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Abstract of the Dissertation

Spaces Of Real Algebraic Cycles And
Homotopy Theory

by
Tsz Kin Lam

Doctor of Philosophy
in
Mathematics

State Universtiy of New York at Stony Brook
1990

In this thesis we study the spaces of real algebraic cycles on a real
algebraic subset X C PP by using the construction of Lawson on Chow
varieties. Qur main result is an ‘Algebraic Suspension Theorem’ which in
the fundamental case when X = B! provides a cycle-theoretic construction
of the ‘universal total Stiefel-Whitney class’. Tn analogy with the works of
Lawson-Michelsohn, Friedlander-Mazur, we study the algebraic join opera-
tion on these cycle spaces which leads to interesting relations between these
spaces and Whitney duality, and to the construction of a bigraded module

associated to X.
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1 Introduction and Statement of Results

The study of algebraic cycles on an algebraic variety is one of the central
subject in algebraic geometry. Much attention has been devoted to the in-
vestigation of various ‘adequate equivalence relations’([FW], [HR], [K51,2],
[SP2]) on the group of algebraic cycles and the invariants associated to
them. Recently, a new theory based on the homotopy groups of the Chow
varieties(i.e., the components of the algebraic space of effective algebraic
cycles on a complex projective variety) was discovered through the founda-
tional work of Lawson([LB1,2]). The new invariants obtained in this theory
are called the Lawson homology groups by Friedlander, who has also suc-
cessfully generalized Lawson’s result to varieties over an algebraically closed
field of arbitrary characteristic. The works of Friedlander([F1,2]), Friedlan-
der and Mazur([FH]), and Lima-Filho([LFP]) have provided foundational
properties and some interesting examples of this homology theory.

In ([LM]), Lawson and Michelsohn studied the complex join operation
on algebraic cycles and showed that the spaces of algebraic cycles on B have
interesting relations with Bott periodicity and Chern classes. In particular,
they obtained a ‘Chern Characteristic Map’

¢: BU, — 12]: K(Z,2k)

k=1

which represents the total Chern class of the universal complex g-plane
bundle over BU,. By taking limit as ¢ — oo, they obtained a total Chern

class map

¢: BU — K(Z,even) ¥ T K(Z,2k).

k=1




In fact, the cycle-theoretic construction in [LM] showed that K(Z,even)
can be constructed via Chow varieties. In particular, the complex join
operation on algebraic cycles induces on K(Z,even) the structure of an
associative, homotopically commutative H-space which is compatible with
the H-space structure on BU arising from the Whitney sum operation.
In the recent work of Boyer, Lawson, Mann and Michelsohn([BLMM]), the
map ¢ has been shown to be an infinite loop map. This answered a question
in the theory of infinite loop spaces raised by G. Segal.

For a complex projective variety X defined over R, the Galois group
Gal(C/R) acts naturally on the set of algebraic cycles on X. In this thesis,
we study the topological structure of the space of Galois invariant cycles,
following the construction of [LB1,2]. In particular, we establish an ‘Al-
gebraic Suspension Theorem’ which may provide the foundation for an
analogous theory for real algebraic varieties. We also construct a “Whitney
Characteristic Map’ and obtain results analogous to the work in [IM].

We begin by providing some basic terminologies.

1.1 Spaces of Real Algebraic Cycles

The free abelian group generated by the set of all p-dimensional irreducible
subvarieties in the complex projective space FZ is called the group of alge-
braic p-cycles on 2. As a set, it consists of all formal finite sums 3} “n,V,
where, for each a, ng is an integer and V, is an irreducible p-dimensional

subvariety of B*. The degree of an algebraic p-cycle 3-n,V, on R is the

integer Yn,degV,. Reall that the degree of a p-dimensional irreducible




subvariety V C B is the number degV of points in the intersection of V'
with a generic (n-p)-dimensional linear subspace in [

An algebraic p-cycle Y.n,V, is called effective if n, is a positive integer
for each « .

Let X be an algebraic subset of B, An effective algebraic p-cycle Yon, Vs
is said to be supported on X if V,, C X for each a. Its support is given
by U, V. For any effective algebraic cycle ¢, we write ¢ C X if the cycle ¢
is supported on X. We also write ¢ ¥ X if no irreducible component of ¢
is contained in X, and ¢ F X otherwise.

On B?, there is a standard real structure given by the conjugation
map 7 : B — B2, defined in homogeneous coordinates by 7([2,, "+, #]) =
[Z5, -+, %) - The conjugate algebraic subset 7(X) is defined by the con-

jugate of the homogeneous defining ideal of X.

Definition 1.1.1 An algebraic subset X of B is said to be real if X =
7(X). An effective algebraic p-cycle Yno Vo on X is said to be a real cycle
if SnaVa = Ynam(Va). The Galois sum of Y on.V, 15 defined as the cycle
SnaVe + YnaT(Va).

Remark 1.1.1 Clearly an algebraic subset X is real if and only if its ho-
mogeneous defining ideal can be generated by homogeneous polynomials

with real coefficients.

Denote respectively by C,(X), RC,(X) and DC,(X) the sets of ellec-
tive algebraic p-cycles, effective real algebraic p-cycles and Galois sums of

effective algebraic p-cycles supported on a real algebraic subset X C I

Then we have




CP(X) = };[ Cp,d(X)
RCP(X) = ]:[ RCp,d(X)
DC,(X) = [IDC,u(X)

where DC, 4(X) C RC,4(X) C C,4(X) are the subsets of degree d cycles
in DC,(X) , RC,(X) and C,(X) respectively. Note that DC,4(X) = § if
d is an odd integer.

It is well-known that C,,4(X) admits the structure of an algebraic subset
in some complex projective space (see [SP1], [Sh]). Moreover, the formal

addition of cycles
+
Cpa(X) X Cpa(X) — Cy aa(X)

is an algebraic map. If in addition X is a real algebraic subset, so is C,q(X),
and RC, 4(X) is then the real locus. With the analytic topology, the m-
clusions DC,(X) C RC,(X) C C,(X) are continuous homomorphisms of
abelian topological monoids. C,{X) is called the Chow monoid in {F1,2].
Also note that these abelian topological monoids are compactly generated
spaces (sec [SN], [McM]) since DC,4(X), RCp4(X), Cp4(X) are all trian-
gulable compact spaces. '
The topological structure of the Chow varieties are quite complicated
in general, For example, see the discussion of Cy 4(F¢) in [Sh]. However, in
his foundational work [LB1,2], Lawson initiated a stabilizing procedure to

study the topological structure of C,(X) and obtained a ‘Complex Sus-

pension Theorem’. The general setting of this stabilizing procedure was




then pointed out by Friedlander who went on to generalize Lawson’s results
to varieties over an algebraically closed field of arbitrary characteristic, us-
ing the machinery of etale homotopy theory and Bousfield-Kan’s work on
completion and homotopy limit.([F1}) In fact, Friedlander noticed that the
original construction of Lawson could be fitted into the general procedure
of group completion studied extensively in homotopy theory.

The study of topological monoids, or more generally, H-spaces, can be
considered as a generalization of the homotopy theory of Lie groups. The
original work of Whitney on sphere bundles initiated the construction of
clagsifying spaces for Lie groups (see [SJ], [SN1}). The construction of a
universal bundle .

&G — EG — BG

for a general topological group G was first obtained by Milnor ([M]).

As a consequence of this construction, there is a homotopy equivalence
¢ - QBG if G is a connected CW complex and the group opera-
tion is cellular. From then on, classifying spaces for various H-spaces were
constructed , notably the works of Dold and Lashof, Stasheff, Sugawara,
Milgram, Boardman and Vogt, Segal, May, and many others. These con-
structions showed that any reasonable H-space, for example, a connected
associative cellular H-space, has the homotopy type of a loop space.

Consider a Hausdorff, compactly generated topological monoid M which
has the ilomotopy type of a CW-complex. The canonical map M — QBM

is not necessary a homotopy equivalence in general. It is true if and only if

translations by elements of M are homotopy equivalences, or equivalently




if m,(M) is a group. What this map does in general has been extensively
studied in algebraic topology. Roughly speaking, provided that M is ‘suf-
ficiently homotopically commutative’, the map M — QBM has
the effect of localizing the action of m,(M) on the Pontryagin ring H,(M).
This is called the Group Completion Theorem. We will give some more

details on group completion in Section 2.

Remark 1.1.2 QBM inherits the sturcture of a topological monoid from
M, and is abelian if M is so. Moreover, the path-components of QBM are
all homotopically equivalent to each other since 7,(QQBM) = m(BM) is a
group, i.e., QBM ~ m,(QBM) x (QBM), where (QBM), is the identity
component of QBM.

We now define cycle spaces, following the setting of Friedlander and

Lawson, by taking group completions.

Definition 1.1.2 Let X be a real algebraic subset in BE. Then

c(X) ¥ aBc,(X)
RC,(X) = QBRC,(X)
DC(X) = OBDC,(X).

On the other hand, associated to any abelian topological monoid M,

there is a naive group completion M, namely the Grothendieck group

of (equivalence classes of ) formal differences of elements of M, endowed with




the weak topology given by a family of closed subsets 6(M, x Mpz) where
8(a, b) = a — b is the ‘difference map’.
Formally, M is the set of equivalence classes [(a, b)] of pairs of elements
in M such that
(a,b) ~ (a',b") <= a+lV+c=d+b+ec
for somec€ M

Note that there is a canonical morphism of abelian topological monoids
¢ M s M

given by «(a) = a — 0. Furthermore, ¢ is an inclusion if M has cancellation
law.

