1s rationally elliptic.
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Remark 4.4.2 Observe that Theorem 4.4.1 and thus Theorem 4.3.2 are false
for & > 4. For example M = 5§%x S?#5% x §? is non-rationally elliptic manifold
that admits a 2-torus action (cf. Section 2.1) . From Example 4.1.4 we know
that the lift of this action to the cotangent bundle of M has mutiplicity & = 4.
Any riemannian metric invariant under the torus action, gives rise to a geodesic

flow with positive topological entropy.

We consider another consequence,

Let (M™,g) be a compact riemannian manifold whose geodesic flow is
completely integrable with first integrals fi =|| . |5, for -y fu- We will say
that the geodesic flow is completely integrable with periodic integrals if the
Hamiltonian vector field associated with f; generates a circle action for 2 <

t < n.

Corollary 4.4.3 Let M™ be a compact riemannian manifold whose geodesic
flow is completely integrable with periodic integrals. Then m (M) has sub-

ezponential growth and if m (M) is finite, M is rationally elliptic.

Proof: 1f the geodesic flow is completely integrable with periodic inte-
grals, then there exists a torus action with k& = 2 that leaves the Hamiltonian

associated with the metric invariant. The Corollary follows from Theorem

4.4.1.

Let (M",g) be a compact riemannian manifold whose geodesic flow is

completely integrable with first integrals f; =|| . ||, fo,..., fu. We will say
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that the geodesic flow is completely integrable with collective integrals if the
functions f;, 2 < ¢ < n are collective with respect to the action of some cormn-
pact Lie group G that leaves the Hamiltonian associated with the riemannian

metric invariant.

Theorem 4.4.4 Let M™ be a compact riemannian manifold whose geodesic
flow is completely integrable with collective integrals. Then m(M) has sub-

exponential growth and if 7\ (M) is finite, M is rationally elliptic.

Proof: Since T M admits n—1 independent collective integrals, we dednce
from Proposition 4.1.5 that the action of G has multiplicity < 2. Now apply
Theorem 4.4.1.

As we mentioned in Proposition 2.4.2 the vanishing of the topological
entropy implies —in the homogeneous case— that e(M) = 0. Hence we also

obtain the following geometrical result:

Theorem 4.4.5 Let G/K be a homogeneous space such that the action of G
on T*(G/K) has multiplicity zero or two. Then for any left invariant metric

on GJ/K, N(}) grows sub-ezponentially.

Examples of homogeneous spaces such that the action of G on T*(G/K)
has multiplicity two are the Stiefel manifold SO(n + 1)/SO(n — 1) and the
Wallach manifold SU(3)/T? (cf. Example 4.1.4).
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Chapter 5

Geometry of geodesics

5.1 The first return time

Let X be a Hamiltonian G-space with G compact and associated moment
map ¢ : X — g*. Let H be a G-invariant Hamiltonian and N = H"(a)
a compact regular level surface. If ¢; denotes the flow of £p, then clearly G
and ¢ leave N invariant. Set ¢ = ¢/N. Let X* denote the set of principal
orbits of G. Moving a a little if necessary we can assume that N* = N n X*
is non-empty. Then N* is an open connected dense set of N. Now define

Y = @o(N)—p((N - N U (St{G)NN)) and U = ¢ }(Y). Assume U is

non-empty, i.e. there exists « € N such that = & St(G).

Observe that U is an open G-invariant and g;-invariant set. Also the set
Y has the following property. If ¢ € Y, then it follows from Proposition 1.1.3
and Lemma 4.3.1 that ¢ intersects O, cleanly.

Now we will prove:

Lemma 5.1.1 Suppose the action of G has multiplicity two. Then for each




x € U, there exists a continuous return time 7(z) of the flow g; to the orbit of

¢ under G. Moreover, there exists 1 € Gy such that Yz = g (yx.

Proof: Take x € U and let ¢ = ¢(z). Since ¢ intersects O, cleanly, ¢™1(c)
is a compact submanifold of N. Moreover, since the action has multiplicity
two, dim(¢o~1(c)/G.) = 1. But g, leaves ¢~1(c) invariant, hence the orbit of
z under ¢, descends to a closed orbit with period, let us say 7(x). This is
the same as saying that for some ¢ € G,, ¥& = g-(;)z. Now considering that
the only elements of G that leave ¢~!(c) invariant are the elements in G.,
we deduce that 7(z) is the first return time to the orbit of z under G. The

continuity of 7 follows from the continuity of the flow g; and the action.

