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Introduction

One of the most important aspects of Riemannian Geometry deals with

the relationship between the curvature properties of a riemannian manifold
and its topological structure.

A typical theorem is the Sphere Theorem (cf. [CE] for references) which
says that if the sectional curvature of a closed simply connected n-manifold
satisfies i < Ky <1, then M is homeomorphic to the n-sphere.

In this thesis, we prove a vanishing theorem for homotopy groups which

generalizes the Sphere Theorem. Examples show that Theorem A is sharp.

Theorem A. Let M be a closed simply connected n-manifold whose kth

Ricer curvature, for some 1 < k <n — 2, end sectional curvature satisfy

1
RiC(k) > Z and Ky <1. |

Then m(M) =0 for 1 <i<n—k.

For a riemannian n-manifold M, we say the kth Ricci curvature of M,
for some 1 < k < n—1, satisfies Ricy) > (resp. >) H for some constant I,

if for every point € M and every (k + 1)-dimensional subspace V C T, M, i
|
|

k+1
Z(R(ei,v)v,ei) > (resp. >)kH, ve€vV,
=1

where {e1, -+, exy1} is any orthonormal basis for V.

So far, most of results are for closed manifolds. In this thesis, we mainly

study complete open riemannian manifolds. We say a complete open n-

i
i
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manifold M is proper if for some p € M, and some sequence of closed
subsets C = {C,, }32, with r, := d(p, C,,) — 400, the sequence of functions
b.(z) = r, —d(z,C,), * € M, converges to a proper Lipschitz contin-
uous function bz on M, as r, — +oo. One notices that any complete
open n-manifold M of nonnegative sectional curvature outside a compact
subset must be proper. Moreover in this case M has finite topological
type [CG1][GW2]. H. Wu proved that any complete open n-manifold M
of positive kth Riccl curvature for some 1 < & < n — 1 and nonnegative
sectional curvature outside a compact subset has the homotopy type of a
CW complex with finite many cells each of dimension < k£ — 1. By using
the techniques developed in [SH|[W2], this theorem can be sharpened in

the following verson.

Theorem B. Let M be a complete open proper n-manifold whese kth Ricci
curvature satisfies Ricry > 0 for some k,1 <k <n—1. Then M has the
homotopy type of a CW complex with cells each of dimension <k —1. In
particuler, H(M;Z) =0, for : > k.

Theorem B should be viewed as a generalized version of the Gromoll-
Meyer theorem [GM1] which states that every complete open riemannian
manifold of positive sectional curvature is diffeomorphic with R®. In the
case of k = n — 1, Theorem B tells us that any complete open proper
n-manifold of positive Ricci curvature has the homotopy type of a CW
complex with cells each of dimension < n—2. Hence H,,_;(M;Z) = 0. This

is an analogue of a vanshing theorem for closed manifolds which says that




any closed n-manifold M of positive Ricei curvature satisfies Hy(M;R) =
o, 1(M;R) = 0(cf. e.g. [BY]). Recently, Sha-Yang [SY1,2] constructed
n-dimensional open manifolds of infinite topological type for each n > 4,
on which the metrics can be chosen to be complete proper, and of positive
Ricci curvature. Topologically, these examples are obtained by removing
infinitely many disjoint balls .Dfﬂ, 1 = 0,1,--+, 400, in R?** and then
gluing S™P=1 x (RP+!\ [I22, DI) with D™ 7 x [[2, 57 together by the
indentity maps along the corresponding boundaries, where 2 < p < n — 2.
Let M,, denote the resulting manifolds. Clearly, the singular homology
groups H,_3(M,, ,_2;Z) are infinitely generated. In this sense, Theorem B
is sharp.

It seems to be difficult to determine whether a complete open rieman-
nian manifold M is proper or not, even if M has nonnegative Riccl curva-
ture. However, if (With respect to a point) M hag small diameter growth
of ends, then M is proper.

There are several definitions for the (essential) diameter of ends (cf.
[AG] [S1]). Let us give the easiest one here. Let M be a complete open
riemannian manifold with finitely many ends. We define the diameter of
ends wp(p,r) at distance r from a point p € M in the following way.
Suppose M has N ends. Let R > 0 be a number such that M \ B(p, R)
has exactly N unbounded connected components, say, Uy, ..., Uy. Then for
r > R, wp(p,r) is defined as |

wp(p,r) = sup diampy(U; N OB(p,r)).
1<i<N

In particular, if M has only one end, then wp(p,r) is defined for all r > 0,

|




and

wu(p,r) = diamp(8B(p,r)), r >0,

where diamar(0B(p, 1)) = sup, yeop(pr) 42, ) denotes the diameter of the
geodesic sphere of radius r around p. By the splitting theorem of Cheeger-
Gromoll [CG2], one concludes that any complete open manifold M of posi-
tive Ricci curvature has only one end, and M of nonnegative Ricci curvature
has at most two ends. The diameter growth can control the behavior of the

Busemann functions. In particular one has the following

Proposition. Let M be a complete open riemannian manifold with one

end. Suppose for some point p € M,

lim sup diama(0B(p,r))/r = ¢ < 1.

r—+400

Then M 1s proper.
Therefore one has

. Theorem C. Let M be a complete open n-manifold with positive kih Ricei
- curvature for some 1 <k <n — 1. Suppose that for some p e M,
lim sup diamp (8B(p,r))/r = < 1.

r—-400 |

Then M has the homotopy type of a CW complex with cells each of dimen-
ston < k — 1. In particular, H;(M;Z) =0 for i > k.

In the case of ¥ = n — 1, Theorem C tells us that if a complete open




proper n-manifold M of positive Ricci curvature satisfies

lim sup diamp(0B(p,r))/r = { < 1,

r—+o0

then M has the homotopy type of a CW complex with cells each of dimen-
gion < n — 2,

It was proved by M. Gromov [G1] that there is a constant C(n) de-
pending on only n such that for any closed n-manifold M of nonnegative
sectional curvature, the total Betti number of M with respect to any field
F satisfies

S B(M;F) < O(n).

k=0
By the Soul Theorem of Cheeger-Gromoll {CG1] , this theorem is also

valid for complete open n-manifolds of nonnegative sectional curvature.
Exa,ml;les in [SY1, 2] and [AKL], however, show that this theorem does
not hold for complete n-mainfold of nonnegative Ricci curvature. The Soul
Theorem of Cheeger-Gromoll says that for any complete open n-manifold
M, there is a closed totally geodesic submanifold §, to be called a soul,
such that M is diffeomorphic with the normal bundle v(S) of S in M
(the diffeomorphism does not come from the exponential map of S, in
general). In particular, M has finite topological type. Recently, Abrech-
Gromoll [AG] proved that a complete open n-manifold M of nonnegative
Ricci curvature has finite topological type if M has diameter growth of order
o(r%), provided that the curvature is bounded from below. We remark that

their condition for diameter growth is weaker than that wa(p,r) = o(r%),

as 1 — 400, A modification of their argument gives the following




Theorem D. Let M be a complete open n-manifold of nonnegative kth Ricci
curvature for some 2 < k < n — 1. Suppose that the sectional curvature

Ky > —K for some constant K > 0, and for some point p € M,

lim sup E)M < C’(k)K_Z(kﬁ“i),

i

r—400 7 E+1

where C(k) = [3(%1(@—%%-1“—2)"]?3}_1 Then M s homeomorphic to the inte-

rior of a compact manifold with boundary.

On the manifolds M of Sha-Yang’s examples [SY1,2] of infinite topolog-
ical type, the metrics can be chosen to be of positive Ricci curvature and
bounded curvature. But the diameter growth condition is violated.

Without the restriction of diameter growth, one can still obtain some
topological obstruction to completeiopen manifolds with nonnegative Ricci
curvature and bounded curvature. Let M be a corﬁplete open riemannian
n-manifold and let p € M. For any r > 0, let b;,(p,r) denote the rank of
i : Hi(B(p,r);F) — H;(M;F), where F is an arbitary field. We will prove

Theorem E. Let M be a complete open n-manifold with Ricei curvature
Ric(M) = 0 and sectional curvature Ky > —1. Then there is a constant

C(n) depending only on n such that

S h(er) O+, 750

M. Gromov [G4] proved that for a complete manifold M of sectional
curvature —1 < Kjps < 0, if M has finite volume, then M is diffeomorphic




with the interior of a compact manifold with boundary. We will prove the

following related result.

Theorem F. Let M be a complete open manifold with sectional curvature
Ky 2 —K for some constant K > 0. Suppose that M has finite many ends
and for somepe M

. ( )< In2
im sup w , 7 —_—
m sup wy(p e

then M is homeomorphic to the interior of a compact manifold with bound-

ary.

Most of the results in this thesis were announced in {S1].



Chapter 1

Basic Riemannian Geometry

1.1 Riemannian Manifolds

We begin with some notations and basic facts. Let (M, ¢) be an n-dimensional
riemannian manifold. Let V denote the Levi-Civita connection of g. The

curvature tensor R is defined as
R(z,y)z =VxVyZ —VyVxZ —VixvZ, =z,y,z¢T,M

where X,Y,Z € C*(1T'M) with X, = z,Y, = y and Z, = z, respectively.
Let ¢ : N — M be a smooth map. Let ¢*(TM) denote the induced

bundle, *(TM) = UpenTpz) M. In the local coordinates (z*) and () at

z € N and ¢(z) € M, respectively, a smooth section W along ¢ can be

expressed locally as

o,

W= fﬁ(a:)amz ]fP(“’)

for some smooth functions f% in (z%). If V € C®(TN), we can define

Ve.v)W € C*(p*(TM)), the covariant derivative of W in the direction




V. In the above local coordinates, if V = a“(:r:)gg—a

Ie3 8fi a o H 8(,0‘? a
Vo)W = a®(@)525— low +a*()f (x)ama(ﬂf)v 257 lote) -

8z

Suppose ¢ : N — M is an immersion. Given a unit vector £ Lo, (T,N),

set
he(X,Y) = —(Vo,(xyeu(Y), €),

where X,Y € C®(TN). Tt is easy to check that k¢ depends only on X, and
Y,. h¢ is called the second fundamental form of ¢ at p € N in the direction
of £.

Given a smooth curve ¢ : [a,b] — M and a vector field V along ¢. Let
V(1) = ViV (t). cis called a geodesile if Vi¢ = 0. Clearly a geodesic ¢
must be parametrized proportionally to arclength by [a, b]. Given a geodesic

v : [a,b] — M, a vector field J along + is called a Jacobi field if
Vi ViJ + R(J,4)y = 0

Jacobi fields come from variations. Let « : [a,b] X [¢,d] — M be any map
with the property that for each s € [¢,d], a, := a(:,3) is a geodesic. Then

J = % s=0 18 a Jacobi field along a, = a(-,0).