The naive group completion has the universal property that given
any morphism f : M — G into an abelian topological group, there is a
morphism of topological groups f : M — G such that f = fou.

In particular, we denote by C’;,(X), @p(X) and ﬁép(X) the naive
group completions of C,(X), RC,(X) and DC,(X) respectively. Note
that the topology of these spaces are gencrated by the families of closed
subsets 6{C,p a(X) X Cp ol X)), S(RC,,4(X) x RC, (X)) and §(DC,4(X) x
DC, (X)) respectively. It is clear that there are induced degree maps on

these spaces given by
deg([(a,b)]) = deg a — degb.

In [LB1,2], the homotopy type of C,(FZ) (C,(P2) resp.) was determined

completely via the ‘Complex Suspension Theorem’. The connection of

Cp(P?} with Bott periodicity and Chern Classes was investigated in [LM].




The main direction of this thesis is to established analogous results for

the spaces of real algebraic cycles defined as above.

1.2 Algebraic Suspension and The Algebraic Join Op-

eration

To state our main results, we first recall the algebraic suspension map and
algebraic join operation for algebraic subsets and algebraic cycles.

For the rest of this section, we will always assume that B", B are two
disjoint real linear subspaces tn FCY™Y with the induced real structures,

unless otherwise stated.

Definition 1.2.1 Let V C B2, W C B™ be two algebraic subsels. The
union of all projective lines in BIT™F! joining points of V io poinis of
W is an algebraic subset of BM ™Y denoted by VH#cW, and is called the
algebraic join of V and W. In particular, f W = B , L""'v ¥
V#cP™ s called the (m + 1)-fold algebraic suspension of V.

It is clear that the defining equations of V' also define Em“V in prtm+
and that zmHV = L0+ (LV)--+)) (m+1 times). Also note that when
m =0, ij is simply the Thom space of the hyperplane bundle Oy(1) on
V.

If V and W are irreducible subvarieties, then so is V#¢W. Furthermore,
degVH#cW = degV -degW and dimV #cW = dimV +dimW +1. Therefore,

by extending the algebraic join operation biadditively to algebraic cycles,

and noticing that the algebraic join operation preserves the spaces of real




algebraic cycles, we have the following commutative diagram of continuous

maps
Coa(X) X CraY) =2 Cpirirae(X#cY)
T 1)
RC, 4(X) x RO.(Y) —%5 ROCppia(XfcY)
T T

#
DC,4(X) x DC,(Y) —— DCpsrpral X#cY)

for any two real algebraic subsets X C R®,Y C .
Passing to the corresponding monoids, we have the following commuta-

tive diagram of biadditive maps

CIX) X CY) 5 Cpprn(X#hcY)
T T
RC,(X) x RC,(Y) —5 RCpp(X#cY)
7 T
#c

DC,(X) x DC,(Y) —— DCpprp(X#cY)

which descends to maps of their smash products since 0#¢cb = a#c0 =0
is the 0 (empty) cycle for any cycle ¢ on X and b on Y.

By the functorial properties of classifying spaces(see Section 2), we then

have an induced commutative diagram of continuous maps between the
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cycle spaces :

Co(X) x (YY) 2, Cotri1(X#cY)
T T
RCH(X) x ROAY) —s  RCpprin(X#cY)
T T
DC(X) X DC(Y) —Ss DCpppir(X#icY)

In particular, if ¥ = B™™' and r = m — 1, we have the algebraic
suspension maps i
0l 1

CX) ——  Com(TX) %

T T |
l

RCy(X) —— RCpm(L"X)
1 1

y

DC,(X) T DCpn(E"X)
Alternatively, by the universal properties of the universal topological
groups C,(X ), 7‘_2_ép(X ) and DC,(X), there are corresponding algebraic sus-

pension maps

r

5p(X) - 5p+m($mx)

N T
’EZ’?,(X) - ﬁ_ép%-m(ﬁmX)
T . T

@EP(X) — fﬁéwm(ﬁm){)
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The ‘Complez Suspension Theorem’ in [LB2| states that the algebraic
Co(X) — p+m($mX)

{1
-~

ép(X) — C;v-!-m(i:mX)

SUSPENSIOI Maps

are homotopy equivalences.

Our first main result is the following,.

Theorem 1.2.1 Let X C B be a real algebraic subset. Then the algebraic
SUSPENSLON MAPS
RCp(X) e ch+m($mx)

Yy
7
DCH(X) DCMm(Z} X)
are homotopy equivalences for every dimension p and every positive integer
m. So also are the algebraic suspension maps

ﬁP(X) - Tz—éﬁm(ﬁmx)

@_ép(x) ) ﬁp+m($mx)'

1.3 Mod 2 Cycle Spaces

. f . . . .
Given a monoid morphism N — M, there is an induced right N-action on
M given by
def
gz =z f(g)

forallg € N and z € M.
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Let B(M, N, f) "? B(M, N, *) where B(-,-,-) is the ‘“triple bar con-

struction’ in [May2]. Consider the inclusions of abelian topological monoids

RC,(X) — RC,X)
DC,(X) — DC,(X)
DG,(X) — RC,(X),

) :
where a ~—2a and a —E>a, which induce morphisms of their group comple-

tions

RC,(X) —> RC,(X)
2

DC(X) — DCH(X)

DC(X) — RC(X).

Definition 1.3.1 The mod 2 real cycle spaces are defined as follow :

RC(X)®Z; = B(RC,(X),RCH(X),2)
DC(X)®Z, E B(DC,(X),DCy(X),2)

§(X) € B(RC,(X),DC,(X), )

The algebraic suspension maps on RC,(X ), DC,(X) then induce alge-

braic suspension maps on these mod 2 real cycle spaces :

172

RCP(X)®ZE — ch+m($mx)®z2

DC(X)®1; —— DCpim(L X)®Z,
EP(X) ”}’3_’ gp+m(ﬁmx)

Alternatively, we can consider the quotient groups of the naive group

completions :
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Definition 1.3.2 The naive mod 2 real cycle spaces are definded as

follow :

£
fx ]
iy

fcp(X)‘g’Z? = ’ﬁép(X)//Z’ﬁ——Cp(X)
DC,(X)®2, € DC,(X)[2DCy(X)
E(X) E RC(X))DC,(X)

where each of these quotients i3 endowed with the quotient topology.

Similarly, there are induced algebraic suspension maps

RC(X)QL, —— RCpm(L"X)OL,
TF:)EP(X)®Z2 - ﬁp+m($mx)®z2

E(X) —— Gum(L"X)
on these naive mod 2 real cycle spaces. Our next result is :

Theorem 1.3.1 Let X C B® be a real algebraic subset. Then the algebraic

SUSPENSLON MAPS

YL

RCAX)RLy —— RCpm(L X)®Z

DCHX)QL; —— Dlpm(L X)L,
ij

E(X) — P+m($mx)

are homotopy equivalences for every dimenston p and every positive inieger
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m. Similarly, the same i3 true for the algebraic suspension maps

m

ﬁc?(x)@’Z? T ﬁﬁm(xm){)@Z?

7T

ECP(X)(X}ZQ - ﬁcr+m($mx)®z2

L

E(X) ——  Em(EX).

By the algebraic suspension theorems above and Dold-Thom’s theorem

[DT1,2], we have

Theorem 1.3.2 Let X C B be a real algebraic subset with connected real

locus Xg . Then for any positive integer m , there are isomorphisms

T RC(" X))
m(DC(L” X))

T DCn(L" X)R7,)
T En(E X))

where X/Z, 18 the quotient space

IR

H.(Xu V (X/2:)/Xe), 1)
H (X[, 1)
H*(X/Z% 22)

H*(XIH; Z?)

1R

12

of X with respect to the conjugatlion map.

Furthermore, they are homotopically equivalent to products of corresponding

Eilenberg-MacLane spaces.

Of particular interest here is the case when X = R .

Corollary 1.3.1 There are isomorphisms

m(RC,(R)8Ta) =
7(DC,(RE))
74(DCH(RMRT,) =
m(&,(PE))

IR

12

Hy (B PV (FE/22) /W), Z2)
(R[5, 2)

Hy(FE™" /13, 12)

Hi (B 7, ).
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Remark 1.3.1 Similarly, Theorem 1.3.2 and Corollary 1.3.1 still holds if
we replace the mod 2 real cycle spaces by the naive mod 2 real cycle spaces
defined in Definition 1.3.2. Also note that Theorem 1.3 shows that these

cycle spaces have only finitely many nonvanishing homotopy groups.

In particular, we have

Corollary 1.3.2 There are homotopy equivalences

EYRr) ~ E9(B2) ~ K(Zy ,0) x K(Z3 ,1) X -+ X K(Zy ,q)

for each positive integer ¢ < n , where EY(RT) et Enp(P2), E4(R) = En—p(FE)
and K(Z; ,k) is the standard Eilenberg-MacLane space.

Theorem 1.3.2 shows that the homology groups of the real locus Xg of a
real algebraic have close relationship with the homotopy groups of the cycle
spaces & (X}kX ). Following the construction of Friedlander and Mazur in
[FM], we let k00 and define ¢7(X) = lim £1(¥"X). The algebraic join

operation then induces a pairing
! #a '
el X) x ¢ (Y) — (X))
which descends to the smash product
! #c '
e X)AeT (V) —— ¢ (XcY).

Hence there is an induced pairing on the homotopy groups

T (S(X)) ® 7o €7 (V) —os (€77 (X Y )).
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articular, when X = P?, we have a bigraded ring m.(€*(F¢)). Then,
or a general real algebraic subset X, 7.(€*(X)) admits the structure of a
r_lgf'a,ded module over the bigraded ring m.(¢*(F¢)). In analogy with the
rk in [FM], this provides an intriguing filtration on the Z3-homology

pﬁps of algebraic varieties over R. We will discuss some properties of this

g_faded module in Section 5.