5.2 The first return time and N()\)

Let M™ be a compact riemannian manifold and let SM be its unit tangent
bundle endowed with its standard riemannian structure < , >. Let =

SM — M denote the canonical projection. If v € SM, denote by N(v)
the space of vectors w € TryM such that < v,w >= 0. Define S(v) =
dr~'(N(v)). S(v) is orthogonal to E,(v) where Eg(v) stands for the one
dimensional subbundle generated by the geodesic flow. Note that dr £ (v)
is the one dimensional subspace generated by v. Moreover S(v) is invariant
under dg;, i.e. dg.(S(v)) = S(gw) for all ¢ and v. The vertical subspace is
defined as V(v) = dr;1({0}). The horizontal subspace H(v) is the orthogonal
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complement of V(v) in S(v). The map dr restricted to H{v) is an isometry
between H(v) and N{v). Moreover there exists an isometry J, : S(v) — S(v)
such that J? = —Id, J,V(v) = H(v) and J,H(v) = V(v). The symplectic
form Q, : S{v) x S(v) — R defined by ©,(uy, uy) =< uy, Jyug > is invariant
under dg; and is nothing but the restriction of the symplectic form w of T'M
to S(v), obtained by pulling back the standard symplectic form on 7™M using
the riemannian metric.

It is clear that dim H(v) = dim V(v) = dim N(v) = n — 1. Let orth E
denote the orthogonal complement of a subspace £ C S(v) with respect to
Q..

Suppose now, the compact group G acts on TM by Hamiltonian trans-
formations, leaving the norm of vectors invariant. Let 8, : ¢ — T,,5M be the
map 3,(¢) = ¢*(v). Denote by P, : T,5M — S(v) the orthogonal projection
onto S(v). We define two natural subbundles. For ¢ € g* let g. denote the Lie

algebra of GG.. Set
E(v) = P,B,(9),

Flv) = Pvﬂv(gtp(v))-
Lemma 5.2.1 Both subbundles are invariant under the geodesic flow and

F(v) C orth E(v}. Moreover, if the action has multiplicity two and v € U
then F(v) = orth E(v).

Proof: The invariance of the subbundles follows from the formulas 3,,,({} =
dgi(B.(¢)) and dg; o P, = Py, 0 dgy, together with the fact that ¢ is constant

along the orbits of g;.
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Observe now that if w denotes the symplectic form of TM then
Qv(P'uuh Pv“?) = wv(ula u2)7
where  is the symplectic form described above. Therefore we get

‘Qv(Pvﬁv(gl)? PU/BU(C2)) = wﬂ(ﬁ’b‘((l)? 50(4.2)) =

= wv(Ea(cl)(U)afa(cg)(U)) = a(v)([Ch CZ}),

where « is the morphism that gives rise to the moment map (cf. Section 1.1).

Now observe that if (i € gy, then a(v)([(1, {2]) = 0 for all {, € g. Hence
F(v) C orth E(v).

Next, note that if v € U, dim E(v) = dim B,(¢g) and dim F(v) =
dim B,(gy()). But from Proposition 1.1.1 we know that 2,(¢)* = Ker dé,.
If the action has multiplicity two, dim Ker dé, — dim B,(g,)) = 2. Thus
dim orth E(v) = dirn F(v). >

Remark 5.2.2 Note that on U, F is a continuous subbundle because its di-

mension remains constant.

Next, we will prove the main result of this section.

Proposition 5.2.3 Suppose the action of G has multiplicity two. Then if
O<a<r(w)<b<ooonlU and U is dense, N(A) does not grow faster than

A™.
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First we need to prove some lemmas. Let (W,) denote a symplectic
space with a compatible positive inner product < , >, i.e. there exists an
isometry J : W — W such that J? = —Id and Q(v,w) =< v,Jw > for all

n,weW.

Lemma 5.2.4 Suppose W is a symplectic linear space and @ : W — W a sym-
plectic linear map. Assume there exists a coisotropic subspace I such that E
and orth E are invariant under 8. Set k = dim orth F and [ = dim E. Take
€1, ..., e, an orthonormal basis of orth . Fxtend it to an orthonormal basis
€1y ey Eky Eppls -y €1 Of B Then in the basis B = {e1, ..., €k, €41, -y €1, J €1, ooy JEL }

the mairiz of @ has the form

A B A Ay
, where A=

0 (ArY) 0 As

Proof: Because E and orth E are invariant, the matrix of # in the basis

B has the form

A B A A,

, where A =

0 C 0 As

We only have to prove that C' = (A7)
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For this observe that in the basis B the matrix of J has the form

M )
J = , Where

—Idpys

S Tdiyi Orx(i—k)

0(-k)xk

and

The map 0 is symplectic, therefore since B is an orthonormal basis, we have

in terms of matrices

0'Jo = J.