‘Lemma 1 (cf. e.g. [K; p99-91]). Let (M, g) be a complete n-manifold with
ijectivity radius inj(M) > t,. Fiz 0 <r < i,. For any q € 8B(p,r), let
v:[0,r] = M be the normal minimael geodesic issuing from p to g with
¥(0) = w and y(r) = . Then the second fundamental form of OB(p,r) at
q n the direction of £ satisfies

he(v,0) = [{ITOF — (BRI, 4, TNt v € T,08(p,1),
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where J is the Jacobi field along v with J(0) = 0 and J(r) = v.

Proof:
Given v # 0 € T,0B(p,r). Define a variation a : [0,7] X [—¢,6] = M as

aft, 8) = exp, tn(s),
where 1 : [—¢,€] — S*71(r) € T,M with the following proerties: (i) 5(0) =
wi (i) |n(s)] = r, s € [—e,e]; (i) (exp,)x|w(0) = v € T,0B(p,r). Let
T = %2 and J = 2. Then %(t) = T(t,0), and J(¢) := J(t,0) is the Jacobi
field along y with J(0) = 0 and J(r) = v. Let L(s) be the arclength of
curves a, :== «(+,s). Clearly, L(s) is a constant. By the second variation

formula [CE], one has
0 = L"(0)
= (V,J,T);+ /OT{(VTJ, Vedy — (R(J,TYT, J) — (T{J, T))*}dt.
By Gauss lemma, one has that (J,T) = 0. Thus

he(v,v) = _(VJJ:E)q
= [UT7OF - (RUI®, 503, T0))d.

Q.E.D.

For 1 <k <n—1, the kth-Ricci curvature Ric] at p € M in a (k+1)-
dimensional subspace V' C T, M is defined as
k41

Ric) (z,y) = Y (R(z,e)ei,y), zy€V

i=1
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where {e;}#*{ is an orthonormal basis for V. We say the kth Ricci curvature
Ricqy > H (resp. > H) in a subset U of M for some constant H if at any
point p € U, in any (k + 1)-dimensional subspace V € T, M,

Ric) (x,z) > (resp. >)kH(z,z), z€V.

Recall that for a plane P = span{z,y} C T,M, the sectional curvature
K,(P) in the direction of P is defined as

R(z,y)y, =
KP(P) = < ( ) ) 27
(:L‘, .’L')(y, y) - ($,y>
and the Ricci curvature Ric, at p' is defined as
Ricp(wv y) = Z(R(m,e‘i)e‘ia y): T,y € T,M.
k=1

We write Ricy > (resp.> ) H if Ricy(z,z) > (resp. > ) (n—1)H(z,z), p €
M,z € T,M. Thus Ricyy > H (resp. > H) if and only if K3y > H (resp.
> H), and Ric(n—1) > H (resp.> H) if and only if Ricar > H (resp. > H).
One notices that if Ricy) > H for some 1 <k <n —1, then Ricgy > H for
allk<i<n-—1.

Lemma 2 Let M be o riemannian n—manifold. Suppose at some point
p € M the sectional curvature and the kih-Ricci curvature, for some 1 <
k <n—1, satisfy |K,| < K and Ricyy > H for some constants K and
H, respectively. Then for any orthonormal set {e1,...,ex} in T, M and any

unit vector v in T, M,

k
D (R(v,e)e;,v) = —(k—1DK(a?+40p) + kHS?,

1=1

where o = /38 (v, e)? and f = \/1 —~ 38 (v, e)2.
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Proof:

Let V = span{e;,...,ex} and v = v; + vy such that vy € V and v, LV.
Cleatly, |v1[? = 35, (v, €;)? and |vo|? = 1 — Y5 (v, ;)% Let {f1,..., i} be
another orthonormal basis for V such that fi = |vy|fi. Let fi1, be the unit
vector such that fiy1 LV and vy = |vs|fr11. Consider the following identity

fort=2,...,k

2(R(f"" fl)fk"'l?f‘i) = (R(fza (fl + fk+1))(f1 + fk+1), fg)
“(R(fh fl)fl}fi) - (R(ﬁafk+1)fk+hfi)-

It turns out that
QI(R(fi:fl)fk+1,fi)| < 4K.
Thus

k ke
2 AR(v,eeisv) = 3 (R(fisv)o, fi)

= |oy|? Z(R(fi,fﬂfl,fg)

=2

k
+2]v ||vg] Z(R(fi, Fi)fesr, £i)

k

2l D AR(Fiy Frrr) Frprs Fi)

i=1

> ~(k — DK (J:]* + 4|vy|[v2]) + kH|vq|%

Q.E.D.
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1.2 The Class C(k)

In [SH|[W2], J. Sha and H. Wu independently studied a class of functions
C(k), 1 < k < n, on a riemannian n-manifold. Let (M, ¢) be a riemannian
n—manifold (not necessary to be complete) and let p € M. Let f be a
continuous function defined in a neighborhood of p € M. Let v : (—a,a) —
M be a normal geodesic with y(0) = p € M and 4(0) = v € T,M. Define

the following extended real number:

Cf(ps) = limipf = {F 05(r) + £ 07(~) — 2f 0 4(0)}.
We say f belongs to C(k) at p € M for some k, 1 < k < n, if f is Lipschits
continuous in a neighborhood W of p, and there are positive constants ¢ and
n such that if x € W and {vy,..., vz} is set in T, M with |{v;,v;} — 6;] < ¢,
then ,
ZCf(sn;v,-) > 1.

We say f belongs to C'(k) 0;1_:1 subset A of M if f is defined on a neigh-
borhood U7 of A, such that f € C(k) at every point p € U. Similarly, a
function f is said to be C*° on a subset A, if f is defined on a neighborhood
U of A such that f € C(U).

Clearly, a C? function f : M — R belongs to C(k) on M if and only if

k

2. V(L V) >0,

=1
for any set of orthonormal vector fields {V},---,V,} locally defined in M.
Thus if a smooth Morse function f: M — R belongs to C(k) on M, then

the index of f at each critical point satisfies that ind (f) < %k — 1. In [W2]

H. Wu proved the following properties for C(k).
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A) The maximum-closure property:
For any two continuous functions fi, fo: M — R, if f), f; belong to C(k)
at p € M, then max(fy, f2) belongs to C(k) at p.

B) The C* stability property:
For any compact subset K of M, any f € C(k) on K, there exists an ¢ > 0
such that for any ¢ € C*(K) which is e-close to zero on K in the C?
topology, f + ¢ belongs to C(k) on K |

C) The semilocal approximation property:
For any positive constant ¢ and any f € C(k) on a compact subset K of M,
which is C'° in a (possibly empty) subset K; of K, there is a €™ function
F € C(k) on K, such that |F — f] < & on K, and F is e-close to f on K;
in the €' topology.

By Theorem 1.1 in [GW1], Wu concludes the following

Theorem 1 ([W2]) Let (M, g) be a riemannian n-manifold . Let f : M —
R belong to C(k) on M, and £ : M — R be a positive continuous function.
Then there exists a C* function F' : M — R which belongs to C(k) such
that

|F— f] < €.

For applications in §2.2 below, one needs a refinement of Theorem 1 for
proper functions f : M — R. A function f: M — R is said to be proper if
all the sets {z € M; f(z) < ¢} are compact for ¢ € R.

Proposition 1 Let (M, ¢) be a riemannian n-manifold . Let f : M -+ R be

proper and belong to C(k) on M, and £ : M — R be a positive continuous
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function. Then there exists a proper Morse function F : M — R which
belongs to C(k) on M such that

P -fl<é.

The proof of Proposition 1 strongly relies on the argument in [M1]. We
begin with the following

Lemma 3 Let W be a compact domain in M with boundary OW = NyUN;
(resp. OW = N ), where Ny, Ny are disjoint. Suppose a smooth function
[ W — [a,b] has the following properties

(1) f~'(a) = Ny and f~2(b) = Ny (resp. min f = a and o) = N);

(2) f has no critical points in o neighborhood of W ;

(8) f belongs to C(k) on W,
Then for every e > 0, there is ¢ Morse function F : W = [a,b] (resp.
la —¢€,b]), such that

(a) F coincides with f in & neighborhood of OW;

() |F' = Fllozqwy < e

(c) F belongs to C(k) on W;
where || - [|c2gwy denotes the CP-norm with respect to o fized coordinate

system for W.

Proof:

We will only handle the case of 8W = Ny U Ni. The proof is based on
the argument in [M1]. Let U,V be open neighborhoods of W such that

V C U. Let {U,} be a finite cover of W by coordinate neighborhoods
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such that each set U, lies in U or W \ V. Take a compact refinement
{C.} of {U,} and let C, be the union of all those C, for which U, lie in
U. Let Uy,---,U; be the coordinate neighborhoods in W\ V. For each
h:W - [a,b] and each § > 0, let

Nu(8) ={p: W = [a,b]; Ik —¢llozwy <6 and ¢|v = hlv}.

By the C*° stability property of C(k) above and Lemma B in §2 in [M1]
there is 6, 0 < 8y < ¢ such that for any ¢ with [l — fllozw) < 8o, (1) ¢
belongs to C(k) on W; (i) ¢ has no degenerate critical points in (. For
each i, 1 < ¢ < k, let #; : U; — R™ be the corresponding coordinate, and
let A;: M — [0, 1] be smooth functions such that A\; = 1 in a neighborhood
of C; and A; = 0 in a neighborhood of M \ U;. For almost all choices of
’linear maps L : R — R the function fi(z) = f(z) + ()L omp(a), = €
M has no degenerate critical points in C;. Notice that fi|y = f lyv. By
choosing a smaller 6o if necessary, one can find a linear map L such that
f1 € N4(é) has no degenerate critical points in C; (hence in C3U Cy). By
induction, we can find a smooth function f; € Ny,_ (6..4) C -+ C N4(6,)
such that f; has no degenerate critical points in Cp U --- U C;. Finally,
F = fi € Ng,_,(63-1) C -+ C Ny(&) has no degenerate critical points in
CoU---UC, = W. Since F € N¢(8), F satisfies (a)(b) (c) above. We
complete the proof. Q.E.D,

Proof of Proposition 1: By Theorem 1, there is a smooth function f :
M — R which belongs to C(k) on M such that

7= £l < 5 min(é, 1),
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Since f is proper, so is f. By Sard’s Theorem, there is a sequence of
numbers min f = ap < @y < ag < +-- — +00, such that als, ¢ > 1, are
the regular values of f. Thus the sets V; := fa;), i > 1 are smoothly

embedded and closed hypersurfaces. Set

Wo = {zeM; f<a},
W, = {geM;a<f<am}, i=12.