4 The Relative Theory

et Y C X C B be a pair of algebraic subsets in B*. Then we have an
nclusion of Chow monoids C,(Y) C C,(X }. A relative theory can then be

C,(X,Y)  B(C,(X),C(Y)),

one can consider the quotient of the universal cycle groups :
5 e def 5 s =1
Co( X, Y) = CP(A)//CP(Y)'

The complex suspension theorem also holds for these spaces (see [LB2]).
.The homotopy groups of Cp(X) and Cp(X,Y) form an interesting ho-
mology théory. They are called the Lawson homology groups. See [F1,2],
LFP] for more details.

. Y and X are both real algebraic subsets, we can defined relative real

cycle spaces in an analogous way.
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Definition 1.4.1 For any real algebraic subsetsY C X C RZ,

RCP(Xay) = B(RC’P(X)?RCP(Y))

DC(X,Y) & B(DC,(X),DCy(Y))

E(X,Y) H  B(E(X), ()
def

ﬁp(X,Y) = ﬁp(x)//ﬁ-ép(y)
DC,(X,Y) & DC,(X))DC(Y)
E(xX,Y) H EX)IEX).

Then, in a similar manner, we have

Theorem 1.4.1 The algebraic suspension maps for these relative real cycle

spaces are also homotopy equivalences.

Remark 1.4.1 From [F1,2], a proper morphism f : X — Y induces a

continuous rational map
f* : C:D(X) - CP(}/)'

Similarly, a flat morphism f : X — Y of relative dimension r induces a

contmuous rational map
F#C (Y)Y — Cppn(X).

Clearly if f: X — Y is real, i.e., f is a T-equivariant morphism, then the
spaces of real cycles we considered are preserved by proper push forward,
or flat pullback. This provides fundamental functorial properties for the

spaces defined in Definition 1.4.1.
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Remark 1.4.2 In [LFP], an excision theorem was obtained which served
as the main tool for the computation of Lawson homology groups for an
interesting class of algebraic varieties. It seems likely that for pairs of
real algebraic subsets (X,Y), (X',Y"), a Galois equivariant isomorphism
X —Y =2 X' - Y’ will also induce homotopy equivalences between these

relative real cycle spaces.

1.5 The Whitney Characteristic Map

Noticing that RC,,(Ff +q) can be identified with the real Grassmannian of
(p+1)-planes in R*1, we consider the composition map RC,;(R*?) —

RCP(PCHQ) —s EYRFTY) . By letting p — oo, we obtain a map
BO, — K(Z,1) x -+ X K(Z3,q)

via Corollary 1.3.2.
Recall that K(Z, , k) is the classifying space for the cohomology functor
H*(.,Z,). In analogy with the results in [LM], we have

Theorem 1.5.1 The map w represents the total Stiefel- Whitney class of
the universel g-plane bundle on BO,.

In Section 5, we discuss the relation between the complex join operation

on real cycle spaces and the Whitney duality.
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2 Group Completion and Cycle Spaces

In this section, we provide some background materials on classifying spaces
and group completions of topological monoids. For more details, see [A],
[FM], [May 1,2], [MS] and [S1,2]. An alternative formulation of cycle spaces

is then given. We also discuss some basic examples of cycle spaces.

2.1 Classifying Spaces and Quasifibrations

All topological spaces here are assumed to be compactly generated weak
Hausdorfl spaces.(cf. [McM], [SN2]) Products of spaces are endowed with
the weak product topology. Let G be a topological monoid and let M be a
right G-space. The classifying space B(M, @) is defined as the geometric
realization of the simplicial space with M x G as its i-simplices and with
appropriate face and degeneracy operators.(see [May2] for details)

The construction B(:,) is functorial in the sense that for all pair of
morphisms (f,g) : (M,G) — (M’,G") where f is g-equivariant, there is
a naturally induced morphism B(f,g) : B(M,G) — B(M',G’). Further-

more, we have

1. If f and ¢ are homoptopy equivalences, then so is B(f,g).
2. For (M, G),(M',G"), the projections define a natural homeomorphism

B(M x M',G x Gy — B(M,G) x B(M',G").

3. If M and G have the homotopy type of CW-complexes, then so is
B(M,G).
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4. B(M,G) is n-connected if G is (n-1)-connected and M is n-connected.

In particular, if G acts trivially on M = %, then BG = B(*,G). The
monoid structure on @ induces a monoid structure on BG. Moreover, if G
is abelian, so is BG.

The monoid structure on G naturally induces a monoid structure on
7,(G). G is said to be grouplike if 7,(G) is a group. For example, any
loop space is grouplike since 7, (YY) = m(Y).

Proposition 2.1.1 ([May2|} If G is grouplike and M is a right G-space,

then there is ¢ sequence of quasifibrations
G — M — B(M,G) — BG.

Of particular interest here is the case when M is also a topological
monoid and the right action of G on M is given by the right translation by

elements of G through a monoid morphism G — M.

Proposition 2.1.2 ([May2]) Let G,M be grouplike topological monoids
f . . .

and let G — M be a monoid morphism. Then there is a sequence of

quastfibrations

Bf
G ~» M — B(M,G) — BG — BM.

Furthermore, B(M,G) 1s weakly homotopically equivalent to the homotopy
B
fiber of BG - BM.

Applying the propesition to the morphisms of abelian topological monoids
RC(X) —» RCHX)
DC(X) —» DC(X)
DC,(X) — RC,(X),
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we have the following corollary :

Corollary 2.1.1 There are quasifibrations

RC(X) =5 RC(X) — RC,(X)DZs
DC(X) — DCX) — DC(X)RT;
DC(X) — RC(X) — &(X).

Moreover, RC,(X)RL2, DCHX )R, and E,(X) are homotopically equiva-
lent to the homotopy fibers of the maps

B2

BRC,(X) -5 BRG,(X)
BDC,(X) 25 BDC,(X)
Bi

BDC,(X) - BRC,(X)
respectively.
Similarly, for the universal cycle groups, we have

Theorem 2.1.1 The natural projection homomorphisms

RC(X) > RC(X) - RC(X)®Zs
DC(X) — DC(X) 2 DC(X)RL,
DCY(X) — RCyX) — E(X)

are principal fibrations.

Proof For the proof of each case, it is sufficient to construct alocal section

of the projection on a neighborhood of [0] in the quotient group. The proof

follows closely the inductive construction of [DT2].
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The quotient group 736,,()( Y®7Z, has a filtering by closed subsets ¢}y =
p(6(Fy)) where

Fd = ]_I ch,k(X) X I_[ ch,kf(X).

k<d k<d

Fix a triangulation such that each Fy_; is a subcomplex of Fy. To in-
ductively construct a local section on some neighborhood of [0], we let

3,([0]) = 0 and assume that we already have a local section

Sg1 Ujq — ﬁp(X),
where U;_, is an open neighborhood of [0] in Q4—y. Defined a map

Gay : Ugoy — RCH(X)
by

og-1(z) = s4-1(p(8(2))) — 6(z)

where U;_; = Fy N (po 5)_1(Ud_1) is open in FyN(po 5)_1(Qd_1). Clearly,
oq—1(z) € p~1([0]). Since FyN{po §)71(@a-1) is a subcomplex of Fy, there

is an open set Uy in Fy and a retraction from Uy to Uy_y. Therefore we can

extend o4_; to

Ga: Us— p([0]) € RCH(X).
Note that the map
Ui~ (po6) (Qu-1)—Qu — Qua

is injective. Then the map $g = &4 + id descends to a section sy on a open
subset Uy in Q4. Hence we can proceed inductively to obtain a local section

on a neighborhood of [0].

The other cases can be proved in the same way. H
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Remark 2.1.1 Similar construction shows that there are corresponding

quasifibrations and principal fibrations for the relative real cycle spaces.

2.2 Group Completions

We now give a brief summary of some facts about group completions.
Roughly speaking, an idealization procedure in algebraic topology usually
means a kind of natural construction which provides us with a new space,
which has some wanted ‘nice’ properties, associated to a given one which
may not be ‘nice’. Group completion of topological monoids is one of these
procedures which idealizes the action of a topological monoid on itself by
right (or left) translations. More precisely, let p, : M — M denote the
map of right multiplication by z € M. Then p, is not a homotopy equiva-
lence in general, unless z represents an invertible element in 7,(M). Note
that the induced homomorphism p,, on H,.(M) is independent of the choice
of z within its path component. Therefore we have w,(M) acting on the
Pontryagin ring H.(M).

Similarly, the induced homomorphism p,, is not necessary an isomor-
phism. However, one can try to add ‘formal inverses’ of the elements in
wo( M) to H. (M) such that these homomorphisms extend to isomorphisms.
This procedure bears the name ‘localization’, which can be considered as
a generalization of the usual notion of localization of modules over com-
mutative rings. It is then a natural question whether there is a canonical

construction which provides us with a space M1 whose Pontryagin ring is

exactly the localized Pontryagin ring of M. In this sense, the Group Com-
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pletion Theorem can be viewed as a satisfactory answer to this question.

Formally,

Definition 2.2.1 A map of H-spaces M Ly MY s said to be a (homo-

logical) group completion if the following properties are satisfied :
1. po:wo(M)— m,(M*) is the universal group of the monoid w,(M),

2. p.t H{M) — H.(M7™) can be tdentified with the canonical homo-
morphism p, : H (M) — H. (M) ®ur, vy Z[mo(MT)].