Doing the corresponding operations we get
B'MA+ C' A = Jh.
Write B¢ = (B | Bz). Then B'MA = (0 | *) and
C*JiA = (C'A | CPAy).

Hence C*A; = Id as we wanted. o

Fix v € U and consider % as in Lemma 5.1.1.
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Define a linear map 8, : S(v) — S(v) by

0, = P, 0 di;" o dg)(o)
0, is well defined because Yv = g, (v

Lemma 5.2.5 The following properties hold:

(a) dg:(v) = Q:i(v) o exp(tD,), where @Q:(v) : S(v) — S(gv) verifies
Qi-H'('u}(U) = Pgﬂ..r(u)'u o d¢gw o Qt(v):

and

1
D=1

(b) 8, is a symplectic map and leaves E(v)} invariant. Moreover,

logh,,.

0,/F(v) = Id.

(c) All the eigenvalues of 8, have absolute value one and the Jordan blocks of |

its canonical form, cannot have size bigger than {wo.
Proof: To prove (a) define Q4(v) by

Q. (v) = dg; o exp(—1tD,).

If we compute Qupr()(v) the statement follows in a straightfoward fashion
from the definitions and the fact that ¢ commutes with the geodesic flow.
It is clear that @, is symplectic because dg,(,) and P, o dip; ! are. Now we

observe the formulas

d¢v(ﬁv(¢)) - ﬁ?ﬁv(Ad¢(C))a




and
gv(Puﬁv(C)) = Pﬂﬁv(Ad‘!P_l (C)) (51)

Clearly this implies that 8, preserves F(v). Since ¢ € Gy and Go) /G is
abelian (cf. Proposition 1.1.3), we deduce that 8,(Ady-1({}) = B.({) (recall
that Ker 8, = g,). Hence 8,/F(v) = Id. This proves (b).

To prove (¢) we will use the compactness of (7. We observe first that 6,
verifies the hypotheses of the previous lemma. Moreover with the notation of

the lemma we have that Ay = Ffd. Then on some basis the matrix of ¢, has

the form
A B
0 Id
From (5.1) we obtain
05 (Puu($)) = Pofu(Ady—)"((). (5.2)

But (Ady-1)" = Ady-~. The map ¥ —|| Ady || is continuous and G is a
compact group. This implies that for all n, | Ady-» || stays bounded. Thus
from equation (5.2) we deduce that || (6,/E)" ||=] A™ || is bounded. Then all

the eigenvalues of 8, have absolute value one. Now we look at the matrix of

6. We have

A (A4 A2y L+ Td)B

0 Id
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Since the norm of A" is bounded we get
165 1< ea(r = 1) + e,

where ¢; and ¢, are constants independent of n. This in turn implies that the

Jordan blocks of 8, cannot have size bigger than two. o

Lemma 5.2.6 Under the hypothesis of Proposition 5.2.3 we have

supuev | dgi(v) [|< p(t),

where p(t) is a linear polynomial.

Proof: We divide the proof in three steps. First set b = sup,ep7(v) <
“+oco.
Step (i1): We claim that sup,cp || Dy ||= A < +00. From the definition of

0, we get using the fact that P, is a projection,

16, (<1 dep" I dgroy | -

Since G is compact the map (1p,v) —|| di, || is bounded. Observe that dg,(v)
is defined and continuous for every f and and every v € SM. Since 7(v)
is bounded on U we get supyer || 0, ||< +oo. But log is continuous and
T > a > 0, so the claim follows.

Step (ii): We assert that SUPyEl,1>0 | Q) ||< oo Set
g(t) = mazyesar | dg:(v) ||. ¢ is continuous. Using the definition of @Q,(v)

and Step (1) we get

| Q:(v) ||< g(t)e™* for allv € U andt > 0.
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Take any ¢t > 0 and write it as ¢t = n7(v) + ¢, where ¢ € [0,7(v)] and n is an

integer. Then using Lemma 5.2.5 part (a,) we have

Qt(v) = Pgn.‘r(tt)+q'u o d,l'bgn‘r(u)i-qv 0.0 ng(ﬂ)+qv o dll’[)-qu o QQ(U)'

Since

Pgi'r(u)-{-q'” o d¢gir{u)+q” o Pg(i--l)r(u)-}-q'” = PQir(w)-{-q” o d¢gir(u)+q”’

we deduce that
Qt(v) = Pgnf(u)-[-q'u © d¢gnr(u)+qv 0 d¢9(ﬂ—1)r(u)+q'v 0..0 dngqv o Qq (v) =

= By oyrqr © d(3™) g © Qq(v).