Let &; = s mingew, £ > 0, i = 0,1,2,--.. By Lemma 3, there are smooth
Morse functions F; : W; — [a;, ai41] (resp. Fy : Wy — [ag — €o, 1)), & =
1,2,-.., such that for all ¢ = 0,1,2,- -,

(D 1F: = fllezgwy < & < 3¢5

(2) F; coincides with f in a neighborhood of 8W; in Wi

(3) F: belongs to C(k) on W;.

We glue up F; to construct a smooth Morse function F on M, i.e.,
F|W6:E]Wi7 z’:O,I,Z,--A.

Clearly, F' is the function as desired. Q.E.D.

The following algebraic lemma is elementary. It is useful to verify that

a locally Lipschitz function f belong to C(k) at a point p € M.

Lemma 4 Let V be an inner product space of dimension n. Let S be a
symmetric bilinear form on V. Suppose that for some k, 1 < k < n, and
some positive numbers n and A, S satisfies

(i) Tk S(ei, e5) > for any orthonormal set {ey, ..., ex} in V,
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(ii) |S(v,v)| < Av|? forv e V.
Then there is € > 0 depending only on k, 7 and A such that for any sel

{v1,nvk} i Vowith |{v;,0;) — 6;5] < e,

k
ES(’U{, 'U,;) 2 g
=1

1.3 Diameter of Ends

There are several definitions for the diameter of ends (cf. [AG] [1)). Let
us give the easiest one here, and the others will be discussed in Appendix.
Let M be any complete open riemannian manifold with finitely many ends.
For any subset A C M, let diamps(A4) denote the diameter of A in M, i.e.
diampy(A) = sup, 44 d(2,y). Suppose M has N ends with a fixed point
p € M. Let R > 0 be a number such that M \ B(p, R) has exactly N
unbounded connected components {U;}Y,. Then the diameter of ends at

distance r around p, wa(p, ), is defined as
wy(p,r) = 1rsne_§ajcvdz'amM(aB(p, r)nl;), r>R.
In case M has only one end, then wa(p,r) is defined for all 7 > 0, and
wy(p,r) = diamp(8B(p,r)), r > 0.

Clearly, by definition, th(p, 7) < 2r for all r > R. A simple argument
shows that for any 0 < @ < 1, the following number, to be denoted by
diama(M), is independent of choices of p and R.

diamy(M) = limsup M
r—+oo r®
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We say M has diameter growth of order o(r®) ( resp. O(r*) ) for some
0 <a<l,if diama(M) =0 ( resp. diam,(M) < 400 ).

In § 1.4 below, we will show that the growth of was(p, ) can control the
behavior of Busemann functions near infinity.

By Cheéger-Gromoll’s splitting theorem [CG2], one can conclude that
any complete open manifold M of nonnegative Ricci curvature has no more
than two ends. In addition, if M has positive Ricci curvature at some point,

then M has only one end. Thus in this case wy(p,r) is well defined.

Remark 1 In Appendix, we will give two other definitions of diameter
of ends for complete open manifolds (possibly with infinitely many ends),
both were given in [AG] and [S1], respectively. Since it is easier to estimate
was(p,r) than the others , we mainly consider wa(p,r) throughout this

thesis.

1.4 Busemann Functions

Let M be a complete open riemannian n-manifold and let p € M. Recall
that the Busemann function B, associated with a ray v issuing from p is
defined as B,(z) = lim,, ;o t — d(z,7(t)), * € M. For arbitrary ¢ > 0,
let Ry(p) = {~(t); 7 is a ray issuing from p}, which is a closed subset of
the geodesic sphere dB(p,t). Set Bi(z) = t — d(z,Ri(p)), = € M. It
is clear that B(z) is increasing in ¢ and |Bi(z)] < d(p,z), ¢ € M. The
Busermann function B, is defined as By(¢) = lims, o BY(), which is a
Lipschitz function with Lipschtz constant 1. In fact B, is just sup, B,,

where the supremum is taken over all rays ~ issuing from p.
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Set Ly(z) = d(z, Ry(p)), where t = d(p,z) . Since B!(z) is increasing in

t , it is easy to see that
d(p,z) — Ly(z) < By(z) < d(p,z), =€ M. (L.1)

Set E,(z) = d(p,z) — B,(z), # € M. Then E, is called the ezcess function
associated with p € M.

Now we are going to define the generalized Busemann function b, as-
sociated with p € M. The family of functions bif, : M — R defined as
b(z) =t —d(z,0B(p,t)), t € [0,400) are Lipschitz continuous (with
Lipschitz constant 1) and also satisfy |bi(x)] < d(p,z) (by the triangle
inequality). Thus it is an equi-continuous family uniformly bounded on
compact subsets. By Ascoli’s theorem, there exists a subsequence of b}, to
be denoted by b, converging to a continuous function b, on M, with its
convergence being uniform on compact subsets of M. The function b, is
called the generalized Busernann function associated with the point p. Set
ep(z) = d(p,x) — by(z), * € M. Then e, is called the generalized excess
Junction associated with p € M. By (1.1), one obtains

dp,w) ~ L(z) < By(e) Sb(s)<d(pa), zeM  (12)

ep(2) S Ey(x) < Ly(z), x e M. (1.3)

The question is when the generalized Busemann function b, is proper.
By (1.2) we notice that if B, is proper, then so is b,. If for some point
p € M, b} subconverges to a proper function b,, then for every point ¢ € M,

b, subconverges to a proper function b, (cf. Proposition 2 below).

A complete open riemannian manifold M is said to be proper, if there is

a sequence of pointed closed subsets C = {C,,p}22, with r, := d(p,C,) —
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+00, such that the sequence of functions b, := r, — d(-,C,,) converges to a

proper function b¢ at every point. It is not difficult to prove the following

Proposition 2 Let M a complete proper open riemannian manifold. Then
for any point ¢ € M, the family of functions bl = t — d(-,0B(q,t)) sub-
converges to a proper Lipschitz continuous function by, as t — +oo, with

the convergence being uniform on compact subsets.

Proof:

Suppose that for some sequence of pointed closed subsets C = {C,,,p}°%,
with r, = d(p,C,) — +oo, b,(-) := r, — d(-,C,) converges to a proper
function be. Let ¢ € M be any point. Let ¢, = d(q,C,). By the same
argument as above, one may assume that a subsequence of b, to be denoted
by the same bl», converges to a Lipschitz function b,, with the convergence

being uniform on compact subsets. Clearly, for any point x € M with

d(¢,z) < t,, one has @ € B(q,t,) and d(z,0B(q,t,)) < d(z,C,). Thus

b;"(ic) = tn - d(.’L‘, aB(Q'1 tn))
> d(Q’a Cr) — d(z, Cﬂ)
—(rn — d(g,Cp)) + (rn — d(z,C)).

I

Letting r, — 400, one obtains

(@) > —bo(q) + be(z), =€ M.

Since bc is proper, one concludes that b, is proper too. Q.E.D.
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Remark 2 It was proved in [CG1][GW2] that any complete open man-
ifolds with nonnegative sectional curvature outside a compact subset is

proper. In particular [LT], for any point p € M,

bp(z) : By()
1 27— ) T
d(p,ml)r—rrl+oo d(p,z) d(p.wl)r—rrl+°° d(p, )

Conjecture 1 Let M be a complete open riemannian n—manifold. If M
has nonnegative Ricci curvature outside a compact subset, or asympitotically

nonnegative Ricci curvature in the sence of [AG], then M is proper.

In the rest part of this section, we will prove the following important
result which tells us how the diameter growth control the behavior of Buse-
mann functions near infinity. In particular, we prove that if a complete
open manifold M has diameter growth of order o(r), then M is proper. We
begin with the following

Lemma 5 Suppose M is a complete riemannian n-manifold with finitely

many ends. Then there is Ry such that for any x € M \m,
Lz) < wu(p d(p,z)). (1.4)

Proof:

Suppose M has N ends. Let R > 0 be a number such that M \m has
exactly IV unbounded connected components {U;}, (see § 1.3). Clearly,
there are only finitely many bounded connected components , to be denoted
by Vi,- -, Vk, such that R; := sup,cy d(p,z) > 2R. Thus for Ry :=

maxls,;g{ R,; 2 2R,

M\ B(p, Rar) = Ur<icnUs \ B(p, Rur). (1.5)
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By (1.5), for any « € M \ B(p, Ras), there is an unbounded connected
component U;, of M \ B(p, R) such that = € U;,. Take a ray v issuing from
p such that v|(r400) C Us,. Let v, = d(p, z).

Ly(z)

d(=, R,,(p)) < d(z,7(r.))
< diamp(U;, N OB(p,7,)) < war(p, 7o)

Q.E.D.

Theorem 2 Let M be a complete open manifold with finitely many ends.
Suppose that for some p € M,

lim sup WMip,T) (p:7)
r—00 ™

=({<1.
Then

1 > liminf -—lﬁj(m—) > liminf M =>1-C.
d(px)—oo d(p, SE) d(p,x)—o0 d(p, :1’,‘)

In this case, Busemann functions B, and b, are proper. Thus M is proper.

Proof:

Theorem 2 follows from (1.4} and (1.2). Q.E.D.

The following lemma is important for further study.

Lemma 6 Let M be a complete open riemannian n-manifold and let p €
M. Then for any point ¢ € M, there is a ray o, : [0,4+00) ~» M issuing
from ¢ such thet for all t > 0, b2%(x) := b,(q) +t — d(x,0,(t)), =z € M,
supports by(z) at g, i.e., b%%(x) < by(x) for all 2 € M and b34(q) = by(q).

bp(oq(t)) = bp(q) +t, £>0. (1.6)
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Proof:

For each {, > 0, there is a point z, € dB(p,t,) such that d(¢,z,) =
d(g,0B(p,t,)). Take a normal minimal geodesic o, issuing from ¢ to z,.. By
passing to a subsequence if necessary, one can assume that ¢,(0) converges
to a unit vector v € T,M . Set 0,(s) = exp, sv. It is clear that o, is a ray.

Notice that for sufficiently large ¢,

d(q,0B(p,tn)) = t + d(on(t), 0B(p,tn)).

Thus one obtains

bp(z) — 8" (x) = by(x) = by(q) — t + d(w, 0(t))
t,,l—iﬂ-loo d(q, 0B(p, ta)) — d(z,0B(p, tn)) — t + d(z, o4(t))
B d(6,(£), 0B(p, 1)) ~ d(a, OB(p, ) + d(z, 7o(t))

I

2 Jm —d(on(t), ) + d(w, 0,())
2 lim —d(on(t),0,(t)) = 0.

It is obvious that b%*(¢) = b,(¢) . The equality (1.6) was proved by Wu in
[W1]. Q.E.D.