Theorem 2.2.1 (Group Completion Theorem) The canonical map of
H-spaces M — QBM is a group completion of M if m,(M) lies in the cen-
ter of the Poniryagin ring H. (M) (or more generally, if H (M) [x (M) "
can be constructed by right fractions. See [MS]).

In particular, if M is abelian, this property of 7,(M) is satisfled. Fur-
thermore, M1 has the homotopy type of an infinite loop space ([FM]).

The Group Completion Theorem plays an important role in the study
of the outputs of infinite loop space machineries. For applications, proofs
and variants of this theorem, see [A], [BP], [J], [May2], [MS].

Actually, there is a standard way to construct group completions. For
simplicity, let us assume that w,(M) is countable. Then the localization of
the Pontryagin ring H, (M) with respect to the multiplicative system (M)
can be realized as a direct limit of translations by elements of 7,(M). It

follows from the general fact that the localization of a right R-module A at

a countable multiplicative system S lying in the center of the ring R can
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be obtained as the limit of a sequence of right translations
e W A A

where s; is an enumeration of S such that each element of S appears in-
finitely often in the sequence. It is then rather clear that one can construct
M7T as the colimit of a sequence of right translations of M by elements of

M. More precisely,

Proposition 2.2.1 (cf. [F2], [FM]) Let z; be a sequence of elements in
M such that each path component M, of M appears infinitely often in the
sequence M, of path components contfaining z;. Then any group completion

M- of M factors up to homotopy through e homology equivalence
Tel{M,{z}} — M*,

where Tel{M, {z;}} i3 the mapping telescope associated to the sequence
of right translations by z; :

e M M

In particular, when M is abelian, Tel{M, {z}} L QBM isa homotopy
equivalence, and hence the identily component Tel{M,{z;}}. is homotopi-

cally equivalent to (QBM),.

2.3 The Telescope Description of Cycle Spaces

Proposition 2.2.1 suggests that we can re-defined cycle spaces by the tele-

scope construction :
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Definition 2.3.1 For any real algebraic subset in R? , we re-define

C(X) ¥ Tel{C,(X), {=}}
RCHX) E  Tel{RC,(X),{r}}
DC(X) ¥ Te{DC,(X),{s:}}

where {2}, {r;} and {s;} are suitably chosen sequences in C,(X), RC,(X)
and DC,(X) respectively as in Proposition 2.2.1.

By Proposition 2.2.1, these spaces are homotopically equivalent to the
cycle spaces defined as before in Section 1. As colimit spaces, they are
geometrically simplier than their loop spaces counterparts. The importance

of being colimit spaces is that they have the following property :

m(Cp(X)) = aewo(lti:lf.,(x)) Tr(Cpal X)),
T(RCH(X)) = QEWO(Eénpa(XD T (RC, (X)),
W(DC,(X) = _ Jm  m(DCyu(X))

In [LB2], Lawson studied the topological structure of the cycle space
Cp(X) and proved a ‘Complex Suspension Theorem’ by the construc-
tions of ‘holomorphic taffy’ and ‘magic fans’. We will apply these construc-
tions to study real cycle spaces in Section 3.

We now discuss some basic examples of cycle spaces through the tele-

scope construction.

2.4 Basic Examples of Cycle Spaces

Example 1. The case when X = F? and p=n—1.
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In this situation, it is well known that an effective divisor (real effective
divisor respectively) of degree d is given by a homogeneous polynomial (with
coefficients in R respectively) in 2,,..., 2, of degree d, uniquely determined

up to a scalar multiple. Therefore,
(i)
d
Coa(iF) = ]_I Fe

RC,(R?) = I_[Fge( R )WI

and hence,

7o Coa (B2)) = T+
mo(RC,1 () = Z¥

are both generated by one generator. Therefore, by fixing a (real) hyper-
plane £~ in R as the generator, their telescopes can be constructed from
the sequences of translations

o GBS Caa(RE) —

-1

+en
coo— RC,L1(RY) — RC(IE) — ---.
Therefore we have homotopy equivalences

Comt(B®) ~ ZxE® ~ K(Z,0)x K(Z,2)
RC,1(BM) ~ ZxR® ~ K(Z,0)x K(Zz,1)
It is also easy to see that the identity component of DC,,_1(F) is the projec-

tivization of the set of homogeneous polynomials which can be expressed as

a product pp of homogeneous polynomials. A consequence of our suspension
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theorem is that this rather complicated polynomial space is homotopically
quite simple. In fact, its path components are contractible. This follows
from the fact that the suspension theorem implies that there is a homotopy

equivalence

DC,(BE) ~ DC(BL).

That DC,(F), is contractible follows from the discussion of the following
example.
Example 2. The case when X is connected and p = o.

In this case,

Co(X) = [ [ SPY(X)

d>o

RC,(X) =[] $PU(X)",

d>o
where SP?(X) is the d-fold symmetric product of X and ‘S’Pd(X)Z2 is the
fixed point set of the conjugation map. Since the set DC, 34(X) consists of

the formal finite sums of points ¥ n,(v, + T,), we also have

DC,(X) = | [ SP(X/Z,).

d>o
Therefore
Co(X)~Z x SP(X)

RC,(X) ~ T x SP(X)L2
DC(X) ~ I x SP(X/L,),

where SP(-) is the infinite symmetric product functor and SP(X )22 is the

fixed point set of the conjugation action on SP(X).
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By taking coefficients in Z,, it is clear that for any connected projective

variety X with connected real locus Xg,

RCO(.X)®22 ~ Zg X SP(XR v (X/XR)/ZZ),Z)
DCO(X)®ZQ ~ Zg X SP(X/Zg ,2)

where SP(-,2) is the infinite symmetric product space with coefficients in
Zy.
Recall that the Dold-Thom Theorem states that :

Theorem 2.4.1 ([DT1,2]) Let A be a connected finite complex. Then there

are homotopy equivalences
SP(A) ~ [[ K(Hu(A, 2),k)
k

SP(A,Z,) ~ [ K(HWA, L,), k).
In particular, there are natural iso:;wrphisms
m(SP(A)) = HA, 7).
1 (SP(A),Z,) = Ho (A, 1)
Hence we have isomorphisms

T(RC(X)®Z) = HAXnV(X/L2)/Xr), ZL5)
r(DC(X)) = H(X/1,,7)

T (DC(X)RL2) = HJ(X/73,75)
T Eo( X)) H,(Xg, 1)

12

and therefore Theorem 1.3.2 follows directly from Theorem 1.2.1 and 1.3.1.
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3 Basic Properties of Cycle Spaces

In this section, we discuss some basic properties of cycle spaces. We first
recall some basic facts from the theory of currents and analytic varieties.
Then we recall the constructions of ‘holomorphic tafly’ and ‘magic fans’
from [L.B2] and apply these constructions to study basic properties of real
cycle spaces. For more details on geometric measure theory and complex

varieties, see [F], [GH], [GR], [H], [HS], [LB3].

3.1 Algebraic Cycles and Integral Cycles

Let V be an irreducible subvariety of dimension p in R*. Integration of
2p-forms on V defines a 2p-current without boundary on I , denoted by

[V]. Moreover, the mass of [V] defined with respect to the Fubini-Study

metric on B is given by

MV]) = [ <567 = degV - M(RZ))

where w is the Kahler form on R,

This gives rise to an embedding of C,(F®) into the set of integral
2p-cycles Z,,(R®) on B defined by } n.V,— Fna[Va].

There are two topologies of interest on Z,,(F) arising from geometric
measure theory, namely the weak topology and the flat norm topology.

Recall that a sequence {¢;}22, converges weakly to ¢ in Z,,(F) if

lim ¢;(¢) = c(e)
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for all 2p-form ¢ on B". The Whitney flat norm is defined by
e—¢ |, inf{M(c — ¢ — OU) + M(U)}

where the infimum is taken over all integral (2p+1)-currents U. The impor-
tant work of Federer and Fleming ([FFF]) shows that these two topologies

agree on the subspace of integral cycles with bounded mass,
de
Zeu(RE) E {c € Zu(RE) M(0) < 1},

which is compact in the weak topology (and hence also in flat norm topol-
ogY).

C, 4(F?) is compact with the weak (flat norm) topology induced form
this embedding. Moreover, the topology of C, 4(R?) as union of Chow
varieties is also equivalent to the weak topology, or flat norm topology, on
Cpa(FE)- See the discussion in [LB2] for details.

Let Z,5,(X) denote the closed subspace of integral 2p-cycles supported

on an algebraic subset X C B* . Then we have an embedding
CP(X) - Z2P(X)

where the induced weak topology(=flat norm topology) on C,(X} is equiv-
alent to the analytic topology on C,(X) as disjoint union of Chow varieties.
The conjugation map B N F¢* induces a continuous involution on

Z,y,(B*) endowed with the weak topology :

T :ZZP(H:R)_’ ZQP(PCn)a
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since ¢; — ¢ weakly in Z,,(F") implies that for any 2p-form ¢,

Jim my(ei)(e) = lim ei(m¥p)
= ¢(m%yp)
= mp(c)()-

Clearly, Ty preserves Z,,(X) if X is 7-invariant. Moreover, for any effective

algebraic p-cycle Y- n,V,, we have

Z ne|[T(Vy)] = (—1)”7'#(2 NalVal)

as complex 2p-currents. Hence an effective algebraic p-cycle ¢ on a real
algebraic subset X C R is real if and only if (—=1)Prg(c) = ¢ as complex

current.