But the projections are norm decreasing and  is compact, hence we can find

a constant ¢ such that

| @) 1< ¢ || Qo) I -

Therefore we get

supyevzo || @i(v) | supiepgeg(t)e < +oo

by continuity of g.

Step (iii):  According to Step (ii) it is enough to prove that
supyey || exp(tDy) |} is bounded by a linear polynomial. But this follows
from Step(i) and the fact that all the eigenvalues of D, are purely imaginary

and all its Jordan blocks.ha)ve gize less than two. &
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Remark 5.2.7 If the group is commutative then F(v) = E(v), and D, is

nilpotent of order two.

Proof of Proposition 5.2.3: Take v € S,. Consider the geodesic y(t) =
expy(tv) and an orthonormal basis {v, ey, ...,e,} in T, M. Take Jacobi fields J;
such that J;(0) = 0 and J/(0) = e;. Then as we observed in Remark 2.4.1,

| detAy(t) J= +/| det < Ji(t), J;(2) >|-

Hence we have

| det Ay () || J2(8) | - || Jul®) 1] -

But we also have that || Ji(t) ||<|| dg: ||. Therefore from equation (2.2) and

the last lernma we obtain that

NN < vol(SM) fO oty L.

5.3 The commutative case

We will now state the main result of this section. Let Ricps denote the
Ricet curvature of tfle compact riemannian manifold M. Recall the definition

of the set U at the begining of Section 5.1.

Theorem 5.3.1 Let M™ be a compact riemannian manifold with Ricyr > 0.

Suppose the isometry group of M™ contains a torus acting with codimension
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one. Then if U is dense and has finite connectivity, N(A) does not grow faster

than A™.

Remark 5.3.2 Note that in the real analytic category, U has full measure

and finite connectivity.

Before proving Theorem 5.3.1 we will need some lemmas.

Suppose G is a compact subgroup of the isometry group of M, whose
action on the tangent bundle has multiplicity two.

Let us make a definition: Take v € SM and F C S(v) an isotropic

subspace. We will say that ¢, is a singular point of /" if dg: FFNV(g:,v) # {0}.

Remark 5.3.3 It is known that if #' is a lagrangian subspace, the set of
singular points is discrete [26]. Since any isotropic subspace is contained in a |

lagrangian subspace we deduce that the set of singular points of an isotropic

subspace is also discrete.
Lemma 5.3.4 The function n: U — 7 given by
n(v) = number of singular points of F(v)in [0,7(v)),

is continuous. Morcover, if n(v) > 0 then 7(v) = inj(M) where inj(M)

denotes the injectivity radius of M.

Proof: Observe that in this case ¢ = dp where ¢ is some isometry. Then

wox = % o which implies that

dp(V(v)) = V($v) = V(gr@wyv)-
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Since di) preserves I we deduce that ¢, is a singular point if and only if ¢,+7(v)
i8 a singular point.

Denote by t1{v), ..., tn)(v) the singular points of F(v) in [0,7(v)). Fix
v, € U. We argue by contradiction. Suppose n(v) < n(v,). This implies, using
the continuity of 7 and the previous observation that there exists 1 <1 < n(v,)
such that ¢;(v,) is not a singular point for F(v). F and V are continuous

subbundles, therefore

F(g1:000)v) 1V (g5,00y0) = {0}

implies that NV = {0} in a neighborhood of g;(,,)v. Now the continuity of

gt says that gy, v, and gy,(u,)vo are close. But

F(gt.‘(va)vc') N V(gta(vo)%) # {0}

This is not possible.