Chapter 2

Vanishing Theorems

2.1 Manifolds with Ricy) > 1 and Ky < 1

In the 1940’s, S. Bochner devised an analytic technique to obtain vanishing
theorems for some topological invariants (e.g. Betti numbers) on a closed
riemannian manifold, under some curvature assumption. Roughly speak-
ing, if let A*T*M be the bundle of k-forms on a closed n-manifold M, Ay
the Hodge-de Rham Laplacian, then one has the following Weitzenbock
formula;

Apa = D*Da + Ria, a € C™(A*T* M),

where Ry, which is expressed in terms of the curvature operator, is a sym-
metric endomorphism of A¥T*M, and D* is the formal-adjoint of the dif-
ferential operator D : C°(A*T* M) — C(T*M ® A*T*M). Since Ay is a
elliptic and M is closed, from Hodge-de Rham Theorem it follows that the
dimension of the kernel of Ay is equal to the kth Betti number by(M) of

25
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M. Thus if Ry is positive everywhere, then b,(M) = 0 (cf. [BY]). S. Gallot
and D. Meyer [GM] proved that if the manifold M has positive curvature
operator, all the Betti numbers (M) =0,1 <k <n—1.

In this section we will establish a vanishing theorem for homotopy

groups which generalizes the Sphere Theorem.

Theorem 3 Let M be ¢ complete and 3imply connected manifold of di-
mension n > 3 whose sectional curvature and kth Ricci curvature, for some

1<k <n—2, satisfy
) 1
R%C(k) > 1 and Ky < 1.
Then mi( M) =0 for 1 <:i<n-—k.

Corollary 1 Let M be a complete and simply connected n-dimensional

manifold whose sectional curvature and Ricci curvature satisfy

Ricyr > 6(n) and Kp <1,

3

where §(n) = £ — S(TB—T)_’ for even n, and 6(n) = 2

— mg—_n: for odd n. Then
M 1s homeomorphic to the n-sphere S™.

The Sphere Theorem says that, if M is a complete, simply connected
n-dimensional manifold with i— < Ky <1, where K, is its sectional cur-
vature, then M is homeomorphic to the n-sphere S™ (cf. e.g. [CE] for
references). If one assumes that a complete riemannian manifold M has

Ricci curvature Ric{M) > 1 and sectional curvature Ky > —K for some

K 2 0, then, whenever its volume is close to the volume of the unit sphere,
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M is topologically similar to the sphere. See [S] and [I] for further informa-
tion. We note that it is necessary to assume a lower bound for the volume
in both [S] and [1].

We begin with Hartman’s theorem [H]

Theorem 4 (Hartman). Let M be a complete and simply connected man-
ifold of dimensionn > 3. If Kpy <1 and Ricgn_g) > %, then the injectivity
radius of M satisfies inj(M) > =.

Let N be any compact n-dimensional riemannian manifold with bound-
ary ON. For any 1 < k < n—1, let Ay : 9N — R be the function on
ON, Ak(q) = the minimum of all sums of any k eigenvalues of the second
fundamental form h¢ of ON at ¢ with respect to the outward-pointing unit
narmal £. 9N is called k-convex if Ay > 0 on ON. H.-Wu [W2] proved the

following

Theorem 5 If an n-dimensional compact riemannian manifold N with
Ricry > 0 has k-convex boundary for some 1 < k <n —1, then N has the
homotopy type of a CW complez obtained from ON by attaching a finite

number of cells each of dimension > n —k+ 1.

J. Sha in his dissertation [SH] independently proved a weaker statement
than Theorem 5. He assumed Ax > 0 on &N and nonnegative sectional
curvature in N. But he also proved the very interesting result that the
converse of this weaker statement in fact holds.

The following lemma tells us when does N = M \ B, have k-convex

boundary.
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Lemma 7 Let M be a complete, simply connected riemannian manifold of
dimension n>3 with sectional curvature Ky < 1 and Ricyy > § > % for
some 1 < k < n—1. Suppose that inj(M) > n. Then, M \ B(p,r), for

e < r < 7, 13 @ compact manifold with k-convez boundary.
2/5 ! Y

Proof:

Notice that M \ B(p,r) has smooth boundary for all r, ﬁg <r < w Let
h¢ be the second fundamental form for the boundary of M \ B(p,r) with
respect to the outward-pointing unit normal ¢, i.e., he(z,y) = (V,£€,y), for
z,y € TIB(p,r), where V is the Levi-Civita connection of M\ B(p,r). Let
g be any point on the boundary of M\ B(p, r) and 4(¢) the normal geodesic
from p to ¢ with ¥(r) = —¢. Since h.¢ = —h; is the second fundamental
form for the boundary of B(p,r) with respect to the outward-pointing unit

normal to B(p,r), by Lemma 1 in §1.1 one has

he(J(r), I(r)) ] T OF - (RUI@), ¥ENA(@), T}t (2.1)

for any Jacobi field J(#) along y(¢) with J(0) = 0 and J(#) L#(t). For any
k orthonormal vectors zq,- - -, 2y in T,0B(p,r), we can take k Jacobi fields
Ji,+ + -, Ji along (1) with J;(0) = 0, Ji(r) = «; and J;(#)L4(¢),1 < i < k.
Let Wi(t) = f(3)Xi(t), where X,(t) is the parallel vector field along v(t)
with Xi(r) = @; and f(#) = 222 1t follows from (2.1) and the basic index
lemma [CE] that for o <1<,

S he(w) = ~ 3 [ (O - (RO, AON, HON

g1 =1
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koo
> =3 [HIWUOP - ROV, 51D, Wi o))

= =k [{FOF - 3 SR, 4O, X0} £(2)
> —k [(FOF - 65 (1))

or
= Eesver
Sin \/Sr

> 0.

Therefore M\ B(p, r) has k-convex boundary for o <71 <inj(M). QED,

Proof of Theorem §: Since M has Kpr <1 and Ricgy > 6 > + for some
constant 6, it follows from Theorem 4 and Lemma 7 above that inj(M) > «,
and M \ B, is a compact manifold with k-convex boundary for s <<
7 < inj(M), where B, is an open r-ball on M. From Theorem 5 we
conclude that M \ B, has the homotopy type of a CW complex obtained
from 8B, &~ 57!, the (n — 1)-sphere, by attaching a finite number of cells
each of dimension > n~%&+1. Thus M has the homotopy type of a relative
CW complex obtained from B, ~ D", the n—disk, by attaching a finite
number of cells each of dimension > n — k 4+ 1. By Theorem 6.1 in [Sw],
one has m(M, B,) = 0 for 1 < ¢ < n — k. Consider the following homotopy

exact sequence (cf. e.g. Theorem 3.9 in [Sw]):

e —3 ﬂ'n_k(B,.) — Tl'n_k(M) — Wn——k(Ma Bf‘) -
e ’ﬂ'l(_B,r) — Wl(M) — WI(M, B.r) — WO(BT) — WD(M)

Since m;(B,) = n;(M,B,) = 0for 1 <n — k < n —1, one obtains

(M) = 0. for 1 <n—k.
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Q.E.D.

Proof of Corollary I: For n = 2 Corollary 1 is obvious. For n = 3

Corollary 1 follows from Hamilton’s work [HA]. Thus, from now on we

assume that n > 4. Note that Ricy > 6(n) with Ky < 1 implies that
Ricgy > & for k =

n

n—[2 < n—2 It follows from Theorem 3 that
m(M)=0for1 <i< [3]. By the basic argument in algebraic topology,

one can conclude that M is homeomorphic to the n-sphere S,

Q.E.D.

Following examples show that Theorem 3 is sharp.
Recall that any n-dimensional (normalized) symmetric space of rank
one, M, has the following property [Ch] that there is a number 0 < A < n—1

such that for any unit vector z & T,M, the linear mapping R, := R(- z)x

L

z+ — ' has A eigenvalues 1 and n — 1 — ) eigenvalues 1. Xs do not

depend on the choices of z € T,M and p € M. In this sence we call M is of
type A. The classification theorem says that the only possibilities for A are
A=0,1,3,7 n—1. The corresponding riemannian symmetric spaces are
real projective spaces RP™, complex projective spaces CP" quaternionic
projective spaces HP™, Caley projective plane CaP?, and n-sphere §™. The
non-trivial examples for Theorem 3 are quaternionic projective spaces and
Caley projective plane. Notice that HP™ and CaP? are simply connected.

One can check that M = HP" with a normalized metric has

Ky
(k—n+4
4k ’

Ricgy > + k>n—4,

B =
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By Theorem 3, one obtains that m;(M) = 0, for : < 3. The CW-structure
on M = HP" shows that my(M) £ 0.
One can check that M = CaP? with a normalized metric has

KM S 17
: 1 3k—n+8)
Ricyy > Z+T’ k>n—28.

Notice that n = dim M = 16. By Theorem 3, one obtains that m;(3M) = 0,
for + < 7. Clearly, mg(M) # 0. Otherwise M is homeomorphic with the
n-sphere by the generalized Poincaré conjecture. Thus Theorem 3 is sharp.

Corollary 1 is also sharp in dimensions n = 4, 8 and 16. With stan-
dard metrics, CP? has max Kp = 1 and min Ricyy = 1 = §(4),HP? has

max Ky = 1 and min Ricy = 2 = §(8) and Cayley projective plane CaP?

has max Ky = 1 and min Ricy = £ = §(16).

2.2 Open Manifolds with Ricgy > 0

It was proved by H. Wu in [W1] that if a complete open n-manifold has
nonnegative sectional curvature everywhere and positive sectional curvature
outside a compact subset, then it is diffeomorphic to R”. This is a slight
generalization of the Gromoll-Meyer theorem [GM1] which states that every
complete open n-manifold of positive sectional curvature is diffeomorphic to
R™. The Gromoll-Meyer theorem does not hold for complete open manifolds
of positive Ricci curvature. However R. Schoen and S. T. Yau proved that
any complete open 3-dimensional manifold of positive Ricci curvature is

diffeomorphic to R® (see [SHY] ). Since Busemann functions are not proper
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in general, it is difficult to obtain some topological obstructions for complete
open manifolds with positive or nonnegative kth-Ricei curvature.

Now let M be any complete open n-manifold with nonnegative kth Ricci
curvature everywhere and positive kth Ricci curvature outside a compact
subset. It was proved by Wu [W2] that for any ray ~ issuing from a point
p € M, the associated Busemann function B, -belongs to C{k+ 1) on M.
Thus B, = sup B, also belongs to C(k+1). If B, is proper, by Proposition
1in § 1.2 and Morse theory one obtains that A has the homotopy type
of a CW complex with cells each of dimension < k. However, as one
can see, this conclusion is not sharp. Wu [W2] proved that if in stead of
B, is proper, M has nonnegative sectional curvature outside a compact
subset, then M has the homotopy type of a CW complex with finitely
many cells each of dimension < £ — 1. In this case M must have finite
topological type. Thus most of examples of positive Ricci curvature do
not satisfy this condition for sectional curvature. Using the techniques in
[SH][W2], in fact one can establish a sharp vanishing theorem for complete
proper manifolds of positive kth Ricci curvature (Theorem 6). Then a more
adaptable condition (diameter growth) for complete n-manifold of positive
kth Ricci curvature implies the same vanishing theorem for CW structure

(Theorem 7).