Lemma 3.1.1 RC,4(X) and DC,4(X) are compact subsets of Z,,4(X)
in the weak (flat norm) topology.

3.2 Linear Projections and Cycle Spaces

Let w: B* —£»?~1 — f» be the linear projection associated to a pair of
disjoint linear subspaces £777~1  £? of dimension n-p-1 and p respectively.
Let p; be the holomorphic auntomorphism defined by scalar multiplication
by t € C* along the fibers of the holomorphic vector bundle 7= : FF —

£=P=1 —, 7 . 'We then have an induced map
pr: Cpa(RE — 657771 )— Cpa(RE —£57771)

with the property that pg(c) = lim pile) = d[£7]
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By general position argument, Lawson proved the following lemma in

[LB 2.

Lemma 3.2.1 ([LB 2]) For all positive integers n and p, the space C, 4( ")
is simply connected. In particular, C,(R1) i3 stmply connected and the trans-

lation p.(c') = ¢+ ¢’ is @ homotopy equivalence for any ¢ in C,(FP).

As an immediate consequence, DC,, 2(F) is connected for all positive
integer d.

Note that if both £77?=1 (2 are real linear subspaces with the induced
real structures, then m commutes with the conjugation map on B - £#=#~1,

Hence we have :

Lemima 3.2.2 Let py; be the map associated to a pair of disjoint real linear
subspaces £77P71 (P in P as above. Then, for any t € [0,1}, u; preserves

RC, (Fe —£7771).
Lemma 3.2.3 Let & : PGL(n+ 1,R) x £ — B be the map defined by
o([4], [2]) = [AZ]

where A € GL(n+1,R),[z] € £2 CFZ , where £2 CF® is a g-dimensional
real linear subspace. Then
(1) ©([A],[z]) € By if and only if [2] € 2N K,
(2) & : PGL(n-+1,R)xNRy — B is a submersion for allo < ¢ <n,
(8) ®: PGL(n+ 1,R) x (¢¢ —NK)— B — B is a submersion

foralll < g <n.
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Proof (1)is obvious and (2} follows from the fact that PGL(n+1,R)

acts transitively on Ry .

To show (3), without loss of generality, we can assume that

2 = {[zpy-,%0,0,- 0l ERE } =F

4]

and let [z2] € & —~LNRP,[L,8&1,--,€n) € B® — B such that
(I)([A]i [ZD = [1151) MR gn]
When ¢ > o, since A € GL(n+1,R) acts transitively on the set of 2-planes

in R™*1 | hence we can choose z' = a -+ ib, with a,b € R**! — {0} such that

Az =(1,&,++,€,) and [2'] = [z]. Let
VB —{lo,z1, - za)}— C"

be the standard coordinate chart. For any tangent vector = + iy € C" at
(€1, -, &n), where z,y € R, choose B € GL{n + 1,R) such that Bb = (0,y)
if y # o and B = 0 otherwise. Define a curve in PGL(n +1,R) x (Bf — B)
by
Y1) = ([QA +tB], [a +23])
where (¢,,-+*,¢,) = Ba and
l—tc, 0 --- 0
tzy —e1)
s I

tH{wn — c2)

Then v(0) = ([4], [2]), ®(¥(0)) = [1,&,-+,£,] and

Q:

Yodoyt)= (&, &) +Hz +1iy).
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It is then straight-forward to check that (¥ o ® o y)(0) = z + ¢y and hence

& i3 a submersion, W

Proposition 3.2.1 Let &8 be o real linear subspace of dimension p in R
and let ¢ be a real algebraic p-cycle in C,4(F®). Then for almost all (n-p-

1)-dimensional real linear subspace £277"1 in B2,
gl (e Ue) =9

Proof Note that ¢cNFy has real dimension < p and ¢cNFP® — has
real dimension 2p. By the Sard’s theorem for family (see [HL]) and the

lemma above, we have
ot n((eue)NBE) =0

G N6 -enRHUCEn (R -Re)) =9

for almost all real linear subspace £#~7~! of dimension n —p—12> 1.
The case for p = n — 1 is proved similarly by considering only the real

locus of the support of ¢. W
Corollary 3.2.1 RC, 4(R?) is connected.

Proof For any real cycle ¢ in RC, 4(R"), choose a complementary real

linear subspace £7~P~* such that
gl n (8 Ue) = 0.

Then the map u; associated to the linear projection for £2~771 to £7 definds

a path joing ¢ to d[¢?]. H




36

Remark 3.2.1 Note that the Z, Euler characteristic of the cycle space
RC, (") can be determined rather easily, modulo the work in [LY]. In
fact, by taking an equivariant triangulation of C,4(X) with RC, 4(X) as

a fixed subcomplex, it is not hard to see that
X(RC,o(X)) = X(Cpa(X)) (mod 2).

The Euler characteristic of C, 4(F) had been computed in [LY]. It is not
clear to us whether one can in fact calculate the Euler characteristic of the

real locus RC,, 4(F®) without reducing coefficients to Z,.

3.3 Holomorphic Taffy for Real Cycle Spaces

The algebraic join operation can be described in terms of linear projections
from linear subspaces. More precisely, let B2, B™ < R* ™! be a pair of

real linear subspaces. Then the linear projections

Ty o BT P P

T, : Brtmtl _pmo_pe
have the structure of holomorphic vector bundles of rank n 4+ 1 and m + 1
respectively, with the real structure induced from the conjugation map.

Given closed subsets A C B and B C B , the algebraic join of A and

B can be defined via m,, and =, as follow :

A#cB T (A N (D).

In the case when B = B™ , we have the (m-}-1)-fold complex suspension
of A:
LA = AdkcRP




37

Let X C F? be a real algebraic subset. Then we have the following

suspension maps

r

Cp(X) ——  Cpu(IX)
U U

RC,(X) i RC, 1 (1X)
U U

v

DC,(X) - DCp+1(X>X)

Recall that we say ¢ ¥ X if the effective cycle has no irreducible com-

ponent contained in X. Following the construction of [LB2], let

Tpa(X) < {e€ Cpi(¥X): ¢ ¥ X}
Tpa(X) € {c€ RCu(IX):c ¥ X}
Dpi(X) E {ceDCa(BX) : ¢ ¥ X},
Then the suspension maps factor into the following commutative diagram

of inchisions :

C(X) —— LX) C  Cpu(¥X)
u U U

r

RC(X) — Tpou(X) € RC(IX)
U U U

DC,(X) i Apii(X) € DC (LX)

Let ™ B2 ¢ B! be a pair of disjoint real linear subspaces. Up to a

change of homogeneous coordinates by real linear forms, we may assume
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that B = {Jo,z1,,2031] € R} and BY = {[o,0,+,0]}. For any
t € C*, define ¢, : B*™— B! by setting

(,01([2’0,2'1, T Zn+1]) = [tzoazla tee :zn+1]-

Then the holomorphic automorphism ¢, : B! — B2 induces a holomor-

phic automorphism
Pep : Cprt(FET)— Cppa(REFY).

which preserves the subspaces Cpp1(12X) and Tpia(X). Furthermore, ¢4y
is the identity map on Y(C,(X)) for all £ € C*.

Theorem 3.3.1 ([LB2]) For each ¢ € [',1(X), there exisis a himit
Poo(c) = m pey(c) € L(Co(X))
which is confinuous in ¢ and defines a retraction
Poo * Lo (X)— L (Cp(X)).
Furthermore, the extended map
¢ : Dpya(X) x [1, 00]— Tpya(X)

18 continuous and therefore o, 13 « deformation relraction.

L

As a consequence, C,(X)} — I',;1(X) is a homotopy equivalence.

Lemma 3.3.1 ¢y, preserves RC, (B and DG, (R for all t €
[1, 00].
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Now by restricting the deformation retration in Theorem 2.2.1 to the

spaces of real algebraic cycles, we have :

Corollary 3.3.1 Let X C B* be a real algebraic subset. Then there are

homotopy equivalences

X

RC,(X)—— Ty (X)

r

DC,(X)— Apan(X)

Following the telescope description of cycle spaces discussed in Section
2.3, let {ri},{s:} be the chosen sequences in RC,(X), DC,(X) respec-
tively for construction of their telescopes. Choose corresponding sequences
{Lz}, {5t} in Yo (X), Appa(X) respectively. Then by the Corollary

above, we have

Proposition 3.3.1 The suspension maps induce homotopy equivalences

L

RC(X) ——  Tp(X)
DCH(X) i Api1(X)

where Tp1(X), Apy1(X) are the telescopes associated to Tpr1(X), Appa(X)

respectively.

Proposition 3.3.2 The suspension maps induce homotopy equivalences

—

RC,H(X) —X]* - Tpa(X)

——

DC,(X) i Appa(X)
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where Tp+1(X), Ap1(X) are the universal groups associated to the abelian

monoids Yp,1(X), A, (X)) respectively.

Let I" be imposed with the Fubini-Study metric of constant curvature
L Let FF* C R® be a real linear subspace. Then for all 0 < ¢ < m, the

closed subset

Rz € Br : dist(z,Br) < 1)
is invariant under the conjugation map on B, By using the linear flow
Pag  Co(FE) — Cp(RT)
for 0 <5 <1, it is easy to see that the inclusion map
Cp(F") = Cp(R)

is a deformation retraction ([LM]) for 0 < ¢ < #. Noticing that the linear

flow preserves the real cycle spaces, we have.
Proposition 3.3.3 For all 0 <t < =, the inclusion maps

RC, (") = RC,(F7)
DC,(F") = DCP(H:T?:)

are both deformation retractions.