Suppose now that n(v) > 0. Then there exists ¢, € [0, 7(v)] such that ¢,
is a singular point for F'(v). Take { € F(v) such that dg: . € V(g v). From
part (b) of Lemma 5.2.5 we get 8,, ,(dg: {) = dg:,{. Then from the definition

of 8, and the fact that % is an isometry of SM we obtain

dgto+7(’u}c = dqugto'u © dgtoc-'

But since dif preserves V and F' we have that dgy,4r){ € V(gtotr(v). Hence
J(t) = dr o dg,{ is a Jacobi field that vanishes at ¢, and ¢, + 7(v). Therefore
7(v) > nj(M).
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Corollary 5.3.5 Denole by d(v) the supremum of the distance between two

consecutive singular points of F(v) on [0,7(v)]. If n(v) > 0 then

7(v) < n(v)d(v).

Furthermore, on the connected component of U containing v, 7 is bounded if

d is bounded.

Lemma 5.3.6 Let ' C S(v) a lagrangian subspace. If Ricpyr > & > 0, then

the distance between two consecutive singular points of F is < 7”3.

Proof: In [26] it is proved that if dg,F N V(gw) = {0} for ¢t € [0,q]
then the geodesic arc wgv, t € [0, a] does not contain conjugate points. But
if Ricpr > 6 > 0, the distance between two consecutive conjugate points is

< -%. The result follows.

Corollary 5.3.7 Suppose G is commutative and U has a finite number of

connected components. If Ricyr > 6 > 0 then

inj(M) < r(v) < m%,

where m = sup,epn(v) < +o0.
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Proof of Theorem 5.3.1: It follows directly from Proposition 5.2.3 and .

Corollary 5.3.7

Finally let us discuss some applications of Theorem 5.3.1.

Example 5.3.8 Consider a 2-sphere with a convex metric with an S action
by isometries. In this case all the orbits of the S'-action on the unit tangent
bundle of 52 are principal. Observe also that S¢(S') consists only of two closed
orbits. These two orbits project on the 2-sphere as a parallel with maximum
curvature. Obviously this implies that U is connected and has full measure.
In this case n(v) = 2 for every v € U, and 7 < % if the curvature is > § > 0.

Thus we have proved:

For a convex surface of revolution, N()\) does not grow faster than A\?.

Note that if the surface of revolution is not convex, there can be hyperbolic
closed geodesics, and hence 7 is not bounded above {cf. Lemma 5.2.6). We do

not know the precise growth of N(A) in this case.

Example 5.3.9 Consider the standard action of SU(2) x SU(2) on M =
SU(2) = 5° (cf. Example 2.4.6). Then any maximal torus T2 in SU(2) x STU(2)
acts on M with codimension one principal orbits. Consider a real analytic
metric invariant under T? with Ricyy > 0. Then from Theorem 5.3.1 we

deduce that for a metric as above, N()) does not grow faster than A%.




5.4 The return time for 80(3) i

For the case of SO(3) with a left invariant metric the return time can be

explicitly computed. Consider the canonical identification of so(3) with R3

and let
X2 X2 X2
XX o= 20 A2 A
< A, > I} + T, + A

be a positive inner product. To be definite, we will assume in what follows
that I > I > I, > 0.

The above inner product gives rise to a left invariant metric on SO(3).
Let E be the ellipsoid on R3 given by < X, X >= 1. Using left translations
we can identify the unit bundle of SO(3) with SO(3) x E. Hence the geodesic
flow can be reduced to a flow on E. This flow is given by the Euler equations
[1]. In this case the Euler equations can be solved in terms of elliptic functions.
These computations are very classical and they can be found for example in

[24]. From them one gets right away a formula for the return time. If we set

= X12 + X22 + X32 then we have

d .
= 4\/111213/ u , €l L)
Vs — D)(

(2 — L) — (I, — I){(Is — z)sin?u
(5.3)

For & € (11, 1,) the formula for 7 is obtained from the above by permuting
the indices 1 and 3.
The derivative of 7 is easy to compute. One finds that for z ¢ (I, L),

% () > 0 and for = € (I, I5), 4(z) < 0. We also get

LI
(h = BL)(h ~I5)’

(") = limm_,lf'r(a:) =27 (5.4)
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L1,
(Is — LIy — It)’

m(Iy) = lim,_,-7(z) = 2%

(.5)

limg_,7(z) = co. (5.6)

1t is trivial from the above information to get the graph of 7.

One can check that 7(I) > 7(I3) if and only if I3 < il

Remark 5.4.1 It follows from equation (5.6) that Corollary 5.3.7 is false in
the non-commutative case. Moreover, Proposition 5.2.3 cannot be applied.
Although we know that N()) grows sub-exponentially because the topological

entropy is zero, we do not have a better estimate for the growth as yet.

5.5 The Poisson sphere

There is an interesting application of some of the calculations in the last
section.