Theorem 6 Let M be a complete proper open n-manifold. Suppose that
for some 1 <k <n—1, the kth-Ricet curvature is nonnegative everywhere

and positive curvature outside a compact subset. Then M has the homotopy
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type of a CW complex with cells each of dimension < k —1. In particular,
H(M;Z)=0, fori>k.
Recall that a complete open n-manifold M is proper if and only if for

some point p € M, the family of functions b,(z) =t —d(z,0B(p,1)), t > 0,

sub-converges to a proper function b, on M (see § 1.4).

Corollary 2 Let M be a complete proper open n-manifeld of positive Rices
curvature. Then M has the homotopy type of a CW complez with cells each
of dimension <n —2. In particular, H,_(M;Z) =0,

By Theorem 2 in §1.4 and Theorem 6 above, one has the following

Theorem 7 Let M be a complete open n-manifold. Suppose that for some
1 <k < n-—1, the kth-Ricci curvature is nonnegative everywhere and
positive curvature outside a compact subset of M. Assume that for some

peM,

limn sup diamp(0B(p,r)) _

Ttoo r

¢ < 1.
Then M has the homotopy type of a CW comples with cells each of dimen-

ston <k — 1. In particular,
H(M;Z)=0, for i>k.

Corollary 3 Let M be a complete open n-manifold of positive Ricci cur-
vature . Suppose that for some p € M,

. di oB

lim sup iamar(0B(p, )

r+oo T

=(<1.

Then M has the homotopy type of o CW complez with cells each of dimen-
sion < n — 2. In particular, H, ;(M;Z)=0.
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Remark 3 That H,(M;Z) = 0 is valid for every open n-manifold. More
precisely, on any open n-manifold M, one always can construct a proper
Morse function f such that its index, ind (f), is not greater than n — 1 at
every critical point of f. Then by Morse Theory one obtains that M has
the homotopy type of a CW complex with cells each of dimension < n — 1.
In particular, H,,(M;Z) = 0 (cf. e.g. [Ph]).

Theorem 6 should be viewed as a generalized version of the Gromoll-
Meyer’s theorem [GM1]. Corollary 2 is an analogue of a vanishing theorem
for closed manifolds which says that any closed n-manifold M of posi-
tive Ricei curvature satisfies H;(M;R) = Hya(M;R) = 0(cf. eg. [BY]).
Recently, for all n > 4, Sha-Yang [SY1,2] constructed n-dimensional open
manifolds of infinite topological type, on which the metrics can be chosen to
be complete proper, and of positive Ricei curvature. Topologically, these
examples are obtained by removing infinitely many disjoint balls DIt?
t == 0,1,-++,+00, in R™! and then gluing S*—m=1 x (R™+! \ 1152, D
with D" x [, S™ together by the indentity maps along the correspond-
ing boundaries, where 2 < m < n— 2. Let M, denote the resulting mani-
folds. Clearly, the singular homology groups H,,_, (M, —3; Z) are infinitely

generated. In this sense, Theorem 6 is sharp.

In [An] using different methods, M, Anderson proved that if M is a

complete open n~manifold of nonnegative Ricci curvature, then the first
Betti number b, (M) = dim H 1(M; Q) < n— 1. For further information see
[An].

We start with the following
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Proposition 3 Let M be a complete open n-manifold. Suppose that for
some 1 < k < n—1 the kth-Ricci curvature nonnegative everywhere and
positive outside a compact subset, Assume that for some point p € M, the
generalized Busemann function b, is proper. Then there ezists a function
x € C*(R) such that x 0 b, is a proper function and X 0 b, belongs to C(k)
on M.

Proof:

Let @ = mingepr by(z). Let R > a be a number such that such that Ricry >
0 on {z € M; b,(z) > R}. Clearly, there is a positive continuous function

H(r) on [a, +00) such that
Ricgy 2 H(r) on {zeM;r—~a+R<by(z)<r—a+2R).

Take #(r) == ma.x{H—(lfm; 2(2R — a)}. Let K(r) be a positive continuous

function on [¢, +oc) suth that
[Kul < K(r), on {x € M; b(z)<r+tr)}.

Take a positive continuous function C(r) on [a, +00) such that the following

quadratic form is nonnegative
(C(r)—-;—kﬂ(r)R)az—%(k—l)f((r)t(r)(az—l—élaﬂ)-l-%kH(r)Rﬁz >0. (22)

For example, one can choose C(r) = m%(“r)_ﬂ(%(k — DK (r)t(r)+1kH(r)R).
Set

X = [ ‘exp( [ o(ryaryds +
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It is easy to check that x is of class C* and has the following properties:
(i) X'(r) > 1 for all r € [a, +-00)
(ii) x"(r) = C(r)x'(r) for all r € [a,4oc)
Clearly, (i) above implies x o b, is also proper. We claim that y o b, belongs
to C(k) on M.
From Lemma 6 in § 1.4 it follows that for each point ¢ € M, there exists

a ray o,(t) issuing from ¢ such that
bg’t(w) = bp(q) +t— d(‘t: C’q(t))’ t >0,
supports b,(z) at ¢, and
bp(ag(t)) = bp(q) +t, t>0.

Fix any point ¢ € M with b,(¢) = r. For ecach v € T,M, let v(s) be
the parallel vector field along o,(s) such that v(0) = ». Then define 8 :
T,M x [0,t(r)] = M as '

(v, s) = exp, (1 — E(irj)v(s)

Set
s =r i)~ [ 120, 5)las
Clearly, f? o exp,' supports b, at g. For any orthonormal set {e1y .., €}
in T, M, let e;(s) be the parallel vector fields along a,(s) such that ¢;(0) =
ei, 1 =1,..,k. Let o and § be nonnegative numbers such that a? + 82 = 1
and o? = Ele(ej, &,(0)}*. By Lemma 2 in § 1.1, one has
k

> _(Blej(s),64(s))d4(s), e5(s)) =

=1

—(k - 1) max ’K"n,ﬂIﬁ,q(s)({}z2 + 4&,6') + kmin RiC(k)laq(s)ﬁ2.
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Notice that 1 —

52 1, for s € [R—a,2R — a]. Thus

k k
C(r) Z_; le; f21° + ;szf(ej, e5) =
k k
cmg@m@ﬂq%gaﬁ%mw% %

#32 [70 = PR (oo

> C(T)(_I2 — t(—i-j
—(k - 1)] (1— ))2ma}c |y |(? + 4af)ds
+k/0()(1 — t( )) min Ric,5°ds
> C(r)a® —~(—)-
5 t{r) 8 o
_(k—l)K(r)IEf +1a) [ (1 =)
+RH(r)F /R a- t( ))st |
> C(r)a? — Tlﬁ-kﬂ(r)R _ g(k ~DE(r)(r)(e? + 4aB) + ikﬂ(fr)Rﬁ?

1
> — .
> 16kH(r)R>0

The last inequality above follows from (2.2). Clearly,

k k k
2 Vixo f)eje) = [O(r) Z lei £217 + 22 V2 i es, )X © £7)(a)

-""f’fH (r)B(x" 0 b)(9)

= -1—6kH(r)Rx'(r) > I—ékH(T)R.

v

Similarly one can check that there is a positive continuous function A(r) on
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[a,+00), for example, A(r) = max(C(r), -L; + LK (r)t(r x'(r), such that
t(r} 3
IV¥(x 0 f1)(v, 0)] < A(M)]. v e T, M.

It follows from Lemma 4 in §1.2 that there is a positive continuous
function e(r) on [a,+00) depending only on kH (r)R and A(r), such that
for all vector set {vy,- -, v} in T, M with i, v;) — 6551 < e(r),

k
VA0 f)(03005) 2 g kH(R.
‘=1
Since x o f? supports y o b, at ¢ € M , one obtains
k 1 |
2 Clxob)(gv) > 33 H(r)R.
i=1
By definition, x o b, belongs to C(k) on M. Q.E.D.

Proof of Theorem 6: Since M is proper, by Proposition 2in § 1.4 , there
is a point p € M, such that the family of functions b, =t - d(-, 0B(p, 1))
sub-converges to a proper (generalized) Busemann function b,. Then it
follows from Proposition 3 above that there is a function x € C*R) such
that x o b, is proper and belongs to C (k) on M. By Proposition 1 in §1.2,
there is a smooth proper Morse function F which belongs to C(k) on M.
Clearly, the index of F at each critical point éatisﬁes that ind.(F) < k-1.
'Then Theorem 6 follows from the standard Morse theory [M2]. Q.E.D.

It 1s a long time conjecture that any complete open n—manifold of

nonnegative Ricei curvature admits a sequence of compact domains & C

2 C «-- such that M = UF_,Q; and each €; has smooth boundary with




39

positive mean curvature. This conjecture is affirmative in case that M is a
complete proper open manifold of positive Ricei curvature. In fact, we will

prove the following

Proposition 4 Let M be o complete proper n-manifold of positive kth
Rices curvature for some1 <k <n—1. Then M admits ¢ sequence of com-
pact domains with smooth boundary Q; C Qy C --+ such thét M=U2,Q

and each §; has k-convez boundary.

Proof:

Since M is proper, it follows from Propositions 2 and 3 that there is a
proper smooth function f : M — R such that f belongs to C(k) on M.
Choose a sequence of numbers a; < a3 < -+ — 400 such that each «; is a

regular value of f. Set
Q={zcM; f(z)<a)}.

Then each §); has a smooth boundary 89;. Let {e1, -+, e} be any orthonor-
mal set in T,00;, ¢ € 0%;, and {&1,--+,&,} be any extension of {e1, -, ex}
to a set of tangent vector fields to 9Q; near ¢. Since f belongs to C(k),
one has 3°F | V2f(ei,e;) > 0. Notice that PN Vif(eie) = X8 {é(&:f)
~(Ve@)f} = — b y(Vad) f. Thus

k
— E(Vg‘.é’i)f > 0.
=1
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Let { be the outward-pointing unit normal at ¢ € 8Q;. Then the second

fundamental form h¢ at ¢ satisfies

k k
Z;hg(e;, 6;) - - E(Vé';éh 6)
i i=1
1 k
f— ——m ;(Végéﬁ: grad f)
1 &
= —m E(véie‘i)f > 0.

i=1

Thus Q; has k-convex boundary. Q.E.D.