In particular, when passing to their group completions, we have

Corollary 3.3.2 The inclusion maps in Proposition $.3.9 induce homo-
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topy equivalences
RC(R") —— RC,(FT)
DCH(R") —— DC(RE)
R —— &)
RC,(R") —— RC,(R)
ﬁ?p(Pcm) - ﬁbép(ﬂﬁ)
R —— &R,

3.4 Magic Fans for Real Cycle Spaces

We now recall the construction of ‘magic fans’ in [LB2]. Let P? be em-
bedded in R**" as a real linear subspace and let 2., € P2t — B2 be a real

point. Let V. = B — {2} and let
Moo & Voo RE

be the linear projection. Then 7, commutes with the conjugation map on
Voo
Let Div!

n

’ddéf {D € C,o(R**") : D C V,,}. Then for any divisor D €
Div, ; and any algebraic cycle ¢ = ¥n,V, in C, 4 (B,

wple) def ZnQD N (V)

is a cycle of degree dd,.(See [LB2]) Moreover m4¢p(c) = 4 D N w7 (gc).
Let t D% pe( D) where p, is the scalar multiplication by ¢ € C* along the

fibers of the holomorphic vector bundle T, : Voo— B! Let Div® € Div,, 4

be the subspace of real divisors in Div,, ;. Then we have :
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Lemma 3.4.1 For p,d, and d, there are continuous maps

d-RCp, (RE) x Divd 5 RC,a,(RIH)
d-DC,s0,(RY) x Divk 25 DO,y (B
defined by
(d-¢,D)—> @p(c).

Moreover, for any given D € Div®, the families
i 1
d-RCpa, (i) — RC,u,(RET)

YD

C’n
d-DCypa2,(R) — DG, (R

for 0 <1 <1 are homotopies of pp to the inclusion maps d-RC, (R C
RC,u4,(FE™), and d - DC,; 20, (F*) C DCy2aa, (FEH).

Proof In [LB2], it was shown that the map
d - Cypa,(R2) x Div)y =~ Cp g, (REY)

defined by (d - ¢, D)— pp(c) is continuous and the family

D

d ) Cpldo(&n)—ﬁcpxddo(“:?cnﬂjrl)

for o < ¢ < 1is a homotopy of ¢p to the inclusion map d - Cpa,(F2) C
Cpaa,(FEH!). Since 7., commutes with the conj ugation map, it is clear that
these maps ¢, ¢,p restrict to maps on spaces of real cycles with the above
properties in the lemma. B

Embed B ¢ BM? as a real linear subspace. Let z; be a real point on

the real line 2., B¢ which is distinet from =z, and z.,. Let

w1 RO — {z}— BRH

]
|
|
|
!
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be the corresponding linear projection.
For any D € Div],, ; on BI? — {1} such that z; ¢ U{tD 10 <t < 1},

there is a continuous maps
i 1 1
Vi 1 d- Cpp1,g (REM)— Cpppau,(REH)

for all 0 < ¢ <1 defined by

W.p(de) = m(pip(e)).
Moreover, Wp is the identity map on d - X}(Cp_,_l,do(ﬂ:”)).(See [LB2])
Lemma 3.4.2 Let D be o real divisor in Dw®. Then

Uin(d- RCp11,4,(RIH)) C RCyp 11,40, (FEH)
Vin(d - DCpia00,(FE)) C DCpyy aa, (FEH).

For any algebraic subset X € B2, 0, leaves the subspace d-C,.qy,4,(1X)
mvariant. In particular, d - RCpyq 4, (YX) and d - DCpi1,4,(F2X) are also
left invariant by ¥,; whenever X and D are real.

Let Divj denotes the set of all divisors of degree d on P such that
zy¢Danda, ¢ U{tD :0<t < 1}. Denote the subset Teo( DN Y (B) C
RE+! by «(D). Then we have

Lemma 3.4.3 ([LB2]) Fiz D ¢ Divg and let V C B be an irreducible

algebraic subvariety of dimension p + 1. Then
Up(d-VYCR =V C a(D),
or equivalently,

V& a(D)= ¥p(d-V) €T, (B)
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Note that Lemma 2.9 shows that with suitable choice of D in 2 one
can lift a given irreducible subvariety V ¢ I to one ‘transverse’ to M.

Furthermore, for any ¢ € C,( Reth) et

B(c)={D e Div: ck a(D)},
where ¢ F (D) means that ¢ has some irreducible components contained
in a(D). Then we have

. d+1
Lemina 3.4.4 ([LB2]) codimeB(c) > bt
In order to apply Lawson’s method to the case of real cycle spaces, let

Divf® denote the set of real divisors in Div] and let
R(c) = {D € Div* : ¢ F a(D)}

for any ¢ € C,(R**'). Then we have

Lemma 3.4.5 For any c € C,(R'),

d+1
codimgR{c) > pred

Proof Fix a real linear subspace 224 in BP*?) there is a real linear
subspace £377 in B?*? which is disjoint from ¢ U 7(c) U €21, The linear
projection from £}77 to £+ then projects V on to 41 Without loss of
generality, we may assume that £7+! is the real linear subspace defined
by 243 = -+ = 2,43 = 0. Then the space of homogeneous polynomi-

als in 2, -+, 2,41 with real coefficients is a real linear space of dimension
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p+d+1

d
the lemma is proved. M

which defines non-zero real sections in H°(V,O(d)). Hence
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4 Algebraic Suspension Theorems

The purpose of this section is to prove various suspension theorems de-

scribed in Section 1.

4.1 The Main Algebraic Suspension Theorem

We now prove the main result :

Theorem 4.1.1 For any real algebraic subset X C BP, the suspension

2

RCHX) ——  RCpa(IX)

maps

DC(X) — DCp(¥X)
are homotopy equivalences for every dimension p. So also are the suspen-

810N MAPS

RCy(X) —“Hz}"‘j RCp1(FX)
DC,(X) —}D’ DCpa (TX).

Consequently, Theorem 1.2.1 follows.
Recall that the suspension maps

RC,(X) F, Tpa(X) —— RCp(XX)

v

DC,(X) —— Apu(X) —— DCp(EX)
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induce homotopy equivalences

r

RC(X) —  Tppu(X)
DC(X) i A, (X).

Hence, to prove the first part of Theorem 4.1.1, it suffices to show that the

inclusions ¢, 7 induce isomorphisms

T Ty (X)) 5 ma(RCpua (FX)
m(Agr1 (X)) = m(DCyia(EX))

for all positive integers k. This follows from the following claims :

Claim 1For any maps
f:8 — chJrl(Z:X):

g:SF —— fDCp_H(;EX),

there exist positive integers dy, d, such that for alld > dy and d' > d,, d- f

18 homotopic to o map

F:8F—— T (X)
and d - g 13 homotopic to a map

§:S*F—— A, (X).
Claim 2 For any maps

[ (Bkask_l) T (Rcrﬁl(m)a Tp+1(X)),

g : (B*,55) —— (DCpy1(FX), Aprs (X)),
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there exist positive integer dy, dy such thaet for alld > dy and &' > d,, d- f

18 homotopic to a map
K (B*, %) —— (Tp4s(X), Tpys (X))
and d' - g 1s homotopic to o map

g : (Bkask) _— (AP-H (X)> AP+1(X))'

Note that for any map
f:8 —M

to an abelian topological monoid, we have [d - f] = d[f] where d - f is the
map d- f(z) = f(z)+ f(z)+-- -+ f(z) (d times) and where + is the addition
in M.

Recall that a map f: Z — Y between two triangulable spaces is called
reguler if for some triangulations on Z and Y, f is PL. E\}ery continuous
map between triangulable spaces is homotopic to a regular one. Therefore,
without loss of generality, we may assume all the maps in Claims 1 and 2 are

regular. Then the claims follow easily from the following two propositions.

Proposition 4.1.1 Let

£+ 8% —— RCpp(¥X)

g: 5" —— DCPH(XIY)
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e - e +d+1
be regular maps. Then for any positive integer d satisfying P

\

|

> k-1, there exists a divisor D € Div!® such that the homotopies
ft = l:’{IISD(d ' f)a

gt = Yyp(d- g)
satisfy the following properties :
fo=d-f,  F(S%) C Tpna(X)
go=d-g, g(S*) CAL(X)

Jorallo <t <1,

Proof By Lemma 2.6, we have that V,p(f(2z)) is a continuous family

of real cycles of degree dd,. Moreover, U;p(f(z)) € TPH(XX } whenever
a(D) ¥ f(x). Consider the set of divisor in Div®

R(H= U - R(f(z))
o<t<1
z e Sk

where £ - R(f(z)) = {tD: D ¢ R(c).} Applying Lemma 3.4.5, we have

d41
codimpgR{f) > ptat —k—1.
d

Therefore there exists D € Din™ — R f) and the homotopy £, satisfies the J
4 J

required properties. The proof for the homotopy ¢: s the same. B

By similarly argument, we have




50

Proposition 4.1.2 Let
£ (B*, 851 —— (RCpys (TX), Tpys (X))

g (B*,851) —— (DCp1 (LX), Apys (X))

e C . pt+d+1
be regular maps. Then for any positive integer d satisfying

>k +1, there exists ¢ divisor D € Div;{iR such that the homotopies
fi= ‘IftD(d' f):

gt = ‘PtD(d' 9‘)

satisfy the following properties :

fo=d-f,  fu(B*, 8% 1) C (Tpa(X), Tpra(X))
Go=d g, g(B*S*1)C (Apa(X), Appa (X))

for all o <t < 1.