Consider a left invariant metric on SO(3) defined by

X2 X X2
X X >=21Lt,422, 23
<K X>=p At

Let SO(2) be any one-parameter subgroup. Then S0(2) acts on SO(3) from
the left by isometries. The quotient, My, 1,1, is a 2-sphere, and we endow
it with the submersion metric. This corresponds to the classical “Poisson
reduction” and M is called the Poisson sphere [2]. It follows from a theorem of
Lusternik and Schnirelmann [21] and estimates of Klingenberg and Toponogov

that any convex metric on S whose Gaussian curvature satisfies 1/A < K <




A, has at least three geometrically different closed geodesics with .Iéi;l.'gﬂ.l' fn
(27 /A, 27/A). That this is optimal is shown by a result of Morse: |
Given any constant N > 27 there exists an ¢ > 0 such that any prime

closed geodesic on an ellipsoid
2 2 2 _
a1y + @25 +azry =1, ap < ay < as

and |1 — a; |[< ¢, is either a principal ellipse or is larger than N.

We will prove a similar result for the Poisson sphere:

Theorem 5.5.1 Given N > 2rx there exzists an € > 0 such that any prime
closed geodesic on the Poisson sphere My, 1,1, with | 1 — I; |< ¢ has length

> N, except for three closed geodesics with length close to 2.

Proof: According to Corollary 3.2.2 the Hamiltonian associated with the
metric on My, 1, 1, is collective for the canonical action of SO(3) on T*(M)
and its defining function is f = %12— -+ %ﬁ + %‘i Consider the sphere bundle
S in T*(M). Then the moment map ¢ of the SO(3)-action on T*(M) is a
submersion from S to £ where E is the ellipsoid %’2- + %’2- %2“ = 1. Let us
apply the description of collective motion from Section 1.2. It is known that
the Hamiltonian flow of f restricted to F has six critical points, 4 heteroclinic
connections and closed orbits with period T(z) where x = X7 + X2 + X3 [1].

The six critical points, give rise to geodesics which are orbits of one-

parameter subgroups, namely the one-parameter subgroups generated by

(£v14,0,0), (0,+£+/73,0) and (0,0,++/T3). Geometrically we only get threé_:_.'.

different closed geodesics whose length is clearly close to 27 if | 1 — [; |< 6
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Note that since ¢ : § — F is a submersion, those are the only geodesics which
are orbits of one-parameter subgroups.

Now, suppose z(t) is a closed geodesic with length L, different from the
ones described above. Then ¢{z(t)) is a closed curve in E. Thus L > 7(z) for

all x € (I, 1,) and all 2 € (L, I3). In other words
Lz min{r(I3),7(I)}

But from the equations (5.4) and (5.5) we see that given N there exists € > 0 -

so that if | 1 — I; |< € then min{r(I5),7(I{)} > N.

5.6 More about complete integrability

Complete integrability guarantees via Liouville’s Theorem the existenc'ef-.:':f
of an open dense subset U of the unit tangent bundle of M that is foliated by

tori, and the geodesic flow on these tori is quasiperiodic. We will prove:

Theorem 5.6.1 Let M™ be a compact riemannian manifold whose geodesi_(:‘_-f:
flow is completely integrable. Suppose for some p in M the unit sphere at p
is contained in U. Then m(M) has polynomial growth of degree < n and if

T (M) is finite, M is rationally elliptic.

Proof: For completely integrable geodesic flows we have the following:':::

property [2]: given v € U there exists an open invariant set W containing v -



and a diffeomorphism  : W — V x T™ where V is an open set in R® ! and

1™ is an n-dimensional torus. Moreover,

1o g: vab_l(I)(P) = (I,(p—l—tr)(])t),

where w(I) is differentiable function and (I, mod 2x) are coordinates in

V xT",

We can deduce that di) o dg; o dip~! can be represented by the matrix

Id &It

0 Id

Therefore we conclude that for v € U, || dg:(v) || grows at most linearly, i.e.
| dg:(v) ||< at + b. But the constants a and b depend on the torus and we
do not know how they behave when we approach the boundary of U. But if
Sp C U for some p, we can cover S, by a finite number of sets like W and in
all of them || dg; || is bounded uniformly by a linear polynomial. Thus Z,{A)
does not grow faster than A” (cf. proof of Proposition 5.2.3). As we know this
implies that = () has polynomial growth degree < n and if 7 (M) is finite,

M is rationally elliptic.
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