Corollary 4 Let M be complete open n—manifold of positive kth Ricei

curvature for some 1 <k <n — 1. Suppose that for some point pe M,

fim sup diamp(OB(p,r)) _

r+oo r

¢ < 1.

Then M admits a sequence of compact domains &y C €y C -+« such that

M =Uz,Q; and each Q; has has k-convez smooth boundary.




Chapter 3

Finite Topological Type

Theorems

3.1 Upper Bounds of the Betti Numbers

Let M be an n-dimensional connected closed n-manifold with sectional
curvature Kps > —K for some constant K > 0, and diameter diam(M) < d.
Then M. Gromov [G1] proved that the total Betti numbers of M (with
respect to any field F) satisfies

3 (M) < O VR,

k=0
where C(n) > 1is a constant depending only on n = dim M. In particular,

if M has nonnegative sectional curvature, then the total Betti numbers of

M satisfies
3" b(M) < C(m)
k=0

41
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with the same constant C'(n) as above. Examples of Sha and Yang [SY1,2]
show that this estimate does not hold if one assumes that M satisfies
Ric(M) > —H instead of Ky > —K . In this case, however, one can
prove that the first Betti number of M ( with respect to the field R ) sat-
isfies b;(M) < C(n)l""/ﬁd(see [G2]). For further information see [G3] [Li]
[B].

The purpose of this section is to give an upper estimate of the Betti
numbers for certain closed riemannian manifolds with curvature bounded
from below, while the diameter can be arbitrarily large. The case of com-
plete open manifolds with nonnegative Ricci curvature is also discussed.
Before we state the main results, we would like to introduce a new concept
of width for closed riemannian manifolds.

Let M be a complete riemannian manifold and let d = diam(M) denote

the diameter of M. For points p,¢ € M of maximal distance, set
Wp,q = max{ sup diamy(8B(p,r)), sup diamu(OB(q,r))}.
0<r<d 0<r<d
The width of M, w(M) , is defined as
w(M) = inf w,,,
where the infimum is taken over all points p, g € M of maximal distance,

Theorem 8 Given n, there 1s o constant C(n) > 1 depending only on n
such that if a closed n-manifold M with sectional curvature Ky > —K, for
some constant K > 0, satisfies VEKw(M) < 3, then the total Betti numbers
of M satisfies

z b(M) < C(n).




Let H,(X;F) denote the kth singular homology group of a subset X 1n
a riemannian manifold M, where F is any fixed field. For any two subsets |
1: X CY CM,let b(X,Y) denote the rank of 4, : Hy(X;F) — H(Y;F),
and b (X) = b(X, X) = dim Hy(X;F). Notice that for subsets X ¢ X ¢
Y cYin M, b(X,Y) < bk()z',l/"’). In [G1], Gromov proved the following

remarkable theorem. One can also refer to [A] for the details.

Theorem 9 (Gromov). Let M be an n-dimensional complete riemannian
manifold with sectional curvature Ky > —1. Then there is o constant i
C(n) > 1 depending only on n such that for any 0 < & < 1 and any

bounded subset X C M,

E bk(Xa UsX) S (1 + d?:amM(X)/g)nC(n)1+diamM(X)’
k=0
U X denotes the e-neighorhood of X in M.

In [GS], Grove-Shichama introduced the concept of critical points of
distance functions, which was used by Gromov [G1] to prove Theorem 9.

To prove Theorem 8, we consider points p, ¢ € M of maximal distance
d = diam(M), and the functions (,(z) : = 1{d(p,z) — d(q,z) + d} and
Co(2) : = 3{d(g,2) — d(p,x) +d}. A point z € M is called a reqular point
for ¢, ¢, (or simply, p,q) if there exists v € T, M such that

(U: J(O) - T(O)) > 07

for all minimal geodesics & and 7 from x to p and ¢, respectively. A non-

regular point is calle a critical point. It is easy to check that at any critical

point z for p,q, there are minimal geodesics ¢ and 7 from z to p and
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g, repectively, such that Z(¢(0),7(0)) < Z (¢f. e.g. [E]). Notice that
0 < G(2), () < d, for z € M. For 0 < r < d, by D(p,r) (vesp. D(q,r))
we denote the subset {z € M; ((z) <r} (resp. {z € M; ((2) <r}.

Lemma 8 (Isotopy Lemma). If 0 < r| < ry < d and if D(p,r,) \ D(p,r1)
contains no critical point for p,q. Then D(p,r2)\ D(p, ) is homeomorphic
to OD(p,r) X [r1,73], for any v, ri <r < r,.

The idea of the proof can be found in [GS][G1].

Lemma 9 Let M be a closed n—manifold with sectional curvature Ky,
> —1 and d = diam(M) > 20. Let p,q € M be any points of mazimal
distance d. If wy, < %, then D(p,d —5)\ D(p,5) = D(q,d —5) \ D(q,5)

contains ne critical points for p, q.

Proof:

Our proof is based on the idea of [AG] by applying Toponogov’s Theorem
to a thin triangle. Assume the contrary that D(p,d — 5) \ D(p,5) contains
a critical point x for p,g. Then there are minimal geodesics ¢ and 7 from
& to p and g, respectively, such that Z(¢(0),7(0)) < Z. Take a minimal

geodesic v from p to g, and let

€pg = Igé%}c{d(p, z) +d(g,z) — d}.

It is easy to see that for z, € M with e,, = d(p, z,) + d(q,z,) — d,

Cpg = d(P, 3"0) - d(p, 7(d - d(Qv 3"0))




A

d(ﬂ&'o, ")’(d - d(Q: $o))
< diampy(0B(q,d(q,z,)))

AN

Applying Toponogov’s Theorem (cf. e.g. [CE]) to the triangle formed by

o, 7 and ¥, one obtains

coshd < cosh d(p, z) cosh d(q, z).

Thus
2 < 4e %coshd
< 4coshd(p, ) coshd(q, z)
< et (B} —d) 4 2(Ly(z)—d) e
< ef+3e710 <2,
It is a contradiction. Q.E.D.

Proof of Theorem 8. For the sake of simplicity, we assume that Ky >
—1. Let C(n) be the same constant as in Theorem 9. Let p,q € M be any

points of maximal distance d = diam(M) such that w,, < 1.

In case of d < 20, it is done by Theorem 9, i.e.,

i: bk(M) = i bk(B(pa 20)1 UIB('P% 20)

k=0
< 41*C(n)*.

From now on we always assume d > 20. It follows from Lemma 9 that

D(p,d —5)\ D(p,5) = D(q,d — 5) \ D(g,5) contains no critical points for

Wpg- NER)E
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. 1 g
P, ¢. Since wy, < 3, one has

D(P1 5) C U1D(P,5) C D(p, 7)5
D(¢,5) € UiD(g,5) C D(q,7),

and
9D(p,7) C U:18D(p,7) C D(p,9) \ D(p,5).
Notice that diampy(D(p,5)), diamp(D(q,5)), diamu(dD(p,7)) < 20.
From Lemma 8, one concludes that
b(D(p,d—5)) = b(D(p,5))
bk(D(pa 5)) D(pa 7))

]

< bk(D(p: 5)7 UlD(p) 5))
< 21"C(n)*.
Similarly,
b(D(g,d ~ 5)) = bi(D(g,5)) < 21"C(n)*,
and

bi(D(q,d —5)\ D(p,5)) = b(dD(p,7))
b(0D(p, 7), D(p,9) \ D(p,5))
bk(aD(pa 7)9 Ulap(p1 7))

21"C(n)™.

IA -l

(A

Let Ay = D(p,d —5) and A3 = D(gq,d — 5). Notice that A; U Ay = M and
A1 N Az = D(p,d —5)\ D(p,5). The Mayer-Vietoris sequence,

~ Hy( A1) © Hi(Az) — Hi(A1UAy) — Hy 1(A1 N Ay) —
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leads immediately to the estimate

bu(M) < b(D(p,d—5)) + b(D(q,d — 5))
+b-1(D(p,d — 5)\ D(p, 5))
< 3-21"C(n)*.

This completes the proof. Q.E.D.

Remark 4 Let M be a closed riemannian manifold. The excess of M ,

e(M), is defined as

e(M) =infe,,,

where the infimum is taken over all points p,¢ of maximal distance (cf.

[GP]). Clearly, by (3.1), one obtains
e(M) < w(M).

The same argument as above shows that there is a constant C(n) > 1,
if a closed n—manifold M with sectional curvature Ky > —K for some
constant K > 0, satisfies
1
\/I_{ e(M ) < —2-,
then
Y h(M) < C(n).
k=0
The author would like to thank Professor Peter Petersen V. for pointing

out this to him. The above argument for Theorem 8 is also due to him and

greatly simplies the original proof of the author.
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Corollary 5 Given n, K > X > 0, ihere are constants C(n) and e(n)(=
207") depending only on n such that if a closed n—manifold M satisfies the
bounds : Ricyy > A\, Kye > —K , and

(%)Iﬂi(w ~ VAdiam(M)) < e(n),

then
];bk(M) < C(n).

Proof:

The argument in [E] shows that there is a small number p,(= 4™} such
that if |
T — \/Xdz'am(M) < Phns

then
VEe(M) < 10 %(w — diam(M)):.

Then Corollary 5 follows from Remark 4 above. Q.E.D.

Remark 5 K diam(M) can be arbitrarily large, thus Theorem 9 above
does not give a universal bound (depending only on dimension) for the total

Betti numbers of M.

In the rest part of this section, we will study the “topological growth”

of the geodesic balls in complete open manifolds of nonnegative Ricei cur-

vature. We will prove the following
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Proposition 5 Let M be a complete open n-manifold and let p € M.
Suppose that M has Ricci curvature Ric(M) > 0 and sectional curvature
Ky 2 —1. Let b(p,r) denote the rank of i, : H{(B(p,r);F) - H(M;F).
Then bi(p,r), 0 <i < n, satisfy

i bi(p,r) < C(n)(1++)", r>0,

1=0

where C(n) is a consant depending only on n.

Proof:

Let B be any ball in M with radius r and let p > 1. Denote by pB the
concentric ball of B with radius pr. By Theorem 9, there is a constant
Ci(n) depending only on n such that for all balls B with radius r < 1 in
M,

3 b(B,5B) < Cy(n). (3.2)

=0
The rest part of proof will rely on the following Topological Lemma which

was proved by Gromov [G1].