In particular, we have

Corollary 4.1.1
To( Lpy1 (X)) s RC, 1 (X)
Jx
To(Apt1(X)) ~— DCppa(X)
are bijections,

Note that the homotopies in Propositions 4.1.1 and 4.2.2 preserves the
based points chosen to construct T,y (X) and A, (X).
Claims 1 and 2 then follow.
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The second part of Theorem 4.1.1 can be proved in a similar manner.

The only thing we should note is that the lifting map

Yin({(a,b)] = [(Lep(a’), Ten(8)]

is independent of the choice of representative (o', b’ ) of [(@,b)] and is con-

tinuous. This was proved in [LB2].

4.2 The Cases of Mod 2 Real Cycle Spaces

We provide here the proofs of suspension theorems 1.3.1, 1.3.2, 1.4.1.
Proof These theorems follow from Theorem 4.1.1 and the fibration results
in Section 2.1 and the five lemmma. For example, recall that by Corollary

2.1.1, we have a map of quasifibrations
—— RG(X) —— RCX) —— RC(X)0L  —s
Ll | Ll
e ch+1(?3’f) - chﬂ(m) B RCP+1(EX)®ZZ —

By applying Theorem 1.1 and the five lemma, the suspension map

F
RC(X)®Z; — chﬂ(;EX)@Zz

is also a homotopy equivalence. The proofs for the remaining cases are
similar. W
In the case X = R, we can defined the cycle spaces RC,(F®), and

DC,(RY), as the weak lmits of the following sequences of embeddings :

+Lo
- RC(RY) — RC, i (RF) — -
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+2£,
- DC i) —— DCppapa(RE) —— - -

Then the inclusion RC,po(R?) ~—— RC,(P?) defined by ¢ — ¢ — df,

induces an inclusion

E(FE) — EP(HIR)-

Proposition 4.2.1 The inclusion map E,(B) ——— £,(B") is a homotopy

equivalence.

Proof Since the algebraic suspension map commutes with the inclusion, |

it follows from the commutative diagram
X)) —— @)
Epra(RETY) —— & (RETY)
that the theorem is true if it is true for p = 0. The case for when p =0 was

proved in [DT2]. W
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5 The Algebraic Join Operation on Real Cy-
cle Spaces

In analogy with the work of Lawson and Michelsohn({LM]), there are inter-
esting relations between the Stiefel-Whitney classes and the spaces of real
algebraic cycles. In this section, we show that there is a “Whitney charac-
teristic map’ from BO, into Jim EI(FE), ~ K(Z3,1) % - - x K(Z3, ¢), where
EYRE), denotes the degree one component of E1(FY), which classifies the
total Stiefel-Whitney class of the universal g-plane bundle on B 0,. The
relations between the Whitney characteristic map and the algebraic join

operation is also discussed here.

5.1 Stiefel-Whitney Classes and Cycle Spaces

Recall that by fixing a distinguished real linear subspace £, of dimension
p in B, we may define RC,(RF), as the weak limit lign RC, 4(R™) of the

following sequence of embeddings :
+£a
+—— RC,4(FF) — RCp a1 (FE) - o

Noticing that the real Grassmannian of codimension q planes in R*! can
be identified with the space of real effective cycles of codimension q and of

degree one in F®, we consider the composition of the maps
Gri(R) = RC,(RY) — RC,(RY), — (R, ~ E(RT),

where p +- ¢ = n. By fixing an infinite flag of real linear subspaces

R CRIM2 C R C
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and compatible splittings R"*' = R™ @ R for each n, we have inclusions
Gr*(By) — Gr(B™)

defined by sending a real linear subspace V of codimension q in R"*! to
V@R. This is exactly the suspension map on real algebraic cycles of degree

one and codimension q. Then we have the a commutative diagram

R — &),

| z|

iRl — SR,
Z z|
v v
Gy —— ),

) rl

Gri(fg™) —— R,

4| 4

.

By Corollary 1.3.2, each X}on the right is a homotopy equivalence. Passing

to the limit as n— oo, we obtain a Whitney Characteristic map
BO, = K(Zy,1) x -+ x K(Z3,9).

Note that I{(Z,,k) is the classifying space for the cohomology functor

H*(-,7,), i.e., there is a one-to-one correspondence

H*(X,Z,) 2 [X, K(Z,, k)]
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for each positive integer k and countable CW-complex X, where (X, K(Z4, k)]
denotes the homotopy classes of base-point preserving maps from X to

K(Z,,k). Consequently, each component of w represents a, cohomology

class in H*(BO,,Z;).

Theorem 5.1.1 The map w represents the total Stiefel- Whitney class of

the universal g-plane bundle €, over BO,.

Proof Fix real flags

R9 C Ret1
M n
Ratl C Rat2
n M

and consider the following induced commutative diagrams :

B —— oY, R —— EURY),
v | L ]|
Gri'(Bf) —— E\(RY), Gri(R™) —— gargth),

El Ll y rl

Fl £l r |

Gl — T, G —— SR,

\ £l El zl

r
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Stablizing the vertical maps by letting n— oo, we have the following com-

mutative diagram of maps
B! —— BO,., —— K(Z5,1) x -+~ x K(Z3,9 — 1)
N N i|
W —— BO, —— K(Zy,1)x - x K(Zs,q).
Note that EURY), ~ SP(RY,Z,) and the inclusion ETY R, © ENFT),
corresponds to the inclusion SP(R{™,7,) C SP(KY, Z,). Since Yis a ho-

motopy equivalence, j is homotopic to the standard inclusion Jol2) = (z,2,)

as a factor. Therefore we have a map
S =R /R < BO,/BO,_,— K(Z,,q)

which represents the generator of T (H{Z3, ¢)) = Z, since, by [DT1,2]

H

SP(B,Z) —  SP(R,Z,)JSP(, 1,)
SP(R/RI™, 1)
SP(51,7,)

~ K(Lsq)

12

12

is a quasifibration and the canonical embedding S7-— SP(S59,2,) repre-
sents the generator of m,(K(Z3, ¢)). |

Let b, € HY(BO,,Z;),k =1,--., 4, be the cohomology class represented |
by the ¢-th component of the map

w=0 X'"X,@q

BO; ——— K(75,1) x --- x K(Z,,q).

i
J
As we have shown above, the map [, descends to a map on the quotient ]

BO,/BO,_4, hence by vanishes when restricted to BO,_;. Moreover, when
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restricted to BY ¢ BO,, this map also descends to map BY/BI™! which
represents the generator of m,(K(Zs,¢)). Therefore b, is a non-zero coho-

mology class lying in the kernel of the homomorphism
H*(BO,,13)— H*(BO,_,, Z,;)

induced by the inclusion BO,_, ¢ BQ,. It is well-known that (B0, Z;) =
Zylwy, - -+, wy] is the Z,-polynomial ring generated by the Stiefel-Whitney
classes of the universal g-plane bundle on B (,, and the kernel of the ho-
momorphism

H*(BOq, Zg)—ﬂ H*(BOq_l, Zg)

is the ideal generated by w,. Hence we conclude that b, = w,. Applying
the argument inductively to BO, 1,B0y_,, -+, we have b, = w;, for k =

1,...,q_ .

5.2  Whitney Sum and The Algebraic Join Operation

Let F, B be embedded in B*™11 via the splitting C"+1 x C™+1 = Crtm+2

of their homogeneous coordinates. Also let £o, £, be two fixed distinguished
real linear subspaces in P2, & respectively.

The algebraic join operation
#C n-T+m
RC, 4(F) x RCP’,d’(H:m) - ch+p’+1,dd’(ﬂj€ * H)

induces a pairing on degree one real cycles RC,(R?) = GrY(R?) where
P+ ¢ = n. The pairing on degree one cycles is in fact given by taking the

direct sum of linear subspaces

GTQ(H:R) X G?‘q‘(i%m)—ei)(;‘rq-f-q'(ﬂ:n-i-m-i»l).
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By letting n,m— oo, one has the classifying map
B
BO, x BOy—BO,

which classifies the Whitney sum operation on vector bundles. It has the

property that &*(£,4y) = £, ® &, where €qy &g and £, are the universal
bundles over BO,, BO, and BOy, respectively. Theorem 5.1.1 shows

that when n — oo, the map
Gri(Rg)— RC, (RS ), — E1(FE),

represents the Stiefel-Whitney classes. However the algebraic join opera-
tion on RC, 4(FR®) does not extends to a pairing on RC,(F®) directly. In
order to study the relations between the Whitney sum operation and the
algebraic join operation on cycle spaces, it is more convenient to look at
the alternative naive cycle groups RC,(P?) and DC,(R™). Note that the

algebraic join extends biadditively to a commutative diagram of pairings

— —_— # —

RC,(FE) x RCp(R) —— RCppppr(RET™H)
U U

—_ — # ——

DCo(RE) X DCp(RE) ——  DCppppu(BET™H)

which descend to their smash products. Consequently, we have a pairing
=, ot # =~ s
ERE) x EV(Ry)— Evtv (Rremit),

where p+ ¢ =n, p' + ¢ = m, which also descends to the smash product

-y Sof # g :
EURT) A E (Ptm)—i* Tt (R,
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By Proposition 4.2.1, the map RC, ,(R*)—- ﬁp(ﬁ”) defined by ¢-—— ¢ —

df, induces a homotopy equivalence
E1(E) — EFE).
Therefore we now consider the pairing
EN(RE) X £ (RE)—s EU(RY) x EV(RE) 25y Gave (ppmiy

defined by (¢,c') — (¢ — dlo)#e(c — dl,). By the algebraic suspension
theorem, we then have a pairing
() a1 11
k
where H{éf K(Z3,1) x - x K(Z3,k). To understand this pairing, it is
sufficient to study it at the cohomology level.
Let 74 denote the pull back to f[ of the generator of HY K (7,,k), Z5) =

Z; via the projection. Then we have

Theorem 5.2.1 The paring (xx) satisfies the following property :

#C*(Tk) = Z T & Ts-
r+s=%k
T8 >0
Let B! = Y P™ be given the Fubini-Study metric. Consider the ¢-
neighborhood R in BP as discussed in p.40. Recall that from Corollary

3.3.2, we have that the inclusion E(Rm) — gp(ﬁ%”’;) 18 a homotopy equiva-

lence for all 0 < ¢ < .
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Proposition 5.2.1 For all 0 <t <, the suspension homomorphism
L &Ry — vy
18 @ homotopy equivalence.

Proof In the commutative diagram

£ (R i E9(RIHY)
I |

E(Re) -}j—} EreH,

the vertical inclusion maps are deformation retractions and the suspension
L

map gq(H:m) —— f"(H:mH) i1s a homotopy equivalence. Therefore the

SUSpension map
L E1(RT) — EURE)
is also a homotopy equivalence. H

Let I be embedded in B as a real linear subspace. By fixing t < ,

we have the following commutative diagram
~ ~ pr ~ ~
G — LR —— EENIERD)

! ! l

EWD) —— E(R) — E(Rn)/E(Rr)

| | |
E(RN) —— &A1) —— (R JE(Rm)

where pr is the natural projection and where R in the third row is con-

sidered as a t-neighborhood of B™ in BV,
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Proposition 5.2.2 In the above commutative diagram, the vertical maps

. are homotopy equivalences and the horizontal maps are principal fibrations.

Proof To prove that the horizontal maps are principal fibrations, we

construct a local section for each of these projections following the induc-

tive construction of Dold-Thom as in Section 2.1. That the vertical maps
are homotopy equivalences then follow from Proposition 5.2.1 and the five
lemma. H
Fix flags of real linear subspaces
L=RPcrtc...chr
b=R crc...cRry
in B and R respectively. Then choose corresponding real flags in Bt
H:P+pf+1 - P€+pf+2 CoeeC Pcn+m+1

and an € > 0 such that, for all r +s < Fk,

Riwclt CRE C RO
For convenience, let U(k) =l [P&:’fs be the e-neighborhood of the corre-

sponding real linear subspace Bf in ™™+ Then we have
~ ~ #ec =
SE) A En(FE) — Eprpria(U(R))
whenever r 4+ s < k. By identifying cycle spaces in the principal fibration
§q+q—1’(U(n +m)) —— §q+q’(ﬂ:ncn+m+1) . §q+q’([pg:n+m+l)//§q+q’—1(U(n +m))
.
! ! ! 2

! s
g+9'—1 7tg pr

H — H e Kotq 3§
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with the corresponding products of Eilenberg-MacLane spaces, where we
denote by Ky the spaces K(Z3,q + ¢'), we determine homotopically a

projection map
q+q’

»r
H — K.

Remark 5.2.1 Similarly, one has a fibration

r a+q

H — H — I{r+1 Xeee X I(q_;.qr.

We now consider the following commutative diagram
q q #

[IAIl —-

Py XPT21 lpr

J
I(q A I(ql —— f(g_]_ql.

q+q’

Let 73 be the generator of the cohomology group H* (K, Z3). Then we have
Proposition 5.2.3 The map J satisfies the following property :
T (Torq) = Ty ® 7.
Proof By [DT1,2] and the suspension theorem, we have that the map
BB o SR JERETY) ~ Ed(Rey) pE (2 ~ K,

represents the generator of w,(K,). Hence we have the commutative dia-

gram
K, AN K, s Ky
U U
RE/RTIARYJRET o Bt R

I I

o

S A S — Satd’
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where S7 A S? generates 7,y (K,4,). The proposition then follows. M

|
Proof of Theorem 5.2.1 ‘
q
Let SK} be the r-skeleton of [ ~ K; x ---K,. Since each K; is | — 1

T g
connected, without loss of generality, we may assume that SK? C I Il

ql

g
Let SK; denote the k-skeleton of H A H Then we have
SK, U H A H
r4s<k i
Moreover, we have the commutative diagram ‘
g q de gtq’
Al -2 11

SK, — | H/\f[ e, Era(U(k))

r-s<k
U U U
SKiyw — U TIAI] 25 &' (U(k - 1)
rts<k-1

Note that

SKi/SKyy = \ (SK1/SK!_)A(SKS/SKY,)
r4s=k

and that the class #c*7; is determined by the map

SKe/SKer — U TIAIL/ U TIATT — 84 (U() )8+ Uk - 1)) ~ K.

r+s<k rs<k~1

Also note that this map is factored through the bouquet

U IIAI1/U TIAT = V QUIDAQUID.

r+s<k r+s<k—1 r+s=k
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It is easy to check that each map

TIATL — 80 @R E (k- 1)) ~ K,

8

r r—1 s—1
actually descends to the smash product (J[/J[)A(JI/I]). Therefore, by
Proposition 5.2.3, the theorem follows. H

We now define
ps EURE) x EV(RE) — Ere'(Rptmity

by p(e, ') = #e + Lo#tec + cicl!,. Then we have the following commutative

diagram
Gri(RE) x Gr(B) —2, Gt (Rrim1)

EuRy) x &7 (Br)  —Lo Eord'(prbmtt),

Similarly, we have

Theorem 5.2.2 p satisfies the following property :

wlry= Y. 1,0,

r+s==k

520

Proof Since the map EI(R?) — E77 (B2 given by ¢ — citcll is
q gtq’
homotopic to the inclusion H — ][, the result follows from Theorem

3.2.1. and the fact the sum 2““ + X)mﬂ pulls 74 back to i, ® 1 + 1 ® 7.
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Let €7(R?) L kli—{g) g‘?(ﬁkﬂ:ﬂ:"). Then, by stablizing the commutative
diagram above by letting n, m’ — co, we have a commutative diagram

BO,x BOy —2— BOy

I !

e(Re) x €(Re) —— ertv(Re).
Thus Theorem 5.2.2 provides a cycle-theoretic proof of the Whitney sum

formula

w(E ® FE') = w(E)Uw(E)

for the total Stiefel-Whitney class of real vector bundles.

5.3 Friedlander-Mazur Operations

Following the construction in [FM], we define a bigraded module associated
to a real algebraic subset via the algebraic join operation on cycle spaces.

Recall that for a general real algebraic subset in B, we define
e(X) E lim &Y' X)
and obtain a pairing
[ #c '
@B A v (X) T ervi(x)

via the algebraic join operation. In particular, the algebraic join operation

induces a pairing of the homotopy groups of these spaces :

mi(€9(RE)) @ (€7 (X)) oo iy (€74 (X)).
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When X = F?, this pairing provides a ring structure on the bigraded group
1, & (F¢) = @ me(R?). Hence m, ¢*(X) admits the structure of a bigraded
module over the bigraded ring =,.&*(F?).
Recall that we have
e - | BRI if0<i<y,
0 if r>q.
Therefore in order to determine the ring structure of the bigraded

ring 7, &*(R?), it is sufficient to consider the generators of these homotopy

groups. In fact, we have

Theorem 5.3.1 The bigraded ring m,¢*(B?) is isomorphic to the polyno-

mial algebra over Zy on two generators :
T e*(ﬂio) = 22[a1 b]a
where a € 7,8 (R¢) and b € m e (RY).

Proof Tor 0 <: < ¢, let £ denote the generator of the group 7 €(R2).
Let ¢ denote a degree one cycle in go( F¢) which represents the generator £
of mo(&,(R2)).

Recall that go(PRq)o ~ ]EI. Moreover, the inclusion ﬁ — fI induces
isomorphisms of their homotopy groups up to dimension r. Consider the

commutative diagram

[

r el s

I[I—1I
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r #eC atr
where [] —— ]] is homotopically equivalent to the inclusion map

SP(PRT,ZQ) ——7 SP(PRS-l-T, 22)

induced by the linear embedding fif < B*". Such a map sends the
generator £7 to &7, Hence we have £240£7 = €19, Similarly, Elpcls = 79

For any 0 <2 <5, 0 < j < ¢, consider the commutative diagram
5 q #
IIAII —
i T i e i |
AT —

lpr Xpr J'P?‘ '

J
K ANK; —» Ky ;.

sq

From Proposition 5.2.3, the generators of K; and K generate the (i +j)-th

homotopy group of K, ;. Hence we have ' |

-+
Gaeli = 6] = Guel.

By taking a = ¢! and b = ¢1, the proposition follows. H

The generators ¢ and b give rise to interesting operations on the bi-
graded module 7,¢*(X). Given an irreducible real algebraic subvariety
X C F® with connected real locus Xg, let ﬁRX denotes the real locus of

X)X - Then a and b provide the following interesting diagram of operations

on the homotopy groups of cycles spaces ¢*(X) :
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3

a®- a®-/®‘( [ X7
Hr(ﬂaxa ZZ) HT+I(XE§X: 22) '+n—q+1(m: 22)

3
a@- %' a@ - a@@-

HT(XRa z2) H-r+1(X[R: ZE) Hr+n—q(X|Rs ZZ)

a® - a®- /
) b® -

+

3 3
a®- a®-4

=

7, €I X) T €TTHX)
a® - %
7, €4 X)

In view of the work of Friedlander and Mazur([F'M]), these operations
should have interesting relations with the ‘Thom isomorphism’ for homol-

ogy of real algebraic varieties. The operation a induces an intriguing filtra-

tion on the Zy-homology of the real locus Xg.
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