Lemma 10 ([G1][A]). Let M be a complete riemannian n-manifold and
letp € M. For any fized numbersr > 0 and r, <771, let B? = B(p;, 1.),
7 =1,--+, N, be a ball covering of B(p,r) with p; € B(p,r). Let Bf =7+ BY,
k=0,---,n+1. Then

2_b(B(p,r), B(p,r + 1)) <

i=0

(e —1)Nt" sup{be(ijBf); 0<k<n, 1<j5< N},
=0

where t 18 the smallest number such that each ball B;T‘ tntersects at most t

other balls B}“ .
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Take r, = 771, and let B(p;,1r,), j = 1,-+-, N, be a maximal set of
disjoint balls with p; € B(p,r). Then BY := B(p;,r,), j = 1,---,N, is a
covering of B(p,r). By Bishop-Gromov’s volume comparison theorem (cf.

e.g. [G3]), one obtains
N<(1+ 4;’":)’1 < AP g p)n,
Let Bf = B k=0, ,n+ 1. Assume that B} intersects ¢ other balls
Bj. By the same volume comparison argument, one obtains
t <5

Since each ball B} has radius < 1, it follows from (3.2) and Lemma 10
above that

> h(B(p,), M) < S B(B(p,r), Blp, 7 +1)) < Cl)(1 41"

=0

Q.ED.

This proposition gives a topological obstruction to complete open mani-
folds M with nonnegative Ricei curvature and sectional curvature bounded

from below.

3.2 Open Manifolds with K;; > - K

M. Gromov [G4] proved that for a complete manifold M of sectional cur-
vature —1 < Ky < 0, if M has finite volume, then M is diffeomorphic
with the interior of a compact manifold with boundary, We will prove the

following related result.




Theorem 10 Let M be a complete open riemannian manafold with sec-
tronal curvature Ky > —K for some constant K > 0. Suppose that M has
finitely many ends and for some p € M,

I (p,r) < In2
imsup w » T —r=
et M) S TR

Then M is homeomorphic to the interior of a compact manifold with bound-

ary.

Remark 6 Theorem 10 above holds if instead of wa(p,r), M has the same |
growth as above for diam(p, r) which is defined in [AG].

Remark 7 In Theorem 10, the upper bound ln 2 /v K must depend on K.
Otherwise the eonnected sum of infinitely many copies of $2 x §? provides

an easy counterexample.

Given a point p in a complete riemannian manifold M , a point ¢ # p
is called a critical point of d,, if for any unit vector v € T,M there exists a
minimal geodesic « issuing from ¢ to p such that 4(0) and v make an angle

at most 3. We have the following version of Gromov’s isotopy lemma [G1].

Lemma 11 (Isotopy Lemma) Let M be a complete open riemannian n-
manifold. Suppose that for some point p € M, there is no critical point of
dy outside a compact subset of M. Then M is homeomorphic to the interior

of @ compact manifold with boundary.

This lemma was known to Gromov [G1].
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Lemma 12 Let M be a complete open riemannian manifold with sectional
curvature Ky > —K for some constant K > 0, and let P E M be fized.
Suppose that ¢ # p is a critical point of d,. Then

1 I EXP \/K;d(p,q)
VK cosh VEd(p,q)

en(q) = (33)

Proof:

Suppose {b/» } is a subsequence of b, =t —d(-,0B(p,t)), for which b (z) =
t, —d(z, 0B(p, t,)) converges to b,(z) on M. Let z, € 0B(p,t,) be a point
for which d{q,z,) = d(q,8B(p,t,)). Take a minimal geodesic v issuing
from p to x, and a minimal geodesic & issuing from ¢ to z,. Since g is an
a—critical point of dy,, there exists a minimal geodesic 7 issuing from ¢ to p
such that ¢(0) and 7(0) make an angle at most 2. Applying Toponogov’s
Theorem [CE] to the triangle formed by 7,0 and 7, we have

coshvKt, < cosh \/I_(d(q,mn) cosh \/I—{d(p, q)- (3.4)
Multiplying (3.4) by 2 exp vK(d(p, q)—t,), and letting ¢, — 400, we obtain
exp \/I—{d(p, q) < exp \/I_{_ep(q) cosh \/I_{d(p,q). (3.5)

Then Lemma 12 follows from (3.5). Q.E.D.

Proof of Theorem 10: By hypothesis, there is R > 0 , such that

1 1 exp\/f{—r > R.

b) < ] =
wu(p ) \/R . cosh \/I—{:r r
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It follows from Lemma 5 in §1.4 and (1.3) that there is an R, > R, such
that for + € M \ B(p, R,),

1 1y P VEKd(p,z)
n .
VK  coshvKd(p,z)

Thus by Lemma 12 above there is no critical point of d, in M \ B(p, R,).
Then Theorem 10 follows from Lemma 11 above. Q).E.D.

ep(2) < Ly(z) <

3.3 Open Manifolds with Rz'c(k) >0

It is well known result in Riemannian Geometry that any complete open
riemannian manifold with nonnegative sectional curvature has finite topo-
logical type. This is a weak version of a theorem of Cheeger-Gromoll (cf.
[CG1]). This kind of finiteness result does not hold for complete riemannian
manifolds with nonnegative Ricei curvature (c¢f. [SY1,2]). The additional
assumptions are therefore required. Recently U. Abresch and D. Gromoll
JAG] pfoved that for any complete open Riemannian manifold M with non-
negative Ricci curvature and diameter growth of order o(r%), M has finite
topological type, where n = dim M. Here the diameter growth means the
growth of the essential diameter of ends, dipdgm(p,r), which was defined in
[AG].

The purpose of this section is to give a generalized version of Abresch-

Gromoll’s theorem [AG].

Theorem 11 Let M be a complete open riemannian manifold of dimension

n. Assume that the sectional curvature Kp > —K for some constant K >




0, and the kth Ricei curvature Ricpy > 0 for some 2 <k <n—1. Suppose
that for some point pe M,
lim sup E}y—(f)—’ﬂ < C(k)K_ka’:H);
rotoo p(R4T)

where C(k) = [ﬂ%l(-(-k——;%ﬁz)k]ﬁ? Then M is homeomorphic to the inte-

rior of a compact manifold with boundary.

Remark 8 Theorem 11 above holds if instead of war(p,r), M has the same

growth as above for d;c—z{m(p, 7).

Remark 9 In the case of k = n — 1, as noted in [AG] the condition for
diameter growth in Theorem 11 is violated in the Sha-Yang examples of
positive Ricci curvature [SY1]. On these seven dimensional manifolds of
infinite topological type, metrics can be chosen to have diameter growth
of order O(r%). ﬁowever, the condition for diameter growth in Theorem
11 holds for Gromoll-Meyer examples [GM2]. All these examples have

sectional curvature bounded from below.

Proof of Theorem 11. By the same argument as in § 3.2, Theorem 11
follows from Lemma 12 in § 3.2 and Lemma 14 below. Q.E.D.

We start with the following

Lemama 13 Let M be a complete n-manifold whose kth-Ricci curvature
Ricgy 2 0 for some k, 1 < k < n—1. Let p = d(p,") be the distance
function from some point p € M. Let C, be the cutlocus of p. Then p




18 smooth at any poini ¢ € Q,: = M\ C, U {p} and for any orthonofﬁﬁ,dl
set {eq, -, era} in T,M with grad p|, €spanfey, - - - ) €kt1}s .

k4l L
szp(ejaej) < -
j=1 P

Proof:

The proof is quite standard. Let « be the minimal normal geodesic issuing
from p with 4(r) = ¢, r = d(p, q). Foreachu & T, M, let u(t) be the parallel
vector field along v with u(r) = u. Then define a : T,M x [0,7] —» M as

4
a(u,t) = expy ;u(t)

Set
r Oa
= ——(u, t)|dt.
)= [ 1500l
Clearly, p o exp; ' supports f at u = 0, i.e., po exp;tu < f(u), for all u
close to 0, and the equality holds at u = 0. Hence by the second variation

formula [CE] one obtains
Vi) S Ssfenleno |
— (1= (ugrad )~ [[CPR@, OO, u(e)ds
Thus

k-l-]. 0 1 k+1 2 k
D Viplejre) < =(k+1- (ej,grad p)?) = ~

i=1 r =1

Q.E.D.

Using a modification of the argument given in [AG], we prove the fol-

lowing




Lemma 14 Suppose that M has nonnegative kth-Ricei curvature for ébme

2<k<n—1. Then for oll g € M with L,(q) < d(p,q)

ok k Lp(q)k+1
ep(e) < 7 1{2(k +1) " dprg) ~ Lo(q)

¥,

Proof:

For2<k<n—1andr>0,set

or(t) = = 1)1(13 " 1)(t1—k oty 2(]3::_ 1)(t2 —r?)
It 1s easy to check that
8) @(t) + Epl(t) = 1
b) ©i(t) <0 for0<it<r
c) ¢r(r)=0
Now for any point ¢ € M with L,(¢) < d(p,q), fix r and C such that
£:= Ly(q) < r < d(p,q) and C > d(T’;)_T > C, = Wfr_)?ﬁ' Define a

f:B(¢,r) — R as

) = Co,(da,v)) — ex(y), v € Blar),

where e,(y) = d(p,y) — by(y) is the excess function associated with p (see
§ 1.4). We claim that f has no locally Ihaximal point in B{g,r)\ {¢}. We
prove it by contradiction. Suppose f has a locally maximal value at some
point © € B(g,r) \ {¢g}. Take a normal minimal geodesic v issuing from
p to z and a normal minimal geodesic 7 issuing from ¢ to z, By triangle
inequality one can prove that —e — d(,v(¢)) supports ~d(-,p) at x and
—e — d(+, 7(¢)) supports ~d(-,q) at z, respectively. By Lemma 6, there is




a ray o, issuing from z such that b2%(y) := b,(z) + ¢ — d(y, 0,(t)) support
by(y) at 2. Therefore for small & > 0

Fi(y) = Cprle +dlu, 7)) + by(a) + = — dly, 02(2) — & — d(y, ()

is smooth near = and supports f(y) at z. Thus ff is locally maximal at «

and

Vife(v,v) <0, veT.M.

Let {ey, ..., ex41} be arbitraty orthornormal set in T, M such that (d(p, %)),
7(d(g,2)) and 6,(0) is in span {e, ..., ¢g41}. By Lemma 13, one has

k+1
0> Zl Vifilene) > C[1+ ¢ (d(q, m))(d(sc,'r(e)) - d(i a:))]
k
Ralarese (3

Since C > d(p,f;)_r > d(:’m), for # € B(q,r) \ {¢}, the right side of (3.6) is
positive for sufficicently small € > 0. It is a contradiction. Therefore one
concludes that f has no locally maximal point in B (¢,7). Clearly, there is

z € R, (p) such that d(¢,z) = L,(q) < r, where r, = d(p, q). Thus, one has
f(z) = Co(d(q,z)) >0
fIBB(q,r) - _6p|83(q,1*) S 0.

Therefore for any p, 0 < p <f£=Lyq)
< B )
OISy BBun T = 5 S = Crlo) — in ey,
which implies

o)) < min e, +2
(‘LP)

< 2p+ Co,(p).




Letting r — £ = L,(¢q) and C — C, = W’ one obtains
o(e) < min(20+Copup)), 0<p<L.

Notice that h(p) := 2p + Copi(p) satisfies that lim, o+ h(p) = +oo and
lim, ;0 h(p) = +00. Then A(p) has a minimal point p, € (0, +o0).

C, _
' (po) = 24 (e — o) =0, (3.7)

It follows from (3.7) that

Po < ( £k+1) (3.8)

2(k + 1)

and

po < £. (3.9)

By (3.7), (3.8) and (3.9), one obtains

IA

in h
3252, M)

= h{p,)
2k 2
k= Z(k L
2k
F—1f
2% c,

< —1(2(k+ 1)

ex(q)

— %)

A

£k+1)
Q.E.D.

Finally, we give the following applications of Theorem 6 in § 2.2 and
Theorem 11 without proof.




Theorem 12 Let M be a complete open riemannian manifold of dzmcn-

sion n. Assume that the sectional curvature satisfies Ky > —K for some

constant K > 0 and the kih Ricci curvature satisfies Ricpy > 0 for some
2<k<n—1. Suppose for somepc M,

limsup 24 BT) oy -,
r—+400 rpﬁ:’-i-_l)

where C(k) = {ﬂ%ﬂl(—%iﬁ)k]?ﬁ Then M has the homotopy type of o
CW complex with finttely many cells each of dimension < k — 1,

Corollary 6 Let M be a complete open riemannian manifold of dimension
n. Assume that the sectional curvature satisfies Ky > —K for some con-
stant K > 0 and the Ricci curvature satisfies Ric(M) > 0. Suppose that
for somepec M,

lim sup < C(n)k 5

r—++00
where C(n) = {n—z_’f—l(%)”“l]%. Then M has the homotopy type of « CW

complex with finitely many cells each of dimension <n — 2.

wM(pa T)
1




Appendix

Essential Diameter of Ends

In this appendix, we will give the other definitions of (essential) diameter |

of ends for complete open manifolds. First we will give the one defined in 5
[S1]. - l

Let M be a complete open riemannian n-manifold and let pE M.

For any r > 0, let B(p,r) denote the geodesic ball of radius r aronnd p.
Let C(p,r) denote the union of all unbounded connected components of
M \E(p_,r_) For ry > r1 > 0, set C(p;r1,m3) = C(p,r1) N B(p, r3). Let 1 >
a > > 0 be fixed numbers. For any two points z,y € C(p, Br), consider
the distance d,(x,y) = inf Length(¢) between x and y in C(p, Br), where
the infimum is taken over all smooth curves ¢ C C(p, Br) from x to y. Set
diarn(3-NOB(p,r), C(p, fr)) = sup d,(z,y), where z,y € T N 0B(p,r), for ‘
any connected component 3 of C(p; ar, ir) Then the essential diameter |

of ends at distance r from p is defined as
diarn(p,r) = sup diam(X N dB(p,r), C(p, Ar)),

where the supremum is taken over all connected components > of C(p; ar, 2r).

Now we are going to define the essential diameter of ends, dgm(p, r),

which is given in [AG]. With the same notation as above, set d{dem(f:, C(p, r))




= sup, ezd (z,y), for any connected component 3 of 3C(p,'r) Then
dzam(p, r) is defined as '

diam(p,r) = sup diam(E, C(p, 8r)),

where the supremum is taken over all connected components 3" of oC(p,r).

It is easy to see that
d;'—tfm(p, r) <diam(p,r), r>0.

We will prove that the growth of diam(p,r) can control the the behavior
of Busemann functions near infinity. But in general, the growth condition
for dg&"m(p,r) does not give any information about Busemann functions.

In fact we will prove that if M satisfies that diam(p, r)=o(r) as r — +oo,

l.e., :
i diam(p, 1) ~0,
r——4co r

then M has finitely many ends and diam(p,r) == @M(p,r) for sufficiently
large r. Conversely, if M has finitely many ends and satisfies that wp(p,r) =
o(r) as r — 400, then diam(p,r) = wp(p,r) for sufficiently large r

One notices that it is much easier to estimate wy(p,r) than diam(p,r) or

dgm(p, ).

Proposition 6 (Abresch-Gromoll). Let M be a complete open n-manifold,
Suppose that M has nonnegative Ricei curvature . Then for eny point
peM,

diam(p,r) < C(n,a, B)r,

where C(p, a, §) is a constant depending only on n, a, and J.




Proof:

For any connected component ¥ of C(p; ar, ;};fr'), and any two points z,y €

>-NAB(p,r), there is a continuous curve ¢ : |0, 1] = ¥ with ¢(0) =

z and ¢(1) = y. We choose a maximal set of disjoint geodesic balls

{B(8(t:),er)}, centered at ¢ with 0 =4y < - - - <ty = 1, where ¢ = 2=£,

Note that for any k, 0 < k < N,

_Uo B(#(t,er) C B(p, (= + €)r) € B(g(t), (2 4 o))

By the Bishop-Gromov Comparison Theorem one obtains that for some k,

0<k<N,

vol(B(d(t), (2 + )r))
vol(B($(ty), er))

Since the curve ¢ can be covered by {B($(t;), 2er)}Y, C C(p, Ar), one can

N+1< < Ci(n,a, ).

find a piecewise continuous geodesic contained in C(p, pr) joining x and
y with length at most 4eNr < C(n,a,B)r. This implies that d.(z,y) <
C(n, a, f)r, and therefore

diam(p,r) < C(n,a, B)r.
Q.E.D.

Lemma 15 Let M be a complete open manifold with e fized point p. Sup-

pose M ha diameter growth of order o(r), i.e.

i
limsup diam(p,r) _ 0.
r—400 r

Then there 18 R > 0 such that if U is an unbounded connected component

of M\ B(p,aR), then U has the following prperties:




(i) for any r > R, U N 8B(p,r) = >_NOB(p,r) for some coﬁnééie_
component 3 of C(p; ar, 5r), and di(z,y) = d(w,y) for z,y € =NOB(p,r);

(ii) for any r > R, U \ B(p,ar) has only one unbounded connected

component, i.e. U has only one end.

Proof:

Let ¢ < %m.in{l - a, % — 1} be any small positive number. By hypothesis,
there is R > 0 such that

diam(p,r) <er, for r > aR.

To prove (i) we choose a ray « issuing from p such that 7l(aR,+o0) C U.
For any r > R, let 3 , denote the connected component containing y(r) in
C(p; ar,+r). Fixing any r, > R, we claim that U 0B(p,r,) is connected
in C(p,ar, ). For any z € U N 8B(p, 15), since U is connected, there is a
continuous curve ¢ :[0, 1}— U with ¢(0) = ¥(r,) and #(1) = z. For the
simplicity’s sake, let r(t) denote d(p,¢(t)). Note that r(t) > aRfor t €]0, 1],
and r(0) = (1) = r,. Let A denote {t € [0, 1; 8(t) € Xy NOB(p,r(1))}.
Note that #(0) = ¥(r.) € 3. NOB(p,r,) = > rio) NOB(p,r(0)) , which
implies that 0 € A. An elementary argument shows that A is closed and
open in [0, 1]. Therefore 1 € A4, ie. @ = ¢(1) € w1y NOB{p,r(1)) =
Yr, NOB(p,r,). Since x is an arbitrary point in U N 0B(p,r,), thus we
conclude that U N dB(p,r,) = ¥, N8B(p,r,). Clearly, for any z,y €
22, NOB(p,1,), d{z,y) < d, (z,y) < er,. Take a minimal geodesic segment

o joining x and y. Since ¢ < —;-min{l — i — 1}, it is easy to see that
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o is contained in the connected component >, of C(p;ar,, éro). Thﬁé
d(z,y) = d. (2, y).

To prove (ii) we suppose that for some r > R, U \ W has at least
two unbounded connected components, say, Uy and U,. It follows from (i)
that (U, U U,) N 8B(p,r) C U NAB(p,r) is contained in some connected
component of C(p; ar,Lr). Thus U; = U,. This is a contradiction. Q.E.D.

Proposition 7 Let M be a complete open n-manifold. Suppose that for

somepec M, _
him supm = 0.
r—+-}00 r
Then M has finitely many ends. Furthermore
diam(p,r) = wp(p,r) (3.10)

for sufficiently large r. Conversely, if M has finitely many ends and for

some p € M,
lim sup wu(p,7) =0,
r—+400 T

then (8.10) holds for sufficiently large r.

Proof:

Let R be as in Lemma 15, and let {U;}¥. be the set of all unbounded

connected components of M\ B(p, «R). It follows from Lemma 15 (ii) that
M has N ends. Thus wa(p,r) is defined for r > aR. From Lemma 15 (i)

it follows that for r > R, 1 < i < N, there is a connected component 3, of




C(p,ar,Lr), such that U; N 8B(p,r) = T; NOB(p,r), and d,(z,y) :_d(a;:,y)'.' "
for z,y € 3°,N3B(p,r). Thus

diam(d_NOB(p,r),C(p, Br)) = diamp (U; N OB(p,r)).
Therefore by definition,

diam(p,r) = wy(p,r), for r> R.

We omit the proof of the last statement. Q.E.D.

Lemma 16 Let M be a complete open manifold with o fized point p. Sup-
pose that

lim sup 0.

r—oo

Then there is an R > 0, such that for any z € M\ B(p, R),

diam(p,r)
. =

L(z) < diam(p,d(p,)), (3.11)

Proof:

Let It be as in Lemma 15. it is easy to see that there are finitely many
bounded connected components {V;}X, of M \ B(p,«R) , such that R; :=
SUp,ey; d(p,z) > R. Let R = maxi¢i<k By > R. Then for any z € M \
E?(Tﬁf), there is an unbounded connected component U of M \m,
such that @ € U. Let 7 be a ray emanating from p such that 1l(aR,00) C U.
Let r, = d(p,z) > R. Lemma 15 (i) shows that

Un 63(]), "'"o) = Z maB(pa TO)!
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for the connected component ¥ of C(p,ar,, 1r,), which contains (o).

Thus

LP("‘U) = d(wa Rro(p))
d(x,7(r.))

< diam(p,r,) = diam(p,d(p, z)).

IA

Q.E.D.

Theorem 13 Let M be a complete open manifold. Suppose that for some

peEM,

p
lim sup S4B T) _ o
T

F—roo

Then
i 28y B@)
dpw)—oo d(p,x)  dlp)—oo d(p, z)

In this case, Busemann functions B, and b, are proper. Thus M is proper.

Proof:

Theorem 13 follows from (3.11) and (1.2). Q.E.D.
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